Btrfs: switch the btrfs tree locks to reader/writer
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
eb60ceac 46
d1310b2e 47static struct extent_io_ops btree_extent_io_ops;
8b712842 48static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 49static void free_fs_root(struct btrfs_root *root);
acce952b 50static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 int read_only);
52static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_root *root);
56static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 64
d352ac68
CM
65/*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
ce9adaa5
CM
70struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
22c59948 76 int metadata;
ce9adaa5 77 struct list_head list;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
d352ac68
CM
81/*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
44b8bd7e
CM
86struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
4a69a410
CM
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
92 int rw;
93 int mirror_num;
c8b97818 94 unsigned long bio_flags;
eaf25d93
CM
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
8b712842 100 struct btrfs_work work;
44b8bd7e
CM
101};
102
4008c04a
CM
103/* These are used to set the lockdep class on the extent buffer locks.
104 * The class is set by the readpage_end_io_hook after the buffer has
105 * passed csum validation but before the pages are unlocked.
106 *
107 * The lockdep class is also set by btrfs_init_new_buffer on freshly
108 * allocated blocks.
109 *
110 * The class is based on the level in the tree block, which allows lockdep
111 * to know that lower nodes nest inside the locks of higher nodes.
112 *
113 * We also add a check to make sure the highest level of the tree is
114 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
115 * code needs update as well.
116 */
117#ifdef CONFIG_DEBUG_LOCK_ALLOC
118# if BTRFS_MAX_LEVEL != 8
119# error
120# endif
121static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
122static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
123 /* leaf */
124 "btrfs-extent-00",
125 "btrfs-extent-01",
126 "btrfs-extent-02",
127 "btrfs-extent-03",
128 "btrfs-extent-04",
129 "btrfs-extent-05",
130 "btrfs-extent-06",
131 "btrfs-extent-07",
132 /* highest possible level */
133 "btrfs-extent-08",
134};
135#endif
136
d352ac68
CM
137/*
138 * extents on the btree inode are pretty simple, there's one extent
139 * that covers the entire device
140 */
b2950863 141static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 142 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 143 int create)
7eccb903 144{
5f39d397
CM
145 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
146 struct extent_map *em;
147 int ret;
148
890871be 149 read_lock(&em_tree->lock);
d1310b2e 150 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
151 if (em) {
152 em->bdev =
153 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 154 read_unlock(&em_tree->lock);
5f39d397 155 goto out;
a061fc8d 156 }
890871be 157 read_unlock(&em_tree->lock);
7b13b7b1 158
172ddd60 159 em = alloc_extent_map();
5f39d397
CM
160 if (!em) {
161 em = ERR_PTR(-ENOMEM);
162 goto out;
163 }
164 em->start = 0;
0afbaf8c 165 em->len = (u64)-1;
c8b97818 166 em->block_len = (u64)-1;
5f39d397 167 em->block_start = 0;
a061fc8d 168 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 169
890871be 170 write_lock(&em_tree->lock);
5f39d397
CM
171 ret = add_extent_mapping(em_tree, em);
172 if (ret == -EEXIST) {
0afbaf8c
CM
173 u64 failed_start = em->start;
174 u64 failed_len = em->len;
175
5f39d397 176 free_extent_map(em);
7b13b7b1 177 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 178 if (em) {
7b13b7b1 179 ret = 0;
0afbaf8c
CM
180 } else {
181 em = lookup_extent_mapping(em_tree, failed_start,
182 failed_len);
7b13b7b1 183 ret = -EIO;
0afbaf8c 184 }
5f39d397 185 } else if (ret) {
7b13b7b1
CM
186 free_extent_map(em);
187 em = NULL;
5f39d397 188 }
890871be 189 write_unlock(&em_tree->lock);
7b13b7b1
CM
190
191 if (ret)
192 em = ERR_PTR(ret);
5f39d397
CM
193out:
194 return em;
7eccb903
CM
195}
196
19c00ddc
CM
197u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
198{
163e783e 199 return crc32c(seed, data, len);
19c00ddc
CM
200}
201
202void btrfs_csum_final(u32 crc, char *result)
203{
7e75bf3f 204 put_unaligned_le32(~crc, result);
19c00ddc
CM
205}
206
d352ac68
CM
207/*
208 * compute the csum for a btree block, and either verify it or write it
209 * into the csum field of the block.
210 */
19c00ddc
CM
211static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
212 int verify)
213{
607d432d
JB
214 u16 csum_size =
215 btrfs_super_csum_size(&root->fs_info->super_copy);
216 char *result = NULL;
19c00ddc
CM
217 unsigned long len;
218 unsigned long cur_len;
219 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
220 char *kaddr;
221 unsigned long map_start;
222 unsigned long map_len;
223 int err;
224 u32 crc = ~(u32)0;
607d432d 225 unsigned long inline_result;
19c00ddc
CM
226
227 len = buf->len - offset;
d397712b 228 while (len > 0) {
19c00ddc 229 err = map_private_extent_buffer(buf, offset, 32,
a6591715 230 &kaddr, &map_start, &map_len);
d397712b 231 if (err)
19c00ddc 232 return 1;
19c00ddc
CM
233 cur_len = min(len, map_len - (offset - map_start));
234 crc = btrfs_csum_data(root, kaddr + offset - map_start,
235 crc, cur_len);
236 len -= cur_len;
237 offset += cur_len;
19c00ddc 238 }
607d432d
JB
239 if (csum_size > sizeof(inline_result)) {
240 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
241 if (!result)
242 return 1;
243 } else {
244 result = (char *)&inline_result;
245 }
246
19c00ddc
CM
247 btrfs_csum_final(crc, result);
248
249 if (verify) {
607d432d 250 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
251 u32 val;
252 u32 found = 0;
607d432d 253 memcpy(&found, result, csum_size);
e4204ded 254
607d432d 255 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 256 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
257 "failed on %llu wanted %X found %X "
258 "level %d\n",
259 root->fs_info->sb->s_id,
260 (unsigned long long)buf->start, val, found,
261 btrfs_header_level(buf));
607d432d
JB
262 if (result != (char *)&inline_result)
263 kfree(result);
19c00ddc
CM
264 return 1;
265 }
266 } else {
607d432d 267 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 268 }
607d432d
JB
269 if (result != (char *)&inline_result)
270 kfree(result);
19c00ddc
CM
271 return 0;
272}
273
d352ac68
CM
274/*
275 * we can't consider a given block up to date unless the transid of the
276 * block matches the transid in the parent node's pointer. This is how we
277 * detect blocks that either didn't get written at all or got written
278 * in the wrong place.
279 */
1259ab75
CM
280static int verify_parent_transid(struct extent_io_tree *io_tree,
281 struct extent_buffer *eb, u64 parent_transid)
282{
2ac55d41 283 struct extent_state *cached_state = NULL;
1259ab75
CM
284 int ret;
285
286 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
287 return 0;
288
2ac55d41
JB
289 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
290 0, &cached_state, GFP_NOFS);
291 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
292 btrfs_header_generation(eb) == parent_transid) {
293 ret = 0;
294 goto out;
295 }
7a36ddec 296 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
297 "found %llu\n",
298 (unsigned long long)eb->start,
299 (unsigned long long)parent_transid,
300 (unsigned long long)btrfs_header_generation(eb));
1259ab75 301 ret = 1;
2ac55d41 302 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 303out:
2ac55d41
JB
304 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
305 &cached_state, GFP_NOFS);
1259ab75 306 return ret;
1259ab75
CM
307}
308
d352ac68
CM
309/*
310 * helper to read a given tree block, doing retries as required when
311 * the checksums don't match and we have alternate mirrors to try.
312 */
f188591e
CM
313static int btree_read_extent_buffer_pages(struct btrfs_root *root,
314 struct extent_buffer *eb,
ca7a79ad 315 u64 start, u64 parent_transid)
f188591e
CM
316{
317 struct extent_io_tree *io_tree;
318 int ret;
319 int num_copies = 0;
320 int mirror_num = 0;
321
a826d6dc 322 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
323 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
324 while (1) {
325 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
326 btree_get_extent, mirror_num);
1259ab75
CM
327 if (!ret &&
328 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 329 return ret;
d397712b 330
a826d6dc
JB
331 /*
332 * This buffer's crc is fine, but its contents are corrupted, so
333 * there is no reason to read the other copies, they won't be
334 * any less wrong.
335 */
336 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
337 return ret;
338
f188591e
CM
339 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
340 eb->start, eb->len);
4235298e 341 if (num_copies == 1)
f188591e 342 return ret;
4235298e 343
f188591e 344 mirror_num++;
4235298e 345 if (mirror_num > num_copies)
f188591e 346 return ret;
f188591e 347 }
f188591e
CM
348 return -EIO;
349}
19c00ddc 350
d352ac68 351/*
d397712b
CM
352 * checksum a dirty tree block before IO. This has extra checks to make sure
353 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 354 */
d397712b 355
b2950863 356static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 357{
d1310b2e 358 struct extent_io_tree *tree;
35ebb934 359 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 360 u64 found_start;
19c00ddc
CM
361 unsigned long len;
362 struct extent_buffer *eb;
f188591e
CM
363 int ret;
364
d1310b2e 365 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 366
eb14ab8e
CM
367 if (page->private == EXTENT_PAGE_PRIVATE) {
368 WARN_ON(1);
19c00ddc 369 goto out;
eb14ab8e
CM
370 }
371 if (!page->private) {
372 WARN_ON(1);
19c00ddc 373 goto out;
eb14ab8e 374 }
19c00ddc 375 len = page->private >> 2;
d397712b
CM
376 WARN_ON(len == 0);
377
ba144192 378 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
379 if (eb == NULL) {
380 WARN_ON(1);
381 goto out;
382 }
ca7a79ad
CM
383 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
384 btrfs_header_generation(eb));
f188591e 385 BUG_ON(ret);
784b4e29
CM
386 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
387
19c00ddc
CM
388 found_start = btrfs_header_bytenr(eb);
389 if (found_start != start) {
55c69072
CM
390 WARN_ON(1);
391 goto err;
392 }
393 if (eb->first_page != page) {
55c69072
CM
394 WARN_ON(1);
395 goto err;
396 }
397 if (!PageUptodate(page)) {
55c69072
CM
398 WARN_ON(1);
399 goto err;
19c00ddc 400 }
19c00ddc 401 csum_tree_block(root, eb, 0);
55c69072 402err:
19c00ddc
CM
403 free_extent_buffer(eb);
404out:
405 return 0;
406}
407
2b82032c
YZ
408static int check_tree_block_fsid(struct btrfs_root *root,
409 struct extent_buffer *eb)
410{
411 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
412 u8 fsid[BTRFS_UUID_SIZE];
413 int ret = 1;
414
415 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
416 BTRFS_FSID_SIZE);
417 while (fs_devices) {
418 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
419 ret = 0;
420 break;
421 }
422 fs_devices = fs_devices->seed;
423 }
424 return ret;
425}
426
a826d6dc
JB
427#define CORRUPT(reason, eb, root, slot) \
428 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
429 "root=%llu, slot=%d\n", reason, \
430 (unsigned long long)btrfs_header_bytenr(eb), \
431 (unsigned long long)root->objectid, slot)
432
433static noinline int check_leaf(struct btrfs_root *root,
434 struct extent_buffer *leaf)
435{
436 struct btrfs_key key;
437 struct btrfs_key leaf_key;
438 u32 nritems = btrfs_header_nritems(leaf);
439 int slot;
440
441 if (nritems == 0)
442 return 0;
443
444 /* Check the 0 item */
445 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
446 BTRFS_LEAF_DATA_SIZE(root)) {
447 CORRUPT("invalid item offset size pair", leaf, root, 0);
448 return -EIO;
449 }
450
451 /*
452 * Check to make sure each items keys are in the correct order and their
453 * offsets make sense. We only have to loop through nritems-1 because
454 * we check the current slot against the next slot, which verifies the
455 * next slot's offset+size makes sense and that the current's slot
456 * offset is correct.
457 */
458 for (slot = 0; slot < nritems - 1; slot++) {
459 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
460 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
461
462 /* Make sure the keys are in the right order */
463 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
464 CORRUPT("bad key order", leaf, root, slot);
465 return -EIO;
466 }
467
468 /*
469 * Make sure the offset and ends are right, remember that the
470 * item data starts at the end of the leaf and grows towards the
471 * front.
