Btrfs: fix deadlock running delayed iputs at transaction commit time
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
70f6d82e 45#include "free-space-tree.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
fcebe456 52#include "qgroup.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
e8c9f186 58static const struct extent_io_ops btree_extent_io_ops;
8b712842 59static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 60static void free_fs_root(struct btrfs_root *root);
fcd1f065 61static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 62 int read_only);
143bede5 63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
143bede5 66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 67static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
48a3b636
ES
72static int btrfs_cleanup_transaction(struct btrfs_root *root);
73static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 74
d352ac68 75/*
97eb6b69
DS
76 * btrfs_end_io_wq structs are used to do processing in task context when an IO
77 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
78 * by writes to insert metadata for new file extents after IO is complete.
79 */
97eb6b69 80struct btrfs_end_io_wq {
ce9adaa5
CM
81 struct bio *bio;
82 bio_end_io_t *end_io;
83 void *private;
84 struct btrfs_fs_info *info;
85 int error;
bfebd8b5 86 enum btrfs_wq_endio_type metadata;
ce9adaa5 87 struct list_head list;
8b712842 88 struct btrfs_work work;
ce9adaa5 89};
0da5468f 90
97eb6b69
DS
91static struct kmem_cache *btrfs_end_io_wq_cache;
92
93int __init btrfs_end_io_wq_init(void)
94{
95 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
96 sizeof(struct btrfs_end_io_wq),
97 0,
98 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
99 NULL);
100 if (!btrfs_end_io_wq_cache)
101 return -ENOMEM;
102 return 0;
103}
104
105void btrfs_end_io_wq_exit(void)
106{
107 if (btrfs_end_io_wq_cache)
108 kmem_cache_destroy(btrfs_end_io_wq_cache);
109}
110
d352ac68
CM
111/*
112 * async submit bios are used to offload expensive checksumming
113 * onto the worker threads. They checksum file and metadata bios
114 * just before they are sent down the IO stack.
115 */
44b8bd7e
CM
116struct async_submit_bio {
117 struct inode *inode;
118 struct bio *bio;
119 struct list_head list;
4a69a410
CM
120 extent_submit_bio_hook_t *submit_bio_start;
121 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
122 int rw;
123 int mirror_num;
c8b97818 124 unsigned long bio_flags;
eaf25d93
CM
125 /*
126 * bio_offset is optional, can be used if the pages in the bio
127 * can't tell us where in the file the bio should go
128 */
129 u64 bio_offset;
8b712842 130 struct btrfs_work work;
79787eaa 131 int error;
44b8bd7e
CM
132};
133
85d4e461
CM
134/*
135 * Lockdep class keys for extent_buffer->lock's in this root. For a given
136 * eb, the lockdep key is determined by the btrfs_root it belongs to and
137 * the level the eb occupies in the tree.
138 *
139 * Different roots are used for different purposes and may nest inside each
140 * other and they require separate keysets. As lockdep keys should be
141 * static, assign keysets according to the purpose of the root as indicated
142 * by btrfs_root->objectid. This ensures that all special purpose roots
143 * have separate keysets.
4008c04a 144 *
85d4e461
CM
145 * Lock-nesting across peer nodes is always done with the immediate parent
146 * node locked thus preventing deadlock. As lockdep doesn't know this, use
147 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 148 *
85d4e461
CM
149 * The key is set by the readpage_end_io_hook after the buffer has passed
150 * csum validation but before the pages are unlocked. It is also set by
151 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 152 *
85d4e461
CM
153 * We also add a check to make sure the highest level of the tree is the
154 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
155 * needs update as well.
4008c04a
CM
156 */
157#ifdef CONFIG_DEBUG_LOCK_ALLOC
158# if BTRFS_MAX_LEVEL != 8
159# error
160# endif
85d4e461
CM
161
162static struct btrfs_lockdep_keyset {
163 u64 id; /* root objectid */
164 const char *name_stem; /* lock name stem */
165 char names[BTRFS_MAX_LEVEL + 1][20];
166 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
167} btrfs_lockdep_keysets[] = {
168 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
169 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
170 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
171 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
172 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
173 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 174 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
175 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
176 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
177 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 178 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 179 { .id = 0, .name_stem = "tree" },
4008c04a 180};
85d4e461
CM
181
182void __init btrfs_init_lockdep(void)
183{
184 int i, j;
185
186 /* initialize lockdep class names */
187 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
188 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
189
190 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
191 snprintf(ks->names[j], sizeof(ks->names[j]),
192 "btrfs-%s-%02d", ks->name_stem, j);
193 }
194}
195
196void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
197 int level)
198{
199 struct btrfs_lockdep_keyset *ks;
200
201 BUG_ON(level >= ARRAY_SIZE(ks->keys));
202
203 /* find the matching keyset, id 0 is the default entry */
204 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
205 if (ks->id == objectid)
206 break;
207
208 lockdep_set_class_and_name(&eb->lock,
209 &ks->keys[level], ks->names[level]);
210}
211
4008c04a
CM
212#endif
213
d352ac68
CM
214/*
215 * extents on the btree inode are pretty simple, there's one extent
216 * that covers the entire device
217 */
b2950863 218static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 219 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 220 int create)
7eccb903 221{
5f39d397
CM
222 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
223 struct extent_map *em;
224 int ret;
225
890871be 226 read_lock(&em_tree->lock);
d1310b2e 227 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
228 if (em) {
229 em->bdev =
230 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 231 read_unlock(&em_tree->lock);
5f39d397 232 goto out;
a061fc8d 233 }
890871be 234 read_unlock(&em_tree->lock);
7b13b7b1 235
172ddd60 236 em = alloc_extent_map();
5f39d397
CM
237 if (!em) {
238 em = ERR_PTR(-ENOMEM);
239 goto out;
240 }
241 em->start = 0;
0afbaf8c 242 em->len = (u64)-1;
c8b97818 243 em->block_len = (u64)-1;
5f39d397 244 em->block_start = 0;
a061fc8d 245 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 246
890871be 247 write_lock(&em_tree->lock);
09a2a8f9 248 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
249 if (ret == -EEXIST) {
250 free_extent_map(em);
7b13b7b1 251 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 252 if (!em)
0433f20d 253 em = ERR_PTR(-EIO);
5f39d397 254 } else if (ret) {
7b13b7b1 255 free_extent_map(em);
0433f20d 256 em = ERR_PTR(ret);
5f39d397 257 }
890871be 258 write_unlock(&em_tree->lock);
7b13b7b1 259
5f39d397
CM
260out:
261 return em;
7eccb903
CM
262}
263
b0496686 264u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 265{
0b947aff 266 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
267}
268
269void btrfs_csum_final(u32 crc, char *result)
270{
7e75bf3f 271 put_unaligned_le32(~crc, result);
19c00ddc
CM
272}
273
d352ac68
CM
274/*
275 * compute the csum for a btree block, and either verify it or write it
276 * into the csum field of the block.
277 */
01d58472
DD
278static int csum_tree_block(struct btrfs_fs_info *fs_info,
279 struct extent_buffer *buf,
19c00ddc
CM
280 int verify)
281{
01d58472 282 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 283 char *result = NULL;
19c00ddc
CM
284 unsigned long len;
285 unsigned long cur_len;
286 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
287 char *kaddr;
288 unsigned long map_start;
289 unsigned long map_len;
290 int err;
291 u32 crc = ~(u32)0;
607d432d 292 unsigned long inline_result;
19c00ddc
CM
293
294 len = buf->len - offset;
d397712b 295 while (len > 0) {
19c00ddc 296 err = map_private_extent_buffer(buf, offset, 32,
a6591715 297 &kaddr, &map_start, &map_len);
d397712b 298 if (err)
19c00ddc 299 return 1;
19c00ddc 300 cur_len = min(len, map_len - (offset - map_start));
b0496686 301 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
302 crc, cur_len);
303 len -= cur_len;
304 offset += cur_len;
19c00ddc 305 }
607d432d 306 if (csum_size > sizeof(inline_result)) {
31e818fe 307 result = kzalloc(csum_size, GFP_NOFS);
607d432d
JB
308 if (!result)
309 return 1;
310 } else {
311 result = (char *)&inline_result;
312 }
313
19c00ddc
CM
314 btrfs_csum_final(crc, result);
315
316 if (verify) {
607d432d 317 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
318 u32 val;
319 u32 found = 0;
607d432d 320 memcpy(&found, result, csum_size);
e4204ded 321
607d432d 322 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
323 btrfs_warn_rl(fs_info,
324 "%s checksum verify failed on %llu wanted %X found %X "
325 "level %d",
01d58472 326 fs_info->sb->s_id, buf->start,
efe120a0 327 val, found, btrfs_header_level(buf));
607d432d
JB
328 if (result != (char *)&inline_result)
329 kfree(result);
19c00ddc
CM
330 return 1;
331 }
332 } else {
607d432d 333 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 334 }
607d432d
JB
335 if (result != (char *)&inline_result)
336 kfree(result);
19c00ddc
CM
337 return 0;
338}
339
d352ac68
CM
340/*
341 * we can't consider a given block up to date unless the transid of the
342 * block matches the transid in the parent node's pointer. This is how we
343 * detect blocks that either didn't get written at all or got written
344 * in the wrong place.
345 */
1259ab75 346static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
347 struct extent_buffer *eb, u64 parent_transid,
348 int atomic)
1259ab75 349{
2ac55d41 350 struct extent_state *cached_state = NULL;
1259ab75 351 int ret;
2755a0de 352 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
353
354 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
355 return 0;
356
b9fab919
CM
357 if (atomic)
358 return -EAGAIN;
359
a26e8c9f
JB
360 if (need_lock) {
361 btrfs_tree_read_lock(eb);
362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
363 }
364
2ac55d41 365 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 366 &cached_state);
0b32f4bb 367 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
368 btrfs_header_generation(eb) == parent_transid) {
369 ret = 0;
370 goto out;
371 }
94647322
DS
372 btrfs_err_rl(eb->fs_info,
373 "parent transid verify failed on %llu wanted %llu found %llu",
374 eb->start,
29549aec 375 parent_transid, btrfs_header_generation(eb));
1259ab75 376 ret = 1;
a26e8c9f
JB
377
378 /*
379 * Things reading via commit roots that don't have normal protection,
380 * like send, can have a really old block in cache that may point at a
381 * block that has been free'd and re-allocated. So don't clear uptodate
382 * if we find an eb that is under IO (dirty/writeback) because we could
383 * end up reading in the stale data and then writing it back out and
384 * making everybody very sad.
385 */
386 if (!extent_buffer_under_io(eb))
387 clear_extent_buffer_uptodate(eb);
33958dc6 388out:
2ac55d41
JB
389 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
390 &cached_state, GFP_NOFS);
472b909f
JB
391 if (need_lock)
392 btrfs_tree_read_unlock_blocking(eb);
1259ab75 393 return ret;
1259ab75
CM
394}
395
1104a885
DS
396/*
397 * Return 0 if the superblock checksum type matches the checksum value of that
398 * algorithm. Pass the raw disk superblock data.
399 */
400static int btrfs_check_super_csum(char *raw_disk_sb)
401{
402 struct btrfs_super_block *disk_sb =
403 (struct btrfs_super_block *)raw_disk_sb;
404 u16 csum_type = btrfs_super_csum_type(disk_sb);
405 int ret = 0;
406
407 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
408 u32 crc = ~(u32)0;
409 const int csum_size = sizeof(crc);
410 char result[csum_size];
411
412 /*
413 * The super_block structure does not span the whole
414 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
415 * is filled with zeros and is included in the checkum.
416 */
417 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
418 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
419 btrfs_csum_final(crc, result);
420
421 if (memcmp(raw_disk_sb, result, csum_size))
422 ret = 1;
423 }
424
425 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 426 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
427 csum_type);
428 ret = 1;
429 }
430
431 return ret;
432}
433
d352ac68
CM
434/*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
437 */
f188591e
CM
438static int btree_read_extent_buffer_pages(struct btrfs_root *root,
439 struct extent_buffer *eb,
ca7a79ad 440 u64 start, u64 parent_transid)
f188591e
CM
441{
442 struct extent_io_tree *io_tree;
ea466794 443 int failed = 0;
f188591e
CM
444 int ret;
445 int num_copies = 0;
446 int mirror_num = 0;
ea466794 447 int failed_mirror = 0;
f188591e 448
a826d6dc 449 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
450 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
451 while (1) {
bb82ab88
AJ
452 ret = read_extent_buffer_pages(io_tree, eb, start,
453 WAIT_COMPLETE,
f188591e 454 btree_get_extent, mirror_num);
256dd1bb
SB
455 if (!ret) {
456 if (!verify_parent_transid(io_tree, eb,
b9fab919 457 parent_transid, 0))
256dd1bb
SB
458 break;
459 else
460 ret = -EIO;
461 }
d397712b 462
a826d6dc
JB
463 /*
464 * This buffer's crc is fine, but its contents are corrupted, so
465 * there is no reason to read the other copies, they won't be
466 * any less wrong.
467 */
468 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
469 break;
470
5d964051 471 num_copies = btrfs_num_copies(root->fs_info,
f188591e 472 eb->start, eb->len);
4235298e 473 if (num_copies == 1)
ea466794 474 break;
4235298e 475
5cf1ab56
JB
476 if (!failed_mirror) {
477 failed = 1;
478 failed_mirror = eb->read_mirror;
479 }
480
f188591e 481 mirror_num++;
ea466794
JB
482 if (mirror_num == failed_mirror)
483 mirror_num++;
484
4235298e 485 if (mirror_num > num_copies)
ea466794 486 break;
f188591e 487 }
ea466794 488
c0901581 489 if (failed && !ret && failed_mirror)
ea466794
JB
490 repair_eb_io_failure(root, eb, failed_mirror);
491
492 return ret;
f188591e 493}
19c00ddc 494
d352ac68 495/*
d397712b
CM
496 * checksum a dirty tree block before IO. This has extra checks to make sure
497 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 498 */
d397712b 499
01d58472 500static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 501{
4eee4fa4 502 u64 start = page_offset(page);
19c00ddc 503 u64 found_start;
19c00ddc 504 struct extent_buffer *eb;
f188591e 505
4f2de97a
JB
506 eb = (struct extent_buffer *)page->private;
507 if (page != eb->pages[0])
508 return 0;
19c00ddc 509 found_start = btrfs_header_bytenr(eb);
fae7f21c 510 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 511 return 0;
01d58472 512 csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
513 return 0;
514}
515
01d58472 516static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
517 struct extent_buffer *eb)
518{
01d58472 519 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
520 u8 fsid[BTRFS_UUID_SIZE];
521 int ret = 1;
522
0a4e5586 523 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
524 while (fs_devices) {
525 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
526 ret = 0;
527 break;
528 }
529 fs_devices = fs_devices->seed;
530 }
531 return ret;
532}
533
a826d6dc 534#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
535 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
536 "root=%llu, slot=%d", reason, \
c1c9ff7c 537 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
538
539static noinline int check_leaf(struct btrfs_root *root,
540 struct extent_buffer *leaf)
541{
542 struct btrfs_key key;
543 struct btrfs_key leaf_key;
544 u32 nritems = btrfs_header_nritems(leaf);
545 int slot;
546
547 if (nritems == 0)
548 return 0;
549
550 /* Check the 0 item */
551 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
552 BTRFS_LEAF_DATA_SIZE(root)) {
553 CORRUPT("invalid item offset size pair", leaf, root, 0);
554 return -EIO;
555 }
556
557 /*
558 * Check to make sure each items keys are in the correct order and their
559 * offsets make sense. We only have to loop through nritems-1 because
560 * we check the current slot against the next slot, which verifies the
561 * next slot's offset+size makes sense and that the current's slot
562 * offset is correct.
563 */
564 for (slot = 0; slot < nritems - 1; slot++) {
565 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
566 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
567
568 /* Make sure the keys are in the right order */
569 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
570 CORRUPT("bad key order", leaf, root, slot);
571 return -EIO;
572 }
573
574 /*
575 * Make sure the offset and ends are right, remember that the
576 * item data starts at the end of the leaf and grows towards the
577 * front.
578 */
579 if (btrfs_item_offset_nr(leaf, slot) !=
580 btrfs_item_end_nr(leaf, slot + 1)) {
581 CORRUPT("slot offset bad", leaf, root, slot);
582 return -EIO;
583 }
584
585 /*
586 * Check to make sure that we don't point outside of the leaf,
587 * just incase all the items are consistent to eachother, but
588 * all point outside of the leaf.
