Btrfs: fix ordered extent leak when failing to start a transaction
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
eb60ceac 48
d1310b2e 49static struct extent_io_ops btree_extent_io_ops;
8b712842 50static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 51static void free_fs_root(struct btrfs_root *root);
fcd1f065 52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 53 int read_only);
143bede5
JM
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
143bede5
JM
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
79787eaa 102 int error;
44b8bd7e
CM
103};
104
85d4e461
CM
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
4008c04a 115 *
85d4e461
CM
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 119 *
85d4e461
CM
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 123 *
85d4e461
CM
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
4008c04a
CM
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
85d4e461
CM
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
4008c04a 150};
85d4e461
CM
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
4008c04a
CM
182#endif
183
d352ac68
CM
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
b2950863 188static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 189 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 190 int create)
7eccb903 191{
5f39d397
CM
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
890871be 196 read_lock(&em_tree->lock);
d1310b2e 197 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 201 read_unlock(&em_tree->lock);
5f39d397 202 goto out;
a061fc8d 203 }
890871be 204 read_unlock(&em_tree->lock);
7b13b7b1 205
172ddd60 206 em = alloc_extent_map();
5f39d397
CM
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
0afbaf8c 212 em->len = (u64)-1;
c8b97818 213 em->block_len = (u64)-1;
5f39d397 214 em->block_start = 0;
a061fc8d 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 216
890871be 217 write_lock(&em_tree->lock);
5f39d397
CM
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
0afbaf8c
CM
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
5f39d397 223 free_extent_map(em);
7b13b7b1 224 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 225 if (em) {
7b13b7b1 226 ret = 0;
0afbaf8c
CM
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
7b13b7b1 230 ret = -EIO;
0afbaf8c 231 }
5f39d397 232 } else if (ret) {
7b13b7b1
CM
233 free_extent_map(em);
234 em = NULL;
5f39d397 235 }
890871be 236 write_unlock(&em_tree->lock);
7b13b7b1
CM
237
238 if (ret)
239 em = ERR_PTR(ret);
5f39d397
CM
240out:
241 return em;
7eccb903
CM
242}
243
19c00ddc
CM
244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245{
163e783e 246 return crc32c(seed, data, len);
19c00ddc
CM
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
7e75bf3f 251 put_unaligned_le32(~crc, result);
19c00ddc
CM
252}
253
d352ac68
CM
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
19c00ddc
CM
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
6c41761f 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 262 char *result = NULL;
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
607d432d 271 unsigned long inline_result;
19c00ddc
CM
272
273 len = buf->len - offset;
d397712b 274 while (len > 0) {
19c00ddc 275 err = map_private_extent_buffer(buf, offset, 32,
a6591715 276 &kaddr, &map_start, &map_len);
d397712b 277 if (err)
19c00ddc 278 return 1;
19c00ddc
CM
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
19c00ddc 284 }
607d432d
JB
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
19c00ddc
CM
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
607d432d 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
297 u32 val;
298 u32 found = 0;
607d432d 299 memcpy(&found, result, csum_size);
e4204ded 300
607d432d 301 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
1259ab75 351 ret = 1;
0b32f4bb 352 clear_extent_buffer_uptodate(eb);
33958dc6 353out:
2ac55d41
JB
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
1259ab75 356 return ret;
1259ab75
CM
357}
358
d352ac68
CM
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
f188591e
CM
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
ca7a79ad 365 u64 start, u64 parent_transid)
f188591e
CM
366{
367 struct extent_io_tree *io_tree;
ea466794 368 int failed = 0;
f188591e
CM
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
ea466794 372 int failed_mirror = 0;
f188591e 373
a826d6dc 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
bb82ab88
AJ
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
f188591e 379 btree_get_extent, mirror_num);
b9fab919
CM
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
ea466794 382 break;
d397712b 383
a826d6dc
JB
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
390 break;
391
f188591e
CM
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
4235298e 394 if (num_copies == 1)
ea466794 395 break;
4235298e 396
5cf1ab56
JB
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
f188591e 402 mirror_num++;
ea466794
JB
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
4235298e 406 if (mirror_num > num_copies)
ea466794 407 break;
f188591e 408 }
ea466794 409
c0901581 410 if (failed && !ret && failed_mirror)
ea466794
JB
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
f188591e 414}
19c00ddc 415
d352ac68 416/*
d397712b
CM
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 419 */
d397712b 420
b2950863 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 422{
d1310b2e 423 struct extent_io_tree *tree;
35ebb934 424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 425 u64 found_start;
19c00ddc 426 struct extent_buffer *eb;
f188591e 427
d1310b2e 428 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 429
4f2de97a
JB
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
19c00ddc
CM
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
55c69072 435 WARN_ON(1);
4f2de97a 436 return 0;
55c69072 437 }
727011e0 438 if (eb->pages[0] != page) {
55c69072 439 WARN_ON(1);
4f2de97a 440 return 0;
55c69072
CM
441 }
442 if (!PageUptodate(page)) {
55c69072 443 WARN_ON(1);
4f2de97a 444 return 0;
19c00ddc 445 }
19c00ddc 446 csum_tree_block(root, eb, 0);
19c00ddc
CM
447 return 0;
448}
449
2b82032c
YZ
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
a826d6dc
JB
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
727011e0
CM
536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538{
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569}
570
b2950863 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 572 struct extent_state *state, int mirror)
ce9adaa5
CM
573{
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
ce9adaa5
CM
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 579 int ret = 0;
727011e0 580 int reads_done;
ce9adaa5 581
ce9adaa5
CM
582 if (!page->private)
583 goto out;
d397712b 584
727011e0 585 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 586 eb = (struct extent_buffer *)page->private;
d397712b 587
0b32f4bb
JB
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
594 if (!reads_done)
595 goto err;
f188591e 596
5cf1ab56 597 eb->read_mirror = mirror;
ea466794
JB
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
ce9adaa5 603 found_start = btrfs_header_bytenr(eb);
727011e0 604 if (found_start != eb->start) {
7a36ddec 605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
f188591e 609 ret = -EIO;
ce9adaa5
CM
610 goto err;
611 }
2b82032c 612 if (check_tree_block_fsid(root, eb)) {
7a36ddec 613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 614 (unsigned long long)eb->start);
1259ab75
CM
615 ret = -EIO;
616 goto err;
617 }
ce9adaa5
CM
618 found_level = btrfs_header_level(eb);
619
85d4e461
CM
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
4008c04a 622
ce9adaa5 623 ret = csum_tree_block(root, eb, 1);
a826d6dc 624 if (ret) {
f188591e 625 ret = -EIO;
a826d6dc
JB
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
0b32f4bb
JB
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
ce9adaa5 641err:
4bb31e92
AJ
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
0b32f4bb
JB
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
ce9adaa5 650out:
f188591e 651 return ret;
ce9adaa5
CM
652}
653
ea466794 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 655{
4bb31e92
AJ
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
4f2de97a 659 eb = (struct extent_buffer *)page->private;
ea466794 660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 661 eb->read_mirror = failed_mirror;
ea466794 662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 663 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
664 return -EIO; /* we fixed nothing */
665}
666
ce9adaa5 667static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
668{
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
ce9adaa5 671
ce9adaa5 672 fs_info = end_io_wq->info;
ce9adaa5 673 end_io_wq->error = err;
8b712842
CM
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
d20f7043 676
7b6d91da 677 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 678 if (end_io_wq->metadata == 1)
cad321ad
CM
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
0cb59c99
JB
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
cad321ad
CM
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
d20f7043
CM
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
ce9adaa5
CM
695}
696
0cb59c99
JB
697/*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
22c59948
CM
704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
0b86a832 706{
ce9adaa5 707 struct end_io_wq *end_io_wq;
ce9adaa5
CM
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
22c59948 714 end_io_wq->info = info;
ce9adaa5
CM
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
22c59948 717 end_io_wq->metadata = metadata;
ce9adaa5
CM
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
721 return 0;
722}
723
b64a2851 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 725{
4854ddd0
CM
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730}
0986fe9e 731
4a69a410
CM
732static void run_one_async_start(struct btrfs_work *work)
733{
4a69a410 734 struct async_submit_bio *async;
79787eaa 735 int ret;
4a69a410
CM
736
737 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
4a69a410
CM
743}
744
745static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
746{
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
4854ddd0 749 int limit;
8b712842
CM
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 753
b64a2851 754 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
755 limit = limit * 2 / 3;
756
66657b31 757 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 758 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
759 wake_up(&fs_info->async_submit_wait);
760
79787eaa
JM
761 /* If an error occured we just want to clean up the bio and move on */
762 if (async->error) {
763 bio_endio(async->bio, async->error);
764 return;
765 }
766
4a69a410 767 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
768 async->mirror_num, async->bio_flags,
769 async->bio_offset);
4a69a410
CM
770}
771
772static void run_one_async_free(struct btrfs_work *work)
773{
774 struct async_submit_bio *async;
775
776 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
777 kfree(async);
778}
779
44b8bd7e
CM
780int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
781 int rw, struct bio *bio, int mirror_num,
c8b97818 782 unsigned long bio_flags,
eaf25d93 783 u64 bio_offset,
4a69a410
CM
784 extent_submit_bio_hook_t *submit_bio_start,
785 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
786{
787 struct async_submit_bio *async;
788
789 async = kmalloc(sizeof(*async), GFP_NOFS);
790 if (!async)
791 return -ENOMEM;
792
793 async->inode = inode;
794 async->rw = rw;
795 async->bio = bio;
796 async->mirror_num = mirror_num;
4a69a410
CM
797 async->submit_bio_start = submit_bio_start;
798 async->submit_bio_done = submit_bio_done;
799
800 async->work.func = run_one_async_start;
801 async->work.ordered_func = run_one_async_done;
802 async->work.ordered_free = run_one_async_free;
803
8b712842 804 async->work.flags = 0;
c8b97818 805 async->bio_flags = bio_flags;
eaf25d93 806 async->bio_offset = bio_offset;
8c8bee1d 807
79787eaa
JM
808 async->error = 0;
809
cb03c743 810 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 811
7b6d91da 812 if (rw & REQ_SYNC)
d313d7a3
CM
813 btrfs_set_work_high_prio(&async->work);
814
8b712842 815 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 816
d397712b 817 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
818 atomic_read(&fs_info->nr_async_submits)) {
819 wait_event(fs_info->async_submit_wait,
820 (atomic_read(&fs_info->nr_async_submits) == 0));
821 }
822
44b8bd7e
CM
823 return 0;
824}
825
ce3ed71a
CM
826static int btree_csum_one_bio(struct bio *bio)
827{
828 struct bio_vec *bvec = bio->bi_io_vec;
829 int bio_index = 0;
830 struct btrfs_root *root;
79787eaa 831 int ret = 0;
ce3ed71a
CM
832
833 WARN_ON(bio->bi_vcnt <= 0);
d397712b 834 while (bio_index < bio->bi_vcnt) {
ce3ed71a 835 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
836 ret = csum_dirty_buffer(root, bvec->bv_page);
837 if (ret)
838 break;
ce3ed71a
CM
839 bio_index++;
840 bvec++;
841 }
79787eaa 842 return ret;
ce3ed71a
CM
843}
844
4a69a410
CM
845static int __btree_submit_bio_start(struct inode *inode, int rw,
846 struct bio *bio, int mirror_num,
eaf25d93
CM
847 unsigned long bio_flags,
848 u64 bio_offset)
22c59948 849{
8b712842
CM
850 /*
851 * when we're called for a write, we're already in the async
5443be45 852 * submission context. Just jump into btrfs_map_bio
8b712842 853 */
79787eaa 854 return btree_csum_one_bio(bio);
4a69a410 855}
22c59948 856
4a69a410 857static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
858 int mirror_num, unsigned long bio_flags,
859 u64 bio_offset)
4a69a410 860{
8b712842 861 /*
4a69a410
CM
862 * when we're called for a write, we're already in the async
863 * submission context. Just jump into btrfs_map_bio
8b712842 864 */
8b712842 865 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
866}
867
44b8bd7e 868static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
869 int mirror_num, unsigned long bio_flags,
870 u64 bio_offset)
44b8bd7e 871{
cad321ad
CM
872 int ret;
873
7b6d91da 874 if (!(rw & REQ_WRITE)) {
f3f266ab 875
4a69a410
CM
876 /*
877 * called for a read, do the setup so that checksum validation
878 * can happen in the async kernel threads
879 */
f3f266ab
CM
880 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
881 bio, 1);
1d4284bd
CM
882 if (ret)
883 return ret;
4a69a410 884 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 885 mirror_num, 0);
44b8bd7e 886 }
d313d7a3 887
cad321ad
CM
888 /*
889 * kthread helpers are used to submit writes so that checksumming
890 * can happen in parallel across all CPUs
891 */
44b8bd7e 892 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 893 inode, rw, bio, mirror_num, 0,
eaf25d93 894 bio_offset,
4a69a410
CM
895 __btree_submit_bio_start,
896 __btree_submit_bio_done);
44b8bd7e
CM
897}
898
3dd1462e 899#ifdef CONFIG_MIGRATION
784b4e29 900static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
901 struct page *newpage, struct page *page,
902 enum migrate_mode mode)
784b4e29
CM
903{
904 /*
905 * we can't safely write a btree page from here,
906 * we haven't done the locking hook
907 */
908 if (PageDirty(page))
909 return -EAGAIN;
910 /*
911 * Buffers may be managed in a filesystem specific way.
