btrfs: Simplify btrfs_insert_root
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41
JB
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
2ac55d41 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
1259ab75
CM
373 if (!ret &&
374 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 375 return ret;
d397712b 376
a826d6dc
JB
377 /*
378 * This buffer's crc is fine, but its contents are corrupted, so
379 * there is no reason to read the other copies, they won't be
380 * any less wrong.
381 */
382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 return ret;
384
f188591e
CM
385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 eb->start, eb->len);
4235298e 387 if (num_copies == 1)
f188591e 388 return ret;
4235298e 389
f188591e 390 mirror_num++;
4235298e 391 if (mirror_num > num_copies)
f188591e 392 return ret;
f188591e 393 }
f188591e
CM
394 return -EIO;
395}
19c00ddc 396
d352ac68 397/*
d397712b
CM
398 * checksum a dirty tree block before IO. This has extra checks to make sure
399 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 400 */
d397712b 401
b2950863 402static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 403{
d1310b2e 404 struct extent_io_tree *tree;
35ebb934 405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 406 u64 found_start;
19c00ddc
CM
407 unsigned long len;
408 struct extent_buffer *eb;
f188591e
CM
409 int ret;
410
d1310b2e 411 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 412
eb14ab8e
CM
413 if (page->private == EXTENT_PAGE_PRIVATE) {
414 WARN_ON(1);
19c00ddc 415 goto out;
eb14ab8e
CM
416 }
417 if (!page->private) {
418 WARN_ON(1);
19c00ddc 419 goto out;
eb14ab8e 420 }
19c00ddc 421 len = page->private >> 2;
d397712b
CM
422 WARN_ON(len == 0);
423
ba144192 424 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
425 if (eb == NULL) {
426 WARN_ON(1);
427 goto out;
428 }
ca7a79ad
CM
429 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430 btrfs_header_generation(eb));
f188591e 431 BUG_ON(ret);
784b4e29
CM
432 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
19c00ddc
CM
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
55c69072
CM
436 WARN_ON(1);
437 goto err;
438 }
439 if (eb->first_page != page) {
55c69072
CM
440 WARN_ON(1);
441 goto err;
442 }
443 if (!PageUptodate(page)) {
55c69072
CM
444 WARN_ON(1);
445 goto err;
19c00ddc 446 }
19c00ddc 447 csum_tree_block(root, eb, 0);
55c69072 448err:
19c00ddc
CM
449 free_extent_buffer(eb);
450out:
451 return 0;
452}
453
2b82032c
YZ
454static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
456{
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
459 int ret = 1;
460
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 BTRFS_FSID_SIZE);
463 while (fs_devices) {
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 ret = 0;
466 break;
467 }
468 fs_devices = fs_devices->seed;
469 }
470 return ret;
471}
472
a826d6dc
JB
473#define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
478
479static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
481{
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
485 int slot;
486
487 if (nritems == 0)
488 return 0;
489
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
494 return -EIO;
495 }
496
497 /*
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
502 * offset is correct.
503 */
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
511 return -EIO;
512 }
513
514 /*
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
517 * front.
518 */
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
522 return -EIO;
523 }
524
525 /*
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
529 */
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
533 return -EIO;
534 }
535 }
536
537 return 0;
538}
539
b2950863 540static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
541 struct extent_state *state)
542{
543 struct extent_io_tree *tree;
544 u64 found_start;
545 int found_level;
546 unsigned long len;
547 struct extent_buffer *eb;
548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 549 int ret = 0;
ce9adaa5
CM
550
551 tree = &BTRFS_I(page->mapping->host)->io_tree;
552 if (page->private == EXTENT_PAGE_PRIVATE)
553 goto out;
554 if (!page->private)
555 goto out;
d397712b 556
ce9adaa5 557 len = page->private >> 2;
d397712b
CM
558 WARN_ON(len == 0);
559
ba144192 560 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
561 if (eb == NULL) {
562 ret = -EIO;
563 goto out;
564 }
f188591e 565
ce9adaa5 566 found_start = btrfs_header_bytenr(eb);
23a07867 567 if (found_start != start) {
7a36ddec 568 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
569 "%llu %llu\n",
570 (unsigned long long)found_start,
571 (unsigned long long)eb->start);
f188591e 572 ret = -EIO;
ce9adaa5
CM
573 goto err;
574 }
575 if (eb->first_page != page) {
d397712b
CM
576 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577 eb->first_page->index, page->index);
ce9adaa5 578 WARN_ON(1);
f188591e 579 ret = -EIO;
ce9adaa5
CM
580 goto err;
581 }
2b82032c 582 if (check_tree_block_fsid(root, eb)) {
7a36ddec 583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 584 (unsigned long long)eb->start);
1259ab75
CM
585 ret = -EIO;
586 goto err;
587 }
ce9adaa5
CM
588 found_level = btrfs_header_level(eb);
589
85d4e461
CM
590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 eb, found_level);
4008c04a 592
ce9adaa5 593 ret = csum_tree_block(root, eb, 1);
a826d6dc 594 if (ret) {
f188591e 595 ret = -EIO;
a826d6dc
JB
596 goto err;
597 }
598
599 /*
600 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 * that we don't try and read the other copies of this block, just
602 * return -EIO.
603 */
604 if (found_level == 0 && check_leaf(root, eb)) {
605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 ret = -EIO;
607 }
ce9adaa5
CM
608
609 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610 end = eb->start + end - 1;
ce9adaa5 611err:
4bb31e92
AJ
612 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614 btree_readahead_hook(root, eb, eb->start, ret);
615 }
616
ce9adaa5
CM
617 free_extent_buffer(eb);
618out:
f188591e 619 return ret;
ce9adaa5
CM
620}
621
4bb31e92
AJ
622static int btree_io_failed_hook(struct bio *failed_bio,
623 struct page *page, u64 start, u64 end,
32240a91 624 int mirror_num, struct extent_state *state)
4bb31e92
AJ
625{
626 struct extent_io_tree *tree;
627 unsigned long len;
628 struct extent_buffer *eb;
629 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631 tree = &BTRFS_I(page->mapping->host)->io_tree;
632 if (page->private == EXTENT_PAGE_PRIVATE)
633 goto out;
634 if (!page->private)
635 goto out;
636
637 len = page->private >> 2;
638 WARN_ON(len == 0);
639
640 eb = alloc_extent_buffer(tree, start, len, page);
641 if (eb == NULL)
642 goto out;
643
644 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646 btree_readahead_hook(root, eb, eb->start, -EIO);
647 }
c674e04e 648 free_extent_buffer(eb);
4bb31e92
AJ
649
650out:
651 return -EIO; /* we fixed nothing */
652}
653
ce9adaa5 654static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
655{
656 struct end_io_wq *end_io_wq = bio->bi_private;
657 struct btrfs_fs_info *fs_info;
ce9adaa5 658
ce9adaa5 659 fs_info = end_io_wq->info;
ce9adaa5 660 end_io_wq->error = err;
8b712842
CM
661 end_io_wq->work.func = end_workqueue_fn;
662 end_io_wq->work.flags = 0;
d20f7043 663
7b6d91da 664 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 665 if (end_io_wq->metadata == 1)
cad321ad
CM
666 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667 &end_io_wq->work);
0cb59c99
JB
668 else if (end_io_wq->metadata == 2)
669 btrfs_queue_worker(&fs_info->endio_freespace_worker,
670 &end_io_wq->work);
cad321ad
CM
671 else
672 btrfs_queue_worker(&fs_info->endio_write_workers,
673 &end_io_wq->work);
d20f7043
CM
674 } else {
675 if (end_io_wq->metadata)
676 btrfs_queue_worker(&fs_info->endio_meta_workers,
677 &end_io_wq->work);
678 else
679 btrfs_queue_worker(&fs_info->endio_workers,
680 &end_io_wq->work);
681 }
ce9adaa5
CM
682}
683
0cb59c99
JB
684/*
685 * For the metadata arg you want
686 *
687 * 0 - if data
688 * 1 - if normal metadta
689 * 2 - if writing to the free space cache area
690 */
22c59948
CM
691int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692 int metadata)
0b86a832 693{
ce9adaa5 694 struct end_io_wq *end_io_wq;
ce9adaa5
CM
695 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696 if (!end_io_wq)
697 return -ENOMEM;
698
699 end_io_wq->private = bio->bi_private;
700 end_io_wq->end_io = bio->bi_end_io;
22c59948 701 end_io_wq->info = info;
ce9adaa5
CM
702 end_io_wq->error = 0;
703 end_io_wq->bio = bio;
22c59948 704 end_io_wq->metadata = metadata;
ce9adaa5
CM
705
706 bio->bi_private = end_io_wq;
707 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
708 return 0;
709}
710
b64a2851 711unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 712{
4854ddd0
CM
713 unsigned long limit = min_t(unsigned long,
714 info->workers.max_workers,
715 info->fs_devices->open_devices);
716 return 256 * limit;
717}
0986fe9e 718
4a69a410
CM
719static void run_one_async_start(struct btrfs_work *work)
720{
4a69a410
CM
721 struct async_submit_bio *async;
722
723 async = container_of(work, struct async_submit_bio, work);
4a69a410 724 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
725 async->mirror_num, async->bio_flags,
726 async->bio_offset);
4a69a410
CM
727}
728
729static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
730{
731 struct btrfs_fs_info *fs_info;
732 struct async_submit_bio *async;
4854ddd0 733 int limit;
8b712842
CM
734
735 async = container_of(work, struct async_submit_bio, work);
736 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 737
b64a2851 738 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
739 limit = limit * 2 / 3;
740
8b712842 741 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 742
b64a2851
CM
743 if (atomic_read(&fs_info->nr_async_submits) < limit &&
744 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
745 wake_up(&fs_info->async_submit_wait);
746
4a69a410 747 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
748 async->mirror_num, async->bio_flags,
749 async->bio_offset);
4a69a410
CM
750}
751
752static void run_one_async_free(struct btrfs_work *work)
753{
754 struct async_submit_bio *async;
755
756 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
757 kfree(async);
758}
759
44b8bd7e
CM
760int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761 int rw, struct bio *bio, int mirror_num,
c8b97818 762 unsigned long bio_flags,
eaf25d93 763 u64 bio_offset,
4a69a410
CM
764 extent_submit_bio_hook_t *submit_bio_start,
765 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
766{
767 struct async_submit_bio *async;
768
769 async = kmalloc(sizeof(*async), GFP_NOFS);
770 if (!async)
771 return -ENOMEM;
772
773 async->inode = inode;
774 async->rw = rw;
775 async->bio = bio;
776 async->mirror_num = mirror_num;
4a69a410
CM
777 async->submit_bio_start = submit_bio_start;
778 async->submit_bio_done = submit_bio_done;
779
780 async->work.func = run_one_async_start;
781 async->work.ordered_func = run_one_async_done;
782 async->work.ordered_free = run_one_async_free;
783
8b712842 784 async->work.flags = 0;
c8b97818 785 async->bio_flags = bio_flags;
eaf25d93 786 async->bio_offset = bio_offset;
8c8bee1d 787
cb03c743 788 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 789
7b6d91da 790 if (rw & REQ_SYNC)
d313d7a3
CM
791 btrfs_set_work_high_prio(&async->work);
792
8b712842 793 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 794
d397712b 795 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
796 atomic_read(&fs_info->nr_async_submits)) {
797 wait_event(fs_info->async_submit_wait,
798 (atomic_read(&fs_info->nr_async_submits) == 0));
799 }
800
44b8bd7e
CM
801 return 0;
802}
803
ce3ed71a
CM
804static int btree_csum_one_bio(struct bio *bio)
805{
806 struct bio_vec *bvec = bio->bi_io_vec;
807 int bio_index = 0;
808 struct btrfs_root *root;
809
810 WARN_ON(bio->bi_vcnt <= 0);
d397712b 811 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
812 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813 csum_dirty_buffer(root, bvec->bv_page);
814 bio_index++;
815 bvec++;
816 }
817 return 0;
818}
819
4a69a410
CM
820static int __btree_submit_bio_start(struct inode *inode, int rw,
821 struct bio *bio, int mirror_num,
eaf25d93
CM
822 unsigned long bio_flags,
823 u64 bio_offset)
22c59948 824{
8b712842
CM
825 /*
826 * when we're called for a write, we're already in the async
5443be45 827 * submission context. Just jump into btrfs_map_bio
8b712842 828 */
4a69a410
CM
829 btree_csum_one_bio(bio);
830 return 0;
831}
22c59948 832
4a69a410 833static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
834 int mirror_num, unsigned long bio_flags,
835 u64 bio_offset)
4a69a410 836{
8b712842 837 /*
4a69a410
CM
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
8b712842 840 */
8b712842 841 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
842}
843
44b8bd7e 844static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
845 int mirror_num, unsigned long bio_flags,
846 u64 bio_offset)
44b8bd7e 847{
cad321ad
CM
848 int ret;
849
850 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
851 bio, 1);
852 BUG_ON(ret);
853
7b6d91da 854 if (!(rw & REQ_WRITE)) {
4a69a410
CM
855 /*
856 * called for a read, do the setup so that checksum validation
857 * can happen in the async kernel threads
858 */
4a69a410 859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 860 mirror_num, 0);
44b8bd7e 861 }
d313d7a3 862
cad321ad
CM
863 /*
864 * kthread helpers are used to submit writes so that checksumming
865 * can happen in parallel across all CPUs
866 */
44b8bd7e 867 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 868 inode, rw, bio, mirror_num, 0,
eaf25d93 869 bio_offset,
4a69a410
CM
870 __btree_submit_bio_start,
871 __btree_submit_bio_done);
44b8bd7e
CM
872}
873
3dd1462e 874#ifdef CONFIG_MIGRATION
784b4e29 875static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
876 struct page *newpage, struct page *page,
877 enum migrate_mode mode)
784b4e29
CM
878{
879 /*
880 * we can't safely write a btree page from here,
881 * we haven't done the locking hook
882 */
883 if (PageDirty(page))
884 return -EAGAIN;
885 /*
886 * Buffers may be managed in a filesystem specific way.
