Btrfs: copy everything if we've created an inline extent
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
eb60ceac 50
de0022b9
JB
51#ifdef CONFIG_X86
52#include <asm/cpufeature.h>
53#endif
54
d1310b2e 55static struct extent_io_ops btree_extent_io_ops;
8b712842 56static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 57static void free_fs_root(struct btrfs_root *root);
fcd1f065 58static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 59 int read_only);
569e0f35
JB
60static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61 struct btrfs_root *root);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5
JM
65static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 67static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
ce9adaa5 72
d352ac68
CM
73/*
74 * end_io_wq structs are used to do processing in task context when an IO is
75 * complete. This is used during reads to verify checksums, and it is used
76 * by writes to insert metadata for new file extents after IO is complete.
77 */
ce9adaa5
CM
78struct end_io_wq {
79 struct bio *bio;
80 bio_end_io_t *end_io;
81 void *private;
82 struct btrfs_fs_info *info;
83 int error;
22c59948 84 int metadata;
ce9adaa5 85 struct list_head list;
8b712842 86 struct btrfs_work work;
ce9adaa5 87};
0da5468f 88
d352ac68
CM
89/*
90 * async submit bios are used to offload expensive checksumming
91 * onto the worker threads. They checksum file and metadata bios
92 * just before they are sent down the IO stack.
93 */
44b8bd7e
CM
94struct async_submit_bio {
95 struct inode *inode;
96 struct bio *bio;
97 struct list_head list;
4a69a410
CM
98 extent_submit_bio_hook_t *submit_bio_start;
99 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
100 int rw;
101 int mirror_num;
c8b97818 102 unsigned long bio_flags;
eaf25d93
CM
103 /*
104 * bio_offset is optional, can be used if the pages in the bio
105 * can't tell us where in the file the bio should go
106 */
107 u64 bio_offset;
8b712842 108 struct btrfs_work work;
79787eaa 109 int error;
44b8bd7e
CM
110};
111
85d4e461
CM
112/*
113 * Lockdep class keys for extent_buffer->lock's in this root. For a given
114 * eb, the lockdep key is determined by the btrfs_root it belongs to and
115 * the level the eb occupies in the tree.
116 *
117 * Different roots are used for different purposes and may nest inside each
118 * other and they require separate keysets. As lockdep keys should be
119 * static, assign keysets according to the purpose of the root as indicated
120 * by btrfs_root->objectid. This ensures that all special purpose roots
121 * have separate keysets.
4008c04a 122 *
85d4e461
CM
123 * Lock-nesting across peer nodes is always done with the immediate parent
124 * node locked thus preventing deadlock. As lockdep doesn't know this, use
125 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 126 *
85d4e461
CM
127 * The key is set by the readpage_end_io_hook after the buffer has passed
128 * csum validation but before the pages are unlocked. It is also set by
129 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 130 *
85d4e461
CM
131 * We also add a check to make sure the highest level of the tree is the
132 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
133 * needs update as well.
4008c04a
CM
134 */
135#ifdef CONFIG_DEBUG_LOCK_ALLOC
136# if BTRFS_MAX_LEVEL != 8
137# error
138# endif
85d4e461
CM
139
140static struct btrfs_lockdep_keyset {
141 u64 id; /* root objectid */
142 const char *name_stem; /* lock name stem */
143 char names[BTRFS_MAX_LEVEL + 1][20];
144 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
145} btrfs_lockdep_keysets[] = {
146 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
147 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
148 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
149 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
150 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
151 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
152 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
153 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
154 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
155 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
156 { .id = 0, .name_stem = "tree" },
4008c04a 157};
85d4e461
CM
158
159void __init btrfs_init_lockdep(void)
160{
161 int i, j;
162
163 /* initialize lockdep class names */
164 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168 snprintf(ks->names[j], sizeof(ks->names[j]),
169 "btrfs-%s-%02d", ks->name_stem, j);
170 }
171}
172
173void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174 int level)
175{
176 struct btrfs_lockdep_keyset *ks;
177
178 BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180 /* find the matching keyset, id 0 is the default entry */
181 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182 if (ks->id == objectid)
183 break;
184
185 lockdep_set_class_and_name(&eb->lock,
186 &ks->keys[level], ks->names[level]);
187}
188
4008c04a
CM
189#endif
190
d352ac68
CM
191/*
192 * extents on the btree inode are pretty simple, there's one extent
193 * that covers the entire device
194 */
b2950863 195static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 196 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 197 int create)
7eccb903 198{
5f39d397
CM
199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200 struct extent_map *em;
201 int ret;
202
890871be 203 read_lock(&em_tree->lock);
d1310b2e 204 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
205 if (em) {
206 em->bdev =
207 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 208 read_unlock(&em_tree->lock);
5f39d397 209 goto out;
a061fc8d 210 }
890871be 211 read_unlock(&em_tree->lock);
7b13b7b1 212
172ddd60 213 em = alloc_extent_map();
5f39d397
CM
214 if (!em) {
215 em = ERR_PTR(-ENOMEM);
216 goto out;
217 }
218 em->start = 0;
0afbaf8c 219 em->len = (u64)-1;
c8b97818 220 em->block_len = (u64)-1;
5f39d397 221 em->block_start = 0;
a061fc8d 222 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 223
890871be 224 write_lock(&em_tree->lock);
5f39d397
CM
225 ret = add_extent_mapping(em_tree, em);
226 if (ret == -EEXIST) {
227 free_extent_map(em);
7b13b7b1 228 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 229 if (!em)
0433f20d 230 em = ERR_PTR(-EIO);
5f39d397 231 } else if (ret) {
7b13b7b1 232 free_extent_map(em);
0433f20d 233 em = ERR_PTR(ret);
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1 236
5f39d397
CM
237out:
238 return em;
7eccb903
CM
239}
240
19c00ddc
CM
241u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
242{
163e783e 243 return crc32c(seed, data, len);
19c00ddc
CM
244}
245
246void btrfs_csum_final(u32 crc, char *result)
247{
7e75bf3f 248 put_unaligned_le32(~crc, result);
19c00ddc
CM
249}
250
d352ac68
CM
251/*
252 * compute the csum for a btree block, and either verify it or write it
253 * into the csum field of the block.
254 */
19c00ddc
CM
255static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256 int verify)
257{
6c41761f 258 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 259 char *result = NULL;
19c00ddc
CM
260 unsigned long len;
261 unsigned long cur_len;
262 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
263 char *kaddr;
264 unsigned long map_start;
265 unsigned long map_len;
266 int err;
267 u32 crc = ~(u32)0;
607d432d 268 unsigned long inline_result;
19c00ddc
CM
269
270 len = buf->len - offset;
d397712b 271 while (len > 0) {
19c00ddc 272 err = map_private_extent_buffer(buf, offset, 32,
a6591715 273 &kaddr, &map_start, &map_len);
d397712b 274 if (err)
19c00ddc 275 return 1;
19c00ddc
CM
276 cur_len = min(len, map_len - (offset - map_start));
277 crc = btrfs_csum_data(root, kaddr + offset - map_start,
278 crc, cur_len);
279 len -= cur_len;
280 offset += cur_len;
19c00ddc 281 }
607d432d
JB
282 if (csum_size > sizeof(inline_result)) {
283 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284 if (!result)
285 return 1;
286 } else {
287 result = (char *)&inline_result;
288 }
289
19c00ddc
CM
290 btrfs_csum_final(crc, result);
291
292 if (verify) {
607d432d 293 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
294 u32 val;
295 u32 found = 0;
607d432d 296 memcpy(&found, result, csum_size);
e4204ded 297
607d432d 298 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 299 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
300 "failed on %llu wanted %X found %X "
301 "level %d\n",
302 root->fs_info->sb->s_id,
303 (unsigned long long)buf->start, val, found,
304 btrfs_header_level(buf));
607d432d
JB
305 if (result != (char *)&inline_result)
306 kfree(result);
19c00ddc
CM
307 return 1;
308 }
309 } else {
607d432d 310 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 311 }
607d432d
JB
312 if (result != (char *)&inline_result)
313 kfree(result);
19c00ddc
CM
314 return 0;
315}
316
d352ac68
CM
317/*
318 * we can't consider a given block up to date unless the transid of the
319 * block matches the transid in the parent node's pointer. This is how we
320 * detect blocks that either didn't get written at all or got written
321 * in the wrong place.
322 */
1259ab75 323static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
324 struct extent_buffer *eb, u64 parent_transid,
325 int atomic)
1259ab75 326{
2ac55d41 327 struct extent_state *cached_state = NULL;
1259ab75
CM
328 int ret;
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
b9fab919
CM
333 if (atomic)
334 return -EAGAIN;
335
2ac55d41 336 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 337 0, &cached_state);
0b32f4bb 338 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
339 btrfs_header_generation(eb) == parent_transid) {
340 ret = 0;
341 goto out;
342 }
7a36ddec 343 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
344 "found %llu\n",
345 (unsigned long long)eb->start,
346 (unsigned long long)parent_transid,
347 (unsigned long long)btrfs_header_generation(eb));
1259ab75 348 ret = 1;
0b32f4bb 349 clear_extent_buffer_uptodate(eb);
33958dc6 350out:
2ac55d41
JB
351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 &cached_state, GFP_NOFS);
1259ab75 353 return ret;
1259ab75
CM
354}
355
d352ac68
CM
356/*
357 * helper to read a given tree block, doing retries as required when
358 * the checksums don't match and we have alternate mirrors to try.
359 */
f188591e
CM
360static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361 struct extent_buffer *eb,
ca7a79ad 362 u64 start, u64 parent_transid)
f188591e
CM
363{
364 struct extent_io_tree *io_tree;
ea466794 365 int failed = 0;
f188591e
CM
366 int ret;
367 int num_copies = 0;
368 int mirror_num = 0;
ea466794 369 int failed_mirror = 0;
f188591e 370
a826d6dc 371 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
372 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373 while (1) {
bb82ab88
AJ
374 ret = read_extent_buffer_pages(io_tree, eb, start,
375 WAIT_COMPLETE,
f188591e 376 btree_get_extent, mirror_num);
256dd1bb
SB
377 if (!ret) {
378 if (!verify_parent_transid(io_tree, eb,
b9fab919 379 parent_transid, 0))
256dd1bb
SB
380 break;
381 else
382 ret = -EIO;
383 }
d397712b 384
a826d6dc
JB
385 /*
386 * This buffer's crc is fine, but its contents are corrupted, so
387 * there is no reason to read the other copies, they won't be
388 * any less wrong.
389 */
390 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
391 break;
392
5d964051 393 num_copies = btrfs_num_copies(root->fs_info,
f188591e 394 eb->start, eb->len);
4235298e 395 if (num_copies == 1)
ea466794 396 break;
4235298e 397
5cf1ab56
JB
398 if (!failed_mirror) {
399 failed = 1;
400 failed_mirror = eb->read_mirror;
401 }
402
f188591e 403 mirror_num++;
ea466794
JB
404 if (mirror_num == failed_mirror)
405 mirror_num++;
406
4235298e 407 if (mirror_num > num_copies)
ea466794 408 break;
f188591e 409 }
ea466794 410
c0901581 411 if (failed && !ret && failed_mirror)
ea466794
JB
412 repair_eb_io_failure(root, eb, failed_mirror);
413
414 return ret;
f188591e 415}
19c00ddc 416
d352ac68 417/*
d397712b
CM
418 * checksum a dirty tree block before IO. This has extra checks to make sure
419 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 420 */
d397712b 421
b2950863 422static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 423{
d1310b2e 424 struct extent_io_tree *tree;
4eee4fa4 425 u64 start = page_offset(page);
19c00ddc 426 u64 found_start;
19c00ddc 427 struct extent_buffer *eb;
f188591e 428
d1310b2e 429 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 430
4f2de97a
JB
431 eb = (struct extent_buffer *)page->private;
432 if (page != eb->pages[0])
433 return 0;
19c00ddc
CM
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
55c69072 436 WARN_ON(1);
4f2de97a 437 return 0;
55c69072 438 }
55c69072 439 if (!PageUptodate(page)) {
55c69072 440 WARN_ON(1);
4f2de97a 441 return 0;
19c00ddc 442 }
19c00ddc 443 csum_tree_block(root, eb, 0);
19c00ddc
CM
444 return 0;
445}
446
2b82032c
YZ
447static int check_tree_block_fsid(struct btrfs_root *root,
448 struct extent_buffer *eb)
449{
450 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451 u8 fsid[BTRFS_UUID_SIZE];
452 int ret = 1;
453
454 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455 BTRFS_FSID_SIZE);
456 while (fs_devices) {
457 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458 ret = 0;
459 break;
460 }
461 fs_devices = fs_devices->seed;
462 }
463 return ret;
464}
465
a826d6dc
JB
466#define CORRUPT(reason, eb, root, slot) \
467 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468 "root=%llu, slot=%d\n", reason, \
469 (unsigned long long)btrfs_header_bytenr(eb), \
470 (unsigned long long)root->objectid, slot)
471
472static noinline int check_leaf(struct btrfs_root *root,
473 struct extent_buffer *leaf)
474{
475 struct btrfs_key key;
476 struct btrfs_key leaf_key;
477 u32 nritems = btrfs_header_nritems(leaf);
478 int slot;
479
480 if (nritems == 0)
481 return 0;
482
483 /* Check the 0 item */
484 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485 BTRFS_LEAF_DATA_SIZE(root)) {
486 CORRUPT("invalid item offset size pair", leaf, root, 0);
487 return -EIO;
488 }
489
490 /*
491 * Check to make sure each items keys are in the correct order and their
492 * offsets make sense. We only have to loop through nritems-1 because
493 * we check the current slot against the next slot, which verifies the
494 * next slot's offset+size makes sense and that the current's slot
495 * offset is correct.
496 */
497 for (slot = 0; slot < nritems - 1; slot++) {
498 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501 /* Make sure the keys are in the right order */
502 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503 CORRUPT("bad key order", leaf, root, slot);
504 return -EIO;
505 }
506
507 /*
508 * Make sure the offset and ends are right, remember that the
509 * item data starts at the end of the leaf and grows towards the
510 * front.
511 */
512 if (btrfs_item_offset_nr(leaf, slot) !=
513 btrfs_item_end_nr(leaf, slot + 1)) {
514 CORRUPT("slot offset bad", leaf, root, slot);
515 return -EIO;
516 }
517
518 /*
519 * Check to make sure that we don't point outside of the leaf,
520 * just incase all the items are consistent to eachother, but
521 * all point outside of the leaf.
522 */
523 if (btrfs_item_end_nr(leaf, slot) >
524 BTRFS_LEAF_DATA_SIZE(root)) {
525 CORRUPT("slot end outside of leaf", leaf, root, slot);
526 return -EIO;
527 }
528 }
529
530 return 0;
531}
532
727011e0
CM
533struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534 struct page *page, int max_walk)
535{
536 struct extent_buffer *eb;
537 u64 start = page_offset(page);
538 u64 target = start;
539 u64 min_start;
540
541 if (start < max_walk)
542 min_start = 0;
543 else
544 min_start = start - max_walk;
545
546 while (start >= min_start) {
547 eb = find_extent_buffer(tree, start, 0);
548 if (eb) {
549 /*
550 * we found an extent buffer and it contains our page
551 * horray!