589 */
590 if (btrfs_item_end_nr(leaf, slot) >
591 BTRFS_LEAF_DATA_SIZE(root)) {
592 CORRUPT("slot end outside of leaf", leaf, root, slot);
593 return -EIO;
594 }
595 }
596
597 return 0;
598}
599
facc8a22
MX
600static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
601 u64 phy_offset, struct page *page,
602 u64 start, u64 end, int mirror)
ce9adaa5 603{
ce9adaa5
CM
604 u64 found_start;
605 int found_level;
ce9adaa5
CM
606 struct extent_buffer *eb;
607 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 608 int ret = 0;
727011e0 609 int reads_done;
ce9adaa5 610
ce9adaa5
CM
611 if (!page->private)
612 goto out;
d397712b 613
4f2de97a 614 eb = (struct extent_buffer *)page->private;
d397712b 615
0b32f4bb
JB
616 /* the pending IO might have been the only thing that kept this buffer
617 * in memory. Make sure we have a ref for all this other checks
618 */
619 extent_buffer_get(eb);
620
621 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
622 if (!reads_done)
623 goto err;
f188591e 624
5cf1ab56 625 eb->read_mirror = mirror;
656f30db 626 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
627 ret = -EIO;
628 goto err;
629 }
630
ce9adaa5 631 found_start = btrfs_header_bytenr(eb);
727011e0 632 if (found_start != eb->start) {
94647322
DS
633 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
634 found_start, eb->start);
f188591e 635 ret = -EIO;
ce9adaa5
CM
636 goto err;
637 }
01d58472 638 if (check_tree_block_fsid(root->fs_info, eb)) {
94647322
DS
639 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
640 eb->start);
1259ab75
CM
641 ret = -EIO;
642 goto err;
643 }
ce9adaa5 644 found_level = btrfs_header_level(eb);
1c24c3ce 645 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 646 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
ce9adaa5 651
85d4e461
CM
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
4008c04a 654
01d58472 655 ret = csum_tree_block(root->fs_info, eb, 1);
a826d6dc 656 if (ret) {
f188591e 657 ret = -EIO;
a826d6dc
JB
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
ce9adaa5 670
0b32f4bb
JB
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
ce9adaa5 673err:
79fb65a1
JB
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 676 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 677
53b381b3
DW
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
0b32f4bb 685 clear_extent_buffer_uptodate(eb);
53b381b3 686 }
0b32f4bb 687 free_extent_buffer(eb);
ce9adaa5 688out:
f188591e 689 return ret;
ce9adaa5
CM
690}
691
ea466794 692static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 693{
4bb31e92
AJ
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
4f2de97a 697 eb = (struct extent_buffer *)page->private;
656f30db 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 699 eb->read_mirror = failed_mirror;
53b381b3 700 atomic_dec(&eb->io_pages);
ea466794 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 702 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
703 return -EIO; /* we fixed nothing */
704}
705
4246a0b6 706static void end_workqueue_bio(struct bio *bio)
ce9adaa5 707{
97eb6b69 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 709 struct btrfs_fs_info *fs_info;
9e0af237
LB
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
4246a0b6 714 end_io_wq->error = bio->bi_error;
d20f7043 715
7b6d91da 716 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
d20f7043 730 } else {
8b110e39
MX
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
d20f7043 745 }
9e0af237
LB
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
749}
750
22c59948 751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 752 enum btrfs_wq_endio_type metadata)
0b86a832 753{
97eb6b69 754 struct btrfs_end_io_wq *end_io_wq;
8b110e39 755
97eb6b69 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
22c59948 762 end_io_wq->info = info;
ce9adaa5
CM
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
22c59948 765 end_io_wq->metadata = metadata;
ce9adaa5
CM
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
769 return 0;
770}
771
b64a2851 772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 773{
4854ddd0 774 unsigned long limit = min_t(unsigned long,
5cdc7ad3 775 info->thread_pool_size,
4854ddd0
CM
776 info->fs_devices->open_devices);
777 return 256 * limit;
778}
0986fe9e 779
4a69a410
CM
780static void run_one_async_start(struct btrfs_work *work)
781{
4a69a410 782 struct async_submit_bio *async;
79787eaa 783 int ret;
4a69a410
CM
784
785 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
4a69a410
CM
791}
792
793static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
794{
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
4854ddd0 797 int limit;
8b712842
CM
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 801
b64a2851 802 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
803 limit = limit * 2 / 3;
804
ee863954
DS
805 /*
806 * atomic_dec_return implies a barrier for waitqueue_active
807 */
66657b31 808 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 809 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
810 wake_up(&fs_info->async_submit_wait);
811
79787eaa
JM
812 /* If an error occured we just want to clean up the bio and move on */
813 if (async->error) {
4246a0b6
CH
814 async->bio->bi_error = async->error;
815 bio_endio(async->bio);
79787eaa
JM
816 return;
817 }
818
4a69a410 819 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
820 async->mirror_num, async->bio_flags,
821 async->bio_offset);
4a69a410
CM
822}
823
824static void run_one_async_free(struct btrfs_work *work)
825{
826 struct async_submit_bio *async;
827
828 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
829 kfree(async);
830}
831
44b8bd7e
CM
832int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
833 int rw, struct bio *bio, int mirror_num,
c8b97818 834 unsigned long bio_flags,
eaf25d93 835 u64 bio_offset,
4a69a410
CM
836 extent_submit_bio_hook_t *submit_bio_start,
837 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
838{
839 struct async_submit_bio *async;
840
841 async = kmalloc(sizeof(*async), GFP_NOFS);
842 if (!async)
843 return -ENOMEM;
844
845 async->inode = inode;
846 async->rw = rw;
847 async->bio = bio;
848 async->mirror_num = mirror_num;
4a69a410
CM
849 async->submit_bio_start = submit_bio_start;
850 async->submit_bio_done = submit_bio_done;
851
9e0af237 852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 853 run_one_async_done, run_one_async_free);
4a69a410 854
c8b97818 855 async->bio_flags = bio_flags;
eaf25d93 856 async->bio_offset = bio_offset;
8c8bee1d 857
79787eaa
JM
858 async->error = 0;
859
cb03c743 860 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 861
7b6d91da 862 if (rw & REQ_SYNC)
5cdc7ad3 863 btrfs_set_work_high_priority(&async->work);
d313d7a3 864
5cdc7ad3 865 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 866
d397712b 867 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
868 atomic_read(&fs_info->nr_async_submits)) {
869 wait_event(fs_info->async_submit_wait,
870 (atomic_read(&fs_info->nr_async_submits) == 0));
871 }
872
44b8bd7e
CM
873 return 0;
874}
875
ce3ed71a
CM
876static int btree_csum_one_bio(struct bio *bio)
877{
2c30c71b 878 struct bio_vec *bvec;
ce3ed71a 879 struct btrfs_root *root;
2c30c71b 880 int i, ret = 0;
ce3ed71a 881
2c30c71b 882 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 883 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 884 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
885 if (ret)
886 break;
ce3ed71a 887 }
2c30c71b 888
79787eaa 889 return ret;
ce3ed71a
CM
890}
891
4a69a410
CM
892static int __btree_submit_bio_start(struct inode *inode, int rw,
893 struct bio *bio, int mirror_num,
eaf25d93
CM
894 unsigned long bio_flags,
895 u64 bio_offset)
22c59948 896{
8b712842
CM
897 /*
898 * when we're called for a write, we're already in the async
5443be45 899 * submission context. Just jump into btrfs_map_bio
8b712842 900 */
79787eaa 901 return btree_csum_one_bio(bio);
4a69a410 902}
22c59948 903
4a69a410 904static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
905 int mirror_num, unsigned long bio_flags,
906 u64 bio_offset)
4a69a410 907{
61891923
SB
908 int ret;
909
8b712842 910 /*
4a69a410
CM
911 * when we're called for a write, we're already in the async
912 * submission context. Just jump into btrfs_map_bio
8b712842 913 */
61891923 914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
915 if (ret) {
916 bio->bi_error = ret;
917 bio_endio(bio);
918 }
61891923 919 return ret;
0b86a832
CM
920}
921
de0022b9
JB
922static int check_async_write(struct inode *inode, unsigned long bio_flags)
923{
924 if (bio_flags & EXTENT_BIO_TREE_LOG)
925 return 0;
926#ifdef CONFIG_X86
927 if (cpu_has_xmm4_2)
928 return 0;
929#endif
930 return 1;
931}
932
44b8bd7e 933static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
934 int mirror_num, unsigned long bio_flags,
935 u64 bio_offset)
44b8bd7e 936{
de0022b9 937 int async = check_async_write(inode, bio_flags);
cad321ad
CM
938 int ret;
939
7b6d91da 940 if (!(rw & REQ_WRITE)) {
4a69a410
CM
941 /*
942 * called for a read, do the setup so that checksum validation
943 * can happen in the async kernel threads
944 */
f3f266ab 945 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 946 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 947 if (ret)
61891923
SB
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
de0022b9
JB
951 } else if (!async) {
952 ret = btree_csum_one_bio(bio);
953 if (ret)
61891923
SB
954 goto out_w_error;
955 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
956 mirror_num, 0);
957 } else {
958 /*
959 * kthread helpers are used to submit writes so that
960 * checksumming can happen in parallel across all CPUs
961 */
962 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
963 inode, rw, bio, mirror_num, 0,
964 bio_offset,
965 __btree_submit_bio_start,
966 __btree_submit_bio_done);
44b8bd7e 967 }
d313d7a3 968
4246a0b6
CH
969 if (ret)
970 goto out_w_error;
971 return 0;
972
61891923 973out_w_error:
4246a0b6
CH
974 bio->bi_error = ret;
975 bio_endio(bio);
61891923 976 return ret;
44b8bd7e
CM
977}
978
3dd1462e 979#ifdef CONFIG_MIGRATION
784b4e29 980static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
981 struct page *newpage, struct page *page,
982 enum migrate_mode mode)
784b4e29
CM
983{
984 /*
985 * we can't safely write a btree page from here,
986 * we haven't done the locking hook
987 */
988 if (PageDirty(page))
989 return -EAGAIN;
990 /*
991 * Buffers may be managed in a filesystem specific way.
992 * We must have no buffers or drop them.
993 */
994 if (page_has_private(page) &&
995 !try_to_release_page(page, GFP_KERNEL))
996 return -EAGAIN;
a6bc32b8 997 return migrate_page(mapping, newpage, page, mode);
784b4e29 998}
3dd1462e 999#endif
784b4e29 1000
0da5468f
CM
1001
1002static int btree_writepages(struct address_space *mapping,
1003 struct writeback_control *wbc)
1004{
e2d84521
MX
1005 struct btrfs_fs_info *fs_info;
1006 int ret;
1007
d8d5f3e1 1008 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1009
1010 if (wbc->for_kupdate)
1011 return 0;
1012
e2d84521 1013 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1014 /* this is a bit racy, but that's ok */
e2d84521
MX
1015 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1016 BTRFS_DIRTY_METADATA_THRESH);
1017 if (ret < 0)
793955bc 1018 return 0;
793955bc 1019 }
0b32f4bb 1020 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1021}
1022
b2950863 1023static int btree_readpage(struct file *file, struct page *page)
5f39d397 1024{
d1310b2e
CM
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1027 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1028}
22b0ebda 1029
70dec807 1030static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1031{
98509cfc 1032 if (PageWriteback(page) || PageDirty(page))
d397712b 1033 return 0;
0c4e538b 1034
f7a52a40 1035 return try_release_extent_buffer(page);
d98237b3
CM
1036}
1037
d47992f8
LC
1038static void btree_invalidatepage(struct page *page, unsigned int offset,
1039 unsigned int length)
d98237b3 1040{
d1310b2e
CM
1041 struct extent_io_tree *tree;
1042 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1043 extent_invalidatepage(tree, page, offset);
1044 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1045 if (PagePrivate(page)) {
efe120a0
FH
1046 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1047 "page private not zero on page %llu",
1048 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1049 ClearPagePrivate(page);
1050 set_page_private(page, 0);
1051 page_cache_release(page);
1052 }
d98237b3
CM
1053}
1054
0b32f4bb
JB
1055static int btree_set_page_dirty(struct page *page)
1056{
bb146eb2 1057#ifdef DEBUG
0b32f4bb
JB
1058 struct extent_buffer *eb;
1059
1060 BUG_ON(!PagePrivate(page));
1061 eb = (struct extent_buffer *)page->private;
1062 BUG_ON(!eb);
1063 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1064 BUG_ON(!atomic_read(&eb->refs));
1065 btrfs_assert_tree_locked(eb);
bb146eb2 1066#endif
0b32f4bb
JB
1067 return __set_page_dirty_nobuffers(page);
1068}
1069
7f09410b 1070static const struct address_space_operations btree_aops = {
d98237b3 1071 .readpage = btree_readpage,
0da5468f 1072 .writepages = btree_writepages,
5f39d397
CM
1073 .releasepage = btree_releasepage,
1074 .invalidatepage = btree_invalidatepage,
5a92bc88 1075#ifdef CONFIG_MIGRATION
784b4e29 1076 .migratepage = btree_migratepage,
5a92bc88 1077#endif
0b32f4bb 1078 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1079};
1080
d3e46fea 1081void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1082{
5f39d397
CM
1083 struct extent_buffer *buf = NULL;
1084 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1085
a83fffb7 1086 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1087 if (!buf)
6197d86e 1088 return;
d1310b2e 1089 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1090 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1091 free_extent_buffer(buf);
090d1875
CM
1092}
1093
c0dcaa4d 1094int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1095 int mirror_num, struct extent_buffer **eb)
1096{
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1100 int ret;
1101
a83fffb7 1102 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1103 if (!buf)
1104 return 0;
1105
1106 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1107
1108 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1109 btree_get_extent, mirror_num);
1110 if (ret) {
1111 free_extent_buffer(buf);
1112 return ret;
1113 }
1114
1115 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1116 free_extent_buffer(buf);
1117 return -EIO;
0b32f4bb 1118 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1119 *eb = buf;
1120 } else {
1121 free_extent_buffer(buf);
1122 }
1123 return 0;
1124}
1125
01d58472 1126struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1127 u64 bytenr)
0999df54 1128{
01d58472 1129 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1130}
1131
1132struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1133 u64 bytenr)
0999df54 1134{
fccb84c9 1135 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1136 return alloc_test_extent_buffer(root->fs_info, bytenr);
1137 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1138}
1139
1140
e02119d5
CM
1141int btrfs_write_tree_block(struct extent_buffer *buf)
1142{
727011e0 1143 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1144 buf->start + buf->len - 1);
e02119d5
CM
1145}
1146
1147int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1148{
727011e0 1149 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1150 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1151}
1152
0999df54 1153struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1154 u64 parent_transid)
0999df54
CM
1155{
1156 struct extent_buffer *buf = NULL;
0999df54
CM
1157 int ret;
1158
a83fffb7 1159 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1160 if (!buf)
64c043de 1161 return ERR_PTR(-ENOMEM);
0999df54 1162
ca7a79ad 1163 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1164 if (ret) {
1165 free_extent_buffer(buf);
64c043de 1166 return ERR_PTR(ret);
0f0fe8f7 1167 }
5f39d397 1168 return buf;
ce9adaa5 1169
eb60ceac
CM
1170}
1171
01d58472
DD
1172void clean_tree_block(struct btrfs_trans_handle *trans,
1173 struct btrfs_fs_info *fs_info,
d5c13f92 1174 struct extent_buffer *buf)
ed2ff2cb 1175{
55c69072 1176 if (btrfs_header_generation(buf) ==
e2d84521 1177 fs_info->running_transaction->transid) {
b9447ef8 1178 btrfs_assert_tree_locked(buf);
b4ce94de 1179
b9473439 1180 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1181 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1182 -buf->len,
1183 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1184 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1185 btrfs_set_lock_blocking(buf);
1186 clear_extent_buffer_dirty(buf);
1187 }
925baedd 1188 }
5f39d397
CM
1189}
1190
8257b2dc
MX
1191static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1192{
1193 struct btrfs_subvolume_writers *writers;
1194 int ret;
1195
1196 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1197 if (!writers)
1198 return ERR_PTR(-ENOMEM);
1199
908c7f19 1200 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1201 if (ret < 0) {
1202 kfree(writers);
1203 return ERR_PTR(ret);
1204 }
1205
1206 init_waitqueue_head(&writers->wait);
1207 return writers;
1208}
1209
1210static void
1211btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1212{
1213 percpu_counter_destroy(&writers->counter);
1214 kfree(writers);
1215}
1216
707e8a07
DS
1217static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1218 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1219 u64 objectid)
d97e63b6 1220{
cfaa7295 1221 root->node = NULL;
a28ec197 1222 root->commit_root = NULL;
db94535d
CM
1223 root->sectorsize = sectorsize;
1224 root->nodesize = nodesize;
87ee04eb 1225 root->stripesize = stripesize;
27cdeb70 1226 root->state = 0;
d68fc57b 1227 root->orphan_cleanup_state = 0;
0b86a832 1228
0f7d52f4
CM
1229 root->objectid = objectid;
1230 root->last_trans = 0;
13a8a7c8 1231 root->highest_objectid = 0;
eb73c1b7 1232 root->nr_delalloc_inodes = 0;
199c2a9c 1233 root->nr_ordered_extents = 0;
58176a96 1234 root->name = NULL;
6bef4d31 1235 root->inode_tree = RB_ROOT;
16cdcec7 1236 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1237 root->block_rsv = NULL;
d68fc57b 1238 root->orphan_block_rsv = NULL;
0b86a832
CM
1239