887 * We must have no buffers or drop them.
888 */
889 if (page_has_private(page) &&
890 !try_to_release_page(page, GFP_KERNEL))
891 return -EAGAIN;
a6bc32b8 892 return migrate_page(mapping, newpage, page, mode);
784b4e29 893}
3dd1462e 894#endif
784b4e29 895
0da5468f
CM
896static int btree_writepage(struct page *page, struct writeback_control *wbc)
897{
d1310b2e 898 struct extent_io_tree *tree;
b9473439
CM
899 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
900 struct extent_buffer *eb;
901 int was_dirty;
902
d1310b2e 903 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
904 if (!(current->flags & PF_MEMALLOC)) {
905 return extent_write_full_page(tree, page,
906 btree_get_extent, wbc);
907 }
5443be45 908
b9473439 909 redirty_page_for_writepage(wbc, page);
784b4e29 910 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
911 WARN_ON(!eb);
912
913 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
914 if (!was_dirty) {
915 spin_lock(&root->fs_info->delalloc_lock);
916 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
917 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 918 }
b9473439
CM
919 free_extent_buffer(eb);
920
921 unlock_page(page);
922 return 0;
5f39d397 923}
0da5468f
CM
924
925static int btree_writepages(struct address_space *mapping,
926 struct writeback_control *wbc)
927{
d1310b2e
CM
928 struct extent_io_tree *tree;
929 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 930 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 931 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 932 u64 num_dirty;
24ab9cd8 933 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
934
935 if (wbc->for_kupdate)
936 return 0;
937
b9473439
CM
938 /* this is a bit racy, but that's ok */
939 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 940 if (num_dirty < thresh)
793955bc 941 return 0;
793955bc 942 }
0da5468f
CM
943 return extent_writepages(tree, mapping, btree_get_extent, wbc);
944}
945
b2950863 946static int btree_readpage(struct file *file, struct page *page)
5f39d397 947{
d1310b2e
CM
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 950 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 951}
22b0ebda 952
70dec807 953static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 954{
d1310b2e
CM
955 struct extent_io_tree *tree;
956 struct extent_map_tree *map;
5f39d397 957 int ret;
d98237b3 958
98509cfc 959 if (PageWriteback(page) || PageDirty(page))
d397712b 960 return 0;
98509cfc 961
d1310b2e
CM
962 tree = &BTRFS_I(page->mapping->host)->io_tree;
963 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 964
0c4e538b
DS
965 /*
966 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
967 * slab allocation from alloc_extent_state down the callchain where
968 * it'd hit a BUG_ON as those flags are not allowed.
969 */
970 gfp_flags &= ~GFP_SLAB_BUG_MASK;
971
7b13b7b1 972 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 973 if (!ret)
6af118ce 974 return 0;
6af118ce
CM
975
976 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
977 if (ret == 1) {
978 ClearPagePrivate(page);
979 set_page_private(page, 0);
980 page_cache_release(page);
981 }
6af118ce 982
d98237b3
CM
983 return ret;
984}
985
5f39d397 986static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 987{
d1310b2e
CM
988 struct extent_io_tree *tree;
989 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
990 extent_invalidatepage(tree, page, offset);
991 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 992 if (PagePrivate(page)) {
d397712b
CM
993 printk(KERN_WARNING "btrfs warning page private not zero "
994 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
995 ClearPagePrivate(page);
996 set_page_private(page, 0);
997 page_cache_release(page);
998 }
d98237b3
CM
999}
1000
7f09410b 1001static const struct address_space_operations btree_aops = {
d98237b3
CM
1002 .readpage = btree_readpage,
1003 .writepage = btree_writepage,
0da5468f 1004 .writepages = btree_writepages,
5f39d397
CM
1005 .releasepage = btree_releasepage,
1006 .invalidatepage = btree_invalidatepage,
5a92bc88 1007#ifdef CONFIG_MIGRATION
784b4e29 1008 .migratepage = btree_migratepage,
5a92bc88 1009#endif
d98237b3
CM
1010};
1011
ca7a79ad
CM
1012int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1013 u64 parent_transid)
090d1875 1014{
5f39d397
CM
1015 struct extent_buffer *buf = NULL;
1016 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1017 int ret = 0;
090d1875 1018
db94535d 1019 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1020 if (!buf)
090d1875 1021 return 0;
d1310b2e 1022 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1023 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1024 free_extent_buffer(buf);
de428b63 1025 return ret;
090d1875
CM
1026}
1027
ab0fff03
AJ
1028int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029 int mirror_num, struct extent_buffer **eb)
1030{
1031 struct extent_buffer *buf = NULL;
1032 struct inode *btree_inode = root->fs_info->btree_inode;
1033 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1034 int ret;
1035
1036 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1037 if (!buf)
1038 return 0;
1039
1040 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1041
1042 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1043 btree_get_extent, mirror_num);
1044 if (ret) {
1045 free_extent_buffer(buf);
1046 return ret;
1047 }
1048
1049 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1050 free_extent_buffer(buf);
1051 return -EIO;
1052 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1053 *eb = buf;
1054 } else {
1055 free_extent_buffer(buf);
1056 }
1057 return 0;
1058}
1059
0999df54
CM
1060struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1061 u64 bytenr, u32 blocksize)
1062{
1063 struct inode *btree_inode = root->fs_info->btree_inode;
1064 struct extent_buffer *eb;
1065 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1066 bytenr, blocksize);
0999df54
CM
1067 return eb;
1068}
1069
1070struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1071 u64 bytenr, u32 blocksize)
1072{
1073 struct inode *btree_inode = root->fs_info->btree_inode;
1074 struct extent_buffer *eb;
1075
1076 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 1077 bytenr, blocksize, NULL);
0999df54
CM
1078 return eb;
1079}
1080
1081
e02119d5
CM
1082int btrfs_write_tree_block(struct extent_buffer *buf)
1083{
8aa38c31
CH
1084 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1085 buf->start + buf->len - 1);
e02119d5
CM
1086}
1087
1088int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1089{
8aa38c31
CH
1090 return filemap_fdatawait_range(buf->first_page->mapping,
1091 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1092}
1093
0999df54 1094struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1095 u32 blocksize, u64 parent_transid)
0999df54
CM
1096{
1097 struct extent_buffer *buf = NULL;
0999df54
CM
1098 int ret;
1099
0999df54
CM
1100 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1101 if (!buf)
1102 return NULL;
0999df54 1103
ca7a79ad 1104 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1105
d397712b 1106 if (ret == 0)
b4ce94de 1107 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1108 return buf;
ce9adaa5 1109
eb60ceac
CM
1110}
1111
e089f05c 1112int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1113 struct extent_buffer *buf)
ed2ff2cb 1114{
5f39d397 1115 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1116 if (btrfs_header_generation(buf) ==
925baedd 1117 root->fs_info->running_transaction->transid) {
b9447ef8 1118 btrfs_assert_tree_locked(buf);
b4ce94de 1119
b9473439
CM
1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121 spin_lock(&root->fs_info->delalloc_lock);
1122 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1123 root->fs_info->dirty_metadata_bytes -= buf->len;
1124 else
1125 WARN_ON(1);
1126 spin_unlock(&root->fs_info->delalloc_lock);
1127 }
b4ce94de 1128
b9473439
CM
1129 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1130 btrfs_set_lock_blocking(buf);
d1310b2e 1131 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1132 buf);
925baedd 1133 }
5f39d397
CM
1134 return 0;
1135}
1136
db94535d 1137static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1138 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1139 struct btrfs_fs_info *fs_info,
e20d96d6 1140 u64 objectid)
d97e63b6 1141{
cfaa7295 1142 root->node = NULL;
a28ec197 1143 root->commit_root = NULL;
db94535d
CM
1144 root->sectorsize = sectorsize;
1145 root->nodesize = nodesize;
1146 root->leafsize = leafsize;
87ee04eb 1147 root->stripesize = stripesize;
123abc88 1148 root->ref_cows = 0;
0b86a832 1149 root->track_dirty = 0;
c71bf099 1150 root->in_radix = 0;
d68fc57b
YZ
1151 root->orphan_item_inserted = 0;
1152 root->orphan_cleanup_state = 0;
0b86a832 1153
0f7d52f4
CM
1154 root->objectid = objectid;
1155 root->last_trans = 0;
13a8a7c8 1156 root->highest_objectid = 0;
58176a96 1157 root->name = NULL;
6bef4d31 1158 root->inode_tree = RB_ROOT;
16cdcec7 1159 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1160 root->block_rsv = NULL;
d68fc57b 1161 root->orphan_block_rsv = NULL;
0b86a832
CM
1162
1163 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1164 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1165 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1166 spin_lock_init(&root->orphan_lock);
5d4f98a2 1167 spin_lock_init(&root->inode_lock);
f0486c68 1168 spin_lock_init(&root->accounting_lock);
a2135011 1169 mutex_init(&root->objectid_mutex);
e02119d5 1170 mutex_init(&root->log_mutex);
7237f183
YZ
1171 init_waitqueue_head(&root->log_writer_wait);
1172 init_waitqueue_head(&root->log_commit_wait[0]);
1173 init_waitqueue_head(&root->log_commit_wait[1]);
1174 atomic_set(&root->log_commit[0], 0);
1175 atomic_set(&root->log_commit[1], 0);
1176 atomic_set(&root->log_writers, 0);
1177 root->log_batch = 0;
1178 root->log_transid = 0;
257c62e1 1179 root->last_log_commit = 0;
d0c803c4 1180 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1181 fs_info->btree_inode->i_mapping);
017e5369 1182
3768f368
CM
1183 memset(&root->root_key, 0, sizeof(root->root_key));
1184 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1185 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1186 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1187 root->defrag_trans_start = fs_info->generation;
58176a96 1188 init_completion(&root->kobj_unregister);
6702ed49 1189 root->defrag_running = 0;
4d775673 1190 root->root_key.objectid = objectid;
0ee5dc67 1191 root->anon_dev = 0;
3768f368
CM
1192 return 0;
1193}
1194
db94535d 1195static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1196 struct btrfs_fs_info *fs_info,
1197 u64 objectid,
e20d96d6 1198 struct btrfs_root *root)
3768f368
CM
1199{
1200 int ret;
db94535d 1201 u32 blocksize;
84234f3a 1202 u64 generation;
3768f368 1203
db94535d 1204 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1205 tree_root->sectorsize, tree_root->stripesize,
1206 root, fs_info, objectid);
3768f368
CM
1207 ret = btrfs_find_last_root(tree_root, objectid,
1208 &root->root_item, &root->root_key);
4df27c4d
YZ
1209 if (ret > 0)
1210 return -ENOENT;
3768f368
CM
1211 BUG_ON(ret);
1212
84234f3a 1213 generation = btrfs_root_generation(&root->root_item);
db94535d 1214 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1215 root->commit_root = NULL;
db94535d 1216 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1217 blocksize, generation);
68433b73
CM
1218 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1219 free_extent_buffer(root->node);
af31f5e5 1220 root->node = NULL;
68433b73
CM
1221 return -EIO;
1222 }
4df27c4d 1223 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1224 return 0;
1225}
1226
f84a8bd6 1227static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1228{
1229 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1230 if (root)
1231 root->fs_info = fs_info;
1232 return root;
1233}
1234
7237f183
YZ
1235static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1236 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1237{
1238 struct btrfs_root *root;
1239 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1240 struct extent_buffer *leaf;
e02119d5 1241
6f07e42e 1242 root = btrfs_alloc_root(fs_info);
e02119d5 1243 if (!root)
7237f183 1244 return ERR_PTR(-ENOMEM);
e02119d5
CM
1245
1246 __setup_root(tree_root->nodesize, tree_root->leafsize,
1247 tree_root->sectorsize, tree_root->stripesize,
1248 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1249
1250 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1251 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1252 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1253 /*
1254 * log trees do not get reference counted because they go away
1255 * before a real commit is actually done. They do store pointers
1256 * to file data extents, and those reference counts still get
1257 * updated (along with back refs to the log tree).
