Btrfs: fix writing data into the seed filesystem
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68
CM
74/*
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
ce9adaa5
CM
79struct end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
22c59948 85 int metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
d352ac68
CM
90/*
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
94 */
44b8bd7e
CM
95struct async_submit_bio {
96 struct inode *inode;
97 struct bio *bio;
98 struct list_head list;
4a69a410
CM
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
101 int rw;
102 int mirror_num;
c8b97818 103 unsigned long bio_flags;
eaf25d93
CM
104 /*
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
107 */
108 u64 bio_offset;
8b712842 109 struct btrfs_work work;
79787eaa 110 int error;
44b8bd7e
CM
111};
112
85d4e461
CM
113/*
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
117 *
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
4008c04a 123 *
85d4e461
CM
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 127 *
85d4e461
CM
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 131 *
85d4e461
CM
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
4008c04a
CM
135 */
136#ifdef CONFIG_DEBUG_LOCK_ALLOC
137# if BTRFS_MAX_LEVEL != 8
138# error
139# endif
85d4e461
CM
140
141static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146} btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 153 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 157 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 158 { .id = 0, .name_stem = "tree" },
4008c04a 159};
85d4e461
CM
160
161void __init btrfs_init_lockdep(void)
162{
163 int i, j;
164
165 /* initialize lockdep class names */
166 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170 snprintf(ks->names[j], sizeof(ks->names[j]),
171 "btrfs-%s-%02d", ks->name_stem, j);
172 }
173}
174
175void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176 int level)
177{
178 struct btrfs_lockdep_keyset *ks;
179
180 BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182 /* find the matching keyset, id 0 is the default entry */
183 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184 if (ks->id == objectid)
185 break;
186
187 lockdep_set_class_and_name(&eb->lock,
188 &ks->keys[level], ks->names[level]);
189}
190
4008c04a
CM
191#endif
192
d352ac68
CM
193/*
194 * extents on the btree inode are pretty simple, there's one extent
195 * that covers the entire device
196 */
b2950863 197static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 198 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 199 int create)
7eccb903 200{
5f39d397
CM
201 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202 struct extent_map *em;
203 int ret;
204
890871be 205 read_lock(&em_tree->lock);
d1310b2e 206 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
207 if (em) {
208 em->bdev =
209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 210 read_unlock(&em_tree->lock);
5f39d397 211 goto out;
a061fc8d 212 }
890871be 213 read_unlock(&em_tree->lock);
7b13b7b1 214
172ddd60 215 em = alloc_extent_map();
5f39d397
CM
216 if (!em) {
217 em = ERR_PTR(-ENOMEM);
218 goto out;
219 }
220 em->start = 0;
0afbaf8c 221 em->len = (u64)-1;
c8b97818 222 em->block_len = (u64)-1;
5f39d397 223 em->block_start = 0;
a061fc8d 224 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 225
890871be 226 write_lock(&em_tree->lock);
09a2a8f9 227 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
228 if (ret == -EEXIST) {
229 free_extent_map(em);
7b13b7b1 230 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 231 if (!em)
0433f20d 232 em = ERR_PTR(-EIO);
5f39d397 233 } else if (ret) {
7b13b7b1 234 free_extent_map(em);
0433f20d 235 em = ERR_PTR(ret);
5f39d397 236 }
890871be 237 write_unlock(&em_tree->lock);
7b13b7b1 238
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
b0496686 243u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 244{
0b947aff 245 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc 278 cur_len = min(len, map_len - (offset - map_start));
b0496686 279 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
301 printk_ratelimited(KERN_INFO
302 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id, buf->start,
305 val, found, btrfs_header_level(buf));
607d432d
JB
306 if (result != (char *)&inline_result)
307 kfree(result);
19c00ddc
CM
308 return 1;
309 }
310 } else {
607d432d 311 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 312 }
607d432d
JB
313 if (result != (char *)&inline_result)
314 kfree(result);
19c00ddc
CM
315 return 0;
316}
317
d352ac68
CM
318/*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
1259ab75 324static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
325 struct extent_buffer *eb, u64 parent_transid,
326 int atomic)
1259ab75 327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75 329 int ret;
a26e8c9f
JB
330 bool need_lock = (current->journal_info ==
331 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
a26e8c9f
JB
339 if (need_lock) {
340 btrfs_tree_read_lock(eb);
341 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342 }
343
2ac55d41 344 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 345 0, &cached_state);
0b32f4bb 346 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
347 btrfs_header_generation(eb) == parent_transid) {
348 ret = 0;
349 goto out;
350 }
7a36ddec 351 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 352 "found %llu\n",
c1c9ff7c 353 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 354 ret = 1;
a26e8c9f
JB
355
356 /*
357 * Things reading via commit roots that don't have normal protection,
358 * like send, can have a really old block in cache that may point at a
359 * block that has been free'd and re-allocated. So don't clear uptodate
360 * if we find an eb that is under IO (dirty/writeback) because we could
361 * end up reading in the stale data and then writing it back out and
362 * making everybody very sad.
363 */
364 if (!extent_buffer_under_io(eb))
365 clear_extent_buffer_uptodate(eb);
33958dc6 366out:
2ac55d41
JB
367 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 &cached_state, GFP_NOFS);
472b909f
JB
369 if (need_lock)
370 btrfs_tree_read_unlock_blocking(eb);
1259ab75 371 return ret;
1259ab75
CM
372}
373
1104a885
DS
374/*
375 * Return 0 if the superblock checksum type matches the checksum value of that
376 * algorithm. Pass the raw disk superblock data.
377 */
378static int btrfs_check_super_csum(char *raw_disk_sb)
379{
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
383 int ret = 0;
384
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 u32 crc = ~(u32)0;
387 const int csum_size = sizeof(crc);
388 char result[csum_size];
389
390 /*
391 * The super_block structure does not span the whole
392 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393 * is filled with zeros and is included in the checkum.
394 */
395 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397 btrfs_csum_final(crc, result);
398
399 if (memcmp(raw_disk_sb, result, csum_size))
400 ret = 1;
667e7d94
CM
401
402 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
403 printk(KERN_WARNING
404 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
405 ret = 0;
406 }
1104a885
DS
407 }
408
409 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 410 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
411 csum_type);
412 ret = 1;
413 }
414
415 return ret;
416}
417
d352ac68
CM
418/*
419 * helper to read a given tree block, doing retries as required when
420 * the checksums don't match and we have alternate mirrors to try.
421 */
f188591e
CM
422static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423 struct extent_buffer *eb,
ca7a79ad 424 u64 start, u64 parent_transid)
f188591e
CM
425{
426 struct extent_io_tree *io_tree;
ea466794 427 int failed = 0;
f188591e
CM
428 int ret;
429 int num_copies = 0;
430 int mirror_num = 0;
ea466794 431 int failed_mirror = 0;
f188591e 432
a826d6dc 433 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
434 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435 while (1) {
bb82ab88
AJ
436 ret = read_extent_buffer_pages(io_tree, eb, start,
437 WAIT_COMPLETE,
f188591e 438 btree_get_extent, mirror_num);
256dd1bb
SB
439 if (!ret) {
440 if (!verify_parent_transid(io_tree, eb,
b9fab919 441 parent_transid, 0))
256dd1bb
SB
442 break;
443 else
444 ret = -EIO;
445 }
d397712b 446
a826d6dc
JB
447 /*
448 * This buffer's crc is fine, but its contents are corrupted, so
449 * there is no reason to read the other copies, they won't be
450 * any less wrong.
451 */
452 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
453 break;
454
5d964051 455 num_copies = btrfs_num_copies(root->fs_info,
f188591e 456 eb->start, eb->len);
4235298e 457 if (num_copies == 1)
ea466794 458 break;
4235298e 459
5cf1ab56
JB
460 if (!failed_mirror) {
461 failed = 1;
462 failed_mirror = eb->read_mirror;
463 }
464
f188591e 465 mirror_num++;
ea466794
JB
466 if (mirror_num == failed_mirror)
467 mirror_num++;
468
4235298e 469 if (mirror_num > num_copies)
ea466794 470 break;
f188591e 471 }
ea466794 472
c0901581 473 if (failed && !ret && failed_mirror)
ea466794
JB
474 repair_eb_io_failure(root, eb, failed_mirror);
475
476 return ret;
f188591e 477}
19c00ddc 478
d352ac68 479/*
d397712b
CM
480 * checksum a dirty tree block before IO. This has extra checks to make sure
481 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 482 */
d397712b 483
b2950863 484static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 485{
4eee4fa4 486 u64 start = page_offset(page);
19c00ddc 487 u64 found_start;
19c00ddc 488 struct extent_buffer *eb;
f188591e 489
4f2de97a
JB
490 eb = (struct extent_buffer *)page->private;
491 if (page != eb->pages[0])
492 return 0;
19c00ddc 493 found_start = btrfs_header_bytenr(eb);
fae7f21c 494 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 495 return 0;
19c00ddc 496 csum_tree_block(root, eb, 0);
19c00ddc
CM
497 return 0;
498}
499
2b82032c
YZ
500static int check_tree_block_fsid(struct btrfs_root *root,
501 struct extent_buffer *eb)
502{
503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504 u8 fsid[BTRFS_UUID_SIZE];
505 int ret = 1;
506
0a4e5586 507 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
508 while (fs_devices) {
509 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510 ret = 0;
511 break;
512 }
513 fs_devices = fs_devices->seed;
514 }
515 return ret;
516}
517
a826d6dc 518#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
519 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
520 "root=%llu, slot=%d", reason, \
c1c9ff7c 521 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
522
523static noinline int check_leaf(struct btrfs_root *root,
524 struct extent_buffer *leaf)
525{
526 struct btrfs_key key;
527 struct btrfs_key leaf_key;
528 u32 nritems = btrfs_header_nritems(leaf);
529 int slot;
530
531 if (nritems == 0)
532 return 0;
533
534 /* Check the 0 item */
535 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536 BTRFS_LEAF_DATA_SIZE(root)) {
537 CORRUPT("invalid item offset size pair", leaf, root, 0);
538 return -EIO;
539 }
540
541 /*
542 * Check to make sure each items keys are in the correct order and their
543 * offsets make sense. We only have to loop through nritems-1 because
544 * we check the current slot against the next slot, which verifies the
545 * next slot's offset+size makes sense and that the current's slot
546 * offset is correct.
547 */
548 for (slot = 0; slot < nritems - 1; slot++) {
549 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552 /* Make sure the keys are in the right order */
553 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554 CORRUPT("bad key order", leaf, root, slot);
555 return -EIO;
556 }
557
558 /*
559 * Make sure the offset and ends are right, remember that the
560 * item data starts at the end of the leaf and grows towards the
561 * front.
562 */
563 if (btrfs_item_offset_nr(leaf, slot) !=
564 btrfs_item_end_nr(leaf, slot + 1)) {
565 CORRUPT("slot offset bad", leaf, root, slot);
566 return -EIO;
567 }
568
569 /*
570 * Check to make sure that we don't point outside of the leaf,
571 * just incase all the items are consistent to eachother, but
572 * all point outside of the leaf.
573 */
574 if (btrfs_item_end_nr(leaf, slot) >
575 BTRFS_LEAF_DATA_SIZE(root)) {
576 CORRUPT("slot end outside of leaf", leaf, root, slot);
577 return -EIO;
578 }
579 }
580
581 return 0;
582}
583
facc8a22
MX
584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
ce9adaa5 587{
ce9adaa5
CM
588 u64 found_start;
589 int found_level;
ce9adaa5
CM
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 592 int ret = 0;
727011e0 593 int reads_done;
ce9adaa5 594
ce9adaa5
CM
595 if (!page->private)
596 goto out;
d397712b 597
4f2de97a 598 eb = (struct extent_buffer *)page->private;
d397712b 599
0b32f4bb
JB
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
602 */
603 extent_buffer_get(eb);
604
605 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
606 if (!reads_done)
607 goto err;
f188591e 608
5cf1ab56 609 eb->read_mirror = mirror;
ea466794
JB
610 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611 ret = -EIO;
612 goto err;
613 }
614
ce9adaa5 615 found_start = btrfs_header_bytenr(eb);
727011e0 616 if (found_start != eb->start) {
efe120a0 617 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 618 "%llu %llu\n",
c1c9ff7c 619 found_start, eb->start);
f188591e 620 ret = -EIO;
ce9adaa5
CM
621 goto err;
622 }
2b82032c 623 if (check_tree_block_fsid(root, eb)) {
efe120a0 624 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 625 eb->start);
1259ab75
CM
626 ret = -EIO;
627 goto err;
628 }
ce9adaa5 629 found_level = btrfs_header_level(eb);
1c24c3ce 630 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 631 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
632 (int)btrfs_header_level(eb));
633 ret = -EIO;
634 goto err;
635 }
ce9adaa5 636
85d4e461
CM
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
4008c04a 639
ce9adaa5 640 ret = csum_tree_block(root, eb, 1);
a826d6dc 641 if (ret) {
f188591e 642 ret = -EIO;
a826d6dc
JB
643 goto err;
644 }
645
646 /*
647 * If this is a leaf block and it is corrupt, set the corrupt bit so
648 * that we don't try and read the other copies of this block, just
649 * return -EIO.