1240 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1241 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1242 INIT_LIST_HEAD(&root->delalloc_inodes);
1243 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1244 INIT_LIST_HEAD(&root->ordered_extents);
1245 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1246 INIT_LIST_HEAD(&root->logged_list[0]);
1247 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1248 spin_lock_init(&root->orphan_lock);
5d4f98a2 1249 spin_lock_init(&root->inode_lock);
eb73c1b7 1250 spin_lock_init(&root->delalloc_lock);
199c2a9c 1251 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1252 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1253 spin_lock_init(&root->log_extents_lock[0]);
1254 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1255 mutex_init(&root->objectid_mutex);
e02119d5 1256 mutex_init(&root->log_mutex);
31f3d255 1257 mutex_init(&root->ordered_extent_mutex);
573bfb72 1258 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1259 init_waitqueue_head(&root->log_writer_wait);
1260 init_waitqueue_head(&root->log_commit_wait[0]);
1261 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1262 INIT_LIST_HEAD(&root->log_ctxs[0]);
1263 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1264 atomic_set(&root->log_commit[0], 0);
1265 atomic_set(&root->log_commit[1], 0);
1266 atomic_set(&root->log_writers, 0);
2ecb7923 1267 atomic_set(&root->log_batch, 0);
8a35d95f 1268 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1269 atomic_set(&root->refs, 1);
8257b2dc 1270 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1271 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1272 root->log_transid = 0;
d1433deb 1273 root->log_transid_committed = -1;
257c62e1 1274 root->last_log_commit = 0;
06ea65a3
JB
1275 if (fs_info)
1276 extent_io_tree_init(&root->dirty_log_pages,
1277 fs_info->btree_inode->i_mapping);
017e5369 1278
3768f368
CM
1279 memset(&root->root_key, 0, sizeof(root->root_key));
1280 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1281 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1282 if (fs_info)
1283 root->defrag_trans_start = fs_info->generation;
1284 else
1285 root->defrag_trans_start = 0;
4d775673 1286 root->root_key.objectid = objectid;
0ee5dc67 1287 root->anon_dev = 0;
8ea05e3a 1288
5f3ab90a 1289 spin_lock_init(&root->root_item_lock);
3768f368
CM
1290}
1291
f84a8bd6 1292static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1293{
1294 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1295 if (root)
1296 root->fs_info = fs_info;
1297 return root;
1298}
1299
06ea65a3
JB
1300#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1301/* Should only be used by the testing infrastructure */
1302struct btrfs_root *btrfs_alloc_dummy_root(void)
1303{
1304 struct btrfs_root *root;
1305
1306 root = btrfs_alloc_root(NULL);
1307 if (!root)
1308 return ERR_PTR(-ENOMEM);
707e8a07 1309 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1310 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1311 root->alloc_bytenr = 0;
06ea65a3
JB
1312
1313 return root;
1314}
1315#endif
1316
20897f5c
AJ
1317struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1318 struct btrfs_fs_info *fs_info,
1319 u64 objectid)
1320{
1321 struct extent_buffer *leaf;
1322 struct btrfs_root *tree_root = fs_info->tree_root;
1323 struct btrfs_root *root;
1324 struct btrfs_key key;
1325 int ret = 0;
6463fe58 1326 uuid_le uuid;
20897f5c
AJ
1327
1328 root = btrfs_alloc_root(fs_info);
1329 if (!root)
1330 return ERR_PTR(-ENOMEM);
1331
707e8a07
DS
1332 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1333 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1334 root->root_key.objectid = objectid;
1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 root->root_key.offset = 0;
1337
4d75f8a9 1338 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1339 if (IS_ERR(leaf)) {
1340 ret = PTR_ERR(leaf);
1dd05682 1341 leaf = NULL;
20897f5c
AJ
1342 goto fail;
1343 }
1344
20897f5c
AJ
1345 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1346 btrfs_set_header_bytenr(leaf, leaf->start);
1347 btrfs_set_header_generation(leaf, trans->transid);
1348 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1349 btrfs_set_header_owner(leaf, objectid);
1350 root->node = leaf;
1351
0a4e5586 1352 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1353 BTRFS_FSID_SIZE);
1354 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1355 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1356 BTRFS_UUID_SIZE);
1357 btrfs_mark_buffer_dirty(leaf);
1358
1359 root->commit_root = btrfs_root_node(root);
27cdeb70 1360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1361
1362 root->root_item.flags = 0;
1363 root->root_item.byte_limit = 0;
1364 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1365 btrfs_set_root_generation(&root->root_item, trans->transid);
1366 btrfs_set_root_level(&root->root_item, 0);
1367 btrfs_set_root_refs(&root->root_item, 1);
1368 btrfs_set_root_used(&root->root_item, leaf->len);
1369 btrfs_set_root_last_snapshot(&root->root_item, 0);
1370 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1371 uuid_le_gen(&uuid);
1372 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1373 root->root_item.drop_level = 0;
1374
1375 key.objectid = objectid;
1376 key.type = BTRFS_ROOT_ITEM_KEY;
1377 key.offset = 0;
1378 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1379 if (ret)
1380 goto fail;
1381
1382 btrfs_tree_unlock(leaf);
1383
1dd05682
TI
1384 return root;
1385
20897f5c 1386fail:
1dd05682
TI
1387 if (leaf) {
1388 btrfs_tree_unlock(leaf);
59885b39 1389 free_extent_buffer(root->commit_root);
1dd05682
TI
1390 free_extent_buffer(leaf);
1391 }
1392 kfree(root);
20897f5c 1393
1dd05682 1394 return ERR_PTR(ret);
20897f5c
AJ
1395}
1396
7237f183
YZ
1397static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1398 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1399{
1400 struct btrfs_root *root;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1402 struct extent_buffer *leaf;
e02119d5 1403
6f07e42e 1404 root = btrfs_alloc_root(fs_info);
e02119d5 1405 if (!root)
7237f183 1406 return ERR_PTR(-ENOMEM);
e02119d5 1407
707e8a07
DS
1408 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1409 tree_root->stripesize, root, fs_info,
1410 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1411
1412 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1415
7237f183 1416 /*
27cdeb70
MX
1417 * DON'T set REF_COWS for log trees
1418 *
7237f183
YZ
1419 * log trees do not get reference counted because they go away
1420 * before a real commit is actually done. They do store pointers
1421 * to file data extents, and those reference counts still get
1422 * updated (along with back refs to the log tree).
1423 */
e02119d5 1424
4d75f8a9
DS
1425 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1426 NULL, 0, 0, 0);
7237f183
YZ
1427 if (IS_ERR(leaf)) {
1428 kfree(root);
1429 return ERR_CAST(leaf);
1430 }
e02119d5 1431
5d4f98a2
YZ
1432 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1433 btrfs_set_header_bytenr(leaf, leaf->start);
1434 btrfs_set_header_generation(leaf, trans->transid);
1435 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1436 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1437 root->node = leaf;
e02119d5
CM
1438
1439 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1440 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1441 btrfs_mark_buffer_dirty(root->node);
1442 btrfs_tree_unlock(root->node);
7237f183
YZ
1443 return root;
1444}
1445
1446int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1447 struct btrfs_fs_info *fs_info)
1448{
1449 struct btrfs_root *log_root;
1450
1451 log_root = alloc_log_tree(trans, fs_info);
1452 if (IS_ERR(log_root))
1453 return PTR_ERR(log_root);
1454 WARN_ON(fs_info->log_root_tree);
1455 fs_info->log_root_tree = log_root;
1456 return 0;
1457}
1458
1459int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root)
1461{
1462 struct btrfs_root *log_root;
1463 struct btrfs_inode_item *inode_item;
1464
1465 log_root = alloc_log_tree(trans, root->fs_info);
1466 if (IS_ERR(log_root))
1467 return PTR_ERR(log_root);
1468
1469 log_root->last_trans = trans->transid;
1470 log_root->root_key.offset = root->root_key.objectid;
1471
1472 inode_item = &log_root->root_item.inode;
3cae210f
QW
1473 btrfs_set_stack_inode_generation(inode_item, 1);
1474 btrfs_set_stack_inode_size(inode_item, 3);
1475 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1476 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1477 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1478
5d4f98a2 1479 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1480
1481 WARN_ON(root->log_root);
1482 root->log_root = log_root;
1483 root->log_transid = 0;
d1433deb 1484 root->log_transid_committed = -1;
257c62e1 1485 root->last_log_commit = 0;
e02119d5
CM
1486 return 0;
1487}
1488
35a3621b
SB
1489static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1490 struct btrfs_key *key)
e02119d5
CM
1491{
1492 struct btrfs_root *root;
1493 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1494 struct btrfs_path *path;
84234f3a 1495 u64 generation;
cb517eab 1496 int ret;
0f7d52f4 1497
cb517eab
MX
1498 path = btrfs_alloc_path();
1499 if (!path)
0f7d52f4 1500 return ERR_PTR(-ENOMEM);
cb517eab
MX
1501
1502 root = btrfs_alloc_root(fs_info);
1503 if (!root) {
1504 ret = -ENOMEM;
1505 goto alloc_fail;
0f7d52f4
CM
1506 }
1507
707e8a07
DS
1508 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1509 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1510
cb517eab
MX
1511 ret = btrfs_find_root(tree_root, key, path,
1512 &root->root_item, &root->root_key);
0f7d52f4 1513 if (ret) {
13a8a7c8
YZ
1514 if (ret > 0)
1515 ret = -ENOENT;
cb517eab 1516 goto find_fail;
0f7d52f4 1517 }
13a8a7c8 1518
84234f3a 1519 generation = btrfs_root_generation(&root->root_item);
db94535d 1520 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1521 generation);
64c043de
LB
1522 if (IS_ERR(root->node)) {
1523 ret = PTR_ERR(root->node);
cb517eab
MX
1524 goto find_fail;
1525 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1526 ret = -EIO;
64c043de
LB
1527 free_extent_buffer(root->node);
1528 goto find_fail;
416bc658 1529 }
5d4f98a2 1530 root->commit_root = btrfs_root_node(root);
13a8a7c8 1531out:
cb517eab
MX
1532 btrfs_free_path(path);
1533 return root;
1534
cb517eab
MX
1535find_fail:
1536 kfree(root);
1537alloc_fail:
1538 root = ERR_PTR(ret);
1539 goto out;
1540}
1541
1542struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1543 struct btrfs_key *location)
1544{
1545 struct btrfs_root *root;
1546
1547 root = btrfs_read_tree_root(tree_root, location);
1548 if (IS_ERR(root))
1549 return root;
1550
1551 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1552 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1553 btrfs_check_and_init_root_item(&root->root_item);
1554 }
13a8a7c8 1555
5eda7b5e
CM
1556 return root;
1557}
1558
cb517eab
MX
1559int btrfs_init_fs_root(struct btrfs_root *root)
1560{
1561 int ret;
8257b2dc 1562 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1563
1564 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1565 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1566 GFP_NOFS);
1567 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1568 ret = -ENOMEM;
1569 goto fail;
1570 }
1571
8257b2dc
MX
1572 writers = btrfs_alloc_subvolume_writers();
1573 if (IS_ERR(writers)) {
1574 ret = PTR_ERR(writers);
1575 goto fail;
1576 }
1577 root->subv_writers = writers;
1578
cb517eab 1579 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1580 spin_lock_init(&root->ino_cache_lock);
1581 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1582
1583 ret = get_anon_bdev(&root->anon_dev);
1584 if (ret)
8257b2dc 1585 goto free_writers;
f32e48e9
CR
1586
1587 mutex_lock(&root->objectid_mutex);
1588 ret = btrfs_find_highest_objectid(root,
1589 &root->highest_objectid);
1590 if (ret) {
1591 mutex_unlock(&root->objectid_mutex);
1592 goto free_root_dev;
1593 }
1594
1595 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1596
1597 mutex_unlock(&root->objectid_mutex);
1598
cb517eab 1599 return 0;
8257b2dc 1600
f32e48e9
CR
1601free_root_dev:
1602 free_anon_bdev(root->anon_dev);
8257b2dc
MX
1603free_writers:
1604 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1605fail:
1606 kfree(root->free_ino_ctl);
1607 kfree(root->free_ino_pinned);
1608 return ret;
1609}
1610
171170c1
ST
1611static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1612 u64 root_id)
cb517eab
MX
1613{
1614 struct btrfs_root *root;
1615
1616 spin_lock(&fs_info->fs_roots_radix_lock);
1617 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1618 (unsigned long)root_id);
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 return root;
1621}
1622
1623int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1624 struct btrfs_root *root)
1625{
1626 int ret;
1627
1628 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1629 if (ret)
1630 return ret;
1631
1632 spin_lock(&fs_info->fs_roots_radix_lock);
1633 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1634 (unsigned long)root->root_key.objectid,
1635 root);
1636 if (ret == 0)
27cdeb70 1637 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1638 spin_unlock(&fs_info->fs_roots_radix_lock);
1639 radix_tree_preload_end();
1640
1641 return ret;
1642}
1643
c00869f1
MX
1644struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1645 struct btrfs_key *location,
1646 bool check_ref)
5eda7b5e
CM
1647{
1648 struct btrfs_root *root;
381cf658 1649 struct btrfs_path *path;
1d4c08e0 1650 struct btrfs_key key;
5eda7b5e
CM
1651 int ret;
1652
edbd8d4e
CM
1653 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1654 return fs_info->tree_root;
1655 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1656 return fs_info->extent_root;
8f18cf13
CM
1657 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1658 return fs_info->chunk_root;
1659 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1660 return fs_info->dev_root;
0403e47e
YZ
1661 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1662 return fs_info->csum_root;
bcef60f2
AJ
1663 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1664 return fs_info->quota_root ? fs_info->quota_root :
1665 ERR_PTR(-ENOENT);
f7a81ea4
SB
1666 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1667 return fs_info->uuid_root ? fs_info->uuid_root :
1668 ERR_PTR(-ENOENT);
70f6d82e
OS
1669 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1670 return fs_info->free_space_root ? fs_info->free_space_root :
1671 ERR_PTR(-ENOENT);
4df27c4d 1672again:
cb517eab 1673 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1674 if (root) {
c00869f1 1675 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1676 return ERR_PTR(-ENOENT);
5eda7b5e 1677 return root;
48475471 1678 }
5eda7b5e 1679
cb517eab 1680 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1681 if (IS_ERR(root))
1682 return root;
3394e160 1683
c00869f1 1684 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1685 ret = -ENOENT;
581bb050 1686 goto fail;
35a30d7c 1687 }
581bb050 1688
cb517eab 1689 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1690 if (ret)
1691 goto fail;
3394e160 1692
381cf658
DS
1693 path = btrfs_alloc_path();
1694 if (!path) {
1695 ret = -ENOMEM;
1696 goto fail;
1697 }
1d4c08e0
DS
1698 key.objectid = BTRFS_ORPHAN_OBJECTID;
1699 key.type = BTRFS_ORPHAN_ITEM_KEY;
1700 key.offset = location->objectid;
1701
1702 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1703 btrfs_free_path(path);
d68fc57b
YZ
1704 if (ret < 0)
1705 goto fail;
1706 if (ret == 0)
27cdeb70 1707 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1708
cb517eab 1709 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1710 if (ret) {
4df27c4d
YZ
1711 if (ret == -EEXIST) {
1712 free_fs_root(root);
1713 goto again;
1714 }
1715 goto fail;
0f7d52f4 1716 }
edbd8d4e 1717 return root;
4df27c4d
YZ
1718fail:
1719 free_fs_root(root);
1720 return ERR_PTR(ret);
edbd8d4e
CM
1721}
1722
04160088
CM
1723static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1724{
1725 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1726 int ret = 0;
04160088
CM
1727 struct btrfs_device *device;
1728 struct backing_dev_info *bdi;
b7967db7 1729
1f78160c
XG
1730 rcu_read_lock();
1731 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1732 if (!device->bdev)
1733 continue;
04160088 1734 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1735 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1736 ret = 1;
1737 break;
1738 }
1739 }
1f78160c 1740 rcu_read_unlock();
04160088
CM
1741 return ret;
1742}
1743
04160088
CM
1744static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1745{
ad081f14
JA
1746 int err;
1747
b4caecd4 1748 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1749 if (err)
1750 return err;
1751
df0ce26c 1752 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1753 bdi->congested_fn = btrfs_congested_fn;
1754 bdi->congested_data = info;
da2f0f74 1755 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1756 return 0;
1757}
1758
8b712842
CM
1759/*
1760 * called by the kthread helper functions to finally call the bio end_io
1761 * functions. This is where read checksum verification actually happens
1762 */
1763static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1764{
ce9adaa5 1765 struct bio *bio;
97eb6b69 1766 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1767
97eb6b69 1768 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1769 bio = end_io_wq->bio;
ce9adaa5 1770
4246a0b6 1771 bio->bi_error = end_io_wq->error;
8b712842
CM
1772 bio->bi_private = end_io_wq->private;
1773 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1774 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1775 bio_endio(bio);
44b8bd7e
CM
1776}
1777
a74a4b97
CM
1778static int cleaner_kthread(void *arg)
1779{
1780 struct btrfs_root *root = arg;
d0278245 1781 int again;
da288d28 1782 struct btrfs_trans_handle *trans;
a74a4b97 1783
69624913 1784 set_freezable();
a74a4b97 1785 do {
d0278245 1786 again = 0;
a74a4b97 1787
d0278245 1788 /* Make the cleaner go to sleep early. */
babbf170 1789 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1790 goto sleep;
1791
1792 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1793 goto sleep;
1794
dc7f370c
MX
1795 /*
1796 * Avoid the problem that we change the status of the fs
1797 * during the above check and trylock.