1258 */
e02119d5
CM
1259 root->ref_cows = 0;
1260
5d4f98a2 1261 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1262 BTRFS_TREE_LOG_OBJECTID, NULL,
1263 0, 0, 0, 0);
7237f183
YZ
1264 if (IS_ERR(leaf)) {
1265 kfree(root);
1266 return ERR_CAST(leaf);
1267 }
e02119d5 1268
5d4f98a2
YZ
1269 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1270 btrfs_set_header_bytenr(leaf, leaf->start);
1271 btrfs_set_header_generation(leaf, trans->transid);
1272 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1273 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1274 root->node = leaf;
e02119d5
CM
1275
1276 write_extent_buffer(root->node, root->fs_info->fsid,
1277 (unsigned long)btrfs_header_fsid(root->node),
1278 BTRFS_FSID_SIZE);
1279 btrfs_mark_buffer_dirty(root->node);
1280 btrfs_tree_unlock(root->node);
7237f183
YZ
1281 return root;
1282}
1283
1284int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1285 struct btrfs_fs_info *fs_info)
1286{
1287 struct btrfs_root *log_root;
1288
1289 log_root = alloc_log_tree(trans, fs_info);
1290 if (IS_ERR(log_root))
1291 return PTR_ERR(log_root);
1292 WARN_ON(fs_info->log_root_tree);
1293 fs_info->log_root_tree = log_root;
1294 return 0;
1295}
1296
1297int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1298 struct btrfs_root *root)
1299{
1300 struct btrfs_root *log_root;
1301 struct btrfs_inode_item *inode_item;
1302
1303 log_root = alloc_log_tree(trans, root->fs_info);
1304 if (IS_ERR(log_root))
1305 return PTR_ERR(log_root);
1306
1307 log_root->last_trans = trans->transid;
1308 log_root->root_key.offset = root->root_key.objectid;
1309
1310 inode_item = &log_root->root_item.inode;
1311 inode_item->generation = cpu_to_le64(1);
1312 inode_item->size = cpu_to_le64(3);
1313 inode_item->nlink = cpu_to_le32(1);
1314 inode_item->nbytes = cpu_to_le64(root->leafsize);
1315 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1316
5d4f98a2 1317 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1318
1319 WARN_ON(root->log_root);
1320 root->log_root = log_root;
1321 root->log_transid = 0;
257c62e1 1322 root->last_log_commit = 0;
e02119d5
CM
1323 return 0;
1324}
1325
1326struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1327 struct btrfs_key *location)
1328{
1329 struct btrfs_root *root;
1330 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1331 struct btrfs_path *path;
5f39d397 1332 struct extent_buffer *l;
84234f3a 1333 u64 generation;
db94535d 1334 u32 blocksize;
0f7d52f4
CM
1335 int ret = 0;
1336
6f07e42e 1337 root = btrfs_alloc_root(fs_info);
0cf6c620 1338 if (!root)
0f7d52f4 1339 return ERR_PTR(-ENOMEM);
0f7d52f4 1340 if (location->offset == (u64)-1) {
db94535d 1341 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1342 location->objectid, root);
1343 if (ret) {
0f7d52f4
CM
1344 kfree(root);
1345 return ERR_PTR(ret);
1346 }
13a8a7c8 1347 goto out;
0f7d52f4
CM
1348 }
1349
db94535d 1350 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1351 tree_root->sectorsize, tree_root->stripesize,
1352 root, fs_info, location->objectid);
0f7d52f4
CM
1353
1354 path = btrfs_alloc_path();
db5b493a
TI
1355 if (!path) {
1356 kfree(root);
1357 return ERR_PTR(-ENOMEM);
1358 }
0f7d52f4 1359 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1360 if (ret == 0) {
1361 l = path->nodes[0];
1362 read_extent_buffer(l, &root->root_item,
1363 btrfs_item_ptr_offset(l, path->slots[0]),
1364 sizeof(root->root_item));
1365 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1366 }
0f7d52f4
CM
1367 btrfs_free_path(path);
1368 if (ret) {
5e540f77 1369 kfree(root);
13a8a7c8
YZ
1370 if (ret > 0)
1371 ret = -ENOENT;
0f7d52f4
CM
1372 return ERR_PTR(ret);
1373 }
13a8a7c8 1374
84234f3a 1375 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1376 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1377 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1378 blocksize, generation);
5d4f98a2 1379 root->commit_root = btrfs_root_node(root);
0f7d52f4 1380 BUG_ON(!root->node);
13a8a7c8 1381out:
08fe4db1 1382 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1383 root->ref_cows = 1;
08fe4db1
LZ
1384 btrfs_check_and_init_root_item(&root->root_item);
1385 }
13a8a7c8 1386
5eda7b5e
CM
1387 return root;
1388}
1389
edbd8d4e
CM
1390struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1391 struct btrfs_key *location)
5eda7b5e
CM
1392{
1393 struct btrfs_root *root;
1394 int ret;
1395
edbd8d4e
CM
1396 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1397 return fs_info->tree_root;
1398 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1399 return fs_info->extent_root;
8f18cf13
CM
1400 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1401 return fs_info->chunk_root;
1402 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1403 return fs_info->dev_root;
0403e47e
YZ
1404 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1405 return fs_info->csum_root;
4df27c4d
YZ
1406again:
1407 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1408 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1409 (unsigned long)location->objectid);
4df27c4d 1410 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1411 if (root)
1412 return root;
1413
e02119d5 1414 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1415 if (IS_ERR(root))
1416 return root;
3394e160 1417
581bb050 1418 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1419 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1420 GFP_NOFS);
35a30d7c
DS
1421 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1422 ret = -ENOMEM;
581bb050 1423 goto fail;
35a30d7c 1424 }
581bb050
LZ
1425
1426 btrfs_init_free_ino_ctl(root);
1427 mutex_init(&root->fs_commit_mutex);
1428 spin_lock_init(&root->cache_lock);
1429 init_waitqueue_head(&root->cache_wait);
1430
0ee5dc67 1431 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1432 if (ret)
1433 goto fail;
3394e160 1434
d68fc57b
YZ
1435 if (btrfs_root_refs(&root->root_item) == 0) {
1436 ret = -ENOENT;
1437 goto fail;
1438 }
1439
1440 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1441 if (ret < 0)
1442 goto fail;
1443 if (ret == 0)
1444 root->orphan_item_inserted = 1;
1445
4df27c4d
YZ
1446 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1447 if (ret)
1448 goto fail;
1449
1450 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1451 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1452 (unsigned long)root->root_key.objectid,
0f7d52f4 1453 root);
d68fc57b 1454 if (ret == 0)
4df27c4d 1455 root->in_radix = 1;
d68fc57b 1456
4df27c4d
YZ
1457 spin_unlock(&fs_info->fs_roots_radix_lock);
1458 radix_tree_preload_end();
0f7d52f4 1459 if (ret) {
4df27c4d
YZ
1460 if (ret == -EEXIST) {
1461 free_fs_root(root);
1462 goto again;
1463 }
1464 goto fail;
0f7d52f4 1465 }
4df27c4d
YZ
1466
1467 ret = btrfs_find_dead_roots(fs_info->tree_root,
1468 root->root_key.objectid);
1469 WARN_ON(ret);
edbd8d4e 1470 return root;
4df27c4d
YZ
1471fail:
1472 free_fs_root(root);
1473 return ERR_PTR(ret);
edbd8d4e
CM
1474}
1475
04160088
CM
1476static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1477{
1478 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1479 int ret = 0;
04160088
CM
1480 struct btrfs_device *device;
1481 struct backing_dev_info *bdi;
b7967db7 1482
1f78160c
XG
1483 rcu_read_lock();
1484 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1485 if (!device->bdev)
1486 continue;
04160088
CM
1487 bdi = blk_get_backing_dev_info(device->bdev);
1488 if (bdi && bdi_congested(bdi, bdi_bits)) {
1489 ret = 1;
1490 break;
1491 }
1492 }
1f78160c 1493 rcu_read_unlock();
04160088
CM
1494 return ret;
1495}
1496
ad081f14
JA
1497/*
1498 * If this fails, caller must call bdi_destroy() to get rid of the
1499 * bdi again.
1500 */
04160088
CM
1501static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1502{
ad081f14
JA
1503 int err;
1504
1505 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1506 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1507 if (err)
1508 return err;
1509
4575c9cc 1510 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1511 bdi->congested_fn = btrfs_congested_fn;
1512 bdi->congested_data = info;
1513 return 0;
1514}
1515
ce9adaa5
CM
1516static int bio_ready_for_csum(struct bio *bio)
1517{
1518 u64 length = 0;
1519 u64 buf_len = 0;
1520 u64 start = 0;
1521 struct page *page;
1522 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1523 struct bio_vec *bvec;
1524 int i;
1525 int ret;
1526
1527 bio_for_each_segment(bvec, bio, i) {
1528 page = bvec->bv_page;
1529 if (page->private == EXTENT_PAGE_PRIVATE) {
1530 length += bvec->bv_len;
1531 continue;
1532 }
1533 if (!page->private) {
1534 length += bvec->bv_len;
1535 continue;
1536 }
1537 length = bvec->bv_len;
1538 buf_len = page->private >> 2;
1539 start = page_offset(page) + bvec->bv_offset;
1540 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1541 }
1542 /* are we fully contained in this bio? */
1543 if (buf_len <= length)
1544 return 1;
1545
1546 ret = extent_range_uptodate(io_tree, start + length,
1547 start + buf_len - 1);
ce9adaa5
CM
1548 return ret;
1549}
1550
8b712842
CM
1551/*
1552 * called by the kthread helper functions to finally call the bio end_io
1553 * functions. This is where read checksum verification actually happens
1554 */
1555static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1556{
ce9adaa5 1557 struct bio *bio;
8b712842
CM
1558 struct end_io_wq *end_io_wq;
1559 struct btrfs_fs_info *fs_info;
ce9adaa5 1560 int error;
ce9adaa5 1561
8b712842
CM
1562 end_io_wq = container_of(work, struct end_io_wq, work);
1563 bio = end_io_wq->bio;
1564 fs_info = end_io_wq->info;
ce9adaa5 1565
cad321ad 1566 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1567 * be checksummed at once. This makes sure the entire block is in
1568 * ram and up to date before trying to verify things. For
1569 * blocksize <= pagesize, it is basically a noop
1570 */
7b6d91da 1571 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1572 !bio_ready_for_csum(bio)) {
d20f7043 1573 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1574 &end_io_wq->work);
1575 return;
1576 }
1577 error = end_io_wq->error;
1578 bio->bi_private = end_io_wq->private;
1579 bio->bi_end_io = end_io_wq->end_io;
1580 kfree(end_io_wq);
8b712842 1581 bio_endio(bio, error);
44b8bd7e
CM
1582}
1583
a74a4b97
CM
1584static int cleaner_kthread(void *arg)
1585{
1586 struct btrfs_root *root = arg;
1587
1588 do {
a74a4b97 1589 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1590
1591 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1592 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1593 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1594 btrfs_clean_old_snapshots(root);
1595 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1596 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1597 }
a74a4b97 1598
a0acae0e 1599 if (!try_to_freeze()) {
a74a4b97 1600 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1601 if (!kthread_should_stop())
1602 schedule();
a74a4b97
CM
1603 __set_current_state(TASK_RUNNING);
1604 }
1605 } while (!kthread_should_stop());
1606 return 0;
1607}
1608
1609static int transaction_kthread(void *arg)
1610{
1611 struct btrfs_root *root = arg;
1612 struct btrfs_trans_handle *trans;
1613 struct btrfs_transaction *cur;
8929ecfa 1614 u64 transid;
a74a4b97
CM
1615 unsigned long now;
1616 unsigned long delay;
1617 int ret;
1618
1619 do {
a74a4b97
CM
1620 delay = HZ * 30;
1621 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1622 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1623
a4abeea4 1624 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1625 cur = root->fs_info->running_transaction;
1626 if (!cur) {
a4abeea4 1627 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1628 goto sleep;
1629 }
31153d81 1630
a74a4b97 1631 now = get_seconds();
8929ecfa
YZ
1632 if (!cur->blocked &&
1633 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1634 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1635 delay = HZ * 5;
1636 goto sleep;
1637 }
8929ecfa 1638 transid = cur->transid;
a4abeea4 1639 spin_unlock(&root->fs_info->trans_lock);
56bec294 1640
7a7eaa40 1641 trans = btrfs_join_transaction(root);
3612b495 1642 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1643 if (transid == trans->transid) {
1644 ret = btrfs_commit_transaction(trans, root);
1645 BUG_ON(ret);
1646 } else {
1647 btrfs_end_transaction(trans, root);
1648 }
a74a4b97
CM
1649sleep:
1650 wake_up_process(root->fs_info->cleaner_kthread);
1651 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1652
a0acae0e 1653 if (!try_to_freeze()) {
a74a4b97 1654 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1655 if (!kthread_should_stop() &&
1656 !btrfs_transaction_blocked(root->fs_info))
1657 schedule_timeout(delay);
a74a4b97
CM
1658 __set_current_state(TASK_RUNNING);
1659 }
1660 } while (!kthread_should_stop());
1661 return 0;
1662}
1663
af31f5e5
CM
1664/*
1665 * this will find the highest generation in the array of
1666 * root backups. The index of the highest array is returned,
1667 * or -1 if we can't find anything.
