btrfs: add an extra wait mode to read_extent_buffer_pages
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
eb60ceac 46
d1310b2e 47static struct extent_io_ops btree_extent_io_ops;
8b712842 48static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 49static void free_fs_root(struct btrfs_root *root);
acce952b 50static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 int read_only);
52static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_root *root);
56static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 64
d352ac68
CM
65/*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
ce9adaa5
CM
70struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
22c59948 76 int metadata;
ce9adaa5 77 struct list_head list;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
d352ac68
CM
81/*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
44b8bd7e
CM
86struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
4a69a410
CM
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
92 int rw;
93 int mirror_num;
c8b97818 94 unsigned long bio_flags;
eaf25d93
CM
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
8b712842 100 struct btrfs_work work;
44b8bd7e
CM
101};
102
85d4e461
CM
103/*
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
107 *
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
4008c04a 113 *
85d4e461
CM
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 117 *
85d4e461
CM
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 121 *
85d4e461
CM
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
4008c04a
CM
125 */
126#ifdef CONFIG_DEBUG_LOCK_ALLOC
127# if BTRFS_MAX_LEVEL != 8
128# error
129# endif
85d4e461
CM
130
131static struct btrfs_lockdep_keyset {
132 u64 id; /* root objectid */
133 const char *name_stem; /* lock name stem */
134 char names[BTRFS_MAX_LEVEL + 1][20];
135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
136} btrfs_lockdep_keysets[] = {
137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
147 { .id = 0, .name_stem = "tree" },
4008c04a 148};
85d4e461
CM
149
150void __init btrfs_init_lockdep(void)
151{
152 int i, j;
153
154 /* initialize lockdep class names */
155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
157
158 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159 snprintf(ks->names[j], sizeof(ks->names[j]),
160 "btrfs-%s-%02d", ks->name_stem, j);
161 }
162}
163
164void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165 int level)
166{
167 struct btrfs_lockdep_keyset *ks;
168
169 BUG_ON(level >= ARRAY_SIZE(ks->keys));
170
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173 if (ks->id == objectid)
174 break;
175
176 lockdep_set_class_and_name(&eb->lock,
177 &ks->keys[level], ks->names[level]);
178}
179
4008c04a
CM
180#endif
181
d352ac68
CM
182/*
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
185 */
b2950863 186static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 187 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 188 int create)
7eccb903 189{
5f39d397
CM
190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191 struct extent_map *em;
192 int ret;
193
890871be 194 read_lock(&em_tree->lock);
d1310b2e 195 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
196 if (em) {
197 em->bdev =
198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 199 read_unlock(&em_tree->lock);
5f39d397 200 goto out;
a061fc8d 201 }
890871be 202 read_unlock(&em_tree->lock);
7b13b7b1 203
172ddd60 204 em = alloc_extent_map();
5f39d397
CM
205 if (!em) {
206 em = ERR_PTR(-ENOMEM);
207 goto out;
208 }
209 em->start = 0;
0afbaf8c 210 em->len = (u64)-1;
c8b97818 211 em->block_len = (u64)-1;
5f39d397 212 em->block_start = 0;
a061fc8d 213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 214
890871be 215 write_lock(&em_tree->lock);
5f39d397
CM
216 ret = add_extent_mapping(em_tree, em);
217 if (ret == -EEXIST) {
0afbaf8c
CM
218 u64 failed_start = em->start;
219 u64 failed_len = em->len;
220
5f39d397 221 free_extent_map(em);
7b13b7b1 222 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 223 if (em) {
7b13b7b1 224 ret = 0;
0afbaf8c
CM
225 } else {
226 em = lookup_extent_mapping(em_tree, failed_start,
227 failed_len);
7b13b7b1 228 ret = -EIO;
0afbaf8c 229 }
5f39d397 230 } else if (ret) {
7b13b7b1
CM
231 free_extent_map(em);
232 em = NULL;
5f39d397 233 }
890871be 234 write_unlock(&em_tree->lock);
7b13b7b1
CM
235
236 if (ret)
237 em = ERR_PTR(ret);
5f39d397
CM
238out:
239 return em;
7eccb903
CM
240}
241
19c00ddc
CM
242u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243{
163e783e 244 return crc32c(seed, data, len);
19c00ddc
CM
245}
246
247void btrfs_csum_final(u32 crc, char *result)
248{
7e75bf3f 249 put_unaligned_le32(~crc, result);
19c00ddc
CM
250}
251
d352ac68
CM
252/*
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
255 */
19c00ddc
CM
256static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
258{
607d432d
JB
259 u16 csum_size =
260 btrfs_super_csum_size(&root->fs_info->super_copy);
261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41
JB
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
2ac55d41 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
1259ab75
CM
373 if (!ret &&
374 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 375 return ret;
d397712b 376
a826d6dc
JB
377 /*
378 * This buffer's crc is fine, but its contents are corrupted, so
379 * there is no reason to read the other copies, they won't be
380 * any less wrong.
381 */
382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 return ret;
384
f188591e
CM
385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 eb->start, eb->len);
4235298e 387 if (num_copies == 1)
f188591e 388 return ret;
4235298e 389
f188591e 390 mirror_num++;
4235298e 391 if (mirror_num > num_copies)
f188591e 392 return ret;
f188591e 393 }
f188591e
CM
394 return -EIO;
395}
19c00ddc 396
d352ac68 397/*
d397712b
CM
398 * checksum a dirty tree block before IO. This has extra checks to make sure
399 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 400 */
d397712b 401
b2950863 402static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 403{
d1310b2e 404 struct extent_io_tree *tree;
35ebb934 405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 406 u64 found_start;
19c00ddc
CM
407 unsigned long len;
408 struct extent_buffer *eb;
f188591e
CM
409 int ret;
410
d1310b2e 411 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 412
eb14ab8e
CM
413 if (page->private == EXTENT_PAGE_PRIVATE) {
414 WARN_ON(1);
19c00ddc 415 goto out;
eb14ab8e
CM
416 }
417 if (!page->private) {
418 WARN_ON(1);
19c00ddc 419 goto out;
eb14ab8e 420 }
19c00ddc 421 len = page->private >> 2;
d397712b
CM
422 WARN_ON(len == 0);
423
ba144192 424 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
425 if (eb == NULL) {
426 WARN_ON(1);
427 goto out;
428 }
ca7a79ad
CM
429 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430 btrfs_header_generation(eb));
f188591e 431 BUG_ON(ret);
784b4e29
CM
432 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
19c00ddc
CM
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
55c69072
CM
436 WARN_ON(1);
437 goto err;
438 }
439 if (eb->first_page != page) {
55c69072
CM
440 WARN_ON(1);
441 goto err;
442 }
443 if (!PageUptodate(page)) {
55c69072
CM
444 WARN_ON(1);
445 goto err;
19c00ddc 446 }
19c00ddc 447 csum_tree_block(root, eb, 0);
55c69072 448err:
19c00ddc
CM
449 free_extent_buffer(eb);
450out:
451 return 0;
452}
453
2b82032c
YZ
454static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
456{
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
459 int ret = 1;
460
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 BTRFS_FSID_SIZE);
463 while (fs_devices) {
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 ret = 0;
466 break;
467 }
468 fs_devices = fs_devices->seed;
469 }
470 return ret;
471}
472
a826d6dc
JB
473#define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
478
479static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
481{
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
485 int slot;
486
487 if (nritems == 0)
488 return 0;
489
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
494 return -EIO;
495 }
496
497 /*
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
502 * offset is correct.
503 */
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
511 return -EIO;
512 }
513
514 /*
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
517 * front.
518 */
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
522 return -EIO;
523 }
524
525 /*
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
529 */
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
533 return -EIO;
534 }
535 }
536
537 return 0;
538}
539
b2950863 540static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
541 struct extent_state *state)
542{
543 struct extent_io_tree *tree;
544 u64 found_start;
545 int found_level;
546 unsigned long len;
547 struct extent_buffer *eb;
548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 549 int ret = 0;
ce9adaa5
CM
550
551 tree = &BTRFS_I(page->mapping->host)->io_tree;
552 if (page->private == EXTENT_PAGE_PRIVATE)
553 goto out;
554 if (!page->private)
555 goto out;
d397712b 556
ce9adaa5 557 len = page->private >> 2;
d397712b
CM
558 WARN_ON(len == 0);
559
ba144192 560 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
561 if (eb == NULL) {
562 ret = -EIO;
563 goto out;
564 }
f188591e 565
ce9adaa5 566 found_start = btrfs_header_bytenr(eb);
23a07867 567 if (found_start != start) {
7a36ddec 568 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
569 "%llu %llu\n",
570 (unsigned long long)found_start,
571 (unsigned long long)eb->start);
f188591e 572 ret = -EIO;
ce9adaa5
CM
573 goto err;
574 }
575 if (eb->first_page != page) {
d397712b
CM
576 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577 eb->first_page->index, page->index);
ce9adaa5 578 WARN_ON(1);
f188591e 579 ret = -EIO;
ce9adaa5
CM
580 goto err;
581 }
2b82032c 582 if (check_tree_block_fsid(root, eb)) {
7a36ddec 583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 584 (unsigned long long)eb->start);
1259ab75
CM
585 ret = -EIO;
586 goto err;
587 }
ce9adaa5
CM
588 found_level = btrfs_header_level(eb);
589
85d4e461
CM
590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 eb, found_level);
4008c04a 592
ce9adaa5 593 ret = csum_tree_block(root, eb, 1);
a826d6dc 594 if (ret) {
f188591e 595 ret = -EIO;
a826d6dc
JB
596 goto err;
597 }
598
599 /*
600 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 * that we don't try and read the other copies of this block, just
602 * return -EIO.