1798 */
babbf170 1799 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1800 mutex_unlock(&root->fs_info->cleaner_mutex);
1801 goto sleep;
76dda93c 1802 }
a74a4b97 1803
c2d6cb16 1804 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
d0278245 1805 btrfs_run_delayed_iputs(root);
c2d6cb16
FM
1806 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1807
d0278245
MX
1808 again = btrfs_clean_one_deleted_snapshot(root);
1809 mutex_unlock(&root->fs_info->cleaner_mutex);
1810
1811 /*
05323cd1
MX
1812 * The defragger has dealt with the R/O remount and umount,
1813 * needn't do anything special here.
d0278245
MX
1814 */
1815 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1816
1817 /*
1818 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1819 * with relocation (btrfs_relocate_chunk) and relocation
1820 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1821 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1822 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1823 * unused block groups.
1824 */
1825 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1826sleep:
9d1a2a3a 1827 if (!try_to_freeze() && !again) {
a74a4b97 1828 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1829 if (!kthread_should_stop())
1830 schedule();
a74a4b97
CM
1831 __set_current_state(TASK_RUNNING);
1832 }
1833 } while (!kthread_should_stop());
da288d28
FM
1834
1835 /*
1836 * Transaction kthread is stopped before us and wakes us up.
1837 * However we might have started a new transaction and COWed some
1838 * tree blocks when deleting unused block groups for example. So
1839 * make sure we commit the transaction we started to have a clean
1840 * shutdown when evicting the btree inode - if it has dirty pages
1841 * when we do the final iput() on it, eviction will trigger a
1842 * writeback for it which will fail with null pointer dereferences
1843 * since work queues and other resources were already released and
1844 * destroyed by the time the iput/eviction/writeback is made.
1845 */
1846 trans = btrfs_attach_transaction(root);
1847 if (IS_ERR(trans)) {
1848 if (PTR_ERR(trans) != -ENOENT)
1849 btrfs_err(root->fs_info,
1850 "cleaner transaction attach returned %ld",
1851 PTR_ERR(trans));
1852 } else {
1853 int ret;
1854
1855 ret = btrfs_commit_transaction(trans, root);
1856 if (ret)
1857 btrfs_err(root->fs_info,
1858 "cleaner open transaction commit returned %d",
1859 ret);
1860 }
1861
a74a4b97
CM
1862 return 0;
1863}
1864
1865static int transaction_kthread(void *arg)
1866{
1867 struct btrfs_root *root = arg;
1868 struct btrfs_trans_handle *trans;
1869 struct btrfs_transaction *cur;
8929ecfa 1870 u64 transid;
a74a4b97
CM
1871 unsigned long now;
1872 unsigned long delay;
914b2007 1873 bool cannot_commit;
a74a4b97
CM
1874
1875 do {
914b2007 1876 cannot_commit = false;
8b87dc17 1877 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1878 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1879
a4abeea4 1880 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1881 cur = root->fs_info->running_transaction;
1882 if (!cur) {
a4abeea4 1883 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1884 goto sleep;
1885 }
31153d81 1886
a74a4b97 1887 now = get_seconds();
4a9d8bde 1888 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1889 (now < cur->start_time ||
1890 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1891 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1892 delay = HZ * 5;
1893 goto sleep;
1894 }
8929ecfa 1895 transid = cur->transid;
a4abeea4 1896 spin_unlock(&root->fs_info->trans_lock);
56bec294 1897
79787eaa 1898 /* If the file system is aborted, this will always fail. */
354aa0fb 1899 trans = btrfs_attach_transaction(root);
914b2007 1900 if (IS_ERR(trans)) {
354aa0fb
MX
1901 if (PTR_ERR(trans) != -ENOENT)
1902 cannot_commit = true;
79787eaa 1903 goto sleep;
914b2007 1904 }
8929ecfa 1905 if (transid == trans->transid) {
79787eaa 1906 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1907 } else {
1908 btrfs_end_transaction(trans, root);
1909 }
a74a4b97
CM
1910sleep:
1911 wake_up_process(root->fs_info->cleaner_kthread);
1912 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1913
4e121c06
JB
1914 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1915 &root->fs_info->fs_state)))
1916 btrfs_cleanup_transaction(root);
a0acae0e 1917 if (!try_to_freeze()) {
a74a4b97 1918 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1919 if (!kthread_should_stop() &&
914b2007
JK
1920 (!btrfs_transaction_blocked(root->fs_info) ||
1921 cannot_commit))
8929ecfa 1922 schedule_timeout(delay);
a74a4b97
CM
1923 __set_current_state(TASK_RUNNING);
1924 }
1925 } while (!kthread_should_stop());
1926 return 0;
1927}
1928
af31f5e5
CM
1929/*
1930 * this will find the highest generation in the array of
1931 * root backups. The index of the highest array is returned,
1932 * or -1 if we can't find anything.
1933 *
1934 * We check to make sure the array is valid by comparing the
1935 * generation of the latest root in the array with the generation
1936 * in the super block. If they don't match we pitch it.
1937 */
1938static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1939{
1940 u64 cur;
1941 int newest_index = -1;
1942 struct btrfs_root_backup *root_backup;
1943 int i;
1944
1945 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1946 root_backup = info->super_copy->super_roots + i;
1947 cur = btrfs_backup_tree_root_gen(root_backup);
1948 if (cur == newest_gen)
1949 newest_index = i;
1950 }
1951
1952 /* check to see if we actually wrapped around */
1953 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1954 root_backup = info->super_copy->super_roots;
1955 cur = btrfs_backup_tree_root_gen(root_backup);
1956 if (cur == newest_gen)
1957 newest_index = 0;
1958 }
1959 return newest_index;
1960}
1961
1962
1963/*
1964 * find the oldest backup so we know where to store new entries
1965 * in the backup array. This will set the backup_root_index
1966 * field in the fs_info struct
1967 */
1968static void find_oldest_super_backup(struct btrfs_fs_info *info,
1969 u64 newest_gen)
1970{
1971 int newest_index = -1;
1972
1973 newest_index = find_newest_super_backup(info, newest_gen);
1974 /* if there was garbage in there, just move along */
1975 if (newest_index == -1) {
1976 info->backup_root_index = 0;
1977 } else {
1978 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1979 }
1980}
1981
1982/*
1983 * copy all the root pointers into the super backup array.
1984 * this will bump the backup pointer by one when it is
1985 * done
1986 */
1987static void backup_super_roots(struct btrfs_fs_info *info)
1988{
1989 int next_backup;
1990 struct btrfs_root_backup *root_backup;
1991 int last_backup;
1992
1993 next_backup = info->backup_root_index;
1994 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1995 BTRFS_NUM_BACKUP_ROOTS;
1996
1997 /*
1998 * just overwrite the last backup if we're at the same generation
1999 * this happens only at umount
2000 */
2001 root_backup = info->super_for_commit->super_roots + last_backup;
2002 if (btrfs_backup_tree_root_gen(root_backup) ==
2003 btrfs_header_generation(info->tree_root->node))
2004 next_backup = last_backup;
2005
2006 root_backup = info->super_for_commit->super_roots + next_backup;
2007
2008 /*
2009 * make sure all of our padding and empty slots get zero filled
2010 * regardless of which ones we use today
2011 */
2012 memset(root_backup, 0, sizeof(*root_backup));
2013
2014 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2015
2016 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2017 btrfs_set_backup_tree_root_gen(root_backup,
2018 btrfs_header_generation(info->tree_root->node));
2019
2020 btrfs_set_backup_tree_root_level(root_backup,
2021 btrfs_header_level(info->tree_root->node));
2022
2023 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2024 btrfs_set_backup_chunk_root_gen(root_backup,
2025 btrfs_header_generation(info->chunk_root->node));
2026 btrfs_set_backup_chunk_root_level(root_backup,
2027 btrfs_header_level(info->chunk_root->node));
2028
2029 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2030 btrfs_set_backup_extent_root_gen(root_backup,
2031 btrfs_header_generation(info->extent_root->node));
2032 btrfs_set_backup_extent_root_level(root_backup,
2033 btrfs_header_level(info->extent_root->node));
2034
7c7e82a7
CM
2035 /*
2036 * we might commit during log recovery, which happens before we set
2037 * the fs_root. Make sure it is valid before we fill it in.
2038 */
2039 if (info->fs_root && info->fs_root->node) {
2040 btrfs_set_backup_fs_root(root_backup,
2041 info->fs_root->node->start);
2042 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2043 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2044 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2045 btrfs_header_level(info->fs_root->node));
7c7e82a7 2046 }
af31f5e5
CM
2047
2048 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2049 btrfs_set_backup_dev_root_gen(root_backup,
2050 btrfs_header_generation(info->dev_root->node));
2051 btrfs_set_backup_dev_root_level(root_backup,
2052 btrfs_header_level(info->dev_root->node));
2053
2054 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2055 btrfs_set_backup_csum_root_gen(root_backup,
2056 btrfs_header_generation(info->csum_root->node));
2057 btrfs_set_backup_csum_root_level(root_backup,
2058 btrfs_header_level(info->csum_root->node));
2059
2060 btrfs_set_backup_total_bytes(root_backup,
2061 btrfs_super_total_bytes(info->super_copy));
2062 btrfs_set_backup_bytes_used(root_backup,
2063 btrfs_super_bytes_used(info->super_copy));
2064 btrfs_set_backup_num_devices(root_backup,
2065 btrfs_super_num_devices(info->super_copy));
2066
2067 /*
2068 * if we don't copy this out to the super_copy, it won't get remembered
2069 * for the next commit
2070 */
2071 memcpy(&info->super_copy->super_roots,
2072 &info->super_for_commit->super_roots,
2073 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2074}
2075
2076/*
2077 * this copies info out of the root backup array and back into
2078 * the in-memory super block. It is meant to help iterate through
2079 * the array, so you send it the number of backups you've already
2080 * tried and the last backup index you used.
2081 *
2082 * this returns -1 when it has tried all the backups
2083 */
2084static noinline int next_root_backup(struct btrfs_fs_info *info,
2085 struct btrfs_super_block *super,
2086 int *num_backups_tried, int *backup_index)
2087{
2088 struct btrfs_root_backup *root_backup;
2089 int newest = *backup_index;
2090
2091 if (*num_backups_tried == 0) {
2092 u64 gen = btrfs_super_generation(super);
2093
2094 newest = find_newest_super_backup(info, gen);
2095 if (newest == -1)
2096 return -1;
2097
2098 *backup_index = newest;
2099 *num_backups_tried = 1;
2100 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2101 /* we've tried all the backups, all done */
2102 return -1;
2103 } else {
2104 /* jump to the next oldest backup */
2105 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2106 BTRFS_NUM_BACKUP_ROOTS;
2107 *backup_index = newest;
2108 *num_backups_tried += 1;
2109 }
2110 root_backup = super->super_roots + newest;
2111
2112 btrfs_set_super_generation(super,
2113 btrfs_backup_tree_root_gen(root_backup));
2114 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2115 btrfs_set_super_root_level(super,
2116 btrfs_backup_tree_root_level(root_backup));
2117 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2118
2119 /*
2120 * fixme: the total bytes and num_devices need to match or we should
2121 * need a fsck
2122 */
2123 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2124 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2125 return 0;
2126}
2127
7abadb64
LB
2128/* helper to cleanup workers */
2129static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2130{
dc6e3209 2131 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2132 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2133 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2134 btrfs_destroy_workqueue(fs_info->endio_workers);
2135 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2136 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2137 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2138 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2139 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2140 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2141 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2142 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2143 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2144 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2145 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2146 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2147 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2148 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2149}
2150
2e9f5954
R
2151static void free_root_extent_buffers(struct btrfs_root *root)
2152{
2153 if (root) {
2154 free_extent_buffer(root->node);
2155 free_extent_buffer(root->commit_root);
2156 root->node = NULL;
2157 root->commit_root = NULL;
2158 }
2159}
2160
af31f5e5
CM
2161/* helper to cleanup tree roots */
2162static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2163{
2e9f5954 2164 free_root_extent_buffers(info->tree_root);
655b09fe 2165
2e9f5954
R
2166 free_root_extent_buffers(info->dev_root);
2167 free_root_extent_buffers(info->extent_root);
2168 free_root_extent_buffers(info->csum_root);
2169 free_root_extent_buffers(info->quota_root);
2170 free_root_extent_buffers(info->uuid_root);
2171 if (chunk_root)
2172 free_root_extent_buffers(info->chunk_root);
70f6d82e 2173 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2174}
2175
faa2dbf0 2176void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2177{
2178 int ret;
2179 struct btrfs_root *gang[8];
2180 int i;
2181
2182 while (!list_empty(&fs_info->dead_roots)) {
2183 gang[0] = list_entry(fs_info->dead_roots.next,
2184 struct btrfs_root, root_list);
2185 list_del(&gang[0]->root_list);
2186
27cdeb70 2187 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2188 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2189 } else {
2190 free_extent_buffer(gang[0]->node);
2191 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2192 btrfs_put_fs_root(gang[0]);
171f6537
JB
2193 }
2194 }
2195
2196 while (1) {
2197 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2198 (void **)gang, 0,
2199 ARRAY_SIZE(gang));
2200 if (!ret)
2201 break;
2202 for (i = 0; i < ret; i++)
cb517eab 2203 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2204 }
1a4319cc
LB
2205
2206 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2207 btrfs_free_log_root_tree(NULL, fs_info);
2208 btrfs_destroy_pinned_extent(fs_info->tree_root,
2209 fs_info->pinned_extents);
2210 }
171f6537 2211}
af31f5e5 2212
638aa7ed
ES
2213static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2214{
2215 mutex_init(&fs_info->scrub_lock);
2216 atomic_set(&fs_info->scrubs_running, 0);
2217 atomic_set(&fs_info->scrub_pause_req, 0);
2218 atomic_set(&fs_info->scrubs_paused, 0);
2219 atomic_set(&fs_info->scrub_cancel_req, 0);
2220 init_waitqueue_head(&fs_info->scrub_pause_wait);
2221 fs_info->scrub_workers_refcnt = 0;
2222}
2223
779a65a4
ES
2224static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2225{
2226 spin_lock_init(&fs_info->balance_lock);
2227 mutex_init(&fs_info->balance_mutex);
2228 atomic_set(&fs_info->balance_running, 0);
2229 atomic_set(&fs_info->balance_pause_req, 0);
2230 atomic_set(&fs_info->balance_cancel_req, 0);
2231 fs_info->balance_ctl = NULL;
2232 init_waitqueue_head(&fs_info->balance_wait_q);
2233}
2234
f37938e0
ES
2235static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2236 struct btrfs_root *tree_root)
2237{
2238 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2239 set_nlink(fs_info->btree_inode, 1);
2240 /*
2241 * we set the i_size on the btree inode to the max possible int.