472 */
473 if (btrfs_item_offset_nr(leaf, slot) !=
474 btrfs_item_end_nr(leaf, slot + 1)) {
475 CORRUPT("slot offset bad", leaf, root, slot);
476 return -EIO;
477 }
478
479 /*
480 * Check to make sure that we don't point outside of the leaf,
481 * just incase all the items are consistent to eachother, but
482 * all point outside of the leaf.
483 */
484 if (btrfs_item_end_nr(leaf, slot) >
485 BTRFS_LEAF_DATA_SIZE(root)) {
486 CORRUPT("slot end outside of leaf", leaf, root, slot);
487 return -EIO;
488 }
489 }
490
491 return 0;
492}
493
4008c04a
CM
494#ifdef CONFIG_DEBUG_LOCK_ALLOC
495void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
496{
497 lockdep_set_class_and_name(&eb->lock,
498 &btrfs_eb_class[level],
499 btrfs_eb_name[level]);
500}
501#endif
502
b2950863 503static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
504 struct extent_state *state)
505{
506 struct extent_io_tree *tree;
507 u64 found_start;
508 int found_level;
509 unsigned long len;
510 struct extent_buffer *eb;
511 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 512 int ret = 0;
ce9adaa5
CM
513
514 tree = &BTRFS_I(page->mapping->host)->io_tree;
515 if (page->private == EXTENT_PAGE_PRIVATE)
516 goto out;
517 if (!page->private)
518 goto out;
d397712b 519
ce9adaa5 520 len = page->private >> 2;
d397712b
CM
521 WARN_ON(len == 0);
522
ba144192 523 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
524 if (eb == NULL) {
525 ret = -EIO;
526 goto out;
527 }
f188591e 528
ce9adaa5 529 found_start = btrfs_header_bytenr(eb);
23a07867 530 if (found_start != start) {
7a36ddec 531 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
532 "%llu %llu\n",
533 (unsigned long long)found_start,
534 (unsigned long long)eb->start);
f188591e 535 ret = -EIO;
ce9adaa5
CM
536 goto err;
537 }
538 if (eb->first_page != page) {
d397712b
CM
539 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
540 eb->first_page->index, page->index);
ce9adaa5 541 WARN_ON(1);
f188591e 542 ret = -EIO;
ce9adaa5
CM
543 goto err;
544 }
2b82032c 545 if (check_tree_block_fsid(root, eb)) {
7a36ddec 546 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 547 (unsigned long long)eb->start);
1259ab75
CM
548 ret = -EIO;
549 goto err;
550 }
ce9adaa5
CM
551 found_level = btrfs_header_level(eb);
552
4008c04a
CM
553 btrfs_set_buffer_lockdep_class(eb, found_level);
554
ce9adaa5 555 ret = csum_tree_block(root, eb, 1);
a826d6dc 556 if (ret) {
f188591e 557 ret = -EIO;
a826d6dc
JB
558 goto err;
559 }
560
561 /*
562 * If this is a leaf block and it is corrupt, set the corrupt bit so
563 * that we don't try and read the other copies of this block, just
564 * return -EIO.
565 */
566 if (found_level == 0 && check_leaf(root, eb)) {
567 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
568 ret = -EIO;
569 }
ce9adaa5
CM
570
571 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
572 end = eb->start + end - 1;
ce9adaa5
CM
573err:
574 free_extent_buffer(eb);
575out:
f188591e 576 return ret;
ce9adaa5
CM
577}
578
ce9adaa5 579static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
580{
581 struct end_io_wq *end_io_wq = bio->bi_private;
582 struct btrfs_fs_info *fs_info;
ce9adaa5 583
ce9adaa5 584 fs_info = end_io_wq->info;
ce9adaa5 585 end_io_wq->error = err;
8b712842
CM
586 end_io_wq->work.func = end_workqueue_fn;
587 end_io_wq->work.flags = 0;
d20f7043 588
7b6d91da 589 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 590 if (end_io_wq->metadata == 1)
cad321ad
CM
591 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
592 &end_io_wq->work);
0cb59c99
JB
593 else if (end_io_wq->metadata == 2)
594 btrfs_queue_worker(&fs_info->endio_freespace_worker,
595 &end_io_wq->work);
cad321ad
CM
596 else
597 btrfs_queue_worker(&fs_info->endio_write_workers,
598 &end_io_wq->work);
d20f7043
CM
599 } else {
600 if (end_io_wq->metadata)
601 btrfs_queue_worker(&fs_info->endio_meta_workers,
602 &end_io_wq->work);
603 else
604 btrfs_queue_worker(&fs_info->endio_workers,
605 &end_io_wq->work);
606 }
ce9adaa5
CM
607}
608
0cb59c99
JB
609/*
610 * For the metadata arg you want
611 *
612 * 0 - if data
613 * 1 - if normal metadta
614 * 2 - if writing to the free space cache area
615 */
22c59948
CM
616int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
617 int metadata)
0b86a832 618{
ce9adaa5 619 struct end_io_wq *end_io_wq;
ce9adaa5
CM
620 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
621 if (!end_io_wq)
622 return -ENOMEM;
623
624 end_io_wq->private = bio->bi_private;
625 end_io_wq->end_io = bio->bi_end_io;
22c59948 626 end_io_wq->info = info;
ce9adaa5
CM
627 end_io_wq->error = 0;
628 end_io_wq->bio = bio;
22c59948 629 end_io_wq->metadata = metadata;
ce9adaa5
CM
630
631 bio->bi_private = end_io_wq;
632 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
633 return 0;
634}
635
b64a2851 636unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 637{
4854ddd0
CM
638 unsigned long limit = min_t(unsigned long,
639 info->workers.max_workers,
640 info->fs_devices->open_devices);
641 return 256 * limit;
642}
0986fe9e 643
4a69a410
CM
644static void run_one_async_start(struct btrfs_work *work)
645{
4a69a410
CM
646 struct async_submit_bio *async;
647
648 async = container_of(work, struct async_submit_bio, work);
4a69a410 649 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
650 async->mirror_num, async->bio_flags,
651 async->bio_offset);
4a69a410
CM
652}
653
654static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
655{
656 struct btrfs_fs_info *fs_info;
657 struct async_submit_bio *async;
4854ddd0 658 int limit;
8b712842
CM
659
660 async = container_of(work, struct async_submit_bio, work);
661 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 662
b64a2851 663 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
664 limit = limit * 2 / 3;
665
8b712842 666 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 667
b64a2851
CM
668 if (atomic_read(&fs_info->nr_async_submits) < limit &&
669 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
670 wake_up(&fs_info->async_submit_wait);
671
4a69a410 672 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
673 async->mirror_num, async->bio_flags,
674 async->bio_offset);
4a69a410
CM
675}
676
677static void run_one_async_free(struct btrfs_work *work)
678{
679 struct async_submit_bio *async;
680
681 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
682 kfree(async);
683}
684
44b8bd7e
CM
685int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
686 int rw, struct bio *bio, int mirror_num,
c8b97818 687 unsigned long bio_flags,
eaf25d93 688 u64 bio_offset,
4a69a410
CM
689 extent_submit_bio_hook_t *submit_bio_start,
690 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
691{
692 struct async_submit_bio *async;
693
694 async = kmalloc(sizeof(*async), GFP_NOFS);
695 if (!async)
696 return -ENOMEM;
697
698 async->inode = inode;
699 async->rw = rw;
700 async->bio = bio;
701 async->mirror_num = mirror_num;
4a69a410
CM
702 async->submit_bio_start = submit_bio_start;
703 async->submit_bio_done = submit_bio_done;
704
705 async->work.func = run_one_async_start;
706 async->work.ordered_func = run_one_async_done;
707 async->work.ordered_free = run_one_async_free;
708
8b712842 709 async->work.flags = 0;
c8b97818 710 async->bio_flags = bio_flags;
eaf25d93 711 async->bio_offset = bio_offset;
8c8bee1d 712
cb03c743 713 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 714
7b6d91da 715 if (rw & REQ_SYNC)
d313d7a3
CM
716 btrfs_set_work_high_prio(&async->work);
717
8b712842 718 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 719
d397712b 720 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
721 atomic_read(&fs_info->nr_async_submits)) {
722 wait_event(fs_info->async_submit_wait,
723 (atomic_read(&fs_info->nr_async_submits) == 0));
724 }
725
44b8bd7e
CM
726 return 0;
727}
728
ce3ed71a
CM
729static int btree_csum_one_bio(struct bio *bio)
730{
731 struct bio_vec *bvec = bio->bi_io_vec;
732 int bio_index = 0;
733 struct btrfs_root *root;
734
735 WARN_ON(bio->bi_vcnt <= 0);
d397712b 736 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
737 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
738 csum_dirty_buffer(root, bvec->bv_page);
739 bio_index++;
740 bvec++;
741 }
742 return 0;
743}
744
4a69a410
CM
745static int __btree_submit_bio_start(struct inode *inode, int rw,
746 struct bio *bio, int mirror_num,
eaf25d93
CM
747 unsigned long bio_flags,
748 u64 bio_offset)
22c59948 749{
8b712842
CM
750 /*
751 * when we're called for a write, we're already in the async
5443be45 752 * submission context. Just jump into btrfs_map_bio
8b712842 753 */
4a69a410
CM
754 btree_csum_one_bio(bio);
755 return 0;
756}
22c59948 757
4a69a410 758static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
759 int mirror_num, unsigned long bio_flags,
760 u64 bio_offset)
4a69a410 761{
8b712842 762 /*
4a69a410
CM
763 * when we're called for a write, we're already in the async
764 * submission context. Just jump into btrfs_map_bio
8b712842 765 */
8b712842 766 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
767}
768
44b8bd7e 769static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
770 int mirror_num, unsigned long bio_flags,
771 u64 bio_offset)
44b8bd7e 772{
cad321ad
CM
773 int ret;
774
775 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
776 bio, 1);
777 BUG_ON(ret);
778
7b6d91da 779 if (!(rw & REQ_WRITE)) {
4a69a410
CM
780 /*
781 * called for a read, do the setup so that checksum validation
782 * can happen in the async kernel threads
783 */
4a69a410 784 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 785 mirror_num, 0);
44b8bd7e 786 }
d313d7a3 787
cad321ad
CM
788 /*
789 * kthread helpers are used to submit writes so that checksumming
790 * can happen in parallel across all CPUs
791 */
44b8bd7e 792 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 793 inode, rw, bio, mirror_num, 0,
eaf25d93 794 bio_offset,
4a69a410
CM
795 __btree_submit_bio_start,
796 __btree_submit_bio_done);
44b8bd7e
CM
797}
798
3dd1462e 799#ifdef CONFIG_MIGRATION
784b4e29
CM
800static int btree_migratepage(struct address_space *mapping,
801 struct page *newpage, struct page *page)
802{
803 /*
804 * we can't safely write a btree page from here,
805 * we haven't done the locking hook
806 */
807 if (PageDirty(page))
808 return -EAGAIN;
809 /*
810 * Buffers may be managed in a filesystem specific way.
811 * We must have no buffers or drop them.