912 * We must have no buffers or drop them.
913 */
914 if (page_has_private(page) &&
915 !try_to_release_page(page, GFP_KERNEL))
916 return -EAGAIN;
a6bc32b8 917 return migrate_page(mapping, newpage, page, mode);
784b4e29 918}
3dd1462e 919#endif
784b4e29 920
0da5468f
CM
921
922static int btree_writepages(struct address_space *mapping,
923 struct writeback_control *wbc)
924{
d1310b2e
CM
925 struct extent_io_tree *tree;
926 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 927 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 928 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 929 u64 num_dirty;
24ab9cd8 930 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
931
932 if (wbc->for_kupdate)
933 return 0;
934
b9473439
CM
935 /* this is a bit racy, but that's ok */
936 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 937 if (num_dirty < thresh)
793955bc 938 return 0;
793955bc 939 }
0b32f4bb 940 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
941}
942
b2950863 943static int btree_readpage(struct file *file, struct page *page)
5f39d397 944{
d1310b2e
CM
945 struct extent_io_tree *tree;
946 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 947 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 948}
22b0ebda 949
70dec807 950static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 951{
98509cfc 952 if (PageWriteback(page) || PageDirty(page))
d397712b 953 return 0;
0c4e538b
DS
954 /*
955 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
956 * slab allocation from alloc_extent_state down the callchain where
957 * it'd hit a BUG_ON as those flags are not allowed.
958 */
959 gfp_flags &= ~GFP_SLAB_BUG_MASK;
960
3083ee2e 961 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
962}
963
5f39d397 964static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 965{
d1310b2e
CM
966 struct extent_io_tree *tree;
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
968 extent_invalidatepage(tree, page, offset);
969 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 970 if (PagePrivate(page)) {
d397712b
CM
971 printk(KERN_WARNING "btrfs warning page private not zero "
972 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
973 ClearPagePrivate(page);
974 set_page_private(page, 0);
975 page_cache_release(page);
976 }
d98237b3
CM
977}
978
0b32f4bb
JB
979static int btree_set_page_dirty(struct page *page)
980{
981 struct extent_buffer *eb;
982
983 BUG_ON(!PagePrivate(page));
984 eb = (struct extent_buffer *)page->private;
985 BUG_ON(!eb);
986 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
987 BUG_ON(!atomic_read(&eb->refs));
988 btrfs_assert_tree_locked(eb);
989 return __set_page_dirty_nobuffers(page);
990}
991
7f09410b 992static const struct address_space_operations btree_aops = {
d98237b3 993 .readpage = btree_readpage,
0da5468f 994 .writepages = btree_writepages,
5f39d397
CM
995 .releasepage = btree_releasepage,
996 .invalidatepage = btree_invalidatepage,
5a92bc88 997#ifdef CONFIG_MIGRATION
784b4e29 998 .migratepage = btree_migratepage,
5a92bc88 999#endif
0b32f4bb 1000 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1001};
1002
ca7a79ad
CM
1003int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1004 u64 parent_transid)
090d1875 1005{
5f39d397
CM
1006 struct extent_buffer *buf = NULL;
1007 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1008 int ret = 0;
090d1875 1009
db94535d 1010 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1011 if (!buf)
090d1875 1012 return 0;
d1310b2e 1013 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1014 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1015 free_extent_buffer(buf);
de428b63 1016 return ret;
090d1875
CM
1017}
1018
ab0fff03
AJ
1019int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1020 int mirror_num, struct extent_buffer **eb)
1021{
1022 struct extent_buffer *buf = NULL;
1023 struct inode *btree_inode = root->fs_info->btree_inode;
1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025 int ret;
1026
1027 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1028 if (!buf)
1029 return 0;
1030
1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
1033 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1034 btree_get_extent, mirror_num);
1035 if (ret) {
1036 free_extent_buffer(buf);
1037 return ret;
1038 }
1039
1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041 free_extent_buffer(buf);
1042 return -EIO;
0b32f4bb 1043 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1044 *eb = buf;
1045 } else {
1046 free_extent_buffer(buf);
1047 }
1048 return 0;
1049}
1050
0999df54
CM
1051struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1052 u64 bytenr, u32 blocksize)
1053{
1054 struct inode *btree_inode = root->fs_info->btree_inode;
1055 struct extent_buffer *eb;
1056 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1057 bytenr, blocksize);
0999df54
CM
1058 return eb;
1059}
1060
1061struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1062 u64 bytenr, u32 blocksize)
1063{
1064 struct inode *btree_inode = root->fs_info->btree_inode;
1065 struct extent_buffer *eb;
1066
1067 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1068 bytenr, blocksize);
0999df54
CM
1069 return eb;
1070}
1071
1072
e02119d5
CM
1073int btrfs_write_tree_block(struct extent_buffer *buf)
1074{
727011e0 1075 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1076 buf->start + buf->len - 1);
e02119d5
CM
1077}
1078
1079int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1080{
727011e0 1081 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1082 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1083}
1084
0999df54 1085struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1086 u32 blocksize, u64 parent_transid)
0999df54
CM
1087{
1088 struct extent_buffer *buf = NULL;
0999df54
CM
1089 int ret;
1090
0999df54
CM
1091 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1092 if (!buf)
1093 return NULL;
0999df54 1094
ca7a79ad 1095 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1096 return buf;
ce9adaa5 1097
eb60ceac
CM
1098}
1099
d5c13f92
JM
1100void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1101 struct extent_buffer *buf)
ed2ff2cb 1102{
55c69072 1103 if (btrfs_header_generation(buf) ==
925baedd 1104 root->fs_info->running_transaction->transid) {
b9447ef8 1105 btrfs_assert_tree_locked(buf);
b4ce94de 1106
b9473439
CM
1107 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1108 spin_lock(&root->fs_info->delalloc_lock);
1109 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1110 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1111 else {
1112 spin_unlock(&root->fs_info->delalloc_lock);
1113 btrfs_panic(root->fs_info, -EOVERFLOW,
1114 "Can't clear %lu bytes from "
1115 " dirty_mdatadata_bytes (%lu)",
1116 buf->len,
1117 root->fs_info->dirty_metadata_bytes);
1118 }
b9473439
CM
1119 spin_unlock(&root->fs_info->delalloc_lock);
1120 }
b4ce94de 1121
b9473439
CM
1122 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1123 btrfs_set_lock_blocking(buf);
0b32f4bb 1124 clear_extent_buffer_dirty(buf);
925baedd 1125 }
5f39d397
CM
1126}
1127
143bede5
JM
1128static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1129 u32 stripesize, struct btrfs_root *root,
1130 struct btrfs_fs_info *fs_info,
1131 u64 objectid)
d97e63b6 1132{
cfaa7295 1133 root->node = NULL;
a28ec197 1134 root->commit_root = NULL;
db94535d
CM
1135 root->sectorsize = sectorsize;
1136 root->nodesize = nodesize;
1137 root->leafsize = leafsize;
87ee04eb 1138 root->stripesize = stripesize;
123abc88 1139 root->ref_cows = 0;
0b86a832 1140 root->track_dirty = 0;
c71bf099 1141 root->in_radix = 0;
d68fc57b
YZ
1142 root->orphan_item_inserted = 0;
1143 root->orphan_cleanup_state = 0;
0b86a832 1144
0f7d52f4
CM
1145 root->objectid = objectid;
1146 root->last_trans = 0;
13a8a7c8 1147 root->highest_objectid = 0;
58176a96 1148 root->name = NULL;
6bef4d31 1149 root->inode_tree = RB_ROOT;
16cdcec7 1150 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1151 root->block_rsv = NULL;
d68fc57b 1152 root->orphan_block_rsv = NULL;
0b86a832
CM
1153
1154 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1155 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1156 spin_lock_init(&root->orphan_lock);
5d4f98a2 1157 spin_lock_init(&root->inode_lock);
f0486c68 1158 spin_lock_init(&root->accounting_lock);
a2135011 1159 mutex_init(&root->objectid_mutex);
e02119d5 1160 mutex_init(&root->log_mutex);
7237f183
YZ
1161 init_waitqueue_head(&root->log_writer_wait);
1162 init_waitqueue_head(&root->log_commit_wait[0]);
1163 init_waitqueue_head(&root->log_commit_wait[1]);
1164 atomic_set(&root->log_commit[0], 0);
1165 atomic_set(&root->log_commit[1], 0);
1166 atomic_set(&root->log_writers, 0);
8a35d95f 1167 atomic_set(&root->orphan_inodes, 0);
7237f183
YZ
1168 root->log_batch = 0;
1169 root->log_transid = 0;
257c62e1 1170 root->last_log_commit = 0;
d0c803c4 1171 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1172 fs_info->btree_inode->i_mapping);
017e5369 1173
3768f368
CM
1174 memset(&root->root_key, 0, sizeof(root->root_key));
1175 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1176 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1177 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1178 root->defrag_trans_start = fs_info->generation;
58176a96 1179 init_completion(&root->kobj_unregister);
6702ed49 1180 root->defrag_running = 0;
4d775673 1181 root->root_key.objectid = objectid;
0ee5dc67 1182 root->anon_dev = 0;
8ea05e3a
AB
1183
1184 spin_lock_init(&root->root_times_lock);
3768f368
CM
1185}
1186
200a5c17
JM
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
3768f368
CM
1191{
1192 int ret;
db94535d 1193 u32 blocksize;
84234f3a 1194 u64 generation;
3768f368 1195
db94535d 1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
3768f368
CM
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
4df27c4d
YZ
1201 if (ret > 0)
1202 return -ENOENT;
200a5c17
JM
1203 else if (ret < 0)
1204 return ret;
3768f368 1205
84234f3a 1206 generation = btrfs_root_generation(&root->root_item);
db94535d 1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1208 root->commit_root = NULL;
db94535d 1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1210 blocksize, generation);
b9fab919 1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1212 free_extent_buffer(root->node);
af31f5e5 1213 root->node = NULL;
68433b73
CM
1214 return -EIO;
1215 }
4df27c4d 1216 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1217 return 0;
1218}
1219
f84a8bd6 1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1221{
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226}
1227
20897f5c
AJ
1228struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info,
1230 u64 objectid)
1231{
1232 struct extent_buffer *leaf;
1233 struct btrfs_root *tree_root = fs_info->tree_root;
1234 struct btrfs_root *root;
1235 struct btrfs_key key;
1236 int ret = 0;
1237 u64 bytenr;
1238
1239 root = btrfs_alloc_root(fs_info);
1240 if (!root)
1241 return ERR_PTR(-ENOMEM);
1242
1243 __setup_root(tree_root->nodesize, tree_root->leafsize,
1244 tree_root->sectorsize, tree_root->stripesize,
1245 root, fs_info, objectid);
1246 root->root_key.objectid = objectid;
1247 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1248 root->root_key.offset = 0;
1249
1250 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1251 0, objectid, NULL, 0, 0, 0);
1252 if (IS_ERR(leaf)) {
1253 ret = PTR_ERR(leaf);
1254 goto fail;
1255 }
1256
1257 bytenr = leaf->start;
1258 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1259 btrfs_set_header_bytenr(leaf, leaf->start);
1260 btrfs_set_header_generation(leaf, trans->transid);
1261 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1262 btrfs_set_header_owner(leaf, objectid);
1263 root->node = leaf;
1264
1265 write_extent_buffer(leaf, fs_info->fsid,
1266 (unsigned long)btrfs_header_fsid(leaf),
1267 BTRFS_FSID_SIZE);
1268 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1269 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1270 BTRFS_UUID_SIZE);
1271 btrfs_mark_buffer_dirty(leaf);
1272
1273 root->commit_root = btrfs_root_node(root);
1274 root->track_dirty = 1;
1275
1276
1277 root->root_item.flags = 0;
1278 root->root_item.byte_limit = 0;
1279 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1280 btrfs_set_root_generation(&root->root_item, trans->transid);
1281 btrfs_set_root_level(&root->root_item, 0);
1282 btrfs_set_root_refs(&root->root_item, 1);
1283 btrfs_set_root_used(&root->root_item, leaf->len);
1284 btrfs_set_root_last_snapshot(&root->root_item, 0);
1285 btrfs_set_root_dirid(&root->root_item, 0);
1286 root->root_item.drop_level = 0;
1287
1288 key.objectid = objectid;
1289 key.type = BTRFS_ROOT_ITEM_KEY;
1290 key.offset = 0;
1291 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292 if (ret)
1293 goto fail;
1294
1295 btrfs_tree_unlock(leaf);
1296
1297fail:
1298 if (ret)
1299 return ERR_PTR(ret);
1300
1301 return root;
1302}
1303
7237f183
YZ
1304static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1305 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1306{
1307 struct btrfs_root *root;
1308 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1309 struct extent_buffer *leaf;
e02119d5 1310
6f07e42e 1311 root = btrfs_alloc_root(fs_info);
e02119d5 1312 if (!root)
7237f183 1313 return ERR_PTR(-ENOMEM);
e02119d5
CM
1314
1315 __setup_root(tree_root->nodesize, tree_root->leafsize,
1316 tree_root->sectorsize, tree_root->stripesize,
1317 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1318
1319 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1320 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1322 /*
1323 * log trees do not get reference counted because they go away
1324 * before a real commit is actually done. They do store pointers
1325 * to file data extents, and those reference counts still get
1326 * updated (along with back refs to the log tree).