2242 * the real end of the address space is determined by all of
2243 * the devices in the system
2244 */
2245 fs_info->btree_inode->i_size = OFFSET_MAX;
2246 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2247
2248 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2249 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2250 fs_info->btree_inode->i_mapping);
2251 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2252 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2253
2254 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2255
2256 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2257 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2258 sizeof(struct btrfs_key));
2259 set_bit(BTRFS_INODE_DUMMY,
2260 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2261 btrfs_insert_inode_hash(fs_info->btree_inode);
2262}
2263
ad618368
ES
2264static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2265{
2266 fs_info->dev_replace.lock_owner = 0;
2267 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2268 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2269 mutex_init(&fs_info->dev_replace.lock_management_lock);
2270 mutex_init(&fs_info->dev_replace.lock);
2271 init_waitqueue_head(&fs_info->replace_wait);
2272}
2273
f9e92e40
ES
2274static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2275{
2276 spin_lock_init(&fs_info->qgroup_lock);
2277 mutex_init(&fs_info->qgroup_ioctl_lock);
2278 fs_info->qgroup_tree = RB_ROOT;
2279 fs_info->qgroup_op_tree = RB_ROOT;
2280 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2281 fs_info->qgroup_seq = 1;
2282 fs_info->quota_enabled = 0;
2283 fs_info->pending_quota_state = 0;
2284 fs_info->qgroup_ulist = NULL;
2285 mutex_init(&fs_info->qgroup_rescan_lock);
2286}
2287
2a458198
ES
2288static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2289 struct btrfs_fs_devices *fs_devices)
2290{
2291 int max_active = fs_info->thread_pool_size;
6f011058 2292 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2293
2294 fs_info->workers =
2295 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2296 max_active, 16);
2297
2298 fs_info->delalloc_workers =
2299 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2300
2301 fs_info->flush_workers =
2302 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2303
2304 fs_info->caching_workers =
2305 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2306
2307 /*
2308 * a higher idle thresh on the submit workers makes it much more
2309 * likely that bios will be send down in a sane order to the
2310 * devices
2311 */
2312 fs_info->submit_workers =
2313 btrfs_alloc_workqueue("submit", flags,
2314 min_t(u64, fs_devices->num_devices,
2315 max_active), 64);
2316
2317 fs_info->fixup_workers =
2318 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2319
2320 /*
2321 * endios are largely parallel and should have a very
2322 * low idle thresh
2323 */
2324 fs_info->endio_workers =
2325 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2326 fs_info->endio_meta_workers =
2327 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2328 fs_info->endio_meta_write_workers =
2329 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2330 fs_info->endio_raid56_workers =
2331 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2332 fs_info->endio_repair_workers =
2333 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2334 fs_info->rmw_workers =
2335 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2336 fs_info->endio_write_workers =
2337 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2338 fs_info->endio_freespace_worker =
2339 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2340 fs_info->delayed_workers =
2341 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2342 fs_info->readahead_workers =
2343 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2344 fs_info->qgroup_rescan_workers =
2345 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2346 fs_info->extent_workers =
2347 btrfs_alloc_workqueue("extent-refs", flags,
2348 min_t(u64, fs_devices->num_devices,
2349 max_active), 8);
2350
2351 if (!(fs_info->workers && fs_info->delalloc_workers &&
2352 fs_info->submit_workers && fs_info->flush_workers &&
2353 fs_info->endio_workers && fs_info->endio_meta_workers &&
2354 fs_info->endio_meta_write_workers &&
2355 fs_info->endio_repair_workers &&
2356 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2357 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2358 fs_info->caching_workers && fs_info->readahead_workers &&
2359 fs_info->fixup_workers && fs_info->delayed_workers &&
2360 fs_info->extent_workers &&
2361 fs_info->qgroup_rescan_workers)) {
2362 return -ENOMEM;
2363 }
2364
2365 return 0;
2366}
2367
63443bf5
ES
2368static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2369 struct btrfs_fs_devices *fs_devices)
2370{
2371 int ret;
2372 struct btrfs_root *tree_root = fs_info->tree_root;
2373 struct btrfs_root *log_tree_root;
2374 struct btrfs_super_block *disk_super = fs_info->super_copy;
2375 u64 bytenr = btrfs_super_log_root(disk_super);
2376
2377 if (fs_devices->rw_devices == 0) {
f14d104d 2378 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2379 return -EIO;
2380 }
2381
2382 log_tree_root = btrfs_alloc_root(fs_info);
2383 if (!log_tree_root)
2384 return -ENOMEM;
2385
2386 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2387 tree_root->stripesize, log_tree_root, fs_info,
2388 BTRFS_TREE_LOG_OBJECTID);
2389
2390 log_tree_root->node = read_tree_block(tree_root, bytenr,
2391 fs_info->generation + 1);
64c043de 2392 if (IS_ERR(log_tree_root->node)) {
f14d104d 2393 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2394 ret = PTR_ERR(log_tree_root->node);
64c043de 2395 kfree(log_tree_root);
0eeff236 2396 return ret;
64c043de 2397 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2398 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2399 free_extent_buffer(log_tree_root->node);
2400 kfree(log_tree_root);
2401 return -EIO;
2402 }
2403 /* returns with log_tree_root freed on success */
2404 ret = btrfs_recover_log_trees(log_tree_root);
2405 if (ret) {
a4553fef 2406 btrfs_std_error(tree_root->fs_info, ret,
63443bf5
ES
2407 "Failed to recover log tree");
2408 free_extent_buffer(log_tree_root->node);
2409 kfree(log_tree_root);
2410 return ret;
2411 }
2412
2413 if (fs_info->sb->s_flags & MS_RDONLY) {
2414 ret = btrfs_commit_super(tree_root);
2415 if (ret)
2416 return ret;
2417 }
2418
2419 return 0;
2420}
2421
4bbcaa64
ES
2422static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2423 struct btrfs_root *tree_root)
2424{
a4f3d2c4 2425 struct btrfs_root *root;
4bbcaa64
ES
2426 struct btrfs_key location;
2427 int ret;
2428
2429 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2430 location.type = BTRFS_ROOT_ITEM_KEY;
2431 location.offset = 0;
2432
a4f3d2c4
DS
2433 root = btrfs_read_tree_root(tree_root, &location);
2434 if (IS_ERR(root))
2435 return PTR_ERR(root);
2436 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2437 fs_info->extent_root = root;
4bbcaa64
ES
2438
2439 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2440 root = btrfs_read_tree_root(tree_root, &location);
2441 if (IS_ERR(root))
2442 return PTR_ERR(root);
2443 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2444 fs_info->dev_root = root;
4bbcaa64
ES
2445 btrfs_init_devices_late(fs_info);
2446
2447 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2448 root = btrfs_read_tree_root(tree_root, &location);
2449 if (IS_ERR(root))
2450 return PTR_ERR(root);
2451 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2452 fs_info->csum_root = root;
4bbcaa64
ES
2453
2454 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2455 root = btrfs_read_tree_root(tree_root, &location);
2456 if (!IS_ERR(root)) {
2457 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2458 fs_info->quota_enabled = 1;
2459 fs_info->pending_quota_state = 1;
a4f3d2c4 2460 fs_info->quota_root = root;
4bbcaa64
ES
2461 }
2462
2463 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2464 root = btrfs_read_tree_root(tree_root, &location);
2465 if (IS_ERR(root)) {
2466 ret = PTR_ERR(root);
4bbcaa64
ES
2467 if (ret != -ENOENT)
2468 return ret;
2469 } else {
a4f3d2c4
DS
2470 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2471 fs_info->uuid_root = root;
4bbcaa64
ES
2472 }
2473
70f6d82e
OS
2474 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2475 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2476 root = btrfs_read_tree_root(tree_root, &location);
2477 if (IS_ERR(root))
2478 return PTR_ERR(root);
2479 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2480 fs_info->free_space_root = root;
2481 }
2482
4bbcaa64
ES
2483 return 0;
2484}
2485
ad2b2c80
AV
2486int open_ctree(struct super_block *sb,
2487 struct btrfs_fs_devices *fs_devices,
2488 char *options)
2e635a27 2489{
db94535d
CM
2490 u32 sectorsize;
2491 u32 nodesize;
87ee04eb 2492 u32 stripesize;
84234f3a 2493 u64 generation;
f2b636e8 2494 u64 features;
3de4586c 2495 struct btrfs_key location;
a061fc8d 2496 struct buffer_head *bh;
4d34b278 2497 struct btrfs_super_block *disk_super;
815745cf 2498 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2499 struct btrfs_root *tree_root;
4d34b278 2500 struct btrfs_root *chunk_root;
eb60ceac 2501 int ret;
e58ca020 2502 int err = -EINVAL;
af31f5e5
CM
2503 int num_backups_tried = 0;
2504 int backup_index = 0;
5cdc7ad3 2505 int max_active;
4543df7e 2506
f84a8bd6 2507 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2508 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2509 if (!tree_root || !chunk_root) {
39279cc3
CM
2510 err = -ENOMEM;
2511 goto fail;
2512 }
76dda93c
YZ
2513
2514 ret = init_srcu_struct(&fs_info->subvol_srcu);
2515 if (ret) {
2516 err = ret;
2517 goto fail;
2518 }
2519
2520 ret = setup_bdi(fs_info, &fs_info->bdi);
2521 if (ret) {
2522 err = ret;
2523 goto fail_srcu;
2524 }
2525
908c7f19 2526 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2527 if (ret) {
2528 err = ret;
2529 goto fail_bdi;
2530 }
2531 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2532 (1 + ilog2(nr_cpu_ids));
2533
908c7f19 2534 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2535 if (ret) {
2536 err = ret;
2537 goto fail_dirty_metadata_bytes;
2538 }
2539
908c7f19 2540 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2541 if (ret) {
2542 err = ret;
2543 goto fail_delalloc_bytes;
2544 }
2545
76dda93c
YZ
2546 fs_info->btree_inode = new_inode(sb);
2547 if (!fs_info->btree_inode) {
2548 err = -ENOMEM;
c404e0dc 2549 goto fail_bio_counter;
76dda93c
YZ
2550 }
2551
a6591715 2552 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2553
76dda93c 2554 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2555 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2556 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2557 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2558 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2559 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2560 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2561 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2562 spin_lock_init(&fs_info->trans_lock);
76dda93c 2563 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2564 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2565 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2566 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2567 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2568 spin_lock_init(&fs_info->super_lock);
fcebe456 2569 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2570 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2571 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2572 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2573 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2574 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2575 mutex_init(&fs_info->reloc_mutex);
573bfb72 2576 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2577 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2578 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2579
0b86a832 2580 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2581 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2582 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2583 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2584 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2585 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2586 BTRFS_BLOCK_RSV_GLOBAL);
2587 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2588 BTRFS_BLOCK_RSV_DELALLOC);
2589 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2590 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2591 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2592 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2593 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2594 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2595 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2596 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2597 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2598 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2599 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2600 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2601 fs_info->sb = sb;
95ac567a 2602 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2603 fs_info->metadata_ratio = 0;
4cb5300b 2604 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2605 fs_info->free_chunk_space = 0;
f29021b2 2606 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2607 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2608 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2609 /* readahead state */
d0164adc 2610 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2611 spin_lock_init(&fs_info->reada_lock);
c8b97818 2612
b34b086c
CM
2613 fs_info->thread_pool_size = min_t(unsigned long,
2614 num_online_cpus() + 2, 8);
0afbaf8c 2615
199c2a9c
MX
2616 INIT_LIST_HEAD(&fs_info->ordered_roots);
2617 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2618 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2619 GFP_NOFS);
2620 if (!fs_info->delayed_root) {
2621 err = -ENOMEM;
2622 goto fail_iput;
2623 }
2624 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2625
638aa7ed 2626 btrfs_init_scrub(fs_info);
21adbd5c
SB
2627#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2628 fs_info->check_integrity_print_mask = 0;
2629#endif
779a65a4 2630 btrfs_init_balance(fs_info);
21c7e756 2631 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2632
a061fc8d
CM
2633 sb->s_blocksize = 4096;
2634 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2635 sb->s_bdi = &fs_info->bdi;
a061fc8d 2636
f37938e0 2637 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2638
0f9dd46c 2639 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2640 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2641 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2642
11833d66 2643 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2644 fs_info->btree_inode->i_mapping);
11833d66 2645 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2646 fs_info->btree_inode->i_mapping);
11833d66 2647 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2648 fs_info->do_barriers = 1;
e18e4809 2649
39279cc3 2650
5a3f23d5 2651 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2652 mutex_init(&fs_info->tree_log_mutex);
925baedd 2653 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2654 mutex_init(&fs_info->transaction_kthread_mutex);
2655 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2656 mutex_init(&fs_info->volume_mutex);
1bbc621e 2657 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2658 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2659 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2660 init_rwsem(&fs_info->subvol_sem);
803b2f54 2661 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2662
ad618368 2663 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2664 btrfs_init_qgroup(fs_info);
416ac51d 2665
fa9c0d79
CM
2666 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2667 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2668
e6dcd2dc 2669 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2670 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2671 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2672 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2673
04216820
FM
2674 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2675
53b381b3
DW
2676 ret = btrfs_alloc_stripe_hash_table(fs_info);
2677 if (ret) {
83c8266a 2678 err = ret;
53b381b3
DW
2679 goto fail_alloc;
2680 }
2681
707e8a07 2682 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2683 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2684
3c4bb26b 2685 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2686
2687 /*
2688 * Read super block and check the signature bytes only
2689 */
a512bbf8 2690 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2691 if (IS_ERR(bh)) {
2692 err = PTR_ERR(bh);
16cdcec7 2693 goto fail_alloc;
20b45077 2694 }
39279cc3 2695
1104a885
DS
2696 /*
2697 * We want to check superblock checksum, the type is stored inside.
2698 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2699 */
2700 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2701 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885 2702 err = -EINVAL;
b2acdddf 2703 brelse(bh);
1104a885
DS
2704 goto fail_alloc;
2705 }
2706
2707 /*
2708 * super_copy is zeroed at allocation time and we never touch the
2709 * following bytes up to INFO_SIZE, the checksum is calculated from
2710 * the whole block of INFO_SIZE
2711 */
6c41761f
DS
2712 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2713 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2714 sizeof(*fs_info->super_for_commit));
a061fc8d 2715 brelse(bh);
5f39d397 2716
6c41761f 2717 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2718
1104a885
DS
2719 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2720 if (ret) {
efe120a0 2721 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2722 err = -EINVAL;
2723 goto fail_alloc;
2724 }
2725
6c41761f 2726 disk_super = fs_info->super_copy;
0f7d52f4 2727 if (!btrfs_super_root(disk_super))
16cdcec7 2728 goto fail_alloc;
0f7d52f4 2729
acce952b 2730 /* check FS state, whether FS is broken. */
87533c47
MX
2731 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2732 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2733
af31f5e5
CM
2734 /*
2735 * run through our array of backup supers and setup
2736 * our ring pointer to the oldest one
2737 */
2738 generation = btrfs_super_generation(disk_super);
2739 find_oldest_super_backup(fs_info, generation);
2740
75e7cb7f
LB
2741 /*
2742 * In the long term, we'll store the compression type in the super
2743 * block, and it'll be used for per file compression control.
2744 */
2745 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2746
2b82032c
YZ
2747 ret = btrfs_parse_options(tree_root, options);
2748 if (ret) {
2749 err = ret;
16cdcec7 2750 goto fail_alloc;
2b82032c 2751 }
dfe25020 2752
f2b636e8
JB
2753 features = btrfs_super_incompat_flags(disk_super) &
2754 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2755 if (features) {
2756 printk(KERN_ERR "BTRFS: couldn't mount because of "
2757 "unsupported optional features (%Lx).\n",
c1c9ff7c 2758 features);
f2b636e8 2759 err = -EINVAL;
16cdcec7 2760 goto fail_alloc;
f2b636e8
JB
2761 }
2762
707e8a07
DS
2763 /*
2764 * Leafsize and nodesize were always equal, this is only a sanity check.
2765 */
2766 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2767 btrfs_super_nodesize(disk_super)) {
2768 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2769 "blocksizes don't match. node %d leaf %d\n",
2770 btrfs_super_nodesize(disk_super),
707e8a07 2771 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2772 err = -EINVAL;
2773 goto fail_alloc;
2774 }
707e8a07 2775 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2776 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2777 "blocksize (%d) was too large\n",
707e8a07 2778 btrfs_super_nodesize(disk_super));
727011e0
CM
2779 err = -EINVAL;
2780 goto fail_alloc;
2781 }
2782
5d4f98a2 2783 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2784 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2785 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2786 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2787
3173a18f 2788 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2789 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2790
727011e0
CM
2791 /*
2792 * flag our filesystem as having big metadata blocks if
2793 * they are bigger than the page size
2794 */
707e8a07 2795 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2796 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2797 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2798 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2799 }
2800
bc3f116f 2801 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2802 sectorsize = btrfs_super_sectorsize(disk_super);
2803 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2804 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2805 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2806
2807 /*
2808 * mixed block groups end up with duplicate but slightly offset
2809 * extent buffers for the same range. It leads to corruptions
2810 */
2811 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2812 (sectorsize != nodesize)) {
aa8ee312 2813 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2814 "are not allowed for mixed block groups on %s\n",
2815 sb->s_id);
2816 goto fail_alloc;
2817 }
2818
ceda0864
MX
2819 /*
2820 * Needn't use the lock because there is no other task which will
2821 * update the flag.