812 */
813 if (page_has_private(page) &&
814 !try_to_release_page(page, GFP_KERNEL))
815 return -EAGAIN;
784b4e29
CM
816 return migrate_page(mapping, newpage, page);
817}
3dd1462e 818#endif
784b4e29 819
0da5468f
CM
820static int btree_writepage(struct page *page, struct writeback_control *wbc)
821{
d1310b2e 822 struct extent_io_tree *tree;
b9473439
CM
823 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
824 struct extent_buffer *eb;
825 int was_dirty;
826
d1310b2e 827 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
828 if (!(current->flags & PF_MEMALLOC)) {
829 return extent_write_full_page(tree, page,
830 btree_get_extent, wbc);
831 }
5443be45 832
b9473439 833 redirty_page_for_writepage(wbc, page);
784b4e29 834 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
835 WARN_ON(!eb);
836
837 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
838 if (!was_dirty) {
839 spin_lock(&root->fs_info->delalloc_lock);
840 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
841 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 842 }
b9473439
CM
843 free_extent_buffer(eb);
844
845 unlock_page(page);
846 return 0;
5f39d397 847}
0da5468f
CM
848
849static int btree_writepages(struct address_space *mapping,
850 struct writeback_control *wbc)
851{
d1310b2e
CM
852 struct extent_io_tree *tree;
853 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 854 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 855 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 856 u64 num_dirty;
24ab9cd8 857 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
858
859 if (wbc->for_kupdate)
860 return 0;
861
b9473439
CM
862 /* this is a bit racy, but that's ok */
863 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 864 if (num_dirty < thresh)
793955bc 865 return 0;
793955bc 866 }
0da5468f
CM
867 return extent_writepages(tree, mapping, btree_get_extent, wbc);
868}
869
b2950863 870static int btree_readpage(struct file *file, struct page *page)
5f39d397 871{
d1310b2e
CM
872 struct extent_io_tree *tree;
873 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
874 return extent_read_full_page(tree, page, btree_get_extent);
875}
22b0ebda 876
70dec807 877static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 878{
d1310b2e
CM
879 struct extent_io_tree *tree;
880 struct extent_map_tree *map;
5f39d397 881 int ret;
d98237b3 882
98509cfc 883 if (PageWriteback(page) || PageDirty(page))
d397712b 884 return 0;
98509cfc 885
d1310b2e
CM
886 tree = &BTRFS_I(page->mapping->host)->io_tree;
887 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 888
7b13b7b1 889 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 890 if (!ret)
6af118ce 891 return 0;
6af118ce
CM
892
893 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
894 if (ret == 1) {
895 ClearPagePrivate(page);
896 set_page_private(page, 0);
897 page_cache_release(page);
898 }
6af118ce 899
d98237b3
CM
900 return ret;
901}
902
5f39d397 903static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 904{
d1310b2e
CM
905 struct extent_io_tree *tree;
906 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
907 extent_invalidatepage(tree, page, offset);
908 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 909 if (PagePrivate(page)) {
d397712b
CM
910 printk(KERN_WARNING "btrfs warning page private not zero "
911 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
912 ClearPagePrivate(page);
913 set_page_private(page, 0);
914 page_cache_release(page);
915 }
d98237b3
CM
916}
917
7f09410b 918static const struct address_space_operations btree_aops = {
d98237b3
CM
919 .readpage = btree_readpage,
920 .writepage = btree_writepage,
0da5468f 921 .writepages = btree_writepages,
5f39d397
CM
922 .releasepage = btree_releasepage,
923 .invalidatepage = btree_invalidatepage,
5a92bc88 924#ifdef CONFIG_MIGRATION
784b4e29 925 .migratepage = btree_migratepage,
5a92bc88 926#endif
d98237b3
CM
927};
928
ca7a79ad
CM
929int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
930 u64 parent_transid)
090d1875 931{
5f39d397
CM
932 struct extent_buffer *buf = NULL;
933 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 934 int ret = 0;
090d1875 935
db94535d 936 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 937 if (!buf)
090d1875 938 return 0;
d1310b2e 939 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
f188591e 940 buf, 0, 0, btree_get_extent, 0);
5f39d397 941 free_extent_buffer(buf);
de428b63 942 return ret;
090d1875
CM
943}
944
0999df54
CM
945struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
946 u64 bytenr, u32 blocksize)
947{
948 struct inode *btree_inode = root->fs_info->btree_inode;
949 struct extent_buffer *eb;
950 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 951 bytenr, blocksize);
0999df54
CM
952 return eb;
953}
954
955struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
956 u64 bytenr, u32 blocksize)
957{
958 struct inode *btree_inode = root->fs_info->btree_inode;
959 struct extent_buffer *eb;
960
961 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 962 bytenr, blocksize, NULL);
0999df54
CM
963 return eb;
964}
965
966
e02119d5
CM
967int btrfs_write_tree_block(struct extent_buffer *buf)
968{
8aa38c31
CH
969 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
970 buf->start + buf->len - 1);
e02119d5
CM
971}
972
973int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
974{
8aa38c31
CH
975 return filemap_fdatawait_range(buf->first_page->mapping,
976 buf->start, buf->start + buf->len - 1);
e02119d5
CM
977}
978
0999df54 979struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 980 u32 blocksize, u64 parent_transid)
0999df54
CM
981{
982 struct extent_buffer *buf = NULL;
0999df54
CM
983 int ret;
984
0999df54
CM
985 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
986 if (!buf)
987 return NULL;
0999df54 988
ca7a79ad 989 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 990
d397712b 991 if (ret == 0)
b4ce94de 992 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 993 return buf;
ce9adaa5 994
eb60ceac
CM
995}
996
e089f05c 997int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 998 struct extent_buffer *buf)
ed2ff2cb 999{
5f39d397 1000 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1001 if (btrfs_header_generation(buf) ==
925baedd 1002 root->fs_info->running_transaction->transid) {
b9447ef8 1003 btrfs_assert_tree_locked(buf);
b4ce94de 1004
b9473439
CM
1005 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1006 spin_lock(&root->fs_info->delalloc_lock);
1007 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1008 root->fs_info->dirty_metadata_bytes -= buf->len;
1009 else
1010 WARN_ON(1);
1011 spin_unlock(&root->fs_info->delalloc_lock);
1012 }
b4ce94de 1013
b9473439
CM
1014 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1015 btrfs_set_lock_blocking(buf);
d1310b2e 1016 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1017 buf);
925baedd 1018 }
5f39d397
CM
1019 return 0;
1020}
1021
db94535d 1022static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1023 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1024 struct btrfs_fs_info *fs_info,
e20d96d6 1025 u64 objectid)
d97e63b6 1026{
cfaa7295 1027 root->node = NULL;
a28ec197 1028 root->commit_root = NULL;
db94535d
CM
1029 root->sectorsize = sectorsize;
1030 root->nodesize = nodesize;
1031 root->leafsize = leafsize;
87ee04eb 1032 root->stripesize = stripesize;
123abc88 1033 root->ref_cows = 0;
0b86a832 1034 root->track_dirty = 0;
c71bf099 1035 root->in_radix = 0;
d68fc57b
YZ
1036 root->orphan_item_inserted = 0;
1037 root->orphan_cleanup_state = 0;
0b86a832 1038
9f5fae2f 1039 root->fs_info = fs_info;
0f7d52f4
CM
1040 root->objectid = objectid;
1041 root->last_trans = 0;
13a8a7c8 1042 root->highest_objectid = 0;
58176a96 1043 root->name = NULL;
6bef4d31 1044 root->inode_tree = RB_ROOT;
16cdcec7 1045 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1046 root->block_rsv = NULL;
d68fc57b 1047 root->orphan_block_rsv = NULL;
0b86a832
CM
1048
1049 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1050 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1051 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1052 spin_lock_init(&root->orphan_lock);
5d4f98a2 1053 spin_lock_init(&root->inode_lock);
f0486c68 1054 spin_lock_init(&root->accounting_lock);
a2135011 1055 mutex_init(&root->objectid_mutex);
e02119d5 1056 mutex_init(&root->log_mutex);
7237f183
YZ
1057 init_waitqueue_head(&root->log_writer_wait);
1058 init_waitqueue_head(&root->log_commit_wait[0]);
1059 init_waitqueue_head(&root->log_commit_wait[1]);
1060 atomic_set(&root->log_commit[0], 0);
1061 atomic_set(&root->log_commit[1], 0);
1062 atomic_set(&root->log_writers, 0);
1063 root->log_batch = 0;
1064 root->log_transid = 0;
257c62e1 1065 root->last_log_commit = 0;
d0c803c4 1066 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1067 fs_info->btree_inode->i_mapping);
017e5369 1068
3768f368
CM
1069 memset(&root->root_key, 0, sizeof(root->root_key));
1070 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1071 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1072 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1073 root->defrag_trans_start = fs_info->generation;
58176a96 1074 init_completion(&root->kobj_unregister);
6702ed49 1075 root->defrag_running = 0;
4d775673 1076 root->root_key.objectid = objectid;
3394e160
CM
1077 root->anon_super.s_root = NULL;
1078 root->anon_super.s_dev = 0;
1079 INIT_LIST_HEAD(&root->anon_super.s_list);
1080 INIT_LIST_HEAD(&root->anon_super.s_instances);
1081 init_rwsem(&root->anon_super.s_umount);
1082
3768f368
CM
1083 return 0;
1084}
1085
db94535d 1086static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1087 struct btrfs_fs_info *fs_info,
1088 u64 objectid,
e20d96d6 1089 struct btrfs_root *root)
3768f368
CM
1090{
1091 int ret;
db94535d 1092 u32 blocksize;
84234f3a 1093 u64 generation;
3768f368 1094
db94535d 1095 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1096 tree_root->sectorsize, tree_root->stripesize,
1097 root, fs_info, objectid);
3768f368
CM
1098 ret = btrfs_find_last_root(tree_root, objectid,
1099 &root->root_item, &root->root_key);
4df27c4d
YZ
1100 if (ret > 0)
1101 return -ENOENT;
3768f368
CM
1102 BUG_ON(ret);
1103
84234f3a 1104 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1105 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1106 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1107 blocksize, generation);
68433b73
CM
1108 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1109 free_extent_buffer(root->node);
1110 return -EIO;
1111 }
4df27c4d 1112 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1113 return 0;
1114}
1115
7237f183
YZ
1116static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1117 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1118{
1119 struct btrfs_root *root;
1120 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1121 struct extent_buffer *leaf;
e02119d5
CM
1122
1123 root = kzalloc(sizeof(*root), GFP_NOFS);
1124 if (!root)
7237f183 1125 return ERR_PTR(-ENOMEM);
e02119d5
CM
1126
1127 __setup_root(tree_root->nodesize, tree_root->leafsize,
1128 tree_root->sectorsize, tree_root->stripesize,
1129 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1130
1131 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1132 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1133 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1134 /*
1135 * log trees do not get reference counted because they go away
1136 * before a real commit is actually done. They do store pointers
1137 * to file data extents, and those reference counts still get
1138 * updated (along with back refs to the log tree).
