Btrfs: change scrub to support big blocks
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41
JB
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
0b32f4bb 336 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
0b32f4bb 347 clear_extent_buffer_uptodate(eb);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
ea466794 363 int failed = 0;
f188591e
CM
364 int ret;
365 int num_copies = 0;
366 int mirror_num = 0;
ea466794 367 int failed_mirror = 0;
f188591e 368
a826d6dc 369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 while (1) {
bb82ab88
AJ
372 ret = read_extent_buffer_pages(io_tree, eb, start,
373 WAIT_COMPLETE,
f188591e 374 btree_get_extent, mirror_num);
727011e0 375 if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
ea466794 376 break;
d397712b 377
a826d6dc
JB
378 /*
379 * This buffer's crc is fine, but its contents are corrupted, so
380 * there is no reason to read the other copies, they won't be
381 * any less wrong.
382 */
383 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
384 break;
385
386 if (!failed_mirror) {
387 failed = 1;
388 printk(KERN_ERR "failed mirror was %d\n", eb->failed_mirror);
389 failed_mirror = eb->failed_mirror;
390 }
a826d6dc 391
f188591e
CM
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
4235298e 394 if (num_copies == 1)
ea466794 395 break;
4235298e 396
f188591e 397 mirror_num++;
ea466794
JB
398 if (mirror_num == failed_mirror)
399 mirror_num++;
400
4235298e 401 if (mirror_num > num_copies)
ea466794 402 break;
f188591e 403 }
ea466794
JB
404
405 if (failed && !ret)
406 repair_eb_io_failure(root, eb, failed_mirror);
407
408 return ret;
f188591e 409}
19c00ddc 410
d352ac68 411/*
d397712b
CM
412 * checksum a dirty tree block before IO. This has extra checks to make sure
413 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 414 */
d397712b 415
b2950863 416static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 417{
d1310b2e 418 struct extent_io_tree *tree;
35ebb934 419 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 420 u64 found_start;
19c00ddc 421 struct extent_buffer *eb;
f188591e 422
d1310b2e 423 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 424
4f2de97a
JB
425 eb = (struct extent_buffer *)page->private;
426 if (page != eb->pages[0])
427 return 0;
784b4e29 428
19c00ddc
CM
429 found_start = btrfs_header_bytenr(eb);
430 if (found_start != start) {
55c69072 431 WARN_ON(1);
4f2de97a 432 return 0;
55c69072 433 }
727011e0 434 if (eb->pages[0] != page) {
55c69072 435 WARN_ON(1);
4f2de97a 436 return 0;
55c69072
CM
437 }
438 if (!PageUptodate(page)) {
55c69072 439 WARN_ON(1);
4f2de97a 440 return 0;
19c00ddc 441 }
19c00ddc 442 csum_tree_block(root, eb, 0);
19c00ddc
CM
443 return 0;
444}
445
2b82032c
YZ
446static int check_tree_block_fsid(struct btrfs_root *root,
447 struct extent_buffer *eb)
448{
449 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
450 u8 fsid[BTRFS_UUID_SIZE];
451 int ret = 1;
452
453 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
454 BTRFS_FSID_SIZE);
455 while (fs_devices) {
456 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
457 ret = 0;
458 break;
459 }
460 fs_devices = fs_devices->seed;
461 }
462 return ret;
463}
464
a826d6dc
JB
465#define CORRUPT(reason, eb, root, slot) \
466 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
467 "root=%llu, slot=%d\n", reason, \
468 (unsigned long long)btrfs_header_bytenr(eb), \
469 (unsigned long long)root->objectid, slot)
470
471static noinline int check_leaf(struct btrfs_root *root,
472 struct extent_buffer *leaf)
473{
474 struct btrfs_key key;
475 struct btrfs_key leaf_key;
476 u32 nritems = btrfs_header_nritems(leaf);
477 int slot;
478
479 if (nritems == 0)
480 return 0;
481
482 /* Check the 0 item */
483 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
484 BTRFS_LEAF_DATA_SIZE(root)) {
485 CORRUPT("invalid item offset size pair", leaf, root, 0);
486 return -EIO;
487 }
488
489 /*
490 * Check to make sure each items keys are in the correct order and their
491 * offsets make sense. We only have to loop through nritems-1 because
492 * we check the current slot against the next slot, which verifies the
493 * next slot's offset+size makes sense and that the current's slot
494 * offset is correct.