650 */
651 if (found_level == 0 && check_leaf(root, eb)) {
652 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653 ret = -EIO;
654 }
ce9adaa5 655
0b32f4bb
JB
656 if (!ret)
657 set_extent_buffer_uptodate(eb);
ce9adaa5 658err:
79fb65a1
JB
659 if (reads_done &&
660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 661 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 662
53b381b3
DW
663 if (ret) {
664 /*
665 * our io error hook is going to dec the io pages
666 * again, we have to make sure it has something
667 * to decrement
668 */
669 atomic_inc(&eb->io_pages);
0b32f4bb 670 clear_extent_buffer_uptodate(eb);
53b381b3 671 }
0b32f4bb 672 free_extent_buffer(eb);
ce9adaa5 673out:
f188591e 674 return ret;
ce9adaa5
CM
675}
676
ea466794 677static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 678{
4bb31e92
AJ
679 struct extent_buffer *eb;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
4f2de97a 682 eb = (struct extent_buffer *)page->private;
ea466794 683 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 684 eb->read_mirror = failed_mirror;
53b381b3 685 atomic_dec(&eb->io_pages);
ea466794 686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 687 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
688 return -EIO; /* we fixed nothing */
689}
690
ce9adaa5 691static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
692{
693 struct end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
9e0af237
LB
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
ce9adaa5 697
ce9adaa5 698 fs_info = end_io_wq->info;
ce9adaa5 699 end_io_wq->error = err;
d20f7043 700
7b6d91da 701 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
714 }
d20f7043 715 } else {
9e0af237
LB
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
717 wq = fs_info->endio_raid56_workers;
718 func = btrfs_endio_raid56_helper;
719 } else if (end_io_wq->metadata) {
720 wq = fs_info->endio_meta_workers;
721 func = btrfs_endio_meta_helper;
722 } else {
723 wq = fs_info->endio_workers;
724 func = btrfs_endio_helper;
725 }
d20f7043 726 }
9e0af237
LB
727
728 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
729 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
730}
731
0cb59c99
JB
732/*
733 * For the metadata arg you want
734 *
735 * 0 - if data
736 * 1 - if normal metadta
737 * 2 - if writing to the free space cache area
53b381b3 738 * 3 - raid parity work
0cb59c99 739 */
22c59948
CM
740int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
741 int metadata)
0b86a832 742{
ce9adaa5 743 struct end_io_wq *end_io_wq;
ce9adaa5
CM
744 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
745 if (!end_io_wq)
746 return -ENOMEM;
747
748 end_io_wq->private = bio->bi_private;
749 end_io_wq->end_io = bio->bi_end_io;
22c59948 750 end_io_wq->info = info;
ce9adaa5
CM
751 end_io_wq->error = 0;
752 end_io_wq->bio = bio;
22c59948 753 end_io_wq->metadata = metadata;
ce9adaa5
CM
754
755 bio->bi_private = end_io_wq;
756 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
757 return 0;
758}
759
b64a2851 760unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 761{
4854ddd0 762 unsigned long limit = min_t(unsigned long,
5cdc7ad3 763 info->thread_pool_size,
4854ddd0
CM
764 info->fs_devices->open_devices);
765 return 256 * limit;
766}
0986fe9e 767
4a69a410
CM
768static void run_one_async_start(struct btrfs_work *work)
769{
4a69a410 770 struct async_submit_bio *async;
79787eaa 771 int ret;
4a69a410
CM
772
773 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
774 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
775 async->mirror_num, async->bio_flags,
776 async->bio_offset);
777 if (ret)
778 async->error = ret;
4a69a410
CM
779}
780
781static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
782{
783 struct btrfs_fs_info *fs_info;
784 struct async_submit_bio *async;
4854ddd0 785 int limit;
8b712842
CM
786
787 async = container_of(work, struct async_submit_bio, work);
788 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 789
b64a2851 790 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
791 limit = limit * 2 / 3;
792
66657b31 793 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 794 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
795 wake_up(&fs_info->async_submit_wait);
796
79787eaa
JM
797 /* If an error occured we just want to clean up the bio and move on */
798 if (async->error) {
799 bio_endio(async->bio, async->error);
800 return;
801 }
802
4a69a410 803 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
804 async->mirror_num, async->bio_flags,
805 async->bio_offset);
4a69a410
CM
806}
807
808static void run_one_async_free(struct btrfs_work *work)
809{
810 struct async_submit_bio *async;
811
812 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
813 kfree(async);
814}
815
44b8bd7e
CM
816int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
817 int rw, struct bio *bio, int mirror_num,
c8b97818 818 unsigned long bio_flags,
eaf25d93 819 u64 bio_offset,
4a69a410
CM
820 extent_submit_bio_hook_t *submit_bio_start,
821 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
822{
823 struct async_submit_bio *async;
824
825 async = kmalloc(sizeof(*async), GFP_NOFS);
826 if (!async)
827 return -ENOMEM;
828
829 async->inode = inode;
830 async->rw = rw;
831 async->bio = bio;
832 async->mirror_num = mirror_num;
4a69a410
CM
833 async->submit_bio_start = submit_bio_start;
834 async->submit_bio_done = submit_bio_done;
835
9e0af237 836 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 837 run_one_async_done, run_one_async_free);
4a69a410 838
c8b97818 839 async->bio_flags = bio_flags;
eaf25d93 840 async->bio_offset = bio_offset;
8c8bee1d 841
79787eaa
JM
842 async->error = 0;
843
cb03c743 844 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 845
7b6d91da 846 if (rw & REQ_SYNC)
5cdc7ad3 847 btrfs_set_work_high_priority(&async->work);
d313d7a3 848
5cdc7ad3 849 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 850
d397712b 851 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
852 atomic_read(&fs_info->nr_async_submits)) {
853 wait_event(fs_info->async_submit_wait,
854 (atomic_read(&fs_info->nr_async_submits) == 0));
855 }
856
44b8bd7e
CM
857 return 0;
858}
859
ce3ed71a
CM
860static int btree_csum_one_bio(struct bio *bio)
861{
2c30c71b 862 struct bio_vec *bvec;
ce3ed71a 863 struct btrfs_root *root;
2c30c71b 864 int i, ret = 0;
ce3ed71a 865
2c30c71b 866 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 867 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
868 ret = csum_dirty_buffer(root, bvec->bv_page);
869 if (ret)
870 break;
ce3ed71a 871 }
2c30c71b 872
79787eaa 873 return ret;
ce3ed71a
CM
874}
875
4a69a410
CM
876static int __btree_submit_bio_start(struct inode *inode, int rw,
877 struct bio *bio, int mirror_num,
eaf25d93
CM
878 unsigned long bio_flags,
879 u64 bio_offset)
22c59948 880{
8b712842
CM
881 /*
882 * when we're called for a write, we're already in the async
5443be45 883 * submission context. Just jump into btrfs_map_bio
8b712842 884 */
79787eaa 885 return btree_csum_one_bio(bio);
4a69a410 886}
22c59948 887
4a69a410 888static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
889 int mirror_num, unsigned long bio_flags,
890 u64 bio_offset)
4a69a410 891{
61891923
SB
892 int ret;
893
8b712842 894 /*
4a69a410
CM
895 * when we're called for a write, we're already in the async
896 * submission context. Just jump into btrfs_map_bio
8b712842 897 */
61891923
SB
898 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
899 if (ret)
900 bio_endio(bio, ret);
901 return ret;
0b86a832
CM
902}
903
de0022b9
JB
904static int check_async_write(struct inode *inode, unsigned long bio_flags)
905{
906 if (bio_flags & EXTENT_BIO_TREE_LOG)
907 return 0;
908#ifdef CONFIG_X86
909 if (cpu_has_xmm4_2)
910 return 0;
911#endif
912 return 1;
913}
914
44b8bd7e 915static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
916 int mirror_num, unsigned long bio_flags,
917 u64 bio_offset)
44b8bd7e 918{
de0022b9 919 int async = check_async_write(inode, bio_flags);
cad321ad
CM
920 int ret;
921
7b6d91da 922 if (!(rw & REQ_WRITE)) {
4a69a410
CM
923 /*
924 * called for a read, do the setup so that checksum validation
925 * can happen in the async kernel threads
926 */
f3f266ab
CM
927 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
928 bio, 1);
1d4284bd 929 if (ret)
61891923
SB
930 goto out_w_error;
931 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932 mirror_num, 0);
de0022b9
JB
933 } else if (!async) {
934 ret = btree_csum_one_bio(bio);
935 if (ret)
61891923
SB
936 goto out_w_error;
937 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
938 mirror_num, 0);
939 } else {
940 /*
941 * kthread helpers are used to submit writes so that
942 * checksumming can happen in parallel across all CPUs
943 */
944 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
945 inode, rw, bio, mirror_num, 0,
946 bio_offset,
947 __btree_submit_bio_start,
948 __btree_submit_bio_done);
44b8bd7e 949 }
d313d7a3 950
61891923
SB
951 if (ret) {
952out_w_error:
953 bio_endio(bio, ret);
954 }
955 return ret;
44b8bd7e
CM
956}
957
3dd1462e 958#ifdef CONFIG_MIGRATION
784b4e29 959static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
960 struct page *newpage, struct page *page,
961 enum migrate_mode mode)
784b4e29
CM
962{
963 /*
964 * we can't safely write a btree page from here,
965 * we haven't done the locking hook
966 */
967 if (PageDirty(page))
968 return -EAGAIN;
969 /*
970 * Buffers may be managed in a filesystem specific way.
971 * We must have no buffers or drop them.
972 */
973 if (page_has_private(page) &&
974 !try_to_release_page(page, GFP_KERNEL))
975 return -EAGAIN;
a6bc32b8 976 return migrate_page(mapping, newpage, page, mode);
784b4e29 977}
3dd1462e 978#endif
784b4e29 979
0da5468f
CM
980
981static int btree_writepages(struct address_space *mapping,
982 struct writeback_control *wbc)
983{
e2d84521
MX
984 struct btrfs_fs_info *fs_info;
985 int ret;
986
d8d5f3e1 987 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
988
989 if (wbc->for_kupdate)
990 return 0;
991
e2d84521 992 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 993 /* this is a bit racy, but that's ok */
e2d84521
MX
994 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
995 BTRFS_DIRTY_METADATA_THRESH);
996 if (ret < 0)
793955bc 997 return 0;
793955bc 998 }
0b32f4bb 999 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1000}
1001
b2950863 1002static int btree_readpage(struct file *file, struct page *page)
5f39d397 1003{
d1310b2e
CM
1004 struct extent_io_tree *tree;
1005 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1006 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1007}
22b0ebda 1008
70dec807 1009static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1010{
98509cfc 1011 if (PageWriteback(page) || PageDirty(page))
d397712b 1012 return 0;
0c4e538b 1013
f7a52a40 1014 return try_release_extent_buffer(page);
d98237b3
CM
1015}
1016
d47992f8
LC
1017static void btree_invalidatepage(struct page *page, unsigned int offset,
1018 unsigned int length)
d98237b3 1019{
d1310b2e
CM
1020 struct extent_io_tree *tree;
1021 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1022 extent_invalidatepage(tree, page, offset);
1023 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1024 if (PagePrivate(page)) {
efe120a0
FH
1025 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1026 "page private not zero on page %llu",
1027 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1028 ClearPagePrivate(page);
1029 set_page_private(page, 0);
1030 page_cache_release(page);
1031 }
d98237b3
CM
1032}
1033
0b32f4bb
JB
1034static int btree_set_page_dirty(struct page *page)
1035{
bb146eb2 1036#ifdef DEBUG
0b32f4bb
JB
1037 struct extent_buffer *eb;
1038
1039 BUG_ON(!PagePrivate(page));
1040 eb = (struct extent_buffer *)page->private;
1041 BUG_ON(!eb);
1042 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1043 BUG_ON(!atomic_read(&eb->refs));
1044 btrfs_assert_tree_locked(eb);
bb146eb2 1045#endif
0b32f4bb
JB
1046 return __set_page_dirty_nobuffers(page);
1047}
1048
7f09410b 1049static const struct address_space_operations btree_aops = {
d98237b3 1050 .readpage = btree_readpage,
0da5468f 1051 .writepages = btree_writepages,
5f39d397
CM
1052 .releasepage = btree_releasepage,
1053 .invalidatepage = btree_invalidatepage,
5a92bc88 1054#ifdef CONFIG_MIGRATION
784b4e29 1055 .migratepage = btree_migratepage,
5a92bc88 1056#endif
0b32f4bb 1057 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1058};
1059
ca7a79ad
CM
1060int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1061 u64 parent_transid)
090d1875 1062{
5f39d397
CM
1063 struct extent_buffer *buf = NULL;
1064 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1065 int ret = 0;
090d1875 1066
db94535d 1067 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1068 if (!buf)
090d1875 1069 return 0;
d1310b2e 1070 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1071 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1072 free_extent_buffer(buf);
de428b63 1073 return ret;
090d1875
CM
1074}
1075
ab0fff03
AJ
1076int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1077 int mirror_num, struct extent_buffer **eb)
1078{
1079 struct extent_buffer *buf = NULL;
1080 struct inode *btree_inode = root->fs_info->btree_inode;
1081 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1082 int ret;
1083
1084 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1085 if (!buf)
1086 return 0;
1087
1088 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1089
1090 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1091 btree_get_extent, mirror_num);
1092 if (ret) {
1093 free_extent_buffer(buf);
1094 return ret;
1095 }
1096
1097 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1098 free_extent_buffer(buf);
1099 return -EIO;
0b32f4bb 1100 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1101 *eb = buf;
1102 } else {
1103 free_extent_buffer(buf);
1104 }
1105 return 0;
1106}
1107
0999df54
CM
1108struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1109 u64 bytenr, u32 blocksize)
1110{
f28491e0 1111 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1112}
1113
1114struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1115 u64 bytenr, u32 blocksize)
1116{
faa2dbf0
JB
1117#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1118 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1119 return alloc_test_extent_buffer(root->fs_info, bytenr,
1120 blocksize);
1121#endif
f28491e0 1122 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1123}
1124
1125
e02119d5
CM
1126int btrfs_write_tree_block(struct extent_buffer *buf)
1127{
727011e0 1128 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1129 buf->start + buf->len - 1);
e02119d5
CM
1130}
1131
1132int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1133{
727011e0 1134 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1135 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1136}
1137
0999df54 1138struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1139 u32 blocksize, u64 parent_transid)
0999df54
CM
1140{
1141 struct extent_buffer *buf = NULL;
0999df54
CM
1142 int ret;
1143
0999df54
CM
1144 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1145 if (!buf)
1146 return NULL;
0999df54 1147
ca7a79ad 1148 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1149 if (ret) {
1150 free_extent_buffer(buf);
1151 return NULL;
1152 }
5f39d397 1153 return buf;
ce9adaa5 1154
eb60ceac
CM
1155}
1156
d5c13f92
JM
1157void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1158 struct extent_buffer *buf)
ed2ff2cb 1159{
e2d84521
MX
1160 struct btrfs_fs_info *fs_info = root->fs_info;
1161
55c69072 1162 if (btrfs_header_generation(buf) ==
e2d84521 1163 fs_info->running_transaction->transid) {
b9447ef8 1164 btrfs_assert_tree_locked(buf);
b4ce94de 1165
b9473439 1166 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1167 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1168 -buf->len,
1169 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1170 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1171 btrfs_set_lock_blocking(buf);
1172 clear_extent_buffer_dirty(buf);
1173 }
925baedd 1174 }
5f39d397
CM
1175}
1176
8257b2dc
MX
1177static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1178{
1179 struct btrfs_subvolume_writers *writers;
1180 int ret;
1181
1182 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1183 if (!writers)
1184 return ERR_PTR(-ENOMEM);
1185
1186 ret = percpu_counter_init(&writers->counter, 0);
1187 if (ret < 0) {
1188 kfree(writers);
1189 return ERR_PTR(ret);
1190 }
1191
1192 init_waitqueue_head(&writers->wait);
1193 return writers;
1194}
1195
1196static void
1197btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1198{
1199 percpu_counter_destroy(&writers->counter);
1200 kfree(writers);
1201}
1202
707e8a07
DS