1327 */
e02119d5
CM
1328 root->ref_cows = 0;
1329
5d4f98a2 1330 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1331 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1332 0, 0, 0);
7237f183
YZ
1333 if (IS_ERR(leaf)) {
1334 kfree(root);
1335 return ERR_CAST(leaf);
1336 }
e02119d5 1337
5d4f98a2
YZ
1338 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339 btrfs_set_header_bytenr(leaf, leaf->start);
1340 btrfs_set_header_generation(leaf, trans->transid);
1341 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1343 root->node = leaf;
e02119d5
CM
1344
1345 write_extent_buffer(root->node, root->fs_info->fsid,
1346 (unsigned long)btrfs_header_fsid(root->node),
1347 BTRFS_FSID_SIZE);
1348 btrfs_mark_buffer_dirty(root->node);
1349 btrfs_tree_unlock(root->node);
7237f183
YZ
1350 return root;
1351}
1352
1353int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1354 struct btrfs_fs_info *fs_info)
1355{
1356 struct btrfs_root *log_root;
1357
1358 log_root = alloc_log_tree(trans, fs_info);
1359 if (IS_ERR(log_root))
1360 return PTR_ERR(log_root);
1361 WARN_ON(fs_info->log_root_tree);
1362 fs_info->log_root_tree = log_root;
1363 return 0;
1364}
1365
1366int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root)
1368{
1369 struct btrfs_root *log_root;
1370 struct btrfs_inode_item *inode_item;
1371
1372 log_root = alloc_log_tree(trans, root->fs_info);
1373 if (IS_ERR(log_root))
1374 return PTR_ERR(log_root);
1375
1376 log_root->last_trans = trans->transid;
1377 log_root->root_key.offset = root->root_key.objectid;
1378
1379 inode_item = &log_root->root_item.inode;
1380 inode_item->generation = cpu_to_le64(1);
1381 inode_item->size = cpu_to_le64(3);
1382 inode_item->nlink = cpu_to_le32(1);
1383 inode_item->nbytes = cpu_to_le64(root->leafsize);
1384 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1385
5d4f98a2 1386 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1387
1388 WARN_ON(root->log_root);
1389 root->log_root = log_root;
1390 root->log_transid = 0;
257c62e1 1391 root->last_log_commit = 0;
e02119d5
CM
1392 return 0;
1393}
1394
1395struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1396 struct btrfs_key *location)
1397{
1398 struct btrfs_root *root;
1399 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1400 struct btrfs_path *path;
5f39d397 1401 struct extent_buffer *l;
84234f3a 1402 u64 generation;
db94535d 1403 u32 blocksize;
0f7d52f4 1404 int ret = 0;
8ea05e3a 1405 int slot;
0f7d52f4 1406
6f07e42e 1407 root = btrfs_alloc_root(fs_info);
0cf6c620 1408 if (!root)
0f7d52f4 1409 return ERR_PTR(-ENOMEM);
0f7d52f4 1410 if (location->offset == (u64)-1) {
db94535d 1411 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1412 location->objectid, root);
1413 if (ret) {
0f7d52f4
CM
1414 kfree(root);
1415 return ERR_PTR(ret);
1416 }
13a8a7c8 1417 goto out;
0f7d52f4
CM
1418 }
1419
db94535d 1420 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1421 tree_root->sectorsize, tree_root->stripesize,
1422 root, fs_info, location->objectid);
0f7d52f4
CM
1423
1424 path = btrfs_alloc_path();
db5b493a
TI
1425 if (!path) {
1426 kfree(root);
1427 return ERR_PTR(-ENOMEM);
1428 }
0f7d52f4 1429 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1430 if (ret == 0) {
1431 l = path->nodes[0];
8ea05e3a
AB
1432 slot = path->slots[0];
1433 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1434 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1435 }
0f7d52f4
CM
1436 btrfs_free_path(path);
1437 if (ret) {
5e540f77 1438 kfree(root);
13a8a7c8
YZ
1439 if (ret > 0)
1440 ret = -ENOENT;
0f7d52f4
CM
1441 return ERR_PTR(ret);
1442 }
13a8a7c8 1443
84234f3a 1444 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1445 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1446 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1447 blocksize, generation);
5d4f98a2 1448 root->commit_root = btrfs_root_node(root);
79787eaa 1449 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1450out:
08fe4db1 1451 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1452 root->ref_cows = 1;
08fe4db1
LZ
1453 btrfs_check_and_init_root_item(&root->root_item);
1454 }
13a8a7c8 1455
5eda7b5e
CM
1456 return root;
1457}
1458
edbd8d4e
CM
1459struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1460 struct btrfs_key *location)
5eda7b5e
CM
1461{
1462 struct btrfs_root *root;
1463 int ret;
1464
edbd8d4e
CM
1465 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1466 return fs_info->tree_root;
1467 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1468 return fs_info->extent_root;
8f18cf13
CM
1469 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1470 return fs_info->chunk_root;
1471 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1472 return fs_info->dev_root;
0403e47e
YZ
1473 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1474 return fs_info->csum_root;
bcef60f2
AJ
1475 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1476 return fs_info->quota_root ? fs_info->quota_root :
1477 ERR_PTR(-ENOENT);
4df27c4d
YZ
1478again:
1479 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1480 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1481 (unsigned long)location->objectid);
4df27c4d 1482 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1483 if (root)
1484 return root;
1485
e02119d5 1486 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1487 if (IS_ERR(root))
1488 return root;
3394e160 1489
581bb050 1490 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1491 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1492 GFP_NOFS);
35a30d7c
DS
1493 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1494 ret = -ENOMEM;
581bb050 1495 goto fail;
35a30d7c 1496 }
581bb050
LZ
1497
1498 btrfs_init_free_ino_ctl(root);
1499 mutex_init(&root->fs_commit_mutex);
1500 spin_lock_init(&root->cache_lock);
1501 init_waitqueue_head(&root->cache_wait);
1502
0ee5dc67 1503 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1504 if (ret)
1505 goto fail;
3394e160 1506
d68fc57b
YZ
1507 if (btrfs_root_refs(&root->root_item) == 0) {
1508 ret = -ENOENT;
1509 goto fail;
1510 }
1511
1512 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1513 if (ret < 0)
1514 goto fail;
1515 if (ret == 0)
1516 root->orphan_item_inserted = 1;
1517
4df27c4d
YZ
1518 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1519 if (ret)
1520 goto fail;
1521
1522 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1523 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524 (unsigned long)root->root_key.objectid,
0f7d52f4 1525 root);
d68fc57b 1526 if (ret == 0)
4df27c4d 1527 root->in_radix = 1;
d68fc57b 1528
4df27c4d
YZ
1529 spin_unlock(&fs_info->fs_roots_radix_lock);
1530 radix_tree_preload_end();
0f7d52f4 1531 if (ret) {
4df27c4d
YZ
1532 if (ret == -EEXIST) {
1533 free_fs_root(root);
1534 goto again;
1535 }
1536 goto fail;
0f7d52f4 1537 }
4df27c4d
YZ
1538
1539 ret = btrfs_find_dead_roots(fs_info->tree_root,
1540 root->root_key.objectid);
1541 WARN_ON(ret);
edbd8d4e 1542 return root;
4df27c4d
YZ
1543fail:
1544 free_fs_root(root);
1545 return ERR_PTR(ret);
edbd8d4e
CM
1546}
1547
04160088
CM
1548static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1549{
1550 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1551 int ret = 0;
04160088
CM
1552 struct btrfs_device *device;
1553 struct backing_dev_info *bdi;
b7967db7 1554
1f78160c
XG
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1557 if (!device->bdev)
1558 continue;
04160088
CM
1559 bdi = blk_get_backing_dev_info(device->bdev);
1560 if (bdi && bdi_congested(bdi, bdi_bits)) {
1561 ret = 1;
1562 break;
1563 }
1564 }
1f78160c 1565 rcu_read_unlock();
04160088
CM
1566 return ret;
1567}
1568
ad081f14
JA
1569/*
1570 * If this fails, caller must call bdi_destroy() to get rid of the
1571 * bdi again.
1572 */
04160088
CM
1573static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1574{
ad081f14
JA
1575 int err;
1576
1577 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1578 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1579 if (err)
1580 return err;
1581
4575c9cc 1582 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1583 bdi->congested_fn = btrfs_congested_fn;
1584 bdi->congested_data = info;
1585 return 0;
1586}
1587
8b712842
CM
1588/*
1589 * called by the kthread helper functions to finally call the bio end_io
1590 * functions. This is where read checksum verification actually happens
1591 */
1592static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1593{
ce9adaa5 1594 struct bio *bio;
8b712842
CM
1595 struct end_io_wq *end_io_wq;
1596 struct btrfs_fs_info *fs_info;
ce9adaa5 1597 int error;
ce9adaa5 1598
8b712842
CM
1599 end_io_wq = container_of(work, struct end_io_wq, work);
1600 bio = end_io_wq->bio;
1601 fs_info = end_io_wq->info;
ce9adaa5 1602
8b712842
CM
1603 error = end_io_wq->error;
1604 bio->bi_private = end_io_wq->private;
1605 bio->bi_end_io = end_io_wq->end_io;
1606 kfree(end_io_wq);
8b712842 1607 bio_endio(bio, error);
44b8bd7e
CM
1608}
1609
a74a4b97
CM
1610static int cleaner_kthread(void *arg)
1611{
1612 struct btrfs_root *root = arg;
1613
1614 do {
a74a4b97 1615 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1616
1617 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1618 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1619 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1620 btrfs_clean_old_snapshots(root);
1621 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1622 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1623 }
a74a4b97 1624
a0acae0e 1625 if (!try_to_freeze()) {
a74a4b97 1626 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1627 if (!kthread_should_stop())
1628 schedule();
a74a4b97
CM
1629 __set_current_state(TASK_RUNNING);
1630 }
1631 } while (!kthread_should_stop());
1632 return 0;
1633}
1634
1635static int transaction_kthread(void *arg)
1636{
1637 struct btrfs_root *root = arg;
1638 struct btrfs_trans_handle *trans;
1639 struct btrfs_transaction *cur;
8929ecfa 1640 u64 transid;
a74a4b97
CM
1641 unsigned long now;
1642 unsigned long delay;
914b2007 1643 bool cannot_commit;
a74a4b97
CM
1644
1645 do {
914b2007 1646 cannot_commit = false;
a74a4b97
CM
1647 delay = HZ * 30;
1648 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1649 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1650
a4abeea4 1651 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1652 cur = root->fs_info->running_transaction;
1653 if (!cur) {
a4abeea4 1654 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1655 goto sleep;
1656 }
31153d81 1657
a74a4b97 1658 now = get_seconds();
8929ecfa
YZ
1659 if (!cur->blocked &&
1660 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1661 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1662 delay = HZ * 5;
1663 goto sleep;
1664 }
8929ecfa 1665 transid = cur->transid;
a4abeea4 1666 spin_unlock(&root->fs_info->trans_lock);
56bec294 1667
79787eaa 1668 /* If the file system is aborted, this will always fail. */
7a7eaa40 1669 trans = btrfs_join_transaction(root);
914b2007
JK
1670 if (IS_ERR(trans)) {
1671 cannot_commit = true;
79787eaa 1672 goto sleep;
914b2007 1673 }
8929ecfa 1674 if (transid == trans->transid) {
79787eaa 1675 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1676 } else {
1677 btrfs_end_transaction(trans, root);
1678 }
a74a4b97
CM
1679sleep:
1680 wake_up_process(root->fs_info->cleaner_kthread);
1681 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1682
a0acae0e 1683 if (!try_to_freeze()) {
a74a4b97 1684 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1685 if (!kthread_should_stop() &&
914b2007
JK
1686 (!btrfs_transaction_blocked(root->fs_info) ||
1687 cannot_commit))
8929ecfa 1688 schedule_timeout(delay);
a74a4b97
CM
1689 __set_current_state(TASK_RUNNING);
1690 }
1691 } while (!kthread_should_stop());
1692 return 0;
1693}
1694
af31f5e5
CM
1695/*
1696 * this will find the highest generation in the array of
1697 * root backups. The index of the highest array is returned,
1698 * or -1 if we can't find anything.
1699 *
1700 * We check to make sure the array is valid by comparing the
1701 * generation of the latest root in the array with the generation
1702 * in the super block. If they don't match we pitch it.
1703 */
1704static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1705{
1706 u64 cur;
1707 int newest_index = -1;
1708 struct btrfs_root_backup *root_backup;
1709 int i;
1710
1711 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1712 root_backup = info->super_copy->super_roots + i;
1713 cur = btrfs_backup_tree_root_gen(root_backup);
1714 if (cur == newest_gen)
1715 newest_index = i;
1716 }
1717
1718 /* check to see if we actually wrapped around */
1719 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1720 root_backup = info->super_copy->super_roots;
1721 cur = btrfs_backup_tree_root_gen(root_backup);
1722 if (cur == newest_gen)
1723 newest_index = 0;
1724 }
1725 return newest_index;
1726}
1727
1728
1729/*
1730 * find the oldest backup so we know where to store new entries
1731 * in the backup array. This will set the backup_root_index
1732 * field in the fs_info struct
1733 */
1734static void find_oldest_super_backup(struct btrfs_fs_info *info,
1735 u64 newest_gen)
1736{
1737 int newest_index = -1;
1738
1739 newest_index = find_newest_super_backup(info, newest_gen);
1740 /* if there was garbage in there, just move along */
1741 if (newest_index == -1) {
1742 info->backup_root_index = 0;
1743 } else {
1744 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1745 }
1746}
1747
1748/*
1749 * copy all the root pointers into the super backup array.