552 */
553 if (eb->start <= target &&
554 eb->start + eb->len > target)
555 return eb;
556
557 /* we found an extent buffer that wasn't for us */
558 free_extent_buffer(eb);
559 return NULL;
560 }
561 if (start == 0)
562 break;
563 start -= PAGE_CACHE_SIZE;
564 }
565 return NULL;
566}
567
b2950863 568static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 569 struct extent_state *state, int mirror)
ce9adaa5
CM
570{
571 struct extent_io_tree *tree;
572 u64 found_start;
573 int found_level;
ce9adaa5
CM
574 struct extent_buffer *eb;
575 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 576 int ret = 0;
727011e0 577 int reads_done;
ce9adaa5 578
ce9adaa5
CM
579 if (!page->private)
580 goto out;
d397712b 581
727011e0 582 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 583 eb = (struct extent_buffer *)page->private;
d397712b 584
0b32f4bb
JB
585 /* the pending IO might have been the only thing that kept this buffer
586 * in memory. Make sure we have a ref for all this other checks
587 */
588 extent_buffer_get(eb);
589
590 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
591 if (!reads_done)
592 goto err;
f188591e 593
5cf1ab56 594 eb->read_mirror = mirror;
ea466794
JB
595 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596 ret = -EIO;
597 goto err;
598 }
599
ce9adaa5 600 found_start = btrfs_header_bytenr(eb);
727011e0 601 if (found_start != eb->start) {
7a36ddec 602 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
603 "%llu %llu\n",
604 (unsigned long long)found_start,
605 (unsigned long long)eb->start);
f188591e 606 ret = -EIO;
ce9adaa5
CM
607 goto err;
608 }
2b82032c 609 if (check_tree_block_fsid(root, eb)) {
7a36ddec 610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 611 (unsigned long long)eb->start);
1259ab75
CM
612 ret = -EIO;
613 goto err;
614 }
ce9adaa5
CM
615 found_level = btrfs_header_level(eb);
616
85d4e461
CM
617 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618 eb, found_level);
4008c04a 619
ce9adaa5 620 ret = csum_tree_block(root, eb, 1);
a826d6dc 621 if (ret) {
f188591e 622 ret = -EIO;
a826d6dc
JB
623 goto err;
624 }
625
626 /*
627 * If this is a leaf block and it is corrupt, set the corrupt bit so
628 * that we don't try and read the other copies of this block, just
629 * return -EIO.
630 */
631 if (found_level == 0 && check_leaf(root, eb)) {
632 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633 ret = -EIO;
634 }
ce9adaa5 635
0b32f4bb
JB
636 if (!ret)
637 set_extent_buffer_uptodate(eb);
ce9adaa5 638err:
4bb31e92
AJ
639 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641 btree_readahead_hook(root, eb, eb->start, ret);
642 }
643
53b381b3
DW
644 if (ret) {
645 /*
646 * our io error hook is going to dec the io pages
647 * again, we have to make sure it has something
648 * to decrement
649 */
650 atomic_inc(&eb->io_pages);
0b32f4bb 651 clear_extent_buffer_uptodate(eb);
53b381b3 652 }
0b32f4bb 653 free_extent_buffer(eb);
ce9adaa5 654out:
f188591e 655 return ret;
ce9adaa5
CM
656}
657
ea466794 658static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 659{
4bb31e92
AJ
660 struct extent_buffer *eb;
661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
4f2de97a 663 eb = (struct extent_buffer *)page->private;
ea466794 664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 665 eb->read_mirror = failed_mirror;
53b381b3 666 atomic_dec(&eb->io_pages);
ea466794 667 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 668 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
669 return -EIO; /* we fixed nothing */
670}
671
ce9adaa5 672static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
673{
674 struct end_io_wq *end_io_wq = bio->bi_private;
675 struct btrfs_fs_info *fs_info;
ce9adaa5 676
ce9adaa5 677 fs_info = end_io_wq->info;
ce9adaa5 678 end_io_wq->error = err;
8b712842
CM
679 end_io_wq->work.func = end_workqueue_fn;
680 end_io_wq->work.flags = 0;
d20f7043 681
7b6d91da 682 if (bio->bi_rw & REQ_WRITE) {
53b381b3 683 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
cad321ad
CM
684 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685 &end_io_wq->work);
53b381b3 686 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
0cb59c99
JB
687 btrfs_queue_worker(&fs_info->endio_freespace_worker,
688 &end_io_wq->work);
53b381b3
DW
689 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690 btrfs_queue_worker(&fs_info->endio_raid56_workers,
691 &end_io_wq->work);
cad321ad
CM
692 else
693 btrfs_queue_worker(&fs_info->endio_write_workers,
694 &end_io_wq->work);
d20f7043 695 } else {
53b381b3
DW
696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697 btrfs_queue_worker(&fs_info->endio_raid56_workers,
698 &end_io_wq->work);
699 else if (end_io_wq->metadata)
d20f7043
CM
700 btrfs_queue_worker(&fs_info->endio_meta_workers,
701 &end_io_wq->work);
702 else
703 btrfs_queue_worker(&fs_info->endio_workers,
704 &end_io_wq->work);
705 }
ce9adaa5
CM
706}
707
0cb59c99
JB
708/*
709 * For the metadata arg you want
710 *
711 * 0 - if data
712 * 1 - if normal metadta
713 * 2 - if writing to the free space cache area
53b381b3 714 * 3 - raid parity work
0cb59c99 715 */
22c59948
CM
716int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717 int metadata)
0b86a832 718{
ce9adaa5 719 struct end_io_wq *end_io_wq;
ce9adaa5
CM
720 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721 if (!end_io_wq)
722 return -ENOMEM;
723
724 end_io_wq->private = bio->bi_private;
725 end_io_wq->end_io = bio->bi_end_io;
22c59948 726 end_io_wq->info = info;
ce9adaa5
CM
727 end_io_wq->error = 0;
728 end_io_wq->bio = bio;
22c59948 729 end_io_wq->metadata = metadata;
ce9adaa5
CM
730
731 bio->bi_private = end_io_wq;
732 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
733 return 0;
734}
735
b64a2851 736unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 737{
4854ddd0
CM
738 unsigned long limit = min_t(unsigned long,
739 info->workers.max_workers,
740 info->fs_devices->open_devices);
741 return 256 * limit;
742}
0986fe9e 743
4a69a410
CM
744static void run_one_async_start(struct btrfs_work *work)
745{
4a69a410 746 struct async_submit_bio *async;
79787eaa 747 int ret;
4a69a410
CM
748
749 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
750 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751 async->mirror_num, async->bio_flags,
752 async->bio_offset);
753 if (ret)
754 async->error = ret;
4a69a410
CM
755}
756
757static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
758{
759 struct btrfs_fs_info *fs_info;
760 struct async_submit_bio *async;
4854ddd0 761 int limit;
8b712842
CM
762
763 async = container_of(work, struct async_submit_bio, work);
764 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 765
b64a2851 766 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
767 limit = limit * 2 / 3;
768
66657b31 769 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 770 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
771 wake_up(&fs_info->async_submit_wait);
772
79787eaa
JM
773 /* If an error occured we just want to clean up the bio and move on */
774 if (async->error) {
775 bio_endio(async->bio, async->error);
776 return;
777 }
778
4a69a410 779 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
780 async->mirror_num, async->bio_flags,
781 async->bio_offset);
4a69a410
CM
782}
783
784static void run_one_async_free(struct btrfs_work *work)
785{
786 struct async_submit_bio *async;
787
788 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
789 kfree(async);
790}
791
44b8bd7e
CM
792int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793 int rw, struct bio *bio, int mirror_num,
c8b97818 794 unsigned long bio_flags,
eaf25d93 795 u64 bio_offset,
4a69a410
CM
796 extent_submit_bio_hook_t *submit_bio_start,
797 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
798{
799 struct async_submit_bio *async;
800
801 async = kmalloc(sizeof(*async), GFP_NOFS);
802 if (!async)
803 return -ENOMEM;
804
805 async->inode = inode;
806 async->rw = rw;
807 async->bio = bio;
808 async->mirror_num = mirror_num;
4a69a410
CM
809 async->submit_bio_start = submit_bio_start;
810 async->submit_bio_done = submit_bio_done;
811
812 async->work.func = run_one_async_start;
813 async->work.ordered_func = run_one_async_done;
814 async->work.ordered_free = run_one_async_free;
815
8b712842 816 async->work.flags = 0;
c8b97818 817 async->bio_flags = bio_flags;
eaf25d93 818 async->bio_offset = bio_offset;
8c8bee1d 819
79787eaa
JM
820 async->error = 0;
821
cb03c743 822 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 823
7b6d91da 824 if (rw & REQ_SYNC)
d313d7a3
CM
825 btrfs_set_work_high_prio(&async->work);
826
8b712842 827 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 828
d397712b 829 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
830 atomic_read(&fs_info->nr_async_submits)) {
831 wait_event(fs_info->async_submit_wait,
832 (atomic_read(&fs_info->nr_async_submits) == 0));
833 }
834
44b8bd7e
CM
835 return 0;
836}
837
ce3ed71a
CM
838static int btree_csum_one_bio(struct bio *bio)
839{
840 struct bio_vec *bvec = bio->bi_io_vec;
841 int bio_index = 0;
842 struct btrfs_root *root;
79787eaa 843 int ret = 0;
ce3ed71a
CM
844
845 WARN_ON(bio->bi_vcnt <= 0);
d397712b 846 while (bio_index < bio->bi_vcnt) {
ce3ed71a 847 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
848 ret = csum_dirty_buffer(root, bvec->bv_page);
849 if (ret)
850 break;
ce3ed71a
CM
851 bio_index++;
852 bvec++;
853 }
79787eaa 854 return ret;
ce3ed71a
CM
855}
856
4a69a410
CM
857static int __btree_submit_bio_start(struct inode *inode, int rw,
858 struct bio *bio, int mirror_num,
eaf25d93
CM
859 unsigned long bio_flags,
860 u64 bio_offset)
22c59948 861{
8b712842
CM
862 /*
863 * when we're called for a write, we're already in the async
5443be45 864 * submission context. Just jump into btrfs_map_bio
8b712842 865 */
79787eaa 866 return btree_csum_one_bio(bio);
4a69a410 867}
22c59948 868
4a69a410 869static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
4a69a410 872{
61891923
SB
873 int ret;
874
8b712842 875 /*
4a69a410
CM
876 * when we're called for a write, we're already in the async
877 * submission context. Just jump into btrfs_map_bio
8b712842 878 */
61891923
SB
879 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880 if (ret)
881 bio_endio(bio, ret);
882 return ret;
0b86a832
CM
883}
884
de0022b9
JB
885static int check_async_write(struct inode *inode, unsigned long bio_flags)
886{
887 if (bio_flags & EXTENT_BIO_TREE_LOG)
888 return 0;
889#ifdef CONFIG_X86
890 if (cpu_has_xmm4_2)
891 return 0;
892#endif
893 return 1;
894}
895
44b8bd7e 896static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
897 int mirror_num, unsigned long bio_flags,
898 u64 bio_offset)
44b8bd7e 899{
de0022b9 900 int async = check_async_write(inode, bio_flags);
cad321ad
CM
901 int ret;
902
7b6d91da 903 if (!(rw & REQ_WRITE)) {
4a69a410
CM
904 /*
905 * called for a read, do the setup so that checksum validation
906 * can happen in the async kernel threads
907 */
f3f266ab
CM
908 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909 bio, 1);
1d4284bd 910 if (ret)
61891923
SB
911 goto out_w_error;
912 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913 mirror_num, 0);
de0022b9
JB
914 } else if (!async) {
915 ret = btree_csum_one_bio(bio);
916 if (ret)
61891923
SB
917 goto out_w_error;
918 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919 mirror_num, 0);
920 } else {
921 /*
922 * kthread helpers are used to submit writes so that
923 * checksumming can happen in parallel across all CPUs
924 */
925 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926 inode, rw, bio, mirror_num, 0,
927 bio_offset,
928 __btree_submit_bio_start,
929 __btree_submit_bio_done);
44b8bd7e 930 }
d313d7a3 931
61891923
SB
932 if (ret) {
933out_w_error:
934 bio_endio(bio, ret);
935 }
936 return ret;
44b8bd7e
CM
937}
938
3dd1462e 939#ifdef CONFIG_MIGRATION
784b4e29 940static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
941 struct page *newpage, struct page *page,
942 enum migrate_mode mode)
784b4e29
CM
943{
944 /*
945 * we can't safely write a btree page from here,
946 * we haven't done the locking hook
947 */
948 if (PageDirty(page))
949 return -EAGAIN;
950 /*
951 * Buffers may be managed in a filesystem specific way.
952 * We must have no buffers or drop them.
953 */
954 if (page_has_private(page) &&
955 !try_to_release_page(page, GFP_KERNEL))
956 return -EAGAIN;
a6bc32b8 957 return migrate_page(mapping, newpage, page, mode);
784b4e29 958}
3dd1462e 959#endif
784b4e29 960
0da5468f
CM
961
962static int btree_writepages(struct address_space *mapping,
963 struct writeback_control *wbc)
964{
d1310b2e 965 struct extent_io_tree *tree;
e2d84521
MX
966 struct btrfs_fs_info *fs_info;
967 int ret;
968
d1310b2e 969 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 970 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
971
972 if (wbc->for_kupdate)
973 return 0;
974
e2d84521 975 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 976 /* this is a bit racy, but that's ok */
e2d84521
MX
977 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978 BTRFS_DIRTY_METADATA_THRESH);
979 if (ret < 0)
793955bc 980 return 0;
793955bc 981 }
0b32f4bb 982 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
983}
984
b2950863 985static int btree_readpage(struct file *file, struct page *page)
5f39d397 986{
d1310b2e
CM
987 struct extent_io_tree *tree;
988 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 989 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 990}
22b0ebda 991
70dec807 992static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 993{
98509cfc 994 if (PageWriteback(page) || PageDirty(page))
d397712b 995 return 0;
0c4e538b
DS
996 /*
997 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998 * slab allocation from alloc_extent_state down the callchain where
999 * it'd hit a BUG_ON as those flags are not allowed.