603 */
604 if (found_level == 0 && check_leaf(root, eb)) {
605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 ret = -EIO;
607 }
ce9adaa5
CM
608
609 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610 end = eb->start + end - 1;
ce9adaa5
CM
611err:
612 free_extent_buffer(eb);
613out:
f188591e 614 return ret;
ce9adaa5
CM
615}
616
ce9adaa5 617static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
618{
619 struct end_io_wq *end_io_wq = bio->bi_private;
620 struct btrfs_fs_info *fs_info;
ce9adaa5 621
ce9adaa5 622 fs_info = end_io_wq->info;
ce9adaa5 623 end_io_wq->error = err;
8b712842
CM
624 end_io_wq->work.func = end_workqueue_fn;
625 end_io_wq->work.flags = 0;
d20f7043 626
7b6d91da 627 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 628 if (end_io_wq->metadata == 1)
cad321ad
CM
629 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
630 &end_io_wq->work);
0cb59c99
JB
631 else if (end_io_wq->metadata == 2)
632 btrfs_queue_worker(&fs_info->endio_freespace_worker,
633 &end_io_wq->work);
cad321ad
CM
634 else
635 btrfs_queue_worker(&fs_info->endio_write_workers,
636 &end_io_wq->work);
d20f7043
CM
637 } else {
638 if (end_io_wq->metadata)
639 btrfs_queue_worker(&fs_info->endio_meta_workers,
640 &end_io_wq->work);
641 else
642 btrfs_queue_worker(&fs_info->endio_workers,
643 &end_io_wq->work);
644 }
ce9adaa5
CM
645}
646
0cb59c99
JB
647/*
648 * For the metadata arg you want
649 *
650 * 0 - if data
651 * 1 - if normal metadta
652 * 2 - if writing to the free space cache area
653 */
22c59948
CM
654int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
655 int metadata)
0b86a832 656{
ce9adaa5 657 struct end_io_wq *end_io_wq;
ce9adaa5
CM
658 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
659 if (!end_io_wq)
660 return -ENOMEM;
661
662 end_io_wq->private = bio->bi_private;
663 end_io_wq->end_io = bio->bi_end_io;
22c59948 664 end_io_wq->info = info;
ce9adaa5
CM
665 end_io_wq->error = 0;
666 end_io_wq->bio = bio;
22c59948 667 end_io_wq->metadata = metadata;
ce9adaa5
CM
668
669 bio->bi_private = end_io_wq;
670 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
671 return 0;
672}
673
b64a2851 674unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 675{
4854ddd0
CM
676 unsigned long limit = min_t(unsigned long,
677 info->workers.max_workers,
678 info->fs_devices->open_devices);
679 return 256 * limit;
680}
0986fe9e 681
4a69a410
CM
682static void run_one_async_start(struct btrfs_work *work)
683{
4a69a410
CM
684 struct async_submit_bio *async;
685
686 async = container_of(work, struct async_submit_bio, work);
4a69a410 687 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
688 async->mirror_num, async->bio_flags,
689 async->bio_offset);
4a69a410
CM
690}
691
692static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
693{
694 struct btrfs_fs_info *fs_info;
695 struct async_submit_bio *async;
4854ddd0 696 int limit;
8b712842
CM
697
698 async = container_of(work, struct async_submit_bio, work);
699 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 700
b64a2851 701 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
702 limit = limit * 2 / 3;
703
8b712842 704 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 705
b64a2851
CM
706 if (atomic_read(&fs_info->nr_async_submits) < limit &&
707 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
708 wake_up(&fs_info->async_submit_wait);
709
4a69a410 710 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
711 async->mirror_num, async->bio_flags,
712 async->bio_offset);
4a69a410
CM
713}
714
715static void run_one_async_free(struct btrfs_work *work)
716{
717 struct async_submit_bio *async;
718
719 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
720 kfree(async);
721}
722
44b8bd7e
CM
723int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
724 int rw, struct bio *bio, int mirror_num,
c8b97818 725 unsigned long bio_flags,
eaf25d93 726 u64 bio_offset,
4a69a410
CM
727 extent_submit_bio_hook_t *submit_bio_start,
728 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
729{
730 struct async_submit_bio *async;
731
732 async = kmalloc(sizeof(*async), GFP_NOFS);
733 if (!async)
734 return -ENOMEM;
735
736 async->inode = inode;
737 async->rw = rw;
738 async->bio = bio;
739 async->mirror_num = mirror_num;
4a69a410
CM
740 async->submit_bio_start = submit_bio_start;
741 async->submit_bio_done = submit_bio_done;
742
743 async->work.func = run_one_async_start;
744 async->work.ordered_func = run_one_async_done;
745 async->work.ordered_free = run_one_async_free;
746
8b712842 747 async->work.flags = 0;
c8b97818 748 async->bio_flags = bio_flags;
eaf25d93 749 async->bio_offset = bio_offset;
8c8bee1d 750
cb03c743 751 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 752
7b6d91da 753 if (rw & REQ_SYNC)
d313d7a3
CM
754 btrfs_set_work_high_prio(&async->work);
755
8b712842 756 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 757
d397712b 758 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
759 atomic_read(&fs_info->nr_async_submits)) {
760 wait_event(fs_info->async_submit_wait,
761 (atomic_read(&fs_info->nr_async_submits) == 0));
762 }
763
44b8bd7e
CM
764 return 0;
765}
766
ce3ed71a
CM
767static int btree_csum_one_bio(struct bio *bio)
768{
769 struct bio_vec *bvec = bio->bi_io_vec;
770 int bio_index = 0;
771 struct btrfs_root *root;
772
773 WARN_ON(bio->bi_vcnt <= 0);
d397712b 774 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
775 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
776 csum_dirty_buffer(root, bvec->bv_page);
777 bio_index++;
778 bvec++;
779 }
780 return 0;
781}
782
4a69a410
CM
783static int __btree_submit_bio_start(struct inode *inode, int rw,
784 struct bio *bio, int mirror_num,
eaf25d93
CM
785 unsigned long bio_flags,
786 u64 bio_offset)
22c59948 787{
8b712842
CM
788 /*
789 * when we're called for a write, we're already in the async
5443be45 790 * submission context. Just jump into btrfs_map_bio
8b712842 791 */
4a69a410
CM
792 btree_csum_one_bio(bio);
793 return 0;
794}
22c59948 795
4a69a410 796static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
797 int mirror_num, unsigned long bio_flags,
798 u64 bio_offset)
4a69a410 799{
8b712842 800 /*
4a69a410
CM
801 * when we're called for a write, we're already in the async
802 * submission context. Just jump into btrfs_map_bio
8b712842 803 */
8b712842 804 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
805}
806
44b8bd7e 807static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
808 int mirror_num, unsigned long bio_flags,
809 u64 bio_offset)
44b8bd7e 810{
cad321ad
CM
811 int ret;
812
813 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
814 bio, 1);
815 BUG_ON(ret);
816
7b6d91da 817 if (!(rw & REQ_WRITE)) {
4a69a410
CM
818 /*
819 * called for a read, do the setup so that checksum validation
820 * can happen in the async kernel threads
821 */
4a69a410 822 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 823 mirror_num, 0);
44b8bd7e 824 }
d313d7a3 825
cad321ad
CM
826 /*
827 * kthread helpers are used to submit writes so that checksumming
828 * can happen in parallel across all CPUs
829 */
44b8bd7e 830 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 831 inode, rw, bio, mirror_num, 0,
eaf25d93 832 bio_offset,
4a69a410
CM
833 __btree_submit_bio_start,
834 __btree_submit_bio_done);
44b8bd7e
CM
835}
836
3dd1462e 837#ifdef CONFIG_MIGRATION
784b4e29
CM
838static int btree_migratepage(struct address_space *mapping,
839 struct page *newpage, struct page *page)
840{
841 /*
842 * we can't safely write a btree page from here,
843 * we haven't done the locking hook
844 */
845 if (PageDirty(page))
846 return -EAGAIN;
847 /*
848 * Buffers may be managed in a filesystem specific way.
849 * We must have no buffers or drop them.
850 */
851 if (page_has_private(page) &&
852 !try_to_release_page(page, GFP_KERNEL))
853 return -EAGAIN;
784b4e29
CM
854 return migrate_page(mapping, newpage, page);
855}
3dd1462e 856#endif
784b4e29 857
0da5468f
CM
858static int btree_writepage(struct page *page, struct writeback_control *wbc)
859{
d1310b2e 860 struct extent_io_tree *tree;
b9473439
CM
861 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
862 struct extent_buffer *eb;
863 int was_dirty;
864
d1310b2e 865 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
866 if (!(current->flags & PF_MEMALLOC)) {
867 return extent_write_full_page(tree, page,
868 btree_get_extent, wbc);
869 }
5443be45 870
b9473439 871 redirty_page_for_writepage(wbc, page);
784b4e29 872 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
873 WARN_ON(!eb);
874
875 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
876 if (!was_dirty) {
877 spin_lock(&root->fs_info->delalloc_lock);
878 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
879 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 880 }
b9473439
CM
881 free_extent_buffer(eb);
882
883 unlock_page(page);
884 return 0;
5f39d397 885}
0da5468f
CM
886
887static int btree_writepages(struct address_space *mapping,
888 struct writeback_control *wbc)
889{
d1310b2e
CM
890 struct extent_io_tree *tree;
891 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 892 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 893 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 894 u64 num_dirty;
24ab9cd8 895 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
896
897 if (wbc->for_kupdate)
898 return 0;
899
b9473439
CM
900 /* this is a bit racy, but that's ok */
901 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 902 if (num_dirty < thresh)
793955bc 903 return 0;
793955bc 904 }
0da5468f
CM
905 return extent_writepages(tree, mapping, btree_get_extent, wbc);
906}
907
b2950863 908static int btree_readpage(struct file *file, struct page *page)
5f39d397 909{
d1310b2e
CM
910 struct extent_io_tree *tree;
911 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
912 return extent_read_full_page(tree, page, btree_get_extent);
913}
22b0ebda 914
70dec807 915static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 916{
d1310b2e
CM
917 struct extent_io_tree *tree;
918 struct extent_map_tree *map;
5f39d397 919 int ret;
d98237b3 920
98509cfc 921 if (PageWriteback(page) || PageDirty(page))
d397712b 922 return 0;
98509cfc 923
d1310b2e
CM
924 tree = &BTRFS_I(page->mapping->host)->io_tree;
925 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 926
7b13b7b1 927 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 928 if (!ret)
6af118ce 929 return 0;
6af118ce
CM
930
931 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
932 if (ret == 1) {
933 ClearPagePrivate(page);
934 set_page_private(page, 0);
935 page_cache_release(page);
936 }
6af118ce 937
d98237b3
CM
938 return ret;
939}
940
5f39d397 941static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 942{
d1310b2e
CM
943 struct extent_io_tree *tree;
944 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
945 extent_invalidatepage(tree, page, offset);
946 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 947 if (PagePrivate(page)) {
d397712b
CM
948 printk(KERN_WARNING "btrfs warning page private not zero "
949 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
950 ClearPagePrivate(page);
951 set_page_private(page, 0);
952 page_cache_release(page);
953 }
d98237b3
CM
954}
955
7f09410b 956static const struct address_space_operations btree_aops = {
d98237b3
CM
957 .readpage = btree_readpage,
958 .writepage = btree_writepage,
0da5468f 959 .writepages = btree_writepages,
5f39d397
CM
960 .releasepage = btree_releasepage,
961 .invalidatepage = btree_invalidatepage,
5a92bc88 962#ifdef CONFIG_MIGRATION
784b4e29 963 .migratepage = btree_migratepage,
5a92bc88 964#endif
d98237b3
CM
965};
966
ca7a79ad
CM
967int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
968 u64 parent_transid)
090d1875 969{
5f39d397
CM
970 struct extent_buffer *buf = NULL;
971 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 972 int ret = 0;
090d1875 973
db94535d 974 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 975 if (!buf)
090d1875 976 return 0;
d1310b2e 977 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 978 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 979 free_extent_buffer(buf);
de428b63 980 return ret;
090d1875
CM
981}
982
0999df54
CM
983struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
984 u64 bytenr, u32 blocksize)
985{
986 struct inode *btree_inode = root->fs_info->btree_inode;
987 struct extent_buffer *eb;
988 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 989 bytenr, blocksize);
0999df54
CM
990 return eb;
991}
992
993struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
994 u64 bytenr, u32 blocksize)
995{
996 struct inode *btree_inode = root->fs_info->btree_inode;
997 struct extent_buffer *eb;
998
999 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 1000 bytenr, blocksize, NULL);
0999df54
CM
1001 return eb;
1002}
1003
1004
e02119d5
CM
1005int btrfs_write_tree_block(struct extent_buffer *buf)
1006{
8aa38c31
CH
1007 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1008 buf->start + buf->len - 1);
e02119d5
CM
1009}
1010
1011int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1012{
8aa38c31
CH
1013 return filemap_fdatawait_range(buf->first_page->mapping,
1014 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1015}
1016
0999df54 1017struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1018 u32 blocksize, u64 parent_transid)
0999df54
CM
1019{
1020 struct extent_buffer *buf = NULL;
0999df54
CM
1021 int ret;
1022
0999df54
CM