1750 * this will bump the backup pointer by one when it is
1751 * done
1752 */
1753static void backup_super_roots(struct btrfs_fs_info *info)
1754{
1755 int next_backup;
1756 struct btrfs_root_backup *root_backup;
1757 int last_backup;
1758
1759 next_backup = info->backup_root_index;
1760 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1761 BTRFS_NUM_BACKUP_ROOTS;
1762
1763 /*
1764 * just overwrite the last backup if we're at the same generation
1765 * this happens only at umount
1766 */
1767 root_backup = info->super_for_commit->super_roots + last_backup;
1768 if (btrfs_backup_tree_root_gen(root_backup) ==
1769 btrfs_header_generation(info->tree_root->node))
1770 next_backup = last_backup;
1771
1772 root_backup = info->super_for_commit->super_roots + next_backup;
1773
1774 /*
1775 * make sure all of our padding and empty slots get zero filled
1776 * regardless of which ones we use today
1777 */
1778 memset(root_backup, 0, sizeof(*root_backup));
1779
1780 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1781
1782 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1783 btrfs_set_backup_tree_root_gen(root_backup,
1784 btrfs_header_generation(info->tree_root->node));
1785
1786 btrfs_set_backup_tree_root_level(root_backup,
1787 btrfs_header_level(info->tree_root->node));
1788
1789 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1790 btrfs_set_backup_chunk_root_gen(root_backup,
1791 btrfs_header_generation(info->chunk_root->node));
1792 btrfs_set_backup_chunk_root_level(root_backup,
1793 btrfs_header_level(info->chunk_root->node));
1794
1795 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1796 btrfs_set_backup_extent_root_gen(root_backup,
1797 btrfs_header_generation(info->extent_root->node));
1798 btrfs_set_backup_extent_root_level(root_backup,
1799 btrfs_header_level(info->extent_root->node));
1800
7c7e82a7
CM
1801 /*
1802 * we might commit during log recovery, which happens before we set
1803 * the fs_root. Make sure it is valid before we fill it in.
1804 */
1805 if (info->fs_root && info->fs_root->node) {
1806 btrfs_set_backup_fs_root(root_backup,
1807 info->fs_root->node->start);
1808 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1809 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1810 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1811 btrfs_header_level(info->fs_root->node));
7c7e82a7 1812 }
af31f5e5
CM
1813
1814 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1815 btrfs_set_backup_dev_root_gen(root_backup,
1816 btrfs_header_generation(info->dev_root->node));
1817 btrfs_set_backup_dev_root_level(root_backup,
1818 btrfs_header_level(info->dev_root->node));
1819
1820 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1821 btrfs_set_backup_csum_root_gen(root_backup,
1822 btrfs_header_generation(info->csum_root->node));
1823 btrfs_set_backup_csum_root_level(root_backup,
1824 btrfs_header_level(info->csum_root->node));
1825
1826 btrfs_set_backup_total_bytes(root_backup,
1827 btrfs_super_total_bytes(info->super_copy));
1828 btrfs_set_backup_bytes_used(root_backup,
1829 btrfs_super_bytes_used(info->super_copy));
1830 btrfs_set_backup_num_devices(root_backup,
1831 btrfs_super_num_devices(info->super_copy));
1832
1833 /*
1834 * if we don't copy this out to the super_copy, it won't get remembered
1835 * for the next commit
1836 */
1837 memcpy(&info->super_copy->super_roots,
1838 &info->super_for_commit->super_roots,
1839 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1840}
1841
1842/*
1843 * this copies info out of the root backup array and back into
1844 * the in-memory super block. It is meant to help iterate through
1845 * the array, so you send it the number of backups you've already
1846 * tried and the last backup index you used.
1847 *
1848 * this returns -1 when it has tried all the backups
1849 */
1850static noinline int next_root_backup(struct btrfs_fs_info *info,
1851 struct btrfs_super_block *super,
1852 int *num_backups_tried, int *backup_index)
1853{
1854 struct btrfs_root_backup *root_backup;
1855 int newest = *backup_index;
1856
1857 if (*num_backups_tried == 0) {
1858 u64 gen = btrfs_super_generation(super);
1859
1860 newest = find_newest_super_backup(info, gen);
1861 if (newest == -1)
1862 return -1;
1863
1864 *backup_index = newest;
1865 *num_backups_tried = 1;
1866 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1867 /* we've tried all the backups, all done */
1868 return -1;
1869 } else {
1870 /* jump to the next oldest backup */
1871 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1872 BTRFS_NUM_BACKUP_ROOTS;
1873 *backup_index = newest;
1874 *num_backups_tried += 1;
1875 }
1876 root_backup = super->super_roots + newest;
1877
1878 btrfs_set_super_generation(super,
1879 btrfs_backup_tree_root_gen(root_backup));
1880 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1881 btrfs_set_super_root_level(super,
1882 btrfs_backup_tree_root_level(root_backup));
1883 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1884
1885 /*
1886 * fixme: the total bytes and num_devices need to match or we should
1887 * need a fsck
1888 */
1889 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1890 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1891 return 0;
1892}
1893
1894/* helper to cleanup tree roots */
1895static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1896{
1897 free_extent_buffer(info->tree_root->node);
1898 free_extent_buffer(info->tree_root->commit_root);
1899 free_extent_buffer(info->dev_root->node);
1900 free_extent_buffer(info->dev_root->commit_root);
1901 free_extent_buffer(info->extent_root->node);
1902 free_extent_buffer(info->extent_root->commit_root);
1903 free_extent_buffer(info->csum_root->node);
1904 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1905 if (info->quota_root) {
1906 free_extent_buffer(info->quota_root->node);
1907 free_extent_buffer(info->quota_root->commit_root);
1908 }
af31f5e5
CM
1909
1910 info->tree_root->node = NULL;
1911 info->tree_root->commit_root = NULL;
1912 info->dev_root->node = NULL;
1913 info->dev_root->commit_root = NULL;
1914 info->extent_root->node = NULL;
1915 info->extent_root->commit_root = NULL;
1916 info->csum_root->node = NULL;
1917 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1918 if (info->quota_root) {
1919 info->quota_root->node = NULL;
1920 info->quota_root->commit_root = NULL;
1921 }
af31f5e5
CM
1922
1923 if (chunk_root) {
1924 free_extent_buffer(info->chunk_root->node);
1925 free_extent_buffer(info->chunk_root->commit_root);
1926 info->chunk_root->node = NULL;
1927 info->chunk_root->commit_root = NULL;
1928 }
1929}
1930
1931
ad2b2c80
AV
1932int open_ctree(struct super_block *sb,
1933 struct btrfs_fs_devices *fs_devices,
1934 char *options)
2e635a27 1935{
db94535d
CM
1936 u32 sectorsize;
1937 u32 nodesize;
1938 u32 leafsize;
1939 u32 blocksize;
87ee04eb 1940 u32 stripesize;
84234f3a 1941 u64 generation;
f2b636e8 1942 u64 features;
3de4586c 1943 struct btrfs_key location;
a061fc8d 1944 struct buffer_head *bh;
4d34b278 1945 struct btrfs_super_block *disk_super;
815745cf 1946 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1947 struct btrfs_root *tree_root;
4d34b278
ID
1948 struct btrfs_root *extent_root;
1949 struct btrfs_root *csum_root;
1950 struct btrfs_root *chunk_root;
1951 struct btrfs_root *dev_root;
bcef60f2 1952 struct btrfs_root *quota_root;
e02119d5 1953 struct btrfs_root *log_tree_root;
eb60ceac 1954 int ret;
e58ca020 1955 int err = -EINVAL;
af31f5e5
CM
1956 int num_backups_tried = 0;
1957 int backup_index = 0;
4543df7e 1958
f84a8bd6 1959 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1960 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1961 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1962 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1963 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1964 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1965
f84a8bd6 1966 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1967 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1968 err = -ENOMEM;
1969 goto fail;
1970 }
76dda93c
YZ
1971
1972 ret = init_srcu_struct(&fs_info->subvol_srcu);
1973 if (ret) {
1974 err = ret;
1975 goto fail;
1976 }
1977
1978 ret = setup_bdi(fs_info, &fs_info->bdi);
1979 if (ret) {
1980 err = ret;
1981 goto fail_srcu;
1982 }
1983
1984 fs_info->btree_inode = new_inode(sb);
1985 if (!fs_info->btree_inode) {
1986 err = -ENOMEM;
1987 goto fail_bdi;
1988 }
1989
a6591715 1990 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1991
76dda93c 1992 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1993 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1994 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1995 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1996 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1997 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1998 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1999 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2000 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2001 spin_lock_init(&fs_info->trans_lock);
31153d81 2002 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 2003 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2004 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2005 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2006 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2007 spin_lock_init(&fs_info->tree_mod_seq_lock);
2008 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2009 mutex_init(&fs_info->reloc_mutex);
19c00ddc 2010
58176a96 2011 init_completion(&fs_info->kobj_unregister);
0b86a832 2012 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2013 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2014 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2015 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
2016 btrfs_init_block_rsv(&fs_info->global_block_rsv);
2017 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2018 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2019 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2020 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 2021 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 2022 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2023 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2024 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2025 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2026 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2027 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2028 fs_info->sb = sb;
6f568d35 2029 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2030 fs_info->metadata_ratio = 0;
4cb5300b 2031 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2032 fs_info->trans_no_join = 0;
2bf64758 2033 fs_info->free_chunk_space = 0;
f29021b2 2034 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2035
90519d66
AJ
2036 /* readahead state */
2037 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2038 spin_lock_init(&fs_info->reada_lock);
c8b97818 2039
b34b086c
CM
2040 fs_info->thread_pool_size = min_t(unsigned long,
2041 num_online_cpus() + 2, 8);
0afbaf8c 2042
3eaa2885
CM
2043 INIT_LIST_HEAD(&fs_info->ordered_extents);
2044 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2045 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2046 GFP_NOFS);
2047 if (!fs_info->delayed_root) {
2048 err = -ENOMEM;
2049 goto fail_iput;
2050 }
2051 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2052
a2de733c
AJ
2053 mutex_init(&fs_info->scrub_lock);
2054 atomic_set(&fs_info->scrubs_running, 0);
2055 atomic_set(&fs_info->scrub_pause_req, 0);
2056 atomic_set(&fs_info->scrubs_paused, 0);
2057 atomic_set(&fs_info->scrub_cancel_req, 0);
2058 init_waitqueue_head(&fs_info->scrub_pause_wait);
2059 init_rwsem(&fs_info->scrub_super_lock);
2060 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2061#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2062 fs_info->check_integrity_print_mask = 0;
2063#endif
a2de733c 2064
c9e9f97b
ID
2065 spin_lock_init(&fs_info->balance_lock);
2066 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2067 atomic_set(&fs_info->balance_running, 0);
2068 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2069 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2070 fs_info->balance_ctl = NULL;
837d5b6e 2071 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2072
a061fc8d
CM
2073 sb->s_blocksize = 4096;
2074 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2075 sb->s_bdi = &fs_info->bdi;
a061fc8d 2076
76dda93c 2077 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2078 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2079 /*
2080 * we set the i_size on the btree inode to the max possible int.
2081 * the real end of the address space is determined by all of
2082 * the devices in the system
2083 */
2084 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2085 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2086 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2087
5d4f98a2 2088 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2089 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2090 fs_info->btree_inode->i_mapping);
0b32f4bb 2091 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2092 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2093
2094 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2095
76dda93c
YZ
2096 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2097 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2098 sizeof(struct btrfs_key));
72ac3c0d
JB
2099 set_bit(BTRFS_INODE_DUMMY,
2100 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2101 insert_inode_hash(fs_info->btree_inode);
76dda93c 2102
0f9dd46c 2103 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2104 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2105
11833d66 2106 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2107 fs_info->btree_inode->i_mapping);
11833d66 2108 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2109 fs_info->btree_inode->i_mapping);
11833d66 2110 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2111 fs_info->do_barriers = 1;
e18e4809 2112
39279cc3 2113
5a3f23d5 2114 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2115 mutex_init(&fs_info->tree_log_mutex);
925baedd 2116 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2117 mutex_init(&fs_info->transaction_kthread_mutex);
2118 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2119 mutex_init(&fs_info->volume_mutex);
276e680d 2120 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2121 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2122 init_rwsem(&fs_info->subvol_sem);
fa9c0d79 2123
416ac51d
AJ
2124 spin_lock_init(&fs_info->qgroup_lock);
2125 fs_info->qgroup_tree = RB_ROOT;
2126 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2127 fs_info->qgroup_seq = 1;
2128 fs_info->quota_enabled = 0;
2129 fs_info->pending_quota_state = 0;
2130
fa9c0d79
CM
2131 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2132 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2133
e6dcd2dc 2134 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2135 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2136 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2137 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2138
0b86a832 2139 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2140 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2141
3c4bb26b 2142 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2143 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2144 if (!bh) {
2145 err = -EINVAL;
16cdcec7 2146 goto fail_alloc;
20b45077 2147 }
39279cc3 2148
6c41761f
DS
2149 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2150 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2151 sizeof(*fs_info->super_for_commit));
a061fc8d 2152 brelse(bh);
5f39d397 2153
6c41761f 2154 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2155
6c41761f 2156 disk_super = fs_info->super_copy;
0f7d52f4 2157 if (!btrfs_super_root(disk_super))
16cdcec7 2158 goto fail_alloc;
0f7d52f4 2159
acce952b 2160 /* check FS state, whether FS is broken. */
2161 fs_info->fs_state |= btrfs_super_flags(disk_super);
2162
fcd1f065
DS
2163 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2164 if (ret) {
2165 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2166 err = ret;
2167 goto fail_alloc;
2168 }
acce952b 2169
af31f5e5
CM
2170 /*
2171 * run through our array of backup supers and setup
2172 * our ring pointer to the oldest one
2173 */
2174 generation = btrfs_super_generation(disk_super);
2175 find_oldest_super_backup(fs_info, generation);
2176
75e7cb7f
LB
2177 /*
2178 * In the long term, we'll store the compression type in the super
2179 * block, and it'll be used for per file compression control.