1203static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1204 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1205 u64 objectid)
d97e63b6 1206{
cfaa7295 1207 root->node = NULL;
a28ec197 1208 root->commit_root = NULL;
db94535d
CM
1209 root->sectorsize = sectorsize;
1210 root->nodesize = nodesize;
87ee04eb 1211 root->stripesize = stripesize;
27cdeb70 1212 root->state = 0;
d68fc57b 1213 root->orphan_cleanup_state = 0;
0b86a832 1214
0f7d52f4
CM
1215 root->objectid = objectid;
1216 root->last_trans = 0;
13a8a7c8 1217 root->highest_objectid = 0;
eb73c1b7 1218 root->nr_delalloc_inodes = 0;
199c2a9c 1219 root->nr_ordered_extents = 0;
58176a96 1220 root->name = NULL;
6bef4d31 1221 root->inode_tree = RB_ROOT;
16cdcec7 1222 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1223 root->block_rsv = NULL;
d68fc57b 1224 root->orphan_block_rsv = NULL;
0b86a832
CM
1225
1226 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1227 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1228 INIT_LIST_HEAD(&root->delalloc_inodes);
1229 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1230 INIT_LIST_HEAD(&root->ordered_extents);
1231 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1232 INIT_LIST_HEAD(&root->logged_list[0]);
1233 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1234 spin_lock_init(&root->orphan_lock);
5d4f98a2 1235 spin_lock_init(&root->inode_lock);
eb73c1b7 1236 spin_lock_init(&root->delalloc_lock);
199c2a9c 1237 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1238 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1239 spin_lock_init(&root->log_extents_lock[0]);
1240 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1241 mutex_init(&root->objectid_mutex);
e02119d5 1242 mutex_init(&root->log_mutex);
31f3d255 1243 mutex_init(&root->ordered_extent_mutex);
573bfb72 1244 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1245 init_waitqueue_head(&root->log_writer_wait);
1246 init_waitqueue_head(&root->log_commit_wait[0]);
1247 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1248 INIT_LIST_HEAD(&root->log_ctxs[0]);
1249 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1250 atomic_set(&root->log_commit[0], 0);
1251 atomic_set(&root->log_commit[1], 0);
1252 atomic_set(&root->log_writers, 0);
2ecb7923 1253 atomic_set(&root->log_batch, 0);
8a35d95f 1254 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1255 atomic_set(&root->refs, 1);
8257b2dc 1256 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1257 root->log_transid = 0;
d1433deb 1258 root->log_transid_committed = -1;
257c62e1 1259 root->last_log_commit = 0;
06ea65a3
JB
1260 if (fs_info)
1261 extent_io_tree_init(&root->dirty_log_pages,
1262 fs_info->btree_inode->i_mapping);
017e5369 1263
3768f368
CM
1264 memset(&root->root_key, 0, sizeof(root->root_key));
1265 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1266 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1267 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1268 if (fs_info)
1269 root->defrag_trans_start = fs_info->generation;
1270 else
1271 root->defrag_trans_start = 0;
58176a96 1272 init_completion(&root->kobj_unregister);
4d775673 1273 root->root_key.objectid = objectid;
0ee5dc67 1274 root->anon_dev = 0;
8ea05e3a 1275
5f3ab90a 1276 spin_lock_init(&root->root_item_lock);
3768f368
CM
1277}
1278
f84a8bd6 1279static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1280{
1281 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1282 if (root)
1283 root->fs_info = fs_info;
1284 return root;
1285}
1286
06ea65a3
JB
1287#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1288/* Should only be used by the testing infrastructure */
1289struct btrfs_root *btrfs_alloc_dummy_root(void)
1290{
1291 struct btrfs_root *root;
1292
1293 root = btrfs_alloc_root(NULL);
1294 if (!root)
1295 return ERR_PTR(-ENOMEM);
707e8a07 1296 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1297 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1298 root->alloc_bytenr = 0;
06ea65a3
JB
1299
1300 return root;
1301}
1302#endif
1303
20897f5c
AJ
1304struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1305 struct btrfs_fs_info *fs_info,
1306 u64 objectid)
1307{
1308 struct extent_buffer *leaf;
1309 struct btrfs_root *tree_root = fs_info->tree_root;
1310 struct btrfs_root *root;
1311 struct btrfs_key key;
1312 int ret = 0;
6463fe58 1313 uuid_le uuid;
20897f5c
AJ
1314
1315 root = btrfs_alloc_root(fs_info);
1316 if (!root)
1317 return ERR_PTR(-ENOMEM);
1318
707e8a07
DS
1319 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1320 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1321 root->root_key.objectid = objectid;
1322 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323 root->root_key.offset = 0;
1324
707e8a07 1325 leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
20897f5c
AJ
1326 0, objectid, NULL, 0, 0, 0);
1327 if (IS_ERR(leaf)) {
1328 ret = PTR_ERR(leaf);
1dd05682 1329 leaf = NULL;
20897f5c
AJ
1330 goto fail;
1331 }
1332
20897f5c
AJ
1333 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1334 btrfs_set_header_bytenr(leaf, leaf->start);
1335 btrfs_set_header_generation(leaf, trans->transid);
1336 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1337 btrfs_set_header_owner(leaf, objectid);
1338 root->node = leaf;
1339
0a4e5586 1340 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1341 BTRFS_FSID_SIZE);
1342 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1343 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1344 BTRFS_UUID_SIZE);
1345 btrfs_mark_buffer_dirty(leaf);
1346
1347 root->commit_root = btrfs_root_node(root);
27cdeb70 1348 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1349
1350 root->root_item.flags = 0;
1351 root->root_item.byte_limit = 0;
1352 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1353 btrfs_set_root_generation(&root->root_item, trans->transid);
1354 btrfs_set_root_level(&root->root_item, 0);
1355 btrfs_set_root_refs(&root->root_item, 1);
1356 btrfs_set_root_used(&root->root_item, leaf->len);
1357 btrfs_set_root_last_snapshot(&root->root_item, 0);
1358 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1359 uuid_le_gen(&uuid);
1360 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1361 root->root_item.drop_level = 0;
1362
1363 key.objectid = objectid;
1364 key.type = BTRFS_ROOT_ITEM_KEY;
1365 key.offset = 0;
1366 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367 if (ret)
1368 goto fail;
1369
1370 btrfs_tree_unlock(leaf);
1371
1dd05682
TI
1372 return root;
1373
20897f5c 1374fail:
1dd05682
TI
1375 if (leaf) {
1376 btrfs_tree_unlock(leaf);
59885b39 1377 free_extent_buffer(root->commit_root);
1dd05682
TI
1378 free_extent_buffer(leaf);
1379 }
1380 kfree(root);
20897f5c 1381
1dd05682 1382 return ERR_PTR(ret);
20897f5c
AJ
1383}
1384
7237f183
YZ
1385static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1386 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1387{
1388 struct btrfs_root *root;
1389 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1390 struct extent_buffer *leaf;
e02119d5 1391
6f07e42e 1392 root = btrfs_alloc_root(fs_info);
e02119d5 1393 if (!root)
7237f183 1394 return ERR_PTR(-ENOMEM);
e02119d5 1395
707e8a07
DS
1396 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1397 tree_root->stripesize, root, fs_info,
1398 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1399
1400 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1401 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1402 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1403
7237f183 1404 /*
27cdeb70
MX
1405 * DON'T set REF_COWS for log trees
1406 *
7237f183
YZ
1407 * log trees do not get reference counted because they go away
1408 * before a real commit is actually done. They do store pointers
1409 * to file data extents, and those reference counts still get
1410 * updated (along with back refs to the log tree).
1411 */
e02119d5 1412
707e8a07 1413 leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
66d7e7f0 1414 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1415 0, 0, 0);
7237f183
YZ
1416 if (IS_ERR(leaf)) {
1417 kfree(root);
1418 return ERR_CAST(leaf);
1419 }
e02119d5 1420
5d4f98a2
YZ
1421 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422 btrfs_set_header_bytenr(leaf, leaf->start);
1423 btrfs_set_header_generation(leaf, trans->transid);
1424 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1426 root->node = leaf;
e02119d5
CM
1427
1428 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1429 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1430 btrfs_mark_buffer_dirty(root->node);
1431 btrfs_tree_unlock(root->node);
7237f183
YZ
1432 return root;
1433}
1434
1435int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1436 struct btrfs_fs_info *fs_info)
1437{
1438 struct btrfs_root *log_root;
1439
1440 log_root = alloc_log_tree(trans, fs_info);
1441 if (IS_ERR(log_root))
1442 return PTR_ERR(log_root);
1443 WARN_ON(fs_info->log_root_tree);
1444 fs_info->log_root_tree = log_root;
1445 return 0;
1446}
1447
1448int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root)
1450{
1451 struct btrfs_root *log_root;
1452 struct btrfs_inode_item *inode_item;
1453
1454 log_root = alloc_log_tree(trans, root->fs_info);
1455 if (IS_ERR(log_root))
1456 return PTR_ERR(log_root);
1457
1458 log_root->last_trans = trans->transid;
1459 log_root->root_key.offset = root->root_key.objectid;
1460
1461 inode_item = &log_root->root_item.inode;
3cae210f
QW
1462 btrfs_set_stack_inode_generation(inode_item, 1);
1463 btrfs_set_stack_inode_size(inode_item, 3);
1464 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1465 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1466 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1467
5d4f98a2 1468 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1469
1470 WARN_ON(root->log_root);
1471 root->log_root = log_root;
1472 root->log_transid = 0;
d1433deb 1473 root->log_transid_committed = -1;
257c62e1 1474 root->last_log_commit = 0;
e02119d5
CM
1475 return 0;
1476}
1477
35a3621b
SB
1478static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1479 struct btrfs_key *key)
e02119d5
CM
1480{
1481 struct btrfs_root *root;
1482 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1483 struct btrfs_path *path;
84234f3a 1484 u64 generation;
db94535d 1485 u32 blocksize;
cb517eab 1486 int ret;
0f7d52f4 1487
cb517eab
MX
1488 path = btrfs_alloc_path();
1489 if (!path)
0f7d52f4 1490 return ERR_PTR(-ENOMEM);
cb517eab
MX
1491
1492 root = btrfs_alloc_root(fs_info);
1493 if (!root) {
1494 ret = -ENOMEM;
1495 goto alloc_fail;
0f7d52f4
CM
1496 }
1497
707e8a07
DS
1498 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1499 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1500
cb517eab
MX
1501 ret = btrfs_find_root(tree_root, key, path,
1502 &root->root_item, &root->root_key);
0f7d52f4 1503 if (ret) {
13a8a7c8
YZ
1504 if (ret > 0)
1505 ret = -ENOENT;
cb517eab 1506 goto find_fail;
0f7d52f4 1507 }
13a8a7c8 1508
84234f3a 1509 generation = btrfs_root_generation(&root->root_item);
707e8a07 1510 blocksize = root->nodesize;
db94535d 1511 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1512 blocksize, generation);
cb517eab
MX
1513 if (!root->node) {
1514 ret = -ENOMEM;
1515 goto find_fail;
1516 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1517 ret = -EIO;
1518 goto read_fail;
416bc658 1519 }
5d4f98a2 1520 root->commit_root = btrfs_root_node(root);
13a8a7c8 1521out:
cb517eab
MX
1522 btrfs_free_path(path);
1523 return root;
1524
1525read_fail:
1526 free_extent_buffer(root->node);
1527find_fail:
1528 kfree(root);
1529alloc_fail:
1530 root = ERR_PTR(ret);
1531 goto out;
1532}
1533
1534struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1535 struct btrfs_key *location)
1536{
1537 struct btrfs_root *root;
1538
1539 root = btrfs_read_tree_root(tree_root, location);
1540 if (IS_ERR(root))
1541 return root;
1542
1543 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1544 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1545 btrfs_check_and_init_root_item(&root->root_item);
1546 }
13a8a7c8 1547
5eda7b5e
CM
1548 return root;
1549}
1550
cb517eab
MX
1551int btrfs_init_fs_root(struct btrfs_root *root)
1552{
1553 int ret;
8257b2dc 1554 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1555
1556 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558 GFP_NOFS);
1559 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560 ret = -ENOMEM;
1561 goto fail;
1562 }
1563
8257b2dc
MX
1564 writers = btrfs_alloc_subvolume_writers();
1565 if (IS_ERR(writers)) {
1566 ret = PTR_ERR(writers);
1567 goto fail;
1568 }
1569 root->subv_writers = writers;
1570
cb517eab 1571 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1572 spin_lock_init(&root->ino_cache_lock);
1573 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1574
1575 ret = get_anon_bdev(&root->anon_dev);
1576 if (ret)
8257b2dc 1577 goto free_writers;
cb517eab 1578 return 0;
8257b2dc
MX
1579
1580free_writers:
1581 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1582fail:
1583 kfree(root->free_ino_ctl);
1584 kfree(root->free_ino_pinned);
1585 return ret;
1586}
1587
171170c1
ST
1588static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1589 u64 root_id)
cb517eab
MX
1590{
1591 struct btrfs_root *root;
1592
1593 spin_lock(&fs_info->fs_roots_radix_lock);
1594 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1595 (unsigned long)root_id);
1596 spin_unlock(&fs_info->fs_roots_radix_lock);
1597 return root;
1598}
1599
1600int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1601 struct btrfs_root *root)
1602{
1603 int ret;
1604
1605 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1606 if (ret)
1607 return ret;
1608
1609 spin_lock(&fs_info->fs_roots_radix_lock);
1610 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1611 (unsigned long)root->root_key.objectid,
1612 root);
1613 if (ret == 0)
27cdeb70 1614 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1615 spin_unlock(&fs_info->fs_roots_radix_lock);
1616 radix_tree_preload_end();
1617
1618 return ret;
1619}
1620
c00869f1
MX
1621struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1622 struct btrfs_key *location,
1623 bool check_ref)
5eda7b5e
CM
1624{
1625 struct btrfs_root *root;
1626 int ret;
1627
edbd8d4e
CM
1628 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629 return fs_info->tree_root;
1630 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631 return fs_info->extent_root;
8f18cf13
CM
1632 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633 return fs_info->chunk_root;
1634 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635 return fs_info->dev_root;
0403e47e
YZ
1636 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637 return fs_info->csum_root;
bcef60f2
AJ
1638 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639 return fs_info->quota_root ? fs_info->quota_root :
1640 ERR_PTR(-ENOENT);
f7a81ea4
SB
1641 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642 return fs_info->uuid_root ? fs_info->uuid_root :
1643 ERR_PTR(-ENOENT);
4df27c4d 1644again:
cb517eab 1645 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1646 if (root) {
c00869f1 1647 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1648 return ERR_PTR(-ENOENT);
5eda7b5e 1649 return root;
48475471 1650 }
5eda7b5e 1651
cb517eab 1652 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1653 if (IS_ERR(root))
1654 return root;
3394e160 1655
c00869f1 1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1657 ret = -ENOENT;
581bb050 1658 goto fail;
35a30d7c 1659 }
581bb050 1660
cb517eab 1661 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1662 if (ret)
1663 goto fail;
3394e160 1664
3f870c28
KN
1665 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1666 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1667 if (ret < 0)
1668 goto fail;
1669 if (ret == 0)
27cdeb70 1670 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1671
cb517eab 1672 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1673 if (ret) {
4df27c4d
YZ
1674 if (ret == -EEXIST) {
1675 free_fs_root(root);
1676 goto again;
1677 }
1678 goto fail;
0f7d52f4 1679 }
edbd8d4e 1680 return root;
4df27c4d
YZ
1681fail:
1682 free_fs_root(root);
1683 return ERR_PTR(ret);
edbd8d4e
CM
1684}
1685
04160088
CM
1686static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1687{
1688 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1689 int ret = 0;
04160088
CM
1690 struct btrfs_device *device;
1691 struct backing_dev_info *bdi;
b7967db7 1692
1f78160c
XG
1693 rcu_read_lock();
1694 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1695 if (!device->bdev)
1696 continue;
04160088
CM
1697 bdi = blk_get_backing_dev_info(device->bdev);
1698 if (bdi && bdi_congested(bdi, bdi_bits)) {
1699 ret = 1;
1700 break;
1701 }
1702 }
1f78160c 1703 rcu_read_unlock();
04160088
CM
1704 return ret;
1705}
1706
ad081f14
JA
1707/*
1708 * If this fails, caller must call bdi_destroy() to get rid of the
1709 * bdi again.