1023 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1024 if (!buf)
1025 return NULL;
0999df54 1026
ca7a79ad 1027 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1028
d397712b 1029 if (ret == 0)
b4ce94de 1030 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1031 return buf;
ce9adaa5 1032
eb60ceac
CM
1033}
1034
e089f05c 1035int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1036 struct extent_buffer *buf)
ed2ff2cb 1037{
5f39d397 1038 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1039 if (btrfs_header_generation(buf) ==
925baedd 1040 root->fs_info->running_transaction->transid) {
b9447ef8 1041 btrfs_assert_tree_locked(buf);
b4ce94de 1042
b9473439
CM
1043 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1044 spin_lock(&root->fs_info->delalloc_lock);
1045 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1046 root->fs_info->dirty_metadata_bytes -= buf->len;
1047 else
1048 WARN_ON(1);
1049 spin_unlock(&root->fs_info->delalloc_lock);
1050 }
b4ce94de 1051
b9473439
CM
1052 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1053 btrfs_set_lock_blocking(buf);
d1310b2e 1054 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1055 buf);
925baedd 1056 }
5f39d397
CM
1057 return 0;
1058}
1059
db94535d 1060static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1061 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1062 struct btrfs_fs_info *fs_info,
e20d96d6 1063 u64 objectid)
d97e63b6 1064{
cfaa7295 1065 root->node = NULL;
a28ec197 1066 root->commit_root = NULL;
db94535d
CM
1067 root->sectorsize = sectorsize;
1068 root->nodesize = nodesize;
1069 root->leafsize = leafsize;
87ee04eb 1070 root->stripesize = stripesize;
123abc88 1071 root->ref_cows = 0;
0b86a832 1072 root->track_dirty = 0;
c71bf099 1073 root->in_radix = 0;
d68fc57b
YZ
1074 root->orphan_item_inserted = 0;
1075 root->orphan_cleanup_state = 0;
0b86a832 1076
9f5fae2f 1077 root->fs_info = fs_info;
0f7d52f4
CM
1078 root->objectid = objectid;
1079 root->last_trans = 0;
13a8a7c8 1080 root->highest_objectid = 0;
58176a96 1081 root->name = NULL;
6bef4d31 1082 root->inode_tree = RB_ROOT;
16cdcec7 1083 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1084 root->block_rsv = NULL;
d68fc57b 1085 root->orphan_block_rsv = NULL;
0b86a832
CM
1086
1087 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1088 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1089 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1090 spin_lock_init(&root->orphan_lock);
5d4f98a2 1091 spin_lock_init(&root->inode_lock);
f0486c68 1092 spin_lock_init(&root->accounting_lock);
a2135011 1093 mutex_init(&root->objectid_mutex);
e02119d5 1094 mutex_init(&root->log_mutex);
7237f183
YZ
1095 init_waitqueue_head(&root->log_writer_wait);
1096 init_waitqueue_head(&root->log_commit_wait[0]);
1097 init_waitqueue_head(&root->log_commit_wait[1]);
1098 atomic_set(&root->log_commit[0], 0);
1099 atomic_set(&root->log_commit[1], 0);
1100 atomic_set(&root->log_writers, 0);
1101 root->log_batch = 0;
1102 root->log_transid = 0;
257c62e1 1103 root->last_log_commit = 0;
d0c803c4 1104 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1105 fs_info->btree_inode->i_mapping);
017e5369 1106
3768f368
CM
1107 memset(&root->root_key, 0, sizeof(root->root_key));
1108 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1109 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1110 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1111 root->defrag_trans_start = fs_info->generation;
58176a96 1112 init_completion(&root->kobj_unregister);
6702ed49 1113 root->defrag_running = 0;
4d775673 1114 root->root_key.objectid = objectid;
0ee5dc67 1115 root->anon_dev = 0;
3768f368
CM
1116 return 0;
1117}
1118
db94535d 1119static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1120 struct btrfs_fs_info *fs_info,
1121 u64 objectid,
e20d96d6 1122 struct btrfs_root *root)
3768f368
CM
1123{
1124 int ret;
db94535d 1125 u32 blocksize;
84234f3a 1126 u64 generation;
3768f368 1127
db94535d 1128 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1129 tree_root->sectorsize, tree_root->stripesize,
1130 root, fs_info, objectid);
3768f368
CM
1131 ret = btrfs_find_last_root(tree_root, objectid,
1132 &root->root_item, &root->root_key);
4df27c4d
YZ
1133 if (ret > 0)
1134 return -ENOENT;
3768f368
CM
1135 BUG_ON(ret);
1136
84234f3a 1137 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1138 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1139 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1140 blocksize, generation);
68433b73
CM
1141 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1142 free_extent_buffer(root->node);
1143 return -EIO;
1144 }
4df27c4d 1145 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1146 return 0;
1147}
1148
7237f183
YZ
1149static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1150 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1151{
1152 struct btrfs_root *root;
1153 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1154 struct extent_buffer *leaf;
e02119d5
CM
1155
1156 root = kzalloc(sizeof(*root), GFP_NOFS);
1157 if (!root)
7237f183 1158 return ERR_PTR(-ENOMEM);
e02119d5
CM
1159
1160 __setup_root(tree_root->nodesize, tree_root->leafsize,
1161 tree_root->sectorsize, tree_root->stripesize,
1162 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1163
1164 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1165 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1166 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1167 /*
1168 * log trees do not get reference counted because they go away
1169 * before a real commit is actually done. They do store pointers
1170 * to file data extents, and those reference counts still get
1171 * updated (along with back refs to the log tree).
1172 */
e02119d5
CM
1173 root->ref_cows = 0;
1174
5d4f98a2
YZ
1175 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1176 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
7237f183
YZ
1177 if (IS_ERR(leaf)) {
1178 kfree(root);
1179 return ERR_CAST(leaf);
1180 }
e02119d5 1181
5d4f98a2
YZ
1182 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1183 btrfs_set_header_bytenr(leaf, leaf->start);
1184 btrfs_set_header_generation(leaf, trans->transid);
1185 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1186 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1187 root->node = leaf;
e02119d5
CM
1188
1189 write_extent_buffer(root->node, root->fs_info->fsid,
1190 (unsigned long)btrfs_header_fsid(root->node),
1191 BTRFS_FSID_SIZE);
1192 btrfs_mark_buffer_dirty(root->node);
1193 btrfs_tree_unlock(root->node);
7237f183
YZ
1194 return root;
1195}
1196
1197int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1198 struct btrfs_fs_info *fs_info)
1199{
1200 struct btrfs_root *log_root;
1201
1202 log_root = alloc_log_tree(trans, fs_info);
1203 if (IS_ERR(log_root))
1204 return PTR_ERR(log_root);
1205 WARN_ON(fs_info->log_root_tree);
1206 fs_info->log_root_tree = log_root;
1207 return 0;
1208}
1209
1210int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1211 struct btrfs_root *root)
1212{
1213 struct btrfs_root *log_root;
1214 struct btrfs_inode_item *inode_item;
1215
1216 log_root = alloc_log_tree(trans, root->fs_info);
1217 if (IS_ERR(log_root))
1218 return PTR_ERR(log_root);
1219
1220 log_root->last_trans = trans->transid;
1221 log_root->root_key.offset = root->root_key.objectid;
1222
1223 inode_item = &log_root->root_item.inode;
1224 inode_item->generation = cpu_to_le64(1);
1225 inode_item->size = cpu_to_le64(3);
1226 inode_item->nlink = cpu_to_le32(1);
1227 inode_item->nbytes = cpu_to_le64(root->leafsize);
1228 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1229
5d4f98a2 1230 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1231
1232 WARN_ON(root->log_root);
1233 root->log_root = log_root;
1234 root->log_transid = 0;
257c62e1 1235 root->last_log_commit = 0;
e02119d5
CM
1236 return 0;
1237}
1238
1239struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1240 struct btrfs_key *location)
1241{
1242 struct btrfs_root *root;
1243 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1244 struct btrfs_path *path;
5f39d397 1245 struct extent_buffer *l;
84234f3a 1246 u64 generation;
db94535d 1247 u32 blocksize;
0f7d52f4
CM
1248 int ret = 0;
1249
5eda7b5e 1250 root = kzalloc(sizeof(*root), GFP_NOFS);
0cf6c620 1251 if (!root)
0f7d52f4 1252 return ERR_PTR(-ENOMEM);
0f7d52f4 1253 if (location->offset == (u64)-1) {
db94535d 1254 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1255 location->objectid, root);
1256 if (ret) {
0f7d52f4
CM
1257 kfree(root);
1258 return ERR_PTR(ret);
1259 }
13a8a7c8 1260 goto out;
0f7d52f4
CM
1261 }
1262
db94535d 1263 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1264 tree_root->sectorsize, tree_root->stripesize,
1265 root, fs_info, location->objectid);
0f7d52f4
CM
1266
1267 path = btrfs_alloc_path();
db5b493a
TI
1268 if (!path) {
1269 kfree(root);
1270 return ERR_PTR(-ENOMEM);
1271 }
0f7d52f4 1272 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1273 if (ret == 0) {
1274 l = path->nodes[0];
1275 read_extent_buffer(l, &root->root_item,
1276 btrfs_item_ptr_offset(l, path->slots[0]),
1277 sizeof(root->root_item));
1278 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1279 }
0f7d52f4
CM
1280 btrfs_free_path(path);
1281 if (ret) {
5e540f77 1282 kfree(root);
13a8a7c8
YZ
1283 if (ret > 0)
1284 ret = -ENOENT;
0f7d52f4
CM
1285 return ERR_PTR(ret);
1286 }
13a8a7c8 1287
84234f3a 1288 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1289 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1290 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1291 blocksize, generation);
5d4f98a2 1292 root->commit_root = btrfs_root_node(root);
0f7d52f4 1293 BUG_ON(!root->node);
13a8a7c8 1294out:
08fe4db1 1295 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1296 root->ref_cows = 1;
08fe4db1
LZ
1297 btrfs_check_and_init_root_item(&root->root_item);
1298 }
13a8a7c8 1299
5eda7b5e
CM
1300 return root;
1301}
1302
edbd8d4e
CM
1303struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1304 struct btrfs_key *location)
5eda7b5e
CM
1305{
1306 struct btrfs_root *root;
1307 int ret;
1308
edbd8d4e
CM
1309 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1310 return fs_info->tree_root;
1311 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1312 return fs_info->extent_root;
8f18cf13
CM
1313 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1314 return fs_info->chunk_root;
1315 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1316 return fs_info->dev_root;
0403e47e
YZ
1317 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1318 return fs_info->csum_root;
4df27c4d
YZ
1319again:
1320 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1321 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1322 (unsigned long)location->objectid);
4df27c4d 1323 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1324 if (root)
1325 return root;
1326
e02119d5 1327 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1328 if (IS_ERR(root))
1329 return root;
3394e160 1330
581bb050 1331 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1332 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1333 GFP_NOFS);
35a30d7c
DS
1334 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1335 ret = -ENOMEM;
581bb050 1336 goto fail;
35a30d7c 1337 }
581bb050
LZ
1338
1339 btrfs_init_free_ino_ctl(root);
1340 mutex_init(&root->fs_commit_mutex);
1341 spin_lock_init(&root->cache_lock);
1342 init_waitqueue_head(&root->cache_wait);
1343
0ee5dc67 1344 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1345 if (ret)
1346 goto fail;
3394e160 1347
d68fc57b
YZ
1348 if (btrfs_root_refs(&root->root_item) == 0) {
1349 ret = -ENOENT;
1350 goto fail;
1351 }
1352
1353 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1354 if (ret < 0)
1355 goto fail;
1356 if (ret == 0)
1357 root->orphan_item_inserted = 1;
1358
4df27c4d
YZ
1359 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1360 if (ret)
1361 goto fail;
1362
1363 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1364 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1365 (unsigned long)root->root_key.objectid,
0f7d52f4 1366 root);
d68fc57b 1367 if (ret == 0)
4df27c4d 1368 root->in_radix = 1;
d68fc57b 1369
4df27c4d
YZ
1370 spin_unlock(&fs_info->fs_roots_radix_lock);
1371 radix_tree_preload_end();
0f7d52f4 1372 if (ret) {
4df27c4d
YZ
1373 if (ret == -EEXIST) {
1374 free_fs_root(root);
1375 goto again;
1376 }
1377 goto fail;
0f7d52f4 1378 }
4df27c4d
YZ
1379
1380 ret = btrfs_find_dead_roots(fs_info->tree_root,
1381 root->root_key.objectid);
1382 WARN_ON(ret);
edbd8d4e 1383 return root;
4df27c4d
YZ
1384fail:
1385 free_fs_root(root);
1386 return ERR_PTR(ret);
edbd8d4e
CM
1387}
1388
04160088
CM
1389static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1390{
1391 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1392 int ret = 0;
04160088
CM
1393 struct btrfs_device *device;
1394 struct backing_dev_info *bdi;
b7967db7 1395
1f78160c
XG
1396 rcu_read_lock();
1397 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1398 if (!device->bdev)
1399 continue;
04160088
CM
1400 bdi = blk_get_backing_dev_info(device->bdev);
1401 if (bdi && bdi_congested(bdi, bdi_bits)) {
1402 ret = 1;
1403 break;
1404 }
1405 }
1f78160c 1406 rcu_read_unlock();
04160088
CM
1407 return ret;
1408}
1409
ad081f14
JA
1410/*
1411 * If this fails, caller must call bdi_destroy() to get rid of the
1412 * bdi again.