2180 */
2181 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2182
2b82032c
YZ
2183 ret = btrfs_parse_options(tree_root, options);
2184 if (ret) {
2185 err = ret;
16cdcec7 2186 goto fail_alloc;
2b82032c 2187 }
dfe25020 2188
f2b636e8
JB
2189 features = btrfs_super_incompat_flags(disk_super) &
2190 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2191 if (features) {
2192 printk(KERN_ERR "BTRFS: couldn't mount because of "
2193 "unsupported optional features (%Lx).\n",
21380931 2194 (unsigned long long)features);
f2b636e8 2195 err = -EINVAL;
16cdcec7 2196 goto fail_alloc;
f2b636e8
JB
2197 }
2198
727011e0
CM
2199 if (btrfs_super_leafsize(disk_super) !=
2200 btrfs_super_nodesize(disk_super)) {
2201 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2202 "blocksizes don't match. node %d leaf %d\n",
2203 btrfs_super_nodesize(disk_super),
2204 btrfs_super_leafsize(disk_super));
2205 err = -EINVAL;
2206 goto fail_alloc;
2207 }
2208 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2209 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2210 "blocksize (%d) was too large\n",
2211 btrfs_super_leafsize(disk_super));
2212 err = -EINVAL;
2213 goto fail_alloc;
2214 }
2215
5d4f98a2 2216 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2217 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2218 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2219 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2220
2221 /*
2222 * flag our filesystem as having big metadata blocks if
2223 * they are bigger than the page size
2224 */
2225 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2226 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2227 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2228 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2229 }
2230
bc3f116f
CM
2231 nodesize = btrfs_super_nodesize(disk_super);
2232 leafsize = btrfs_super_leafsize(disk_super);
2233 sectorsize = btrfs_super_sectorsize(disk_super);
2234 stripesize = btrfs_super_stripesize(disk_super);
2235
2236 /*
2237 * mixed block groups end up with duplicate but slightly offset
2238 * extent buffers for the same range. It leads to corruptions
2239 */
2240 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2241 (sectorsize != leafsize)) {
2242 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2243 "are not allowed for mixed block groups on %s\n",
2244 sb->s_id);
2245 goto fail_alloc;
2246 }
2247
a6fa6fae 2248 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2249
f2b636e8
JB
2250 features = btrfs_super_compat_ro_flags(disk_super) &
2251 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2252 if (!(sb->s_flags & MS_RDONLY) && features) {
2253 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2254 "unsupported option features (%Lx).\n",
21380931 2255 (unsigned long long)features);
f2b636e8 2256 err = -EINVAL;
16cdcec7 2257 goto fail_alloc;
f2b636e8 2258 }
61d92c32
CM
2259
2260 btrfs_init_workers(&fs_info->generic_worker,
2261 "genwork", 1, NULL);
2262
5443be45 2263 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2264 fs_info->thread_pool_size,
2265 &fs_info->generic_worker);
c8b97818 2266
771ed689 2267 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2268 fs_info->thread_pool_size,
2269 &fs_info->generic_worker);
771ed689 2270
5443be45 2271 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2272 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2273 fs_info->thread_pool_size),
2274 &fs_info->generic_worker);
61b49440 2275
bab39bf9
JB
2276 btrfs_init_workers(&fs_info->caching_workers, "cache",
2277 2, &fs_info->generic_worker);
2278
61b49440
CM
2279 /* a higher idle thresh on the submit workers makes it much more
2280 * likely that bios will be send down in a sane order to the
2281 * devices
2282 */
2283 fs_info->submit_workers.idle_thresh = 64;
53863232 2284
771ed689 2285 fs_info->workers.idle_thresh = 16;
4a69a410 2286 fs_info->workers.ordered = 1;
61b49440 2287
771ed689
CM
2288 fs_info->delalloc_workers.idle_thresh = 2;
2289 fs_info->delalloc_workers.ordered = 1;
2290
61d92c32
CM
2291 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2292 &fs_info->generic_worker);
5443be45 2293 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2294 fs_info->thread_pool_size,
2295 &fs_info->generic_worker);
d20f7043 2296 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2297 fs_info->thread_pool_size,
2298 &fs_info->generic_worker);
cad321ad 2299 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2300 "endio-meta-write", fs_info->thread_pool_size,
2301 &fs_info->generic_worker);
5443be45 2302 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2303 fs_info->thread_pool_size,
2304 &fs_info->generic_worker);
0cb59c99
JB
2305 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2306 1, &fs_info->generic_worker);
16cdcec7
MX
2307 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2308 fs_info->thread_pool_size,
2309 &fs_info->generic_worker);
90519d66
AJ
2310 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2311 fs_info->thread_pool_size,
2312 &fs_info->generic_worker);
61b49440
CM
2313
2314 /*
2315 * endios are largely parallel and should have a very
2316 * low idle thresh
2317 */
2318 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2319 fs_info->endio_meta_workers.idle_thresh = 4;
2320
9042846b
CM
2321 fs_info->endio_write_workers.idle_thresh = 2;
2322 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2323 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2324
0dc3b84a
JB
2325 /*
2326 * btrfs_start_workers can really only fail because of ENOMEM so just
2327 * return -ENOMEM if any of these fail.
2328 */
2329 ret = btrfs_start_workers(&fs_info->workers);
2330 ret |= btrfs_start_workers(&fs_info->generic_worker);
2331 ret |= btrfs_start_workers(&fs_info->submit_workers);
2332 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2333 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2334 ret |= btrfs_start_workers(&fs_info->endio_workers);
2335 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2336 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2337 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2338 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2339 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2340 ret |= btrfs_start_workers(&fs_info->caching_workers);
2341 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2342 if (ret) {
fed425c7 2343 err = -ENOMEM;
0dc3b84a
JB
2344 goto fail_sb_buffer;
2345 }
4543df7e 2346
4575c9cc 2347 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2348 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2349 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2350
db94535d
CM
2351 tree_root->nodesize = nodesize;
2352 tree_root->leafsize = leafsize;
2353 tree_root->sectorsize = sectorsize;
87ee04eb 2354 tree_root->stripesize = stripesize;
a061fc8d
CM
2355
2356 sb->s_blocksize = sectorsize;
2357 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2358
39279cc3
CM
2359 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2360 sizeof(disk_super->magic))) {
d397712b 2361 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2362 goto fail_sb_buffer;
2363 }
19c00ddc 2364
8d082fb7
LB
2365 if (sectorsize != PAGE_SIZE) {
2366 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2367 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2368 goto fail_sb_buffer;
2369 }
2370
925baedd 2371 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2372 ret = btrfs_read_sys_array(tree_root);
925baedd 2373 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2374 if (ret) {
d397712b
CM
2375 printk(KERN_WARNING "btrfs: failed to read the system "
2376 "array on %s\n", sb->s_id);
5d4f98a2 2377 goto fail_sb_buffer;
84eed90f 2378 }
0b86a832
CM
2379
2380 blocksize = btrfs_level_size(tree_root,
2381 btrfs_super_chunk_root_level(disk_super));
84234f3a 2382 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2383
2384 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2385 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2386
2387 chunk_root->node = read_tree_block(chunk_root,
2388 btrfs_super_chunk_root(disk_super),
84234f3a 2389 blocksize, generation);
79787eaa 2390 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2391 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2392 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2393 sb->s_id);
af31f5e5 2394 goto fail_tree_roots;
83121942 2395 }
5d4f98a2
YZ
2396 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2397 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2398
e17cade2 2399 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2400 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2401 BTRFS_UUID_SIZE);
e17cade2 2402
0b86a832 2403 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2404 if (ret) {
d397712b
CM
2405 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2406 sb->s_id);
af31f5e5 2407 goto fail_tree_roots;
2b82032c 2408 }
0b86a832 2409
dfe25020
CM
2410 btrfs_close_extra_devices(fs_devices);
2411
a6b0d5c8
CM
2412 if (!fs_devices->latest_bdev) {
2413 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2414 sb->s_id);
2415 goto fail_tree_roots;
2416 }
2417
af31f5e5 2418retry_root_backup:
db94535d
CM
2419 blocksize = btrfs_level_size(tree_root,
2420 btrfs_super_root_level(disk_super));
84234f3a 2421 generation = btrfs_super_generation(disk_super);
0b86a832 2422
e20d96d6 2423 tree_root->node = read_tree_block(tree_root,
db94535d 2424 btrfs_super_root(disk_super),
84234f3a 2425 blocksize, generation);
af31f5e5
CM
2426 if (!tree_root->node ||
2427 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2428 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2429 sb->s_id);
af31f5e5
CM
2430
2431 goto recovery_tree_root;
83121942 2432 }
af31f5e5 2433
5d4f98a2
YZ
2434 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2435 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2436
2437 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2438 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2439 if (ret)
af31f5e5 2440 goto recovery_tree_root;
0b86a832
CM
2441 extent_root->track_dirty = 1;
2442
2443 ret = find_and_setup_root(tree_root, fs_info,
2444 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2445 if (ret)
af31f5e5 2446 goto recovery_tree_root;
5d4f98a2 2447 dev_root->track_dirty = 1;
3768f368 2448
d20f7043
CM
2449 ret = find_and_setup_root(tree_root, fs_info,
2450 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2451 if (ret)
af31f5e5 2452 goto recovery_tree_root;
d20f7043
CM
2453 csum_root->track_dirty = 1;
2454
bcef60f2
AJ
2455 ret = find_and_setup_root(tree_root, fs_info,
2456 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2457 if (ret) {
2458 kfree(quota_root);
2459 quota_root = fs_info->quota_root = NULL;
2460 } else {
2461 quota_root->track_dirty = 1;
2462 fs_info->quota_enabled = 1;
2463 fs_info->pending_quota_state = 1;
2464 }
2465
8929ecfa
YZ
2466 fs_info->generation = generation;
2467 fs_info->last_trans_committed = generation;
8929ecfa 2468
68310a5e
ID
2469 ret = btrfs_recover_balance(fs_info);
2470 if (ret) {
2471 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2472 goto fail_block_groups;
2473 }
2474
733f4fbb
SB
2475 ret = btrfs_init_dev_stats(fs_info);
2476 if (ret) {
2477 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2478 ret);
2479 goto fail_block_groups;
2480 }
2481
c59021f8 2482 ret = btrfs_init_space_info(fs_info);
2483 if (ret) {
2484 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2485 goto fail_block_groups;
2486 }
2487
1b1d1f66
JB
2488 ret = btrfs_read_block_groups(extent_root);
2489 if (ret) {
2490 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2491 goto fail_block_groups;