1139 */
e02119d5
CM
1140 root->ref_cows = 0;
1141
5d4f98a2
YZ
1142 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1143 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
7237f183
YZ
1144 if (IS_ERR(leaf)) {
1145 kfree(root);
1146 return ERR_CAST(leaf);
1147 }
e02119d5 1148
5d4f98a2
YZ
1149 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1150 btrfs_set_header_bytenr(leaf, leaf->start);
1151 btrfs_set_header_generation(leaf, trans->transid);
1152 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1153 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1154 root->node = leaf;
e02119d5
CM
1155
1156 write_extent_buffer(root->node, root->fs_info->fsid,
1157 (unsigned long)btrfs_header_fsid(root->node),
1158 BTRFS_FSID_SIZE);
1159 btrfs_mark_buffer_dirty(root->node);
1160 btrfs_tree_unlock(root->node);
7237f183
YZ
1161 return root;
1162}
1163
1164int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1165 struct btrfs_fs_info *fs_info)
1166{
1167 struct btrfs_root *log_root;
1168
1169 log_root = alloc_log_tree(trans, fs_info);
1170 if (IS_ERR(log_root))
1171 return PTR_ERR(log_root);
1172 WARN_ON(fs_info->log_root_tree);
1173 fs_info->log_root_tree = log_root;
1174 return 0;
1175}
1176
1177int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root)
1179{
1180 struct btrfs_root *log_root;
1181 struct btrfs_inode_item *inode_item;
1182
1183 log_root = alloc_log_tree(trans, root->fs_info);
1184 if (IS_ERR(log_root))
1185 return PTR_ERR(log_root);
1186
1187 log_root->last_trans = trans->transid;
1188 log_root->root_key.offset = root->root_key.objectid;
1189
1190 inode_item = &log_root->root_item.inode;
1191 inode_item->generation = cpu_to_le64(1);
1192 inode_item->size = cpu_to_le64(3);
1193 inode_item->nlink = cpu_to_le32(1);
1194 inode_item->nbytes = cpu_to_le64(root->leafsize);
1195 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1196
5d4f98a2 1197 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1198
1199 WARN_ON(root->log_root);
1200 root->log_root = log_root;
1201 root->log_transid = 0;
257c62e1 1202 root->last_log_commit = 0;
e02119d5
CM
1203 return 0;
1204}
1205
1206struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1207 struct btrfs_key *location)
1208{
1209 struct btrfs_root *root;
1210 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1211 struct btrfs_path *path;
5f39d397 1212 struct extent_buffer *l;
84234f3a 1213 u64 generation;
db94535d 1214 u32 blocksize;
0f7d52f4
CM
1215 int ret = 0;
1216
5eda7b5e 1217 root = kzalloc(sizeof(*root), GFP_NOFS);
0cf6c620 1218 if (!root)
0f7d52f4 1219 return ERR_PTR(-ENOMEM);
0f7d52f4 1220 if (location->offset == (u64)-1) {
db94535d 1221 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1222 location->objectid, root);
1223 if (ret) {
0f7d52f4
CM
1224 kfree(root);
1225 return ERR_PTR(ret);
1226 }
13a8a7c8 1227 goto out;
0f7d52f4
CM
1228 }
1229
db94535d 1230 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1231 tree_root->sectorsize, tree_root->stripesize,
1232 root, fs_info, location->objectid);
0f7d52f4
CM
1233
1234 path = btrfs_alloc_path();
db5b493a
TI
1235 if (!path) {
1236 kfree(root);
1237 return ERR_PTR(-ENOMEM);
1238 }
0f7d52f4 1239 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1240 if (ret == 0) {
1241 l = path->nodes[0];
1242 read_extent_buffer(l, &root->root_item,
1243 btrfs_item_ptr_offset(l, path->slots[0]),
1244 sizeof(root->root_item));
1245 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1246 }
0f7d52f4
CM
1247 btrfs_free_path(path);
1248 if (ret) {
5e540f77 1249 kfree(root);
13a8a7c8
YZ
1250 if (ret > 0)
1251 ret = -ENOENT;
0f7d52f4
CM
1252 return ERR_PTR(ret);
1253 }
13a8a7c8 1254
84234f3a 1255 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1256 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1257 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1258 blocksize, generation);
5d4f98a2 1259 root->commit_root = btrfs_root_node(root);
0f7d52f4 1260 BUG_ON(!root->node);
13a8a7c8 1261out:
08fe4db1 1262 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1263 root->ref_cows = 1;
08fe4db1
LZ
1264 btrfs_check_and_init_root_item(&root->root_item);
1265 }
13a8a7c8 1266
5eda7b5e
CM
1267 return root;
1268}
1269
edbd8d4e
CM
1270struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1271 struct btrfs_key *location)
5eda7b5e
CM
1272{
1273 struct btrfs_root *root;
1274 int ret;
1275
edbd8d4e
CM
1276 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1277 return fs_info->tree_root;
1278 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1279 return fs_info->extent_root;
8f18cf13
CM
1280 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1281 return fs_info->chunk_root;
1282 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1283 return fs_info->dev_root;
0403e47e
YZ
1284 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1285 return fs_info->csum_root;
4df27c4d
YZ
1286again:
1287 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1288 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1289 (unsigned long)location->objectid);
4df27c4d 1290 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1291 if (root)
1292 return root;
1293
e02119d5 1294 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1295 if (IS_ERR(root))
1296 return root;
3394e160 1297
581bb050 1298 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1299 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1300 GFP_NOFS);
35a30d7c
DS
1301 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1302 ret = -ENOMEM;
581bb050 1303 goto fail;
35a30d7c 1304 }
581bb050
LZ
1305
1306 btrfs_init_free_ino_ctl(root);
1307 mutex_init(&root->fs_commit_mutex);
1308 spin_lock_init(&root->cache_lock);
1309 init_waitqueue_head(&root->cache_wait);
1310
ac08aedf
CM
1311 ret = set_anon_super(&root->anon_super, NULL);
1312 if (ret)
1313 goto fail;
3394e160 1314
d68fc57b
YZ
1315 if (btrfs_root_refs(&root->root_item) == 0) {
1316 ret = -ENOENT;
1317 goto fail;
1318 }
1319
1320 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1321 if (ret < 0)
1322 goto fail;
1323 if (ret == 0)
1324 root->orphan_item_inserted = 1;
1325
4df27c4d
YZ
1326 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1327 if (ret)
1328 goto fail;
1329
1330 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1331 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1332 (unsigned long)root->root_key.objectid,
0f7d52f4 1333 root);
d68fc57b 1334 if (ret == 0)
4df27c4d 1335 root->in_radix = 1;
d68fc57b 1336
4df27c4d
YZ
1337 spin_unlock(&fs_info->fs_roots_radix_lock);
1338 radix_tree_preload_end();
0f7d52f4 1339 if (ret) {
4df27c4d
YZ
1340 if (ret == -EEXIST) {
1341 free_fs_root(root);
1342 goto again;
1343 }
1344 goto fail;
0f7d52f4 1345 }
4df27c4d
YZ
1346
1347 ret = btrfs_find_dead_roots(fs_info->tree_root,
1348 root->root_key.objectid);
1349 WARN_ON(ret);
edbd8d4e 1350 return root;
4df27c4d
YZ
1351fail:
1352 free_fs_root(root);
1353 return ERR_PTR(ret);
edbd8d4e
CM
1354}
1355
04160088
CM
1356static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1357{
1358 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1359 int ret = 0;
04160088
CM
1360 struct btrfs_device *device;
1361 struct backing_dev_info *bdi;
b7967db7 1362
1f78160c
XG
1363 rcu_read_lock();
1364 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1365 if (!device->bdev)
1366 continue;
04160088
CM
1367 bdi = blk_get_backing_dev_info(device->bdev);
1368 if (bdi && bdi_congested(bdi, bdi_bits)) {
1369 ret = 1;
1370 break;
1371 }
1372 }
1f78160c 1373 rcu_read_unlock();
04160088
CM
1374 return ret;
1375}
1376
ad081f14
JA
1377/*
1378 * If this fails, caller must call bdi_destroy() to get rid of the
1379 * bdi again.
1380 */
04160088
CM
1381static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1382{
ad081f14
JA
1383 int err;
1384
1385 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1386 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1387 if (err)
1388 return err;
1389
4575c9cc 1390 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1391 bdi->congested_fn = btrfs_congested_fn;
1392 bdi->congested_data = info;
1393 return 0;
1394}
1395
ce9adaa5
CM
1396static int bio_ready_for_csum(struct bio *bio)
1397{
1398 u64 length = 0;
1399 u64 buf_len = 0;
1400 u64 start = 0;
1401 struct page *page;
1402 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1403 struct bio_vec *bvec;
1404 int i;
1405 int ret;
1406
1407 bio_for_each_segment(bvec, bio, i) {
1408 page = bvec->bv_page;
1409 if (page->private == EXTENT_PAGE_PRIVATE) {
1410 length += bvec->bv_len;
1411 continue;
1412 }
1413 if (!page->private) {
1414 length += bvec->bv_len;
1415 continue;
1416 }
1417 length = bvec->bv_len;
1418 buf_len = page->private >> 2;
1419 start = page_offset(page) + bvec->bv_offset;
1420 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1421 }
1422 /* are we fully contained in this bio? */
1423 if (buf_len <= length)
1424 return 1;
1425
1426 ret = extent_range_uptodate(io_tree, start + length,
1427 start + buf_len - 1);
ce9adaa5
CM
1428 return ret;
1429}
1430
8b712842
CM
1431/*
1432 * called by the kthread helper functions to finally call the bio end_io
1433 * functions. This is where read checksum verification actually happens
1434 */
1435static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1436{
ce9adaa5 1437 struct bio *bio;
8b712842
CM
1438 struct end_io_wq *end_io_wq;
1439 struct btrfs_fs_info *fs_info;
ce9adaa5 1440 int error;
ce9adaa5 1441
8b712842
CM
1442 end_io_wq = container_of(work, struct end_io_wq, work);
1443 bio = end_io_wq->bio;
1444 fs_info = end_io_wq->info;
ce9adaa5 1445
cad321ad 1446 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1447 * be checksummed at once. This makes sure the entire block is in
1448 * ram and up to date before trying to verify things. For
1449 * blocksize <= pagesize, it is basically a noop
1450 */
7b6d91da 1451 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1452 !bio_ready_for_csum(bio)) {
d20f7043 1453 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1454 &end_io_wq->work);
1455 return;
1456 }
1457 error = end_io_wq->error;
1458 bio->bi_private = end_io_wq->private;
1459 bio->bi_end_io = end_io_wq->end_io;
1460 kfree(end_io_wq);
8b712842 1461 bio_endio(bio, error);
44b8bd7e
CM
1462}
1463
a74a4b97
CM
1464static int cleaner_kthread(void *arg)
1465{
1466 struct btrfs_root *root = arg;
1467
1468 do {
a74a4b97 1469 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1470
1471 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1472 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1473 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1474 btrfs_clean_old_snapshots(root);
1475 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1476 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1477 }
a74a4b97
CM
1478
1479 if (freezing(current)) {
1480 refrigerator();
1481 } else {
a74a4b97 1482 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1483 if (!kthread_should_stop())
1484 schedule();
a74a4b97
CM
1485 __set_current_state(TASK_RUNNING);
1486 }
1487 } while (!kthread_should_stop());
1488 return 0;
1489}
1490
1491static int transaction_kthread(void *arg)
1492{
1493 struct btrfs_root *root = arg;
1494 struct btrfs_trans_handle *trans;
1495 struct btrfs_transaction *cur;
8929ecfa 1496 u64 transid;
a74a4b97
CM
1497 unsigned long now;
1498 unsigned long delay;
1499 int ret;
1500
1501 do {
a74a4b97
CM
1502 delay = HZ * 30;
1503 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1504 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1505
a4abeea4 1506 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1507 cur = root->fs_info->running_transaction;
1508 if (!cur) {
a4abeea4 1509 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1510 goto sleep;
1511 }
31153d81 1512
a74a4b97 1513 now = get_seconds();
8929ecfa
YZ
1514 if (!cur->blocked &&
1515 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1516 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1517 delay = HZ * 5;
1518 goto sleep;
1519 }
8929ecfa 1520 transid = cur->transid;
a4abeea4 1521 spin_unlock(&root->fs_info->trans_lock);
56bec294 1522
7a7eaa40 1523 trans = btrfs_join_transaction(root);
3612b495 1524 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1525 if (transid == trans->transid) {
1526 ret = btrfs_commit_transaction(trans, root);
1527 BUG_ON(ret);
1528 } else {
1529 btrfs_end_transaction(trans, root);
1530 }
a74a4b97
CM
1531sleep:
1532 wake_up_process(root->fs_info->cleaner_kthread);
1533 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1534
1535 if (freezing(current)) {
1536 refrigerator();
1537 } else {
a74a4b97 1538 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1539 if (!kthread_should_stop() &&
1540 !btrfs_transaction_blocked(root->fs_info))
1541 schedule_timeout(delay);
a74a4b97
CM
1542 __set_current_state(TASK_RUNNING);
1543 }
1544 } while (!kthread_should_stop());
1545 return 0;
1546}
1547
8a4b83cc 1548struct btrfs_root *open_ctree(struct super_block *sb,
dfe25020
CM
1549 struct btrfs_fs_devices *fs_devices,
1550 char *options)
2e635a27 1551{
db94535d
CM
1552 u32 sectorsize;
1553 u32 nodesize;
1554 u32 leafsize;
1555 u32 blocksize;
87ee04eb 1556 u32 stripesize;
84234f3a 1557 u64 generation;
f2b636e8 1558 u64 features;
3de4586c 1559 struct btrfs_key location;
a061fc8d 1560 struct buffer_head *bh;
e02119d5 1561 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
e20d96d6 1562 GFP_NOFS);
d20f7043
CM
1563 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1564 GFP_NOFS);
450ba0ea 1565 struct btrfs_root *tree_root = btrfs_sb(sb);
4891aca2 1566 struct btrfs_fs_info *fs_info = NULL;
e02119d5 1567 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
0b86a832 1568 GFP_NOFS);
e02119d5 1569 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
0b86a832 1570 GFP_NOFS);
e02119d5
CM
1571 struct btrfs_root *log_tree_root;
1572
eb60ceac 1573 int ret;
e58ca020 1574 int err = -EINVAL;
4543df7e 1575
2c90e5d6 1576 struct btrfs_super_block *disk_super;
8790d502 1577
4891aca2 1578 if (!extent_root || !tree_root || !tree_root->fs_info ||
d20f7043 1579 !chunk_root || !dev_root || !csum_root) {
39279cc3
CM
1580 err = -ENOMEM;
1581 goto fail;
1582 }
4891aca2 1583 fs_info = tree_root->fs_info;
76dda93c
YZ
1584
1585 ret = init_srcu_struct(&fs_info->subvol_srcu);
1586 if (ret) {
1587 err = ret;
1588 goto fail;
1589 }
1590
1591 ret = setup_bdi(fs_info, &fs_info->bdi);
1592 if (ret) {
1593 err = ret;
1594 goto fail_srcu;
1595 }
1596
1597 fs_info->btree_inode = new_inode(sb);
1598 if (!fs_info->btree_inode) {
1599 err = -ENOMEM;
1600 goto fail_bdi;
1601 }
1602
a6591715 1603 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1604
76dda93c 1605 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1606 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1607 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1608 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1609 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1610 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1611 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1612 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1613 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1614 spin_lock_init(&fs_info->trans_lock);
31153d81 1615 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1616 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1617 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1618 spin_lock_init(&fs_info->defrag_inodes_lock);
7585717f 1619 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1620
58176a96 1621 init_completion(&fs_info->kobj_unregister);
9f5fae2f
CM
1622 fs_info->tree_root = tree_root;
1623 fs_info->extent_root = extent_root;
d20f7043 1624 fs_info->csum_root = csum_root;
0b86a832
CM
1625 fs_info->chunk_root = chunk_root;
1626 fs_info->dev_root = dev_root;
8a4b83cc 1627 fs_info->fs_devices = fs_devices;
0b86a832 1628 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1629 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1630 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1631 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1632 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1633 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1634 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1635 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1636 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1637 mutex_init(&fs_info->durable_block_rsv_mutex);
cb03c743 1638 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1639 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1640 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1641 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1642 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1643 fs_info->sb = sb;
6f568d35 1644 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1645 fs_info->metadata_ratio = 0;
4cb5300b 1646 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1647 fs_info->trans_no_join = 0;
c8b97818 1648
b34b086c
CM
1649 fs_info->thread_pool_size = min_t(unsigned long,
1650 num_online_cpus() + 2, 8);
0afbaf8c 1651
3eaa2885
CM
1652 INIT_LIST_HEAD(&fs_info->ordered_extents);
1653 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1654 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1655 GFP_NOFS);
1656 if (!fs_info->delayed_root) {
1657 err = -ENOMEM;
1658 goto fail_iput;
1659 }
1660 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1661
a2de733c
AJ
1662 mutex_init(&fs_info->scrub_lock);
1663 atomic_set(&fs_info->scrubs_running, 0);
1664 atomic_set(&fs_info->scrub_pause_req, 0);
1665 atomic_set(&fs_info->scrubs_paused, 0);
1666 atomic_set(&fs_info->scrub_cancel_req, 0);
1667 init_waitqueue_head(&fs_info->scrub_pause_wait);
1668 init_rwsem(&fs_info->scrub_super_lock);
1669 fs_info->scrub_workers_refcnt = 0;
a2de733c 1670
a061fc8d
CM
1671 sb->s_blocksize = 4096;
1672 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 1673 sb->s_bdi = &fs_info->bdi;
a061fc8d 1674
76dda93c
YZ
1675 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1676 fs_info->btree_inode->i_nlink = 1;
0afbaf8c
CM
1677 /*
1678 * we set the i_size on the btree inode to the max possible int.