1413 */
04160088
CM
1414static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1415{
ad081f14
JA
1416 int err;
1417
1418 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1419 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1420 if (err)
1421 return err;
1422
4575c9cc 1423 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1424 bdi->congested_fn = btrfs_congested_fn;
1425 bdi->congested_data = info;
1426 return 0;
1427}
1428
ce9adaa5
CM
1429static int bio_ready_for_csum(struct bio *bio)
1430{
1431 u64 length = 0;
1432 u64 buf_len = 0;
1433 u64 start = 0;
1434 struct page *page;
1435 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1436 struct bio_vec *bvec;
1437 int i;
1438 int ret;
1439
1440 bio_for_each_segment(bvec, bio, i) {
1441 page = bvec->bv_page;
1442 if (page->private == EXTENT_PAGE_PRIVATE) {
1443 length += bvec->bv_len;
1444 continue;
1445 }
1446 if (!page->private) {
1447 length += bvec->bv_len;
1448 continue;
1449 }
1450 length = bvec->bv_len;
1451 buf_len = page->private >> 2;
1452 start = page_offset(page) + bvec->bv_offset;
1453 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1454 }
1455 /* are we fully contained in this bio? */
1456 if (buf_len <= length)
1457 return 1;
1458
1459 ret = extent_range_uptodate(io_tree, start + length,
1460 start + buf_len - 1);
ce9adaa5
CM
1461 return ret;
1462}
1463
8b712842
CM
1464/*
1465 * called by the kthread helper functions to finally call the bio end_io
1466 * functions. This is where read checksum verification actually happens
1467 */
1468static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1469{
ce9adaa5 1470 struct bio *bio;
8b712842
CM
1471 struct end_io_wq *end_io_wq;
1472 struct btrfs_fs_info *fs_info;
ce9adaa5 1473 int error;
ce9adaa5 1474
8b712842
CM
1475 end_io_wq = container_of(work, struct end_io_wq, work);
1476 bio = end_io_wq->bio;
1477 fs_info = end_io_wq->info;
ce9adaa5 1478
cad321ad 1479 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1480 * be checksummed at once. This makes sure the entire block is in
1481 * ram and up to date before trying to verify things. For
1482 * blocksize <= pagesize, it is basically a noop
1483 */
7b6d91da 1484 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1485 !bio_ready_for_csum(bio)) {
d20f7043 1486 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1487 &end_io_wq->work);
1488 return;
1489 }
1490 error = end_io_wq->error;
1491 bio->bi_private = end_io_wq->private;
1492 bio->bi_end_io = end_io_wq->end_io;
1493 kfree(end_io_wq);
8b712842 1494 bio_endio(bio, error);
44b8bd7e
CM
1495}
1496
a74a4b97
CM
1497static int cleaner_kthread(void *arg)
1498{
1499 struct btrfs_root *root = arg;
1500
1501 do {
a74a4b97 1502 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1503
1504 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1505 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1506 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1507 btrfs_clean_old_snapshots(root);
1508 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1509 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1510 }
a74a4b97
CM
1511
1512 if (freezing(current)) {
1513 refrigerator();
1514 } else {
a74a4b97 1515 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1516 if (!kthread_should_stop())
1517 schedule();
a74a4b97
CM
1518 __set_current_state(TASK_RUNNING);
1519 }
1520 } while (!kthread_should_stop());
1521 return 0;
1522}
1523
1524static int transaction_kthread(void *arg)
1525{
1526 struct btrfs_root *root = arg;
1527 struct btrfs_trans_handle *trans;
1528 struct btrfs_transaction *cur;
8929ecfa 1529 u64 transid;
a74a4b97
CM
1530 unsigned long now;
1531 unsigned long delay;
1532 int ret;
1533
1534 do {
a74a4b97
CM
1535 delay = HZ * 30;
1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1538
a4abeea4 1539 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1540 cur = root->fs_info->running_transaction;
1541 if (!cur) {
a4abeea4 1542 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1543 goto sleep;
1544 }
31153d81 1545
a74a4b97 1546 now = get_seconds();
8929ecfa
YZ
1547 if (!cur->blocked &&
1548 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1549 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1550 delay = HZ * 5;
1551 goto sleep;
1552 }
8929ecfa 1553 transid = cur->transid;
a4abeea4 1554 spin_unlock(&root->fs_info->trans_lock);
56bec294 1555
7a7eaa40 1556 trans = btrfs_join_transaction(root);
3612b495 1557 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1558 if (transid == trans->transid) {
1559 ret = btrfs_commit_transaction(trans, root);
1560 BUG_ON(ret);
1561 } else {
1562 btrfs_end_transaction(trans, root);
1563 }
a74a4b97
CM
1564sleep:
1565 wake_up_process(root->fs_info->cleaner_kthread);
1566 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1567
1568 if (freezing(current)) {
1569 refrigerator();
1570 } else {
a74a4b97 1571 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1572 if (!kthread_should_stop() &&
1573 !btrfs_transaction_blocked(root->fs_info))
1574 schedule_timeout(delay);
a74a4b97
CM
1575 __set_current_state(TASK_RUNNING);
1576 }
1577 } while (!kthread_should_stop());
1578 return 0;
1579}
1580
8a4b83cc 1581struct btrfs_root *open_ctree(struct super_block *sb,
dfe25020
CM
1582 struct btrfs_fs_devices *fs_devices,
1583 char *options)
2e635a27 1584{
db94535d
CM
1585 u32 sectorsize;
1586 u32 nodesize;
1587 u32 leafsize;
1588 u32 blocksize;
87ee04eb 1589 u32 stripesize;
84234f3a 1590 u64 generation;
f2b636e8 1591 u64 features;
3de4586c 1592 struct btrfs_key location;
a061fc8d 1593 struct buffer_head *bh;
e02119d5 1594 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
e20d96d6 1595 GFP_NOFS);
d20f7043
CM
1596 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1597 GFP_NOFS);
450ba0ea 1598 struct btrfs_root *tree_root = btrfs_sb(sb);
4891aca2 1599 struct btrfs_fs_info *fs_info = NULL;
e02119d5 1600 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
0b86a832 1601 GFP_NOFS);
e02119d5 1602 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
0b86a832 1603 GFP_NOFS);
e02119d5
CM
1604 struct btrfs_root *log_tree_root;
1605
eb60ceac 1606 int ret;
e58ca020 1607 int err = -EINVAL;
4543df7e 1608
2c90e5d6 1609 struct btrfs_super_block *disk_super;
8790d502 1610
4891aca2 1611 if (!extent_root || !tree_root || !tree_root->fs_info ||
d20f7043 1612 !chunk_root || !dev_root || !csum_root) {
39279cc3
CM
1613 err = -ENOMEM;
1614 goto fail;
1615 }
4891aca2 1616 fs_info = tree_root->fs_info;
76dda93c
YZ
1617
1618 ret = init_srcu_struct(&fs_info->subvol_srcu);
1619 if (ret) {
1620 err = ret;
1621 goto fail;
1622 }
1623
1624 ret = setup_bdi(fs_info, &fs_info->bdi);
1625 if (ret) {
1626 err = ret;
1627 goto fail_srcu;
1628 }
1629
1630 fs_info->btree_inode = new_inode(sb);
1631 if (!fs_info->btree_inode) {
1632 err = -ENOMEM;
1633 goto fail_bdi;
1634 }
1635
a6591715 1636 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1637
76dda93c 1638 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1639 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1640 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1641 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1642 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1643 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1644 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1645 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1646 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1647 spin_lock_init(&fs_info->trans_lock);
31153d81 1648 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1649 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1650 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1651 spin_lock_init(&fs_info->defrag_inodes_lock);
7585717f 1652 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1653
58176a96 1654 init_completion(&fs_info->kobj_unregister);
9f5fae2f
CM
1655 fs_info->tree_root = tree_root;
1656 fs_info->extent_root = extent_root;
d20f7043 1657 fs_info->csum_root = csum_root;
0b86a832
CM
1658 fs_info->chunk_root = chunk_root;
1659 fs_info->dev_root = dev_root;
8a4b83cc 1660 fs_info->fs_devices = fs_devices;
0b86a832 1661 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1662 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1663 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1664 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1665 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1666 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1667 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1668 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1669 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1670 mutex_init(&fs_info->durable_block_rsv_mutex);
cb03c743 1671 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1672 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1673 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1674 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1675 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1676 fs_info->sb = sb;
6f568d35 1677 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1678 fs_info->metadata_ratio = 0;
4cb5300b 1679 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1680 fs_info->trans_no_join = 0;
c8b97818 1681
b34b086c
CM
1682 fs_info->thread_pool_size = min_t(unsigned long,
1683 num_online_cpus() + 2, 8);
0afbaf8c 1684
3eaa2885
CM
1685 INIT_LIST_HEAD(&fs_info->ordered_extents);
1686 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1687 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1688 GFP_NOFS);
1689 if (!fs_info->delayed_root) {
1690 err = -ENOMEM;
1691 goto fail_iput;
1692 }
1693 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1694
a2de733c
AJ
1695 mutex_init(&fs_info->scrub_lock);
1696 atomic_set(&fs_info->scrubs_running, 0);
1697 atomic_set(&fs_info->scrub_pause_req, 0);
1698 atomic_set(&fs_info->scrubs_paused, 0);
1699 atomic_set(&fs_info->scrub_cancel_req, 0);
1700 init_waitqueue_head(&fs_info->scrub_pause_wait);
1701 init_rwsem(&fs_info->scrub_super_lock);
1702 fs_info->scrub_workers_refcnt = 0;
a2de733c 1703
a061fc8d
CM
1704 sb->s_blocksize = 4096;
1705 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 1706 sb->s_bdi = &fs_info->bdi;
a061fc8d 1707
76dda93c
YZ
1708 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1709 fs_info->btree_inode->i_nlink = 1;
0afbaf8c
CM
1710 /*
1711 * we set the i_size on the btree inode to the max possible int.