2492 }
9078a3e1 2493
a74a4b97
CM
2494 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2495 "btrfs-cleaner");
57506d50 2496 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2497 goto fail_block_groups;
a74a4b97
CM
2498
2499 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2500 tree_root,
2501 "btrfs-transaction");
57506d50 2502 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2503 goto fail_cleaner;
a74a4b97 2504
c289811c
CM
2505 if (!btrfs_test_opt(tree_root, SSD) &&
2506 !btrfs_test_opt(tree_root, NOSSD) &&
2507 !fs_info->fs_devices->rotating) {
2508 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2509 "mode\n");
2510 btrfs_set_opt(fs_info->mount_opt, SSD);
2511 }
2512
21adbd5c
SB
2513#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2514 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2515 ret = btrfsic_mount(tree_root, fs_devices,
2516 btrfs_test_opt(tree_root,
2517 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2518 1 : 0,
2519 fs_info->check_integrity_print_mask);
2520 if (ret)
2521 printk(KERN_WARNING "btrfs: failed to initialize"
2522 " integrity check module %s\n", sb->s_id);
2523 }
2524#endif
bcef60f2
AJ
2525 ret = btrfs_read_qgroup_config(fs_info);
2526 if (ret)
2527 goto fail_trans_kthread;
21adbd5c 2528
acce952b 2529 /* do not make disk changes in broken FS */
68ce9682 2530 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2531 u64 bytenr = btrfs_super_log_root(disk_super);
2532
7c2ca468 2533 if (fs_devices->rw_devices == 0) {
d397712b
CM
2534 printk(KERN_WARNING "Btrfs log replay required "
2535 "on RO media\n");
7c2ca468 2536 err = -EIO;
bcef60f2 2537 goto fail_qgroup;
7c2ca468 2538 }
e02119d5
CM
2539 blocksize =
2540 btrfs_level_size(tree_root,
2541 btrfs_super_log_root_level(disk_super));
d18a2c44 2542
6f07e42e 2543 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2544 if (!log_tree_root) {
2545 err = -ENOMEM;
bcef60f2 2546 goto fail_qgroup;
676e4c86 2547 }
e02119d5
CM
2548
2549 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2550 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2551
2552 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2553 blocksize,
2554 generation + 1);
79787eaa 2555 /* returns with log_tree_root freed on success */
e02119d5 2556 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2557 if (ret) {
2558 btrfs_error(tree_root->fs_info, ret,
2559 "Failed to recover log tree");
2560 free_extent_buffer(log_tree_root->node);
2561 kfree(log_tree_root);
2562 goto fail_trans_kthread;
2563 }
e556ce2c
YZ
2564
2565 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2566 ret = btrfs_commit_super(tree_root);
2567 if (ret)
2568 goto fail_trans_kthread;
e556ce2c 2569 }
e02119d5 2570 }
1a40e23b 2571
76dda93c 2572 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2573 if (ret)
2574 goto fail_trans_kthread;
76dda93c 2575
7c2ca468 2576 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2577 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2578 if (ret)
2579 goto fail_trans_kthread;
d68fc57b 2580
5d4f98a2 2581 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2582 if (ret < 0) {
2583 printk(KERN_WARNING
2584 "btrfs: failed to recover relocation\n");
2585 err = -EINVAL;
bcef60f2 2586 goto fail_qgroup;
d7ce5843 2587 }
7c2ca468 2588 }
1a40e23b 2589
3de4586c
CM
2590 location.objectid = BTRFS_FS_TREE_OBJECTID;
2591 location.type = BTRFS_ROOT_ITEM_KEY;
2592 location.offset = (u64)-1;
2593
3de4586c
CM
2594 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2595 if (!fs_info->fs_root)
bcef60f2 2596 goto fail_qgroup;
3140c9a3
DC
2597 if (IS_ERR(fs_info->fs_root)) {
2598 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2599 goto fail_qgroup;
3140c9a3 2600 }
c289811c 2601
2b6ba629
ID
2602 if (sb->s_flags & MS_RDONLY)
2603 return 0;
59641015 2604
2b6ba629
ID
2605 down_read(&fs_info->cleanup_work_sem);
2606 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2607 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2608 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2609 close_ctree(tree_root);
2610 return ret;
2611 }
2612 up_read(&fs_info->cleanup_work_sem);
59641015 2613
2b6ba629
ID
2614 ret = btrfs_resume_balance_async(fs_info);
2615 if (ret) {
2616 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2617 close_ctree(tree_root);
2618 return ret;
e3acc2a6
JB
2619 }
2620
ad2b2c80 2621 return 0;
39279cc3 2622
bcef60f2
AJ
2623fail_qgroup:
2624 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2625fail_trans_kthread:
2626 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2627fail_cleaner:
a74a4b97 2628 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2629
2630 /*
2631 * make sure we're done with the btree inode before we stop our
2632 * kthreads
2633 */
2634 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2635 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2636
1b1d1f66
JB
2637fail_block_groups:
2638 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2639
2640fail_tree_roots:
2641 free_root_pointers(fs_info, 1);
2642
39279cc3 2643fail_sb_buffer:
61d92c32 2644 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2645 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2646 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2647 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2648 btrfs_stop_workers(&fs_info->workers);
2649 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2650 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2651 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2652 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2653 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2654 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2655 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2656 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2657fail_alloc:
4543df7e 2658fail_iput:
586e46e2
ID
2659 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2660
7c2ca468 2661 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2662 iput(fs_info->btree_inode);
ad081f14 2663fail_bdi:
7e662854 2664 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2665fail_srcu:
2666 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2667fail:
586e46e2 2668 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2669 return err;
af31f5e5
CM
2670
2671recovery_tree_root:
af31f5e5
CM
2672 if (!btrfs_test_opt(tree_root, RECOVERY))
2673 goto fail_tree_roots;
2674
2675 free_root_pointers(fs_info, 0);
2676
2677 /* don't use the log in recovery mode, it won't be valid */
2678 btrfs_set_super_log_root(disk_super, 0);
2679
2680 /* we can't trust the free space cache either */
2681 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2682
2683 ret = next_root_backup(fs_info, fs_info->super_copy,
2684 &num_backups_tried, &backup_index);
2685 if (ret == -1)
2686 goto fail_block_groups;
2687 goto retry_root_backup;
eb60ceac
CM
2688}
2689
f2984462
CM
2690static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2691{
f2984462
CM
2692 if (uptodate) {
2693 set_buffer_uptodate(bh);
2694 } else {
442a4f63
SB
2695 struct btrfs_device *device = (struct btrfs_device *)
2696 bh->b_private;
2697
606686ee
JB
2698 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2699 "I/O error on %s\n",
2700 rcu_str_deref(device->name));
1259ab75
CM
2701 /* note, we dont' set_buffer_write_io_error because we have
2702 * our own ways of dealing with the IO errors
2703 */
f2984462 2704 clear_buffer_uptodate(bh);
442a4f63 2705 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2706 }
2707 unlock_buffer(bh);
2708 put_bh(bh);
2709}
2710
a512bbf8
YZ
2711struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2712{
2713 struct buffer_head *bh;
2714 struct buffer_head *latest = NULL;
2715 struct btrfs_super_block *super;
2716 int i;
2717 u64 transid = 0;
2718 u64 bytenr;
2719
2720 /* we would like to check all the supers, but that would make
2721 * a btrfs mount succeed after a mkfs from a different FS.
2722 * So, we need to add a special mount option to scan for
2723 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2724 */
2725 for (i = 0; i < 1; i++) {
2726 bytenr = btrfs_sb_offset(i);
2727 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2728 break;
2729 bh = __bread(bdev, bytenr / 4096, 4096);
2730 if (!bh)
2731 continue;
2732
2733 super = (struct btrfs_super_block *)bh->b_data;
2734 if (btrfs_super_bytenr(super) != bytenr ||
2735 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2736 sizeof(super->magic))) {
2737 brelse(bh);
2738 continue;
2739 }
2740
2741 if (!latest || btrfs_super_generation(super) > transid) {
2742 brelse(latest);
2743 latest = bh;
2744 transid = btrfs_super_generation(super);
2745 } else {
2746 brelse(bh);
2747 }
2748 }
2749 return latest;
2750}
2751
4eedeb75
HH
2752/*
2753 * this should be called twice, once with wait == 0 and
2754 * once with wait == 1. When wait == 0 is done, all the buffer heads
2755 * we write are pinned.
2756 *
2757 * They are released when wait == 1 is done.
2758 * max_mirrors must be the same for both runs, and it indicates how
2759 * many supers on this one device should be written.
2760 *
2761 * max_mirrors == 0 means to write them all.
2762 */
a512bbf8
YZ
2763static int write_dev_supers(struct btrfs_device *device,
2764 struct btrfs_super_block *sb,
2765 int do_barriers, int wait, int max_mirrors)
2766{
2767 struct buffer_head *bh;
2768 int i;
2769 int ret;
2770 int errors = 0;
2771 u32 crc;
2772 u64 bytenr;
a512bbf8
YZ
2773
2774 if (max_mirrors == 0)
2775 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2776
a512bbf8
YZ
2777 for (i = 0; i < max_mirrors; i++) {
2778 bytenr = btrfs_sb_offset(i);
2779 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2780 break;
2781
2782 if (wait) {
2783 bh = __find_get_block(device->bdev, bytenr / 4096,
2784 BTRFS_SUPER_INFO_SIZE);
2785 BUG_ON(!bh);
a512bbf8 2786 wait_on_buffer(bh);
4eedeb75
HH
2787 if (!buffer_uptodate(bh))
2788 errors++;
2789
2790 /* drop our reference */
2791 brelse(bh);
2792
2793 /* drop the reference from the wait == 0 run */
2794 brelse(bh);
2795 continue;
a512bbf8
YZ
2796 } else {
2797 btrfs_set_super_bytenr(sb, bytenr);
2798
2799 crc = ~(u32)0;
2800 crc = btrfs_csum_data(NULL, (char *)sb +
2801 BTRFS_CSUM_SIZE, crc,
2802 BTRFS_SUPER_INFO_SIZE -
2803 BTRFS_CSUM_SIZE);
2804 btrfs_csum_final(crc, sb->csum);
2805
4eedeb75
HH
2806 /*
2807 * one reference for us, and we leave it for the
2808 * caller
2809 */
a512bbf8
YZ
2810 bh = __getblk(device->bdev, bytenr / 4096,
2811 BTRFS_SUPER_INFO_SIZE);
2812 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2813
4eedeb75 2814 /* one reference for submit_bh */
a512bbf8 2815 get_bh(bh);
4eedeb75
HH
2816
2817 set_buffer_uptodate(bh);
a512bbf8
YZ
2818 lock_buffer(bh);
2819 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2820 bh->b_private = device;
a512bbf8
YZ
2821 }
2822
387125fc
CM
2823 /*
2824 * we fua the first super. The others we allow
2825 * to go down lazy.
2826 */
21adbd5c 2827 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2828 if (ret)
a512bbf8 2829 errors++;
a512bbf8
YZ
2830 }
2831 return errors < i ? 0 : -1;
2832}
2833
387125fc
CM
2834/*
2835 * endio for the write_dev_flush, this will wake anyone waiting
2836 * for the barrier when it is done
2837 */
2838static void btrfs_end_empty_barrier(struct bio *bio, int err)
2839{
2840 if (err) {
2841 if (err == -EOPNOTSUPP)
2842 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2843 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2844 }
2845 if (bio->bi_private)
2846 complete(bio->bi_private);
2847 bio_put(bio);
2848}
2849
2850/*
2851 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2852 * sent down. With wait == 1, it waits for the previous flush.