1668 *
1669 * We check to make sure the array is valid by comparing the
1670 * generation of the latest root in the array with the generation
1671 * in the super block. If they don't match we pitch it.
1672 */
1673static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1674{
1675 u64 cur;
1676 int newest_index = -1;
1677 struct btrfs_root_backup *root_backup;
1678 int i;
1679
1680 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1681 root_backup = info->super_copy->super_roots + i;
1682 cur = btrfs_backup_tree_root_gen(root_backup);
1683 if (cur == newest_gen)
1684 newest_index = i;
1685 }
1686
1687 /* check to see if we actually wrapped around */
1688 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1689 root_backup = info->super_copy->super_roots;
1690 cur = btrfs_backup_tree_root_gen(root_backup);
1691 if (cur == newest_gen)
1692 newest_index = 0;
1693 }
1694 return newest_index;
1695}
1696
1697
1698/*
1699 * find the oldest backup so we know where to store new entries
1700 * in the backup array. This will set the backup_root_index
1701 * field in the fs_info struct
1702 */
1703static void find_oldest_super_backup(struct btrfs_fs_info *info,
1704 u64 newest_gen)
1705{
1706 int newest_index = -1;
1707
1708 newest_index = find_newest_super_backup(info, newest_gen);
1709 /* if there was garbage in there, just move along */
1710 if (newest_index == -1) {
1711 info->backup_root_index = 0;
1712 } else {
1713 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1714 }
1715}
1716
1717/*
1718 * copy all the root pointers into the super backup array.
1719 * this will bump the backup pointer by one when it is
1720 * done
1721 */
1722static void backup_super_roots(struct btrfs_fs_info *info)
1723{
1724 int next_backup;
1725 struct btrfs_root_backup *root_backup;
1726 int last_backup;
1727
1728 next_backup = info->backup_root_index;
1729 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1730 BTRFS_NUM_BACKUP_ROOTS;
1731
1732 /*
1733 * just overwrite the last backup if we're at the same generation
1734 * this happens only at umount
1735 */
1736 root_backup = info->super_for_commit->super_roots + last_backup;
1737 if (btrfs_backup_tree_root_gen(root_backup) ==
1738 btrfs_header_generation(info->tree_root->node))
1739 next_backup = last_backup;
1740
1741 root_backup = info->super_for_commit->super_roots + next_backup;
1742
1743 /*
1744 * make sure all of our padding and empty slots get zero filled
1745 * regardless of which ones we use today
1746 */
1747 memset(root_backup, 0, sizeof(*root_backup));
1748
1749 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1750
1751 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1752 btrfs_set_backup_tree_root_gen(root_backup,
1753 btrfs_header_generation(info->tree_root->node));
1754
1755 btrfs_set_backup_tree_root_level(root_backup,
1756 btrfs_header_level(info->tree_root->node));
1757
1758 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1759 btrfs_set_backup_chunk_root_gen(root_backup,
1760 btrfs_header_generation(info->chunk_root->node));
1761 btrfs_set_backup_chunk_root_level(root_backup,
1762 btrfs_header_level(info->chunk_root->node));
1763
1764 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1765 btrfs_set_backup_extent_root_gen(root_backup,
1766 btrfs_header_generation(info->extent_root->node));
1767 btrfs_set_backup_extent_root_level(root_backup,
1768 btrfs_header_level(info->extent_root->node));
1769
7c7e82a7
CM
1770 /*
1771 * we might commit during log recovery, which happens before we set
1772 * the fs_root. Make sure it is valid before we fill it in.
1773 */
1774 if (info->fs_root && info->fs_root->node) {
1775 btrfs_set_backup_fs_root(root_backup,
1776 info->fs_root->node->start);
1777 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1778 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1779 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1780 btrfs_header_level(info->fs_root->node));
7c7e82a7 1781 }
af31f5e5
CM
1782
1783 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1784 btrfs_set_backup_dev_root_gen(root_backup,
1785 btrfs_header_generation(info->dev_root->node));
1786 btrfs_set_backup_dev_root_level(root_backup,
1787 btrfs_header_level(info->dev_root->node));
1788
1789 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1790 btrfs_set_backup_csum_root_gen(root_backup,
1791 btrfs_header_generation(info->csum_root->node));
1792 btrfs_set_backup_csum_root_level(root_backup,
1793 btrfs_header_level(info->csum_root->node));
1794
1795 btrfs_set_backup_total_bytes(root_backup,
1796 btrfs_super_total_bytes(info->super_copy));
1797 btrfs_set_backup_bytes_used(root_backup,
1798 btrfs_super_bytes_used(info->super_copy));
1799 btrfs_set_backup_num_devices(root_backup,
1800 btrfs_super_num_devices(info->super_copy));
1801
1802 /*
1803 * if we don't copy this out to the super_copy, it won't get remembered
1804 * for the next commit
1805 */
1806 memcpy(&info->super_copy->super_roots,
1807 &info->super_for_commit->super_roots,
1808 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1809}
1810
1811/*
1812 * this copies info out of the root backup array and back into
1813 * the in-memory super block. It is meant to help iterate through
1814 * the array, so you send it the number of backups you've already
1815 * tried and the last backup index you used.
1816 *
1817 * this returns -1 when it has tried all the backups
1818 */
1819static noinline int next_root_backup(struct btrfs_fs_info *info,
1820 struct btrfs_super_block *super,
1821 int *num_backups_tried, int *backup_index)
1822{
1823 struct btrfs_root_backup *root_backup;
1824 int newest = *backup_index;
1825
1826 if (*num_backups_tried == 0) {
1827 u64 gen = btrfs_super_generation(super);
1828
1829 newest = find_newest_super_backup(info, gen);
1830 if (newest == -1)
1831 return -1;
1832
1833 *backup_index = newest;
1834 *num_backups_tried = 1;
1835 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1836 /* we've tried all the backups, all done */
1837 return -1;
1838 } else {
1839 /* jump to the next oldest backup */
1840 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1841 BTRFS_NUM_BACKUP_ROOTS;
1842 *backup_index = newest;
1843 *num_backups_tried += 1;
1844 }
1845 root_backup = super->super_roots + newest;
1846
1847 btrfs_set_super_generation(super,
1848 btrfs_backup_tree_root_gen(root_backup));
1849 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1850 btrfs_set_super_root_level(super,
1851 btrfs_backup_tree_root_level(root_backup));
1852 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1853
1854 /*
1855 * fixme: the total bytes and num_devices need to match or we should
1856 * need a fsck
1857 */
1858 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1859 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1860 return 0;
1861}
1862
1863/* helper to cleanup tree roots */
1864static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1865{
1866 free_extent_buffer(info->tree_root->node);
1867 free_extent_buffer(info->tree_root->commit_root);
1868 free_extent_buffer(info->dev_root->node);
1869 free_extent_buffer(info->dev_root->commit_root);
1870 free_extent_buffer(info->extent_root->node);
1871 free_extent_buffer(info->extent_root->commit_root);
1872 free_extent_buffer(info->csum_root->node);
1873 free_extent_buffer(info->csum_root->commit_root);
1874
1875 info->tree_root->node = NULL;
1876 info->tree_root->commit_root = NULL;
1877 info->dev_root->node = NULL;
1878 info->dev_root->commit_root = NULL;
1879 info->extent_root->node = NULL;
1880 info->extent_root->commit_root = NULL;
1881 info->csum_root->node = NULL;
1882 info->csum_root->commit_root = NULL;
1883
1884 if (chunk_root) {
1885 free_extent_buffer(info->chunk_root->node);
1886 free_extent_buffer(info->chunk_root->commit_root);
1887 info->chunk_root->node = NULL;
1888 info->chunk_root->commit_root = NULL;
1889 }
1890}
1891
1892
ad2b2c80
AV
1893int open_ctree(struct super_block *sb,
1894 struct btrfs_fs_devices *fs_devices,
1895 char *options)
2e635a27 1896{
db94535d
CM
1897 u32 sectorsize;
1898 u32 nodesize;
1899 u32 leafsize;
1900 u32 blocksize;
87ee04eb 1901 u32 stripesize;
84234f3a 1902 u64 generation;
f2b636e8 1903 u64 features;
3de4586c 1904 struct btrfs_key location;
a061fc8d 1905 struct buffer_head *bh;
4d34b278 1906 struct btrfs_super_block *disk_super;
815745cf 1907 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1908 struct btrfs_root *tree_root;
4d34b278
ID
1909 struct btrfs_root *extent_root;
1910 struct btrfs_root *csum_root;
1911 struct btrfs_root *chunk_root;
1912 struct btrfs_root *dev_root;
e02119d5 1913 struct btrfs_root *log_tree_root;
eb60ceac 1914 int ret;
e58ca020 1915 int err = -EINVAL;
af31f5e5
CM
1916 int num_backups_tried = 0;
1917 int backup_index = 0;
4543df7e 1918
f84a8bd6 1919 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1920 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1921 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1922 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1923 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1924
f84a8bd6
AV
1925 if (!tree_root || !extent_root || !csum_root ||
1926 !chunk_root || !dev_root) {
39279cc3
CM
1927 err = -ENOMEM;
1928 goto fail;
1929 }
76dda93c
YZ
1930
1931 ret = init_srcu_struct(&fs_info->subvol_srcu);
1932 if (ret) {
1933 err = ret;
1934 goto fail;
1935 }
1936
1937 ret = setup_bdi(fs_info, &fs_info->bdi);
1938 if (ret) {
1939 err = ret;
1940 goto fail_srcu;
1941 }
1942
1943 fs_info->btree_inode = new_inode(sb);
1944 if (!fs_info->btree_inode) {
1945 err = -ENOMEM;
1946 goto fail_bdi;
1947 }
1948
a6591715 1949 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1950
76dda93c 1951 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1952 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1953 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1954 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1955 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1956 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1957 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1958 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1959 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1960 spin_lock_init(&fs_info->trans_lock);
31153d81 1961 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1962 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1963 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1964 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1965 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1966 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1967
58176a96 1968 init_completion(&fs_info->kobj_unregister);
0b86a832 1969 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1970 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1971 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1972 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1973 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1974 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1975 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1976 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1977 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1978 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1979 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1980 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1981 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1982 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1983 fs_info->sb = sb;
6f568d35 1984 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1985 fs_info->metadata_ratio = 0;
4cb5300b 1986 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1987 fs_info->trans_no_join = 0;
2bf64758 1988 fs_info->free_chunk_space = 0;
c8b97818 1989
90519d66
AJ
1990 /* readahead state */
1991 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1992 spin_lock_init(&fs_info->reada_lock);
c8b97818 1993
b34b086c
CM
1994 fs_info->thread_pool_size = min_t(unsigned long,
1995 num_online_cpus() + 2, 8);
0afbaf8c 1996
3eaa2885
CM
1997 INIT_LIST_HEAD(&fs_info->ordered_extents);
1998 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1999 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2000 GFP_NOFS);
2001 if (!fs_info->delayed_root) {
2002 err = -ENOMEM;
2003 goto fail_iput;
2004 }
2005 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2006
a2de733c
AJ
2007 mutex_init(&fs_info->scrub_lock);
2008 atomic_set(&fs_info->scrubs_running, 0);
2009 atomic_set(&fs_info->scrub_pause_req, 0);
2010 atomic_set(&fs_info->scrubs_paused, 0);
2011 atomic_set(&fs_info->scrub_cancel_req, 0);
2012 init_waitqueue_head(&fs_info->scrub_pause_wait);
2013 init_rwsem(&fs_info->scrub_super_lock);
2014 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2015#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2016 fs_info->check_integrity_print_mask = 0;
2017#endif
a2de733c 2018
c9e9f97b
ID
2019 spin_lock_init(&fs_info->balance_lock);
2020 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2021 atomic_set(&fs_info->balance_running, 0);
2022 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2023 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2024 fs_info->balance_ctl = NULL;
837d5b6e 2025 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2026
a061fc8d
CM
2027 sb->s_blocksize = 4096;
2028 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2029 sb->s_bdi = &fs_info->bdi;
a061fc8d 2030
76dda93c 2031 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2032 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2033 /*
2034 * we set the i_size on the btree inode to the max possible int.