1000 */
1001 gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002
3083ee2e 1003 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
1004}
1005
5f39d397 1006static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 1007{
d1310b2e
CM
1008 struct extent_io_tree *tree;
1009 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1010 extent_invalidatepage(tree, page, offset);
1011 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1012 if (PagePrivate(page)) {
d397712b
CM
1013 printk(KERN_WARNING "btrfs warning page private not zero "
1014 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1015 ClearPagePrivate(page);
1016 set_page_private(page, 0);
1017 page_cache_release(page);
1018 }
d98237b3
CM
1019}
1020
0b32f4bb
JB
1021static int btree_set_page_dirty(struct page *page)
1022{
bb146eb2 1023#ifdef DEBUG
0b32f4bb
JB
1024 struct extent_buffer *eb;
1025
1026 BUG_ON(!PagePrivate(page));
1027 eb = (struct extent_buffer *)page->private;
1028 BUG_ON(!eb);
1029 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030 BUG_ON(!atomic_read(&eb->refs));
1031 btrfs_assert_tree_locked(eb);
bb146eb2 1032#endif
0b32f4bb
JB
1033 return __set_page_dirty_nobuffers(page);
1034}
1035
7f09410b 1036static const struct address_space_operations btree_aops = {
d98237b3 1037 .readpage = btree_readpage,
0da5468f 1038 .writepages = btree_writepages,
5f39d397
CM
1039 .releasepage = btree_releasepage,
1040 .invalidatepage = btree_invalidatepage,
5a92bc88 1041#ifdef CONFIG_MIGRATION
784b4e29 1042 .migratepage = btree_migratepage,
5a92bc88 1043#endif
0b32f4bb 1044 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1045};
1046
ca7a79ad
CM
1047int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 u64 parent_transid)
090d1875 1049{
5f39d397
CM
1050 struct extent_buffer *buf = NULL;
1051 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1052 int ret = 0;
090d1875 1053
db94535d 1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1055 if (!buf)
090d1875 1056 return 0;
d1310b2e 1057 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1058 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1059 free_extent_buffer(buf);
de428b63 1060 return ret;
090d1875
CM
1061}
1062
ab0fff03
AJ
1063int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064 int mirror_num, struct extent_buffer **eb)
1065{
1066 struct extent_buffer *buf = NULL;
1067 struct inode *btree_inode = root->fs_info->btree_inode;
1068 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069 int ret;
1070
1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072 if (!buf)
1073 return 0;
1074
1075 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076
1077 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078 btree_get_extent, mirror_num);
1079 if (ret) {
1080 free_extent_buffer(buf);
1081 return ret;
1082 }
1083
1084 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085 free_extent_buffer(buf);
1086 return -EIO;
0b32f4bb 1087 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1088 *eb = buf;
1089 } else {
1090 free_extent_buffer(buf);
1091 }
1092 return 0;
1093}
1094
0999df54
CM
1095struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096 u64 bytenr, u32 blocksize)
1097{
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_buffer *eb;
1100 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1101 bytenr, blocksize);
0999df54
CM
1102 return eb;
1103}
1104
1105struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107{
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110
1111 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1112 bytenr, blocksize);
0999df54
CM
1113 return eb;
1114}
1115
1116
e02119d5
CM
1117int btrfs_write_tree_block(struct extent_buffer *buf)
1118{
727011e0 1119 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1120 buf->start + buf->len - 1);
e02119d5
CM
1121}
1122
1123int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124{
727011e0 1125 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1126 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1127}
1128
0999df54 1129struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1130 u32 blocksize, u64 parent_transid)
0999df54
CM
1131{
1132 struct extent_buffer *buf = NULL;
0999df54
CM
1133 int ret;
1134
0999df54
CM
1135 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136 if (!buf)
1137 return NULL;
0999df54 1138
ca7a79ad 1139 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1140 return buf;
ce9adaa5 1141
eb60ceac
CM
1142}
1143
d5c13f92
JM
1144void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145 struct extent_buffer *buf)
ed2ff2cb 1146{
e2d84521
MX
1147 struct btrfs_fs_info *fs_info = root->fs_info;
1148
55c69072 1149 if (btrfs_header_generation(buf) ==
e2d84521 1150 fs_info->running_transaction->transid) {
b9447ef8 1151 btrfs_assert_tree_locked(buf);
b4ce94de 1152
b9473439 1153 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1154 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155 -buf->len,
1156 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1157 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1158 btrfs_set_lock_blocking(buf);
1159 clear_extent_buffer_dirty(buf);
1160 }
925baedd 1161 }
5f39d397
CM
1162}
1163
143bede5
JM
1164static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165 u32 stripesize, struct btrfs_root *root,
1166 struct btrfs_fs_info *fs_info,
1167 u64 objectid)
d97e63b6 1168{
cfaa7295 1169 root->node = NULL;
a28ec197 1170 root->commit_root = NULL;
db94535d
CM
1171 root->sectorsize = sectorsize;
1172 root->nodesize = nodesize;
1173 root->leafsize = leafsize;
87ee04eb 1174 root->stripesize = stripesize;
123abc88 1175 root->ref_cows = 0;
0b86a832 1176 root->track_dirty = 0;
c71bf099 1177 root->in_radix = 0;
d68fc57b
YZ
1178 root->orphan_item_inserted = 0;
1179 root->orphan_cleanup_state = 0;
0b86a832 1180
0f7d52f4
CM
1181 root->objectid = objectid;
1182 root->last_trans = 0;
13a8a7c8 1183 root->highest_objectid = 0;
58176a96 1184 root->name = NULL;
6bef4d31 1185 root->inode_tree = RB_ROOT;
16cdcec7 1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1187 root->block_rsv = NULL;
d68fc57b 1188 root->orphan_block_rsv = NULL;
0b86a832
CM
1189
1190 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1191 INIT_LIST_HEAD(&root->root_list);
2ab28f32
JB
1192 INIT_LIST_HEAD(&root->logged_list[0]);
1193 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1194 spin_lock_init(&root->orphan_lock);
5d4f98a2 1195 spin_lock_init(&root->inode_lock);
f0486c68 1196 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1197 spin_lock_init(&root->log_extents_lock[0]);
1198 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1199 mutex_init(&root->objectid_mutex);
e02119d5 1200 mutex_init(&root->log_mutex);
7237f183
YZ
1201 init_waitqueue_head(&root->log_writer_wait);
1202 init_waitqueue_head(&root->log_commit_wait[0]);
1203 init_waitqueue_head(&root->log_commit_wait[1]);
1204 atomic_set(&root->log_commit[0], 0);
1205 atomic_set(&root->log_commit[1], 0);
1206 atomic_set(&root->log_writers, 0);
2ecb7923 1207 atomic_set(&root->log_batch, 0);
8a35d95f 1208 atomic_set(&root->orphan_inodes, 0);
7237f183 1209 root->log_transid = 0;
257c62e1 1210 root->last_log_commit = 0;
d0c803c4 1211 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1212 fs_info->btree_inode->i_mapping);
017e5369 1213
3768f368
CM
1214 memset(&root->root_key, 0, sizeof(root->root_key));
1215 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1216 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1217 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1218 root->defrag_trans_start = fs_info->generation;
58176a96 1219 init_completion(&root->kobj_unregister);
6702ed49 1220 root->defrag_running = 0;
4d775673 1221 root->root_key.objectid = objectid;
0ee5dc67 1222 root->anon_dev = 0;
8ea05e3a 1223
5f3ab90a 1224 spin_lock_init(&root->root_item_lock);
3768f368
CM
1225}
1226
200a5c17
JM
1227static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228 struct btrfs_fs_info *fs_info,
1229 u64 objectid,
1230 struct btrfs_root *root)
3768f368
CM
1231{
1232 int ret;
db94535d 1233 u32 blocksize;
84234f3a 1234 u64 generation;
3768f368 1235
db94535d 1236 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1237 tree_root->sectorsize, tree_root->stripesize,
1238 root, fs_info, objectid);
3768f368
CM
1239 ret = btrfs_find_last_root(tree_root, objectid,
1240 &root->root_item, &root->root_key);
4df27c4d
YZ
1241 if (ret > 0)
1242 return -ENOENT;
200a5c17
JM
1243 else if (ret < 0)
1244 return ret;
3768f368 1245
84234f3a 1246 generation = btrfs_root_generation(&root->root_item);
db94535d 1247 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1248 root->commit_root = NULL;
db94535d 1249 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1250 blocksize, generation);
b9fab919 1251 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1252 free_extent_buffer(root->node);
af31f5e5 1253 root->node = NULL;
68433b73
CM
1254 return -EIO;
1255 }
4df27c4d 1256 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1257 return 0;
1258}
1259
f84a8bd6 1260static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1261{
1262 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263 if (root)
1264 root->fs_info = fs_info;
1265 return root;
1266}
1267
20897f5c
AJ
1268struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269 struct btrfs_fs_info *fs_info,
1270 u64 objectid)
1271{
1272 struct extent_buffer *leaf;
1273 struct btrfs_root *tree_root = fs_info->tree_root;
1274 struct btrfs_root *root;
1275 struct btrfs_key key;
1276 int ret = 0;
1277 u64 bytenr;
1278
1279 root = btrfs_alloc_root(fs_info);
1280 if (!root)
1281 return ERR_PTR(-ENOMEM);
1282
1283 __setup_root(tree_root->nodesize, tree_root->leafsize,
1284 tree_root->sectorsize, tree_root->stripesize,
1285 root, fs_info, objectid);
1286 root->root_key.objectid = objectid;
1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 root->root_key.offset = 0;
1289
1290 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291 0, objectid, NULL, 0, 0, 0);
1292 if (IS_ERR(leaf)) {
1293 ret = PTR_ERR(leaf);
1294 goto fail;
1295 }
1296
1297 bytenr = leaf->start;
1298 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1299 btrfs_set_header_bytenr(leaf, leaf->start);
1300 btrfs_set_header_generation(leaf, trans->transid);
1301 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1302 btrfs_set_header_owner(leaf, objectid);
1303 root->node = leaf;
1304
1305 write_extent_buffer(leaf, fs_info->fsid,
1306 (unsigned long)btrfs_header_fsid(leaf),
1307 BTRFS_FSID_SIZE);
1308 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1309 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1310 BTRFS_UUID_SIZE);
1311 btrfs_mark_buffer_dirty(leaf);
1312
1313 root->commit_root = btrfs_root_node(root);
1314 root->track_dirty = 1;
1315
1316
1317 root->root_item.flags = 0;
1318 root->root_item.byte_limit = 0;
1319 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1320 btrfs_set_root_generation(&root->root_item, trans->transid);
1321 btrfs_set_root_level(&root->root_item, 0);
1322 btrfs_set_root_refs(&root->root_item, 1);
1323 btrfs_set_root_used(&root->root_item, leaf->len);
1324 btrfs_set_root_last_snapshot(&root->root_item, 0);
1325 btrfs_set_root_dirid(&root->root_item, 0);
1326 root->root_item.drop_level = 0;
1327
1328 key.objectid = objectid;
1329 key.type = BTRFS_ROOT_ITEM_KEY;
1330 key.offset = 0;
1331 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1332 if (ret)
1333 goto fail;
1334
1335 btrfs_tree_unlock(leaf);
1336
1337fail:
1338 if (ret)
1339 return ERR_PTR(ret);
1340
1341 return root;
1342}
1343
7237f183
YZ
1344static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1345 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1346{
1347 struct btrfs_root *root;
1348 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1349 struct extent_buffer *leaf;
e02119d5 1350
6f07e42e 1351 root = btrfs_alloc_root(fs_info);
e02119d5 1352 if (!root)
7237f183 1353 return ERR_PTR(-ENOMEM);
e02119d5
CM
1354
1355 __setup_root(tree_root->nodesize, tree_root->leafsize,
1356 tree_root->sectorsize, tree_root->stripesize,
1357 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1358
1359 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1362 /*
1363 * log trees do not get reference counted because they go away
1364 * before a real commit is actually done. They do store pointers
1365 * to file data extents, and those reference counts still get
1366 * updated (along with back refs to the log tree).
1367 */
e02119d5
CM
1368 root->ref_cows = 0;
1369
5d4f98a2 1370 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1371 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1372 0, 0, 0);
7237f183
YZ
1373 if (IS_ERR(leaf)) {
1374 kfree(root);
1375 return ERR_CAST(leaf);
1376 }
e02119d5 1377
5d4f98a2
YZ
1378 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1379 btrfs_set_header_bytenr(leaf, leaf->start);
1380 btrfs_set_header_generation(leaf, trans->transid);
1381 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1382 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1383 root->node = leaf;
e02119d5
CM
1384
1385 write_extent_buffer(root->node, root->fs_info->fsid,
1386 (unsigned long)btrfs_header_fsid(root->node),
1387 BTRFS_FSID_SIZE);
1388 btrfs_mark_buffer_dirty(root->node);
1389 btrfs_tree_unlock(root->node);
7237f183
YZ
1390 return root;
1391}
1392
1393int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
1395{
1396 struct btrfs_root *log_root;
1397
1398 log_root = alloc_log_tree(trans, fs_info);
1399 if (IS_ERR(log_root))
1400 return PTR_ERR(log_root);
1401 WARN_ON(fs_info->log_root_tree);
1402 fs_info->log_root_tree = log_root;
1403 return 0;
1404}
1405
1406int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407 struct btrfs_root *root)
1408{
1409 struct btrfs_root *log_root;
1410 struct btrfs_inode_item *inode_item;
1411
1412 log_root = alloc_log_tree(trans, root->fs_info);
1413 if (IS_ERR(log_root))
1414 return PTR_ERR(log_root);
1415
1416 log_root->last_trans = trans->transid;
1417 log_root->root_key.offset = root->root_key.objectid;
1418
1419 inode_item = &log_root->root_item.inode;
1420 inode_item->generation = cpu_to_le64(1);
1421 inode_item->size = cpu_to_le64(3);
1422 inode_item->nlink = cpu_to_le32(1);
1423 inode_item->nbytes = cpu_to_le64(root->leafsize);
1424 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1425
5d4f98a2 1426 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1427
1428 WARN_ON(root->log_root);
1429 root->log_root = log_root;
1430 root->log_transid = 0;
257c62e1 1431 root->last_log_commit = 0;
e02119d5
CM
1432 return 0;
1433}
1434
1435struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1436 struct btrfs_key *location)
1437{
1438 struct btrfs_root *root;
1439 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1440 struct btrfs_path *path;
5f39d397 1441 struct extent_buffer *l;
84234f3a 1442 u64 generation;
db94535d 1443 u32 blocksize;
0f7d52f4 1444 int ret = 0;
8ea05e3a 1445 int slot;
0f7d52f4 1446
6f07e42e 1447 root = btrfs_alloc_root(fs_info);
0cf6c620 1448 if (!root)
0f7d52f4 1449 return ERR_PTR(-ENOMEM);
0f7d52f4 1450 if (location->offset == (u64)-1) {
db94535d 1451 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1452 location->objectid, root);
1453 if (ret) {
0f7d52f4
CM
1454 kfree(root);
1455 return ERR_PTR(ret);
1456 }
13a8a7c8 1457 goto out;
0f7d52f4
CM
1458 }
1459
db94535d 1460 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1461 tree_root->sectorsize, tree_root->stripesize,
1462 root, fs_info, location->objectid);
0f7d52f4
CM
1463
1464 path = btrfs_alloc_path();
db5b493a
TI
1465 if (!path) {
1466 kfree(root);
1467 return ERR_PTR(-ENOMEM);
1468 }
0f7d52f4 1469 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1470 if (ret == 0) {
1471 l = path->nodes[0];
8ea05e3a
AB
1472 slot = path->slots[0];
1473 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1474 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1475 }
0f7d52f4
CM
1476 btrfs_free_path(path);
1477 if (ret) {
5e540f77 1478 kfree(root);
13a8a7c8
YZ
1479 if (ret > 0)
1480 ret = -ENOENT;
0f7d52f4
CM
1481 return ERR_PTR(ret);
1482 }
13a8a7c8 1483
84234f3a 1484 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1485 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1486 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1487 blocksize, generation);
5d4f98a2 1488 root->commit_root = btrfs_root_node(root);
79787eaa 1489 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1490out:
08fe4db1 1491 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1492 root->ref_cows = 1;
08fe4db1
LZ
1493 btrfs_check_and_init_root_item(&root->root_item);
1494 }
13a8a7c8 1495
5eda7b5e
CM
1496 return root;
1497}
1498
edbd8d4e
CM
1499struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1500 struct btrfs_key *location)
5eda7b5e
CM
1501{
1502 struct btrfs_root *root;
1503 int ret;
1504
edbd8d4e
CM
1505 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1506 return fs_info->tree_root;
1507 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1508 return fs_info->extent_root;
8f18cf13
CM
1509 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1510 return fs_info->chunk_root;
1511 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1512 return fs_info->dev_root;
0403e47e
YZ
1513 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1514 return fs_info->csum_root;
bcef60f2
AJ
1515 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1516 return fs_info->quota_root ? fs_info->quota_root :
1517 ERR_PTR(-ENOENT);
4df27c4d
YZ
1518again:
1519 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1520 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1521 (unsigned long)location->objectid);
4df27c4d 1522 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1523 if (root)
1524 return root;
1525
e02119d5 1526 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1527 if (IS_ERR(root))
1528 return root;
3394e160 1529
581bb050 1530 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1531 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1532 GFP_NOFS);
35a30d7c
DS
1533 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1534 ret = -ENOMEM;
581bb050 1535 goto fail;
35a30d7c 1536 }
581bb050
LZ
1537
1538 btrfs_init_free_ino_ctl(root);
1539 mutex_init(&root->fs_commit_mutex);
1540 spin_lock_init(&root->cache_lock);
1541 init_waitqueue_head(&root->cache_wait);
1542
0ee5dc67 1543 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1544 if (ret)
1545 goto fail;
3394e160 1546
d68fc57b
YZ
1547 if (btrfs_root_refs(&root->root_item) == 0) {
1548 ret = -ENOENT;
1549 goto fail;
1550 }
1551
1552 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1553 if (ret < 0)
1554 goto fail;
1555 if (ret == 0)
1556 root->orphan_item_inserted = 1;
1557
4df27c4d
YZ
1558 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1559 if (ret)
1560 goto fail;
1561
1562 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1563 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1564 (unsigned long)root->root_key.objectid,
0f7d52f4 1565 root);
d68fc57b 1566 if (ret == 0)
4df27c4d 1567 root->in_radix = 1;
d68fc57b 1568
4df27c4d
YZ
1569 spin_unlock(&fs_info->fs_roots_radix_lock);
1570 radix_tree_preload_end();
0f7d52f4 1571 if (ret) {
4df27c4d
YZ
1572 if (ret == -EEXIST) {
1573 free_fs_root(root);
1574 goto again;
1575 }
1576 goto fail;
0f7d52f4 1577 }
4df27c4d
YZ
1578
1579 ret = btrfs_find_dead_roots(fs_info->tree_root,
1580 root->root_key.objectid);
1581 WARN_ON(ret);
edbd8d4e 1582 return root;
4df27c4d
YZ
1583fail:
1584 free_fs_root(root);
1585 return ERR_PTR(ret);
edbd8d4e
CM
1586}
1587
04160088
CM
1588static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1589{
1590 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1591 int ret = 0;
04160088
CM
1592 struct btrfs_device *device;
1593 struct backing_dev_info *bdi;
b7967db7 1594
1f78160c
XG
1595 rcu_read_lock();
1596 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1597 if (!device->bdev)
1598 continue;
04160088
CM
1599 bdi = blk_get_backing_dev_info(device->bdev);
1600 if (bdi && bdi_congested(bdi, bdi_bits)) {
1601 ret = 1;
1602 break;
1603 }
1604 }
1f78160c 1605 rcu_read_unlock();
04160088
CM
1606 return ret;
1607}
1608
ad081f14
JA
1609/*
1610 * If this fails, caller must call bdi_destroy() to get rid of the
1611 * bdi again.