495 */
496 for (slot = 0; slot < nritems - 1; slot++) {
497 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
498 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
499
500 /* Make sure the keys are in the right order */
501 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
502 CORRUPT("bad key order", leaf, root, slot);
503 return -EIO;
504 }
505
506 /*
507 * Make sure the offset and ends are right, remember that the
508 * item data starts at the end of the leaf and grows towards the
509 * front.
510 */
511 if (btrfs_item_offset_nr(leaf, slot) !=
512 btrfs_item_end_nr(leaf, slot + 1)) {
513 CORRUPT("slot offset bad", leaf, root, slot);
514 return -EIO;
515 }
516
517 /*
518 * Check to make sure that we don't point outside of the leaf,
519 * just incase all the items are consistent to eachother, but
520 * all point outside of the leaf.
521 */
522 if (btrfs_item_end_nr(leaf, slot) >
523 BTRFS_LEAF_DATA_SIZE(root)) {
524 CORRUPT("slot end outside of leaf", leaf, root, slot);
525 return -EIO;
526 }
527 }
528
529 return 0;
530}
531
727011e0
CM
532struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
533 struct page *page, int max_walk)
534{
535 struct extent_buffer *eb;
536 u64 start = page_offset(page);
537 u64 target = start;
538 u64 min_start;
539
540 if (start < max_walk)
541 min_start = 0;
542 else
543 min_start = start - max_walk;
544
545 while (start >= min_start) {
546 eb = find_extent_buffer(tree, start, 0);
547 if (eb) {
548 /*
549 * we found an extent buffer and it contains our page
550 * horray!
551 */
552 if (eb->start <= target &&
553 eb->start + eb->len > target)
554 return eb;
555
556 /* we found an extent buffer that wasn't for us */
557 free_extent_buffer(eb);
558 return NULL;
559 }
560 if (start == 0)
561 break;
562 start -= PAGE_CACHE_SIZE;
563 }
564 return NULL;
565}
566
b2950863 567static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
568 struct extent_state *state)
569{
570 struct extent_io_tree *tree;
571 u64 found_start;
572 int found_level;
ce9adaa5
CM
573 struct extent_buffer *eb;
574 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 575 int ret = 0;
727011e0 576 int reads_done;
ce9adaa5 577
ce9adaa5
CM
578 if (!page->private)
579 goto out;
d397712b 580
727011e0 581 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 582 eb = (struct extent_buffer *)page->private;
d397712b 583
0b32f4bb
JB
584 /* the pending IO might have been the only thing that kept this buffer
585 * in memory. Make sure we have a ref for all this other checks
586 */
587 extent_buffer_get(eb);
588
589 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
590 if (!reads_done)
591 goto err;
f188591e 592
ea466794
JB
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
ce9adaa5 598 found_start = btrfs_header_bytenr(eb);
727011e0 599 if (found_start != eb->start) {
7a36ddec 600 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
601 "%llu %llu\n",
602 (unsigned long long)found_start,
603 (unsigned long long)eb->start);
f188591e 604 ret = -EIO;
ce9adaa5
CM
605 goto err;
606 }
2b82032c 607 if (check_tree_block_fsid(root, eb)) {
7a36ddec 608 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 609 (unsigned long long)eb->start);
1259ab75
CM
610 ret = -EIO;
611 goto err;
612 }
ce9adaa5
CM
613 found_level = btrfs_header_level(eb);
614
85d4e461
CM
615 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616 eb, found_level);
4008c04a 617
ce9adaa5 618 ret = csum_tree_block(root, eb, 1);
a826d6dc 619 if (ret) {
f188591e 620 ret = -EIO;
a826d6dc
JB
621 goto err;
622 }
623
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
629 if (found_level == 0 && check_leaf(root, eb)) {
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
ce9adaa5 633
0b32f4bb
JB
634 if (!ret)
635 set_extent_buffer_uptodate(eb);
ce9adaa5 636err:
4bb31e92
AJ
637 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639 btree_readahead_hook(root, eb, eb->start, ret);
640 }
641
0b32f4bb
JB
642 if (ret)
643 clear_extent_buffer_uptodate(eb);
644 free_extent_buffer(eb);
ce9adaa5 645out:
f188591e 646 return ret;