1710 */
04160088
CM
1711static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1712{
ad081f14
JA
1713 int err;
1714
1715 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1716 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1717 if (err)
1718 return err;
1719
4575c9cc 1720 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1721 bdi->congested_fn = btrfs_congested_fn;
1722 bdi->congested_data = info;
1723 return 0;
1724}
1725
8b712842
CM
1726/*
1727 * called by the kthread helper functions to finally call the bio end_io
1728 * functions. This is where read checksum verification actually happens
1729 */
1730static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1731{
ce9adaa5 1732 struct bio *bio;
8b712842 1733 struct end_io_wq *end_io_wq;
ce9adaa5 1734 int error;
ce9adaa5 1735
8b712842
CM
1736 end_io_wq = container_of(work, struct end_io_wq, work);
1737 bio = end_io_wq->bio;
ce9adaa5 1738
8b712842
CM
1739 error = end_io_wq->error;
1740 bio->bi_private = end_io_wq->private;
1741 bio->bi_end_io = end_io_wq->end_io;
1742 kfree(end_io_wq);
bc1e79ac 1743 bio_endio_nodec(bio, error);
44b8bd7e
CM
1744}
1745
a74a4b97
CM
1746static int cleaner_kthread(void *arg)
1747{
1748 struct btrfs_root *root = arg;
d0278245 1749 int again;
a74a4b97
CM
1750
1751 do {
d0278245 1752 again = 0;
a74a4b97 1753
d0278245 1754 /* Make the cleaner go to sleep early. */
babbf170 1755 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1756 goto sleep;
1757
1758 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1759 goto sleep;
1760
dc7f370c
MX
1761 /*
1762 * Avoid the problem that we change the status of the fs
1763 * during the above check and trylock.
1764 */
babbf170 1765 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1766 mutex_unlock(&root->fs_info->cleaner_mutex);
1767 goto sleep;
76dda93c 1768 }
a74a4b97 1769
d0278245
MX
1770 btrfs_run_delayed_iputs(root);
1771 again = btrfs_clean_one_deleted_snapshot(root);
1772 mutex_unlock(&root->fs_info->cleaner_mutex);
1773
1774 /*
05323cd1
MX
1775 * The defragger has dealt with the R/O remount and umount,
1776 * needn't do anything special here.
d0278245
MX
1777 */
1778 btrfs_run_defrag_inodes(root->fs_info);
1779sleep:
9d1a2a3a 1780 if (!try_to_freeze() && !again) {
a74a4b97 1781 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1782 if (!kthread_should_stop())
1783 schedule();
a74a4b97
CM
1784 __set_current_state(TASK_RUNNING);
1785 }
1786 } while (!kthread_should_stop());
1787 return 0;
1788}
1789
1790static int transaction_kthread(void *arg)
1791{
1792 struct btrfs_root *root = arg;
1793 struct btrfs_trans_handle *trans;
1794 struct btrfs_transaction *cur;
8929ecfa 1795 u64 transid;
a74a4b97
CM
1796 unsigned long now;
1797 unsigned long delay;
914b2007 1798 bool cannot_commit;
a74a4b97
CM
1799
1800 do {
914b2007 1801 cannot_commit = false;
8b87dc17 1802 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1803 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1804
a4abeea4 1805 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1806 cur = root->fs_info->running_transaction;
1807 if (!cur) {
a4abeea4 1808 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1809 goto sleep;
1810 }
31153d81 1811
a74a4b97 1812 now = get_seconds();
4a9d8bde 1813 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1814 (now < cur->start_time ||
1815 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1816 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1817 delay = HZ * 5;
1818 goto sleep;
1819 }
8929ecfa 1820 transid = cur->transid;
a4abeea4 1821 spin_unlock(&root->fs_info->trans_lock);
56bec294 1822
79787eaa 1823 /* If the file system is aborted, this will always fail. */
354aa0fb 1824 trans = btrfs_attach_transaction(root);
914b2007 1825 if (IS_ERR(trans)) {
354aa0fb
MX
1826 if (PTR_ERR(trans) != -ENOENT)
1827 cannot_commit = true;
79787eaa 1828 goto sleep;
914b2007 1829 }
8929ecfa 1830 if (transid == trans->transid) {
79787eaa 1831 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1832 } else {
1833 btrfs_end_transaction(trans, root);
1834 }
a74a4b97
CM
1835sleep:
1836 wake_up_process(root->fs_info->cleaner_kthread);
1837 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1838
4e121c06
JB
1839 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1840 &root->fs_info->fs_state)))
1841 btrfs_cleanup_transaction(root);
a0acae0e 1842 if (!try_to_freeze()) {
a74a4b97 1843 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1844 if (!kthread_should_stop() &&
914b2007
JK
1845 (!btrfs_transaction_blocked(root->fs_info) ||
1846 cannot_commit))
8929ecfa 1847 schedule_timeout(delay);
a74a4b97
CM
1848 __set_current_state(TASK_RUNNING);
1849 }
1850 } while (!kthread_should_stop());
1851 return 0;
1852}
1853
af31f5e5
CM
1854/*
1855 * this will find the highest generation in the array of
1856 * root backups. The index of the highest array is returned,
1857 * or -1 if we can't find anything.
1858 *
1859 * We check to make sure the array is valid by comparing the
1860 * generation of the latest root in the array with the generation
1861 * in the super block. If they don't match we pitch it.
1862 */
1863static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1864{
1865 u64 cur;
1866 int newest_index = -1;
1867 struct btrfs_root_backup *root_backup;
1868 int i;
1869
1870 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1871 root_backup = info->super_copy->super_roots + i;
1872 cur = btrfs_backup_tree_root_gen(root_backup);
1873 if (cur == newest_gen)
1874 newest_index = i;
1875 }
1876
1877 /* check to see if we actually wrapped around */
1878 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1879 root_backup = info->super_copy->super_roots;
1880 cur = btrfs_backup_tree_root_gen(root_backup);
1881 if (cur == newest_gen)
1882 newest_index = 0;
1883 }
1884 return newest_index;
1885}
1886
1887
1888/*
1889 * find the oldest backup so we know where to store new entries
1890 * in the backup array. This will set the backup_root_index
1891 * field in the fs_info struct
1892 */
1893static void find_oldest_super_backup(struct btrfs_fs_info *info,
1894 u64 newest_gen)
1895{
1896 int newest_index = -1;
1897
1898 newest_index = find_newest_super_backup(info, newest_gen);
1899 /* if there was garbage in there, just move along */
1900 if (newest_index == -1) {
1901 info->backup_root_index = 0;
1902 } else {
1903 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1904 }
1905}
1906
1907/*
1908 * copy all the root pointers into the super backup array.
1909 * this will bump the backup pointer by one when it is
1910 * done
1911 */
1912static void backup_super_roots(struct btrfs_fs_info *info)
1913{
1914 int next_backup;
1915 struct btrfs_root_backup *root_backup;
1916 int last_backup;
1917
1918 next_backup = info->backup_root_index;
1919 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1920 BTRFS_NUM_BACKUP_ROOTS;
1921
1922 /*
1923 * just overwrite the last backup if we're at the same generation
1924 * this happens only at umount
1925 */
1926 root_backup = info->super_for_commit->super_roots + last_backup;
1927 if (btrfs_backup_tree_root_gen(root_backup) ==
1928 btrfs_header_generation(info->tree_root->node))
1929 next_backup = last_backup;
1930
1931 root_backup = info->super_for_commit->super_roots + next_backup;
1932
1933 /*
1934 * make sure all of our padding and empty slots get zero filled
1935 * regardless of which ones we use today
1936 */
1937 memset(root_backup, 0, sizeof(*root_backup));
1938
1939 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1940
1941 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1942 btrfs_set_backup_tree_root_gen(root_backup,
1943 btrfs_header_generation(info->tree_root->node));
1944
1945 btrfs_set_backup_tree_root_level(root_backup,
1946 btrfs_header_level(info->tree_root->node));
1947
1948 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1949 btrfs_set_backup_chunk_root_gen(root_backup,
1950 btrfs_header_generation(info->chunk_root->node));
1951 btrfs_set_backup_chunk_root_level(root_backup,
1952 btrfs_header_level(info->chunk_root->node));
1953
1954 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1955 btrfs_set_backup_extent_root_gen(root_backup,
1956 btrfs_header_generation(info->extent_root->node));
1957 btrfs_set_backup_extent_root_level(root_backup,
1958 btrfs_header_level(info->extent_root->node));
1959
7c7e82a7
CM
1960 /*
1961 * we might commit during log recovery, which happens before we set
1962 * the fs_root. Make sure it is valid before we fill it in.
1963 */
1964 if (info->fs_root && info->fs_root->node) {
1965 btrfs_set_backup_fs_root(root_backup,
1966 info->fs_root->node->start);
1967 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1968 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1969 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1970 btrfs_header_level(info->fs_root->node));
7c7e82a7 1971 }
af31f5e5
CM
1972
1973 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1974 btrfs_set_backup_dev_root_gen(root_backup,
1975 btrfs_header_generation(info->dev_root->node));
1976 btrfs_set_backup_dev_root_level(root_backup,
1977 btrfs_header_level(info->dev_root->node));
1978
1979 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1980 btrfs_set_backup_csum_root_gen(root_backup,
1981 btrfs_header_generation(info->csum_root->node));
1982 btrfs_set_backup_csum_root_level(root_backup,
1983 btrfs_header_level(info->csum_root->node));
1984
1985 btrfs_set_backup_total_bytes(root_backup,
1986 btrfs_super_total_bytes(info->super_copy));
1987 btrfs_set_backup_bytes_used(root_backup,
1988 btrfs_super_bytes_used(info->super_copy));
1989 btrfs_set_backup_num_devices(root_backup,
1990 btrfs_super_num_devices(info->super_copy));
1991
1992 /*
1993 * if we don't copy this out to the super_copy, it won't get remembered
1994 * for the next commit
1995 */
1996 memcpy(&info->super_copy->super_roots,
1997 &info->super_for_commit->super_roots,
1998 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1999}
2000
2001/*
2002 * this copies info out of the root backup array and back into
2003 * the in-memory super block. It is meant to help iterate through
2004 * the array, so you send it the number of backups you've already
2005 * tried and the last backup index you used.
2006 *
2007 * this returns -1 when it has tried all the backups
2008 */
2009static noinline int next_root_backup(struct btrfs_fs_info *info,
2010 struct btrfs_super_block *super,
2011 int *num_backups_tried, int *backup_index)
2012{
2013 struct btrfs_root_backup *root_backup;
2014 int newest = *backup_index;
2015
2016 if (*num_backups_tried == 0) {
2017 u64 gen = btrfs_super_generation(super);
2018
2019 newest = find_newest_super_backup(info, gen);
2020 if (newest == -1)
2021 return -1;
2022
2023 *backup_index = newest;
2024 *num_backups_tried = 1;
2025 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2026 /* we've tried all the backups, all done */
2027 return -1;
2028 } else {
2029 /* jump to the next oldest backup */
2030 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2031 BTRFS_NUM_BACKUP_ROOTS;
2032 *backup_index = newest;
2033 *num_backups_tried += 1;
2034 }
2035 root_backup = super->super_roots + newest;
2036
2037 btrfs_set_super_generation(super,
2038 btrfs_backup_tree_root_gen(root_backup));
2039 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2040 btrfs_set_super_root_level(super,
2041 btrfs_backup_tree_root_level(root_backup));
2042 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2043
2044 /*
2045 * fixme: the total bytes and num_devices need to match or we should
2046 * need a fsck
2047 */
2048 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2049 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2050 return 0;
2051}
2052
7abadb64
LB
2053/* helper to cleanup workers */
2054static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2055{
dc6e3209 2056 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2057 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2058 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2059 btrfs_destroy_workqueue(fs_info->endio_workers);
2060 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2061 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2062 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2063 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2064 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2065 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2066 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2067 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2068 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2069 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2070 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2071 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2072 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2073}
2074
2e9f5954
R
2075static void free_root_extent_buffers(struct btrfs_root *root)
2076{
2077 if (root) {
2078 free_extent_buffer(root->node);
2079 free_extent_buffer(root->commit_root);
2080 root->node = NULL;
2081 root->commit_root = NULL;
2082 }
2083}
2084
af31f5e5
CM
2085/* helper to cleanup tree roots */
2086static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2087{
2e9f5954 2088 free_root_extent_buffers(info->tree_root);
655b09fe 2089
2e9f5954
R
2090 free_root_extent_buffers(info->dev_root);
2091 free_root_extent_buffers(info->extent_root);
2092 free_root_extent_buffers(info->csum_root);
2093 free_root_extent_buffers(info->quota_root);
2094 free_root_extent_buffers(info->uuid_root);
2095 if (chunk_root)
2096 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2097}
2098
faa2dbf0 2099void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2100{
2101 int ret;
2102 struct btrfs_root *gang[8];
2103 int i;
2104
2105 while (!list_empty(&fs_info->dead_roots)) {
2106 gang[0] = list_entry(fs_info->dead_roots.next,
2107 struct btrfs_root, root_list);
2108 list_del(&gang[0]->root_list);
2109
27cdeb70 2110 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2111 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2112 } else {
2113 free_extent_buffer(gang[0]->node);
2114 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2115 btrfs_put_fs_root(gang[0]);
171f6537
JB
2116 }
2117 }
2118
2119 while (1) {
2120 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2121 (void **)gang, 0,
2122 ARRAY_SIZE(gang));
2123 if (!ret)
2124 break;
2125 for (i = 0; i < ret; i++)
cb517eab 2126 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2127 }
1a4319cc
LB
2128
2129 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2130 btrfs_free_log_root_tree(NULL, fs_info);
2131 btrfs_destroy_pinned_extent(fs_info->tree_root,
2132 fs_info->pinned_extents);
2133 }
171f6537 2134}
af31f5e5 2135
ad2b2c80
AV
2136int open_ctree(struct super_block *sb,
2137 struct btrfs_fs_devices *fs_devices,
2138 char *options)
2e635a27 2139{
db94535d
CM
2140 u32 sectorsize;
2141 u32 nodesize;
db94535d 2142 u32 blocksize;
87ee04eb 2143 u32 stripesize;
84234f3a 2144 u64 generation;
f2b636e8 2145 u64 features;
3de4586c 2146 struct btrfs_key location;
a061fc8d 2147 struct buffer_head *bh;
4d34b278 2148 struct btrfs_super_block *disk_super;
815745cf 2149 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2150 struct btrfs_root *tree_root;
4d34b278
ID
2151 struct btrfs_root *extent_root;
2152 struct btrfs_root *csum_root;
2153 struct btrfs_root *chunk_root;
2154 struct btrfs_root *dev_root;
bcef60f2 2155 struct btrfs_root *quota_root;
f7a81ea4 2156 struct btrfs_root *uuid_root;
e02119d5 2157 struct btrfs_root *log_tree_root;
eb60ceac 2158 int ret;
e58ca020 2159 int err = -EINVAL;
af31f5e5
CM
2160 int num_backups_tried = 0;
2161 int backup_index = 0;
5cdc7ad3
QW
2162 int max_active;
2163 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2164 bool create_uuid_tree;
2165 bool check_uuid_tree;
4543df7e 2166
f84a8bd6 2167 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2168 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2169 if (!tree_root || !chunk_root) {
39279cc3
CM
2170 err = -ENOMEM;
2171 goto fail;
2172 }
76dda93c
YZ
2173
2174 ret = init_srcu_struct(&fs_info->subvol_srcu);
2175 if (ret) {
2176 err = ret;
2177 goto fail;
2178 }
2179
2180 ret = setup_bdi(fs_info, &fs_info->bdi);
2181 if (ret) {
2182 err = ret;
2183 goto fail_srcu;
2184 }
2185
e2d84521
MX
2186 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2187 if (ret) {
2188 err = ret;
2189 goto fail_bdi;
2190 }
2191 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2192 (1 + ilog2(nr_cpu_ids));
2193
963d678b
MX
2194 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2195 if (ret) {
2196 err = ret;
2197 goto fail_dirty_metadata_bytes;
2198 }
2199
c404e0dc
MX
2200 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2201 if (ret) {
2202 err = ret;
2203 goto fail_delalloc_bytes;
2204 }
2205
76dda93c
YZ
2206 fs_info->btree_inode = new_inode(sb);
2207 if (!fs_info->btree_inode) {
2208 err = -ENOMEM;
c404e0dc 2209 goto fail_bio_counter;
76dda93c
YZ
2210 }
2211
a6591715 2212 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2213
76dda93c 2214 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2215 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2216 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2217 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2218 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2219 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2220 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2221 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2222 spin_lock_init(&fs_info->trans_lock);
76dda93c 2223 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2224 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2225 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2226 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2227 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2228 spin_lock_init(&fs_info->super_lock);
fcebe456 2229 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2230 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2231 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2232 mutex_init(&fs_info->reloc_mutex);
573bfb72 2233 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2234 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2235
58176a96 2236 init_completion(&fs_info->kobj_unregister);
0b86a832 2237 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2238 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2239 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2240 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2241 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2242 BTRFS_BLOCK_RSV_GLOBAL);
2243 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2244 BTRFS_BLOCK_RSV_DELALLOC);
2245 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2246 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2247 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2248 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2249 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2250 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2251 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2252 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2253 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2254 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2255 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2256 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2257 fs_info->sb = sb;
6f568d35 2258 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2259 fs_info->metadata_ratio = 0;
4cb5300b 2260 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2261 fs_info->free_chunk_space = 0;
f29021b2 2262 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2263 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2264 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2265 /* readahead state */
2266 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2267 spin_lock_init(&fs_info->reada_lock);
c8b97818 2268
b34b086c
CM
2269 fs_info->thread_pool_size = min_t(unsigned long,
2270 num_online_cpus() + 2, 8);
0afbaf8c 2271
199c2a9c
MX
2272 INIT_LIST_HEAD(&fs_info->ordered_roots);
2273 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2274 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2275 GFP_NOFS);
2276 if (!fs_info->delayed_root) {
2277 err = -ENOMEM;
2278 goto fail_iput;
2279 }
2280 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2281
a2de733c
AJ
2282 mutex_init(&fs_info->scrub_lock);
2283 atomic_set(&fs_info->scrubs_running, 0);
2284 atomic_set(&fs_info->scrub_pause_req, 0);
2285 atomic_set(&fs_info->scrubs_paused, 0);
2286 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2287 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2288 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2289 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2290#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2291 fs_info->check_integrity_print_mask = 0;
2292#endif
a2de733c 2293
c9e9f97b
ID
2294 spin_lock_init(&fs_info->balance_lock);
2295 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2296 atomic_set(&fs_info->balance_running, 0);
2297 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2298 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2299 fs_info->balance_ctl = NULL;
837d5b6e 2300 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2301 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2302
a061fc8d
CM
2303 sb->s_blocksize = 4096;
2304 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2305 sb->s_bdi = &fs_info->bdi;
a061fc8d 2306
76dda93c 2307 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2308 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2309 /*
2310 * we set the i_size on the btree inode to the max possible int.