1679 * the real end of the address space is determined by all of
1680 * the devices in the system
1681 */
1682 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 1683 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
1684 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1685
5d4f98a2 1686 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 1687 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 1688 fs_info->btree_inode->i_mapping);
a8067e02 1689 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
1690
1691 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 1692
76dda93c
YZ
1693 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1694 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1695 sizeof(struct btrfs_key));
1696 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 1697 insert_inode_hash(fs_info->btree_inode);
76dda93c 1698
0f9dd46c 1699 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 1700 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 1701
11833d66 1702 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 1703 fs_info->btree_inode->i_mapping);
11833d66 1704 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 1705 fs_info->btree_inode->i_mapping);
11833d66 1706 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 1707 fs_info->do_barriers = 1;
e18e4809 1708
39279cc3 1709
5a3f23d5 1710 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 1711 mutex_init(&fs_info->tree_log_mutex);
925baedd 1712 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
1713 mutex_init(&fs_info->transaction_kthread_mutex);
1714 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 1715 mutex_init(&fs_info->volume_mutex);
276e680d 1716 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 1717 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 1718 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
1719
1720 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1721 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1722
e6dcd2dc 1723 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 1724 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 1725 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 1726 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 1727
0b86a832 1728 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 1729 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 1730
a512bbf8 1731 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
1732 if (!bh) {
1733 err = -EINVAL;
16cdcec7 1734 goto fail_alloc;
20b45077 1735 }
39279cc3 1736
a061fc8d 1737 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
2d69a0f8
YZ
1738 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1739 sizeof(fs_info->super_for_commit));
a061fc8d 1740 brelse(bh);
5f39d397 1741
a061fc8d 1742 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
0b86a832 1743
5f39d397 1744 disk_super = &fs_info->super_copy;
0f7d52f4 1745 if (!btrfs_super_root(disk_super))
16cdcec7 1746 goto fail_alloc;
0f7d52f4 1747
acce952b 1748 /* check FS state, whether FS is broken. */
1749 fs_info->fs_state |= btrfs_super_flags(disk_super);
1750
1751 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1752
75e7cb7f
LB
1753 /*
1754 * In the long term, we'll store the compression type in the super
1755 * block, and it'll be used for per file compression control.
1756 */
1757 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1758
2b82032c
YZ
1759 ret = btrfs_parse_options(tree_root, options);
1760 if (ret) {
1761 err = ret;
16cdcec7 1762 goto fail_alloc;
2b82032c 1763 }
dfe25020 1764
f2b636e8
JB
1765 features = btrfs_super_incompat_flags(disk_super) &
1766 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1767 if (features) {
1768 printk(KERN_ERR "BTRFS: couldn't mount because of "
1769 "unsupported optional features (%Lx).\n",
21380931 1770 (unsigned long long)features);
f2b636e8 1771 err = -EINVAL;
16cdcec7 1772 goto fail_alloc;
f2b636e8
JB
1773 }
1774
5d4f98a2 1775 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
1776 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1777 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1778 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1779 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 1780
f2b636e8
JB
1781 features = btrfs_super_compat_ro_flags(disk_super) &
1782 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1783 if (!(sb->s_flags & MS_RDONLY) && features) {
1784 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1785 "unsupported option features (%Lx).\n",
21380931 1786 (unsigned long long)features);
f2b636e8 1787 err = -EINVAL;
16cdcec7 1788 goto fail_alloc;
f2b636e8 1789 }
61d92c32
CM
1790
1791 btrfs_init_workers(&fs_info->generic_worker,
1792 "genwork", 1, NULL);
1793
5443be45 1794 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
1795 fs_info->thread_pool_size,
1796 &fs_info->generic_worker);
c8b97818 1797
771ed689 1798 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
1799 fs_info->thread_pool_size,
1800 &fs_info->generic_worker);
771ed689 1801
5443be45 1802 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 1803 min_t(u64, fs_devices->num_devices,
61d92c32
CM
1804 fs_info->thread_pool_size),
1805 &fs_info->generic_worker);
61b49440 1806
bab39bf9
JB
1807 btrfs_init_workers(&fs_info->caching_workers, "cache",
1808 2, &fs_info->generic_worker);
1809
61b49440
CM
1810 /* a higher idle thresh on the submit workers makes it much more
1811 * likely that bios will be send down in a sane order to the
1812 * devices
1813 */
1814 fs_info->submit_workers.idle_thresh = 64;
53863232 1815
771ed689 1816 fs_info->workers.idle_thresh = 16;
4a69a410 1817 fs_info->workers.ordered = 1;
61b49440 1818
771ed689
CM
1819 fs_info->delalloc_workers.idle_thresh = 2;
1820 fs_info->delalloc_workers.ordered = 1;
1821
61d92c32
CM
1822 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1823 &fs_info->generic_worker);
5443be45 1824 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
1825 fs_info->thread_pool_size,
1826 &fs_info->generic_worker);
d20f7043 1827 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
1828 fs_info->thread_pool_size,
1829 &fs_info->generic_worker);
cad321ad 1830 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
1831 "endio-meta-write", fs_info->thread_pool_size,
1832 &fs_info->generic_worker);
5443be45 1833 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
1834 fs_info->thread_pool_size,
1835 &fs_info->generic_worker);
0cb59c99
JB
1836 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1837 1, &fs_info->generic_worker);
16cdcec7
MX
1838 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
1839 fs_info->thread_pool_size,
1840 &fs_info->generic_worker);
61b49440
CM
1841
1842 /*
1843 * endios are largely parallel and should have a very
1844 * low idle thresh
1845 */
1846 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
1847 fs_info->endio_meta_workers.idle_thresh = 4;
1848
9042846b
CM
1849 fs_info->endio_write_workers.idle_thresh = 2;
1850 fs_info->endio_meta_write_workers.idle_thresh = 2;
1851
4543df7e 1852 btrfs_start_workers(&fs_info->workers, 1);
61d92c32 1853 btrfs_start_workers(&fs_info->generic_worker, 1);
1cc127b5 1854 btrfs_start_workers(&fs_info->submit_workers, 1);
771ed689 1855 btrfs_start_workers(&fs_info->delalloc_workers, 1);
247e743c 1856 btrfs_start_workers(&fs_info->fixup_workers, 1);
9042846b
CM
1857 btrfs_start_workers(&fs_info->endio_workers, 1);
1858 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1859 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1860 btrfs_start_workers(&fs_info->endio_write_workers, 1);
0cb59c99 1861 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
16cdcec7 1862 btrfs_start_workers(&fs_info->delayed_workers, 1);
bab39bf9 1863 btrfs_start_workers(&fs_info->caching_workers, 1);
4543df7e 1864
4575c9cc 1865 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
1866 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1867 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 1868
db94535d
CM
1869 nodesize = btrfs_super_nodesize(disk_super);
1870 leafsize = btrfs_super_leafsize(disk_super);
1871 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 1872 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
1873 tree_root->nodesize = nodesize;
1874 tree_root->leafsize = leafsize;
1875 tree_root->sectorsize = sectorsize;
87ee04eb 1876 tree_root->stripesize = stripesize;
a061fc8d
CM
1877
1878 sb->s_blocksize = sectorsize;
1879 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 1880
39279cc3
CM
1881 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1882 sizeof(disk_super->magic))) {
d397712b 1883 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
1884 goto fail_sb_buffer;
1885 }
19c00ddc 1886
925baedd 1887 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 1888 ret = btrfs_read_sys_array(tree_root);
925baedd 1889 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 1890 if (ret) {
d397712b
CM
1891 printk(KERN_WARNING "btrfs: failed to read the system "
1892 "array on %s\n", sb->s_id);
5d4f98a2 1893 goto fail_sb_buffer;
84eed90f 1894 }
0b86a832
CM
1895
1896 blocksize = btrfs_level_size(tree_root,
1897 btrfs_super_chunk_root_level(disk_super));
84234f3a 1898 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
1899
1900 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1901 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1902
1903 chunk_root->node = read_tree_block(chunk_root,
1904 btrfs_super_chunk_root(disk_super),
84234f3a 1905 blocksize, generation);
0b86a832 1906 BUG_ON(!chunk_root->node);
83121942
DW
1907 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1908 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1909 sb->s_id);
1910 goto fail_chunk_root;
1911 }
5d4f98a2
YZ
1912 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1913 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 1914
e17cade2 1915 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
1916 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1917 BTRFS_UUID_SIZE);
e17cade2 1918
925baedd 1919 mutex_lock(&fs_info->chunk_mutex);
0b86a832 1920 ret = btrfs_read_chunk_tree(chunk_root);