1612 */
04160088
CM
1613static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1614{
ad081f14
JA
1615 int err;
1616
1617 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1618 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1619 if (err)
1620 return err;
1621
4575c9cc 1622 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1623 bdi->congested_fn = btrfs_congested_fn;
1624 bdi->congested_data = info;
1625 return 0;
1626}
1627
8b712842
CM
1628/*
1629 * called by the kthread helper functions to finally call the bio end_io
1630 * functions. This is where read checksum verification actually happens
1631 */
1632static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1633{
ce9adaa5 1634 struct bio *bio;
8b712842
CM
1635 struct end_io_wq *end_io_wq;
1636 struct btrfs_fs_info *fs_info;
ce9adaa5 1637 int error;
ce9adaa5 1638
8b712842
CM
1639 end_io_wq = container_of(work, struct end_io_wq, work);
1640 bio = end_io_wq->bio;
1641 fs_info = end_io_wq->info;
ce9adaa5 1642
8b712842
CM
1643 error = end_io_wq->error;
1644 bio->bi_private = end_io_wq->private;
1645 bio->bi_end_io = end_io_wq->end_io;
1646 kfree(end_io_wq);
8b712842 1647 bio_endio(bio, error);
44b8bd7e
CM
1648}
1649
a74a4b97
CM
1650static int cleaner_kthread(void *arg)
1651{
1652 struct btrfs_root *root = arg;
1653
1654 do {
76dda93c
YZ
1655 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1656 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1657 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1658 btrfs_clean_old_snapshots(root);
1659 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1660 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1661 }
a74a4b97 1662
a0acae0e 1663 if (!try_to_freeze()) {
a74a4b97 1664 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1665 if (!kthread_should_stop())
1666 schedule();
a74a4b97
CM
1667 __set_current_state(TASK_RUNNING);
1668 }
1669 } while (!kthread_should_stop());
1670 return 0;
1671}
1672
1673static int transaction_kthread(void *arg)
1674{
1675 struct btrfs_root *root = arg;
1676 struct btrfs_trans_handle *trans;
1677 struct btrfs_transaction *cur;
8929ecfa 1678 u64 transid;
a74a4b97
CM
1679 unsigned long now;
1680 unsigned long delay;
914b2007 1681 bool cannot_commit;
a74a4b97
CM
1682
1683 do {
914b2007 1684 cannot_commit = false;
a74a4b97 1685 delay = HZ * 30;
a74a4b97
CM
1686 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1687
a4abeea4 1688 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1689 cur = root->fs_info->running_transaction;
1690 if (!cur) {
a4abeea4 1691 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1692 goto sleep;
1693 }
31153d81 1694
a74a4b97 1695 now = get_seconds();
8929ecfa
YZ
1696 if (!cur->blocked &&
1697 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1698 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1699 delay = HZ * 5;
1700 goto sleep;
1701 }
8929ecfa 1702 transid = cur->transid;
a4abeea4 1703 spin_unlock(&root->fs_info->trans_lock);
56bec294 1704
79787eaa 1705 /* If the file system is aborted, this will always fail. */
354aa0fb 1706 trans = btrfs_attach_transaction(root);
914b2007 1707 if (IS_ERR(trans)) {
354aa0fb
MX
1708 if (PTR_ERR(trans) != -ENOENT)
1709 cannot_commit = true;
79787eaa 1710 goto sleep;
914b2007 1711 }
8929ecfa 1712 if (transid == trans->transid) {
79787eaa 1713 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1714 } else {
1715 btrfs_end_transaction(trans, root);
1716 }
a74a4b97
CM
1717sleep:
1718 wake_up_process(root->fs_info->cleaner_kthread);
1719 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1720
a0acae0e 1721 if (!try_to_freeze()) {
a74a4b97 1722 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1723 if (!kthread_should_stop() &&
914b2007
JK
1724 (!btrfs_transaction_blocked(root->fs_info) ||
1725 cannot_commit))
8929ecfa 1726 schedule_timeout(delay);
a74a4b97
CM
1727 __set_current_state(TASK_RUNNING);
1728 }
1729 } while (!kthread_should_stop());
1730 return 0;
1731}
1732
af31f5e5
CM
1733/*
1734 * this will find the highest generation in the array of
1735 * root backups. The index of the highest array is returned,
1736 * or -1 if we can't find anything.
1737 *
1738 * We check to make sure the array is valid by comparing the
1739 * generation of the latest root in the array with the generation
1740 * in the super block. If they don't match we pitch it.
1741 */
1742static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1743{
1744 u64 cur;
1745 int newest_index = -1;
1746 struct btrfs_root_backup *root_backup;
1747 int i;
1748
1749 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1750 root_backup = info->super_copy->super_roots + i;
1751 cur = btrfs_backup_tree_root_gen(root_backup);
1752 if (cur == newest_gen)
1753 newest_index = i;
1754 }
1755
1756 /* check to see if we actually wrapped around */
1757 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1758 root_backup = info->super_copy->super_roots;
1759 cur = btrfs_backup_tree_root_gen(root_backup);
1760 if (cur == newest_gen)
1761 newest_index = 0;
1762 }
1763 return newest_index;
1764}
1765
1766
1767/*
1768 * find the oldest backup so we know where to store new entries
1769 * in the backup array. This will set the backup_root_index
1770 * field in the fs_info struct
1771 */
1772static void find_oldest_super_backup(struct btrfs_fs_info *info,
1773 u64 newest_gen)
1774{
1775 int newest_index = -1;
1776
1777 newest_index = find_newest_super_backup(info, newest_gen);
1778 /* if there was garbage in there, just move along */
1779 if (newest_index == -1) {
1780 info->backup_root_index = 0;
1781 } else {
1782 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1783 }
1784}
1785
1786/*
1787 * copy all the root pointers into the super backup array.
1788 * this will bump the backup pointer by one when it is
1789 * done
1790 */
1791static void backup_super_roots(struct btrfs_fs_info *info)
1792{
1793 int next_backup;
1794 struct btrfs_root_backup *root_backup;
1795 int last_backup;
1796
1797 next_backup = info->backup_root_index;
1798 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1799 BTRFS_NUM_BACKUP_ROOTS;
1800
1801 /*
1802 * just overwrite the last backup if we're at the same generation
1803 * this happens only at umount
1804 */
1805 root_backup = info->super_for_commit->super_roots + last_backup;
1806 if (btrfs_backup_tree_root_gen(root_backup) ==
1807 btrfs_header_generation(info->tree_root->node))
1808 next_backup = last_backup;
1809
1810 root_backup = info->super_for_commit->super_roots + next_backup;
1811
1812 /*
1813 * make sure all of our padding and empty slots get zero filled
1814 * regardless of which ones we use today
1815 */
1816 memset(root_backup, 0, sizeof(*root_backup));
1817
1818 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1819
1820 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1821 btrfs_set_backup_tree_root_gen(root_backup,
1822 btrfs_header_generation(info->tree_root->node));
1823
1824 btrfs_set_backup_tree_root_level(root_backup,
1825 btrfs_header_level(info->tree_root->node));
1826
1827 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1828 btrfs_set_backup_chunk_root_gen(root_backup,
1829 btrfs_header_generation(info->chunk_root->node));
1830 btrfs_set_backup_chunk_root_level(root_backup,
1831 btrfs_header_level(info->chunk_root->node));
1832
1833 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1834 btrfs_set_backup_extent_root_gen(root_backup,
1835 btrfs_header_generation(info->extent_root->node));
1836 btrfs_set_backup_extent_root_level(root_backup,
1837 btrfs_header_level(info->extent_root->node));
1838
7c7e82a7
CM
1839 /*
1840 * we might commit during log recovery, which happens before we set
1841 * the fs_root. Make sure it is valid before we fill it in.
1842 */
1843 if (info->fs_root && info->fs_root->node) {
1844 btrfs_set_backup_fs_root(root_backup,
1845 info->fs_root->node->start);
1846 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1847 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1848 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1849 btrfs_header_level(info->fs_root->node));
7c7e82a7 1850 }
af31f5e5
CM
1851
1852 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1853 btrfs_set_backup_dev_root_gen(root_backup,
1854 btrfs_header_generation(info->dev_root->node));
1855 btrfs_set_backup_dev_root_level(root_backup,
1856 btrfs_header_level(info->dev_root->node));
1857
1858 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1859 btrfs_set_backup_csum_root_gen(root_backup,
1860 btrfs_header_generation(info->csum_root->node));
1861 btrfs_set_backup_csum_root_level(root_backup,
1862 btrfs_header_level(info->csum_root->node));
1863
1864 btrfs_set_backup_total_bytes(root_backup,
1865 btrfs_super_total_bytes(info->super_copy));
1866 btrfs_set_backup_bytes_used(root_backup,
1867 btrfs_super_bytes_used(info->super_copy));
1868 btrfs_set_backup_num_devices(root_backup,
1869 btrfs_super_num_devices(info->super_copy));
1870
1871 /*
1872 * if we don't copy this out to the super_copy, it won't get remembered
1873 * for the next commit
1874 */
1875 memcpy(&info->super_copy->super_roots,
1876 &info->super_for_commit->super_roots,
1877 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1878}
1879
1880/*
1881 * this copies info out of the root backup array and back into
1882 * the in-memory super block. It is meant to help iterate through
1883 * the array, so you send it the number of backups you've already
1884 * tried and the last backup index you used.