1712 * the real end of the address space is determined by all of
1713 * the devices in the system
1714 */
1715 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 1716 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
1717 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1718
5d4f98a2 1719 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 1720 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 1721 fs_info->btree_inode->i_mapping);
a8067e02 1722 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
1723
1724 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 1725
76dda93c
YZ
1726 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1727 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1728 sizeof(struct btrfs_key));
1729 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 1730 insert_inode_hash(fs_info->btree_inode);
76dda93c 1731
0f9dd46c 1732 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 1733 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 1734
11833d66 1735 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 1736 fs_info->btree_inode->i_mapping);
11833d66 1737 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 1738 fs_info->btree_inode->i_mapping);
11833d66 1739 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 1740 fs_info->do_barriers = 1;
e18e4809 1741
39279cc3 1742
5a3f23d5 1743 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 1744 mutex_init(&fs_info->tree_log_mutex);
925baedd 1745 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
1746 mutex_init(&fs_info->transaction_kthread_mutex);
1747 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 1748 mutex_init(&fs_info->volume_mutex);
276e680d 1749 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 1750 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 1751 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
1752
1753 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1754 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1755
e6dcd2dc 1756 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 1757 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 1758 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 1759 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 1760
0b86a832 1761 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 1762 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 1763
a512bbf8 1764 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
1765 if (!bh) {
1766 err = -EINVAL;
16cdcec7 1767 goto fail_alloc;
20b45077 1768 }
39279cc3 1769
a061fc8d 1770 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
2d69a0f8
YZ
1771 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1772 sizeof(fs_info->super_for_commit));
a061fc8d 1773 brelse(bh);
5f39d397 1774
a061fc8d 1775 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
0b86a832 1776
5f39d397 1777 disk_super = &fs_info->super_copy;
0f7d52f4 1778 if (!btrfs_super_root(disk_super))
16cdcec7 1779 goto fail_alloc;
0f7d52f4 1780
acce952b 1781 /* check FS state, whether FS is broken. */
1782 fs_info->fs_state |= btrfs_super_flags(disk_super);
1783
1784 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1785
75e7cb7f
LB
1786 /*
1787 * In the long term, we'll store the compression type in the super
1788 * block, and it'll be used for per file compression control.
1789 */
1790 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1791
2b82032c
YZ
1792 ret = btrfs_parse_options(tree_root, options);
1793 if (ret) {
1794 err = ret;
16cdcec7 1795 goto fail_alloc;
2b82032c 1796 }
dfe25020 1797
f2b636e8
JB
1798 features = btrfs_super_incompat_flags(disk_super) &
1799 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1800 if (features) {
1801 printk(KERN_ERR "BTRFS: couldn't mount because of "
1802 "unsupported optional features (%Lx).\n",
21380931 1803 (unsigned long long)features);
f2b636e8 1804 err = -EINVAL;
16cdcec7 1805 goto fail_alloc;
f2b636e8
JB
1806 }
1807
5d4f98a2 1808 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
1809 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1810 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1811 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1812 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 1813
f2b636e8
JB
1814 features = btrfs_super_compat_ro_flags(disk_super) &
1815 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1816 if (!(sb->s_flags & MS_RDONLY) && features) {
1817 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1818 "unsupported option features (%Lx).\n",
21380931 1819 (unsigned long long)features);
f2b636e8 1820 err = -EINVAL;
16cdcec7 1821 goto fail_alloc;
f2b636e8 1822 }
61d92c32
CM
1823
1824 btrfs_init_workers(&fs_info->generic_worker,
1825 "genwork", 1, NULL);
1826
5443be45 1827 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
1828 fs_info->thread_pool_size,
1829 &fs_info->generic_worker);
c8b97818 1830
771ed689 1831 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
1832 fs_info->thread_pool_size,
1833 &fs_info->generic_worker);
771ed689 1834
5443be45 1835 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 1836 min_t(u64, fs_devices->num_devices,
61d92c32
CM
1837 fs_info->thread_pool_size),
1838 &fs_info->generic_worker);
61b49440 1839
bab39bf9
JB
1840 btrfs_init_workers(&fs_info->caching_workers, "cache",
1841 2, &fs_info->generic_worker);
1842
61b49440
CM
1843 /* a higher idle thresh on the submit workers makes it much more
1844 * likely that bios will be send down in a sane order to the
1845 * devices
1846 */
1847 fs_info->submit_workers.idle_thresh = 64;
53863232 1848
771ed689 1849 fs_info->workers.idle_thresh = 16;
4a69a410 1850 fs_info->workers.ordered = 1;
61b49440 1851
771ed689
CM
1852 fs_info->delalloc_workers.idle_thresh = 2;
1853 fs_info->delalloc_workers.ordered = 1;
1854
61d92c32
CM
1855 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1856 &fs_info->generic_worker);
5443be45 1857 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
1858 fs_info->thread_pool_size,
1859 &fs_info->generic_worker);
d20f7043 1860 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
1861 fs_info->thread_pool_size,
1862 &fs_info->generic_worker);
cad321ad 1863 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
1864 "endio-meta-write", fs_info->thread_pool_size,
1865 &fs_info->generic_worker);
5443be45 1866 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
1867 fs_info->thread_pool_size,
1868 &fs_info->generic_worker);
0cb59c99
JB
1869 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1870 1, &fs_info->generic_worker);
16cdcec7
MX
1871 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
1872 fs_info->thread_pool_size,
1873 &fs_info->generic_worker);
61b49440
CM
1874
1875 /*
1876 * endios are largely parallel and should have a very
1877 * low idle thresh
1878 */
1879 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
1880 fs_info->endio_meta_workers.idle_thresh = 4;
1881
9042846b
CM
1882 fs_info->endio_write_workers.idle_thresh = 2;
1883 fs_info->endio_meta_write_workers.idle_thresh = 2;
1884
4543df7e 1885 btrfs_start_workers(&fs_info->workers, 1);
61d92c32 1886 btrfs_start_workers(&fs_info->generic_worker, 1);
1cc127b5 1887 btrfs_start_workers(&fs_info->submit_workers, 1);
771ed689 1888 btrfs_start_workers(&fs_info->delalloc_workers, 1);
247e743c 1889 btrfs_start_workers(&fs_info->fixup_workers, 1);
9042846b
CM
1890 btrfs_start_workers(&fs_info->endio_workers, 1);
1891 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1892 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1893 btrfs_start_workers(&fs_info->endio_write_workers, 1);
0cb59c99 1894 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
16cdcec7 1895 btrfs_start_workers(&fs_info->delayed_workers, 1);
bab39bf9 1896 btrfs_start_workers(&fs_info->caching_workers, 1);
4543df7e 1897
4575c9cc 1898 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
1899 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1900 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 1901
db94535d
CM
1902 nodesize = btrfs_super_nodesize(disk_super);
1903 leafsize = btrfs_super_leafsize(disk_super);
1904 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 1905 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
1906 tree_root->nodesize = nodesize;
1907 tree_root->leafsize = leafsize;
1908 tree_root->sectorsize = sectorsize;
87ee04eb 1909 tree_root->stripesize = stripesize;
a061fc8d
CM
1910
1911 sb->s_blocksize = sectorsize;
1912 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 1913
39279cc3
CM
1914 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1915 sizeof(disk_super->magic))) {
d397712b 1916 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
1917 goto fail_sb_buffer;
1918 }
19c00ddc 1919
925baedd 1920 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 1921 ret = btrfs_read_sys_array(tree_root);
925baedd 1922 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 1923 if (ret) {
d397712b
CM
1924 printk(KERN_WARNING "btrfs: failed to read the system "
1925 "array on %s\n", sb->s_id);
5d4f98a2 1926 goto fail_sb_buffer;
84eed90f 1927 }
0b86a832
CM
1928
1929 blocksize = btrfs_level_size(tree_root,
1930 btrfs_super_chunk_root_level(disk_super));
84234f3a 1931 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
1932
1933 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1934 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1935
1936 chunk_root->node = read_tree_block(chunk_root,
1937 btrfs_super_chunk_root(disk_super),
84234f3a 1938 blocksize, generation);
0b86a832 1939 BUG_ON(!chunk_root->node);
83121942
DW
1940 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1941 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1942 sb->s_id);
1943 goto fail_chunk_root;
1944 }
5d4f98a2
YZ
1945 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1946 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 1947
e17cade2 1948 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
1949 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1950 BTRFS_UUID_SIZE);
e17cade2 1951
925baedd 1952 mutex_lock(&fs_info->chunk_mutex);
0b86a832 1953 ret = btrfs_read_chunk_tree(chunk_root);
925baedd 1954 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 1955 if (ret) {
d397712b
CM
1956 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1957 sb->s_id);
2b82032c
YZ
1958 goto fail_chunk_root;
1959 }
0b86a832 1960
dfe25020
CM
1961 btrfs_close_extra_devices(fs_devices);
1962
db94535d
CM
1963 blocksize = btrfs_level_size(tree_root,
1964 btrfs_super_root_level(disk_super));
84234f3a 1965 generation = btrfs_super_generation(disk_super);
0b86a832 1966
e20d96d6 1967 tree_root->node = read_tree_block(tree_root,
db94535d 1968 btrfs_super_root(disk_super),
84234f3a 1969 blocksize, generation);
39279cc3 1970 if (!tree_root->node)
2b82032c 1971 goto fail_chunk_root;
83121942
DW
1972 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1973 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1974 sb->s_id);
1975 goto fail_tree_root;
1976 }
5d4f98a2
YZ
1977 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1978 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
1979
1980 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 1981 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 1982 if (ret)
39279cc3 1983 goto fail_tree_root;
0b86a832
CM
1984 extent_root->track_dirty = 1;
1985
1986 ret = find_and_setup_root(tree_root, fs_info,
1987 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832
CM
1988 if (ret)
1989 goto fail_extent_root;
5d4f98a2 1990 dev_root->track_dirty = 1;
3768f368 1991
d20f7043
CM
1992 ret = find_and_setup_root(tree_root, fs_info,
1993 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1994 if (ret)
5d4f98a2 1995 goto fail_dev_root;
d20f7043
CM
1996
1997 csum_root->track_dirty = 1;
1998
8929ecfa
YZ
1999 fs_info->generation = generation;