925baedd 1921 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 1922 if (ret) {
d397712b
CM
1923 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1924 sb->s_id);
2b82032c
YZ
1925 goto fail_chunk_root;
1926 }
0b86a832 1927
dfe25020
CM
1928 btrfs_close_extra_devices(fs_devices);
1929
db94535d
CM
1930 blocksize = btrfs_level_size(tree_root,
1931 btrfs_super_root_level(disk_super));
84234f3a 1932 generation = btrfs_super_generation(disk_super);
0b86a832 1933
e20d96d6 1934 tree_root->node = read_tree_block(tree_root,
db94535d 1935 btrfs_super_root(disk_super),
84234f3a 1936 blocksize, generation);
39279cc3 1937 if (!tree_root->node)
2b82032c 1938 goto fail_chunk_root;
83121942
DW
1939 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1940 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1941 sb->s_id);
1942 goto fail_tree_root;
1943 }
5d4f98a2
YZ
1944 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1945 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
1946
1947 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 1948 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 1949 if (ret)
39279cc3 1950 goto fail_tree_root;
0b86a832
CM
1951 extent_root->track_dirty = 1;
1952
1953 ret = find_and_setup_root(tree_root, fs_info,
1954 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832
CM
1955 if (ret)
1956 goto fail_extent_root;
5d4f98a2 1957 dev_root->track_dirty = 1;
3768f368 1958
d20f7043
CM
1959 ret = find_and_setup_root(tree_root, fs_info,
1960 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1961 if (ret)
5d4f98a2 1962 goto fail_dev_root;
d20f7043
CM
1963
1964 csum_root->track_dirty = 1;
1965
8929ecfa
YZ
1966 fs_info->generation = generation;
1967 fs_info->last_trans_committed = generation;
1968 fs_info->data_alloc_profile = (u64)-1;
1969 fs_info->metadata_alloc_profile = (u64)-1;
1970 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1971
c59021f8 1972 ret = btrfs_init_space_info(fs_info);
1973 if (ret) {
1974 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
1975 goto fail_block_groups;
1976 }
1977
1b1d1f66
JB
1978 ret = btrfs_read_block_groups(extent_root);
1979 if (ret) {
1980 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1981 goto fail_block_groups;
1982 }
9078a3e1 1983
a74a4b97
CM
1984 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1985 "btrfs-cleaner");
57506d50 1986 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 1987 goto fail_block_groups;
a74a4b97
CM
1988
1989 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1990 tree_root,
1991 "btrfs-transaction");
57506d50 1992 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 1993 goto fail_cleaner;
a74a4b97 1994
c289811c
CM
1995 if (!btrfs_test_opt(tree_root, SSD) &&
1996 !btrfs_test_opt(tree_root, NOSSD) &&
1997 !fs_info->fs_devices->rotating) {
1998 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1999 "mode\n");
2000 btrfs_set_opt(fs_info->mount_opt, SSD);
2001 }
2002
acce952b 2003 /* do not make disk changes in broken FS */
2004 if (btrfs_super_log_root(disk_super) != 0 &&
2005 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2006 u64 bytenr = btrfs_super_log_root(disk_super);
2007
7c2ca468 2008 if (fs_devices->rw_devices == 0) {
d397712b
CM
2009 printk(KERN_WARNING "Btrfs log replay required "
2010 "on RO media\n");
7c2ca468
CM
2011 err = -EIO;
2012 goto fail_trans_kthread;
2013 }
e02119d5
CM
2014 blocksize =
2015 btrfs_level_size(tree_root,
2016 btrfs_super_log_root_level(disk_super));
d18a2c44 2017
676e4c86
DC
2018 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2019 if (!log_tree_root) {
2020 err = -ENOMEM;
2021 goto fail_trans_kthread;
2022 }
e02119d5
CM
2023
2024 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2025 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2026
2027 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2028 blocksize,
2029 generation + 1);
e02119d5
CM
2030 ret = btrfs_recover_log_trees(log_tree_root);
2031 BUG_ON(ret);
e556ce2c
YZ
2032
2033 if (sb->s_flags & MS_RDONLY) {
2034 ret = btrfs_commit_super(tree_root);
2035 BUG_ON(ret);
2036 }
e02119d5 2037 }
1a40e23b 2038
76dda93c
YZ
2039 ret = btrfs_find_orphan_roots(tree_root);
2040 BUG_ON(ret);
2041
7c2ca468 2042 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2043 ret = btrfs_cleanup_fs_roots(fs_info);
2044 BUG_ON(ret);
2045
5d4f98a2 2046 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2047 if (ret < 0) {
2048 printk(KERN_WARNING
2049 "btrfs: failed to recover relocation\n");
2050 err = -EINVAL;
2051 goto fail_trans_kthread;
2052 }
7c2ca468 2053 }
1a40e23b 2054
3de4586c
CM
2055 location.objectid = BTRFS_FS_TREE_OBJECTID;
2056 location.type = BTRFS_ROOT_ITEM_KEY;
2057 location.offset = (u64)-1;
2058
3de4586c
CM
2059 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2060 if (!fs_info->fs_root)
7c2ca468 2061 goto fail_trans_kthread;
3140c9a3
DC
2062 if (IS_ERR(fs_info->fs_root)) {
2063 err = PTR_ERR(fs_info->fs_root);
2064 goto fail_trans_kthread;
2065 }
c289811c 2066
e3acc2a6
JB
2067 if (!(sb->s_flags & MS_RDONLY)) {
2068 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2069 err = btrfs_orphan_cleanup(fs_info->fs_root);
2070 if (!err)
2071 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2072 up_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2073 if (err) {
2074 close_ctree(tree_root);
2075 return ERR_PTR(err);
2076 }
e3acc2a6
JB
2077 }
2078
0f7d52f4 2079 return tree_root;
39279cc3 2080
7c2ca468
CM
2081fail_trans_kthread:
2082 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2083fail_cleaner:
a74a4b97 2084 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2085
2086 /*
2087 * make sure we're done with the btree inode before we stop our
2088 * kthreads
2089 */
2090 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2091 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2092
1b1d1f66
JB
2093fail_block_groups:
2094 btrfs_free_block_groups(fs_info);
d20f7043 2095 free_extent_buffer(csum_root->node);
5d4f98a2
YZ
2096 free_extent_buffer(csum_root->commit_root);
2097fail_dev_root:
2098 free_extent_buffer(dev_root->node);
2099 free_extent_buffer(dev_root->commit_root);
0b86a832
CM
2100fail_extent_root:
2101 free_extent_buffer(extent_root->node);
5d4f98a2 2102 free_extent_buffer(extent_root->commit_root);
39279cc3 2103fail_tree_root:
5f39d397 2104 free_extent_buffer(tree_root->node);
5d4f98a2 2105 free_extent_buffer(tree_root->commit_root);
2b82032c
YZ
2106fail_chunk_root:
2107 free_extent_buffer(chunk_root->node);
5d4f98a2 2108 free_extent_buffer(chunk_root->commit_root);
39279cc3 2109fail_sb_buffer:
61d92c32 2110 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 2111 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2112 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2113 btrfs_stop_workers(&fs_info->workers);
2114 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2115 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2116 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2117 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2118 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2119 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2120 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2121 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7
MX
2122fail_alloc:
2123 kfree(fs_info->delayed_root);
4543df7e 2124fail_iput:
7c2ca468 2125 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2126 iput(fs_info->btree_inode);
7e662854 2127
dfe25020 2128 btrfs_close_devices(fs_info->fs_devices);
84eed90f 2129 btrfs_mapping_tree_free(&fs_info->mapping_tree);
ad081f14 2130fail_bdi:
7e662854 2131 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2132fail_srcu:
2133 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2134fail:
39279cc3
CM
2135 kfree(extent_root);
2136 kfree(tree_root);
2137 kfree(fs_info);
83afeac4
JM
2138 kfree(chunk_root);
2139 kfree(dev_root);
d20f7043 2140 kfree(csum_root);
39279cc3 2141 return ERR_PTR(err);
eb60ceac
CM
2142}
2143
f2984462
CM
2144static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2145{
2146 char b[BDEVNAME_SIZE];
2147
2148 if (uptodate) {
2149 set_buffer_uptodate(bh);
2150 } else {
7a36ddec 2151 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2152 "I/O error on %s\n",
2153 bdevname(bh->b_bdev, b));
1259ab75
CM
2154 /* note, we dont' set_buffer_write_io_error because we have
2155 * our own ways of dealing with the IO errors
2156 */
f2984462
CM
2157 clear_buffer_uptodate(bh);
2158 }
2159 unlock_buffer(bh);
2160 put_bh(bh);
2161}
2162
a512bbf8
YZ
2163struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2164{
2165 struct buffer_head *bh;
2166 struct buffer_head *latest = NULL;
2167 struct btrfs_super_block *super;
2168 int i;
2169 u64 transid = 0;
2170 u64 bytenr;
2171
2172 /* we would like to check all the supers, but that would make
2173 * a btrfs mount succeed after a mkfs from a different FS.
2174 * So, we need to add a special mount option to scan for
2175 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2176 */
2177 for (i = 0; i < 1; i++) {
2178 bytenr = btrfs_sb_offset(i);
2179 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2180 break;
2181 bh = __bread(bdev, bytenr / 4096, 4096);
2182 if (!bh)
2183 continue;
2184
2185 super = (struct btrfs_super_block *)bh->b_data;
2186 if (btrfs_super_bytenr(super) != bytenr ||
2187 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2188 sizeof(super->magic))) {
2189 brelse(bh);
2190 continue;
2191 }
2192
2193 if (!latest || btrfs_super_generation(super) > transid) {
2194 brelse(latest);
2195 latest = bh;
2196 transid = btrfs_super_generation(super);
2197 } else {
2198 brelse(bh);
2199 }
2200 }
2201 return latest;
2202}
2203
4eedeb75
HH
2204/*
2205 * this should be called twice, once with wait == 0 and
2206 * once with wait == 1. When wait == 0 is done, all the buffer heads
2207 * we write are pinned.
2208 *
2209 * They are released when wait == 1 is done.
2210 * max_mirrors must be the same for both runs, and it indicates how
2211 * many supers on this one device should be written.
2212 *
2213 * max_mirrors == 0 means to write them all.