1885 *
1886 * this returns -1 when it has tried all the backups
1887 */
1888static noinline int next_root_backup(struct btrfs_fs_info *info,
1889 struct btrfs_super_block *super,
1890 int *num_backups_tried, int *backup_index)
1891{
1892 struct btrfs_root_backup *root_backup;
1893 int newest = *backup_index;
1894
1895 if (*num_backups_tried == 0) {
1896 u64 gen = btrfs_super_generation(super);
1897
1898 newest = find_newest_super_backup(info, gen);
1899 if (newest == -1)
1900 return -1;
1901
1902 *backup_index = newest;
1903 *num_backups_tried = 1;
1904 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1905 /* we've tried all the backups, all done */
1906 return -1;
1907 } else {
1908 /* jump to the next oldest backup */
1909 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1910 BTRFS_NUM_BACKUP_ROOTS;
1911 *backup_index = newest;
1912 *num_backups_tried += 1;
1913 }
1914 root_backup = super->super_roots + newest;
1915
1916 btrfs_set_super_generation(super,
1917 btrfs_backup_tree_root_gen(root_backup));
1918 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1919 btrfs_set_super_root_level(super,
1920 btrfs_backup_tree_root_level(root_backup));
1921 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1922
1923 /*
1924 * fixme: the total bytes and num_devices need to match or we should
1925 * need a fsck
1926 */
1927 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1928 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1929 return 0;
1930}
1931
1932/* helper to cleanup tree roots */
1933static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1934{
1935 free_extent_buffer(info->tree_root->node);
1936 free_extent_buffer(info->tree_root->commit_root);
1937 free_extent_buffer(info->dev_root->node);
1938 free_extent_buffer(info->dev_root->commit_root);
1939 free_extent_buffer(info->extent_root->node);
1940 free_extent_buffer(info->extent_root->commit_root);
1941 free_extent_buffer(info->csum_root->node);
1942 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1943 if (info->quota_root) {
1944 free_extent_buffer(info->quota_root->node);
1945 free_extent_buffer(info->quota_root->commit_root);
1946 }
af31f5e5
CM
1947
1948 info->tree_root->node = NULL;
1949 info->tree_root->commit_root = NULL;
1950 info->dev_root->node = NULL;
1951 info->dev_root->commit_root = NULL;
1952 info->extent_root->node = NULL;
1953 info->extent_root->commit_root = NULL;
1954 info->csum_root->node = NULL;
1955 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1956 if (info->quota_root) {
1957 info->quota_root->node = NULL;
1958 info->quota_root->commit_root = NULL;
1959 }
af31f5e5
CM
1960
1961 if (chunk_root) {
1962 free_extent_buffer(info->chunk_root->node);
1963 free_extent_buffer(info->chunk_root->commit_root);
1964 info->chunk_root->node = NULL;
1965 info->chunk_root->commit_root = NULL;
1966 }
1967}
1968
1969
ad2b2c80
AV
1970int open_ctree(struct super_block *sb,
1971 struct btrfs_fs_devices *fs_devices,
1972 char *options)
2e635a27 1973{
db94535d
CM
1974 u32 sectorsize;
1975 u32 nodesize;
1976 u32 leafsize;
1977 u32 blocksize;
87ee04eb 1978 u32 stripesize;
84234f3a 1979 u64 generation;
f2b636e8 1980 u64 features;
3de4586c 1981 struct btrfs_key location;
a061fc8d 1982 struct buffer_head *bh;
4d34b278 1983 struct btrfs_super_block *disk_super;
815745cf 1984 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1985 struct btrfs_root *tree_root;
4d34b278
ID
1986 struct btrfs_root *extent_root;
1987 struct btrfs_root *csum_root;
1988 struct btrfs_root *chunk_root;
1989 struct btrfs_root *dev_root;
bcef60f2 1990 struct btrfs_root *quota_root;
e02119d5 1991 struct btrfs_root *log_tree_root;
eb60ceac 1992 int ret;
e58ca020 1993 int err = -EINVAL;
af31f5e5
CM
1994 int num_backups_tried = 0;
1995 int backup_index = 0;
4543df7e 1996
f84a8bd6 1997 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1998 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1999 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2000 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2001 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 2002 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 2003
f84a8bd6 2004 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 2005 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
2006 err = -ENOMEM;
2007 goto fail;
2008 }
76dda93c
YZ
2009
2010 ret = init_srcu_struct(&fs_info->subvol_srcu);
2011 if (ret) {
2012 err = ret;
2013 goto fail;
2014 }
2015
2016 ret = setup_bdi(fs_info, &fs_info->bdi);
2017 if (ret) {
2018 err = ret;
2019 goto fail_srcu;
2020 }
2021
e2d84521
MX
2022 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2023 if (ret) {
2024 err = ret;
2025 goto fail_bdi;
2026 }
2027 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2028 (1 + ilog2(nr_cpu_ids));
2029
963d678b
MX
2030 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2031 if (ret) {
2032 err = ret;
2033 goto fail_dirty_metadata_bytes;
2034 }
2035
76dda93c
YZ
2036 fs_info->btree_inode = new_inode(sb);
2037 if (!fs_info->btree_inode) {
2038 err = -ENOMEM;
963d678b 2039 goto fail_delalloc_bytes;
76dda93c
YZ
2040 }
2041
a6591715 2042 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2043
76dda93c 2044 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2045 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2046 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2047 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 2048 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
11833d66 2049 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2050 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2051 spin_lock_init(&fs_info->trans_lock);
76dda93c 2052 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2053 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2054 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2055 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2056 spin_lock_init(&fs_info->tree_mod_seq_lock);
2057 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2058 mutex_init(&fs_info->reloc_mutex);
de98ced9 2059 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2060
58176a96 2061 init_completion(&fs_info->kobj_unregister);
0b86a832 2062 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2063 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2064 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2065 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2066 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2067 BTRFS_BLOCK_RSV_GLOBAL);
2068 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2069 BTRFS_BLOCK_RSV_DELALLOC);
2070 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2071 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2072 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2073 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2074 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2075 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2076 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2077 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2078 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2079 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2080 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2081 fs_info->sb = sb;
6f568d35 2082 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2083 fs_info->metadata_ratio = 0;
4cb5300b 2084 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2085 fs_info->trans_no_join = 0;
2bf64758 2086 fs_info->free_chunk_space = 0;
f29021b2 2087 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2088
90519d66
AJ
2089 /* readahead state */
2090 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2091 spin_lock_init(&fs_info->reada_lock);
c8b97818 2092
b34b086c
CM
2093 fs_info->thread_pool_size = min_t(unsigned long,
2094 num_online_cpus() + 2, 8);
0afbaf8c 2095
3eaa2885
CM
2096 INIT_LIST_HEAD(&fs_info->ordered_extents);
2097 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2098 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2099 GFP_NOFS);
2100 if (!fs_info->delayed_root) {
2101 err = -ENOMEM;
2102 goto fail_iput;
2103 }
2104 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2105
a2de733c
AJ
2106 mutex_init(&fs_info->scrub_lock);
2107 atomic_set(&fs_info->scrubs_running, 0);
2108 atomic_set(&fs_info->scrub_pause_req, 0);
2109 atomic_set(&fs_info->scrubs_paused, 0);
2110 atomic_set(&fs_info->scrub_cancel_req, 0);
2111 init_waitqueue_head(&fs_info->scrub_pause_wait);
2112 init_rwsem(&fs_info->scrub_super_lock);
2113 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2114#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2115 fs_info->check_integrity_print_mask = 0;
2116#endif
a2de733c 2117
c9e9f97b
ID
2118 spin_lock_init(&fs_info->balance_lock);
2119 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2120 atomic_set(&fs_info->balance_running, 0);
2121 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2122 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2123 fs_info->balance_ctl = NULL;
837d5b6e 2124 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2125
a061fc8d
CM
2126 sb->s_blocksize = 4096;
2127 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2128 sb->s_bdi = &fs_info->bdi;
a061fc8d 2129
76dda93c 2130 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2131 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2132 /*
2133 * we set the i_size on the btree inode to the max possible int.
2134 * the real end of the address space is determined by all of
2135 * the devices in the system
2136 */
2137 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2138 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2139 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2140
5d4f98a2 2141 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2142 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2143 fs_info->btree_inode->i_mapping);
0b32f4bb 2144 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2145 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2146
2147 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2148
76dda93c
YZ
2149 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2150 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2151 sizeof(struct btrfs_key));
72ac3c0d
JB
2152 set_bit(BTRFS_INODE_DUMMY,
2153 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2154 insert_inode_hash(fs_info->btree_inode);
76dda93c 2155
0f9dd46c 2156 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2157 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2158 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2159
11833d66 2160 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2161 fs_info->btree_inode->i_mapping);
11833d66 2162 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2163 fs_info->btree_inode->i_mapping);
11833d66 2164 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2165 fs_info->do_barriers = 1;
e18e4809 2166
39279cc3 2167
5a3f23d5 2168 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2169 mutex_init(&fs_info->tree_log_mutex);
925baedd 2170 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2171 mutex_init(&fs_info->transaction_kthread_mutex);
2172 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2173 mutex_init(&fs_info->volume_mutex);
276e680d 2174 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2175 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2176 init_rwsem(&fs_info->subvol_sem);
e922e087
SB
2177 fs_info->dev_replace.lock_owner = 0;
2178 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2179 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2180 mutex_init(&fs_info->dev_replace.lock_management_lock);
2181 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2182
416ac51d
AJ
2183 spin_lock_init(&fs_info->qgroup_lock);
2184 fs_info->qgroup_tree = RB_ROOT;
2185 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2186 fs_info->qgroup_seq = 1;
2187 fs_info->quota_enabled = 0;
2188 fs_info->pending_quota_state = 0;
2189
fa9c0d79
CM
2190 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2191 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2192
e6dcd2dc 2193 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2194 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2195 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2196 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2197
53b381b3
DW
2198 ret = btrfs_alloc_stripe_hash_table(fs_info);
2199 if (ret) {
2200 err = -ENOMEM;
2201 goto fail_alloc;
2202 }
2203
0b86a832 2204 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2205 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2206
3c4bb26b 2207 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2208 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2209 if (!bh) {
2210 err = -EINVAL;
16cdcec7 2211 goto fail_alloc;
20b45077 2212 }
39279cc3 2213
6c41761f
DS
2214 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2215 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2216 sizeof(*fs_info->super_for_commit));
a061fc8d 2217 brelse(bh);
5f39d397 2218
6c41761f 2219 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2220
6c41761f 2221 disk_super = fs_info->super_copy;
0f7d52f4 2222 if (!btrfs_super_root(disk_super))
16cdcec7 2223 goto fail_alloc;
0f7d52f4 2224
acce952b 2225 /* check FS state, whether FS is broken. */
87533c47
MX
2226 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2227 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2228
fcd1f065
DS
2229 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2230 if (ret) {
2231 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2232 err = ret;
2233 goto fail_alloc;
2234 }
acce952b 2235
af31f5e5
CM
2236 /*
2237 * run through our array of backup supers and setup
2238 * our ring pointer to the oldest one
2239 */
2240 generation = btrfs_super_generation(disk_super);
2241 find_oldest_super_backup(fs_info, generation);
2242
75e7cb7f
LB
2243 /*
2244 * In the long term, we'll store the compression type in the super
2245 * block, and it'll be used for per file compression control.
2246 */
2247 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2248
2b82032c
YZ
2249 ret = btrfs_parse_options(tree_root, options);
2250 if (ret) {
2251 err = ret;
16cdcec7 2252 goto fail_alloc;
2b82032c 2253 }
dfe25020 2254
f2b636e8
JB
2255 features = btrfs_super_incompat_flags(disk_super) &
2256 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2257 if (features) {
2258 printk(KERN_ERR "BTRFS: couldn't mount because of "
2259 "unsupported optional features (%Lx).\n",
21380931 2260 (unsigned long long)features);
f2b636e8 2261 err = -EINVAL;
16cdcec7 2262 goto fail_alloc;
f2b636e8
JB
2263 }
2264
727011e0
CM
2265 if (btrfs_super_leafsize(disk_super) !=
2266 btrfs_super_nodesize(disk_super)) {
2267 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2268 "blocksizes don't match. node %d leaf %d\n",
2269 btrfs_super_nodesize(disk_super),
2270 btrfs_super_leafsize(disk_super));
2271 err = -EINVAL;
2272 goto fail_alloc;
2273 }
2274 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2275 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2276 "blocksize (%d) was too large\n",
2277 btrfs_super_leafsize(disk_super));
2278 err = -EINVAL;
2279 goto fail_alloc;
2280 }
2281
5d4f98a2 2282 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2283 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2284 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2285 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2286
2287 /*
2288 * flag our filesystem as having big metadata blocks if
2289 * they are bigger than the page size
2290 */
2291 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2292 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2293 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2294 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2295 }
2296
bc3f116f
CM
2297 nodesize = btrfs_super_nodesize(disk_super);
2298 leafsize = btrfs_super_leafsize(disk_super);
2299 sectorsize = btrfs_super_sectorsize(disk_super);
2300 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2301 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2302 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2303
2304 /*
2305 * mixed block groups end up with duplicate but slightly offset
2306 * extent buffers for the same range. It leads to corruptions
2307 */
2308 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2309 (sectorsize != leafsize)) {
2310 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2311 "are not allowed for mixed block groups on %s\n",
2312 sb->s_id);
2313 goto fail_alloc;
2314 }
2315
a6fa6fae 2316 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2317
f2b636e8
JB
2318 features = btrfs_super_compat_ro_flags(disk_super) &
2319 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2320 if (!(sb->s_flags & MS_RDONLY) && features) {
2321 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2322 "unsupported option features (%Lx).\n",
21380931 2323 (unsigned long long)features);
f2b636e8 2324 err = -EINVAL;
16cdcec7 2325 goto fail_alloc;
f2b636e8 2326 }
61d92c32
CM
2327
2328 btrfs_init_workers(&fs_info->generic_worker,
2329 "genwork", 1, NULL);
2330
5443be45 2331 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2332 fs_info->thread_pool_size,
2333 &fs_info->generic_worker);
c8b97818 2334
771ed689 2335 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2336 fs_info->thread_pool_size,
2337 &fs_info->generic_worker);
771ed689 2338
8ccf6f19
MX
2339 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2340 fs_info->thread_pool_size,
2341 &fs_info->generic_worker);
2342
5443be45 2343 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2344 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2345 fs_info->thread_pool_size),
2346 &fs_info->generic_worker);
61b49440 2347
bab39bf9
JB
2348 btrfs_init_workers(&fs_info->caching_workers, "cache",
2349 2, &fs_info->generic_worker);
2350
61b49440
CM
2351 /* a higher idle thresh on the submit workers makes it much more
2352 * likely that bios will be send down in a sane order to the
2353 * devices
2354 */
2355 fs_info->submit_workers.idle_thresh = 64;
53863232 2356
771ed689 2357 fs_info->workers.idle_thresh = 16;
4a69a410 2358 fs_info->workers.ordered = 1;
61b49440 2359
771ed689
CM
2360 fs_info->delalloc_workers.idle_thresh = 2;
2361 fs_info->delalloc_workers.ordered = 1;
2362
61d92c32
CM
2363 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2364 &fs_info->generic_worker);
5443be45 2365 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2366 fs_info->thread_pool_size,
2367 &fs_info->generic_worker);
d20f7043 2368 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2369 fs_info->thread_pool_size,
2370 &fs_info->generic_worker);
cad321ad 2371 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2372 "endio-meta-write", fs_info->thread_pool_size,
2373 &fs_info->generic_worker);
53b381b3
DW
2374 btrfs_init_workers(&fs_info->endio_raid56_workers,
2375 "endio-raid56", fs_info->thread_pool_size,
2376 &fs_info->generic_worker);
2377 btrfs_init_workers(&fs_info->rmw_workers,
2378 "rmw", fs_info->thread_pool_size,
2379 &fs_info->generic_worker);
5443be45 2380 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2381 fs_info->thread_pool_size,
2382 &fs_info->generic_worker);
0cb59c99
JB
2383 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2384 1, &fs_info->generic_worker);
16cdcec7
MX
2385 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2386 fs_info->thread_pool_size,
2387 &fs_info->generic_worker);
90519d66
AJ
2388 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2389 fs_info->thread_pool_size,
2390 &fs_info->generic_worker);
61b49440
CM
2391
2392 /*
2393 * endios are largely parallel and should have a very
2394 * low idle thresh
2395 */
2396 fs_info->endio_workers.idle_thresh = 4;
b51912c9 2397 fs_info->endio_meta_workers.idle_thresh = 4;
53b381b3
DW
2398 fs_info->endio_raid56_workers.idle_thresh = 4;
2399 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2400
9042846b
CM
2401 fs_info->endio_write_workers.idle_thresh = 2;
2402 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2403 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2404
0dc3b84a
JB
2405 /*
2406 * btrfs_start_workers can really only fail because of ENOMEM so just
2407 * return -ENOMEM if any of these fail.