2000 fs_info->last_trans_committed = generation;
2001 fs_info->data_alloc_profile = (u64)-1;
2002 fs_info->metadata_alloc_profile = (u64)-1;
2003 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2004
c59021f8 2005 ret = btrfs_init_space_info(fs_info);
2006 if (ret) {
2007 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2008 goto fail_block_groups;
2009 }
2010
1b1d1f66
JB
2011 ret = btrfs_read_block_groups(extent_root);
2012 if (ret) {
2013 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2014 goto fail_block_groups;
2015 }
9078a3e1 2016
a74a4b97
CM
2017 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2018 "btrfs-cleaner");
57506d50 2019 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2020 goto fail_block_groups;
a74a4b97
CM
2021
2022 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2023 tree_root,
2024 "btrfs-transaction");
57506d50 2025 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2026 goto fail_cleaner;
a74a4b97 2027
c289811c
CM
2028 if (!btrfs_test_opt(tree_root, SSD) &&
2029 !btrfs_test_opt(tree_root, NOSSD) &&
2030 !fs_info->fs_devices->rotating) {
2031 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2032 "mode\n");
2033 btrfs_set_opt(fs_info->mount_opt, SSD);
2034 }
2035
acce952b 2036 /* do not make disk changes in broken FS */
2037 if (btrfs_super_log_root(disk_super) != 0 &&
2038 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2039 u64 bytenr = btrfs_super_log_root(disk_super);
2040
7c2ca468 2041 if (fs_devices->rw_devices == 0) {
d397712b
CM
2042 printk(KERN_WARNING "Btrfs log replay required "
2043 "on RO media\n");
7c2ca468
CM
2044 err = -EIO;
2045 goto fail_trans_kthread;
2046 }
e02119d5
CM
2047 blocksize =
2048 btrfs_level_size(tree_root,
2049 btrfs_super_log_root_level(disk_super));
d18a2c44 2050
676e4c86
DC
2051 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2052 if (!log_tree_root) {
2053 err = -ENOMEM;
2054 goto fail_trans_kthread;
2055 }
e02119d5
CM
2056
2057 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2058 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2059
2060 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2061 blocksize,
2062 generation + 1);
e02119d5
CM
2063 ret = btrfs_recover_log_trees(log_tree_root);
2064 BUG_ON(ret);
e556ce2c
YZ
2065
2066 if (sb->s_flags & MS_RDONLY) {
2067 ret = btrfs_commit_super(tree_root);
2068 BUG_ON(ret);
2069 }
e02119d5 2070 }
1a40e23b 2071
76dda93c
YZ
2072 ret = btrfs_find_orphan_roots(tree_root);
2073 BUG_ON(ret);
2074
7c2ca468 2075 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2076 ret = btrfs_cleanup_fs_roots(fs_info);
2077 BUG_ON(ret);
2078
5d4f98a2 2079 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2080 if (ret < 0) {
2081 printk(KERN_WARNING
2082 "btrfs: failed to recover relocation\n");
2083 err = -EINVAL;
2084 goto fail_trans_kthread;
2085 }
7c2ca468 2086 }
1a40e23b 2087
3de4586c
CM
2088 location.objectid = BTRFS_FS_TREE_OBJECTID;
2089 location.type = BTRFS_ROOT_ITEM_KEY;
2090 location.offset = (u64)-1;
2091
3de4586c
CM
2092 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2093 if (!fs_info->fs_root)
7c2ca468 2094 goto fail_trans_kthread;
3140c9a3
DC
2095 if (IS_ERR(fs_info->fs_root)) {
2096 err = PTR_ERR(fs_info->fs_root);
2097 goto fail_trans_kthread;
2098 }
c289811c 2099
e3acc2a6
JB
2100 if (!(sb->s_flags & MS_RDONLY)) {
2101 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2102 err = btrfs_orphan_cleanup(fs_info->fs_root);
2103 if (!err)
2104 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2105 up_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2106 if (err) {
2107 close_ctree(tree_root);
2108 return ERR_PTR(err);
2109 }
e3acc2a6
JB
2110 }
2111
0f7d52f4 2112 return tree_root;
39279cc3 2113
7c2ca468
CM
2114fail_trans_kthread:
2115 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2116fail_cleaner:
a74a4b97 2117 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2118
2119 /*
2120 * make sure we're done with the btree inode before we stop our
2121 * kthreads
2122 */
2123 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2124 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2125
1b1d1f66
JB
2126fail_block_groups:
2127 btrfs_free_block_groups(fs_info);
d20f7043 2128 free_extent_buffer(csum_root->node);
5d4f98a2
YZ
2129 free_extent_buffer(csum_root->commit_root);
2130fail_dev_root:
2131 free_extent_buffer(dev_root->node);
2132 free_extent_buffer(dev_root->commit_root);
0b86a832
CM
2133fail_extent_root:
2134 free_extent_buffer(extent_root->node);
5d4f98a2 2135 free_extent_buffer(extent_root->commit_root);
39279cc3 2136fail_tree_root:
5f39d397 2137 free_extent_buffer(tree_root->node);
5d4f98a2 2138 free_extent_buffer(tree_root->commit_root);
2b82032c
YZ
2139fail_chunk_root:
2140 free_extent_buffer(chunk_root->node);
5d4f98a2 2141 free_extent_buffer(chunk_root->commit_root);
39279cc3 2142fail_sb_buffer:
61d92c32 2143 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 2144 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2145 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2146 btrfs_stop_workers(&fs_info->workers);
2147 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2148 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2149 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2150 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2151 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2152 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2153 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2154 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7
MX
2155fail_alloc:
2156 kfree(fs_info->delayed_root);
4543df7e 2157fail_iput:
7c2ca468 2158 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2159 iput(fs_info->btree_inode);
7e662854 2160
dfe25020 2161 btrfs_close_devices(fs_info->fs_devices);
84eed90f 2162 btrfs_mapping_tree_free(&fs_info->mapping_tree);
ad081f14 2163fail_bdi:
7e662854 2164 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2165fail_srcu:
2166 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2167fail:
39279cc3
CM
2168 kfree(extent_root);
2169 kfree(tree_root);
2170 kfree(fs_info);
83afeac4
JM
2171 kfree(chunk_root);
2172 kfree(dev_root);
d20f7043 2173 kfree(csum_root);
39279cc3 2174 return ERR_PTR(err);
eb60ceac
CM
2175}
2176
f2984462
CM
2177static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2178{
2179 char b[BDEVNAME_SIZE];
2180
2181 if (uptodate) {
2182 set_buffer_uptodate(bh);
2183 } else {
7a36ddec 2184 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2185 "I/O error on %s\n",
2186 bdevname(bh->b_bdev, b));
1259ab75
CM
2187 /* note, we dont' set_buffer_write_io_error because we have
2188 * our own ways of dealing with the IO errors
2189 */
f2984462
CM
2190 clear_buffer_uptodate(bh);
2191 }
2192 unlock_buffer(bh);
2193 put_bh(bh);
2194}
2195
a512bbf8
YZ
2196struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2197{
2198 struct buffer_head *bh;
2199 struct buffer_head *latest = NULL;
2200 struct btrfs_super_block *super;
2201 int i;
2202 u64 transid = 0;
2203 u64 bytenr;
2204
2205 /* we would like to check all the supers, but that would make
2206 * a btrfs mount succeed after a mkfs from a different FS.
2207 * So, we need to add a special mount option to scan for
2208 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2209 */
2210 for (i = 0; i < 1; i++) {
2211 bytenr = btrfs_sb_offset(i);
2212 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2213 break;
2214 bh = __bread(bdev, bytenr / 4096, 4096);
2215 if (!bh)
2216 continue;
2217
2218 super = (struct btrfs_super_block *)bh->b_data;
2219 if (btrfs_super_bytenr(super) != bytenr ||
2220 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2221 sizeof(super->magic))) {
2222 brelse(bh);
2223 continue;
2224 }
2225
2226 if (!latest || btrfs_super_generation(super) > transid) {
2227 brelse(latest);
2228 latest = bh;
2229 transid = btrfs_super_generation(super);
2230 } else {
2231 brelse(bh);
2232 }
2233 }
2234 return latest;
2235}
2236
4eedeb75
HH
2237/*
2238 * this should be called twice, once with wait == 0 and
2239 * once with wait == 1. When wait == 0 is done, all the buffer heads
2240 * we write are pinned.
2241 *
2242 * They are released when wait == 1 is done.
2243 * max_mirrors must be the same for both runs, and it indicates how
2244 * many supers on this one device should be written.
2245 *
2246 * max_mirrors == 0 means to write them all.
2247 */
a512bbf8
YZ
2248static int write_dev_supers(struct btrfs_device *device,
2249 struct btrfs_super_block *sb,
2250 int do_barriers, int wait, int max_mirrors)
2251{
2252 struct buffer_head *bh;
2253 int i;
2254 int ret;
2255 int errors = 0;
2256 u32 crc;
2257 u64 bytenr;
2258 int last_barrier = 0;
2259
2260 if (max_mirrors == 0)
2261 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2262
2263 /* make sure only the last submit_bh does a barrier */
2264 if (do_barriers) {
2265 for (i = 0; i < max_mirrors; i++) {
2266 bytenr = btrfs_sb_offset(i);
2267 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2268 device->total_bytes)
2269 break;
2270 last_barrier = i;
2271 }
2272 }
2273
2274 for (i = 0; i < max_mirrors; i++) {
2275 bytenr = btrfs_sb_offset(i);
2276 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2277 break;
2278
2279 if (wait) {
2280 bh = __find_get_block(device->bdev, bytenr / 4096,
2281 BTRFS_SUPER_INFO_SIZE);
2282 BUG_ON(!bh);
a512bbf8 2283 wait_on_buffer(bh);
4eedeb75
HH
2284 if (!buffer_uptodate(bh))
2285 errors++;
2286
2287 /* drop our reference */
2288 brelse(bh);
2289
2290 /* drop the reference from the wait == 0 run */
2291 brelse(bh);
2292 continue;
a512bbf8
YZ
2293 } else {
2294 btrfs_set_super_bytenr(sb, bytenr);
2295
2296 crc = ~(u32)0;
2297 crc = btrfs_csum_data(NULL, (char *)sb +
2298 BTRFS_CSUM_SIZE, crc,
2299 BTRFS_SUPER_INFO_SIZE -
2300 BTRFS_CSUM_SIZE);
2301 btrfs_csum_final(crc, sb->csum);
2302
4eedeb75
HH
2303 /*
2304 * one reference for us, and we leave it for the
2305 * caller
2306 */
a512bbf8
YZ
2307 bh = __getblk(device->bdev, bytenr / 4096,
2308 BTRFS_SUPER_INFO_SIZE);
2309 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2310
4eedeb75 2311 /* one reference for submit_bh */
a512bbf8 2312 get_bh(bh);
4eedeb75
HH
2313
2314 set_buffer_uptodate(bh);
a512bbf8
YZ
2315 lock_buffer(bh);
2316 bh->b_end_io = btrfs_end_buffer_write_sync;
2317 }
2318
c3b9a62c
CH
2319 if (i == last_barrier && do_barriers)
2320 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2321 else
ffbd517d 2322 ret = submit_bh(WRITE_SYNC, bh);
a512bbf8 2323
4eedeb75 2324 if (ret)
a512bbf8 2325 errors++;
a512bbf8
YZ
2326 }
2327 return errors < i ? 0 : -1;
2328}
2329
2330int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2331{
e5e9a520 2332 struct list_head *head;
f2984462 2333 struct btrfs_device *dev;
a061fc8d 2334 struct btrfs_super_block *sb;
f2984462 2335 struct btrfs_dev_item *dev_item;
f2984462
CM
2336 int ret;
2337 int do_barriers;
a236aed1
CM
2338 int max_errors;
2339 int total_errors = 0;
a061fc8d 2340 u64 flags;
f2984462 2341
a236aed1 2342 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
f2984462
CM
2343 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2344
a061fc8d
CM
2345 sb = &root->fs_info->super_for_commit;
2346 dev_item = &sb->dev_item;
e5e9a520 2347
174ba509 2348 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2349 head = &root->fs_info->fs_devices->devices;
1f78160c 2350 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2351 if (!dev->bdev) {
2352 total_errors++;
2353 continue;
2354 }
2b82032c 2355 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2356 continue;
2357
2b82032c 2358 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2359 btrfs_set_stack_device_type(dev_item, dev->type);
2360 btrfs_set_stack_device_id(dev_item, dev->devid);