2035 * the real end of the address space is determined by all of
2036 * the devices in the system
2037 */
2038 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2039 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2040 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2041
5d4f98a2 2042 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2043 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2044 fs_info->btree_inode->i_mapping);
a8067e02 2045 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2046
2047 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2048
76dda93c
YZ
2049 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2050 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2051 sizeof(struct btrfs_key));
2052 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 2053 insert_inode_hash(fs_info->btree_inode);
76dda93c 2054
0f9dd46c 2055 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2056 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2057
11833d66 2058 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2059 fs_info->btree_inode->i_mapping);
11833d66 2060 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2061 fs_info->btree_inode->i_mapping);
11833d66 2062 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2063 fs_info->do_barriers = 1;
e18e4809 2064
39279cc3 2065
5a3f23d5 2066 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2067 mutex_init(&fs_info->tree_log_mutex);
925baedd 2068 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2069 mutex_init(&fs_info->transaction_kthread_mutex);
2070 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2071 mutex_init(&fs_info->volume_mutex);
276e680d 2072 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2073 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2074 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2075
2076 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2077 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2078
e6dcd2dc 2079 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2080 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2081 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2082 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2083
0b86a832 2084 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2085 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2086
a512bbf8 2087 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2088 if (!bh) {
2089 err = -EINVAL;
16cdcec7 2090 goto fail_alloc;
20b45077 2091 }
39279cc3 2092
6c41761f
DS
2093 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2094 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2095 sizeof(*fs_info->super_for_commit));
a061fc8d 2096 brelse(bh);
5f39d397 2097
6c41761f 2098 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2099
6c41761f 2100 disk_super = fs_info->super_copy;
0f7d52f4 2101 if (!btrfs_super_root(disk_super))
16cdcec7 2102 goto fail_alloc;
0f7d52f4 2103
acce952b 2104 /* check FS state, whether FS is broken. */
2105 fs_info->fs_state |= btrfs_super_flags(disk_super);
2106
2107 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2108
af31f5e5
CM
2109 /*
2110 * run through our array of backup supers and setup
2111 * our ring pointer to the oldest one
2112 */
2113 generation = btrfs_super_generation(disk_super);
2114 find_oldest_super_backup(fs_info, generation);
2115
75e7cb7f
LB
2116 /*
2117 * In the long term, we'll store the compression type in the super
2118 * block, and it'll be used for per file compression control.
2119 */
2120 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2121
2b82032c
YZ
2122 ret = btrfs_parse_options(tree_root, options);
2123 if (ret) {
2124 err = ret;
16cdcec7 2125 goto fail_alloc;
2b82032c 2126 }
dfe25020 2127
f2b636e8
JB
2128 features = btrfs_super_incompat_flags(disk_super) &
2129 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2130 if (features) {
2131 printk(KERN_ERR "BTRFS: couldn't mount because of "
2132 "unsupported optional features (%Lx).\n",
21380931 2133 (unsigned long long)features);
f2b636e8 2134 err = -EINVAL;
16cdcec7 2135 goto fail_alloc;
f2b636e8
JB
2136 }
2137
5d4f98a2 2138 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2139 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2140 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2141 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2142 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2143
f2b636e8
JB
2144 features = btrfs_super_compat_ro_flags(disk_super) &
2145 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2146 if (!(sb->s_flags & MS_RDONLY) && features) {
2147 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2148 "unsupported option features (%Lx).\n",
21380931 2149 (unsigned long long)features);
f2b636e8 2150 err = -EINVAL;
16cdcec7 2151 goto fail_alloc;
f2b636e8 2152 }
61d92c32
CM
2153
2154 btrfs_init_workers(&fs_info->generic_worker,
2155 "genwork", 1, NULL);
2156
5443be45 2157 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2158 fs_info->thread_pool_size,
2159 &fs_info->generic_worker);
c8b97818 2160
771ed689 2161 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2162 fs_info->thread_pool_size,
2163 &fs_info->generic_worker);
771ed689 2164
5443be45 2165 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2166 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2167 fs_info->thread_pool_size),
2168 &fs_info->generic_worker);
61b49440 2169
bab39bf9
JB
2170 btrfs_init_workers(&fs_info->caching_workers, "cache",
2171 2, &fs_info->generic_worker);
2172
61b49440
CM
2173 /* a higher idle thresh on the submit workers makes it much more
2174 * likely that bios will be send down in a sane order to the
2175 * devices
2176 */
2177 fs_info->submit_workers.idle_thresh = 64;
53863232 2178
771ed689 2179 fs_info->workers.idle_thresh = 16;
4a69a410 2180 fs_info->workers.ordered = 1;
61b49440 2181
771ed689
CM
2182 fs_info->delalloc_workers.idle_thresh = 2;
2183 fs_info->delalloc_workers.ordered = 1;
2184
61d92c32
CM
2185 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2186 &fs_info->generic_worker);
5443be45 2187 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2188 fs_info->thread_pool_size,
2189 &fs_info->generic_worker);
d20f7043 2190 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2191 fs_info->thread_pool_size,
2192 &fs_info->generic_worker);
cad321ad 2193 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2194 "endio-meta-write", fs_info->thread_pool_size,
2195 &fs_info->generic_worker);
5443be45 2196 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2197 fs_info->thread_pool_size,
2198 &fs_info->generic_worker);
0cb59c99
JB
2199 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2200 1, &fs_info->generic_worker);
16cdcec7
MX
2201 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2202 fs_info->thread_pool_size,
2203 &fs_info->generic_worker);
90519d66
AJ
2204 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2205 fs_info->thread_pool_size,
2206 &fs_info->generic_worker);
61b49440
CM
2207
2208 /*
2209 * endios are largely parallel and should have a very
2210 * low idle thresh
2211 */
2212 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2213 fs_info->endio_meta_workers.idle_thresh = 4;
2214
9042846b
CM
2215 fs_info->endio_write_workers.idle_thresh = 2;
2216 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2217 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2218
0dc3b84a
JB
2219 /*
2220 * btrfs_start_workers can really only fail because of ENOMEM so just
2221 * return -ENOMEM if any of these fail.
2222 */
2223 ret = btrfs_start_workers(&fs_info->workers);
2224 ret |= btrfs_start_workers(&fs_info->generic_worker);
2225 ret |= btrfs_start_workers(&fs_info->submit_workers);
2226 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2227 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2228 ret |= btrfs_start_workers(&fs_info->endio_workers);
2229 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2230 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2231 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2232 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2233 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2234 ret |= btrfs_start_workers(&fs_info->caching_workers);
2235 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2236 if (ret) {
2237 ret = -ENOMEM;
2238 goto fail_sb_buffer;
2239 }
4543df7e 2240
4575c9cc 2241 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2242 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2243 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2244
db94535d
CM
2245 nodesize = btrfs_super_nodesize(disk_super);
2246 leafsize = btrfs_super_leafsize(disk_super);
2247 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2248 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2249 tree_root->nodesize = nodesize;
2250 tree_root->leafsize = leafsize;
2251 tree_root->sectorsize = sectorsize;
87ee04eb 2252 tree_root->stripesize = stripesize;
a061fc8d
CM
2253
2254 sb->s_blocksize = sectorsize;
2255 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2256
39279cc3
CM
2257 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2258 sizeof(disk_super->magic))) {
d397712b 2259 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2260 goto fail_sb_buffer;
2261 }
19c00ddc 2262
941b2ddf
KM
2263 if (sectorsize < PAGE_SIZE) {
2264 printk(KERN_WARNING "btrfs: Incompatible sector size "
2265 "found on %s\n", sb->s_id);
2266 goto fail_sb_buffer;
2267 }
2268
925baedd 2269 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2270 ret = btrfs_read_sys_array(tree_root);
925baedd 2271 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2272 if (ret) {
d397712b
CM
2273 printk(KERN_WARNING "btrfs: failed to read the system "
2274 "array on %s\n", sb->s_id);
5d4f98a2 2275 goto fail_sb_buffer;
84eed90f 2276 }
0b86a832
CM
2277
2278 blocksize = btrfs_level_size(tree_root,
2279 btrfs_super_chunk_root_level(disk_super));
84234f3a 2280 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2281
2282 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2283 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2284
2285 chunk_root->node = read_tree_block(chunk_root,
2286 btrfs_super_chunk_root(disk_super),
84234f3a 2287 blocksize, generation);
0b86a832 2288 BUG_ON(!chunk_root->node);
83121942
DW
2289 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2290 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2291 sb->s_id);
af31f5e5 2292 goto fail_tree_roots;
83121942 2293 }
5d4f98a2
YZ
2294 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2295 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2296
e17cade2 2297 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2298 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2299 BTRFS_UUID_SIZE);
e17cade2 2300
0b86a832 2301 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2302 if (ret) {
d397712b
CM
2303 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2304 sb->s_id);
af31f5e5 2305 goto fail_tree_roots;
2b82032c 2306 }
0b86a832 2307
dfe25020
CM
2308 btrfs_close_extra_devices(fs_devices);
2309
a6b0d5c8
CM
2310 if (!fs_devices->latest_bdev) {
2311 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2312 sb->s_id);
2313 goto fail_tree_roots;
2314 }
2315
af31f5e5 2316retry_root_backup:
db94535d
CM
2317 blocksize = btrfs_level_size(tree_root,
2318 btrfs_super_root_level(disk_super));
84234f3a 2319 generation = btrfs_super_generation(disk_super);
0b86a832 2320
e20d96d6 2321 tree_root->node = read_tree_block(tree_root,
db94535d 2322 btrfs_super_root(disk_super),
84234f3a 2323 blocksize, generation);
af31f5e5
CM
2324 if (!tree_root->node ||
2325 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2326 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2327 sb->s_id);
af31f5e5
CM
2328
2329 goto recovery_tree_root;
83121942 2330 }
af31f5e5 2331
5d4f98a2
YZ
2332 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2333 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2334