2822 */
a6fa6fae 2823 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2824
f2b636e8
JB
2825 features = btrfs_super_compat_ro_flags(disk_super) &
2826 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2827 if (!(sb->s_flags & MS_RDONLY) && features) {
2828 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2829 "unsupported option features (%Lx).\n",
c1c9ff7c 2830 features);
f2b636e8 2831 err = -EINVAL;
16cdcec7 2832 goto fail_alloc;
f2b636e8 2833 }
61d92c32 2834
5cdc7ad3 2835 max_active = fs_info->thread_pool_size;
61d92c32 2836
2a458198
ES
2837 ret = btrfs_init_workqueues(fs_info, fs_devices);
2838 if (ret) {
2839 err = ret;
0dc3b84a
JB
2840 goto fail_sb_buffer;
2841 }
4543df7e 2842
4575c9cc 2843 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2844 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
ee22184b 2845 SZ_4M / PAGE_CACHE_SIZE);
4575c9cc 2846
db94535d 2847 tree_root->nodesize = nodesize;
db94535d 2848 tree_root->sectorsize = sectorsize;
87ee04eb 2849 tree_root->stripesize = stripesize;
a061fc8d
CM
2850
2851 sb->s_blocksize = sectorsize;
2852 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2853
3cae210f 2854 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2855 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2856 goto fail_sb_buffer;
2857 }
19c00ddc 2858
8d082fb7 2859 if (sectorsize != PAGE_SIZE) {
aa8ee312 2860 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2861 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2862 goto fail_sb_buffer;
2863 }
2864
925baedd 2865 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2866 ret = btrfs_read_sys_array(tree_root);
925baedd 2867 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2868 if (ret) {
aa8ee312 2869 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2870 "array on %s\n", sb->s_id);
5d4f98a2 2871 goto fail_sb_buffer;
84eed90f 2872 }
0b86a832 2873
84234f3a 2874 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2875
707e8a07
DS
2876 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2877 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2878
2879 chunk_root->node = read_tree_block(chunk_root,
2880 btrfs_super_chunk_root(disk_super),
ce86cd59 2881 generation);
64c043de
LB
2882 if (IS_ERR(chunk_root->node) ||
2883 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2884 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2885 sb->s_id);
e5fffbac 2886 if (!IS_ERR(chunk_root->node))
2887 free_extent_buffer(chunk_root->node);
95ab1f64 2888 chunk_root->node = NULL;
af31f5e5 2889 goto fail_tree_roots;
83121942 2890 }
5d4f98a2
YZ
2891 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2892 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2893
e17cade2 2894 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2895 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2896
0b86a832 2897 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2898 if (ret) {
aa8ee312 2899 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2900 sb->s_id);
af31f5e5 2901 goto fail_tree_roots;
2b82032c 2902 }
0b86a832 2903
8dabb742
SB
2904 /*
2905 * keep the device that is marked to be the target device for the
2906 * dev_replace procedure
2907 */
9eaed21e 2908 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2909
a6b0d5c8 2910 if (!fs_devices->latest_bdev) {
aa8ee312 2911 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2912 sb->s_id);
2913 goto fail_tree_roots;
2914 }
2915
af31f5e5 2916retry_root_backup:
84234f3a 2917 generation = btrfs_super_generation(disk_super);
0b86a832 2918
e20d96d6 2919 tree_root->node = read_tree_block(tree_root,
db94535d 2920 btrfs_super_root(disk_super),
ce86cd59 2921 generation);
64c043de
LB
2922 if (IS_ERR(tree_root->node) ||
2923 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2924 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2925 sb->s_id);
e5fffbac 2926 if (!IS_ERR(tree_root->node))
2927 free_extent_buffer(tree_root->node);
95ab1f64 2928 tree_root->node = NULL;
af31f5e5 2929 goto recovery_tree_root;
83121942 2930 }
af31f5e5 2931
5d4f98a2
YZ
2932 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2933 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2934 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2935
f32e48e9
CR
2936 mutex_lock(&tree_root->objectid_mutex);
2937 ret = btrfs_find_highest_objectid(tree_root,
2938 &tree_root->highest_objectid);
2939 if (ret) {
2940 mutex_unlock(&tree_root->objectid_mutex);
2941 goto recovery_tree_root;
2942 }
2943
2944 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2945
2946 mutex_unlock(&tree_root->objectid_mutex);
2947
4bbcaa64
ES
2948 ret = btrfs_read_roots(fs_info, tree_root);
2949 if (ret)
af31f5e5 2950 goto recovery_tree_root;
f7a81ea4 2951
8929ecfa
YZ
2952 fs_info->generation = generation;
2953 fs_info->last_trans_committed = generation;
8929ecfa 2954
68310a5e
ID
2955 ret = btrfs_recover_balance(fs_info);
2956 if (ret) {
aa8ee312 2957 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2958 goto fail_block_groups;
2959 }
2960
733f4fbb
SB
2961 ret = btrfs_init_dev_stats(fs_info);
2962 if (ret) {
efe120a0 2963 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2964 ret);
2965 goto fail_block_groups;
2966 }
2967
8dabb742
SB
2968 ret = btrfs_init_dev_replace(fs_info);
2969 if (ret) {
efe120a0 2970 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2971 goto fail_block_groups;
2972 }
2973
9eaed21e 2974 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2975
b7c35e81
AJ
2976 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2977 if (ret) {
2978 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2979 goto fail_block_groups;
2980 }
2981
2982 ret = btrfs_sysfs_add_device(fs_devices);
2983 if (ret) {
2984 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2985 goto fail_fsdev_sysfs;
2986 }
2987
96f3136e 2988 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2989 if (ret) {
efe120a0 2990 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2991 goto fail_fsdev_sysfs;
c59021f8 2992 }
2993
c59021f8 2994 ret = btrfs_init_space_info(fs_info);
2995 if (ret) {
efe120a0 2996 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2997 goto fail_sysfs;
c59021f8 2998 }
2999
4bbcaa64 3000 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 3001 if (ret) {
efe120a0 3002 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 3003 goto fail_sysfs;
1b1d1f66 3004 }
5af3e8cc
SB
3005 fs_info->num_tolerated_disk_barrier_failures =
3006 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3007 if (fs_info->fs_devices->missing_devices >
3008 fs_info->num_tolerated_disk_barrier_failures &&
3009 !(sb->s_flags & MS_RDONLY)) {
78fa1770
ZL
3010 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
3011 fs_info->fs_devices->missing_devices,
3012 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3013 goto fail_sysfs;
292fd7fc 3014 }
9078a3e1 3015
a74a4b97
CM
3016 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3017 "btrfs-cleaner");
57506d50 3018 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3019 goto fail_sysfs;
a74a4b97
CM
3020
3021 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3022 tree_root,
3023 "btrfs-transaction");
57506d50 3024 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3025 goto fail_cleaner;
a74a4b97 3026
c289811c
CM
3027 if (!btrfs_test_opt(tree_root, SSD) &&
3028 !btrfs_test_opt(tree_root, NOSSD) &&
3029 !fs_info->fs_devices->rotating) {
efe120a0 3030 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
3031 "mode\n");
3032 btrfs_set_opt(fs_info->mount_opt, SSD);
3033 }
3034
572d9ab7
DS
3035 /*
3036 * Mount does not set all options immediatelly, we can do it now and do
3037 * not have to wait for transaction commit
3038 */
3039 btrfs_apply_pending_changes(fs_info);
3818aea2 3040
21adbd5c
SB
3041#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3042 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3043 ret = btrfsic_mount(tree_root, fs_devices,
3044 btrfs_test_opt(tree_root,
3045 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3046 1 : 0,
3047 fs_info->check_integrity_print_mask);
3048 if (ret)
efe120a0 3049 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
3050 " integrity check module %s\n", sb->s_id);
3051 }
3052#endif
bcef60f2
AJ
3053 ret = btrfs_read_qgroup_config(fs_info);
3054 if (ret)
3055 goto fail_trans_kthread;
21adbd5c 3056
acce952b 3057 /* do not make disk changes in broken FS */
68ce9682 3058 if (btrfs_super_log_root(disk_super) != 0) {
63443bf5 3059 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3060 if (ret) {
63443bf5 3061 err = ret;
28c16cbb 3062 goto fail_qgroup;
79787eaa 3063 }
e02119d5 3064 }
1a40e23b 3065
76dda93c 3066 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3067 if (ret)
28c16cbb 3068 goto fail_qgroup;
76dda93c 3069
7c2ca468 3070 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3071 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3072 if (ret)
28c16cbb 3073 goto fail_qgroup;
d68fc57b 3074
5f316481 3075 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3076 ret = btrfs_recover_relocation(tree_root);
5f316481 3077 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
3078 if (ret < 0) {
3079 printk(KERN_WARNING
efe120a0 3080 "BTRFS: failed to recover relocation\n");
d7ce5843 3081 err = -EINVAL;
bcef60f2 3082 goto fail_qgroup;
d7ce5843 3083 }
7c2ca468 3084 }
1a40e23b 3085
3de4586c
CM
3086 location.objectid = BTRFS_FS_TREE_OBJECTID;
3087 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3088 location.offset = 0;
3de4586c 3089
3de4586c 3090 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3091 if (IS_ERR(fs_info->fs_root)) {
3092 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3093 goto fail_qgroup;
3140c9a3 3094 }
c289811c 3095
2b6ba629
ID
3096 if (sb->s_flags & MS_RDONLY)
3097 return 0;
59641015 3098
511711af
CM
3099 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3100 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3101 pr_info("BTRFS: creating free space tree\n");
3102 ret = btrfs_create_free_space_tree(fs_info);
3103 if (ret) {
3104 pr_warn("BTRFS: failed to create free space tree %d\n",
3105 ret);
3106 close_ctree(tree_root);
3107 return ret;
3108 }
3109 }
3110
2b6ba629
ID
3111 down_read(&fs_info->cleanup_work_sem);
3112 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3113 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3114 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3115 close_ctree(tree_root);
3116 return ret;
3117 }
3118 up_read(&fs_info->cleanup_work_sem);
59641015 3119
2b6ba629
ID
3120 ret = btrfs_resume_balance_async(fs_info);
3121 if (ret) {
efe120a0 3122 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3123 close_ctree(tree_root);
3124 return ret;
e3acc2a6
JB
3125 }
3126
8dabb742
SB
3127 ret = btrfs_resume_dev_replace_async(fs_info);
3128 if (ret) {
efe120a0 3129 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3130 close_ctree(tree_root);
3131 return ret;
3132 }
3133
b382a324
JS
3134 btrfs_qgroup_rescan_resume(fs_info);
3135
70f6d82e
OS
3136 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3137 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3138 pr_info("BTRFS: clearing free space tree\n");
3139 ret = btrfs_clear_free_space_tree(fs_info);
3140 if (ret) {
3141 pr_warn("BTRFS: failed to clear free space tree %d\n",
3142 ret);
3143 close_ctree(tree_root);
3144 return ret;
3145 }
3146 }
3147
4bbcaa64 3148 if (!fs_info->uuid_root) {
efe120a0 3149 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3150 ret = btrfs_create_uuid_tree(fs_info);
3151 if (ret) {
efe120a0 3152 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3153 ret);
3154 close_ctree(tree_root);
3155 return ret;
3156 }
4bbcaa64
ES
3157 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3158 fs_info->generation !=
3159 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3160 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3161 ret = btrfs_check_uuid_tree(fs_info);
3162 if (ret) {
efe120a0 3163 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3164 ret);
3165 close_ctree(tree_root);
3166 return ret;
3167 }
3168 } else {
3169 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3170 }
3171
47ab2a6c
JB
3172 fs_info->open = 1;
3173
ad2b2c80 3174 return 0;
39279cc3 3175
bcef60f2
AJ
3176fail_qgroup:
3177 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3178fail_trans_kthread:
3179 kthread_stop(fs_info->transaction_kthread);
54067ae9 3180 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3181 btrfs_free_fs_roots(fs_info);
3f157a2f 3182fail_cleaner:
a74a4b97 3183 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3184
3185 /*
3186 * make sure we're done with the btree inode before we stop our
3187 * kthreads
3188 */
3189 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3190
2365dd3c 3191fail_sysfs:
6618a59b 3192 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3193
b7c35e81
AJ
3194fail_fsdev_sysfs:
3195 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3196
1b1d1f66 3197fail_block_groups:
54067ae9 3198 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3199 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3200
3201fail_tree_roots:
3202 free_root_pointers(fs_info, 1);
2b8195bb 3203 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3204
39279cc3 3205fail_sb_buffer:
7abadb64 3206 btrfs_stop_all_workers(fs_info);
16cdcec7 3207fail_alloc:
4543df7e 3208fail_iput:
586e46e2
ID
3209 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3210
4543df7e 3211 iput(fs_info->btree_inode);
c404e0dc
MX
3212fail_bio_counter:
3213 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3214fail_delalloc_bytes:
3215 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3216fail_dirty_metadata_bytes:
3217 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3218fail_bdi:
7e662854 3219 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3220fail_srcu:
3221 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3222fail:
53b381b3 3223 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3224 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3225 return err;
af31f5e5
CM
3226
3227recovery_tree_root:
af31f5e5
CM
3228 if (!btrfs_test_opt(tree_root, RECOVERY))
3229 goto fail_tree_roots;
3230
3231 free_root_pointers(fs_info, 0);
3232
3233 /* don't use the log in recovery mode, it won't be valid */
3234 btrfs_set_super_log_root(disk_super, 0);
3235
3236 /* we can't trust the free space cache either */
3237 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3238
3239 ret = next_root_backup(fs_info, fs_info->super_copy,
3240 &num_backups_tried, &backup_index);
3241 if (ret == -1)
3242 goto fail_block_groups;
3243 goto retry_root_backup;
eb60ceac
CM
3244}
3245
f2984462
CM
3246static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3247{
f2984462
CM
3248 if (uptodate) {
3249 set_buffer_uptodate(bh);
3250 } else {
442a4f63
SB
3251 struct btrfs_device *device = (struct btrfs_device *)
3252 bh->b_private;
3253
b14af3b4
DS
3254 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3255 "lost page write due to IO error on %s",
606686ee 3256 rcu_str_deref(device->name));
1259ab75
CM
3257 /* note, we dont' set_buffer_write_io_error because we have
3258 * our own ways of dealing with the IO errors
3259 */
f2984462 3260 clear_buffer_uptodate(bh);
442a4f63 3261 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3262 }
3263 unlock_buffer(bh);
3264 put_bh(bh);
3265}
3266
29c36d72
AJ
3267int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3268 struct buffer_head **bh_ret)
3269{
3270 struct buffer_head *bh;
3271 struct btrfs_super_block *super;
3272 u64 bytenr;
3273
3274 bytenr = btrfs_sb_offset(copy_num);
3275 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3276 return -EINVAL;
3277
3278 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3279 /*
3280 * If we fail to read from the underlying devices, as of now
3281 * the best option we have is to mark it EIO.
3282 */
3283 if (!bh)
3284 return -EIO;
3285
3286 super = (struct btrfs_super_block *)bh->b_data;
3287 if (btrfs_super_bytenr(super) != bytenr ||
3288 btrfs_super_magic(super) != BTRFS_MAGIC) {
3289 brelse(bh);
3290 return -EINVAL;
3291 }
3292
3293 *bh_ret = bh;
3294 return 0;
3295}
3296
3297
a512bbf8
YZ
3298struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3299{
3300 struct buffer_head *bh;
3301 struct buffer_head *latest = NULL;
3302 struct btrfs_super_block *super;
3303 int i;
3304 u64 transid = 0;
92fc03fb 3305 int ret = -EINVAL;
a512bbf8
YZ
3306
3307 /* we would like to check all the supers, but that would make
3308 * a btrfs mount succeed after a mkfs from a different FS.
3309 * So, we need to add a special mount option to scan for
3310 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3311 */
3312 for (i = 0; i < 1; i++) {
29c36d72
AJ
3313 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3314 if (ret)
a512bbf8
YZ
3315 continue;
3316
3317 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3318
3319 if (!latest || btrfs_super_generation(super) > transid) {
3320 brelse(latest);
3321 latest = bh;
3322 transid = btrfs_super_generation(super);
3323 } else {
3324 brelse(bh);
3325 }
3326 }
92fc03fb
AJ
3327
3328 if (!latest)
3329 return ERR_PTR(ret);
3330
a512bbf8
YZ
3331 return latest;
3332}
3333
4eedeb75
HH
3334/*
3335 * this should be called twice, once with wait == 0 and
3336 * once with wait == 1. When wait == 0 is done, all the buffer heads
3337 * we write are pinned.
3338 *
3339 * They are released when wait == 1 is done.
3340 * max_mirrors must be the same for both runs, and it indicates how
3341 * many supers on this one device should be written.
3342 *
3343 * max_mirrors == 0 means to write them all.
3344 */
a512bbf8
YZ
3345static int write_dev_supers(struct btrfs_device *device,
3346 struct btrfs_super_block *sb,
3347 int do_barriers, int wait, int max_mirrors)
3348{
3349 struct buffer_head *bh;
3350 int i;
3351 int ret;
3352 int errors = 0;
3353 u32 crc;
3354 u64 bytenr;
a512bbf8
YZ
3355
3356 if (max_mirrors == 0)
3357 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3358
a512bbf8
YZ
3359 for (i = 0; i < max_mirrors; i++) {
3360 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3361 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3362 device->commit_total_bytes)
a512bbf8
YZ
3363 break;
3364
3365 if (wait) {
3366 bh = __find_get_block(device->bdev, bytenr / 4096,
3367 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3368 if (!bh) {
3369 errors++;
3370 continue;
3371 }
a512bbf8 3372 wait_on_buffer(bh);
4eedeb75
HH
3373 if (!buffer_uptodate(bh))
3374 errors++;
3375
3376 /* drop our reference */
3377 brelse(bh);
3378
3379 /* drop the reference from the wait == 0 run */
3380 brelse(bh);
3381 continue;
a512bbf8
YZ
3382 } else {
3383 btrfs_set_super_bytenr(sb, bytenr);
3384
3385 crc = ~(u32)0;
b0496686 3386 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3387 BTRFS_CSUM_SIZE, crc,
3388 BTRFS_SUPER_INFO_SIZE -
3389 BTRFS_CSUM_SIZE);
3390 btrfs_csum_final(crc, sb->csum);
3391
4eedeb75
HH
3392 /*
3393 * one reference for us, and we leave it for the
3394 * caller
3395 */
a512bbf8
YZ
3396 bh = __getblk(device->bdev, bytenr / 4096,
3397 BTRFS_SUPER_INFO_SIZE);
634554dc 3398 if (!bh) {
f14d104d
DS
3399 btrfs_err(device->dev_root->fs_info,
3400 "couldn't get super buffer head for bytenr %llu",
3401 bytenr);
634554dc
JB
3402 errors++;
3403 continue;
3404 }
3405
a512bbf8
YZ
3406 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3407
4eedeb75 3408 /* one reference for submit_bh */
a512bbf8 3409 get_bh(bh);
4eedeb75
HH
3410
3411 set_buffer_uptodate(bh);
a512bbf8
YZ
3412 lock_buffer(bh);
3413 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3414 bh->b_private = device;
a512bbf8
YZ
3415 }
3416
387125fc
CM
3417 /*
3418 * we fua the first super. The others we allow
3419 * to go down lazy.