2361 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2362 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2363 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2364 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2365 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2366 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2367 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2368
a061fc8d
CM
2369 flags = btrfs_super_flags(sb);
2370 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2371
a512bbf8 2372 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2373 if (ret)
2374 total_errors++;
f2984462 2375 }
a236aed1 2376 if (total_errors > max_errors) {
d397712b
CM
2377 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2378 total_errors);
a236aed1
CM
2379 BUG();
2380 }
f2984462 2381
a512bbf8 2382 total_errors = 0;
1f78160c 2383 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2384 if (!dev->bdev)
2385 continue;
2b82032c 2386 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2387 continue;
2388
a512bbf8
YZ
2389 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2390 if (ret)
2391 total_errors++;
f2984462 2392 }
174ba509 2393 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2394 if (total_errors > max_errors) {
d397712b
CM
2395 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2396 total_errors);
a236aed1
CM
2397 BUG();
2398 }
f2984462
CM
2399 return 0;
2400}
2401
a512bbf8
YZ
2402int write_ctree_super(struct btrfs_trans_handle *trans,
2403 struct btrfs_root *root, int max_mirrors)
eb60ceac 2404{
e66f709b 2405 int ret;
5f39d397 2406
a512bbf8 2407 ret = write_all_supers(root, max_mirrors);
5f39d397 2408 return ret;
cfaa7295
CM
2409}
2410
5eda7b5e 2411int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2412{
4df27c4d 2413 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2414 radix_tree_delete(&fs_info->fs_roots_radix,
2415 (unsigned long)root->root_key.objectid);
4df27c4d 2416 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2417
2418 if (btrfs_root_refs(&root->root_item) == 0)
2419 synchronize_srcu(&fs_info->subvol_srcu);
2420
581bb050
LZ
2421 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2422 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2423 free_fs_root(root);
2424 return 0;
2425}
2426
2427static void free_fs_root(struct btrfs_root *root)
2428{
82d5902d 2429 iput(root->cache_inode);
4df27c4d 2430 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2431 if (root->anon_dev)
2432 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2433 free_extent_buffer(root->node);
2434 free_extent_buffer(root->commit_root);
581bb050
LZ
2435 kfree(root->free_ino_ctl);
2436 kfree(root->free_ino_pinned);
d397712b 2437 kfree(root->name);
2619ba1f 2438 kfree(root);
2619ba1f
CM
2439}
2440
35b7e476 2441static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2442{
2443 int ret;
2444 struct btrfs_root *gang[8];
2445 int i;
2446
76dda93c
YZ
2447 while (!list_empty(&fs_info->dead_roots)) {
2448 gang[0] = list_entry(fs_info->dead_roots.next,
2449 struct btrfs_root, root_list);
2450 list_del(&gang[0]->root_list);
2451
2452 if (gang[0]->in_radix) {
2453 btrfs_free_fs_root(fs_info, gang[0]);
2454 } else {
2455 free_extent_buffer(gang[0]->node);
2456 free_extent_buffer(gang[0]->commit_root);
2457 kfree(gang[0]);
2458 }
2459 }
2460
d397712b 2461 while (1) {
0f7d52f4
CM
2462 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2463 (void **)gang, 0,
2464 ARRAY_SIZE(gang));
2465 if (!ret)
2466 break;
2619ba1f 2467 for (i = 0; i < ret; i++)
5eda7b5e 2468 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2469 }
2470 return 0;
2471}
b4100d64 2472
c146afad 2473int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2474{
c146afad
YZ
2475 u64 root_objectid = 0;
2476 struct btrfs_root *gang[8];
2477 int i;
3768f368 2478 int ret;
e089f05c 2479
c146afad
YZ
2480 while (1) {
2481 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2482 (void **)gang, root_objectid,
2483 ARRAY_SIZE(gang));
2484 if (!ret)
2485 break;
5d4f98a2
YZ
2486
2487 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2488 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2489 int err;
2490
c146afad 2491 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2492 err = btrfs_orphan_cleanup(gang[i]);
2493 if (err)
2494 return err;
c146afad
YZ
2495 }
2496 root_objectid++;
2497 }
2498 return 0;
2499}
a2135011 2500
c146afad
YZ
2501int btrfs_commit_super(struct btrfs_root *root)
2502{
2503 struct btrfs_trans_handle *trans;
2504 int ret;
a74a4b97 2505
c146afad 2506 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2507 btrfs_run_delayed_iputs(root);
a74a4b97 2508 btrfs_clean_old_snapshots(root);
c146afad 2509 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2510
2511 /* wait until ongoing cleanup work done */
2512 down_write(&root->fs_info->cleanup_work_sem);
2513 up_write(&root->fs_info->cleanup_work_sem);
2514
7a7eaa40 2515 trans = btrfs_join_transaction(root);
3612b495
TI
2516 if (IS_ERR(trans))
2517 return PTR_ERR(trans);
54aa1f4d 2518 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2519 BUG_ON(ret);
2520 /* run commit again to drop the original snapshot */
7a7eaa40 2521 trans = btrfs_join_transaction(root);
3612b495
TI
2522 if (IS_ERR(trans))
2523 return PTR_ERR(trans);
79154b1b
CM
2524 btrfs_commit_transaction(trans, root);
2525 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 2526 BUG_ON(ret);
d6bfde87 2527
a512bbf8 2528 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
2529 return ret;
2530}
2531
2532int close_ctree(struct btrfs_root *root)
2533{
2534 struct btrfs_fs_info *fs_info = root->fs_info;
2535 int ret;
2536
2537 fs_info->closing = 1;
2538 smp_mb();
2539
a2de733c 2540 btrfs_scrub_cancel(root);
4cb5300b
CM
2541
2542 /* wait for any defraggers to finish */
2543 wait_event(fs_info->transaction_wait,
2544 (atomic_read(&fs_info->defrag_running) == 0));
2545
2546 /* clear out the rbtree of defraggable inodes */
2547 btrfs_run_defrag_inodes(root->fs_info);
2548
0af3d00b 2549 btrfs_put_block_group_cache(fs_info);
acce952b 2550
2551 /*
2552 * Here come 2 situations when btrfs is broken to flip readonly:
2553 *
2554 * 1. when btrfs flips readonly somewhere else before
2555 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2556 * and btrfs will skip to write sb directly to keep
2557 * ERROR state on disk.
2558 *
2559 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 2560 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 2561 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2562 * btrfs will cleanup all FS resources first and write sb then.
2563 */
c146afad 2564 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 2565 ret = btrfs_commit_super(root);
2566 if (ret)
2567 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2568 }
2569
2570 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2571 ret = btrfs_error_commit_super(root);
d397712b
CM
2572 if (ret)
2573 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 2574 }
0f7d52f4 2575
8929ecfa
YZ
2576 kthread_stop(root->fs_info->transaction_kthread);
2577 kthread_stop(root->fs_info->cleaner_kthread);
2578
f25784b3
YZ
2579 fs_info->closing = 2;
2580 smp_mb();
2581
b0c68f8b 2582 if (fs_info->delalloc_bytes) {
d397712b 2583 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 2584 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 2585 }
31153d81 2586 if (fs_info->total_ref_cache_size) {
d397712b
CM
2587 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2588 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 2589 }
bcc63abb 2590
5d4f98a2
YZ
2591 free_extent_buffer(fs_info->extent_root->node);
2592 free_extent_buffer(fs_info->extent_root->commit_root);
2593 free_extent_buffer(fs_info->tree_root->node);
2594 free_extent_buffer(fs_info->tree_root->commit_root);
2595 free_extent_buffer(root->fs_info->chunk_root->node);
2596 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2597 free_extent_buffer(root->fs_info->dev_root->node);
2598 free_extent_buffer(root->fs_info->dev_root->commit_root);
2599 free_extent_buffer(root->fs_info->csum_root->node);
2600 free_extent_buffer(root->fs_info->csum_root->commit_root);
d20f7043 2601
9078a3e1 2602 btrfs_free_block_groups(root->fs_info);
d10c5f31 2603
c146afad 2604 del_fs_roots(fs_info);
d10c5f31 2605
c146afad 2606 iput(fs_info->btree_inode);
16cdcec7 2607 kfree(fs_info->delayed_root);
9ad6b7bc 2608
61d92c32 2609 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 2610 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2611 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2612 btrfs_stop_workers(&fs_info->workers);
2613 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2614 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2615 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2616 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2617 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2618 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2619 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2620 btrfs_stop_workers(&fs_info->caching_workers);
d6bfde87 2621
dfe25020 2622 btrfs_close_devices(fs_info->fs_devices);
0b86a832 2623 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 2624
04160088 2625 bdi_destroy(&fs_info->bdi);
76dda93c 2626 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 2627
0f7d52f4 2628 kfree(fs_info->extent_root);
0f7d52f4 2629 kfree(fs_info->tree_root);
0b86a832
CM
2630 kfree(fs_info->chunk_root);
2631 kfree(fs_info->dev_root);
d20f7043 2632 kfree(fs_info->csum_root);
83a4d548
LZ
2633 kfree(fs_info);
2634
eb60ceac
CM
2635 return 0;
2636}
2637
1259ab75 2638int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 2639{
1259ab75 2640 int ret;
810191ff 2641 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 2642
2ac55d41
JB
2643 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2644 NULL);
1259ab75
CM
2645 if (!ret)
2646 return ret;
2647
2648 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2649 parent_transid);
2650 return !ret;
5f39d397
CM
2651}
2652
2653int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 2654{
810191ff 2655 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 2656 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
2657 buf);
2658}
6702ed49 2659
5f39d397
CM
2660void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2661{
810191ff 2662 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
2663 u64 transid = btrfs_header_generation(buf);
2664 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 2665 int was_dirty;
b4ce94de 2666
b9447ef8 2667 btrfs_assert_tree_locked(buf);
ccd467d6 2668 if (transid != root->fs_info->generation) {
d397712b
CM
2669 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2670 "found %llu running %llu\n",
db94535d 2671 (unsigned long long)buf->start,
d397712b
CM
2672 (unsigned long long)transid,
2673 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
2674 WARN_ON(1);
2675 }
b9473439
CM
2676 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2677 buf);
2678 if (!was_dirty) {
2679 spin_lock(&root->fs_info->delalloc_lock);
2680 root->fs_info->dirty_metadata_bytes += buf->len;
2681 spin_unlock(&root->fs_info->delalloc_lock);
2682 }
eb60ceac
CM
2683}
2684
d3c2fdcf 2685void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
2686{
2687 /*
2688 * looks as though older kernels can get into trouble with
2689 * this code, they end up stuck in balance_dirty_pages forever
2690 */
2691 u64 num_dirty;
2692 unsigned long thresh = 32 * 1024 * 1024;
2693
2694 if (current->flags & PF_MEMALLOC)
2695 return;
2696
2697 btrfs_balance_delayed_items(root);
2698
2699 num_dirty = root->fs_info->dirty_metadata_bytes;
2700
2701 if (num_dirty > thresh) {
2702 balance_dirty_pages_ratelimited_nr(
2703 root->fs_info->btree_inode->i_mapping, 1);
2704 }
2705 return;
2706}
2707
2708void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 2709{
188de649
CM
2710 /*
2711 * looks as though older kernels can get into trouble with