2214 */
a512bbf8
YZ
2215static int write_dev_supers(struct btrfs_device *device,
2216 struct btrfs_super_block *sb,
2217 int do_barriers, int wait, int max_mirrors)
2218{
2219 struct buffer_head *bh;
2220 int i;
2221 int ret;
2222 int errors = 0;
2223 u32 crc;
2224 u64 bytenr;
2225 int last_barrier = 0;
2226
2227 if (max_mirrors == 0)
2228 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2229
2230 /* make sure only the last submit_bh does a barrier */
2231 if (do_barriers) {
2232 for (i = 0; i < max_mirrors; i++) {
2233 bytenr = btrfs_sb_offset(i);
2234 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2235 device->total_bytes)
2236 break;
2237 last_barrier = i;
2238 }
2239 }
2240
2241 for (i = 0; i < max_mirrors; i++) {
2242 bytenr = btrfs_sb_offset(i);
2243 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2244 break;
2245
2246 if (wait) {
2247 bh = __find_get_block(device->bdev, bytenr / 4096,
2248 BTRFS_SUPER_INFO_SIZE);
2249 BUG_ON(!bh);
a512bbf8 2250 wait_on_buffer(bh);
4eedeb75
HH
2251 if (!buffer_uptodate(bh))
2252 errors++;
2253
2254 /* drop our reference */
2255 brelse(bh);
2256
2257 /* drop the reference from the wait == 0 run */
2258 brelse(bh);
2259 continue;
a512bbf8
YZ
2260 } else {
2261 btrfs_set_super_bytenr(sb, bytenr);
2262
2263 crc = ~(u32)0;
2264 crc = btrfs_csum_data(NULL, (char *)sb +
2265 BTRFS_CSUM_SIZE, crc,
2266 BTRFS_SUPER_INFO_SIZE -
2267 BTRFS_CSUM_SIZE);
2268 btrfs_csum_final(crc, sb->csum);
2269
4eedeb75
HH
2270 /*
2271 * one reference for us, and we leave it for the
2272 * caller
2273 */
a512bbf8
YZ
2274 bh = __getblk(device->bdev, bytenr / 4096,
2275 BTRFS_SUPER_INFO_SIZE);
2276 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2277
4eedeb75 2278 /* one reference for submit_bh */
a512bbf8 2279 get_bh(bh);
4eedeb75
HH
2280
2281 set_buffer_uptodate(bh);
a512bbf8
YZ
2282 lock_buffer(bh);
2283 bh->b_end_io = btrfs_end_buffer_write_sync;
2284 }
2285
c3b9a62c
CH
2286 if (i == last_barrier && do_barriers)
2287 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2288 else
ffbd517d 2289 ret = submit_bh(WRITE_SYNC, bh);
a512bbf8 2290
4eedeb75 2291 if (ret)
a512bbf8 2292 errors++;
a512bbf8
YZ
2293 }
2294 return errors < i ? 0 : -1;
2295}
2296
2297int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2298{
e5e9a520 2299 struct list_head *head;
f2984462 2300 struct btrfs_device *dev;
a061fc8d 2301 struct btrfs_super_block *sb;
f2984462 2302 struct btrfs_dev_item *dev_item;
f2984462
CM
2303 int ret;
2304 int do_barriers;
a236aed1
CM
2305 int max_errors;
2306 int total_errors = 0;
a061fc8d 2307 u64 flags;
f2984462 2308
a236aed1 2309 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
f2984462
CM
2310 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2311
a061fc8d
CM
2312 sb = &root->fs_info->super_for_commit;
2313 dev_item = &sb->dev_item;
e5e9a520 2314
174ba509 2315 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2316 head = &root->fs_info->fs_devices->devices;
1f78160c 2317 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2318 if (!dev->bdev) {
2319 total_errors++;
2320 continue;
2321 }
2b82032c 2322 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2323 continue;
2324
2b82032c 2325 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2326 btrfs_set_stack_device_type(dev_item, dev->type);
2327 btrfs_set_stack_device_id(dev_item, dev->devid);
2328 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2329 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2330 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2331 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2332 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2333 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2334 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2335
a061fc8d
CM
2336 flags = btrfs_super_flags(sb);
2337 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2338
a512bbf8 2339 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2340 if (ret)
2341 total_errors++;
f2984462 2342 }
a236aed1 2343 if (total_errors > max_errors) {
d397712b
CM
2344 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2345 total_errors);
a236aed1
CM
2346 BUG();
2347 }
f2984462 2348
a512bbf8 2349 total_errors = 0;
1f78160c 2350 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2351 if (!dev->bdev)
2352 continue;
2b82032c 2353 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2354 continue;
2355
a512bbf8
YZ
2356 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2357 if (ret)
2358 total_errors++;
f2984462 2359 }
174ba509 2360 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2361 if (total_errors > max_errors) {
d397712b
CM
2362 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2363 total_errors);
a236aed1
CM
2364 BUG();
2365 }
f2984462
CM
2366 return 0;
2367}
2368
a512bbf8
YZ
2369int write_ctree_super(struct btrfs_trans_handle *trans,
2370 struct btrfs_root *root, int max_mirrors)
eb60ceac 2371{
e66f709b 2372 int ret;
5f39d397 2373
a512bbf8 2374 ret = write_all_supers(root, max_mirrors);
5f39d397 2375 return ret;
cfaa7295
CM
2376}
2377
5eda7b5e 2378int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2379{
4df27c4d 2380 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2381 radix_tree_delete(&fs_info->fs_roots_radix,
2382 (unsigned long)root->root_key.objectid);
4df27c4d 2383 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2384
2385 if (btrfs_root_refs(&root->root_item) == 0)
2386 synchronize_srcu(&fs_info->subvol_srcu);
2387
581bb050
LZ
2388 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2389 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2390 free_fs_root(root);
2391 return 0;
2392}
2393
2394static void free_fs_root(struct btrfs_root *root)
2395{
82d5902d 2396 iput(root->cache_inode);
4df27c4d 2397 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3394e160
CM
2398 if (root->anon_super.s_dev) {
2399 down_write(&root->anon_super.s_umount);
2400 kill_anon_super(&root->anon_super);
2401 }
4df27c4d
YZ
2402 free_extent_buffer(root->node);
2403 free_extent_buffer(root->commit_root);
581bb050
LZ
2404 kfree(root->free_ino_ctl);
2405 kfree(root->free_ino_pinned);
d397712b 2406 kfree(root->name);
2619ba1f 2407 kfree(root);
2619ba1f
CM
2408}
2409
35b7e476 2410static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2411{
2412 int ret;
2413 struct btrfs_root *gang[8];
2414 int i;
2415
76dda93c
YZ
2416 while (!list_empty(&fs_info->dead_roots)) {
2417 gang[0] = list_entry(fs_info->dead_roots.next,
2418 struct btrfs_root, root_list);
2419 list_del(&gang[0]->root_list);
2420
2421 if (gang[0]->in_radix) {
2422 btrfs_free_fs_root(fs_info, gang[0]);
2423 } else {
2424 free_extent_buffer(gang[0]->node);
2425 free_extent_buffer(gang[0]->commit_root);
2426 kfree(gang[0]);
2427 }
2428 }
2429
d397712b 2430 while (1) {
0f7d52f4
CM
2431 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2432 (void **)gang, 0,
2433 ARRAY_SIZE(gang));
2434 if (!ret)
2435 break;
2619ba1f 2436 for (i = 0; i < ret; i++)
5eda7b5e 2437 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2438 }
2439 return 0;
2440}
b4100d64 2441
c146afad 2442int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2443{
c146afad
YZ
2444 u64 root_objectid = 0;
2445 struct btrfs_root *gang[8];
2446 int i;
3768f368 2447 int ret;
e089f05c 2448
c146afad
YZ
2449 while (1) {
2450 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2451 (void **)gang, root_objectid,
2452 ARRAY_SIZE(gang));
2453 if (!ret)
2454 break;
5d4f98a2
YZ
2455
2456 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2457 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2458 int err;
2459
c146afad 2460 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2461 err = btrfs_orphan_cleanup(gang[i]);
2462 if (err)
2463 return err;
c146afad
YZ
2464 }
2465 root_objectid++;
2466 }
2467 return 0;
2468}
a2135011 2469
c146afad
YZ
2470int btrfs_commit_super(struct btrfs_root *root)
2471{
2472 struct btrfs_trans_handle *trans;
2473 int ret;
a74a4b97 2474
c146afad 2475 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2476 btrfs_run_delayed_iputs(root);
a74a4b97 2477 btrfs_clean_old_snapshots(root);
c146afad 2478 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2479
2480 /* wait until ongoing cleanup work done */
2481 down_write(&root->fs_info->cleanup_work_sem);
2482 up_write(&root->fs_info->cleanup_work_sem);
2483
7a7eaa40 2484 trans = btrfs_join_transaction(root);
3612b495
TI
2485 if (IS_ERR(trans))
2486 return PTR_ERR(trans);
54aa1f4d 2487 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2488 BUG_ON(ret);
2489 /* run commit again to drop the original snapshot */
7a7eaa40 2490 trans = btrfs_join_transaction(root);
3612b495
TI
2491 if (IS_ERR(trans))
2492 return PTR_ERR(trans);
79154b1b
CM
2493 btrfs_commit_transaction(trans, root);
2494 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 2495 BUG_ON(ret);
d6bfde87 2496
a512bbf8 2497 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
2498 return ret;
2499}
2500
2501int close_ctree(struct btrfs_root *root)
2502{
2503 struct btrfs_fs_info *fs_info = root->fs_info;
2504 int ret;
2505
2506 fs_info->closing = 1;
2507 smp_mb();
2508
a2de733c 2509 btrfs_scrub_cancel(root);
4cb5300b
CM
2510
2511 /* wait for any defraggers to finish */
2512 wait_event(fs_info->transaction_wait,
2513 (atomic_read(&fs_info->defrag_running) == 0));
2514
2515 /* clear out the rbtree of defraggable inodes */
2516 btrfs_run_defrag_inodes(root->fs_info);
2517
0af3d00b 2518 btrfs_put_block_group_cache(fs_info);
acce952b 2519
2520 /*
2521 * Here come 2 situations when btrfs is broken to flip readonly:
2522 *
2523 * 1. when btrfs flips readonly somewhere else before
2524 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2525 * and btrfs will skip to write sb directly to keep
2526 * ERROR state on disk.
2527 *
2528 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 2529 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 2530 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2531 * btrfs will cleanup all FS resources first and write sb then.
2532 */
c146afad 2533 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 2534 ret = btrfs_commit_super(root);
2535 if (ret)
2536 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2537 }
2538
2539 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2540 ret = btrfs_error_commit_super(root);
d397712b
CM
2541 if (ret)
2542 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 2543 }
0f7d52f4 2544
8929ecfa
YZ
2545 kthread_stop(root->fs_info->transaction_kthread);
2546 kthread_stop(root->fs_info->cleaner_kthread);
2547
f25784b3
YZ
2548 fs_info->closing = 2;
2549 smp_mb();
2550
b0c68f8b 2551 if (fs_info->delalloc_bytes) {
d397712b 2552 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 2553 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 2554 }
31153d81 2555 if (fs_info->total_ref_cache_size) {
d397712b
CM
2556 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2557 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 2558 }
bcc63abb 2559
5d4f98a2
YZ
2560 free_extent_buffer(fs_info->extent_root->node);
2561 free_extent_buffer(fs_info->extent_root->commit_root);
2562 free_extent_buffer(fs_info->tree_root->node);
2563 free_extent_buffer(fs_info->tree_root->commit_root);
2564 free_extent_buffer(root->fs_info->chunk_root->node);
2565 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2566 free_extent_buffer(root->fs_info->dev_root->node);
2567 free_extent_buffer(root->fs_info->dev_root->commit_root);
2568 free_extent_buffer(root->fs_info->csum_root->node);
2569 free_extent_buffer(root->fs_info->csum_root->commit_root);
d20f7043 2570
9078a3e1 2571 btrfs_free_block_groups(root->fs_info);
d10c5f31 2572
c146afad 2573 del_fs_roots(fs_info);
d10c5f31 2574
c146afad 2575 iput(fs_info->btree_inode);
16cdcec7 2576 kfree(fs_info->delayed_root);
9ad6b7bc 2577
61d92c32 2578 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 2579 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2580 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2581 btrfs_stop_workers(&fs_info->workers);
2582 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2583 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2584 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2585 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2586 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2587 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2588 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2589 btrfs_stop_workers(&fs_info->caching_workers);
d6bfde87 2590
dfe25020 2591 btrfs_close_devices(fs_info->fs_devices);
0b86a832 2592 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 2593
04160088 2594 bdi_destroy(&fs_info->bdi);
76dda93c 2595 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 2596
0f7d52f4 2597 kfree(fs_info->extent_root);
0f7d52f4 2598 kfree(fs_info->tree_root);
0b86a832
CM
2599 kfree(fs_info->chunk_root);
2600 kfree(fs_info->dev_root);
d20f7043 2601 kfree(fs_info->csum_root);
83a4d548
LZ
2602 kfree(fs_info);
2603
eb60ceac
CM
2604 return 0;
2605}
2606
1259ab75 2607int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 2608{
1259ab75 2609 int ret;
810191ff 2610 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 2611
2ac55d41
JB
2612 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2613 NULL);
1259ab75
CM
2614 if (!ret)
2615 return ret;
2616
2617 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2618 parent_transid);
2619 return !ret;
5f39d397
CM
2620}
2621
2622int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 2623{
810191ff 2624 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 2625 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