2311 * the real end of the address space is determined by all of
2312 * the devices in the system
2313 */
2314 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2315 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2316 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2317
5d4f98a2 2318 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2319 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2320 fs_info->btree_inode->i_mapping);
0b32f4bb 2321 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2322 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2323
2324 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2325
76dda93c
YZ
2326 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2327 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2328 sizeof(struct btrfs_key));
72ac3c0d
JB
2329 set_bit(BTRFS_INODE_DUMMY,
2330 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2331 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2332
0f9dd46c 2333 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2334 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2335 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2336
11833d66 2337 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2338 fs_info->btree_inode->i_mapping);
11833d66 2339 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2340 fs_info->btree_inode->i_mapping);
11833d66 2341 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2342 fs_info->do_barriers = 1;
e18e4809 2343
39279cc3 2344
5a3f23d5 2345 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2346 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2347 mutex_init(&fs_info->tree_log_mutex);
925baedd 2348 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2349 mutex_init(&fs_info->transaction_kthread_mutex);
2350 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2351 mutex_init(&fs_info->volume_mutex);
9e351cc8 2352 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2353 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2354 init_rwsem(&fs_info->subvol_sem);
803b2f54 2355 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2356 fs_info->dev_replace.lock_owner = 0;
2357 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2358 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2359 mutex_init(&fs_info->dev_replace.lock_management_lock);
2360 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2361
416ac51d 2362 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2363 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2364 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2365 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2366 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2367 fs_info->qgroup_seq = 1;
2368 fs_info->quota_enabled = 0;
2369 fs_info->pending_quota_state = 0;
1e8f9158 2370 fs_info->qgroup_ulist = NULL;
2f232036 2371 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2372
fa9c0d79
CM
2373 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2374 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2375
e6dcd2dc 2376 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2377 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2378 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2379 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2380
53b381b3
DW
2381 ret = btrfs_alloc_stripe_hash_table(fs_info);
2382 if (ret) {
83c8266a 2383 err = ret;
53b381b3
DW
2384 goto fail_alloc;
2385 }
2386
707e8a07 2387 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2388 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2389
3c4bb26b 2390 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2391
2392 /*
2393 * Read super block and check the signature bytes only
2394 */
a512bbf8 2395 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2396 if (!bh) {
2397 err = -EINVAL;
16cdcec7 2398 goto fail_alloc;
20b45077 2399 }
39279cc3 2400
1104a885
DS
2401 /*
2402 * We want to check superblock checksum, the type is stored inside.
2403 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2404 */
2405 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2406 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2407 err = -EINVAL;
2408 goto fail_alloc;
2409 }
2410
2411 /*
2412 * super_copy is zeroed at allocation time and we never touch the
2413 * following bytes up to INFO_SIZE, the checksum is calculated from
2414 * the whole block of INFO_SIZE
2415 */
6c41761f
DS
2416 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2417 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2418 sizeof(*fs_info->super_for_commit));
a061fc8d 2419 brelse(bh);
5f39d397 2420
6c41761f 2421 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2422
1104a885
DS
2423 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2424 if (ret) {
efe120a0 2425 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2426 err = -EINVAL;
2427 goto fail_alloc;
2428 }
2429
6c41761f 2430 disk_super = fs_info->super_copy;
0f7d52f4 2431 if (!btrfs_super_root(disk_super))
16cdcec7 2432 goto fail_alloc;
0f7d52f4 2433
acce952b 2434 /* check FS state, whether FS is broken. */
87533c47
MX
2435 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2436 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2437
af31f5e5
CM
2438 /*
2439 * run through our array of backup supers and setup
2440 * our ring pointer to the oldest one
2441 */
2442 generation = btrfs_super_generation(disk_super);
2443 find_oldest_super_backup(fs_info, generation);
2444
75e7cb7f
LB
2445 /*
2446 * In the long term, we'll store the compression type in the super
2447 * block, and it'll be used for per file compression control.
2448 */
2449 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2450
2b82032c
YZ
2451 ret = btrfs_parse_options(tree_root, options);
2452 if (ret) {
2453 err = ret;
16cdcec7 2454 goto fail_alloc;
2b82032c 2455 }
dfe25020 2456
f2b636e8
JB
2457 features = btrfs_super_incompat_flags(disk_super) &
2458 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2459 if (features) {
2460 printk(KERN_ERR "BTRFS: couldn't mount because of "
2461 "unsupported optional features (%Lx).\n",
c1c9ff7c 2462 features);
f2b636e8 2463 err = -EINVAL;
16cdcec7 2464 goto fail_alloc;
f2b636e8
JB
2465 }
2466
707e8a07
DS
2467 /*
2468 * Leafsize and nodesize were always equal, this is only a sanity check.
2469 */
2470 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2471 btrfs_super_nodesize(disk_super)) {
2472 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2473 "blocksizes don't match. node %d leaf %d\n",
2474 btrfs_super_nodesize(disk_super),
707e8a07 2475 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2476 err = -EINVAL;
2477 goto fail_alloc;
2478 }
707e8a07 2479 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2480 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2481 "blocksize (%d) was too large\n",
707e8a07 2482 btrfs_super_nodesize(disk_super));
727011e0
CM
2483 err = -EINVAL;
2484 goto fail_alloc;
2485 }
2486
5d4f98a2 2487 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2488 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2489 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2490 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2491
3173a18f 2492 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2493 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2494
727011e0
CM
2495 /*
2496 * flag our filesystem as having big metadata blocks if
2497 * they are bigger than the page size
2498 */
707e8a07 2499 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2500 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2501 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2502 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2503 }
2504
bc3f116f 2505 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2506 sectorsize = btrfs_super_sectorsize(disk_super);
2507 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2508 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2509 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2510
2511 /*
2512 * mixed block groups end up with duplicate but slightly offset
2513 * extent buffers for the same range. It leads to corruptions
2514 */
2515 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2516 (sectorsize != nodesize)) {
efe120a0 2517 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2518 "are not allowed for mixed block groups on %s\n",
2519 sb->s_id);
2520 goto fail_alloc;
2521 }
2522
ceda0864
MX
2523 /*
2524 * Needn't use the lock because there is no other task which will
2525 * update the flag.
2526 */
a6fa6fae 2527 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2528
f2b636e8
JB
2529 features = btrfs_super_compat_ro_flags(disk_super) &
2530 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2531 if (!(sb->s_flags & MS_RDONLY) && features) {
2532 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2533 "unsupported option features (%Lx).\n",
c1c9ff7c 2534 features);
f2b636e8 2535 err = -EINVAL;
16cdcec7 2536 goto fail_alloc;
f2b636e8 2537 }
61d92c32 2538
5cdc7ad3 2539 max_active = fs_info->thread_pool_size;
61d92c32 2540
5cdc7ad3
QW
2541 fs_info->workers =
2542 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2543 max_active, 16);
c8b97818 2544
afe3d242
QW
2545 fs_info->delalloc_workers =
2546 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2547
a44903ab
QW
2548 fs_info->flush_workers =
2549 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2550
e66f0bb1
QW
2551 fs_info->caching_workers =
2552 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2553
a8c93d4e
QW
2554 /*
2555 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2556 * likely that bios will be send down in a sane order to the
2557 * devices
2558 */
a8c93d4e
QW
2559 fs_info->submit_workers =
2560 btrfs_alloc_workqueue("submit", flags,
2561 min_t(u64, fs_devices->num_devices,
2562 max_active), 64);
53863232 2563
dc6e3209
QW
2564 fs_info->fixup_workers =
2565 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2566
2567 /*
2568 * endios are largely parallel and should have a very
2569 * low idle thresh
2570 */
fccb5d86
QW
2571 fs_info->endio_workers =
2572 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2573 fs_info->endio_meta_workers =
2574 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2575 fs_info->endio_meta_write_workers =
2576 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2577 fs_info->endio_raid56_workers =
2578 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
d05a33ac
QW
2579 fs_info->rmw_workers =
2580 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2581 fs_info->endio_write_workers =
2582 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2583 fs_info->endio_freespace_worker =
2584 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2585 fs_info->delayed_workers =
2586 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2587 fs_info->readahead_workers =
2588 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2589 fs_info->qgroup_rescan_workers =
2590 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2591 fs_info->extent_workers =
2592 btrfs_alloc_workqueue("extent-refs", flags,
2593 min_t(u64, fs_devices->num_devices,
2594 max_active), 8);
61b49440 2595
a8c93d4e 2596 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2597 fs_info->submit_workers && fs_info->flush_workers &&
2598 fs_info->endio_workers && fs_info->endio_meta_workers &&
2599 fs_info->endio_meta_write_workers &&
2600 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2601 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2602 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2603 fs_info->fixup_workers && fs_info->delayed_workers &&
a79b7d4b 2604 fs_info->fixup_workers && fs_info->extent_workers &&
fc97fab0 2605 fs_info->qgroup_rescan_workers)) {
fed425c7 2606 err = -ENOMEM;
0dc3b84a
JB
2607 goto fail_sb_buffer;
2608 }
4543df7e 2609
4575c9cc 2610 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2611 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2612 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2613
db94535d 2614 tree_root->nodesize = nodesize;
db94535d 2615 tree_root->sectorsize = sectorsize;
87ee04eb 2616 tree_root->stripesize = stripesize;
a061fc8d
CM
2617
2618 sb->s_blocksize = sectorsize;
2619 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2620
3cae210f 2621 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2622 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2623 goto fail_sb_buffer;
2624 }
19c00ddc 2625
8d082fb7 2626 if (sectorsize != PAGE_SIZE) {
efe120a0 2627 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2628 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2629 goto fail_sb_buffer;
2630 }
2631
925baedd 2632 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2633 ret = btrfs_read_sys_array(tree_root);
925baedd 2634 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2635 if (ret) {
efe120a0 2636 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2637 "array on %s\n", sb->s_id);
5d4f98a2 2638 goto fail_sb_buffer;
84eed90f 2639 }
0b86a832 2640
707e8a07 2641 blocksize = tree_root->nodesize;
84234f3a 2642 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2643
707e8a07
DS
2644 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2645 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2646
2647 chunk_root->node = read_tree_block(chunk_root,
2648 btrfs_super_chunk_root(disk_super),
84234f3a 2649 blocksize, generation);
416bc658
JB
2650 if (!chunk_root->node ||
2651 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2652 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2653 sb->s_id);
af31f5e5 2654 goto fail_tree_roots;
83121942 2655 }
5d4f98a2
YZ
2656 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2657 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2658
e17cade2 2659 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2660 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2661
0b86a832 2662 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2663 if (ret) {
efe120a0 2664 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2665 sb->s_id);
af31f5e5 2666 goto fail_tree_roots;
2b82032c 2667 }
0b86a832 2668
8dabb742
SB
2669 /*
2670 * keep the device that is marked to be the target device for the
2671 * dev_replace procedure
2672 */
2673 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2674
a6b0d5c8 2675 if (!fs_devices->latest_bdev) {
efe120a0 2676 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2677 sb->s_id);
2678 goto fail_tree_roots;
2679 }
2680
af31f5e5 2681retry_root_backup:
707e8a07 2682 blocksize = tree_root->nodesize;
84234f3a 2683 generation = btrfs_super_generation(disk_super);
0b86a832 2684
e20d96d6 2685 tree_root->node = read_tree_block(tree_root,
db94535d 2686 btrfs_super_root(disk_super),
84234f3a 2687 blocksize, generation);
af31f5e5
CM
2688 if (!tree_root->node ||
2689 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2690 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2691 sb->s_id);
af31f5e5
CM
2692
2693 goto recovery_tree_root;
83121942 2694 }
af31f5e5 2695
5d4f98a2
YZ
2696 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2697 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2698 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2699
cb517eab
MX
2700 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2701 location.type = BTRFS_ROOT_ITEM_KEY;
2702 location.offset = 0;
2703
2704 extent_root = btrfs_read_tree_root(tree_root, &location);
2705 if (IS_ERR(extent_root)) {
2706 ret = PTR_ERR(extent_root);
af31f5e5 2707 goto recovery_tree_root;
cb517eab 2708 }
27cdeb70 2709 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2710 fs_info->extent_root = extent_root;
0b86a832 2711
cb517eab
MX
2712 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2713 dev_root = btrfs_read_tree_root(tree_root, &location);
2714 if (IS_ERR(dev_root)) {
2715 ret = PTR_ERR(dev_root);