2335 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2336 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2337 if (ret)
af31f5e5 2338 goto recovery_tree_root;
0b86a832
CM
2339 extent_root->track_dirty = 1;
2340
2341 ret = find_and_setup_root(tree_root, fs_info,
2342 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2343 if (ret)
af31f5e5 2344 goto recovery_tree_root;
5d4f98a2 2345 dev_root->track_dirty = 1;
3768f368 2346
d20f7043
CM
2347 ret = find_and_setup_root(tree_root, fs_info,
2348 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2349 if (ret)
af31f5e5 2350 goto recovery_tree_root;
d20f7043
CM
2351
2352 csum_root->track_dirty = 1;
2353
8929ecfa
YZ
2354 fs_info->generation = generation;
2355 fs_info->last_trans_committed = generation;
8929ecfa 2356
c59021f8 2357 ret = btrfs_init_space_info(fs_info);
2358 if (ret) {
2359 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2360 goto fail_block_groups;
2361 }
2362
1b1d1f66
JB
2363 ret = btrfs_read_block_groups(extent_root);
2364 if (ret) {
2365 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2366 goto fail_block_groups;
2367 }
9078a3e1 2368
a74a4b97
CM
2369 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2370 "btrfs-cleaner");
57506d50 2371 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2372 goto fail_block_groups;
a74a4b97
CM
2373
2374 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2375 tree_root,
2376 "btrfs-transaction");
57506d50 2377 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2378 goto fail_cleaner;
a74a4b97 2379
c289811c
CM
2380 if (!btrfs_test_opt(tree_root, SSD) &&
2381 !btrfs_test_opt(tree_root, NOSSD) &&
2382 !fs_info->fs_devices->rotating) {
2383 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2384 "mode\n");
2385 btrfs_set_opt(fs_info->mount_opt, SSD);
2386 }
2387
21adbd5c
SB
2388#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2389 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2390 ret = btrfsic_mount(tree_root, fs_devices,
2391 btrfs_test_opt(tree_root,
2392 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2393 1 : 0,
2394 fs_info->check_integrity_print_mask);
2395 if (ret)
2396 printk(KERN_WARNING "btrfs: failed to initialize"
2397 " integrity check module %s\n", sb->s_id);
2398 }
2399#endif
2400
acce952b 2401 /* do not make disk changes in broken FS */
2402 if (btrfs_super_log_root(disk_super) != 0 &&
2403 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2404 u64 bytenr = btrfs_super_log_root(disk_super);
2405
7c2ca468 2406 if (fs_devices->rw_devices == 0) {
d397712b
CM
2407 printk(KERN_WARNING "Btrfs log replay required "
2408 "on RO media\n");
7c2ca468
CM
2409 err = -EIO;
2410 goto fail_trans_kthread;
2411 }
e02119d5
CM
2412 blocksize =
2413 btrfs_level_size(tree_root,
2414 btrfs_super_log_root_level(disk_super));
d18a2c44 2415
6f07e42e 2416 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2417 if (!log_tree_root) {
2418 err = -ENOMEM;
2419 goto fail_trans_kthread;
2420 }
e02119d5
CM
2421
2422 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2423 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2424
2425 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2426 blocksize,
2427 generation + 1);
e02119d5
CM
2428 ret = btrfs_recover_log_trees(log_tree_root);
2429 BUG_ON(ret);
e556ce2c
YZ
2430
2431 if (sb->s_flags & MS_RDONLY) {
2432 ret = btrfs_commit_super(tree_root);
2433 BUG_ON(ret);
2434 }
e02119d5 2435 }
1a40e23b 2436
76dda93c
YZ
2437 ret = btrfs_find_orphan_roots(tree_root);
2438 BUG_ON(ret);
2439
7c2ca468 2440 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2441 ret = btrfs_cleanup_fs_roots(fs_info);
2442 BUG_ON(ret);
2443
5d4f98a2 2444 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2445 if (ret < 0) {
2446 printk(KERN_WARNING
2447 "btrfs: failed to recover relocation\n");
2448 err = -EINVAL;
2449 goto fail_trans_kthread;
2450 }
7c2ca468 2451 }
1a40e23b 2452
3de4586c
CM
2453 location.objectid = BTRFS_FS_TREE_OBJECTID;
2454 location.type = BTRFS_ROOT_ITEM_KEY;
2455 location.offset = (u64)-1;
2456
3de4586c
CM
2457 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2458 if (!fs_info->fs_root)
7c2ca468 2459 goto fail_trans_kthread;
3140c9a3
DC
2460 if (IS_ERR(fs_info->fs_root)) {
2461 err = PTR_ERR(fs_info->fs_root);
2462 goto fail_trans_kthread;
2463 }
c289811c 2464
e3acc2a6
JB
2465 if (!(sb->s_flags & MS_RDONLY)) {
2466 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2467 err = btrfs_orphan_cleanup(fs_info->fs_root);
2468 if (!err)
2469 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2470 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2471
2472 if (!err)
2473 err = btrfs_recover_balance(fs_info->tree_root);
2474
66b4ffd1
JB
2475 if (err) {
2476 close_ctree(tree_root);
ad2b2c80 2477 return err;
66b4ffd1 2478 }
e3acc2a6
JB
2479 }
2480
ad2b2c80 2481 return 0;
39279cc3 2482
7c2ca468
CM
2483fail_trans_kthread:
2484 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2485fail_cleaner:
a74a4b97 2486 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2487
2488 /*
2489 * make sure we're done with the btree inode before we stop our
2490 * kthreads
2491 */
2492 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2493 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2494
1b1d1f66
JB
2495fail_block_groups:
2496 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2497
2498fail_tree_roots:
2499 free_root_pointers(fs_info, 1);
2500
39279cc3 2501fail_sb_buffer:
61d92c32 2502 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2503 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2504 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2505 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2506 btrfs_stop_workers(&fs_info->workers);
2507 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2508 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2509 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2510 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2511 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2512 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2513 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2514 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2515fail_alloc:
4543df7e 2516fail_iput:
586e46e2
ID
2517 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2518
7c2ca468 2519 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2520 iput(fs_info->btree_inode);
ad081f14 2521fail_bdi:
7e662854 2522 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2523fail_srcu:
2524 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2525fail:
586e46e2 2526 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2527 return err;
af31f5e5
CM
2528
2529recovery_tree_root:
af31f5e5
CM
2530 if (!btrfs_test_opt(tree_root, RECOVERY))
2531 goto fail_tree_roots;
2532
2533 free_root_pointers(fs_info, 0);
2534
2535 /* don't use the log in recovery mode, it won't be valid */
2536 btrfs_set_super_log_root(disk_super, 0);
2537
2538 /* we can't trust the free space cache either */
2539 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2540
2541 ret = next_root_backup(fs_info, fs_info->super_copy,
2542 &num_backups_tried, &backup_index);
2543 if (ret == -1)
2544 goto fail_block_groups;
2545 goto retry_root_backup;
eb60ceac
CM
2546}
2547
f2984462
CM
2548static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2549{
2550 char b[BDEVNAME_SIZE];
2551
2552 if (uptodate) {
2553 set_buffer_uptodate(bh);
2554 } else {
7a36ddec 2555 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2556 "I/O error on %s\n",
2557 bdevname(bh->b_bdev, b));
1259ab75
CM
2558 /* note, we dont' set_buffer_write_io_error because we have
2559 * our own ways of dealing with the IO errors
2560 */
f2984462
CM
2561 clear_buffer_uptodate(bh);
2562 }
2563 unlock_buffer(bh);
2564 put_bh(bh);
2565}
2566
a512bbf8
YZ
2567struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2568{
2569 struct buffer_head *bh;
2570 struct buffer_head *latest = NULL;
2571 struct btrfs_super_block *super;
2572 int i;
2573 u64 transid = 0;
2574 u64 bytenr;
2575
2576 /* we would like to check all the supers, but that would make
2577 * a btrfs mount succeed after a mkfs from a different FS.
2578 * So, we need to add a special mount option to scan for
2579 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2580 */
2581 for (i = 0; i < 1; i++) {
2582 bytenr = btrfs_sb_offset(i);
2583 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2584 break;
2585 bh = __bread(bdev, bytenr / 4096, 4096);
2586 if (!bh)
2587 continue;
2588
2589 super = (struct btrfs_super_block *)bh->b_data;
2590 if (btrfs_super_bytenr(super) != bytenr ||
2591 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2592 sizeof(super->magic))) {
2593 brelse(bh);
2594 continue;
2595 }
2596
2597 if (!latest || btrfs_super_generation(super) > transid) {
2598 brelse(latest);
2599 latest = bh;
2600 transid = btrfs_super_generation(super);
2601 } else {
2602 brelse(bh);
2603 }
2604 }
2605 return latest;
2606}
2607
4eedeb75
HH
2608/*
2609 * this should be called twice, once with wait == 0 and
2610 * once with wait == 1. When wait == 0 is done, all the buffer heads
2611 * we write are pinned.
2612 *
2613 * They are released when wait == 1 is done.
2614 * max_mirrors must be the same for both runs, and it indicates how
2615 * many supers on this one device should be written.
2616 *
2617 * max_mirrors == 0 means to write them all.
2618 */
a512bbf8
YZ
2619static int write_dev_supers(struct btrfs_device *device,
2620 struct btrfs_super_block *sb,
2621 int do_barriers, int wait, int max_mirrors)
2622{
2623 struct buffer_head *bh;
2624 int i;
2625 int ret;
2626 int errors = 0;
2627 u32 crc;
2628 u64 bytenr;
a512bbf8
YZ
2629
2630 if (max_mirrors == 0)
2631 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2632
a512bbf8
YZ
2633 for (i = 0; i < max_mirrors; i++) {
2634 bytenr = btrfs_sb_offset(i);
2635 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2636 break;
2637
2638 if (wait) {
2639 bh = __find_get_block(device->bdev, bytenr / 4096,
2640 BTRFS_SUPER_INFO_SIZE);
2641 BUG_ON(!bh);
a512bbf8 2642 wait_on_buffer(bh);
4eedeb75
HH
2643 if (!buffer_uptodate(bh))
2644 errors++;
2645
2646 /* drop our reference */
2647 brelse(bh);
2648
2649 /* drop the reference from the wait == 0 run */
2650 brelse(bh);
2651 continue;
a512bbf8
YZ
2652 } else {
2653 btrfs_set_super_bytenr(sb, bytenr);
2654
2655 crc = ~(u32)0;
2656 crc = btrfs_csum_data(NULL, (char *)sb +
2657 BTRFS_CSUM_SIZE, crc,
2658 BTRFS_SUPER_INFO_SIZE -
2659 BTRFS_CSUM_SIZE);
2660 btrfs_csum_final(crc, sb->csum);
2661
4eedeb75
HH
2662 /*
2663 * one reference for us, and we leave it for the
2664 * caller
2665 */
a512bbf8
YZ
2666 bh = __getblk(device->bdev, bytenr / 4096,
2667 BTRFS_SUPER_INFO_SIZE);
2668 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2669
4eedeb75 2670 /* one reference for submit_bh */
a512bbf8 2671 get_bh(bh);
4eedeb75
HH
2672
2673 set_buffer_uptodate(bh);
a512bbf8
YZ
2674 lock_buffer(bh);
2675 bh->b_end_io = btrfs_end_buffer_write_sync;
2676 }
2677
387125fc
CM
2678 /*
2679 * we fua the first super. The others we allow
2680 * to go down lazy.
2681 */
21adbd5c 2682 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2683 if (ret)
a512bbf8 2684 errors++;
a512bbf8
YZ
2685 }
2686 return errors < i ? 0 : -1;
2687}
2688
387125fc
CM
2689/*
2690 * endio for the write_dev_flush, this will wake anyone waiting
2691 * for the barrier when it is done
2692 */
2693static void btrfs_end_empty_barrier(struct bio *bio, int err)
2694{
2695 if (err) {
2696 if (err == -EOPNOTSUPP)
2697 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2698 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2699 }
2700 if (bio->bi_private)
2701 complete(bio->bi_private);
2702 bio_put(bio);
2703}
2704
2705/*
2706 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2707 * sent down. With wait == 1, it waits for the previous flush.