2853 *
2854 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2855 * capable
2856 */
2857static int write_dev_flush(struct btrfs_device *device, int wait)
2858{
2859 struct bio *bio;
2860 int ret = 0;
2861
2862 if (device->nobarriers)
2863 return 0;
2864
2865 if (wait) {
2866 bio = device->flush_bio;
2867 if (!bio)
2868 return 0;
2869
2870 wait_for_completion(&device->flush_wait);
2871
2872 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2873 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2874 rcu_str_deref(device->name));
387125fc
CM
2875 device->nobarriers = 1;
2876 }
2877 if (!bio_flagged(bio, BIO_UPTODATE)) {
2878 ret = -EIO;
442a4f63
SB
2879 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2880 btrfs_dev_stat_inc_and_print(device,
2881 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2882 }
2883
2884 /* drop the reference from the wait == 0 run */
2885 bio_put(bio);
2886 device->flush_bio = NULL;
2887
2888 return ret;
2889 }
2890
2891 /*
2892 * one reference for us, and we leave it for the
2893 * caller
2894 */
9c017abc 2895 device->flush_bio = NULL;
387125fc
CM
2896 bio = bio_alloc(GFP_NOFS, 0);
2897 if (!bio)
2898 return -ENOMEM;
2899
2900 bio->bi_end_io = btrfs_end_empty_barrier;
2901 bio->bi_bdev = device->bdev;
2902 init_completion(&device->flush_wait);
2903 bio->bi_private = &device->flush_wait;
2904 device->flush_bio = bio;
2905
2906 bio_get(bio);
21adbd5c 2907 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2908
2909 return 0;
2910}
2911
2912/*
2913 * send an empty flush down to each device in parallel,
2914 * then wait for them
2915 */
2916static int barrier_all_devices(struct btrfs_fs_info *info)
2917{
2918 struct list_head *head;
2919 struct btrfs_device *dev;
2920 int errors = 0;
2921 int ret;
2922
2923 /* send down all the barriers */
2924 head = &info->fs_devices->devices;
2925 list_for_each_entry_rcu(dev, head, dev_list) {
2926 if (!dev->bdev) {
2927 errors++;
2928 continue;
2929 }
2930 if (!dev->in_fs_metadata || !dev->writeable)
2931 continue;
2932
2933 ret = write_dev_flush(dev, 0);
2934 if (ret)
2935 errors++;
2936 }
2937
2938 /* wait for all the barriers */
2939 list_for_each_entry_rcu(dev, head, dev_list) {
2940 if (!dev->bdev) {
2941 errors++;
2942 continue;
2943 }
2944 if (!dev->in_fs_metadata || !dev->writeable)
2945 continue;
2946
2947 ret = write_dev_flush(dev, 1);
2948 if (ret)
2949 errors++;
2950 }
2951 if (errors)
2952 return -EIO;
2953 return 0;
2954}
2955
a512bbf8 2956int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2957{
e5e9a520 2958 struct list_head *head;
f2984462 2959 struct btrfs_device *dev;
a061fc8d 2960 struct btrfs_super_block *sb;
f2984462 2961 struct btrfs_dev_item *dev_item;
f2984462
CM
2962 int ret;
2963 int do_barriers;
a236aed1
CM
2964 int max_errors;
2965 int total_errors = 0;
a061fc8d 2966 u64 flags;
f2984462 2967
6c41761f 2968 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2969 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2970 backup_super_roots(root->fs_info);
f2984462 2971
6c41761f 2972 sb = root->fs_info->super_for_commit;
a061fc8d 2973 dev_item = &sb->dev_item;
e5e9a520 2974
174ba509 2975 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2976 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2977
2978 if (do_barriers)
2979 barrier_all_devices(root->fs_info);
2980
1f78160c 2981 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2982 if (!dev->bdev) {
2983 total_errors++;
2984 continue;
2985 }
2b82032c 2986 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2987 continue;
2988
2b82032c 2989 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2990 btrfs_set_stack_device_type(dev_item, dev->type);
2991 btrfs_set_stack_device_id(dev_item, dev->devid);
2992 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2993 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2994 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2995 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2996 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2997 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2998 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2999
a061fc8d
CM
3000 flags = btrfs_super_flags(sb);
3001 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3002
a512bbf8 3003 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3004 if (ret)
3005 total_errors++;
f2984462 3006 }
a236aed1 3007 if (total_errors > max_errors) {
d397712b
CM
3008 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3009 total_errors);
79787eaa
JM
3010
3011 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3012 BUG();
3013 }
f2984462 3014
a512bbf8 3015 total_errors = 0;
1f78160c 3016 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3017 if (!dev->bdev)
3018 continue;
2b82032c 3019 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3020 continue;
3021
a512bbf8
YZ
3022 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3023 if (ret)
3024 total_errors++;
f2984462 3025 }
174ba509 3026 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3027 if (total_errors > max_errors) {
79787eaa
JM
3028 btrfs_error(root->fs_info, -EIO,
3029 "%d errors while writing supers", total_errors);
3030 return -EIO;
a236aed1 3031 }
f2984462
CM
3032 return 0;
3033}
3034
a512bbf8
YZ
3035int write_ctree_super(struct btrfs_trans_handle *trans,
3036 struct btrfs_root *root, int max_mirrors)
eb60ceac 3037{
e66f709b 3038 int ret;
5f39d397 3039
a512bbf8 3040 ret = write_all_supers(root, max_mirrors);
5f39d397 3041 return ret;
cfaa7295
CM
3042}
3043
143bede5 3044void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3045{
4df27c4d 3046 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3047 radix_tree_delete(&fs_info->fs_roots_radix,
3048 (unsigned long)root->root_key.objectid);
4df27c4d 3049 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3050
3051 if (btrfs_root_refs(&root->root_item) == 0)
3052 synchronize_srcu(&fs_info->subvol_srcu);
3053
581bb050
LZ
3054 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3055 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3056 free_fs_root(root);
4df27c4d
YZ
3057}
3058
3059static void free_fs_root(struct btrfs_root *root)
3060{
82d5902d 3061 iput(root->cache_inode);
4df27c4d 3062 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3063 if (root->anon_dev)
3064 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3065 free_extent_buffer(root->node);
3066 free_extent_buffer(root->commit_root);
581bb050
LZ
3067 kfree(root->free_ino_ctl);
3068 kfree(root->free_ino_pinned);
d397712b 3069 kfree(root->name);
2619ba1f 3070 kfree(root);
2619ba1f
CM
3071}
3072
143bede5 3073static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3074{
3075 int ret;
3076 struct btrfs_root *gang[8];
3077 int i;
3078
76dda93c
YZ
3079 while (!list_empty(&fs_info->dead_roots)) {
3080 gang[0] = list_entry(fs_info->dead_roots.next,
3081 struct btrfs_root, root_list);
3082 list_del(&gang[0]->root_list);
3083
3084 if (gang[0]->in_radix) {
3085 btrfs_free_fs_root(fs_info, gang[0]);
3086 } else {
3087 free_extent_buffer(gang[0]->node);
3088 free_extent_buffer(gang[0]->commit_root);
3089 kfree(gang[0]);
3090 }
3091 }
3092
d397712b 3093 while (1) {
0f7d52f4
CM
3094 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3095 (void **)gang, 0,
3096 ARRAY_SIZE(gang));
3097 if (!ret)
3098 break;
2619ba1f 3099 for (i = 0; i < ret; i++)
5eda7b5e 3100 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3101 }
0f7d52f4 3102}
b4100d64 3103
c146afad 3104int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3105{
c146afad
YZ
3106 u64 root_objectid = 0;
3107 struct btrfs_root *gang[8];
3108 int i;
3768f368 3109 int ret;
e089f05c 3110
c146afad
YZ
3111 while (1) {
3112 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3113 (void **)gang, root_objectid,
3114 ARRAY_SIZE(gang));
3115 if (!ret)
3116 break;
5d4f98a2
YZ
3117
3118 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3119 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3120 int err;
3121
c146afad 3122 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3123 err = btrfs_orphan_cleanup(gang[i]);
3124 if (err)
3125 return err;
c146afad
YZ
3126 }
3127 root_objectid++;
3128 }
3129 return 0;
3130}
a2135011 3131
c146afad
YZ
3132int btrfs_commit_super(struct btrfs_root *root)
3133{
3134 struct btrfs_trans_handle *trans;
3135 int ret;
a74a4b97 3136
c146afad 3137 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3138 btrfs_run_delayed_iputs(root);
a74a4b97 3139 btrfs_clean_old_snapshots(root);
c146afad 3140 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3141
3142 /* wait until ongoing cleanup work done */
3143 down_write(&root->fs_info->cleanup_work_sem);
3144 up_write(&root->fs_info->cleanup_work_sem);
3145
7a7eaa40 3146 trans = btrfs_join_transaction(root);
3612b495
TI
3147 if (IS_ERR(trans))
3148 return PTR_ERR(trans);
54aa1f4d 3149 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3150 if (ret)
3151 return ret;
c146afad 3152 /* run commit again to drop the original snapshot */
7a7eaa40 3153 trans = btrfs_join_transaction(root);
3612b495
TI
3154 if (IS_ERR(trans))
3155 return PTR_ERR(trans);
79787eaa
JM
3156 ret = btrfs_commit_transaction(trans, root);
3157 if (ret)
3158 return ret;
79154b1b 3159 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3160 if (ret) {
3161 btrfs_error(root->fs_info, ret,
3162 "Failed to sync btree inode to disk.");
3163 return ret;
3164 }
d6bfde87 3165
a512bbf8 3166 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3167 return ret;
3168}
3169
3170int close_ctree(struct btrfs_root *root)
3171{
3172 struct btrfs_fs_info *fs_info = root->fs_info;
3173 int ret;
3174
3175 fs_info->closing = 1;
3176 smp_mb();
3177
837d5b6e
ID
3178 /* pause restriper - we want to resume on mount */
3179 btrfs_pause_balance(root->fs_info);
3180
a2de733c 3181 btrfs_scrub_cancel(root);
4cb5300b
CM
3182
3183 /* wait for any defraggers to finish */
3184 wait_event(fs_info->transaction_wait,
3185 (atomic_read(&fs_info->defrag_running) == 0));
3186
3187 /* clear out the rbtree of defraggable inodes */
e3029d9f 3188 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3189
c146afad 3190 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3191 ret = btrfs_commit_super(root);
3192 if (ret)
3193 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3194 }
3195
68ce9682
SB
3196 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3197 btrfs_error_commit_super(root);
0f7d52f4 3198
300e4f8a
JB
3199 btrfs_put_block_group_cache(fs_info);
3200
e3029d9f
AV
3201 kthread_stop(fs_info->transaction_kthread);
3202 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3203
f25784b3
YZ
3204 fs_info->closing = 2;
3205 smp_mb();
3206
bcef60f2
AJ
3207 btrfs_free_qgroup_config(root->fs_info);
3208
b0c68f8b 3209 if (fs_info->delalloc_bytes) {
d397712b 3210 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3211 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3212 }
31153d81 3213 if (fs_info->total_ref_cache_size) {
d397712b
CM
3214 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3215 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3216 }
bcc63abb 3217
5d4f98a2
YZ
3218 free_extent_buffer(fs_info->extent_root->node);
3219 free_extent_buffer(fs_info->extent_root->commit_root);
3220 free_extent_buffer(fs_info->tree_root->node);
3221 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3222 free_extent_buffer(fs_info->chunk_root->node);
3223 free_extent_buffer(fs_info->chunk_root->commit_root);
3224 free_extent_buffer(fs_info->dev_root->node);
3225 free_extent_buffer(fs_info->dev_root->commit_root);
3226 free_extent_buffer(fs_info->csum_root->node);
3227 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3228 if (fs_info->quota_root) {
3229 free_extent_buffer(fs_info->quota_root->node);
3230 free_extent_buffer(fs_info->quota_root->commit_root);
3231 }
d20f7043 3232
e3029d9f 3233 btrfs_free_block_groups(fs_info);
d10c5f31 3234
c146afad 3235 del_fs_roots(fs_info);
d10c5f31 3236
c146afad 3237 iput(fs_info->btree_inode);
9ad6b7bc 3238
61d92c32 3239 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3240 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3241 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3242 btrfs_stop_workers(&fs_info->workers);
3243 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3244 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3245 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3246 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3247 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3248 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3249 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3250 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3251 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3252
21adbd5c
SB
3253#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3254 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3255 btrfsic_unmount(root, fs_info->fs_devices);
3256#endif
3257
dfe25020 3258 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3259 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3260
04160088 3261 bdi_destroy(&fs_info->bdi);
76dda93c 3262 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3263
eb60ceac
CM
3264 return 0;
3265}
3266
b9fab919
CM
3267int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3268 int atomic)
5f39d397 3269{
1259ab75 3270 int ret;
727011e0 3271 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3272
0b32f4bb 3273 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3274 if (!ret)
3275 return ret;
3276
3277 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3278 parent_transid, atomic);
3279 if (ret == -EAGAIN)
3280 return ret;
1259ab75 3281 return !ret;
5f39d397
CM
3282}
3283
3284int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3285{
0b32f4bb 3286 return set_extent_buffer_uptodate(buf);
5f39d397 3287}
6702ed49 3288
5f39d397
CM
3289void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3290{
727011e0 3291 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3292 u64 transid = btrfs_header_generation(buf);
b9473439 3293 int was_dirty;
b4ce94de 3294
b9447ef8 3295 btrfs_assert_tree_locked(buf);
ccd467d6 3296 if (transid != root->fs_info->generation) {
d397712b
CM
3297 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3298 "found %llu running %llu\n",
db94535d 3299 (unsigned long long)buf->start,
d397712b
CM
3300 (unsigned long long)transid,
3301 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3302 WARN_ON(1);
3303 }
0b32f4bb 3304 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3305 if (!was_dirty) {
3306 spin_lock(&root->fs_info->delalloc_lock);
3307 root->fs_info->dirty_metadata_bytes += buf->len;
3308 spin_unlock(&root->fs_info->delalloc_lock);
3309 }
eb60ceac
CM
3310}
3311
d3c2fdcf 3312void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3313{
3314 /*
3315 * looks as though older kernels can get into trouble with
3316 * this code, they end up stuck in balance_dirty_pages forever
3317 */
3318 u64 num_dirty;
3319 unsigned long thresh = 32 * 1024 * 1024;
3320
3321 if (current->flags & PF_MEMALLOC)
3322 return;
3323
3324 btrfs_balance_delayed_items(root);
3325
3326 num_dirty = root->fs_info->dirty_metadata_bytes;
3327
3328 if (num_dirty > thresh) {
3329 balance_dirty_pages_ratelimited_nr(
3330 root->fs_info->btree_inode->i_mapping, 1);
3331 }
3332 return;
3333}
3334
3335void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3336{
188de649
CM
3337 /*
3338 * looks as though older kernels can get into trouble with
3339 * this code, they end up stuck in balance_dirty_pages forever
3340 */
d6bfde87 3341 u64 num_dirty;
771ed689 3342 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3343
6933c02e 3344 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3345 return;
3346
585ad2c3
CM
3347 num_dirty = root->fs_info->dirty_metadata_bytes;
3348
d6bfde87
CM
3349 if (num_dirty > thresh) {
3350 balance_dirty_pages_ratelimited_nr(
d7fc640e 3351 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3352 }
188de649 3353 return;
35b7e476 3354}
6b80053d 3355
ca7a79ad 3356int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3357{
727011e0 3358 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3359 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3360}
0da5468f 3361
20897f5c 3362int btree_lock_page_hook(struct page *page, void *data,
01d658f2 3363 void (*flush_fn)(void *))
4bef0848
CM
3364{
3365 struct inode *inode = page->mapping->host;
b9473439 3366 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3367 struct extent_buffer *eb;
4bef0848 3368
4f2de97a
JB
3369 /*
3370 * We culled this eb but the page is still hanging out on the mapping,
3371 * carry on.