ce9adaa5
CM
647}
648
ea466794 649static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 650{
4bb31e92
AJ
651 struct extent_buffer *eb;
652 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
4f2de97a 654 eb = (struct extent_buffer *)page->private;
ea466794
JB
655 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
656 eb->failed_mirror = failed_mirror;
657 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 658 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
659 return -EIO; /* we fixed nothing */
660}
661
ce9adaa5 662static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
663{
664 struct end_io_wq *end_io_wq = bio->bi_private;
665 struct btrfs_fs_info *fs_info;
ce9adaa5 666
ce9adaa5 667 fs_info = end_io_wq->info;
ce9adaa5 668 end_io_wq->error = err;
8b712842
CM
669 end_io_wq->work.func = end_workqueue_fn;
670 end_io_wq->work.flags = 0;
d20f7043 671
7b6d91da 672 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 673 if (end_io_wq->metadata == 1)
cad321ad
CM
674 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 &end_io_wq->work);
0cb59c99
JB
676 else if (end_io_wq->metadata == 2)
677 btrfs_queue_worker(&fs_info->endio_freespace_worker,
678 &end_io_wq->work);
cad321ad
CM
679 else
680 btrfs_queue_worker(&fs_info->endio_write_workers,
681 &end_io_wq->work);
d20f7043
CM
682 } else {
683 if (end_io_wq->metadata)
684 btrfs_queue_worker(&fs_info->endio_meta_workers,
685 &end_io_wq->work);
686 else
687 btrfs_queue_worker(&fs_info->endio_workers,
688 &end_io_wq->work);
689 }
ce9adaa5
CM
690}
691
0cb59c99
JB
692/*
693 * For the metadata arg you want
694 *
695 * 0 - if data
696 * 1 - if normal metadta
697 * 2 - if writing to the free space cache area
698 */
22c59948
CM
699int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700 int metadata)
0b86a832 701{
ce9adaa5 702 struct end_io_wq *end_io_wq;
ce9adaa5
CM
703 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704 if (!end_io_wq)
705 return -ENOMEM;
706
707 end_io_wq->private = bio->bi_private;
708 end_io_wq->end_io = bio->bi_end_io;
22c59948 709 end_io_wq->info = info;
ce9adaa5
CM
710 end_io_wq->error = 0;
711 end_io_wq->bio = bio;
22c59948 712 end_io_wq->metadata = metadata;
ce9adaa5
CM
713
714 bio->bi_private = end_io_wq;
715 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
716 return 0;
717}
718
b64a2851 719unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 720{
4854ddd0
CM
721 unsigned long limit = min_t(unsigned long,
722 info->workers.max_workers,
723 info->fs_devices->open_devices);
724 return 256 * limit;
725}
0986fe9e 726
4a69a410
CM
727static void run_one_async_start(struct btrfs_work *work)
728{
4a69a410
CM
729 struct async_submit_bio *async;
730
731 async = container_of(work, struct async_submit_bio, work);
4a69a410 732 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
733 async->mirror_num, async->bio_flags,
734 async->bio_offset);
4a69a410
CM
735}
736
737static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
738{
739 struct btrfs_fs_info *fs_info;
740 struct async_submit_bio *async;
4854ddd0 741 int limit;
8b712842
CM
742
743 async = container_of(work, struct async_submit_bio, work);
744 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 745
b64a2851 746 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
747 limit = limit * 2 / 3;
748
8b712842 749 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 750
b64a2851
CM
751 if (atomic_read(&fs_info->nr_async_submits) < limit &&
752 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
753 wake_up(&fs_info->async_submit_wait);
754
4a69a410 755 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
756 async->mirror_num, async->bio_flags,
757 async->bio_offset);
4a69a410
CM
758}
759
760static void run_one_async_free(struct btrfs_work *work)
761{
762 struct async_submit_bio *async;
763
764 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
765 kfree(async);
766}
767
44b8bd7e
CM
768int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
769 int rw, struct bio *bio, int mirror_num,
c8b97818 770 unsigned long bio_flags,