2408 */
2409 ret = btrfs_start_workers(&fs_info->workers);
2410 ret |= btrfs_start_workers(&fs_info->generic_worker);
2411 ret |= btrfs_start_workers(&fs_info->submit_workers);
2412 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2413 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2414 ret |= btrfs_start_workers(&fs_info->endio_workers);
2415 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2416 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2417 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
0dc3b84a
JB
2418 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2419 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2420 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2421 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2422 ret |= btrfs_start_workers(&fs_info->caching_workers);
2423 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2424 ret |= btrfs_start_workers(&fs_info->flush_workers);
0dc3b84a 2425 if (ret) {
fed425c7 2426 err = -ENOMEM;
0dc3b84a
JB
2427 goto fail_sb_buffer;
2428 }
4543df7e 2429
4575c9cc 2430 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2431 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2432 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2433
db94535d
CM
2434 tree_root->nodesize = nodesize;
2435 tree_root->leafsize = leafsize;
2436 tree_root->sectorsize = sectorsize;
87ee04eb 2437 tree_root->stripesize = stripesize;
a061fc8d
CM
2438
2439 sb->s_blocksize = sectorsize;
2440 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2441
cdb4c574 2442 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
d397712b 2443 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2444 goto fail_sb_buffer;
2445 }
19c00ddc 2446
8d082fb7
LB
2447 if (sectorsize != PAGE_SIZE) {
2448 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2449 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2450 goto fail_sb_buffer;
2451 }
2452
925baedd 2453 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2454 ret = btrfs_read_sys_array(tree_root);
925baedd 2455 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2456 if (ret) {
d397712b
CM
2457 printk(KERN_WARNING "btrfs: failed to read the system "
2458 "array on %s\n", sb->s_id);
5d4f98a2 2459 goto fail_sb_buffer;
84eed90f 2460 }
0b86a832
CM
2461
2462 blocksize = btrfs_level_size(tree_root,
2463 btrfs_super_chunk_root_level(disk_super));
84234f3a 2464 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2465
2466 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2467 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2468
2469 chunk_root->node = read_tree_block(chunk_root,
2470 btrfs_super_chunk_root(disk_super),
84234f3a 2471 blocksize, generation);
79787eaa 2472 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2473 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2474 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2475 sb->s_id);
af31f5e5 2476 goto fail_tree_roots;
83121942 2477 }
5d4f98a2
YZ
2478 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2479 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2480
e17cade2 2481 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2482 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2483 BTRFS_UUID_SIZE);
e17cade2 2484
0b86a832 2485 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2486 if (ret) {
d397712b
CM
2487 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2488 sb->s_id);
af31f5e5 2489 goto fail_tree_roots;
2b82032c 2490 }
0b86a832 2491
8dabb742
SB
2492 /*
2493 * keep the device that is marked to be the target device for the
2494 * dev_replace procedure
2495 */
2496 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2497
a6b0d5c8
CM
2498 if (!fs_devices->latest_bdev) {
2499 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2500 sb->s_id);
2501 goto fail_tree_roots;
2502 }
2503
af31f5e5 2504retry_root_backup:
db94535d
CM
2505 blocksize = btrfs_level_size(tree_root,
2506 btrfs_super_root_level(disk_super));
84234f3a 2507 generation = btrfs_super_generation(disk_super);
0b86a832 2508
e20d96d6 2509 tree_root->node = read_tree_block(tree_root,
db94535d 2510 btrfs_super_root(disk_super),
84234f3a 2511 blocksize, generation);
af31f5e5
CM
2512 if (!tree_root->node ||
2513 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2514 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2515 sb->s_id);
af31f5e5
CM
2516
2517 goto recovery_tree_root;
83121942 2518 }
af31f5e5 2519
5d4f98a2
YZ
2520 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2521 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2522
2523 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2524 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2525 if (ret)
af31f5e5 2526 goto recovery_tree_root;
0b86a832
CM
2527 extent_root->track_dirty = 1;
2528
2529 ret = find_and_setup_root(tree_root, fs_info,
2530 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2531 if (ret)
af31f5e5 2532 goto recovery_tree_root;
5d4f98a2 2533 dev_root->track_dirty = 1;
3768f368 2534
d20f7043
CM
2535 ret = find_and_setup_root(tree_root, fs_info,
2536 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2537 if (ret)
af31f5e5 2538 goto recovery_tree_root;
d20f7043
CM
2539 csum_root->track_dirty = 1;
2540
bcef60f2
AJ
2541 ret = find_and_setup_root(tree_root, fs_info,
2542 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2543 if (ret) {
2544 kfree(quota_root);
2545 quota_root = fs_info->quota_root = NULL;
2546 } else {
2547 quota_root->track_dirty = 1;
2548 fs_info->quota_enabled = 1;
2549 fs_info->pending_quota_state = 1;
2550 }
2551
8929ecfa
YZ
2552 fs_info->generation = generation;
2553 fs_info->last_trans_committed = generation;
8929ecfa 2554
68310a5e
ID
2555 ret = btrfs_recover_balance(fs_info);
2556 if (ret) {
2557 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2558 goto fail_block_groups;
2559 }
2560
733f4fbb
SB
2561 ret = btrfs_init_dev_stats(fs_info);
2562 if (ret) {
2563 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2564 ret);
2565 goto fail_block_groups;
2566 }
2567
8dabb742
SB
2568 ret = btrfs_init_dev_replace(fs_info);
2569 if (ret) {
2570 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2571 goto fail_block_groups;
2572 }
2573
2574 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2575
c59021f8 2576 ret = btrfs_init_space_info(fs_info);
2577 if (ret) {
2578 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2579 goto fail_block_groups;
2580 }
2581
1b1d1f66
JB
2582 ret = btrfs_read_block_groups(extent_root);
2583 if (ret) {
2584 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2585 goto fail_block_groups;
2586 }
5af3e8cc
SB
2587 fs_info->num_tolerated_disk_barrier_failures =
2588 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2589 if (fs_info->fs_devices->missing_devices >
2590 fs_info->num_tolerated_disk_barrier_failures &&
2591 !(sb->s_flags & MS_RDONLY)) {
2592 printk(KERN_WARNING
2593 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2594 goto fail_block_groups;
2595 }
9078a3e1 2596
a74a4b97
CM
2597 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2598 "btrfs-cleaner");
57506d50 2599 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2600 goto fail_block_groups;
a74a4b97
CM
2601
2602 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2603 tree_root,
2604 "btrfs-transaction");
57506d50 2605 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2606 goto fail_cleaner;
a74a4b97 2607
c289811c
CM
2608 if (!btrfs_test_opt(tree_root, SSD) &&
2609 !btrfs_test_opt(tree_root, NOSSD) &&
2610 !fs_info->fs_devices->rotating) {
2611 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2612 "mode\n");
2613 btrfs_set_opt(fs_info->mount_opt, SSD);
2614 }
2615
21adbd5c
SB
2616#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2617 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2618 ret = btrfsic_mount(tree_root, fs_devices,
2619 btrfs_test_opt(tree_root,
2620 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2621 1 : 0,
2622 fs_info->check_integrity_print_mask);
2623 if (ret)
2624 printk(KERN_WARNING "btrfs: failed to initialize"
2625 " integrity check module %s\n", sb->s_id);
2626 }
2627#endif
bcef60f2
AJ
2628 ret = btrfs_read_qgroup_config(fs_info);
2629 if (ret)
2630 goto fail_trans_kthread;
21adbd5c 2631
acce952b 2632 /* do not make disk changes in broken FS */
68ce9682 2633 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2634 u64 bytenr = btrfs_super_log_root(disk_super);
2635
7c2ca468 2636 if (fs_devices->rw_devices == 0) {
d397712b
CM
2637 printk(KERN_WARNING "Btrfs log replay required "
2638 "on RO media\n");
7c2ca468 2639 err = -EIO;
bcef60f2 2640 goto fail_qgroup;
7c2ca468 2641 }
e02119d5
CM
2642 blocksize =
2643 btrfs_level_size(tree_root,
2644 btrfs_super_log_root_level(disk_super));
d18a2c44 2645
6f07e42e 2646 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2647 if (!log_tree_root) {
2648 err = -ENOMEM;
bcef60f2 2649 goto fail_qgroup;
676e4c86 2650 }
e02119d5
CM
2651
2652 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2653 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2654
2655 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2656 blocksize,
2657 generation + 1);
79787eaa 2658 /* returns with log_tree_root freed on success */
e02119d5 2659 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2660 if (ret) {
2661 btrfs_error(tree_root->fs_info, ret,
2662 "Failed to recover log tree");
2663 free_extent_buffer(log_tree_root->node);
2664 kfree(log_tree_root);
2665 goto fail_trans_kthread;
2666 }
e556ce2c
YZ
2667
2668 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2669 ret = btrfs_commit_super(tree_root);
2670 if (ret)
2671 goto fail_trans_kthread;
e556ce2c 2672 }
e02119d5 2673 }
1a40e23b 2674
76dda93c 2675 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2676 if (ret)
2677 goto fail_trans_kthread;
76dda93c 2678
7c2ca468 2679 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2680 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2681 if (ret)
2682 goto fail_trans_kthread;
d68fc57b 2683
5d4f98a2 2684 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2685 if (ret < 0) {
2686 printk(KERN_WARNING
2687 "btrfs: failed to recover relocation\n");
2688 err = -EINVAL;
bcef60f2 2689 goto fail_qgroup;
d7ce5843 2690 }
7c2ca468 2691 }
1a40e23b 2692
3de4586c
CM
2693 location.objectid = BTRFS_FS_TREE_OBJECTID;
2694 location.type = BTRFS_ROOT_ITEM_KEY;
2695 location.offset = (u64)-1;
2696
3de4586c
CM
2697 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2698 if (!fs_info->fs_root)
bcef60f2 2699 goto fail_qgroup;
3140c9a3
DC
2700 if (IS_ERR(fs_info->fs_root)) {
2701 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2702 goto fail_qgroup;
3140c9a3 2703 }
c289811c 2704
2b6ba629
ID
2705 if (sb->s_flags & MS_RDONLY)
2706 return 0;
59641015 2707
2b6ba629
ID
2708 down_read(&fs_info->cleanup_work_sem);
2709 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2710 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2711 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2712 close_ctree(tree_root);
2713 return ret;
2714 }
2715 up_read(&fs_info->cleanup_work_sem);
59641015 2716
2b6ba629
ID
2717 ret = btrfs_resume_balance_async(fs_info);
2718 if (ret) {
2719 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2720 close_ctree(tree_root);
2721 return ret;
e3acc2a6
JB
2722 }
2723
8dabb742
SB
2724 ret = btrfs_resume_dev_replace_async(fs_info);
2725 if (ret) {
2726 pr_warn("btrfs: failed to resume dev_replace\n");
2727 close_ctree(tree_root);
2728 return ret;
2729 }
2730
ad2b2c80 2731 return 0;
39279cc3 2732
bcef60f2
AJ
2733fail_qgroup:
2734 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2735fail_trans_kthread:
2736 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2737fail_cleaner:
a74a4b97 2738 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2739
2740 /*
2741 * make sure we're done with the btree inode before we stop our
2742 * kthreads
2743 */
2744 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2745
1b1d1f66
JB
2746fail_block_groups:
2747 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2748
2749fail_tree_roots:
2750 free_root_pointers(fs_info, 1);
2b8195bb 2751 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2752
39279cc3 2753fail_sb_buffer:
61d92c32 2754 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2755 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2756 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2757 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2758 btrfs_stop_workers(&fs_info->workers);
2759 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2760 btrfs_stop_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2761 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2762 btrfs_stop_workers(&fs_info->rmw_workers);
cad321ad 2763 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2764 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2765 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2766 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2767 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2768 btrfs_stop_workers(&fs_info->caching_workers);
8ccf6f19 2769 btrfs_stop_workers(&fs_info->flush_workers);
16cdcec7 2770fail_alloc:
4543df7e 2771fail_iput:
586e46e2
ID
2772 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2773
4543df7e 2774 iput(fs_info->btree_inode);
963d678b
MX
2775fail_delalloc_bytes:
2776 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2777fail_dirty_metadata_bytes:
2778 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2779fail_bdi:
7e662854 2780 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2781fail_srcu:
2782 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2783fail:
53b381b3 2784 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2785 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2786 return err;
af31f5e5
CM
2787
2788recovery_tree_root:
af31f5e5
CM
2789 if (!btrfs_test_opt(tree_root, RECOVERY))
2790 goto fail_tree_roots;
2791
2792 free_root_pointers(fs_info, 0);
2793
2794 /* don't use the log in recovery mode, it won't be valid */
2795 btrfs_set_super_log_root(disk_super, 0);
2796
2797 /* we can't trust the free space cache either */
2798 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2799
2800 ret = next_root_backup(fs_info, fs_info->super_copy,
2801 &num_backups_tried, &backup_index);
2802 if (ret == -1)
2803 goto fail_block_groups;
2804 goto retry_root_backup;
eb60ceac
CM
2805}
2806
f2984462
CM
2807static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2808{
f2984462
CM
2809 if (uptodate) {
2810 set_buffer_uptodate(bh);
2811 } else {
442a4f63
SB
2812 struct btrfs_device *device = (struct btrfs_device *)
2813 bh->b_private;
2814
606686ee
JB
2815 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2816 "I/O error on %s\n",
2817 rcu_str_deref(device->name));
1259ab75
CM
2818 /* note, we dont' set_buffer_write_io_error because we have
2819 * our own ways of dealing with the IO errors
2820 */
f2984462 2821 clear_buffer_uptodate(bh);
442a4f63 2822 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2823 }
2824 unlock_buffer(bh);
2825 put_bh(bh);
2826}
2827
a512bbf8
YZ
2828struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2829{
2830 struct buffer_head *bh;
2831 struct buffer_head *latest = NULL;
2832 struct btrfs_super_block *super;
2833 int i;
2834 u64 transid = 0;
2835 u64 bytenr;
2836
2837 /* we would like to check all the supers, but that would make
2838 * a btrfs mount succeed after a mkfs from a different FS.
2839 * So, we need to add a special mount option to scan for
2840 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2841 */
2842 for (i = 0; i < 1; i++) {
2843 bytenr = btrfs_sb_offset(i);
2844 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2845 break;
2846 bh = __bread(bdev, bytenr / 4096, 4096);
2847 if (!bh)
2848 continue;
2849
2850 super = (struct btrfs_super_block *)bh->b_data;
2851 if (btrfs_super_bytenr(super) != bytenr ||
cdb4c574 2852 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
a512bbf8
YZ
2853 brelse(bh);
2854 continue;
2855 }
2856
2857 if (!latest || btrfs_super_generation(super) > transid) {
2858 brelse(latest);
2859 latest = bh;
2860 transid = btrfs_super_generation(super);
2861 } else {
2862 brelse(bh);
2863 }
2864 }
2865 return latest;
2866}
2867
4eedeb75
HH
2868/*
2869 * this should be called twice, once with wait == 0 and
2870 * once with wait == 1. When wait == 0 is done, all the buffer heads
2871 * we write are pinned.
2872 *
2873 * They are released when wait == 1 is done.
2874 * max_mirrors must be the same for both runs, and it indicates how
2875 * many supers on this one device should be written.
2876 *
2877 * max_mirrors == 0 means to write them all.
2878 */
a512bbf8
YZ
2879static int write_dev_supers(struct btrfs_device *device,
2880 struct btrfs_super_block *sb,
2881 int do_barriers, int wait, int max_mirrors)
2882{
2883 struct buffer_head *bh;
2884 int i;
2885 int ret;
2886 int errors = 0;
2887 u32 crc;
2888 u64 bytenr;
a512bbf8
YZ
2889
2890 if (max_mirrors == 0)
2891 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2892
a512bbf8
YZ
2893 for (i = 0; i < max_mirrors; i++) {
2894 bytenr = btrfs_sb_offset(i);
2895 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2896 break;
2897
2898 if (wait) {
2899 bh = __find_get_block(device->bdev, bytenr / 4096,
2900 BTRFS_SUPER_INFO_SIZE);
2901 BUG_ON(!bh);
a512bbf8 2902 wait_on_buffer(bh);
4eedeb75
HH
2903 if (!buffer_uptodate(bh))
2904 errors++;
2905
2906 /* drop our reference */
2907 brelse(bh);
2908
2909 /* drop the reference from the wait == 0 run */
2910 brelse(bh);
2911 continue;
a512bbf8
YZ
2912 } else {
2913 btrfs_set_super_bytenr(sb, bytenr);
2914
2915 crc = ~(u32)0;
2916 crc = btrfs_csum_data(NULL, (char *)sb +
2917 BTRFS_CSUM_SIZE, crc,
2918 BTRFS_SUPER_INFO_SIZE -
2919 BTRFS_CSUM_SIZE);
2920 btrfs_csum_final(crc, sb->csum);
2921
4eedeb75
HH
2922 /*
2923 * one reference for us, and we leave it for the
2924 * caller
2925 */
a512bbf8
YZ
2926 bh = __getblk(device->bdev, bytenr / 4096,
2927 BTRFS_SUPER_INFO_SIZE);
2928 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2929
4eedeb75 2930 /* one reference for submit_bh */
a512bbf8 2931 get_bh(bh);
4eedeb75
HH
2932
2933 set_buffer_uptodate(bh);
a512bbf8
YZ
2934 lock_buffer(bh);
2935 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2936 bh->b_private = device;
a512bbf8
YZ
2937 }
2938
387125fc
CM
2939 /*
2940 * we fua the first super. The others we allow
2941 * to go down lazy.