2708 *
2709 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2710 * capable
2711 */
2712static int write_dev_flush(struct btrfs_device *device, int wait)
2713{
2714 struct bio *bio;
2715 int ret = 0;
2716
2717 if (device->nobarriers)
2718 return 0;
2719
2720 if (wait) {
2721 bio = device->flush_bio;
2722 if (!bio)
2723 return 0;
2724
2725 wait_for_completion(&device->flush_wait);
2726
2727 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2728 printk("btrfs: disabling barriers on dev %s\n",
2729 device->name);
2730 device->nobarriers = 1;
2731 }
2732 if (!bio_flagged(bio, BIO_UPTODATE)) {
2733 ret = -EIO;
2734 }
2735
2736 /* drop the reference from the wait == 0 run */
2737 bio_put(bio);
2738 device->flush_bio = NULL;
2739
2740 return ret;
2741 }
2742
2743 /*
2744 * one reference for us, and we leave it for the
2745 * caller
2746 */
2747 device->flush_bio = NULL;;
2748 bio = bio_alloc(GFP_NOFS, 0);
2749 if (!bio)
2750 return -ENOMEM;
2751
2752 bio->bi_end_io = btrfs_end_empty_barrier;
2753 bio->bi_bdev = device->bdev;
2754 init_completion(&device->flush_wait);
2755 bio->bi_private = &device->flush_wait;
2756 device->flush_bio = bio;
2757
2758 bio_get(bio);
21adbd5c 2759 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2760
2761 return 0;
2762}
2763
2764/*
2765 * send an empty flush down to each device in parallel,
2766 * then wait for them
2767 */
2768static int barrier_all_devices(struct btrfs_fs_info *info)
2769{
2770 struct list_head *head;
2771 struct btrfs_device *dev;
2772 int errors = 0;
2773 int ret;
2774
2775 /* send down all the barriers */
2776 head = &info->fs_devices->devices;
2777 list_for_each_entry_rcu(dev, head, dev_list) {
2778 if (!dev->bdev) {
2779 errors++;
2780 continue;
2781 }
2782 if (!dev->in_fs_metadata || !dev->writeable)
2783 continue;
2784
2785 ret = write_dev_flush(dev, 0);
2786 if (ret)
2787 errors++;
2788 }
2789
2790 /* wait for all the barriers */
2791 list_for_each_entry_rcu(dev, head, dev_list) {
2792 if (!dev->bdev) {
2793 errors++;
2794 continue;
2795 }
2796 if (!dev->in_fs_metadata || !dev->writeable)
2797 continue;
2798
2799 ret = write_dev_flush(dev, 1);
2800 if (ret)
2801 errors++;
2802 }
2803 if (errors)
2804 return -EIO;
2805 return 0;
2806}
2807
a512bbf8 2808int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2809{
e5e9a520 2810 struct list_head *head;
f2984462 2811 struct btrfs_device *dev;
a061fc8d 2812 struct btrfs_super_block *sb;
f2984462 2813 struct btrfs_dev_item *dev_item;
f2984462
CM
2814 int ret;
2815 int do_barriers;
a236aed1
CM
2816 int max_errors;
2817 int total_errors = 0;
a061fc8d 2818 u64 flags;
f2984462 2819
6c41761f 2820 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2821 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2822 backup_super_roots(root->fs_info);
f2984462 2823
6c41761f 2824 sb = root->fs_info->super_for_commit;
a061fc8d 2825 dev_item = &sb->dev_item;
e5e9a520 2826
174ba509 2827 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2828 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2829
2830 if (do_barriers)
2831 barrier_all_devices(root->fs_info);
2832
1f78160c 2833 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2834 if (!dev->bdev) {
2835 total_errors++;
2836 continue;
2837 }
2b82032c 2838 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2839 continue;
2840
2b82032c 2841 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2842 btrfs_set_stack_device_type(dev_item, dev->type);
2843 btrfs_set_stack_device_id(dev_item, dev->devid);
2844 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2845 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2846 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2847 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2848 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2849 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2850 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2851
a061fc8d
CM
2852 flags = btrfs_super_flags(sb);
2853 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2854
a512bbf8 2855 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2856 if (ret)
2857 total_errors++;
f2984462 2858 }
a236aed1 2859 if (total_errors > max_errors) {
d397712b
CM
2860 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2861 total_errors);
a236aed1
CM
2862 BUG();
2863 }
f2984462 2864
a512bbf8 2865 total_errors = 0;
1f78160c 2866 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2867 if (!dev->bdev)
2868 continue;
2b82032c 2869 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2870 continue;
2871
a512bbf8
YZ
2872 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2873 if (ret)
2874 total_errors++;
f2984462 2875 }
174ba509 2876 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2877 if (total_errors > max_errors) {
d397712b
CM
2878 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2879 total_errors);
a236aed1
CM
2880 BUG();
2881 }
f2984462
CM
2882 return 0;
2883}
2884
a512bbf8
YZ
2885int write_ctree_super(struct btrfs_trans_handle *trans,
2886 struct btrfs_root *root, int max_mirrors)
eb60ceac 2887{
e66f709b 2888 int ret;
5f39d397 2889
a512bbf8 2890 ret = write_all_supers(root, max_mirrors);
5f39d397 2891 return ret;
cfaa7295
CM
2892}
2893
5eda7b5e 2894int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2895{
4df27c4d 2896 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2897 radix_tree_delete(&fs_info->fs_roots_radix,
2898 (unsigned long)root->root_key.objectid);
4df27c4d 2899 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2900
2901 if (btrfs_root_refs(&root->root_item) == 0)
2902 synchronize_srcu(&fs_info->subvol_srcu);
2903
581bb050
LZ
2904 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2905 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2906 free_fs_root(root);
2907 return 0;
2908}
2909
2910static void free_fs_root(struct btrfs_root *root)
2911{
82d5902d 2912 iput(root->cache_inode);
4df27c4d 2913 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2914 if (root->anon_dev)
2915 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2916 free_extent_buffer(root->node);
2917 free_extent_buffer(root->commit_root);
581bb050
LZ
2918 kfree(root->free_ino_ctl);
2919 kfree(root->free_ino_pinned);
d397712b 2920 kfree(root->name);
2619ba1f 2921 kfree(root);
2619ba1f
CM
2922}
2923
35b7e476 2924static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2925{
2926 int ret;
2927 struct btrfs_root *gang[8];
2928 int i;
2929
76dda93c
YZ
2930 while (!list_empty(&fs_info->dead_roots)) {
2931 gang[0] = list_entry(fs_info->dead_roots.next,
2932 struct btrfs_root, root_list);
2933 list_del(&gang[0]->root_list);
2934
2935 if (gang[0]->in_radix) {
2936 btrfs_free_fs_root(fs_info, gang[0]);
2937 } else {
2938 free_extent_buffer(gang[0]->node);
2939 free_extent_buffer(gang[0]->commit_root);
2940 kfree(gang[0]);
2941 }
2942 }
2943
d397712b 2944 while (1) {
0f7d52f4
CM
2945 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2946 (void **)gang, 0,
2947 ARRAY_SIZE(gang));
2948 if (!ret)
2949 break;
2619ba1f 2950 for (i = 0; i < ret; i++)
5eda7b5e 2951 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2952 }
2953 return 0;
2954}
b4100d64 2955
c146afad 2956int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2957{
c146afad
YZ
2958 u64 root_objectid = 0;
2959 struct btrfs_root *gang[8];
2960 int i;
3768f368 2961 int ret;
e089f05c 2962
c146afad
YZ
2963 while (1) {
2964 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2965 (void **)gang, root_objectid,
2966 ARRAY_SIZE(gang));
2967 if (!ret)
2968 break;
5d4f98a2
YZ
2969
2970 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2971 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2972 int err;
2973
c146afad 2974 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2975 err = btrfs_orphan_cleanup(gang[i]);
2976 if (err)
2977 return err;
c146afad
YZ
2978 }
2979 root_objectid++;
2980 }
2981 return 0;
2982}
a2135011 2983
c146afad
YZ
2984int btrfs_commit_super(struct btrfs_root *root)
2985{
2986 struct btrfs_trans_handle *trans;
2987 int ret;
a74a4b97 2988
c146afad 2989 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2990 btrfs_run_delayed_iputs(root);
a74a4b97 2991 btrfs_clean_old_snapshots(root);
c146afad 2992 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2993
2994 /* wait until ongoing cleanup work done */
2995 down_write(&root->fs_info->cleanup_work_sem);
2996 up_write(&root->fs_info->cleanup_work_sem);
2997
7a7eaa40 2998 trans = btrfs_join_transaction(root);
3612b495
TI
2999 if (IS_ERR(trans))
3000 return PTR_ERR(trans);
54aa1f4d 3001 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
3002 BUG_ON(ret);
3003 /* run commit again to drop the original snapshot */
7a7eaa40 3004 trans = btrfs_join_transaction(root);
3612b495
TI
3005 if (IS_ERR(trans))
3006 return PTR_ERR(trans);
79154b1b
CM
3007 btrfs_commit_transaction(trans, root);
3008 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 3009 BUG_ON(ret);
d6bfde87 3010
a512bbf8 3011 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3012 return ret;
3013}
3014
3015int close_ctree(struct btrfs_root *root)
3016{
3017 struct btrfs_fs_info *fs_info = root->fs_info;
3018 int ret;
3019
3020 fs_info->closing = 1;
3021 smp_mb();
3022
837d5b6e
ID
3023 /* pause restriper - we want to resume on mount */
3024 btrfs_pause_balance(root->fs_info);
3025
a2de733c 3026 btrfs_scrub_cancel(root);
4cb5300b
CM
3027
3028 /* wait for any defraggers to finish */
3029 wait_event(fs_info->transaction_wait,
3030 (atomic_read(&fs_info->defrag_running) == 0));
3031
3032 /* clear out the rbtree of defraggable inodes */
e3029d9f 3033 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3034
acce952b 3035 /*
3036 * Here come 2 situations when btrfs is broken to flip readonly:
3037 *
3038 * 1. when btrfs flips readonly somewhere else before
3039 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3040 * and btrfs will skip to write sb directly to keep
3041 * ERROR state on disk.
3042 *
3043 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3044 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3045 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3046 * btrfs will cleanup all FS resources first and write sb then.
3047 */
c146afad 3048 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3049 ret = btrfs_commit_super(root);
3050 if (ret)
3051 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3052 }
3053
3054 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3055 ret = btrfs_error_commit_super(root);
d397712b
CM
3056 if (ret)
3057 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3058 }
0f7d52f4 3059
300e4f8a
JB
3060 btrfs_put_block_group_cache(fs_info);
3061
e3029d9f
AV
3062 kthread_stop(fs_info->transaction_kthread);
3063 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3064
f25784b3
YZ
3065 fs_info->closing = 2;
3066 smp_mb();
3067
b0c68f8b 3068 if (fs_info->delalloc_bytes) {
d397712b 3069 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3070 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3071 }
31153d81 3072 if (fs_info->total_ref_cache_size) {
d397712b
CM
3073 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3074 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3075 }
bcc63abb 3076
5d4f98a2
YZ
3077 free_extent_buffer(fs_info->extent_root->node);
3078 free_extent_buffer(fs_info->extent_root->commit_root);
3079 free_extent_buffer(fs_info->tree_root->node);
3080 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3081 free_extent_buffer(fs_info->chunk_root->node);
3082 free_extent_buffer(fs_info->chunk_root->commit_root);
3083 free_extent_buffer(fs_info->dev_root->node);
3084 free_extent_buffer(fs_info->dev_root->commit_root);
3085 free_extent_buffer(fs_info->csum_root->node);
3086 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3087
e3029d9f 3088 btrfs_free_block_groups(fs_info);
d10c5f31 3089
c146afad 3090 del_fs_roots(fs_info);
d10c5f31 3091
c146afad 3092 iput(fs_info->btree_inode);
9ad6b7bc 3093
61d92c32 3094 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3095 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3096 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3097 btrfs_stop_workers(&fs_info->workers);
3098 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3099 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3100 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3101 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3102 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3103 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3104 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3105 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3106 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3107
21adbd5c
SB
3108#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3109 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3110 btrfsic_unmount(root, fs_info->fs_devices);
3111#endif
3112
dfe25020 3113 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3114 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3115
04160088 3116 bdi_destroy(&fs_info->bdi);
76dda93c 3117 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3118
eb60ceac
CM
3119 return 0;
3120}
3121
1259ab75 3122int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3123{
1259ab75 3124 int ret;
810191ff 3125 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 3126
2ac55d41
JB
3127 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3128 NULL);
1259ab75
CM
3129 if (!ret)
3130 return ret;
3131
3132 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3133 parent_transid);
3134 return !ret;
5f39d397
CM
3135}
3136
3137int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3138{
810191ff 3139 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 3140 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3141 buf);
3142}