3372 */
3373 if (!PagePrivate(page))
4bef0848
CM
3374 goto out;
3375
4f2de97a
JB
3376 eb = (struct extent_buffer *)page->private;
3377 if (!eb) {
3378 WARN_ON(1);
3379 goto out;
3380 }
3381 if (page != eb->pages[0])
4bef0848
CM
3382 goto out;
3383
01d658f2
CM
3384 if (!btrfs_try_tree_write_lock(eb)) {
3385 flush_fn(data);
3386 btrfs_tree_lock(eb);
3387 }
4bef0848 3388 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3389
3390 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3391 spin_lock(&root->fs_info->delalloc_lock);
3392 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3393 root->fs_info->dirty_metadata_bytes -= eb->len;
3394 else
3395 WARN_ON(1);
3396 spin_unlock(&root->fs_info->delalloc_lock);
3397 }
3398
4bef0848 3399 btrfs_tree_unlock(eb);
4bef0848 3400out:
01d658f2
CM
3401 if (!trylock_page(page)) {
3402 flush_fn(data);
3403 lock_page(page);
3404 }
4bef0848
CM
3405 return 0;
3406}
3407
fcd1f065 3408static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3409 int read_only)
3410{
fcd1f065
DS
3411 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3412 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3413 return -EINVAL;
3414 }
3415
acce952b 3416 if (read_only)
fcd1f065 3417 return 0;
acce952b 3418
fcd1f065 3419 return 0;
acce952b 3420}
3421
68ce9682 3422void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3423{
acce952b 3424 mutex_lock(&root->fs_info->cleaner_mutex);
3425 btrfs_run_delayed_iputs(root);
3426 mutex_unlock(&root->fs_info->cleaner_mutex);
3427
3428 down_write(&root->fs_info->cleanup_work_sem);
3429 up_write(&root->fs_info->cleanup_work_sem);
3430
3431 /* cleanup FS via transaction */
3432 btrfs_cleanup_transaction(root);
acce952b 3433}
3434
143bede5 3435static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3436{
3437 struct btrfs_inode *btrfs_inode;
3438 struct list_head splice;
3439
3440 INIT_LIST_HEAD(&splice);
3441
3442 mutex_lock(&root->fs_info->ordered_operations_mutex);
3443 spin_lock(&root->fs_info->ordered_extent_lock);
3444
3445 list_splice_init(&root->fs_info->ordered_operations, &splice);
3446 while (!list_empty(&splice)) {
3447 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3448 ordered_operations);
3449
3450 list_del_init(&btrfs_inode->ordered_operations);
3451
3452 btrfs_invalidate_inodes(btrfs_inode->root);
3453 }
3454
3455 spin_unlock(&root->fs_info->ordered_extent_lock);
3456 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3457}
3458
143bede5 3459static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3460{
3461 struct list_head splice;
3462 struct btrfs_ordered_extent *ordered;
3463 struct inode *inode;
3464
3465 INIT_LIST_HEAD(&splice);
3466
3467 spin_lock(&root->fs_info->ordered_extent_lock);
3468
3469 list_splice_init(&root->fs_info->ordered_extents, &splice);
3470 while (!list_empty(&splice)) {
3471 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3472 root_extent_list);
3473
3474 list_del_init(&ordered->root_extent_list);
3475 atomic_inc(&ordered->refs);
3476
3477 /* the inode may be getting freed (in sys_unlink path). */
3478 inode = igrab(ordered->inode);
3479
3480 spin_unlock(&root->fs_info->ordered_extent_lock);
3481 if (inode)
3482 iput(inode);
3483
3484 atomic_set(&ordered->refs, 1);
3485 btrfs_put_ordered_extent(ordered);
3486
3487 spin_lock(&root->fs_info->ordered_extent_lock);
3488 }
3489
3490 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3491}
3492
79787eaa
JM
3493int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3494 struct btrfs_root *root)
acce952b 3495{
3496 struct rb_node *node;
3497 struct btrfs_delayed_ref_root *delayed_refs;
3498 struct btrfs_delayed_ref_node *ref;
3499 int ret = 0;
3500
3501 delayed_refs = &trans->delayed_refs;
3502
3503 spin_lock(&delayed_refs->lock);
3504 if (delayed_refs->num_entries == 0) {
cfece4db 3505 spin_unlock(&delayed_refs->lock);
acce952b 3506 printk(KERN_INFO "delayed_refs has NO entry\n");
3507 return ret;
3508 }
3509
b939d1ab 3510 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3511 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3512
3513 atomic_set(&ref->refs, 1);
3514 if (btrfs_delayed_ref_is_head(ref)) {
3515 struct btrfs_delayed_ref_head *head;
3516
3517 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3518 if (!mutex_trylock(&head->mutex)) {
3519 atomic_inc(&ref->refs);
3520 spin_unlock(&delayed_refs->lock);
3521
3522 /* Need to wait for the delayed ref to run */
3523 mutex_lock(&head->mutex);
3524 mutex_unlock(&head->mutex);
3525 btrfs_put_delayed_ref(ref);
3526
e18fca73 3527 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3528 continue;
3529 }
3530
acce952b 3531 kfree(head->extent_op);
3532 delayed_refs->num_heads--;
3533 if (list_empty(&head->cluster))
3534 delayed_refs->num_heads_ready--;
3535 list_del_init(&head->cluster);
acce952b 3536 }
b939d1ab
JB
3537 ref->in_tree = 0;
3538 rb_erase(&ref->rb_node, &delayed_refs->root);
3539 delayed_refs->num_entries--;
3540
acce952b 3541 spin_unlock(&delayed_refs->lock);
3542 btrfs_put_delayed_ref(ref);
3543
3544 cond_resched();
3545 spin_lock(&delayed_refs->lock);
3546 }
3547
3548 spin_unlock(&delayed_refs->lock);
3549
3550 return ret;
3551}
3552
143bede5 3553static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3554{
3555 struct btrfs_pending_snapshot *snapshot;
3556 struct list_head splice;
3557
3558 INIT_LIST_HEAD(&splice);
3559
3560 list_splice_init(&t->pending_snapshots, &splice);
3561
3562 while (!list_empty(&splice)) {
3563 snapshot = list_entry(splice.next,
3564 struct btrfs_pending_snapshot,
3565 list);
3566
3567 list_del_init(&snapshot->list);
3568
3569 kfree(snapshot);
3570 }
acce952b 3571}
3572
143bede5 3573static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3574{
3575 struct btrfs_inode *btrfs_inode;
3576 struct list_head splice;
3577
3578 INIT_LIST_HEAD(&splice);
3579
acce952b 3580 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3581 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3582
3583 while (!list_empty(&splice)) {
3584 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3585 delalloc_inodes);
3586
3587 list_del_init(&btrfs_inode->delalloc_inodes);
3588
3589 btrfs_invalidate_inodes(btrfs_inode->root);
3590 }
3591
3592 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3593}
3594
3595static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3596 struct extent_io_tree *dirty_pages,
3597 int mark)
3598{
3599 int ret;
3600 struct page *page;
3601 struct inode *btree_inode = root->fs_info->btree_inode;
3602 struct extent_buffer *eb;
3603 u64 start = 0;
3604 u64 end;
3605 u64 offset;
3606 unsigned long index;
3607
3608 while (1) {
3609 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3610 mark);
3611 if (ret)
3612 break;
3613
3614 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3615 while (start <= end) {
3616 index = start >> PAGE_CACHE_SHIFT;
3617 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3618 page = find_get_page(btree_inode->i_mapping, index);
3619 if (!page)
3620 continue;
3621 offset = page_offset(page);
3622
3623 spin_lock(&dirty_pages->buffer_lock);
3624 eb = radix_tree_lookup(
3625 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3626 offset >> PAGE_CACHE_SHIFT);
3627 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3628 if (eb)
acce952b 3629 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3630 &eb->bflags);
acce952b 3631 if (PageWriteback(page))
3632 end_page_writeback(page);
3633
3634 lock_page(page);
3635 if (PageDirty(page)) {
3636 clear_page_dirty_for_io(page);
3637 spin_lock_irq(&page->mapping->tree_lock);
3638 radix_tree_tag_clear(&page->mapping->page_tree,
3639 page_index(page),
3640 PAGECACHE_TAG_DIRTY);
3641 spin_unlock_irq(&page->mapping->tree_lock);
3642 }
3643
acce952b 3644 unlock_page(page);
ee670f0a 3645 page_cache_release(page);
acce952b 3646 }
3647 }
3648
3649 return ret;
3650}
3651
3652static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3653 struct extent_io_tree *pinned_extents)
3654{
3655 struct extent_io_tree *unpin;
3656 u64 start;
3657 u64 end;
3658 int ret;
ed0eaa14 3659 bool loop = true;
acce952b 3660
3661 unpin = pinned_extents;
ed0eaa14 3662again:
acce952b 3663 while (1) {
3664 ret = find_first_extent_bit(unpin, 0, &start, &end,
3665 EXTENT_DIRTY);
3666 if (ret)
3667 break;
3668
3669 /* opt_discard */
5378e607
LD
3670 if (btrfs_test_opt(root, DISCARD))
3671 ret = btrfs_error_discard_extent(root, start,
3672 end + 1 - start,
3673 NULL);
acce952b 3674
3675 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3676 btrfs_error_unpin_extent_range(root, start, end);
3677 cond_resched();
3678 }
3679
ed0eaa14
LB
3680 if (loop) {
3681 if (unpin == &root->fs_info->freed_extents[0])
3682 unpin = &root->fs_info->freed_extents[1];
3683 else
3684 unpin = &root->fs_info->freed_extents[0];
3685 loop = false;
3686 goto again;
3687 }
3688
acce952b 3689 return 0;
3690}
3691
49b25e05
JM
3692void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3693 struct btrfs_root *root)
3694{
3695 btrfs_destroy_delayed_refs(cur_trans, root);
3696 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3697 cur_trans->dirty_pages.dirty_bytes);
3698
3699 /* FIXME: cleanup wait for commit */
3700 cur_trans->in_commit = 1;
3701 cur_trans->blocked = 1;
d7096fc3 3702 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3703
3704 cur_trans->blocked = 0;
d7096fc3 3705 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3706
3707 cur_trans->commit_done = 1;
d7096fc3 3708 wake_up(&cur_trans->commit_wait);
49b25e05 3709
67cde344
MX
3710 btrfs_destroy_delayed_inodes(root);
3711 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3712
3713 btrfs_destroy_pending_snapshots(cur_trans);
3714
3715 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3716 EXTENT_DIRTY);
6e841e32
LB
3717 btrfs_destroy_pinned_extent(root,
3718 root->fs_info->pinned_extents);
49b25e05
JM
3719
3720 /*
3721 memset(cur_trans, 0, sizeof(*cur_trans));
3722 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3723 */
3724}
3725
3726int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3727{
3728 struct btrfs_transaction *t;
3729 LIST_HEAD(list);
3730
acce952b 3731 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3732
a4abeea4 3733 spin_lock(&root->fs_info->trans_lock);
acce952b 3734 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3735 root->fs_info->trans_no_join = 1;
3736 spin_unlock(&root->fs_info->trans_lock);
3737
acce952b 3738 while (!list_empty(&list)) {
3739 t = list_entry(list.next, struct btrfs_transaction, list);
3740 if (!t)
3741 break;
3742
3743 btrfs_destroy_ordered_operations(root);
3744
3745 btrfs_destroy_ordered_extents(root);
3746
3747 btrfs_destroy_delayed_refs(t, root);
3748
3749 btrfs_block_rsv_release(root,
3750 &root->fs_info->trans_block_rsv,
3751 t->dirty_pages.dirty_bytes);
3752
3753 /* FIXME: cleanup wait for commit */
3754 t->in_commit = 1;
3755 t->blocked = 1;
66657b31 3756 smp_mb();
acce952b 3757 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3758 wake_up(&root->fs_info->transaction_blocked_wait);
3759
3760 t->blocked = 0;
66657b31 3761 smp_mb();
acce952b 3762 if (waitqueue_active(&root->fs_info->transaction_wait))
3763 wake_up(&root->fs_info->transaction_wait);
acce952b 3764
acce952b 3765 t->commit_done = 1;
66657b31 3766 smp_mb();
acce952b 3767 if (waitqueue_active(&t->commit_wait))
3768 wake_up(&t->commit_wait);
acce952b 3769
67cde344
MX
3770 btrfs_destroy_delayed_inodes(root);
3771 btrfs_assert_delayed_root_empty(root);
3772
acce952b 3773 btrfs_destroy_pending_snapshots(t);
3774
3775 btrfs_destroy_delalloc_inodes(root);
3776
a4abeea4 3777 spin_lock(&root->fs_info->trans_lock);
acce952b 3778 root->fs_info->running_transaction = NULL;
a4abeea4 3779 spin_unlock(&root->fs_info->trans_lock);
acce952b 3780
3781 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3782 EXTENT_DIRTY);
3783
3784 btrfs_destroy_pinned_extent(root,
3785 root->fs_info->pinned_extents);
3786
13c5a93e 3787 atomic_set(&t->use_count, 0);
acce952b 3788 list_del_init(&t->list);
3789 memset(t, 0, sizeof(*t));
3790 kmem_cache_free(btrfs_transaction_cachep, t);
3791 }
3792
a4abeea4
JB
3793 spin_lock(&root->fs_info->trans_lock);
3794 root->fs_info->trans_no_join = 0;
3795 spin_unlock(&root->fs_info->trans_lock);
acce952b 3796 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3797
3798 return 0;
3799}
3800
d1310b2e 3801static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3802 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3803 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3804 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3805 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3806 /* note we're sharing with inode.c for the merge bio hook */
3807 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3808};