2712 * this code, they end up stuck in balance_dirty_pages forever
2713 */
d6bfde87 2714 u64 num_dirty;
771ed689 2715 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 2716
6933c02e 2717 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
2718 return;
2719
585ad2c3
CM
2720 num_dirty = root->fs_info->dirty_metadata_bytes;
2721
d6bfde87
CM
2722 if (num_dirty > thresh) {
2723 balance_dirty_pages_ratelimited_nr(
d7fc640e 2724 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 2725 }
188de649 2726 return;
35b7e476 2727}
6b80053d 2728
ca7a79ad 2729int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 2730{
810191ff 2731 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 2732 int ret;
ca7a79ad 2733 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 2734 if (ret == 0)
b4ce94de 2735 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 2736 return ret;
6b80053d 2737}
0da5468f 2738
4bef0848
CM
2739int btree_lock_page_hook(struct page *page)
2740{
2741 struct inode *inode = page->mapping->host;
b9473439 2742 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
2743 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2744 struct extent_buffer *eb;
2745 unsigned long len;
2746 u64 bytenr = page_offset(page);
2747
2748 if (page->private == EXTENT_PAGE_PRIVATE)
2749 goto out;
2750
2751 len = page->private >> 2;
f09d1f60 2752 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
2753 if (!eb)
2754 goto out;
2755
2756 btrfs_tree_lock(eb);
4bef0848 2757 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
2758
2759 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2760 spin_lock(&root->fs_info->delalloc_lock);
2761 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2762 root->fs_info->dirty_metadata_bytes -= eb->len;
2763 else
2764 WARN_ON(1);
2765 spin_unlock(&root->fs_info->delalloc_lock);
2766 }
2767
4bef0848
CM
2768 btrfs_tree_unlock(eb);
2769 free_extent_buffer(eb);
2770out:
2771 lock_page(page);
2772 return 0;
2773}
2774
acce952b 2775static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2776 int read_only)
2777{
2778 if (read_only)
2779 return;
2780
2781 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2782 printk(KERN_WARNING "warning: mount fs with errors, "
2783 "running btrfsck is recommended\n");
2784}
2785
2786int btrfs_error_commit_super(struct btrfs_root *root)
2787{
2788 int ret;
2789
2790 mutex_lock(&root->fs_info->cleaner_mutex);
2791 btrfs_run_delayed_iputs(root);
2792 mutex_unlock(&root->fs_info->cleaner_mutex);
2793
2794 down_write(&root->fs_info->cleanup_work_sem);
2795 up_write(&root->fs_info->cleanup_work_sem);
2796
2797 /* cleanup FS via transaction */
2798 btrfs_cleanup_transaction(root);
2799
2800 ret = write_ctree_super(NULL, root, 0);
2801
2802 return ret;
2803}
2804
2805static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2806{
2807 struct btrfs_inode *btrfs_inode;
2808 struct list_head splice;
2809
2810 INIT_LIST_HEAD(&splice);
2811
2812 mutex_lock(&root->fs_info->ordered_operations_mutex);
2813 spin_lock(&root->fs_info->ordered_extent_lock);
2814
2815 list_splice_init(&root->fs_info->ordered_operations, &splice);
2816 while (!list_empty(&splice)) {
2817 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2818 ordered_operations);
2819
2820 list_del_init(&btrfs_inode->ordered_operations);
2821
2822 btrfs_invalidate_inodes(btrfs_inode->root);
2823 }
2824
2825 spin_unlock(&root->fs_info->ordered_extent_lock);
2826 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2827
2828 return 0;
2829}
2830
2831static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2832{
2833 struct list_head splice;
2834 struct btrfs_ordered_extent *ordered;
2835 struct inode *inode;
2836
2837 INIT_LIST_HEAD(&splice);
2838
2839 spin_lock(&root->fs_info->ordered_extent_lock);
2840
2841 list_splice_init(&root->fs_info->ordered_extents, &splice);
2842 while (!list_empty(&splice)) {
2843 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2844 root_extent_list);
2845
2846 list_del_init(&ordered->root_extent_list);
2847 atomic_inc(&ordered->refs);
2848
2849 /* the inode may be getting freed (in sys_unlink path). */
2850 inode = igrab(ordered->inode);
2851
2852 spin_unlock(&root->fs_info->ordered_extent_lock);
2853 if (inode)
2854 iput(inode);
2855
2856 atomic_set(&ordered->refs, 1);
2857 btrfs_put_ordered_extent(ordered);
2858
2859 spin_lock(&root->fs_info->ordered_extent_lock);
2860 }
2861
2862 spin_unlock(&root->fs_info->ordered_extent_lock);
2863
2864 return 0;
2865}
2866
2867static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2868 struct btrfs_root *root)
2869{
2870 struct rb_node *node;
2871 struct btrfs_delayed_ref_root *delayed_refs;
2872 struct btrfs_delayed_ref_node *ref;
2873 int ret = 0;
2874
2875 delayed_refs = &trans->delayed_refs;
2876
2877 spin_lock(&delayed_refs->lock);
2878 if (delayed_refs->num_entries == 0) {
cfece4db 2879 spin_unlock(&delayed_refs->lock);
acce952b 2880 printk(KERN_INFO "delayed_refs has NO entry\n");
2881 return ret;
2882 }
2883
2884 node = rb_first(&delayed_refs->root);
2885 while (node) {
2886 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2887 node = rb_next(node);
2888
2889 ref->in_tree = 0;
2890 rb_erase(&ref->rb_node, &delayed_refs->root);
2891 delayed_refs->num_entries--;
2892
2893 atomic_set(&ref->refs, 1);
2894 if (btrfs_delayed_ref_is_head(ref)) {
2895 struct btrfs_delayed_ref_head *head;
2896
2897 head = btrfs_delayed_node_to_head(ref);
2898 mutex_lock(&head->mutex);
2899 kfree(head->extent_op);
2900 delayed_refs->num_heads--;
2901 if (list_empty(&head->cluster))
2902 delayed_refs->num_heads_ready--;
2903 list_del_init(&head->cluster);
2904 mutex_unlock(&head->mutex);
2905 }
2906
2907 spin_unlock(&delayed_refs->lock);
2908 btrfs_put_delayed_ref(ref);
2909
2910 cond_resched();
2911 spin_lock(&delayed_refs->lock);
2912 }
2913
2914 spin_unlock(&delayed_refs->lock);
2915
2916 return ret;
2917}
2918
2919static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2920{
2921 struct btrfs_pending_snapshot *snapshot;
2922 struct list_head splice;
2923
2924 INIT_LIST_HEAD(&splice);
2925
2926 list_splice_init(&t->pending_snapshots, &splice);
2927
2928 while (!list_empty(&splice)) {
2929 snapshot = list_entry(splice.next,
2930 struct btrfs_pending_snapshot,
2931 list);
2932
2933 list_del_init(&snapshot->list);
2934
2935 kfree(snapshot);
2936 }
2937
2938 return 0;
2939}
2940
2941static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2942{
2943 struct btrfs_inode *btrfs_inode;
2944 struct list_head splice;
2945
2946 INIT_LIST_HEAD(&splice);
2947
acce952b 2948 spin_lock(&root->fs_info->delalloc_lock);
5be76758 2949 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 2950
2951 while (!list_empty(&splice)) {
2952 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2953 delalloc_inodes);
2954
2955 list_del_init(&btrfs_inode->delalloc_inodes);
2956
2957 btrfs_invalidate_inodes(btrfs_inode->root);
2958 }
2959
2960 spin_unlock(&root->fs_info->delalloc_lock);
2961
2962 return 0;
2963}
2964
2965static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2966 struct extent_io_tree *dirty_pages,
2967 int mark)
2968{
2969 int ret;
2970 struct page *page;
2971 struct inode *btree_inode = root->fs_info->btree_inode;
2972 struct extent_buffer *eb;
2973 u64 start = 0;
2974 u64 end;
2975 u64 offset;
2976 unsigned long index;
2977
2978 while (1) {
2979 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2980 mark);
2981 if (ret)
2982 break;
2983
2984 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2985 while (start <= end) {
2986 index = start >> PAGE_CACHE_SHIFT;
2987 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2988 page = find_get_page(btree_inode->i_mapping, index);
2989 if (!page)
2990 continue;
2991 offset = page_offset(page);
2992
2993 spin_lock(&dirty_pages->buffer_lock);
2994 eb = radix_tree_lookup(
2995 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2996 offset >> PAGE_CACHE_SHIFT);
2997 spin_unlock(&dirty_pages->buffer_lock);
2998 if (eb) {
2999 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3000 &eb->bflags);
3001 atomic_set(&eb->refs, 1);
3002 }
3003 if (PageWriteback(page))
3004 end_page_writeback(page);
3005
3006 lock_page(page);
3007 if (PageDirty(page)) {
3008 clear_page_dirty_for_io(page);
3009 spin_lock_irq(&page->mapping->tree_lock);
3010 radix_tree_tag_clear(&page->mapping->page_tree,
3011 page_index(page),
3012 PAGECACHE_TAG_DIRTY);
3013 spin_unlock_irq(&page->mapping->tree_lock);
3014 }
3015
3016 page->mapping->a_ops->invalidatepage(page, 0);
3017 unlock_page(page);
3018 }
3019 }
3020
3021 return ret;
3022}
3023
3024static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3025 struct extent_io_tree *pinned_extents)
3026{
3027 struct extent_io_tree *unpin;
3028 u64 start;
3029 u64 end;
3030 int ret;
3031
3032 unpin = pinned_extents;
3033 while (1) {
3034 ret = find_first_extent_bit(unpin, 0, &start, &end,
3035 EXTENT_DIRTY);
3036 if (ret)
3037 break;
3038
3039 /* opt_discard */
5378e607
LD
3040 if (btrfs_test_opt(root, DISCARD))
3041 ret = btrfs_error_discard_extent(root, start,
3042 end + 1 - start,
3043 NULL);
acce952b 3044
3045 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3046 btrfs_error_unpin_extent_range(root, start, end);
3047 cond_resched();
3048 }
3049
3050 return 0;
3051}
3052
3053static int btrfs_cleanup_transaction(struct btrfs_root *root)
3054{
3055 struct btrfs_transaction *t;
3056 LIST_HEAD(list);
3057
3058 WARN_ON(1);
3059
acce952b 3060 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3061
a4abeea4 3062 spin_lock(&root->fs_info->trans_lock);
acce952b 3063 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3064 root->fs_info->trans_no_join = 1;
3065 spin_unlock(&root->fs_info->trans_lock);
3066
acce952b 3067 while (!list_empty(&list)) {
3068 t = list_entry(list.next, struct btrfs_transaction, list);
3069 if (!t)
3070 break;
3071
3072 btrfs_destroy_ordered_operations(root);
3073
3074 btrfs_destroy_ordered_extents(root);
3075
3076 btrfs_destroy_delayed_refs(t, root);
3077
3078 btrfs_block_rsv_release(root,
3079 &root->fs_info->trans_block_rsv,
3080 t->dirty_pages.dirty_bytes);
3081
3082 /* FIXME: cleanup wait for commit */
3083 t->in_commit = 1;
3084 t->blocked = 1;
3085 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3086 wake_up(&root->fs_info->transaction_blocked_wait);
3087
3088 t->blocked = 0;
3089 if (waitqueue_active(&root->fs_info->transaction_wait))
3090 wake_up(&root->fs_info->transaction_wait);
acce952b 3091
acce952b 3092 t->commit_done = 1;
3093 if (waitqueue_active(&t->commit_wait))
3094 wake_up(&t->commit_wait);
acce952b 3095
3096 btrfs_destroy_pending_snapshots(t);
3097
3098 btrfs_destroy_delalloc_inodes(root);
3099
a4abeea4 3100 spin_lock(&root->fs_info->trans_lock);
acce952b 3101 root->fs_info->running_transaction = NULL;
a4abeea4 3102 spin_unlock(&root->fs_info->trans_lock);
acce952b 3103
3104 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3105 EXTENT_DIRTY);
3106
3107 btrfs_destroy_pinned_extent(root,
3108 root->fs_info->pinned_extents);
3109
13c5a93e 3110 atomic_set(&t->use_count, 0);
acce952b 3111 list_del_init(&t->list);
3112 memset(t, 0, sizeof(*t));
3113 kmem_cache_free(btrfs_transaction_cachep, t);
3114 }
3115
a4abeea4
JB
3116 spin_lock(&root->fs_info->trans_lock);
3117 root->fs_info->trans_no_join = 0;
3118 spin_unlock(&root->fs_info->trans_lock);
acce952b 3119 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3120
3121 return 0;
3122}
3123
d1310b2e 3124static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3125 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3126 .readpage_end_io_hook = btree_readpage_end_io_hook,
0b86a832 3127 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3128 /* note we're sharing with inode.c for the merge bio hook */
3129 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3130};