2626 buf);
2627}
6702ed49 2628
5f39d397
CM
2629void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2630{
810191ff 2631 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
2632 u64 transid = btrfs_header_generation(buf);
2633 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 2634 int was_dirty;
b4ce94de 2635
b9447ef8 2636 btrfs_assert_tree_locked(buf);
ccd467d6 2637 if (transid != root->fs_info->generation) {
d397712b
CM
2638 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2639 "found %llu running %llu\n",
db94535d 2640 (unsigned long long)buf->start,
d397712b
CM
2641 (unsigned long long)transid,
2642 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
2643 WARN_ON(1);
2644 }
b9473439
CM
2645 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2646 buf);
2647 if (!was_dirty) {
2648 spin_lock(&root->fs_info->delalloc_lock);
2649 root->fs_info->dirty_metadata_bytes += buf->len;
2650 spin_unlock(&root->fs_info->delalloc_lock);
2651 }
eb60ceac
CM
2652}
2653
d3c2fdcf 2654void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
2655{
2656 /*
2657 * looks as though older kernels can get into trouble with
2658 * this code, they end up stuck in balance_dirty_pages forever
2659 */
2660 u64 num_dirty;
2661 unsigned long thresh = 32 * 1024 * 1024;
2662
2663 if (current->flags & PF_MEMALLOC)
2664 return;
2665
2666 btrfs_balance_delayed_items(root);
2667
2668 num_dirty = root->fs_info->dirty_metadata_bytes;
2669
2670 if (num_dirty > thresh) {
2671 balance_dirty_pages_ratelimited_nr(
2672 root->fs_info->btree_inode->i_mapping, 1);
2673 }
2674 return;
2675}
2676
2677void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 2678{
188de649
CM
2679 /*
2680 * looks as though older kernels can get into trouble with
2681 * this code, they end up stuck in balance_dirty_pages forever
2682 */
d6bfde87 2683 u64 num_dirty;
771ed689 2684 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 2685
6933c02e 2686 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
2687 return;
2688
585ad2c3
CM
2689 num_dirty = root->fs_info->dirty_metadata_bytes;
2690
d6bfde87
CM
2691 if (num_dirty > thresh) {
2692 balance_dirty_pages_ratelimited_nr(
d7fc640e 2693 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 2694 }
188de649 2695 return;
35b7e476 2696}
6b80053d 2697
ca7a79ad 2698int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 2699{
810191ff 2700 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 2701 int ret;
ca7a79ad 2702 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 2703 if (ret == 0)
b4ce94de 2704 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 2705 return ret;
6b80053d 2706}
0da5468f 2707
4bef0848
CM
2708int btree_lock_page_hook(struct page *page)
2709{
2710 struct inode *inode = page->mapping->host;
b9473439 2711 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
2712 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2713 struct extent_buffer *eb;
2714 unsigned long len;
2715 u64 bytenr = page_offset(page);
2716
2717 if (page->private == EXTENT_PAGE_PRIVATE)
2718 goto out;
2719
2720 len = page->private >> 2;
f09d1f60 2721 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
2722 if (!eb)
2723 goto out;
2724
2725 btrfs_tree_lock(eb);
4bef0848 2726 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
2727
2728 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2729 spin_lock(&root->fs_info->delalloc_lock);
2730 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2731 root->fs_info->dirty_metadata_bytes -= eb->len;
2732 else
2733 WARN_ON(1);
2734 spin_unlock(&root->fs_info->delalloc_lock);
2735 }
2736
4bef0848
CM
2737 btrfs_tree_unlock(eb);
2738 free_extent_buffer(eb);
2739out:
2740 lock_page(page);
2741 return 0;
2742}
2743
acce952b 2744static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2745 int read_only)
2746{
2747 if (read_only)
2748 return;
2749
2750 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2751 printk(KERN_WARNING "warning: mount fs with errors, "
2752 "running btrfsck is recommended\n");
2753}
2754
2755int btrfs_error_commit_super(struct btrfs_root *root)
2756{
2757 int ret;
2758
2759 mutex_lock(&root->fs_info->cleaner_mutex);
2760 btrfs_run_delayed_iputs(root);
2761 mutex_unlock(&root->fs_info->cleaner_mutex);
2762
2763 down_write(&root->fs_info->cleanup_work_sem);
2764 up_write(&root->fs_info->cleanup_work_sem);
2765
2766 /* cleanup FS via transaction */
2767 btrfs_cleanup_transaction(root);
2768
2769 ret = write_ctree_super(NULL, root, 0);
2770
2771 return ret;
2772}
2773
2774static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2775{
2776 struct btrfs_inode *btrfs_inode;
2777 struct list_head splice;
2778
2779 INIT_LIST_HEAD(&splice);
2780
2781 mutex_lock(&root->fs_info->ordered_operations_mutex);
2782 spin_lock(&root->fs_info->ordered_extent_lock);
2783
2784 list_splice_init(&root->fs_info->ordered_operations, &splice);
2785 while (!list_empty(&splice)) {
2786 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2787 ordered_operations);
2788
2789 list_del_init(&btrfs_inode->ordered_operations);
2790
2791 btrfs_invalidate_inodes(btrfs_inode->root);
2792 }
2793
2794 spin_unlock(&root->fs_info->ordered_extent_lock);
2795 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2796
2797 return 0;
2798}
2799
2800static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2801{
2802 struct list_head splice;
2803 struct btrfs_ordered_extent *ordered;
2804 struct inode *inode;
2805
2806 INIT_LIST_HEAD(&splice);
2807
2808 spin_lock(&root->fs_info->ordered_extent_lock);
2809
2810 list_splice_init(&root->fs_info->ordered_extents, &splice);
2811 while (!list_empty(&splice)) {
2812 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2813 root_extent_list);
2814
2815 list_del_init(&ordered->root_extent_list);
2816 atomic_inc(&ordered->refs);
2817
2818 /* the inode may be getting freed (in sys_unlink path). */
2819 inode = igrab(ordered->inode);
2820
2821 spin_unlock(&root->fs_info->ordered_extent_lock);
2822 if (inode)
2823 iput(inode);
2824
2825 atomic_set(&ordered->refs, 1);
2826 btrfs_put_ordered_extent(ordered);
2827
2828 spin_lock(&root->fs_info->ordered_extent_lock);
2829 }
2830
2831 spin_unlock(&root->fs_info->ordered_extent_lock);
2832
2833 return 0;
2834}
2835
2836static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2837 struct btrfs_root *root)
2838{
2839 struct rb_node *node;
2840 struct btrfs_delayed_ref_root *delayed_refs;
2841 struct btrfs_delayed_ref_node *ref;
2842 int ret = 0;
2843
2844 delayed_refs = &trans->delayed_refs;
2845
2846 spin_lock(&delayed_refs->lock);
2847 if (delayed_refs->num_entries == 0) {
cfece4db 2848 spin_unlock(&delayed_refs->lock);
acce952b 2849 printk(KERN_INFO "delayed_refs has NO entry\n");
2850 return ret;
2851 }
2852
2853 node = rb_first(&delayed_refs->root);
2854 while (node) {
2855 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2856 node = rb_next(node);
2857
2858 ref->in_tree = 0;
2859 rb_erase(&ref->rb_node, &delayed_refs->root);
2860 delayed_refs->num_entries--;
2861
2862 atomic_set(&ref->refs, 1);
2863 if (btrfs_delayed_ref_is_head(ref)) {
2864 struct btrfs_delayed_ref_head *head;
2865
2866 head = btrfs_delayed_node_to_head(ref);
2867 mutex_lock(&head->mutex);
2868 kfree(head->extent_op);
2869 delayed_refs->num_heads--;
2870 if (list_empty(&head->cluster))
2871 delayed_refs->num_heads_ready--;
2872 list_del_init(&head->cluster);
2873 mutex_unlock(&head->mutex);
2874 }
2875
2876 spin_unlock(&delayed_refs->lock);
2877 btrfs_put_delayed_ref(ref);
2878
2879 cond_resched();
2880 spin_lock(&delayed_refs->lock);
2881 }
2882
2883 spin_unlock(&delayed_refs->lock);
2884
2885 return ret;
2886}
2887
2888static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2889{
2890 struct btrfs_pending_snapshot *snapshot;
2891 struct list_head splice;
2892
2893 INIT_LIST_HEAD(&splice);
2894
2895 list_splice_init(&t->pending_snapshots, &splice);
2896
2897 while (!list_empty(&splice)) {
2898 snapshot = list_entry(splice.next,
2899 struct btrfs_pending_snapshot,
2900 list);
2901
2902 list_del_init(&snapshot->list);
2903
2904 kfree(snapshot);
2905 }
2906
2907 return 0;
2908}
2909
2910static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2911{
2912 struct btrfs_inode *btrfs_inode;
2913 struct list_head splice;
2914
2915 INIT_LIST_HEAD(&splice);
2916
acce952b 2917 spin_lock(&root->fs_info->delalloc_lock);
5be76758 2918 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 2919
2920 while (!list_empty(&splice)) {
2921 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2922 delalloc_inodes);
2923
2924 list_del_init(&btrfs_inode->delalloc_inodes);
2925
2926 btrfs_invalidate_inodes(btrfs_inode->root);
2927 }
2928
2929 spin_unlock(&root->fs_info->delalloc_lock);
2930
2931 return 0;
2932}
2933
2934static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2935 struct extent_io_tree *dirty_pages,
2936 int mark)
2937{
2938 int ret;
2939 struct page *page;
2940 struct inode *btree_inode = root->fs_info->btree_inode;
2941 struct extent_buffer *eb;
2942 u64 start = 0;
2943 u64 end;
2944 u64 offset;
2945 unsigned long index;
2946
2947 while (1) {
2948 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2949 mark);
2950 if (ret)
2951 break;
2952
2953 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2954 while (start <= end) {
2955 index = start >> PAGE_CACHE_SHIFT;
2956 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2957 page = find_get_page(btree_inode->i_mapping, index);
2958 if (!page)
2959 continue;
2960 offset = page_offset(page);
2961
2962 spin_lock(&dirty_pages->buffer_lock);
2963 eb = radix_tree_lookup(
2964 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2965 offset >> PAGE_CACHE_SHIFT);
2966 spin_unlock(&dirty_pages->buffer_lock);
2967 if (eb) {
2968 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2969 &eb->bflags);
2970 atomic_set(&eb->refs, 1);
2971 }
2972 if (PageWriteback(page))
2973 end_page_writeback(page);
2974
2975 lock_page(page);
2976 if (PageDirty(page)) {
2977 clear_page_dirty_for_io(page);
2978 spin_lock_irq(&page->mapping->tree_lock);
2979 radix_tree_tag_clear(&page->mapping->page_tree,
2980 page_index(page),
2981 PAGECACHE_TAG_DIRTY);
2982 spin_unlock_irq(&page->mapping->tree_lock);
2983 }
2984
2985 page->mapping->a_ops->invalidatepage(page, 0);
2986 unlock_page(page);
2987 }
2988 }
2989
2990 return ret;
2991}
2992
2993static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2994 struct extent_io_tree *pinned_extents)
2995{
2996 struct extent_io_tree *unpin;
2997 u64 start;
2998 u64 end;
2999 int ret;
3000
3001 unpin = pinned_extents;
3002 while (1) {
3003 ret = find_first_extent_bit(unpin, 0, &start, &end,
3004 EXTENT_DIRTY);
3005 if (ret)
3006 break;
3007
3008 /* opt_discard */
5378e607
LD
3009 if (btrfs_test_opt(root, DISCARD))
3010 ret = btrfs_error_discard_extent(root, start,
3011 end + 1 - start,
3012 NULL);
acce952b 3013
3014 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3015 btrfs_error_unpin_extent_range(root, start, end);
3016 cond_resched();
3017 }
3018
3019 return 0;
3020}
3021
3022static int btrfs_cleanup_transaction(struct btrfs_root *root)
3023{
3024 struct btrfs_transaction *t;
3025 LIST_HEAD(list);
3026
3027 WARN_ON(1);
3028
acce952b 3029 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3030
a4abeea4 3031 spin_lock(&root->fs_info->trans_lock);
acce952b 3032 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3033 root->fs_info->trans_no_join = 1;
3034 spin_unlock(&root->fs_info->trans_lock);
3035
acce952b 3036 while (!list_empty(&list)) {
3037 t = list_entry(list.next, struct btrfs_transaction, list);
3038 if (!t)
3039 break;
3040
3041 btrfs_destroy_ordered_operations(root);
3042
3043 btrfs_destroy_ordered_extents(root);
3044
3045 btrfs_destroy_delayed_refs(t, root);
3046
3047 btrfs_block_rsv_release(root,
3048 &root->fs_info->trans_block_rsv,
3049 t->dirty_pages.dirty_bytes);
3050
3051 /* FIXME: cleanup wait for commit */
3052 t->in_commit = 1;
3053 t->blocked = 1;
3054 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3055 wake_up(&root->fs_info->transaction_blocked_wait);
3056
3057 t->blocked = 0;
3058 if (waitqueue_active(&root->fs_info->transaction_wait))
3059 wake_up(&root->fs_info->transaction_wait);
acce952b 3060
acce952b 3061 t->commit_done = 1;
3062 if (waitqueue_active(&t->commit_wait))
3063 wake_up(&t->commit_wait);
acce952b 3064
3065 btrfs_destroy_pending_snapshots(t);
3066
3067 btrfs_destroy_delalloc_inodes(root);
3068
a4abeea4 3069 spin_lock(&root->fs_info->trans_lock);
acce952b 3070 root->fs_info->running_transaction = NULL;
a4abeea4 3071 spin_unlock(&root->fs_info->trans_lock);
acce952b 3072
3073 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3074 EXTENT_DIRTY);
3075
3076 btrfs_destroy_pinned_extent(root,
3077 root->fs_info->pinned_extents);
3078
13c5a93e 3079 atomic_set(&t->use_count, 0);
acce952b 3080 list_del_init(&t->list);
3081 memset(t, 0, sizeof(*t));
3082 kmem_cache_free(btrfs_transaction_cachep, t);
3083 }
3084
a4abeea4
JB
3085 spin_lock(&root->fs_info->trans_lock);
3086 root->fs_info->trans_no_join = 0;
3087 spin_unlock(&root->fs_info->trans_lock);
acce952b 3088 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3089
3090 return 0;
3091}
3092
d1310b2e 3093static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3094 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3095 .readpage_end_io_hook = btree_readpage_end_io_hook,
0b86a832 3096 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3097 /* note we're sharing with inode.c for the merge bio hook */
3098 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3099};