af31f5e5 2716 goto recovery_tree_root;
cb517eab 2717 }
27cdeb70 2718 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2719 fs_info->dev_root = dev_root;
2720 btrfs_init_devices_late(fs_info);
3768f368 2721
cb517eab
MX
2722 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2723 csum_root = btrfs_read_tree_root(tree_root, &location);
2724 if (IS_ERR(csum_root)) {
2725 ret = PTR_ERR(csum_root);
af31f5e5 2726 goto recovery_tree_root;
cb517eab 2727 }
27cdeb70 2728 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2729 fs_info->csum_root = csum_root;
d20f7043 2730
cb517eab
MX
2731 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2732 quota_root = btrfs_read_tree_root(tree_root, &location);
2733 if (!IS_ERR(quota_root)) {
27cdeb70 2734 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2735 fs_info->quota_enabled = 1;
2736 fs_info->pending_quota_state = 1;
cb517eab 2737 fs_info->quota_root = quota_root;
bcef60f2
AJ
2738 }
2739
f7a81ea4
SB
2740 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2741 uuid_root = btrfs_read_tree_root(tree_root, &location);
2742 if (IS_ERR(uuid_root)) {
2743 ret = PTR_ERR(uuid_root);
2744 if (ret != -ENOENT)
2745 goto recovery_tree_root;
2746 create_uuid_tree = true;
70f80175 2747 check_uuid_tree = false;
f7a81ea4 2748 } else {
27cdeb70 2749 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2750 fs_info->uuid_root = uuid_root;
70f80175
SB
2751 create_uuid_tree = false;
2752 check_uuid_tree =
2753 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2754 }
2755
8929ecfa
YZ
2756 fs_info->generation = generation;
2757 fs_info->last_trans_committed = generation;
8929ecfa 2758
68310a5e
ID
2759 ret = btrfs_recover_balance(fs_info);
2760 if (ret) {
efe120a0 2761 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2762 goto fail_block_groups;
2763 }
2764
733f4fbb
SB
2765 ret = btrfs_init_dev_stats(fs_info);
2766 if (ret) {
efe120a0 2767 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2768 ret);
2769 goto fail_block_groups;
2770 }
2771
8dabb742
SB
2772 ret = btrfs_init_dev_replace(fs_info);
2773 if (ret) {
efe120a0 2774 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2775 goto fail_block_groups;
2776 }
2777
2778 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2779
5ac1d209 2780 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2781 if (ret) {
efe120a0 2782 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2783 goto fail_block_groups;
2784 }
2785
c59021f8 2786 ret = btrfs_init_space_info(fs_info);
2787 if (ret) {
efe120a0 2788 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2789 goto fail_sysfs;
c59021f8 2790 }
2791
1b1d1f66
JB
2792 ret = btrfs_read_block_groups(extent_root);
2793 if (ret) {
efe120a0 2794 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2795 goto fail_sysfs;
1b1d1f66 2796 }
5af3e8cc
SB
2797 fs_info->num_tolerated_disk_barrier_failures =
2798 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2799 if (fs_info->fs_devices->missing_devices >
2800 fs_info->num_tolerated_disk_barrier_failures &&
2801 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2802 printk(KERN_WARNING "BTRFS: "
2803 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2804 goto fail_sysfs;
292fd7fc 2805 }
9078a3e1 2806
a74a4b97
CM
2807 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2808 "btrfs-cleaner");
57506d50 2809 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2810 goto fail_sysfs;
a74a4b97
CM
2811
2812 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2813 tree_root,
2814 "btrfs-transaction");
57506d50 2815 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2816 goto fail_cleaner;
a74a4b97 2817
c289811c
CM
2818 if (!btrfs_test_opt(tree_root, SSD) &&
2819 !btrfs_test_opt(tree_root, NOSSD) &&
2820 !fs_info->fs_devices->rotating) {
efe120a0 2821 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2822 "mode\n");
2823 btrfs_set_opt(fs_info->mount_opt, SSD);
2824 }
2825
3818aea2
QW
2826 /* Set the real inode map cache flag */
2827 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2828 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2829
21adbd5c
SB
2830#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2831 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2832 ret = btrfsic_mount(tree_root, fs_devices,
2833 btrfs_test_opt(tree_root,
2834 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2835 1 : 0,
2836 fs_info->check_integrity_print_mask);
2837 if (ret)
efe120a0 2838 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2839 " integrity check module %s\n", sb->s_id);
2840 }
2841#endif
bcef60f2
AJ
2842 ret = btrfs_read_qgroup_config(fs_info);
2843 if (ret)
2844 goto fail_trans_kthread;
21adbd5c 2845
acce952b 2846 /* do not make disk changes in broken FS */
68ce9682 2847 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2848 u64 bytenr = btrfs_super_log_root(disk_super);
2849
7c2ca468 2850 if (fs_devices->rw_devices == 0) {
efe120a0 2851 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2852 "on RO media\n");
7c2ca468 2853 err = -EIO;
bcef60f2 2854 goto fail_qgroup;
7c2ca468 2855 }
707e8a07 2856 blocksize = tree_root->nodesize;
d18a2c44 2857
6f07e42e 2858 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2859 if (!log_tree_root) {
2860 err = -ENOMEM;
bcef60f2 2861 goto fail_qgroup;
676e4c86 2862 }
e02119d5 2863
707e8a07 2864 __setup_root(nodesize, sectorsize, stripesize,
e02119d5
CM
2865 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2866
2867 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2868 blocksize,
2869 generation + 1);
416bc658
JB
2870 if (!log_tree_root->node ||
2871 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2872 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2873 free_extent_buffer(log_tree_root->node);
2874 kfree(log_tree_root);
28c16cbb 2875 goto fail_qgroup;
416bc658 2876 }
79787eaa 2877 /* returns with log_tree_root freed on success */
e02119d5 2878 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2879 if (ret) {
2880 btrfs_error(tree_root->fs_info, ret,
2881 "Failed to recover log tree");
2882 free_extent_buffer(log_tree_root->node);
2883 kfree(log_tree_root);
28c16cbb 2884 goto fail_qgroup;
79787eaa 2885 }
e556ce2c
YZ
2886
2887 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2888 ret = btrfs_commit_super(tree_root);
2889 if (ret)
28c16cbb 2890 goto fail_qgroup;
e556ce2c 2891 }
e02119d5 2892 }
1a40e23b 2893
76dda93c 2894 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2895 if (ret)
28c16cbb 2896 goto fail_qgroup;
76dda93c 2897
7c2ca468 2898 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2899 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2900 if (ret)
28c16cbb 2901 goto fail_qgroup;
d68fc57b 2902
5f316481 2903 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2904 ret = btrfs_recover_relocation(tree_root);
5f316481 2905 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2906 if (ret < 0) {
2907 printk(KERN_WARNING
efe120a0 2908 "BTRFS: failed to recover relocation\n");
d7ce5843 2909 err = -EINVAL;
bcef60f2 2910 goto fail_qgroup;
d7ce5843 2911 }
7c2ca468 2912 }
1a40e23b 2913
3de4586c
CM
2914 location.objectid = BTRFS_FS_TREE_OBJECTID;
2915 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2916 location.offset = 0;
3de4586c 2917
3de4586c 2918 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2919 if (IS_ERR(fs_info->fs_root)) {
2920 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2921 goto fail_qgroup;
3140c9a3 2922 }
c289811c 2923
2b6ba629
ID
2924 if (sb->s_flags & MS_RDONLY)
2925 return 0;
59641015 2926
2b6ba629
ID
2927 down_read(&fs_info->cleanup_work_sem);
2928 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2929 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2930 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2931 close_ctree(tree_root);
2932 return ret;
2933 }
2934 up_read(&fs_info->cleanup_work_sem);
59641015 2935
2b6ba629
ID
2936 ret = btrfs_resume_balance_async(fs_info);
2937 if (ret) {
efe120a0 2938 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2939 close_ctree(tree_root);
2940 return ret;
e3acc2a6
JB
2941 }
2942
8dabb742
SB
2943 ret = btrfs_resume_dev_replace_async(fs_info);
2944 if (ret) {
efe120a0 2945 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2946 close_ctree(tree_root);
2947 return ret;
2948 }
2949
b382a324
JS
2950 btrfs_qgroup_rescan_resume(fs_info);
2951
f7a81ea4 2952 if (create_uuid_tree) {
efe120a0 2953 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2954 ret = btrfs_create_uuid_tree(fs_info);
2955 if (ret) {
efe120a0 2956 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2957 ret);
2958 close_ctree(tree_root);
2959 return ret;
2960 }
f420ee1e
SB
2961 } else if (check_uuid_tree ||
2962 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2963 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2964 ret = btrfs_check_uuid_tree(fs_info);
2965 if (ret) {
efe120a0 2966 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2967 ret);
2968 close_ctree(tree_root);
2969 return ret;
2970 }
2971 } else {
2972 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2973 }
2974
ad2b2c80 2975 return 0;
39279cc3 2976
bcef60f2
AJ
2977fail_qgroup:
2978 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2979fail_trans_kthread:
2980 kthread_stop(fs_info->transaction_kthread);
54067ae9 2981 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 2982 btrfs_free_fs_roots(fs_info);
3f157a2f 2983fail_cleaner:
a74a4b97 2984 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2985
2986 /*
2987 * make sure we're done with the btree inode before we stop our
2988 * kthreads
2989 */
2990 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2991
2365dd3c
AJ
2992fail_sysfs:
2993 btrfs_sysfs_remove_one(fs_info);
2994
1b1d1f66 2995fail_block_groups:
54067ae9 2996 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2997 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2998
2999fail_tree_roots:
3000 free_root_pointers(fs_info, 1);
2b8195bb 3001 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3002
39279cc3 3003fail_sb_buffer:
7abadb64 3004 btrfs_stop_all_workers(fs_info);
16cdcec7 3005fail_alloc:
4543df7e 3006fail_iput:
586e46e2
ID
3007 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3008
4543df7e 3009 iput(fs_info->btree_inode);
c404e0dc
MX
3010fail_bio_counter:
3011 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3012fail_delalloc_bytes:
3013 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3014fail_dirty_metadata_bytes:
3015 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3016fail_bdi:
7e662854 3017 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3018fail_srcu:
3019 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3020fail:
53b381b3 3021 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3022 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3023 return err;
af31f5e5
CM
3024
3025recovery_tree_root:
af31f5e5
CM
3026 if (!btrfs_test_opt(tree_root, RECOVERY))
3027 goto fail_tree_roots;
3028
3029 free_root_pointers(fs_info, 0);
3030
3031 /* don't use the log in recovery mode, it won't be valid */
3032 btrfs_set_super_log_root(disk_super, 0);
3033
3034 /* we can't trust the free space cache either */
3035 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3036
3037 ret = next_root_backup(fs_info, fs_info->super_copy,
3038 &num_backups_tried, &backup_index);
3039 if (ret == -1)
3040 goto fail_block_groups;
3041 goto retry_root_backup;
eb60ceac
CM
3042}
3043
f2984462
CM
3044static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3045{
f2984462
CM
3046 if (uptodate) {
3047 set_buffer_uptodate(bh);
3048 } else {
442a4f63
SB
3049 struct btrfs_device *device = (struct btrfs_device *)
3050 bh->b_private;
3051
efe120a0 3052 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3053 "I/O error on %s\n",
3054 rcu_str_deref(device->name));
1259ab75
CM
3055 /* note, we dont' set_buffer_write_io_error because we have
3056 * our own ways of dealing with the IO errors
3057 */
f2984462 3058 clear_buffer_uptodate(bh);
442a4f63 3059 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3060 }
3061 unlock_buffer(bh);
3062 put_bh(bh);
3063}
3064
a512bbf8
YZ
3065struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3066{
3067 struct buffer_head *bh;
3068 struct buffer_head *latest = NULL;
3069 struct btrfs_super_block *super;
3070 int i;
3071 u64 transid = 0;
3072 u64 bytenr;
3073
3074 /* we would like to check all the supers, but that would make
3075 * a btrfs mount succeed after a mkfs from a different FS.
3076 * So, we need to add a special mount option to scan for
3077 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3078 */
3079 for (i = 0; i < 1; i++) {
3080 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3081 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3082 i_size_read(bdev->bd_inode))
a512bbf8 3083 break;
8068a47e
AJ
3084 bh = __bread(bdev, bytenr / 4096,
3085 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3086 if (!bh)
3087 continue;
3088
3089 super = (struct btrfs_super_block *)bh->b_data;
3090 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3091 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3092 brelse(bh);
3093 continue;
3094 }
3095
3096 if (!latest || btrfs_super_generation(super) > transid) {
3097 brelse(latest);
3098 latest = bh;
3099 transid = btrfs_super_generation(super);
3100 } else {
3101 brelse(bh);
3102 }
3103 }
3104 return latest;
3105}
3106
4eedeb75
HH
3107/*
3108 * this should be called twice, once with wait == 0 and
3109 * once with wait == 1. When wait == 0 is done, all the buffer heads
3110 * we write are pinned.
3111 *
3112 * They are released when wait == 1 is done.
3113 * max_mirrors must be the same for both runs, and it indicates how
3114 * many supers on this one device should be written.
3115 *
3116 * max_mirrors == 0 means to write them all.
3117 */
a512bbf8
YZ
3118static int write_dev_supers(struct btrfs_device *device,
3119 struct btrfs_super_block *sb,
3120 int do_barriers, int wait, int max_mirrors)
3121{
3122 struct buffer_head *bh;
3123 int i;
3124 int ret;
3125 int errors = 0;
3126 u32 crc;
3127 u64 bytenr;
a512bbf8
YZ
3128
3129 if (max_mirrors == 0)
3130 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3131
a512bbf8
YZ
3132 for (i = 0; i < max_mirrors; i++) {
3133 bytenr = btrfs_sb_offset(i);
3134 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3135 break;
3136
3137 if (wait) {
3138 bh = __find_get_block(device->bdev, bytenr / 4096,
3139 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3140 if (!bh) {
3141 errors++;
3142 continue;
3143 }
a512bbf8 3144 wait_on_buffer(bh);
4eedeb75
HH
3145 if (!buffer_uptodate(bh))
3146 errors++;
3147
3148 /* drop our reference */
3149 brelse(bh);
3150
3151 /* drop the reference from the wait == 0 run */
3152 brelse(bh);
3153 continue;
a512bbf8
YZ
3154 } else {
3155 btrfs_set_super_bytenr(sb, bytenr);
3156
3157 crc = ~(u32)0;
b0496686 3158 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3159 BTRFS_CSUM_SIZE, crc,
3160 BTRFS_SUPER_INFO_SIZE -
3161 BTRFS_CSUM_SIZE);
3162 btrfs_csum_final(crc, sb->csum);
3163
4eedeb75
HH
3164 /*
3165 * one reference for us, and we leave it for the
3166 * caller
3167 */
a512bbf8
YZ
3168 bh = __getblk(device->bdev, bytenr / 4096,
3169 BTRFS_SUPER_INFO_SIZE);
634554dc 3170 if (!bh) {
efe120a0 3171 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3172 "buffer head for bytenr %Lu\n", bytenr);
3173 errors++;
3174 continue;
3175 }
3176
a512bbf8
YZ
3177 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3178
4eedeb75 3179 /* one reference for submit_bh */
a512bbf8 3180 get_bh(bh);
4eedeb75
HH
3181
3182 set_buffer_uptodate(bh);
a512bbf8
YZ
3183 lock_buffer(bh);
3184 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3185 bh->b_private = device;
a512bbf8
YZ
3186 }
3187
387125fc
CM
3188 /*
3189 * we fua the first super. The others we allow
3190 * to go down lazy.