6702ed49 3143
5f39d397
CM
3144void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3145{
810191ff 3146 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
3147 u64 transid = btrfs_header_generation(buf);
3148 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3149 int was_dirty;
b4ce94de 3150
b9447ef8 3151 btrfs_assert_tree_locked(buf);
ccd467d6 3152 if (transid != root->fs_info->generation) {
d397712b
CM
3153 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3154 "found %llu running %llu\n",
db94535d 3155 (unsigned long long)buf->start,
d397712b
CM
3156 (unsigned long long)transid,
3157 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3158 WARN_ON(1);
3159 }
b9473439
CM
3160 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3161 buf);
3162 if (!was_dirty) {
3163 spin_lock(&root->fs_info->delalloc_lock);
3164 root->fs_info->dirty_metadata_bytes += buf->len;
3165 spin_unlock(&root->fs_info->delalloc_lock);
3166 }
eb60ceac
CM
3167}
3168
d3c2fdcf 3169void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3170{
3171 /*
3172 * looks as though older kernels can get into trouble with
3173 * this code, they end up stuck in balance_dirty_pages forever
3174 */
3175 u64 num_dirty;
3176 unsigned long thresh = 32 * 1024 * 1024;
3177
3178 if (current->flags & PF_MEMALLOC)
3179 return;
3180
3181 btrfs_balance_delayed_items(root);
3182
3183 num_dirty = root->fs_info->dirty_metadata_bytes;
3184
3185 if (num_dirty > thresh) {
3186 balance_dirty_pages_ratelimited_nr(
3187 root->fs_info->btree_inode->i_mapping, 1);
3188 }
3189 return;
3190}
3191
3192void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3193{
188de649
CM
3194 /*
3195 * looks as though older kernels can get into trouble with
3196 * this code, they end up stuck in balance_dirty_pages forever
3197 */
d6bfde87 3198 u64 num_dirty;
771ed689 3199 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3200
6933c02e 3201 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3202 return;
3203
585ad2c3
CM
3204 num_dirty = root->fs_info->dirty_metadata_bytes;
3205
d6bfde87
CM
3206 if (num_dirty > thresh) {
3207 balance_dirty_pages_ratelimited_nr(
d7fc640e 3208 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3209 }
188de649 3210 return;
35b7e476 3211}
6b80053d 3212
ca7a79ad 3213int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3214{
810191ff 3215 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 3216 int ret;
ca7a79ad 3217 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3218 if (ret == 0)
b4ce94de 3219 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3220 return ret;
6b80053d 3221}
0da5468f 3222
01d658f2
CM
3223static int btree_lock_page_hook(struct page *page, void *data,
3224 void (*flush_fn)(void *))
4bef0848
CM
3225{
3226 struct inode *inode = page->mapping->host;
b9473439 3227 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
3228 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3229 struct extent_buffer *eb;
3230 unsigned long len;
3231 u64 bytenr = page_offset(page);
3232
3233 if (page->private == EXTENT_PAGE_PRIVATE)
3234 goto out;
3235
3236 len = page->private >> 2;
f09d1f60 3237 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
3238 if (!eb)
3239 goto out;
3240
01d658f2
CM
3241 if (!btrfs_try_tree_write_lock(eb)) {
3242 flush_fn(data);
3243 btrfs_tree_lock(eb);
3244 }
4bef0848 3245 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3246
3247 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3248 spin_lock(&root->fs_info->delalloc_lock);
3249 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3250 root->fs_info->dirty_metadata_bytes -= eb->len;
3251 else
3252 WARN_ON(1);
3253 spin_unlock(&root->fs_info->delalloc_lock);
3254 }
3255
4bef0848
CM
3256 btrfs_tree_unlock(eb);
3257 free_extent_buffer(eb);
3258out:
01d658f2
CM
3259 if (!trylock_page(page)) {
3260 flush_fn(data);
3261 lock_page(page);
3262 }
4bef0848
CM
3263 return 0;
3264}
3265
acce952b 3266static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3267 int read_only)
3268{
3269 if (read_only)
3270 return;
3271
3272 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3273 printk(KERN_WARNING "warning: mount fs with errors, "
3274 "running btrfsck is recommended\n");
3275}
3276
3277int btrfs_error_commit_super(struct btrfs_root *root)
3278{
3279 int ret;
3280
3281 mutex_lock(&root->fs_info->cleaner_mutex);
3282 btrfs_run_delayed_iputs(root);
3283 mutex_unlock(&root->fs_info->cleaner_mutex);
3284
3285 down_write(&root->fs_info->cleanup_work_sem);
3286 up_write(&root->fs_info->cleanup_work_sem);
3287
3288 /* cleanup FS via transaction */
3289 btrfs_cleanup_transaction(root);
3290
3291 ret = write_ctree_super(NULL, root, 0);
3292
3293 return ret;
3294}
3295
3296static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3297{
3298 struct btrfs_inode *btrfs_inode;
3299 struct list_head splice;
3300
3301 INIT_LIST_HEAD(&splice);
3302
3303 mutex_lock(&root->fs_info->ordered_operations_mutex);
3304 spin_lock(&root->fs_info->ordered_extent_lock);
3305
3306 list_splice_init(&root->fs_info->ordered_operations, &splice);
3307 while (!list_empty(&splice)) {
3308 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3309 ordered_operations);
3310
3311 list_del_init(&btrfs_inode->ordered_operations);
3312
3313 btrfs_invalidate_inodes(btrfs_inode->root);
3314 }
3315
3316 spin_unlock(&root->fs_info->ordered_extent_lock);
3317 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3318
3319 return 0;
3320}
3321
3322static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3323{
3324 struct list_head splice;
3325 struct btrfs_ordered_extent *ordered;
3326 struct inode *inode;
3327
3328 INIT_LIST_HEAD(&splice);
3329
3330 spin_lock(&root->fs_info->ordered_extent_lock);
3331
3332 list_splice_init(&root->fs_info->ordered_extents, &splice);
3333 while (!list_empty(&splice)) {
3334 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3335 root_extent_list);
3336
3337 list_del_init(&ordered->root_extent_list);
3338 atomic_inc(&ordered->refs);
3339
3340 /* the inode may be getting freed (in sys_unlink path). */
3341 inode = igrab(ordered->inode);
3342
3343 spin_unlock(&root->fs_info->ordered_extent_lock);
3344 if (inode)
3345 iput(inode);
3346
3347 atomic_set(&ordered->refs, 1);
3348 btrfs_put_ordered_extent(ordered);
3349
3350 spin_lock(&root->fs_info->ordered_extent_lock);
3351 }
3352
3353 spin_unlock(&root->fs_info->ordered_extent_lock);
3354
3355 return 0;
3356}
3357
3358static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3359 struct btrfs_root *root)
3360{
3361 struct rb_node *node;
3362 struct btrfs_delayed_ref_root *delayed_refs;
3363 struct btrfs_delayed_ref_node *ref;
3364 int ret = 0;
3365
3366 delayed_refs = &trans->delayed_refs;
3367
3368 spin_lock(&delayed_refs->lock);
3369 if (delayed_refs->num_entries == 0) {
cfece4db 3370 spin_unlock(&delayed_refs->lock);
acce952b 3371 printk(KERN_INFO "delayed_refs has NO entry\n");
3372 return ret;
3373 }
3374
3375 node = rb_first(&delayed_refs->root);
3376 while (node) {
3377 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3378 node = rb_next(node);
3379
3380 ref->in_tree = 0;
3381 rb_erase(&ref->rb_node, &delayed_refs->root);
3382 delayed_refs->num_entries--;
3383
3384 atomic_set(&ref->refs, 1);
3385 if (btrfs_delayed_ref_is_head(ref)) {
3386 struct btrfs_delayed_ref_head *head;
3387
3388 head = btrfs_delayed_node_to_head(ref);
3389 mutex_lock(&head->mutex);
3390 kfree(head->extent_op);
3391 delayed_refs->num_heads--;
3392 if (list_empty(&head->cluster))
3393 delayed_refs->num_heads_ready--;
3394 list_del_init(&head->cluster);
3395 mutex_unlock(&head->mutex);
3396 }
3397
3398 spin_unlock(&delayed_refs->lock);
3399 btrfs_put_delayed_ref(ref);
3400
3401 cond_resched();
3402 spin_lock(&delayed_refs->lock);
3403 }
3404
3405 spin_unlock(&delayed_refs->lock);
3406
3407 return ret;
3408}
3409
3410static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3411{
3412 struct btrfs_pending_snapshot *snapshot;
3413 struct list_head splice;
3414
3415 INIT_LIST_HEAD(&splice);
3416
3417 list_splice_init(&t->pending_snapshots, &splice);
3418
3419 while (!list_empty(&splice)) {
3420 snapshot = list_entry(splice.next,
3421 struct btrfs_pending_snapshot,
3422 list);
3423
3424 list_del_init(&snapshot->list);
3425
3426 kfree(snapshot);
3427 }
3428
3429 return 0;
3430}
3431
3432static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3433{
3434 struct btrfs_inode *btrfs_inode;
3435 struct list_head splice;
3436
3437 INIT_LIST_HEAD(&splice);
3438
acce952b 3439 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3440 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3441
3442 while (!list_empty(&splice)) {
3443 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3444 delalloc_inodes);
3445
3446 list_del_init(&btrfs_inode->delalloc_inodes);
3447
3448 btrfs_invalidate_inodes(btrfs_inode->root);
3449 }
3450
3451 spin_unlock(&root->fs_info->delalloc_lock);
3452
3453 return 0;
3454}
3455
3456static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3457 struct extent_io_tree *dirty_pages,
3458 int mark)
3459{
3460 int ret;
3461 struct page *page;
3462 struct inode *btree_inode = root->fs_info->btree_inode;
3463 struct extent_buffer *eb;
3464 u64 start = 0;
3465 u64 end;
3466 u64 offset;
3467 unsigned long index;
3468
3469 while (1) {
3470 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3471 mark);
3472 if (ret)
3473 break;
3474
3475 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3476 while (start <= end) {
3477 index = start >> PAGE_CACHE_SHIFT;
3478 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3479 page = find_get_page(btree_inode->i_mapping, index);
3480 if (!page)
3481 continue;
3482 offset = page_offset(page);
3483
3484 spin_lock(&dirty_pages->buffer_lock);
3485 eb = radix_tree_lookup(
3486 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3487 offset >> PAGE_CACHE_SHIFT);
3488 spin_unlock(&dirty_pages->buffer_lock);
3489 if (eb) {
3490 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3491 &eb->bflags);
3492 atomic_set(&eb->refs, 1);
3493 }
3494 if (PageWriteback(page))
3495 end_page_writeback(page);
3496
3497 lock_page(page);
3498 if (PageDirty(page)) {
3499 clear_page_dirty_for_io(page);
3500 spin_lock_irq(&page->mapping->tree_lock);
3501 radix_tree_tag_clear(&page->mapping->page_tree,
3502 page_index(page),
3503 PAGECACHE_TAG_DIRTY);
3504 spin_unlock_irq(&page->mapping->tree_lock);
3505 }
3506
3507 page->mapping->a_ops->invalidatepage(page, 0);
3508 unlock_page(page);
3509 }
3510 }
3511
3512 return ret;
3513}
3514
3515static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3516 struct extent_io_tree *pinned_extents)
3517{
3518 struct extent_io_tree *unpin;
3519 u64 start;
3520 u64 end;
3521 int ret;
3522
3523 unpin = pinned_extents;
3524 while (1) {
3525 ret = find_first_extent_bit(unpin, 0, &start, &end,
3526 EXTENT_DIRTY);
3527 if (ret)
3528 break;
3529
3530 /* opt_discard */
5378e607
LD
3531 if (btrfs_test_opt(root, DISCARD))
3532 ret = btrfs_error_discard_extent(root, start,
3533 end + 1 - start,
3534 NULL);
acce952b 3535
3536 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3537 btrfs_error_unpin_extent_range(root, start, end);
3538 cond_resched();
3539 }
3540
3541 return 0;
3542}
3543
3544static int btrfs_cleanup_transaction(struct btrfs_root *root)
3545{
3546 struct btrfs_transaction *t;
3547 LIST_HEAD(list);
3548
3549 WARN_ON(1);
3550
acce952b 3551 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3552
a4abeea4 3553 spin_lock(&root->fs_info->trans_lock);
acce952b 3554 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3555 root->fs_info->trans_no_join = 1;
3556 spin_unlock(&root->fs_info->trans_lock);
3557
acce952b 3558 while (!list_empty(&list)) {
3559 t = list_entry(list.next, struct btrfs_transaction, list);
3560 if (!t)
3561 break;
3562
3563 btrfs_destroy_ordered_operations(root);
3564
3565 btrfs_destroy_ordered_extents(root);
3566
3567 btrfs_destroy_delayed_refs(t, root);
3568
3569 btrfs_block_rsv_release(root,
3570 &root->fs_info->trans_block_rsv,
3571 t->dirty_pages.dirty_bytes);
3572
3573 /* FIXME: cleanup wait for commit */
3574 t->in_commit = 1;
3575 t->blocked = 1;
3576 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3577 wake_up(&root->fs_info->transaction_blocked_wait);
3578
3579 t->blocked = 0;
3580 if (waitqueue_active(&root->fs_info->transaction_wait))
3581 wake_up(&root->fs_info->transaction_wait);
acce952b 3582
acce952b 3583 t->commit_done = 1;
3584 if (waitqueue_active(&t->commit_wait))
3585 wake_up(&t->commit_wait);
acce952b 3586
3587 btrfs_destroy_pending_snapshots(t);
3588
3589 btrfs_destroy_delalloc_inodes(root);
3590
a4abeea4 3591 spin_lock(&root->fs_info->trans_lock);
acce952b 3592 root->fs_info->running_transaction = NULL;
a4abeea4 3593 spin_unlock(&root->fs_info->trans_lock);
acce952b 3594
3595 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3596 EXTENT_DIRTY);
3597
3598 btrfs_destroy_pinned_extent(root,
3599 root->fs_info->pinned_extents);
3600
13c5a93e 3601 atomic_set(&t->use_count, 0);
acce952b 3602 list_del_init(&t->list);
3603 memset(t, 0, sizeof(*t));
3604 kmem_cache_free(btrfs_transaction_cachep, t);
3605 }
3606
a4abeea4
JB
3607 spin_lock(&root->fs_info->trans_lock);
3608 root->fs_info->trans_no_join = 0;
3609 spin_unlock(&root->fs_info->trans_lock);
acce952b 3610 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3611
3612 return 0;
3613}
3614
d1310b2e 3615static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3616 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3617 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3618 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3619 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3620 /* note we're sharing with inode.c for the merge bio hook */
3621 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3622};