2942 */
21adbd5c 2943 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2944 if (ret)
a512bbf8 2945 errors++;
a512bbf8
YZ
2946 }
2947 return errors < i ? 0 : -1;
2948}
2949
387125fc
CM
2950/*
2951 * endio for the write_dev_flush, this will wake anyone waiting
2952 * for the barrier when it is done
2953 */
2954static void btrfs_end_empty_barrier(struct bio *bio, int err)
2955{
2956 if (err) {
2957 if (err == -EOPNOTSUPP)
2958 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2959 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2960 }
2961 if (bio->bi_private)
2962 complete(bio->bi_private);
2963 bio_put(bio);
2964}
2965
2966/*
2967 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2968 * sent down. With wait == 1, it waits for the previous flush.
2969 *
2970 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2971 * capable
2972 */
2973static int write_dev_flush(struct btrfs_device *device, int wait)
2974{
2975 struct bio *bio;
2976 int ret = 0;
2977
2978 if (device->nobarriers)
2979 return 0;
2980
2981 if (wait) {
2982 bio = device->flush_bio;
2983 if (!bio)
2984 return 0;
2985
2986 wait_for_completion(&device->flush_wait);
2987
2988 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2989 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2990 rcu_str_deref(device->name));
387125fc 2991 device->nobarriers = 1;
5af3e8cc 2992 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 2993 ret = -EIO;
5af3e8cc
SB
2994 btrfs_dev_stat_inc_and_print(device,
2995 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2996 }
2997
2998 /* drop the reference from the wait == 0 run */
2999 bio_put(bio);
3000 device->flush_bio = NULL;
3001
3002 return ret;
3003 }
3004
3005 /*
3006 * one reference for us, and we leave it for the
3007 * caller
3008 */
9c017abc 3009 device->flush_bio = NULL;
387125fc
CM
3010 bio = bio_alloc(GFP_NOFS, 0);
3011 if (!bio)
3012 return -ENOMEM;
3013
3014 bio->bi_end_io = btrfs_end_empty_barrier;
3015 bio->bi_bdev = device->bdev;
3016 init_completion(&device->flush_wait);
3017 bio->bi_private = &device->flush_wait;
3018 device->flush_bio = bio;
3019
3020 bio_get(bio);
21adbd5c 3021 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3022
3023 return 0;
3024}
3025
3026/*
3027 * send an empty flush down to each device in parallel,
3028 * then wait for them
3029 */
3030static int barrier_all_devices(struct btrfs_fs_info *info)
3031{
3032 struct list_head *head;
3033 struct btrfs_device *dev;
5af3e8cc
SB
3034 int errors_send = 0;
3035 int errors_wait = 0;
387125fc
CM
3036 int ret;
3037
3038 /* send down all the barriers */
3039 head = &info->fs_devices->devices;
3040 list_for_each_entry_rcu(dev, head, dev_list) {
3041 if (!dev->bdev) {
5af3e8cc 3042 errors_send++;
387125fc
CM
3043 continue;
3044 }
3045 if (!dev->in_fs_metadata || !dev->writeable)
3046 continue;
3047
3048 ret = write_dev_flush(dev, 0);
3049 if (ret)
5af3e8cc 3050 errors_send++;
387125fc
CM
3051 }
3052
3053 /* wait for all the barriers */
3054 list_for_each_entry_rcu(dev, head, dev_list) {
3055 if (!dev->bdev) {
5af3e8cc 3056 errors_wait++;
387125fc
CM
3057 continue;
3058 }
3059 if (!dev->in_fs_metadata || !dev->writeable)
3060 continue;
3061
3062 ret = write_dev_flush(dev, 1);
3063 if (ret)
5af3e8cc 3064 errors_wait++;
387125fc 3065 }
5af3e8cc
SB
3066 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3067 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3068 return -EIO;
3069 return 0;
3070}
3071
5af3e8cc
SB
3072int btrfs_calc_num_tolerated_disk_barrier_failures(
3073 struct btrfs_fs_info *fs_info)
3074{
3075 struct btrfs_ioctl_space_info space;
3076 struct btrfs_space_info *sinfo;
3077 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3078 BTRFS_BLOCK_GROUP_SYSTEM,
3079 BTRFS_BLOCK_GROUP_METADATA,
3080 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3081 int num_types = 4;
3082 int i;
3083 int c;
3084 int num_tolerated_disk_barrier_failures =
3085 (int)fs_info->fs_devices->num_devices;
3086
3087 for (i = 0; i < num_types; i++) {
3088 struct btrfs_space_info *tmp;
3089
3090 sinfo = NULL;
3091 rcu_read_lock();
3092 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3093 if (tmp->flags == types[i]) {
3094 sinfo = tmp;
3095 break;
3096 }
3097 }
3098 rcu_read_unlock();
3099
3100 if (!sinfo)
3101 continue;
3102
3103 down_read(&sinfo->groups_sem);
3104 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3105 if (!list_empty(&sinfo->block_groups[c])) {
3106 u64 flags;
3107
3108 btrfs_get_block_group_info(
3109 &sinfo->block_groups[c], &space);
3110 if (space.total_bytes == 0 ||
3111 space.used_bytes == 0)
3112 continue;
3113 flags = space.flags;
3114 /*
3115 * return
3116 * 0: if dup, single or RAID0 is configured for
3117 * any of metadata, system or data, else
3118 * 1: if RAID5 is configured, or if RAID1 or
3119 * RAID10 is configured and only two mirrors
3120 * are used, else
3121 * 2: if RAID6 is configured, else
3122 * num_mirrors - 1: if RAID1 or RAID10 is
3123 * configured and more than
3124 * 2 mirrors are used.
3125 */
3126 if (num_tolerated_disk_barrier_failures > 0 &&
3127 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3128 BTRFS_BLOCK_GROUP_RAID0)) ||
3129 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3130 == 0)))
3131 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3132 else if (num_tolerated_disk_barrier_failures > 1) {
3133 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3134 BTRFS_BLOCK_GROUP_RAID5 |
3135 BTRFS_BLOCK_GROUP_RAID10)) {
3136 num_tolerated_disk_barrier_failures = 1;
3137 } else if (flags &
3138 BTRFS_BLOCK_GROUP_RAID5) {
3139 num_tolerated_disk_barrier_failures = 2;
3140 }
3141 }
5af3e8cc
SB
3142 }
3143 }
3144 up_read(&sinfo->groups_sem);
3145 }
3146
3147 return num_tolerated_disk_barrier_failures;
3148}
3149
a512bbf8 3150int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3151{
e5e9a520 3152 struct list_head *head;
f2984462 3153 struct btrfs_device *dev;
a061fc8d 3154 struct btrfs_super_block *sb;
f2984462 3155 struct btrfs_dev_item *dev_item;
f2984462
CM
3156 int ret;
3157 int do_barriers;
a236aed1
CM
3158 int max_errors;
3159 int total_errors = 0;
a061fc8d 3160 u64 flags;
f2984462 3161
6c41761f 3162 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 3163 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3164 backup_super_roots(root->fs_info);
f2984462 3165
6c41761f 3166 sb = root->fs_info->super_for_commit;
a061fc8d 3167 dev_item = &sb->dev_item;
e5e9a520 3168
174ba509 3169 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3170 head = &root->fs_info->fs_devices->devices;
387125fc 3171
5af3e8cc
SB
3172 if (do_barriers) {
3173 ret = barrier_all_devices(root->fs_info);
3174 if (ret) {
3175 mutex_unlock(
3176 &root->fs_info->fs_devices->device_list_mutex);
3177 btrfs_error(root->fs_info, ret,
3178 "errors while submitting device barriers.");
3179 return ret;
3180 }
3181 }
387125fc 3182
1f78160c 3183 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3184 if (!dev->bdev) {
3185 total_errors++;
3186 continue;
3187 }
2b82032c 3188 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3189 continue;
3190
2b82032c 3191 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3192 btrfs_set_stack_device_type(dev_item, dev->type);
3193 btrfs_set_stack_device_id(dev_item, dev->devid);
3194 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3195 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3196 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3197 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3198 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3199 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3200 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3201
a061fc8d
CM
3202 flags = btrfs_super_flags(sb);
3203 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3204
a512bbf8 3205 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3206 if (ret)
3207 total_errors++;
f2984462 3208 }
a236aed1 3209 if (total_errors > max_errors) {
d397712b
CM
3210 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3211 total_errors);
79787eaa
JM
3212
3213 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3214 BUG();
3215 }
f2984462 3216
a512bbf8 3217 total_errors = 0;
1f78160c 3218 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3219 if (!dev->bdev)
3220 continue;
2b82032c 3221 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3222 continue;
3223
a512bbf8
YZ
3224 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3225 if (ret)
3226 total_errors++;
f2984462 3227 }
174ba509 3228 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3229 if (total_errors > max_errors) {
79787eaa
JM
3230 btrfs_error(root->fs_info, -EIO,
3231 "%d errors while writing supers", total_errors);
3232 return -EIO;
a236aed1 3233 }
f2984462
CM
3234 return 0;
3235}
3236
a512bbf8
YZ
3237int write_ctree_super(struct btrfs_trans_handle *trans,
3238 struct btrfs_root *root, int max_mirrors)
eb60ceac 3239{
e66f709b 3240 int ret;
5f39d397 3241
a512bbf8 3242 ret = write_all_supers(root, max_mirrors);
5f39d397 3243 return ret;
cfaa7295
CM
3244}
3245
143bede5 3246void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3247{
4df27c4d 3248 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3249 radix_tree_delete(&fs_info->fs_roots_radix,
3250 (unsigned long)root->root_key.objectid);
4df27c4d 3251 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3252
3253 if (btrfs_root_refs(&root->root_item) == 0)
3254 synchronize_srcu(&fs_info->subvol_srcu);
3255
581bb050
LZ
3256 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3257 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3258 free_fs_root(root);
4df27c4d
YZ
3259}
3260
3261static void free_fs_root(struct btrfs_root *root)
3262{
82d5902d 3263 iput(root->cache_inode);
4df27c4d 3264 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3265 if (root->anon_dev)
3266 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3267 free_extent_buffer(root->node);
3268 free_extent_buffer(root->commit_root);
581bb050
LZ
3269 kfree(root->free_ino_ctl);
3270 kfree(root->free_ino_pinned);
d397712b 3271 kfree(root->name);
2619ba1f 3272 kfree(root);
2619ba1f
CM
3273}
3274
143bede5 3275static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3276{
3277 int ret;
3278 struct btrfs_root *gang[8];
3279 int i;
3280
76dda93c
YZ
3281 while (!list_empty(&fs_info->dead_roots)) {
3282 gang[0] = list_entry(fs_info->dead_roots.next,
3283 struct btrfs_root, root_list);
3284 list_del(&gang[0]->root_list);
3285
3286 if (gang[0]->in_radix) {
3287 btrfs_free_fs_root(fs_info, gang[0]);
3288 } else {
3289 free_extent_buffer(gang[0]->node);
3290 free_extent_buffer(gang[0]->commit_root);
3291 kfree(gang[0]);
3292 }
3293 }
3294
d397712b 3295 while (1) {
0f7d52f4
CM
3296 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3297 (void **)gang, 0,
3298 ARRAY_SIZE(gang));
3299 if (!ret)
3300 break;
2619ba1f 3301 for (i = 0; i < ret; i++)
5eda7b5e 3302 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3303 }
0f7d52f4 3304}
b4100d64 3305
c146afad 3306int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3307{
c146afad
YZ
3308 u64 root_objectid = 0;
3309 struct btrfs_root *gang[8];
3310 int i;
3768f368 3311 int ret;
e089f05c 3312
c146afad
YZ
3313 while (1) {
3314 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3315 (void **)gang, root_objectid,
3316 ARRAY_SIZE(gang));
3317 if (!ret)
3318 break;
5d4f98a2
YZ
3319
3320 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3321 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3322 int err;
3323
c146afad 3324 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3325 err = btrfs_orphan_cleanup(gang[i]);
3326 if (err)
3327 return err;
c146afad
YZ
3328 }
3329 root_objectid++;
3330 }
3331 return 0;
3332}
a2135011 3333
c146afad
YZ
3334int btrfs_commit_super(struct btrfs_root *root)
3335{
3336 struct btrfs_trans_handle *trans;
3337 int ret;
a74a4b97 3338
c146afad 3339 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3340 btrfs_run_delayed_iputs(root);
a74a4b97 3341 btrfs_clean_old_snapshots(root);
c146afad 3342 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3343
3344 /* wait until ongoing cleanup work done */
3345 down_write(&root->fs_info->cleanup_work_sem);
3346 up_write(&root->fs_info->cleanup_work_sem);
3347
7a7eaa40 3348 trans = btrfs_join_transaction(root);
3612b495
TI
3349 if (IS_ERR(trans))
3350 return PTR_ERR(trans);
54aa1f4d 3351 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3352 if (ret)
3353 return ret;
c146afad 3354 /* run commit again to drop the original snapshot */
7a7eaa40 3355 trans = btrfs_join_transaction(root);
3612b495
TI
3356 if (IS_ERR(trans))
3357 return PTR_ERR(trans);
79787eaa
JM
3358 ret = btrfs_commit_transaction(trans, root);
3359 if (ret)
3360 return ret;
79154b1b 3361 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3362 if (ret) {
3363 btrfs_error(root->fs_info, ret,
3364 "Failed to sync btree inode to disk.");
3365 return ret;
3366 }
d6bfde87 3367
a512bbf8 3368 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3369 return ret;
3370}
3371
3372int close_ctree(struct btrfs_root *root)
3373{
3374 struct btrfs_fs_info *fs_info = root->fs_info;
3375 int ret;
3376
3377 fs_info->closing = 1;
3378 smp_mb();
3379
837d5b6e 3380 /* pause restriper - we want to resume on mount */
aa1b8cd4 3381 btrfs_pause_balance(fs_info);
837d5b6e 3382
8dabb742
SB
3383 btrfs_dev_replace_suspend_for_unmount(fs_info);
3384
aa1b8cd4 3385 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3386
3387 /* wait for any defraggers to finish */
3388 wait_event(fs_info->transaction_wait,
3389 (atomic_read(&fs_info->defrag_running) == 0));
3390
3391 /* clear out the rbtree of defraggable inodes */
26176e7c 3392 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3393
c146afad 3394 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3395 ret = btrfs_commit_super(root);
3396 if (ret)
3397 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3398 }
3399
87533c47 3400 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3401 btrfs_error_commit_super(root);
0f7d52f4 3402
300e4f8a
JB
3403 btrfs_put_block_group_cache(fs_info);
3404
e3029d9f
AV
3405 kthread_stop(fs_info->transaction_kthread);
3406 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3407
f25784b3
YZ
3408 fs_info->closing = 2;
3409 smp_mb();
3410
bcef60f2
AJ
3411 btrfs_free_qgroup_config(root->fs_info);
3412
963d678b
MX
3413 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3414 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3415 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3416 }
bcc63abb 3417
5d4f98a2
YZ
3418 free_extent_buffer(fs_info->extent_root->node);
3419 free_extent_buffer(fs_info->extent_root->commit_root);
3420 free_extent_buffer(fs_info->tree_root->node);
3421 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3422 free_extent_buffer(fs_info->chunk_root->node);
3423 free_extent_buffer(fs_info->chunk_root->commit_root);
3424 free_extent_buffer(fs_info->dev_root->node);
3425 free_extent_buffer(fs_info->dev_root->commit_root);
3426 free_extent_buffer(fs_info->csum_root->node);
3427 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3428 if (fs_info->quota_root) {
3429 free_extent_buffer(fs_info->quota_root->node);
3430 free_extent_buffer(fs_info->quota_root->commit_root);
3431 }
d20f7043 3432
e3029d9f 3433 btrfs_free_block_groups(fs_info);
d10c5f31 3434
c146afad 3435 del_fs_roots(fs_info);
d10c5f31 3436
c146afad 3437 iput(fs_info->btree_inode);
9ad6b7bc 3438
61d92c32 3439 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3440 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3441 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3442 btrfs_stop_workers(&fs_info->workers);