3191 */
e8117c26
WS
3192 if (i == 0)
3193 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3194 else
3195 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3196 if (ret)
a512bbf8 3197 errors++;
a512bbf8
YZ
3198 }
3199 return errors < i ? 0 : -1;
3200}
3201
387125fc
CM
3202/*
3203 * endio for the write_dev_flush, this will wake anyone waiting
3204 * for the barrier when it is done
3205 */
3206static void btrfs_end_empty_barrier(struct bio *bio, int err)
3207{
3208 if (err) {
3209 if (err == -EOPNOTSUPP)
3210 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3211 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3212 }
3213 if (bio->bi_private)
3214 complete(bio->bi_private);
3215 bio_put(bio);
3216}
3217
3218/*
3219 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3220 * sent down. With wait == 1, it waits for the previous flush.
3221 *
3222 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3223 * capable
3224 */
3225static int write_dev_flush(struct btrfs_device *device, int wait)
3226{
3227 struct bio *bio;
3228 int ret = 0;
3229
3230 if (device->nobarriers)
3231 return 0;
3232
3233 if (wait) {
3234 bio = device->flush_bio;
3235 if (!bio)
3236 return 0;
3237
3238 wait_for_completion(&device->flush_wait);
3239
3240 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3241 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3242 rcu_str_deref(device->name));
387125fc 3243 device->nobarriers = 1;
5af3e8cc 3244 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3245 ret = -EIO;
5af3e8cc
SB
3246 btrfs_dev_stat_inc_and_print(device,
3247 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3248 }
3249
3250 /* drop the reference from the wait == 0 run */
3251 bio_put(bio);
3252 device->flush_bio = NULL;
3253
3254 return ret;
3255 }
3256
3257 /*
3258 * one reference for us, and we leave it for the
3259 * caller
3260 */
9c017abc 3261 device->flush_bio = NULL;
9be3395b 3262 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3263 if (!bio)
3264 return -ENOMEM;
3265
3266 bio->bi_end_io = btrfs_end_empty_barrier;
3267 bio->bi_bdev = device->bdev;
3268 init_completion(&device->flush_wait);
3269 bio->bi_private = &device->flush_wait;
3270 device->flush_bio = bio;
3271
3272 bio_get(bio);
21adbd5c 3273 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3274
3275 return 0;
3276}
3277
3278/*
3279 * send an empty flush down to each device in parallel,
3280 * then wait for them
3281 */
3282static int barrier_all_devices(struct btrfs_fs_info *info)
3283{
3284 struct list_head *head;
3285 struct btrfs_device *dev;
5af3e8cc
SB
3286 int errors_send = 0;
3287 int errors_wait = 0;
387125fc
CM
3288 int ret;
3289
3290 /* send down all the barriers */
3291 head = &info->fs_devices->devices;
3292 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3293 if (dev->missing)
3294 continue;
387125fc 3295 if (!dev->bdev) {
5af3e8cc 3296 errors_send++;
387125fc
CM
3297 continue;
3298 }
3299 if (!dev->in_fs_metadata || !dev->writeable)
3300 continue;
3301
3302 ret = write_dev_flush(dev, 0);
3303 if (ret)
5af3e8cc 3304 errors_send++;
387125fc
CM
3305 }
3306
3307 /* wait for all the barriers */
3308 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3309 if (dev->missing)
3310 continue;
387125fc 3311 if (!dev->bdev) {
5af3e8cc 3312 errors_wait++;
387125fc
CM
3313 continue;
3314 }
3315 if (!dev->in_fs_metadata || !dev->writeable)
3316 continue;
3317
3318 ret = write_dev_flush(dev, 1);
3319 if (ret)
5af3e8cc 3320 errors_wait++;
387125fc 3321 }
5af3e8cc
SB
3322 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3323 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3324 return -EIO;
3325 return 0;
3326}
3327
5af3e8cc
SB
3328int btrfs_calc_num_tolerated_disk_barrier_failures(
3329 struct btrfs_fs_info *fs_info)
3330{
3331 struct btrfs_ioctl_space_info space;
3332 struct btrfs_space_info *sinfo;
3333 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3334 BTRFS_BLOCK_GROUP_SYSTEM,
3335 BTRFS_BLOCK_GROUP_METADATA,
3336 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3337 int num_types = 4;
3338 int i;
3339 int c;
3340 int num_tolerated_disk_barrier_failures =
3341 (int)fs_info->fs_devices->num_devices;
3342
3343 for (i = 0; i < num_types; i++) {
3344 struct btrfs_space_info *tmp;
3345
3346 sinfo = NULL;
3347 rcu_read_lock();
3348 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3349 if (tmp->flags == types[i]) {
3350 sinfo = tmp;
3351 break;
3352 }
3353 }
3354 rcu_read_unlock();
3355
3356 if (!sinfo)
3357 continue;
3358
3359 down_read(&sinfo->groups_sem);
3360 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3361 if (!list_empty(&sinfo->block_groups[c])) {
3362 u64 flags;
3363
3364 btrfs_get_block_group_info(
3365 &sinfo->block_groups[c], &space);
3366 if (space.total_bytes == 0 ||
3367 space.used_bytes == 0)
3368 continue;
3369 flags = space.flags;
3370 /*
3371 * return
3372 * 0: if dup, single or RAID0 is configured for
3373 * any of metadata, system or data, else
3374 * 1: if RAID5 is configured, or if RAID1 or
3375 * RAID10 is configured and only two mirrors
3376 * are used, else
3377 * 2: if RAID6 is configured, else
3378 * num_mirrors - 1: if RAID1 or RAID10 is
3379 * configured and more than
3380 * 2 mirrors are used.
3381 */
3382 if (num_tolerated_disk_barrier_failures > 0 &&
3383 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3384 BTRFS_BLOCK_GROUP_RAID0)) ||
3385 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3386 == 0)))
3387 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3388 else if (num_tolerated_disk_barrier_failures > 1) {
3389 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3390 BTRFS_BLOCK_GROUP_RAID5 |
3391 BTRFS_BLOCK_GROUP_RAID10)) {
3392 num_tolerated_disk_barrier_failures = 1;
3393 } else if (flags &
15b0a89d 3394 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3395 num_tolerated_disk_barrier_failures = 2;
3396 }
3397 }
5af3e8cc
SB
3398 }
3399 }
3400 up_read(&sinfo->groups_sem);
3401 }
3402
3403 return num_tolerated_disk_barrier_failures;
3404}
3405
48a3b636 3406static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3407{
e5e9a520 3408 struct list_head *head;
f2984462 3409 struct btrfs_device *dev;
a061fc8d 3410 struct btrfs_super_block *sb;
f2984462 3411 struct btrfs_dev_item *dev_item;
f2984462
CM
3412 int ret;
3413 int do_barriers;
a236aed1
CM
3414 int max_errors;
3415 int total_errors = 0;
a061fc8d 3416 u64 flags;
f2984462
CM
3417
3418 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3419 backup_super_roots(root->fs_info);
f2984462 3420
6c41761f 3421 sb = root->fs_info->super_for_commit;
a061fc8d 3422 dev_item = &sb->dev_item;
e5e9a520 3423
174ba509 3424 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3425 head = &root->fs_info->fs_devices->devices;
d7306801 3426 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3427
5af3e8cc
SB
3428 if (do_barriers) {
3429 ret = barrier_all_devices(root->fs_info);
3430 if (ret) {
3431 mutex_unlock(
3432 &root->fs_info->fs_devices->device_list_mutex);
3433 btrfs_error(root->fs_info, ret,
3434 "errors while submitting device barriers.");
3435 return ret;
3436 }
3437 }
387125fc 3438
1f78160c 3439 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3440 if (!dev->bdev) {
3441 total_errors++;
3442 continue;
3443 }
2b82032c 3444 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3445 continue;
3446
2b82032c 3447 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3448 btrfs_set_stack_device_type(dev_item, dev->type);
3449 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e
MX
3450 btrfs_set_stack_device_total_bytes(dev_item,
3451 dev->disk_total_bytes);
a061fc8d
CM
3452 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3453 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3454 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3455 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3456 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3457 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3458
a061fc8d
CM
3459 flags = btrfs_super_flags(sb);
3460 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3461
a512bbf8 3462 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3463 if (ret)
3464 total_errors++;
f2984462 3465 }
a236aed1 3466 if (total_errors > max_errors) {
efe120a0 3467 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3468 total_errors);
a724b436 3469 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3470
9d565ba4
SB
3471 /* FUA is masked off if unsupported and can't be the reason */
3472 btrfs_error(root->fs_info, -EIO,
3473 "%d errors while writing supers", total_errors);
3474 return -EIO;
a236aed1 3475 }
f2984462 3476
a512bbf8 3477 total_errors = 0;
1f78160c 3478 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3479 if (!dev->bdev)
3480 continue;
2b82032c 3481 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3482 continue;
3483
a512bbf8
YZ
3484 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3485 if (ret)
3486 total_errors++;
f2984462 3487 }
174ba509 3488 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3489 if (total_errors > max_errors) {
79787eaa
JM
3490 btrfs_error(root->fs_info, -EIO,
3491 "%d errors while writing supers", total_errors);
3492 return -EIO;
a236aed1 3493 }
f2984462
CM
3494 return 0;
3495}
3496
a512bbf8
YZ
3497int write_ctree_super(struct btrfs_trans_handle *trans,
3498 struct btrfs_root *root, int max_mirrors)
eb60ceac 3499{
f570e757 3500 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3501}
3502
cb517eab
MX
3503/* Drop a fs root from the radix tree and free it. */
3504void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3505 struct btrfs_root *root)
2619ba1f 3506{
4df27c4d 3507 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3508 radix_tree_delete(&fs_info->fs_roots_radix,
3509 (unsigned long)root->root_key.objectid);
4df27c4d 3510 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3511
3512 if (btrfs_root_refs(&root->root_item) == 0)
3513 synchronize_srcu(&fs_info->subvol_srcu);
3514
1a4319cc 3515 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3516 btrfs_free_log(NULL, root);
3321719e 3517
faa2dbf0
JB
3518 if (root->free_ino_pinned)
3519 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3520 if (root->free_ino_ctl)
3521 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3522 free_fs_root(root);
4df27c4d
YZ
3523}
3524
3525static void free_fs_root(struct btrfs_root *root)
3526{
57cdc8db 3527 iput(root->ino_cache_inode);
4df27c4d 3528 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3529 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3530 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3531 if (root->anon_dev)
3532 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3533 if (root->subv_writers)
3534 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3535 free_extent_buffer(root->node);
3536 free_extent_buffer(root->commit_root);
581bb050
LZ
3537 kfree(root->free_ino_ctl);
3538 kfree(root->free_ino_pinned);
d397712b 3539 kfree(root->name);
b0feb9d9 3540 btrfs_put_fs_root(root);
2619ba1f
CM
3541}
3542
cb517eab
MX
3543void btrfs_free_fs_root(struct btrfs_root *root)
3544{
3545 free_fs_root(root);
2619ba1f
CM
3546}
3547
c146afad 3548int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3549{
c146afad
YZ
3550 u64 root_objectid = 0;
3551 struct btrfs_root *gang[8];
65d33fd7
QW
3552 int i = 0;
3553 int err = 0;
3554 unsigned int ret = 0;
3555 int index;
e089f05c 3556
c146afad 3557 while (1) {
65d33fd7 3558 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3559 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3560 (void **)gang, root_objectid,
3561 ARRAY_SIZE(gang));
65d33fd7
QW
3562 if (!ret) {
3563 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3564 break;
65d33fd7 3565 }
5d4f98a2 3566 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3567
c146afad 3568 for (i = 0; i < ret; i++) {
65d33fd7
QW
3569 /* Avoid to grab roots in dead_roots */
3570 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3571 gang[i] = NULL;
3572 continue;
3573 }
3574 /* grab all the search result for later use */
3575 gang[i] = btrfs_grab_fs_root(gang[i]);
3576 }
3577 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3578
65d33fd7
QW
3579 for (i = 0; i < ret; i++) {
3580 if (!gang[i])
3581 continue;
c146afad 3582 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3583 err = btrfs_orphan_cleanup(gang[i]);
3584 if (err)
65d33fd7
QW
3585 break;
3586 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3587 }
3588 root_objectid++;
3589 }
65d33fd7
QW
3590
3591 /* release the uncleaned roots due to error */
3592 for (; i < ret; i++) {
3593 if (gang[i])
3594 btrfs_put_fs_root(gang[i]);
3595 }
3596 return err;
c146afad 3597}
a2135011 3598
c146afad
YZ
3599int btrfs_commit_super(struct btrfs_root *root)
3600{
3601 struct btrfs_trans_handle *trans;
a74a4b97 3602
c146afad 3603 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3604 btrfs_run_delayed_iputs(root);
c146afad 3605 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3606 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3607
3608 /* wait until ongoing cleanup work done */
3609 down_write(&root->fs_info->cleanup_work_sem);
3610 up_write(&root->fs_info->cleanup_work_sem);
3611
7a7eaa40 3612 trans = btrfs_join_transaction(root);
3612b495
TI
3613 if (IS_ERR(trans))
3614 return PTR_ERR(trans);
d52c1bcc 3615 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3616}
3617
3abdbd78 3618void close_ctree(struct btrfs_root *root)
c146afad
YZ
3619{
3620 struct btrfs_fs_info *fs_info = root->fs_info;
3621 int ret;
3622
3623 fs_info->closing = 1;
3624 smp_mb();
3625
803b2f54
SB
3626 /* wait for the uuid_scan task to finish */
3627 down(&fs_info->uuid_tree_rescan_sem);
3628 /* avoid complains from lockdep et al., set sem back to initial state */
3629 up(&fs_info->uuid_tree_rescan_sem);
3630
837d5b6e 3631 /* pause restriper - we want to resume on mount */
aa1b8cd4 3632 btrfs_pause_balance(fs_info);
837d5b6e 3633
8dabb742
SB
3634 btrfs_dev_replace_suspend_for_unmount(fs_info);
3635
aa1b8cd4 3636 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3637
3638 /* wait for any defraggers to finish */
3639 wait_event(fs_info->transaction_wait,
3640 (atomic_read(&fs_info->defrag_running) == 0));
3641
3642 /* clear out the rbtree of defraggable inodes */
26176e7c 3643 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3644
21c7e756
MX
3645 cancel_work_sync(&fs_info->async_reclaim_work);
3646
c146afad 3647 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3648 ret = btrfs_commit_super(root);
3649 if (ret)
efe120a0 3650 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3651 }
3652
87533c47 3653 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3654 btrfs_error_commit_super(root);
0f7d52f4 3655
e3029d9f
AV
3656 kthread_stop(fs_info->transaction_kthread);
3657 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3658
f25784b3
YZ
3659 fs_info->closing = 2;
3660 smp_mb();
3661
bcef60f2
AJ
3662 btrfs_free_qgroup_config(root->fs_info);
3663
963d678b 3664 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3665 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3666 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3667 }
bcc63abb 3668
5ac1d209
JM
3669 btrfs_sysfs_remove_one(fs_info);
3670
faa2dbf0 3671 btrfs_free_fs_roots(fs_info);
d10c5f31 3672
1a4319cc
LB
3673 btrfs_put_block_group_cache(fs_info);
3674
2b1360da
JB
3675 btrfs_free_block_groups(fs_info);
3676
de348ee0
WS
3677 /*
3678 * we must make sure there is not any read request to
3679 * submit after we stopping all workers.