3420 */
e8117c26
WS
3421 if (i == 0)
3422 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3423 else
3424 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3425 if (ret)
a512bbf8 3426 errors++;
a512bbf8
YZ
3427 }
3428 return errors < i ? 0 : -1;
3429}
3430
387125fc
CM
3431/*
3432 * endio for the write_dev_flush, this will wake anyone waiting
3433 * for the barrier when it is done
3434 */
4246a0b6 3435static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3436{
387125fc
CM
3437 if (bio->bi_private)
3438 complete(bio->bi_private);
3439 bio_put(bio);
3440}
3441
3442/*
3443 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3444 * sent down. With wait == 1, it waits for the previous flush.
3445 *
3446 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3447 * capable
3448 */
3449static int write_dev_flush(struct btrfs_device *device, int wait)
3450{
3451 struct bio *bio;
3452 int ret = 0;
3453
3454 if (device->nobarriers)
3455 return 0;
3456
3457 if (wait) {
3458 bio = device->flush_bio;
3459 if (!bio)
3460 return 0;
3461
3462 wait_for_completion(&device->flush_wait);
3463
4246a0b6
CH
3464 if (bio->bi_error) {
3465 ret = bio->bi_error;
5af3e8cc
SB
3466 btrfs_dev_stat_inc_and_print(device,
3467 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3468 }
3469
3470 /* drop the reference from the wait == 0 run */
3471 bio_put(bio);
3472 device->flush_bio = NULL;
3473
3474 return ret;
3475 }
3476
3477 /*
3478 * one reference for us, and we leave it for the
3479 * caller
3480 */
9c017abc 3481 device->flush_bio = NULL;
9be3395b 3482 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3483 if (!bio)
3484 return -ENOMEM;
3485
3486 bio->bi_end_io = btrfs_end_empty_barrier;
3487 bio->bi_bdev = device->bdev;
3488 init_completion(&device->flush_wait);
3489 bio->bi_private = &device->flush_wait;
3490 device->flush_bio = bio;
3491
3492 bio_get(bio);
21adbd5c 3493 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3494
3495 return 0;
3496}
3497
3498/*
3499 * send an empty flush down to each device in parallel,
3500 * then wait for them
3501 */
3502static int barrier_all_devices(struct btrfs_fs_info *info)
3503{
3504 struct list_head *head;
3505 struct btrfs_device *dev;
5af3e8cc
SB
3506 int errors_send = 0;
3507 int errors_wait = 0;
387125fc
CM
3508 int ret;
3509
3510 /* send down all the barriers */
3511 head = &info->fs_devices->devices;
3512 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3513 if (dev->missing)
3514 continue;
387125fc 3515 if (!dev->bdev) {
5af3e8cc 3516 errors_send++;
387125fc
CM
3517 continue;
3518 }
3519 if (!dev->in_fs_metadata || !dev->writeable)
3520 continue;
3521
3522 ret = write_dev_flush(dev, 0);
3523 if (ret)
5af3e8cc 3524 errors_send++;
387125fc
CM
3525 }
3526
3527 /* wait for all the barriers */
3528 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3529 if (dev->missing)
3530 continue;
387125fc 3531 if (!dev->bdev) {
5af3e8cc 3532 errors_wait++;
387125fc
CM
3533 continue;
3534 }
3535 if (!dev->in_fs_metadata || !dev->writeable)
3536 continue;
3537
3538 ret = write_dev_flush(dev, 1);
3539 if (ret)
5af3e8cc 3540 errors_wait++;
387125fc 3541 }
5af3e8cc
SB
3542 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3543 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3544 return -EIO;
3545 return 0;
3546}
3547
943c6e99
ZL
3548int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3549{
8789f4fe
ZL
3550 int raid_type;
3551 int min_tolerated = INT_MAX;
943c6e99 3552
8789f4fe
ZL
3553 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3554 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3555 min_tolerated = min(min_tolerated,
3556 btrfs_raid_array[BTRFS_RAID_SINGLE].
3557 tolerated_failures);
943c6e99 3558
8789f4fe
ZL
3559 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3560 if (raid_type == BTRFS_RAID_SINGLE)
3561 continue;
3562 if (!(flags & btrfs_raid_group[raid_type]))
3563 continue;
3564 min_tolerated = min(min_tolerated,
3565 btrfs_raid_array[raid_type].
3566 tolerated_failures);
3567 }
943c6e99 3568
8789f4fe
ZL
3569 if (min_tolerated == INT_MAX) {
3570 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3571 min_tolerated = 0;
3572 }
3573
3574 return min_tolerated;
943c6e99
ZL
3575}
3576
5af3e8cc
SB
3577int btrfs_calc_num_tolerated_disk_barrier_failures(
3578 struct btrfs_fs_info *fs_info)
3579{
3580 struct btrfs_ioctl_space_info space;
3581 struct btrfs_space_info *sinfo;
3582 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3583 BTRFS_BLOCK_GROUP_SYSTEM,
3584 BTRFS_BLOCK_GROUP_METADATA,
3585 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3586 int i;
3587 int c;
3588 int num_tolerated_disk_barrier_failures =
3589 (int)fs_info->fs_devices->num_devices;
3590
2c458045 3591 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3592 struct btrfs_space_info *tmp;
3593
3594 sinfo = NULL;
3595 rcu_read_lock();
3596 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3597 if (tmp->flags == types[i]) {
3598 sinfo = tmp;
3599 break;
3600 }
3601 }
3602 rcu_read_unlock();
3603
3604 if (!sinfo)
3605 continue;
3606
3607 down_read(&sinfo->groups_sem);
3608 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3609 u64 flags;
3610
3611 if (list_empty(&sinfo->block_groups[c]))
3612 continue;
3613
3614 btrfs_get_block_group_info(&sinfo->block_groups[c],
3615 &space);
3616 if (space.total_bytes == 0 || space.used_bytes == 0)
3617 continue;
3618 flags = space.flags;
943c6e99
ZL
3619
3620 num_tolerated_disk_barrier_failures = min(
3621 num_tolerated_disk_barrier_failures,
3622 btrfs_get_num_tolerated_disk_barrier_failures(
3623 flags));
5af3e8cc
SB
3624 }
3625 up_read(&sinfo->groups_sem);
3626 }
3627
3628 return num_tolerated_disk_barrier_failures;
3629}
3630
48a3b636 3631static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3632{
e5e9a520 3633 struct list_head *head;
f2984462 3634 struct btrfs_device *dev;
a061fc8d 3635 struct btrfs_super_block *sb;
f2984462 3636 struct btrfs_dev_item *dev_item;
f2984462
CM
3637 int ret;
3638 int do_barriers;
a236aed1
CM
3639 int max_errors;
3640 int total_errors = 0;
a061fc8d 3641 u64 flags;
f2984462
CM
3642
3643 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3644 backup_super_roots(root->fs_info);
f2984462 3645
6c41761f 3646 sb = root->fs_info->super_for_commit;
a061fc8d 3647 dev_item = &sb->dev_item;
e5e9a520 3648
174ba509 3649 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3650 head = &root->fs_info->fs_devices->devices;
d7306801 3651 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3652
5af3e8cc
SB
3653 if (do_barriers) {
3654 ret = barrier_all_devices(root->fs_info);
3655 if (ret) {
3656 mutex_unlock(
3657 &root->fs_info->fs_devices->device_list_mutex);
a4553fef 3658 btrfs_std_error(root->fs_info, ret,
5af3e8cc
SB
3659 "errors while submitting device barriers.");
3660 return ret;
3661 }
3662 }
387125fc 3663
1f78160c 3664 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3665 if (!dev->bdev) {
3666 total_errors++;
3667 continue;
3668 }
2b82032c 3669 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3670 continue;
3671
2b82032c 3672 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3673 btrfs_set_stack_device_type(dev_item, dev->type);
3674 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3675 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3676 dev->commit_total_bytes);
ce7213c7
MX
3677 btrfs_set_stack_device_bytes_used(dev_item,
3678 dev->commit_bytes_used);
a061fc8d
CM
3679 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3680 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3681 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3682 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3683 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3684
a061fc8d
CM
3685 flags = btrfs_super_flags(sb);
3686 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3687
a512bbf8 3688 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3689 if (ret)
3690 total_errors++;
f2984462 3691 }
a236aed1 3692 if (total_errors > max_errors) {
efe120a0 3693 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3694 total_errors);
a724b436 3695 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3696
9d565ba4 3697 /* FUA is masked off if unsupported and can't be the reason */
a4553fef 3698 btrfs_std_error(root->fs_info, -EIO,
9d565ba4
SB
3699 "%d errors while writing supers", total_errors);
3700 return -EIO;
a236aed1 3701 }
f2984462 3702
a512bbf8 3703 total_errors = 0;
1f78160c 3704 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3705 if (!dev->bdev)
3706 continue;
2b82032c 3707 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3708 continue;
3709
a512bbf8
YZ
3710 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3711 if (ret)
3712 total_errors++;
f2984462 3713 }
174ba509 3714 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3715 if (total_errors > max_errors) {
a4553fef 3716 btrfs_std_error(root->fs_info, -EIO,
79787eaa
JM
3717 "%d errors while writing supers", total_errors);
3718 return -EIO;
a236aed1 3719 }
f2984462
CM
3720 return 0;
3721}
3722
a512bbf8
YZ
3723int write_ctree_super(struct btrfs_trans_handle *trans,
3724 struct btrfs_root *root, int max_mirrors)
eb60ceac 3725{
f570e757 3726 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3727}
3728
cb517eab
MX
3729/* Drop a fs root from the radix tree and free it. */
3730void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3731 struct btrfs_root *root)
2619ba1f 3732{
4df27c4d 3733 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3734 radix_tree_delete(&fs_info->fs_roots_radix,
3735 (unsigned long)root->root_key.objectid);
4df27c4d 3736 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3737
3738 if (btrfs_root_refs(&root->root_item) == 0)
3739 synchronize_srcu(&fs_info->subvol_srcu);
3740
1a4319cc 3741 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3742 btrfs_free_log(NULL, root);
3321719e 3743
faa2dbf0
JB
3744 if (root->free_ino_pinned)
3745 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3746 if (root->free_ino_ctl)
3747 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3748 free_fs_root(root);
4df27c4d
YZ
3749}
3750
3751static void free_fs_root(struct btrfs_root *root)
3752{
57cdc8db 3753 iput(root->ino_cache_inode);
4df27c4d 3754 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3755 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3756 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3757 if (root->anon_dev)
3758 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3759 if (root->subv_writers)
3760 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3761 free_extent_buffer(root->node);
3762 free_extent_buffer(root->commit_root);
581bb050
LZ
3763 kfree(root->free_ino_ctl);
3764 kfree(root->free_ino_pinned);
d397712b 3765 kfree(root->name);
b0feb9d9 3766 btrfs_put_fs_root(root);
2619ba1f
CM
3767}
3768
cb517eab
MX
3769void btrfs_free_fs_root(struct btrfs_root *root)
3770{
3771 free_fs_root(root);
2619ba1f
CM
3772}
3773
c146afad 3774int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3775{
c146afad
YZ
3776 u64 root_objectid = 0;
3777 struct btrfs_root *gang[8];
65d33fd7
QW
3778 int i = 0;
3779 int err = 0;
3780 unsigned int ret = 0;
3781 int index;
e089f05c 3782
c146afad 3783 while (1) {
65d33fd7 3784 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3785 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3786 (void **)gang, root_objectid,
3787 ARRAY_SIZE(gang));
65d33fd7
QW
3788 if (!ret) {
3789 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3790 break;
65d33fd7 3791 }
5d4f98a2 3792 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3793
c146afad 3794 for (i = 0; i < ret; i++) {
65d33fd7
QW
3795 /* Avoid to grab roots in dead_roots */
3796 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3797 gang[i] = NULL;
3798 continue;
3799 }
3800 /* grab all the search result for later use */
3801 gang[i] = btrfs_grab_fs_root(gang[i]);
3802 }
3803 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3804
65d33fd7
QW
3805 for (i = 0; i < ret; i++) {
3806 if (!gang[i])
3807 continue;
c146afad 3808 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3809 err = btrfs_orphan_cleanup(gang[i]);
3810 if (err)
65d33fd7
QW
3811 break;
3812 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3813 }
3814 root_objectid++;
3815 }
65d33fd7
QW
3816
3817 /* release the uncleaned roots due to error */
3818 for (; i < ret; i++) {
3819 if (gang[i])
3820 btrfs_put_fs_root(gang[i]);
3821 }
3822 return err;
c146afad 3823}
a2135011 3824
c146afad
YZ
3825int btrfs_commit_super(struct btrfs_root *root)
3826{
3827 struct btrfs_trans_handle *trans;
a74a4b97 3828
c146afad 3829 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3830 btrfs_run_delayed_iputs(root);
c146afad 3831 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3832 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3833
3834 /* wait until ongoing cleanup work done */
3835 down_write(&root->fs_info->cleanup_work_sem);
3836 up_write(&root->fs_info->cleanup_work_sem);
3837
7a7eaa40 3838 trans = btrfs_join_transaction(root);
3612b495
TI
3839 if (IS_ERR(trans))
3840 return PTR_ERR(trans);
d52c1bcc 3841 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3842}
3843
3abdbd78 3844void close_ctree(struct btrfs_root *root)
c146afad
YZ
3845{
3846 struct btrfs_fs_info *fs_info = root->fs_info;
3847 int ret;
3848
3849 fs_info->closing = 1;
3850 smp_mb();
3851
7343dd61
JM
3852 /* wait for the qgroup rescan worker to stop */
3853 btrfs_qgroup_wait_for_completion(fs_info);
3854
803b2f54
SB
3855 /* wait for the uuid_scan task to finish */
3856 down(&fs_info->uuid_tree_rescan_sem);
3857 /* avoid complains from lockdep et al., set sem back to initial state */
3858 up(&fs_info->uuid_tree_rescan_sem);
3859
837d5b6e 3860 /* pause restriper - we want to resume on mount */
aa1b8cd4 3861 btrfs_pause_balance(fs_info);
837d5b6e 3862
8dabb742
SB
3863 btrfs_dev_replace_suspend_for_unmount(fs_info);
3864
aa1b8cd4 3865 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3866
3867 /* wait for any defraggers to finish */
3868 wait_event(fs_info->transaction_wait,
3869 (atomic_read(&fs_info->defrag_running) == 0));
3870
3871 /* clear out the rbtree of defraggable inodes */
26176e7c 3872 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3873
21c7e756
MX
3874 cancel_work_sync(&fs_info->async_reclaim_work);
3875
c146afad 3876 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3877 /*
3878 * If the cleaner thread is stopped and there are
3879 * block groups queued for removal, the deletion will be
3880 * skipped when we quit the cleaner thread.
3881 */
e44163e1 3882 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3883
acce952b 3884 ret = btrfs_commit_super(root);
3885 if (ret)
04892340 3886 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3887 }
3888
87533c47 3889 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3890 btrfs_error_commit_super(root);
0f7d52f4 3891
e3029d9f
AV
3892 kthread_stop(fs_info->transaction_kthread);
3893 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3894
f25784b3
YZ
3895 fs_info->closing = 2;
3896 smp_mb();
3897
04892340 3898 btrfs_free_qgroup_config(fs_info);
bcef60f2 3899
963d678b 3900 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3901 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3902 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3903 }
bcc63abb 3904
6618a59b 3905 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3906 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3907
faa2dbf0 3908 btrfs_free_fs_roots(fs_info);
d10c5f31 3909
1a4319cc
LB
3910 btrfs_put_block_group_cache(fs_info);
3911
2b1360da
JB
3912 btrfs_free_block_groups(fs_info);
3913
de348ee0
WS
3914 /*
3915 * we must make sure there is not any read request to
3916 * submit after we stopping all workers.