3443 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3444 btrfs_stop_workers(&fs_info->endio_meta_workers);
53b381b3
DW
3445 btrfs_stop_workers(&fs_info->endio_raid56_workers);
3446 btrfs_stop_workers(&fs_info->rmw_workers);
cad321ad 3447 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3448 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3449 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3450 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3451 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3452 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3453 btrfs_stop_workers(&fs_info->readahead_workers);
8ccf6f19 3454 btrfs_stop_workers(&fs_info->flush_workers);
d6bfde87 3455
21adbd5c
SB
3456#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3457 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3458 btrfsic_unmount(root, fs_info->fs_devices);
3459#endif
3460
dfe25020 3461 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3462 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3463
e2d84521 3464 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3465 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3466 bdi_destroy(&fs_info->bdi);
76dda93c 3467 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3468
53b381b3
DW
3469 btrfs_free_stripe_hash_table(fs_info);
3470
eb60ceac
CM
3471 return 0;
3472}
3473
b9fab919
CM
3474int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3475 int atomic)
5f39d397 3476{
1259ab75 3477 int ret;
727011e0 3478 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3479
0b32f4bb 3480 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3481 if (!ret)
3482 return ret;
3483
3484 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3485 parent_transid, atomic);
3486 if (ret == -EAGAIN)
3487 return ret;
1259ab75 3488 return !ret;
5f39d397
CM
3489}
3490
3491int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3492{
0b32f4bb 3493 return set_extent_buffer_uptodate(buf);
5f39d397 3494}
6702ed49 3495
5f39d397
CM
3496void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3497{
727011e0 3498 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3499 u64 transid = btrfs_header_generation(buf);
b9473439 3500 int was_dirty;
b4ce94de 3501
b9447ef8 3502 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3503 if (transid != root->fs_info->generation)
3504 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3505 "found %llu running %llu\n",
db94535d 3506 (unsigned long long)buf->start,
d397712b
CM
3507 (unsigned long long)transid,
3508 (unsigned long long)root->fs_info->generation);
0b32f4bb 3509 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3510 if (!was_dirty)
3511 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3512 buf->len,
3513 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3514}
3515
b53d3f5d
LB
3516static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3517 int flush_delayed)
16cdcec7
MX
3518{
3519 /*
3520 * looks as though older kernels can get into trouble with
3521 * this code, they end up stuck in balance_dirty_pages forever
3522 */
e2d84521 3523 int ret;
16cdcec7
MX
3524
3525 if (current->flags & PF_MEMALLOC)
3526 return;
3527
b53d3f5d
LB
3528 if (flush_delayed)
3529 btrfs_balance_delayed_items(root);
16cdcec7 3530
e2d84521
MX
3531 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3532 BTRFS_DIRTY_METADATA_THRESH);
3533 if (ret > 0) {
d0e1d66b
NJ
3534 balance_dirty_pages_ratelimited(
3535 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3536 }
3537 return;
3538}
3539
b53d3f5d 3540void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3541{
b53d3f5d
LB
3542 __btrfs_btree_balance_dirty(root, 1);
3543}
585ad2c3 3544
b53d3f5d
LB
3545void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3546{
3547 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3548}
6b80053d 3549
ca7a79ad 3550int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3551{
727011e0 3552 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3553 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3554}
0da5468f 3555
fcd1f065 3556static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3557 int read_only)
3558{
fcd1f065
DS
3559 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3560 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3561 return -EINVAL;
3562 }
3563
acce952b 3564 if (read_only)
fcd1f065 3565 return 0;
acce952b 3566
fcd1f065 3567 return 0;
acce952b 3568}
3569
68ce9682 3570void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3571{
acce952b 3572 mutex_lock(&root->fs_info->cleaner_mutex);
3573 btrfs_run_delayed_iputs(root);
3574 mutex_unlock(&root->fs_info->cleaner_mutex);
3575
3576 down_write(&root->fs_info->cleanup_work_sem);
3577 up_write(&root->fs_info->cleanup_work_sem);
3578
3579 /* cleanup FS via transaction */
3580 btrfs_cleanup_transaction(root);
acce952b 3581}
3582
569e0f35
JB
3583static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3584 struct btrfs_root *root)
acce952b 3585{
3586 struct btrfs_inode *btrfs_inode;
3587 struct list_head splice;
3588
3589 INIT_LIST_HEAD(&splice);
3590
3591 mutex_lock(&root->fs_info->ordered_operations_mutex);
3592 spin_lock(&root->fs_info->ordered_extent_lock);
3593
569e0f35 3594 list_splice_init(&t->ordered_operations, &splice);
acce952b 3595 while (!list_empty(&splice)) {
3596 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3597 ordered_operations);
3598
3599 list_del_init(&btrfs_inode->ordered_operations);
3600
3601 btrfs_invalidate_inodes(btrfs_inode->root);
3602 }
3603
3604 spin_unlock(&root->fs_info->ordered_extent_lock);
3605 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3606}
3607
143bede5 3608static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3609{
acce952b 3610 struct btrfs_ordered_extent *ordered;
acce952b 3611
3612 spin_lock(&root->fs_info->ordered_extent_lock);
779880ef
JB
3613 /*
3614 * This will just short circuit the ordered completion stuff which will
3615 * make sure the ordered extent gets properly cleaned up.
3616 */
3617 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3618 root_extent_list)
3619 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
acce952b 3620 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3621}
3622
79787eaa
JM
3623int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3624 struct btrfs_root *root)
acce952b 3625{
3626 struct rb_node *node;
3627 struct btrfs_delayed_ref_root *delayed_refs;
3628 struct btrfs_delayed_ref_node *ref;
3629 int ret = 0;
3630
3631 delayed_refs = &trans->delayed_refs;
3632
3633 spin_lock(&delayed_refs->lock);
3634 if (delayed_refs->num_entries == 0) {
cfece4db 3635 spin_unlock(&delayed_refs->lock);
acce952b 3636 printk(KERN_INFO "delayed_refs has NO entry\n");
3637 return ret;
3638 }
3639
b939d1ab 3640 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3641 struct btrfs_delayed_ref_head *head = NULL;
acce952b 3642
eb12db69 3643 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3644 atomic_set(&ref->refs, 1);
3645 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3646
3647 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3648 if (!mutex_trylock(&head->mutex)) {
3649 atomic_inc(&ref->refs);
3650 spin_unlock(&delayed_refs->lock);
3651
3652 /* Need to wait for the delayed ref to run */
3653 mutex_lock(&head->mutex);
3654 mutex_unlock(&head->mutex);
3655 btrfs_put_delayed_ref(ref);
3656
e18fca73 3657 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3658 continue;
3659 }
3660
78a6184a 3661 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3662 delayed_refs->num_heads--;
3663 if (list_empty(&head->cluster))
3664 delayed_refs->num_heads_ready--;
3665 list_del_init(&head->cluster);
acce952b 3666 }
eb12db69 3667
b939d1ab
JB
3668 ref->in_tree = 0;
3669 rb_erase(&ref->rb_node, &delayed_refs->root);
3670 delayed_refs->num_entries--;
eb12db69
JB
3671 if (head)
3672 mutex_unlock(&head->mutex);
acce952b 3673 spin_unlock(&delayed_refs->lock);
3674 btrfs_put_delayed_ref(ref);
3675
3676 cond_resched();
3677 spin_lock(&delayed_refs->lock);
3678 }
3679
3680 spin_unlock(&delayed_refs->lock);
3681
3682 return ret;
3683}
3684
143bede5 3685static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3686{
3687 struct btrfs_pending_snapshot *snapshot;
3688 struct list_head splice;
3689
3690 INIT_LIST_HEAD(&splice);
3691
3692 list_splice_init(&t->pending_snapshots, &splice);
3693
3694 while (!list_empty(&splice)) {
3695 snapshot = list_entry(splice.next,
3696 struct btrfs_pending_snapshot,
3697 list);
3698
3699 list_del_init(&snapshot->list);
3700
3701 kfree(snapshot);
3702 }
acce952b 3703}
3704
143bede5 3705static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3706{
3707 struct btrfs_inode *btrfs_inode;
3708 struct list_head splice;
3709
3710 INIT_LIST_HEAD(&splice);
3711
acce952b 3712 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3713 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3714
3715 while (!list_empty(&splice)) {
3716 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3717 delalloc_inodes);
3718
3719 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3720 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3721 &btrfs_inode->runtime_flags);
acce952b 3722
3723 btrfs_invalidate_inodes(btrfs_inode->root);
3724 }
3725
3726 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3727}
3728
3729static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3730 struct extent_io_tree *dirty_pages,
3731 int mark)
3732{
3733 int ret;
3734 struct page *page;
3735 struct inode *btree_inode = root->fs_info->btree_inode;
3736 struct extent_buffer *eb;
3737 u64 start = 0;
3738 u64 end;
3739 u64 offset;
3740 unsigned long index;
3741
3742 while (1) {
3743 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3744 mark, NULL);
acce952b 3745 if (ret)
3746 break;
3747
3748 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3749 while (start <= end) {
3750 index = start >> PAGE_CACHE_SHIFT;
3751 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3752 page = find_get_page(btree_inode->i_mapping, index);
3753 if (!page)
3754 continue;
3755 offset = page_offset(page);
3756
3757 spin_lock(&dirty_pages->buffer_lock);
3758 eb = radix_tree_lookup(
3759 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3760 offset >> PAGE_CACHE_SHIFT);
3761 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3762 if (eb)
acce952b 3763 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3764 &eb->bflags);
acce952b 3765 if (PageWriteback(page))
3766 end_page_writeback(page);
3767
3768 lock_page(page);
3769 if (PageDirty(page)) {
3770 clear_page_dirty_for_io(page);
3771 spin_lock_irq(&page->mapping->tree_lock);
3772 radix_tree_tag_clear(&page->mapping->page_tree,
3773 page_index(page),
3774 PAGECACHE_TAG_DIRTY);
3775 spin_unlock_irq(&page->mapping->tree_lock);
3776 }
3777
acce952b 3778 unlock_page(page);
ee670f0a 3779 page_cache_release(page);
acce952b 3780 }
3781 }
3782
3783 return ret;
3784}
3785
3786static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3787 struct extent_io_tree *pinned_extents)
3788{
3789 struct extent_io_tree *unpin;
3790 u64 start;
3791 u64 end;
3792 int ret;
ed0eaa14 3793 bool loop = true;
acce952b 3794
3795 unpin = pinned_extents;
ed0eaa14 3796again:
acce952b 3797 while (1) {
3798 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3799 EXTENT_DIRTY, NULL);
acce952b 3800 if (ret)
3801 break;
3802
3803 /* opt_discard */
5378e607
LD
3804 if (btrfs_test_opt(root, DISCARD))
3805 ret = btrfs_error_discard_extent(root, start,
3806 end + 1 - start,
3807 NULL);
acce952b 3808
3809 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3810 btrfs_error_unpin_extent_range(root, start, end);
3811 cond_resched();
3812 }
3813
ed0eaa14
LB
3814 if (loop) {
3815 if (unpin == &root->fs_info->freed_extents[0])
3816 unpin = &root->fs_info->freed_extents[1];
3817 else
3818 unpin = &root->fs_info->freed_extents[0];
3819 loop = false;
3820 goto again;
3821 }
3822
acce952b 3823 return 0;
3824}
3825
49b25e05
JM
3826void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3827 struct btrfs_root *root)
3828{
3829 btrfs_destroy_delayed_refs(cur_trans, root);
3830 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3831 cur_trans->dirty_pages.dirty_bytes);
3832
3833 /* FIXME: cleanup wait for commit */
3834 cur_trans->in_commit = 1;
3835 cur_trans->blocked = 1;
d7096fc3 3836 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3837
3838 cur_trans->blocked = 0;
d7096fc3 3839 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3840
3841 cur_trans->commit_done = 1;
d7096fc3 3842 wake_up(&cur_trans->commit_wait);
49b25e05 3843
67cde344
MX
3844 btrfs_destroy_delayed_inodes(root);
3845 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3846
3847 btrfs_destroy_pending_snapshots(cur_trans);
3848
3849 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3850 EXTENT_DIRTY);
6e841e32
LB
3851 btrfs_destroy_pinned_extent(root,
3852 root->fs_info->pinned_extents);
49b25e05
JM
3853
3854 /*
3855 memset(cur_trans, 0, sizeof(*cur_trans));
3856 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3857 */
3858}
3859
3860int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3861{
3862 struct btrfs_transaction *t;
3863 LIST_HEAD(list);
3864
acce952b 3865 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3866
a4abeea4 3867 spin_lock(&root->fs_info->trans_lock);
acce952b 3868 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3869 root->fs_info->trans_no_join = 1;
3870 spin_unlock(&root->fs_info->trans_lock);
3871
acce952b 3872 while (!list_empty(&list)) {
3873 t = list_entry(list.next, struct btrfs_transaction, list);
acce952b 3874
569e0f35 3875 btrfs_destroy_ordered_operations(t, root);
acce952b 3876
3877 btrfs_destroy_ordered_extents(root);
3878
3879 btrfs_destroy_delayed_refs(t, root);
3880
3881 btrfs_block_rsv_release(root,
3882 &root->fs_info->trans_block_rsv,
3883 t->dirty_pages.dirty_bytes);
3884
3885 /* FIXME: cleanup wait for commit */
3886 t->in_commit = 1;
3887 t->blocked = 1;
66657b31 3888 smp_mb();
acce952b 3889 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3890 wake_up(&root->fs_info->transaction_blocked_wait);
3891
3892 t->blocked = 0;
66657b31 3893 smp_mb();
acce952b 3894 if (waitqueue_active(&root->fs_info->transaction_wait))
3895 wake_up(&root->fs_info->transaction_wait);
acce952b 3896
acce952b 3897 t->commit_done = 1;
66657b31 3898 smp_mb();
acce952b 3899 if (waitqueue_active(&t->commit_wait))
3900 wake_up(&t->commit_wait);
acce952b 3901
67cde344
MX
3902 btrfs_destroy_delayed_inodes(root);
3903 btrfs_assert_delayed_root_empty(root);
3904
acce952b 3905 btrfs_destroy_pending_snapshots(t);
3906
3907 btrfs_destroy_delalloc_inodes(root);
3908
a4abeea4 3909 spin_lock(&root->fs_info->trans_lock);
acce952b 3910 root->fs_info->running_transaction = NULL;
a4abeea4 3911 spin_unlock(&root->fs_info->trans_lock);
acce952b 3912
3913 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3914 EXTENT_DIRTY);
3915
3916 btrfs_destroy_pinned_extent(root,
3917 root->fs_info->pinned_extents);
3918
13c5a93e 3919 atomic_set(&t->use_count, 0);
acce952b 3920 list_del_init(&t->list);
3921 memset(t, 0, sizeof(*t));
3922 kmem_cache_free(btrfs_transaction_cachep, t);
3923 }
3924
a4abeea4
JB
3925 spin_lock(&root->fs_info->trans_lock);
3926 root->fs_info->trans_no_join = 0;
3927 spin_unlock(&root->fs_info->trans_lock);
acce952b 3928 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3929
3930 return 0;
3931}
3932
d1310b2e 3933static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 3934 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3935 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3936 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3937 /* note we're sharing with inode.c for the merge bio hook */
3938 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3939};