3680 */
3681 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3682 btrfs_stop_all_workers(fs_info);
3683
13e6c37b 3684 free_root_pointers(fs_info, 1);
9ad6b7bc 3685
13e6c37b 3686 iput(fs_info->btree_inode);
d6bfde87 3687
21adbd5c
SB
3688#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3689 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3690 btrfsic_unmount(root, fs_info->fs_devices);
3691#endif
3692
dfe25020 3693 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3694 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3695
e2d84521 3696 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3697 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3698 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3699 bdi_destroy(&fs_info->bdi);
76dda93c 3700 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3701
53b381b3
DW
3702 btrfs_free_stripe_hash_table(fs_info);
3703
1cb048f5
FDBM
3704 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3705 root->orphan_block_rsv = NULL;
eb60ceac
CM
3706}
3707
b9fab919
CM
3708int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3709 int atomic)
5f39d397 3710{
1259ab75 3711 int ret;
727011e0 3712 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3713
0b32f4bb 3714 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3715 if (!ret)
3716 return ret;
3717
3718 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3719 parent_transid, atomic);
3720 if (ret == -EAGAIN)
3721 return ret;
1259ab75 3722 return !ret;
5f39d397
CM
3723}
3724
3725int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3726{
0b32f4bb 3727 return set_extent_buffer_uptodate(buf);
5f39d397 3728}
6702ed49 3729
5f39d397
CM
3730void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3731{
06ea65a3 3732 struct btrfs_root *root;
5f39d397 3733 u64 transid = btrfs_header_generation(buf);
b9473439 3734 int was_dirty;
b4ce94de 3735
06ea65a3
JB
3736#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3737 /*
3738 * This is a fast path so only do this check if we have sanity tests
3739 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3740 * outside of the sanity tests.
3741 */
3742 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3743 return;
3744#endif
3745 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3746 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3747 if (transid != root->fs_info->generation)
3748 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3749 "found %llu running %llu\n",
c1c9ff7c 3750 buf->start, transid, root->fs_info->generation);
0b32f4bb 3751 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3752 if (!was_dirty)
3753 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3754 buf->len,
3755 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3756#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3757 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3758 btrfs_print_leaf(root, buf);
3759 ASSERT(0);
3760 }
3761#endif
eb60ceac
CM
3762}
3763
b53d3f5d
LB
3764static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3765 int flush_delayed)
16cdcec7
MX
3766{
3767 /*
3768 * looks as though older kernels can get into trouble with
3769 * this code, they end up stuck in balance_dirty_pages forever
3770 */
e2d84521 3771 int ret;
16cdcec7
MX
3772
3773 if (current->flags & PF_MEMALLOC)
3774 return;
3775
b53d3f5d
LB
3776 if (flush_delayed)
3777 btrfs_balance_delayed_items(root);
16cdcec7 3778
e2d84521
MX
3779 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3780 BTRFS_DIRTY_METADATA_THRESH);
3781 if (ret > 0) {
d0e1d66b
NJ
3782 balance_dirty_pages_ratelimited(
3783 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3784 }
3785 return;
3786}
3787
b53d3f5d 3788void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3789{
b53d3f5d
LB
3790 __btrfs_btree_balance_dirty(root, 1);
3791}
585ad2c3 3792
b53d3f5d
LB
3793void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3794{
3795 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3796}
6b80053d 3797
ca7a79ad 3798int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3799{
727011e0 3800 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3801 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3802}
0da5468f 3803
fcd1f065 3804static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3805 int read_only)
3806{
1104a885
DS
3807 /*
3808 * Placeholder for checks
3809 */
fcd1f065 3810 return 0;
acce952b 3811}
3812
48a3b636 3813static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3814{
acce952b 3815 mutex_lock(&root->fs_info->cleaner_mutex);
3816 btrfs_run_delayed_iputs(root);
3817 mutex_unlock(&root->fs_info->cleaner_mutex);
3818
3819 down_write(&root->fs_info->cleanup_work_sem);
3820 up_write(&root->fs_info->cleanup_work_sem);
3821
3822 /* cleanup FS via transaction */
3823 btrfs_cleanup_transaction(root);
acce952b 3824}
3825
143bede5 3826static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3827{
acce952b 3828 struct btrfs_ordered_extent *ordered;
acce952b 3829
199c2a9c 3830 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3831 /*
3832 * This will just short circuit the ordered completion stuff which will
3833 * make sure the ordered extent gets properly cleaned up.
3834 */
199c2a9c 3835 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3836 root_extent_list)
3837 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3838 spin_unlock(&root->ordered_extent_lock);
3839}
3840
3841static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3842{
3843 struct btrfs_root *root;
3844 struct list_head splice;
3845
3846 INIT_LIST_HEAD(&splice);
3847
3848 spin_lock(&fs_info->ordered_root_lock);
3849 list_splice_init(&fs_info->ordered_roots, &splice);
3850 while (!list_empty(&splice)) {
3851 root = list_first_entry(&splice, struct btrfs_root,
3852 ordered_root);
1de2cfde
JB
3853 list_move_tail(&root->ordered_root,
3854 &fs_info->ordered_roots);
199c2a9c 3855
2a85d9ca 3856 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3857 btrfs_destroy_ordered_extents(root);
3858
2a85d9ca
LB
3859 cond_resched();
3860 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3861 }
3862 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3863}
3864
35a3621b
SB
3865static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3866 struct btrfs_root *root)
acce952b 3867{
3868 struct rb_node *node;
3869 struct btrfs_delayed_ref_root *delayed_refs;
3870 struct btrfs_delayed_ref_node *ref;
3871 int ret = 0;
3872
3873 delayed_refs = &trans->delayed_refs;
3874
3875 spin_lock(&delayed_refs->lock);
d7df2c79 3876 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3877 spin_unlock(&delayed_refs->lock);
efe120a0 3878 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3879 return ret;
3880 }
3881
d7df2c79
JB
3882 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3883 struct btrfs_delayed_ref_head *head;
e78417d1 3884 bool pin_bytes = false;
acce952b 3885
d7df2c79
JB
3886 head = rb_entry(node, struct btrfs_delayed_ref_head,
3887 href_node);
3888 if (!mutex_trylock(&head->mutex)) {
3889 atomic_inc(&head->node.refs);
3890 spin_unlock(&delayed_refs->lock);
eb12db69 3891
d7df2c79 3892 mutex_lock(&head->mutex);
e78417d1 3893 mutex_unlock(&head->mutex);
d7df2c79
JB
3894 btrfs_put_delayed_ref(&head->node);
3895 spin_lock(&delayed_refs->lock);
3896 continue;
3897 }
3898 spin_lock(&head->lock);
3899 while ((node = rb_first(&head->ref_root)) != NULL) {
3900 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3901 rb_node);
3902 ref->in_tree = 0;
3903 rb_erase(&ref->rb_node, &head->ref_root);
3904 atomic_dec(&delayed_refs->num_entries);
3905 btrfs_put_delayed_ref(ref);
e78417d1 3906 }
d7df2c79
JB
3907 if (head->must_insert_reserved)
3908 pin_bytes = true;
3909 btrfs_free_delayed_extent_op(head->extent_op);
3910 delayed_refs->num_heads--;
3911 if (head->processing == 0)
3912 delayed_refs->num_heads_ready--;
3913 atomic_dec(&delayed_refs->num_entries);
3914 head->node.in_tree = 0;
3915 rb_erase(&head->href_node, &delayed_refs->href_root);
3916 spin_unlock(&head->lock);
3917 spin_unlock(&delayed_refs->lock);
3918 mutex_unlock(&head->mutex);
acce952b 3919
d7df2c79
JB
3920 if (pin_bytes)
3921 btrfs_pin_extent(root, head->node.bytenr,
3922 head->node.num_bytes, 1);
3923 btrfs_put_delayed_ref(&head->node);
acce952b 3924 cond_resched();
3925 spin_lock(&delayed_refs->lock);
3926 }
3927
3928 spin_unlock(&delayed_refs->lock);
3929
3930 return ret;
3931}
3932
143bede5 3933static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3934{
3935 struct btrfs_inode *btrfs_inode;
3936 struct list_head splice;
3937
3938 INIT_LIST_HEAD(&splice);
3939
eb73c1b7
MX
3940 spin_lock(&root->delalloc_lock);
3941 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3942
3943 while (!list_empty(&splice)) {
eb73c1b7
MX
3944 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3945 delalloc_inodes);
acce952b 3946
3947 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3948 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3949 &btrfs_inode->runtime_flags);
eb73c1b7 3950 spin_unlock(&root->delalloc_lock);
acce952b 3951
3952 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3953
eb73c1b7 3954 spin_lock(&root->delalloc_lock);
acce952b 3955 }
3956
eb73c1b7
MX
3957 spin_unlock(&root->delalloc_lock);
3958}
3959
3960static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3961{
3962 struct btrfs_root *root;
3963 struct list_head splice;
3964
3965 INIT_LIST_HEAD(&splice);
3966
3967 spin_lock(&fs_info->delalloc_root_lock);
3968 list_splice_init(&fs_info->delalloc_roots, &splice);
3969 while (!list_empty(&splice)) {
3970 root = list_first_entry(&splice, struct btrfs_root,
3971 delalloc_root);
3972 list_del_init(&root->delalloc_root);
3973 root = btrfs_grab_fs_root(root);
3974 BUG_ON(!root);
3975 spin_unlock(&fs_info->delalloc_root_lock);
3976
3977 btrfs_destroy_delalloc_inodes(root);
3978 btrfs_put_fs_root(root);
3979
3980 spin_lock(&fs_info->delalloc_root_lock);
3981 }
3982 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3983}
3984
3985static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3986 struct extent_io_tree *dirty_pages,
3987 int mark)
3988{
3989 int ret;
acce952b 3990 struct extent_buffer *eb;
3991 u64 start = 0;
3992 u64 end;
acce952b 3993
3994 while (1) {
3995 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3996 mark, NULL);
acce952b 3997 if (ret)
3998 break;
3999
4000 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4001 while (start <= end) {
fd8b2b61 4002 eb = btrfs_find_tree_block(root, start,
707e8a07
DS
4003 root->nodesize);
4004 start += root->nodesize;
fd8b2b61 4005 if (!eb)
acce952b 4006 continue;
fd8b2b61 4007 wait_on_extent_buffer_writeback(eb);
acce952b 4008
fd8b2b61
JB
4009 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4010 &eb->bflags))
4011 clear_extent_buffer_dirty(eb);
4012 free_extent_buffer_stale(eb);
acce952b 4013 }
4014 }
4015
4016 return ret;
4017}
4018
4019static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4020 struct extent_io_tree *pinned_extents)
4021{
4022 struct extent_io_tree *unpin;
4023 u64 start;
4024 u64 end;
4025 int ret;
ed0eaa14 4026 bool loop = true;
acce952b 4027
4028 unpin = pinned_extents;
ed0eaa14 4029again:
acce952b 4030 while (1) {
4031 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4032 EXTENT_DIRTY, NULL);
acce952b 4033 if (ret)
4034 break;
4035
4036 /* opt_discard */
5378e607
LD
4037 if (btrfs_test_opt(root, DISCARD))
4038 ret = btrfs_error_discard_extent(root, start,
4039 end + 1 - start,
4040 NULL);
acce952b 4041
4042 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4043 btrfs_error_unpin_extent_range(root, start, end);
4044 cond_resched();
4045 }
4046
ed0eaa14
LB
4047 if (loop) {
4048 if (unpin == &root->fs_info->freed_extents[0])
4049 unpin = &root->fs_info->freed_extents[1];
4050 else
4051 unpin = &root->fs_info->freed_extents[0];
4052 loop = false;
4053 goto again;
4054 }
4055
acce952b 4056 return 0;
4057}
4058
49b25e05
JM
4059void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4060 struct btrfs_root *root)
4061{
4062 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4063
4a9d8bde 4064 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4065 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4066
4a9d8bde 4067 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4068 wake_up(&root->fs_info->transaction_wait);
49b25e05 4069
67cde344
MX
4070 btrfs_destroy_delayed_inodes(root);
4071 btrfs_assert_delayed_root_empty(root);
49b25e05 4072
49b25e05
JM
4073 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4074 EXTENT_DIRTY);
6e841e32
LB
4075 btrfs_destroy_pinned_extent(root,
4076 root->fs_info->pinned_extents);
49b25e05 4077
4a9d8bde
MX
4078 cur_trans->state =TRANS_STATE_COMPLETED;
4079 wake_up(&cur_trans->commit_wait);
4080
49b25e05
JM
4081 /*
4082 memset(cur_trans, 0, sizeof(*cur_trans));
4083 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4084 */
4085}
4086
48a3b636 4087static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4088{
4089 struct btrfs_transaction *t;
acce952b 4090
acce952b 4091 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4092
a4abeea4 4093 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4094 while (!list_empty(&root->fs_info->trans_list)) {
4095 t = list_first_entry(&root->fs_info->trans_list,
4096 struct btrfs_transaction, list);
4097 if (t->state >= TRANS_STATE_COMMIT_START) {
4098 atomic_inc(&t->use_count);
4099 spin_unlock(&root->fs_info->trans_lock);
4100 btrfs_wait_for_commit(root, t->transid);
4101 btrfs_put_transaction(t);
4102 spin_lock(&root->fs_info->trans_lock);
4103 continue;
4104 }
4105 if (t == root->fs_info->running_transaction) {
4106 t->state = TRANS_STATE_COMMIT_DOING;
4107 spin_unlock(&root->fs_info->trans_lock);
4108 /*
4109 * We wait for 0 num_writers since we don't hold a trans
4110 * handle open currently for this transaction.
4111 */
4112 wait_event(t->writer_wait,
4113 atomic_read(&t->num_writers) == 0);
4114 } else {
4115 spin_unlock(&root->fs_info->trans_lock);
4116 }
4117 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4118
724e2315
JB
4119 spin_lock(&root->fs_info->trans_lock);
4120 if (t == root->fs_info->running_transaction)
4121 root->fs_info->running_transaction = NULL;
acce952b 4122 list_del_init(&t->list);
724e2315 4123 spin_unlock(&root->fs_info->trans_lock);
acce952b 4124
724e2315
JB
4125 btrfs_put_transaction(t);
4126 trace_btrfs_transaction_commit(root);
4127 spin_lock(&root->fs_info->trans_lock);
4128 }
4129 spin_unlock(&root->fs_info->trans_lock);
4130 btrfs_destroy_all_ordered_extents(root->fs_info);
4131 btrfs_destroy_delayed_inodes(root);
4132 btrfs_assert_delayed_root_empty(root);
4133 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4134 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4135 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4136
4137 return 0;
4138}
4139
d1310b2e 4140static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4141 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4142 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4143 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4144 /* note we're sharing with inode.c for the merge bio hook */
4145 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4146};