3917 */
3918 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3919 btrfs_stop_all_workers(fs_info);
3920
47ab2a6c 3921 fs_info->open = 0;
13e6c37b 3922 free_root_pointers(fs_info, 1);
9ad6b7bc 3923
13e6c37b 3924 iput(fs_info->btree_inode);
d6bfde87 3925
21adbd5c
SB
3926#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3927 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3928 btrfsic_unmount(root, fs_info->fs_devices);
3929#endif
3930
dfe25020 3931 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3932 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3933
e2d84521 3934 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3935 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3936 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3937 bdi_destroy(&fs_info->bdi);
76dda93c 3938 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3939
53b381b3
DW
3940 btrfs_free_stripe_hash_table(fs_info);
3941
cdfb080e 3942 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3943 root->orphan_block_rsv = NULL;
04216820
FM
3944
3945 lock_chunks(root);
3946 while (!list_empty(&fs_info->pinned_chunks)) {
3947 struct extent_map *em;
3948
3949 em = list_first_entry(&fs_info->pinned_chunks,
3950 struct extent_map, list);
3951 list_del_init(&em->list);
3952 free_extent_map(em);
3953 }
3954 unlock_chunks(root);
eb60ceac
CM
3955}
3956
b9fab919
CM
3957int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3958 int atomic)
5f39d397 3959{
1259ab75 3960 int ret;
727011e0 3961 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3962
0b32f4bb 3963 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3964 if (!ret)
3965 return ret;
3966
3967 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3968 parent_transid, atomic);
3969 if (ret == -EAGAIN)
3970 return ret;
1259ab75 3971 return !ret;
5f39d397
CM
3972}
3973
5f39d397
CM
3974void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3975{
06ea65a3 3976 struct btrfs_root *root;
5f39d397 3977 u64 transid = btrfs_header_generation(buf);
b9473439 3978 int was_dirty;
b4ce94de 3979
06ea65a3
JB
3980#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3981 /*
3982 * This is a fast path so only do this check if we have sanity tests
3983 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3984 * outside of the sanity tests.
3985 */
3986 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3987 return;
3988#endif
3989 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3990 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3991 if (transid != root->fs_info->generation)
3992 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3993 "found %llu running %llu\n",
c1c9ff7c 3994 buf->start, transid, root->fs_info->generation);
0b32f4bb 3995 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3996 if (!was_dirty)
3997 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3998 buf->len,
3999 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
4000#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4001 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4002 btrfs_print_leaf(root, buf);
4003 ASSERT(0);
4004 }
4005#endif
eb60ceac
CM
4006}
4007
b53d3f5d
LB
4008static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4009 int flush_delayed)
16cdcec7
MX
4010{
4011 /*
4012 * looks as though older kernels can get into trouble with
4013 * this code, they end up stuck in balance_dirty_pages forever
4014 */
e2d84521 4015 int ret;
16cdcec7
MX
4016
4017 if (current->flags & PF_MEMALLOC)
4018 return;
4019
b53d3f5d
LB
4020 if (flush_delayed)
4021 btrfs_balance_delayed_items(root);
16cdcec7 4022
e2d84521
MX
4023 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4024 BTRFS_DIRTY_METADATA_THRESH);
4025 if (ret > 0) {
d0e1d66b
NJ
4026 balance_dirty_pages_ratelimited(
4027 root->fs_info->btree_inode->i_mapping);
16cdcec7 4028 }
16cdcec7
MX
4029}
4030
b53d3f5d 4031void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4032{
b53d3f5d
LB
4033 __btrfs_btree_balance_dirty(root, 1);
4034}
585ad2c3 4035
b53d3f5d
LB
4036void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4037{
4038 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4039}
6b80053d 4040
ca7a79ad 4041int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4042{
727011e0 4043 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 4044 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 4045}
0da5468f 4046
fcd1f065 4047static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4048 int read_only)
4049{
c926093e
DS
4050 struct btrfs_super_block *sb = fs_info->super_copy;
4051 int ret = 0;
4052
21e7626b
DS
4053 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4054 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4055 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4056 ret = -EINVAL;
4057 }
21e7626b
DS
4058 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4060 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4061 ret = -EINVAL;
4062 }
21e7626b
DS
4063 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4065 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4066 ret = -EINVAL;
4067 }
4068
1104a885 4069 /*
c926093e
DS
4070 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4071 * items yet, they'll be verified later. Issue just a warning.
1104a885 4072 */
21e7626b 4073 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 4074 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4075 btrfs_super_root(sb));
21e7626b 4076 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
4077 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4078 btrfs_super_chunk_root(sb));
21e7626b 4079 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 4080 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 4081 btrfs_super_log_root(sb));
c926093e 4082
75d6ad38
DS
4083 /*
4084 * Check the lower bound, the alignment and other constraints are
4085 * checked later.
4086 */
4087 if (btrfs_super_nodesize(sb) < 4096) {
4088 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4089 btrfs_super_nodesize(sb));
4090 ret = -EINVAL;
4091 }
4092 if (btrfs_super_sectorsize(sb) < 4096) {
4093 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4094 btrfs_super_sectorsize(sb));
4095 ret = -EINVAL;
4096 }
4097
c926093e
DS
4098 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4099 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4100 fs_info->fsid, sb->dev_item.fsid);
4101 ret = -EINVAL;
4102 }
4103
4104 /*
4105 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4106 * done later
4107 */
21e7626b 4108 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4109 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4110 btrfs_super_num_devices(sb));
75d6ad38
DS
4111 if (btrfs_super_num_devices(sb) == 0) {
4112 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4113 ret = -EINVAL;
4114 }
c926093e 4115
21e7626b 4116 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4117 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4118 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4119 ret = -EINVAL;
4120 }
4121
ce7fca5f
DS
4122 /*
4123 * Obvious sys_chunk_array corruptions, it must hold at least one key
4124 * and one chunk
4125 */
4126 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4127 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4128 btrfs_super_sys_array_size(sb),
4129 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4130 ret = -EINVAL;
4131 }
4132 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4133 + sizeof(struct btrfs_chunk)) {
d2207129 4134 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4135 btrfs_super_sys_array_size(sb),
4136 sizeof(struct btrfs_disk_key)
4137 + sizeof(struct btrfs_chunk));
4138 ret = -EINVAL;
4139 }
4140
c926093e
DS
4141 /*
4142 * The generation is a global counter, we'll trust it more than the others
4143 * but it's still possible that it's the one that's wrong.
4144 */
21e7626b 4145 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4146 printk(KERN_WARNING
4147 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4148 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4149 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4150 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4151 printk(KERN_WARNING
4152 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4153 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4154
4155 return ret;
acce952b 4156}
4157
48a3b636 4158static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4159{
acce952b 4160 mutex_lock(&root->fs_info->cleaner_mutex);
4161 btrfs_run_delayed_iputs(root);
4162 mutex_unlock(&root->fs_info->cleaner_mutex);
4163
4164 down_write(&root->fs_info->cleanup_work_sem);
4165 up_write(&root->fs_info->cleanup_work_sem);
4166
4167 /* cleanup FS via transaction */
4168 btrfs_cleanup_transaction(root);
acce952b 4169}
4170
143bede5 4171static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4172{
acce952b 4173 struct btrfs_ordered_extent *ordered;
acce952b 4174
199c2a9c 4175 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4176 /*
4177 * This will just short circuit the ordered completion stuff which will
4178 * make sure the ordered extent gets properly cleaned up.
4179 */
199c2a9c 4180 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4181 root_extent_list)
4182 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4183 spin_unlock(&root->ordered_extent_lock);
4184}
4185
4186static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4187{
4188 struct btrfs_root *root;
4189 struct list_head splice;
4190
4191 INIT_LIST_HEAD(&splice);
4192
4193 spin_lock(&fs_info->ordered_root_lock);
4194 list_splice_init(&fs_info->ordered_roots, &splice);
4195 while (!list_empty(&splice)) {
4196 root = list_first_entry(&splice, struct btrfs_root,
4197 ordered_root);
1de2cfde
JB
4198 list_move_tail(&root->ordered_root,
4199 &fs_info->ordered_roots);
199c2a9c 4200
2a85d9ca 4201 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4202 btrfs_destroy_ordered_extents(root);
4203
2a85d9ca
LB
4204 cond_resched();
4205 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4206 }
4207 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4208}
4209
35a3621b
SB
4210static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4211 struct btrfs_root *root)
acce952b 4212{
4213 struct rb_node *node;
4214 struct btrfs_delayed_ref_root *delayed_refs;
4215 struct btrfs_delayed_ref_node *ref;
4216 int ret = 0;
4217
4218 delayed_refs = &trans->delayed_refs;
4219
4220 spin_lock(&delayed_refs->lock);
d7df2c79 4221 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4222 spin_unlock(&delayed_refs->lock);
efe120a0 4223 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4224 return ret;
4225 }
4226
d7df2c79
JB
4227 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4228 struct btrfs_delayed_ref_head *head;
c6fc2454 4229 struct btrfs_delayed_ref_node *tmp;
e78417d1 4230 bool pin_bytes = false;
acce952b 4231
d7df2c79
JB
4232 head = rb_entry(node, struct btrfs_delayed_ref_head,
4233 href_node);
4234 if (!mutex_trylock(&head->mutex)) {
4235 atomic_inc(&head->node.refs);
4236 spin_unlock(&delayed_refs->lock);
eb12db69 4237
d7df2c79 4238 mutex_lock(&head->mutex);
e78417d1 4239 mutex_unlock(&head->mutex);
d7df2c79
JB
4240 btrfs_put_delayed_ref(&head->node);
4241 spin_lock(&delayed_refs->lock);
4242 continue;
4243 }
4244 spin_lock(&head->lock);
c6fc2454
QW
4245 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4246 list) {
d7df2c79 4247 ref->in_tree = 0;
c6fc2454 4248 list_del(&ref->list);
d7df2c79
JB
4249 atomic_dec(&delayed_refs->num_entries);
4250 btrfs_put_delayed_ref(ref);
e78417d1 4251 }
d7df2c79
JB
4252 if (head->must_insert_reserved)
4253 pin_bytes = true;
4254 btrfs_free_delayed_extent_op(head->extent_op);
4255 delayed_refs->num_heads--;
4256 if (head->processing == 0)
4257 delayed_refs->num_heads_ready--;
4258 atomic_dec(&delayed_refs->num_entries);
4259 head->node.in_tree = 0;
4260 rb_erase(&head->href_node, &delayed_refs->href_root);
4261 spin_unlock(&head->lock);
4262 spin_unlock(&delayed_refs->lock);
4263 mutex_unlock(&head->mutex);
acce952b 4264
d7df2c79
JB
4265 if (pin_bytes)
4266 btrfs_pin_extent(root, head->node.bytenr,
4267 head->node.num_bytes, 1);
4268 btrfs_put_delayed_ref(&head->node);
acce952b 4269 cond_resched();
4270 spin_lock(&delayed_refs->lock);
4271 }
4272
4273 spin_unlock(&delayed_refs->lock);
4274
4275 return ret;
4276}
4277
143bede5 4278static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4279{
4280 struct btrfs_inode *btrfs_inode;
4281 struct list_head splice;
4282
4283 INIT_LIST_HEAD(&splice);
4284
eb73c1b7
MX
4285 spin_lock(&root->delalloc_lock);
4286 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4287
4288 while (!list_empty(&splice)) {
eb73c1b7
MX
4289 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4290 delalloc_inodes);
acce952b 4291
4292 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4293 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4294 &btrfs_inode->runtime_flags);
eb73c1b7 4295 spin_unlock(&root->delalloc_lock);
acce952b 4296
4297 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4298
eb73c1b7 4299 spin_lock(&root->delalloc_lock);
acce952b 4300 }
4301
eb73c1b7
MX
4302 spin_unlock(&root->delalloc_lock);
4303}
4304
4305static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4306{
4307 struct btrfs_root *root;
4308 struct list_head splice;
4309
4310 INIT_LIST_HEAD(&splice);
4311
4312 spin_lock(&fs_info->delalloc_root_lock);
4313 list_splice_init(&fs_info->delalloc_roots, &splice);
4314 while (!list_empty(&splice)) {
4315 root = list_first_entry(&splice, struct btrfs_root,
4316 delalloc_root);
4317 list_del_init(&root->delalloc_root);
4318 root = btrfs_grab_fs_root(root);
4319 BUG_ON(!root);
4320 spin_unlock(&fs_info->delalloc_root_lock);
4321
4322 btrfs_destroy_delalloc_inodes(root);
4323 btrfs_put_fs_root(root);
4324
4325 spin_lock(&fs_info->delalloc_root_lock);
4326 }
4327 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4328}
4329
4330static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4331 struct extent_io_tree *dirty_pages,
4332 int mark)
4333{
4334 int ret;
acce952b 4335 struct extent_buffer *eb;
4336 u64 start = 0;
4337 u64 end;
acce952b 4338
4339 while (1) {
4340 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4341 mark, NULL);
acce952b 4342 if (ret)
4343 break;
4344
4345 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4346 while (start <= end) {
01d58472 4347 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4348 start += root->nodesize;
fd8b2b61 4349 if (!eb)
acce952b 4350 continue;
fd8b2b61 4351 wait_on_extent_buffer_writeback(eb);
acce952b 4352
fd8b2b61
JB
4353 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4354 &eb->bflags))
4355 clear_extent_buffer_dirty(eb);
4356 free_extent_buffer_stale(eb);
acce952b 4357 }
4358 }
4359
4360 return ret;
4361}
4362
4363static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4364 struct extent_io_tree *pinned_extents)
4365{
4366 struct extent_io_tree *unpin;
4367 u64 start;
4368 u64 end;
4369 int ret;
ed0eaa14 4370 bool loop = true;
acce952b 4371
4372 unpin = pinned_extents;
ed0eaa14 4373again:
acce952b 4374 while (1) {
4375 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4376 EXTENT_DIRTY, NULL);
acce952b 4377 if (ret)
4378 break;
4379
acce952b 4380 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4381 btrfs_error_unpin_extent_range(root, start, end);
4382 cond_resched();
4383 }
4384
ed0eaa14
LB
4385 if (loop) {
4386 if (unpin == &root->fs_info->freed_extents[0])
4387 unpin = &root->fs_info->freed_extents[1];
4388 else
4389 unpin = &root->fs_info->freed_extents[0];
4390 loop = false;
4391 goto again;
4392 }
4393
acce952b 4394 return 0;
4395}
4396
49b25e05
JM
4397void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4398 struct btrfs_root *root)
4399{
4400 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4401
4a9d8bde 4402 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4403 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4404
4a9d8bde 4405 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4406 wake_up(&root->fs_info->transaction_wait);
49b25e05 4407
67cde344
MX
4408 btrfs_destroy_delayed_inodes(root);
4409 btrfs_assert_delayed_root_empty(root);
49b25e05 4410
49b25e05
JM
4411 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4412 EXTENT_DIRTY);
6e841e32
LB
4413 btrfs_destroy_pinned_extent(root,
4414 root->fs_info->pinned_extents);
49b25e05 4415
4a9d8bde
MX
4416 cur_trans->state =TRANS_STATE_COMPLETED;
4417 wake_up(&cur_trans->commit_wait);
4418
49b25e05
JM
4419 /*
4420 memset(cur_trans, 0, sizeof(*cur_trans));
4421 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4422 */
4423}
4424
48a3b636 4425static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4426{
4427 struct btrfs_transaction *t;
acce952b 4428
acce952b 4429 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4430
a4abeea4 4431 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4432 while (!list_empty(&root->fs_info->trans_list)) {
4433 t = list_first_entry(&root->fs_info->trans_list,
4434 struct btrfs_transaction, list);
4435 if (t->state >= TRANS_STATE_COMMIT_START) {
4436 atomic_inc(&t->use_count);
4437 spin_unlock(&root->fs_info->trans_lock);
4438 btrfs_wait_for_commit(root, t->transid);
4439 btrfs_put_transaction(t);
4440 spin_lock(&root->fs_info->trans_lock);
4441 continue;
4442 }
4443 if (t == root->fs_info->running_transaction) {
4444 t->state = TRANS_STATE_COMMIT_DOING;
4445 spin_unlock(&root->fs_info->trans_lock);
4446 /*
4447 * We wait for 0 num_writers since we don't hold a trans
4448 * handle open currently for this transaction.
4449 */
4450 wait_event(t->writer_wait,
4451 atomic_read(&t->num_writers) == 0);
4452 } else {
4453 spin_unlock(&root->fs_info->trans_lock);
4454 }
4455 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4456
724e2315
JB
4457 spin_lock(&root->fs_info->trans_lock);
4458 if (t == root->fs_info->running_transaction)
4459 root->fs_info->running_transaction = NULL;
acce952b 4460 list_del_init(&t->list);
724e2315 4461 spin_unlock(&root->fs_info->trans_lock);
acce952b 4462
724e2315
JB
4463 btrfs_put_transaction(t);
4464 trace_btrfs_transaction_commit(root);
4465 spin_lock(&root->fs_info->trans_lock);
4466 }
4467 spin_unlock(&root->fs_info->trans_lock);
4468 btrfs_destroy_all_ordered_extents(root->fs_info);
4469 btrfs_destroy_delayed_inodes(root);
4470 btrfs_assert_delayed_root_empty(root);
4471 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4472 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4473 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4474
4475 return 0;
4476}
4477
e8c9f186 4478static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4479 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4480 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4481 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4482 /* note we're sharing with inode.c for the merge bio hook */
4483 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4484};