eaf25d93 771 u64 bio_offset,
4a69a410
CM
772 extent_submit_bio_hook_t *submit_bio_start,
773 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
774{
775 struct async_submit_bio *async;
776
777 async = kmalloc(sizeof(*async), GFP_NOFS);
778 if (!async)
779 return -ENOMEM;
780
781 async->inode = inode;
782 async->rw = rw;
783 async->bio = bio;
784 async->mirror_num = mirror_num;
4a69a410
CM
785 async->submit_bio_start = submit_bio_start;
786 async->submit_bio_done = submit_bio_done;
787
788 async->work.func = run_one_async_start;
789 async->work.ordered_func = run_one_async_done;
790 async->work.ordered_free = run_one_async_free;
791
8b712842 792 async->work.flags = 0;
c8b97818 793 async->bio_flags = bio_flags;
eaf25d93 794 async->bio_offset = bio_offset;
8c8bee1d 795
cb03c743 796 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 797
7b6d91da 798 if (rw & REQ_SYNC)
d313d7a3
CM
799 btrfs_set_work_high_prio(&async->work);
800
8b712842 801 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 802
d397712b 803 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
804 atomic_read(&fs_info->nr_async_submits)) {
805 wait_event(fs_info->async_submit_wait,
806 (atomic_read(&fs_info->nr_async_submits) == 0));
807 }
808
44b8bd7e
CM
809 return 0;
810}
811
ce3ed71a
CM
812static int btree_csum_one_bio(struct bio *bio)
813{
814 struct bio_vec *bvec = bio->bi_io_vec;
815 int bio_index = 0;
816 struct btrfs_root *root;
817
818 WARN_ON(bio->bi_vcnt <= 0);
d397712b 819 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
820 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
821 csum_dirty_buffer(root, bvec->bv_page);
822 bio_index++;
823 bvec++;
824 }
825 return 0;
826}
827
4a69a410
CM
828static int __btree_submit_bio_start(struct inode *inode, int rw,
829 struct bio *bio, int mirror_num,
eaf25d93
CM
830 unsigned long bio_flags,
831 u64 bio_offset)
22c59948 832{
8b712842
CM
833 /*
834 * when we're called for a write, we're already in the async
5443be45 835 * submission context. Just jump into btrfs_map_bio
8b712842 836 */
4a69a410
CM
837 btree_csum_one_bio(bio);
838 return 0;
839}
22c59948 840
4a69a410 841static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
842 int mirror_num, unsigned long bio_flags,
843 u64 bio_offset)
4a69a410 844{
8b712842 845 /*
4a69a410
CM
846 * when we're called for a write, we're already in the async
847 * submission context. Just jump into btrfs_map_bio
8b712842 848 */
8b712842 849 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
850}
851
44b8bd7e 852static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
853 int mirror_num, unsigned long bio_flags,
854 u64 bio_offset)
44b8bd7e 855{
cad321ad
CM
856 int ret;
857
7b6d91da 858 if (!(rw & REQ_WRITE)) {
f3f266ab 859
4a69a410
CM
860 /*
861 * called for a read, do the setup so that checksum validation
862 * can happen in the async kernel threads
863 */
f3f266ab
CM
864 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
865 bio, 1);
866 BUG_ON(ret);
4a69a410 867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 868 mirror_num, 0);
44b8bd7e 869 }
d313d7a3 870
cad321ad
CM
871 /*
872 * kthread helpers are used to submit writes so that checksumming
873 * can happen in parallel across all CPUs
874 */
44b8bd7e 875 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 876 inode, rw, bio, mirror_num, 0,
eaf25d93 877 bio_offset,
4a69a410
CM
878 __btree_submit_bio_start,
879 __btree_submit_bio_done);
44b8bd7e
CM
880}
881
3dd1462e 882#ifdef CONFIG_MIGRATION
784b4e29 883static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
884 struct page *newpage, struct page *page,
885 enum migrate_mode mode)
784b4e29
CM
886{
887 /*
888 * we can't safely write a btree page from here,
889 * we haven't done the locking hook
890 */
891 if (PageDirty(page))
892 return -EAGAIN;
893 /*
894 * Buffers may be managed in a filesystem specific way.
895 * We must have no buffers or drop them.
896 */
897 if (page_has_private(page) &&
898 !try_to_release_page(page, GFP_KERNEL))
899 return -EAGAIN;
a6bc32b8 900 return migrate_page(mapping, newpage, page, mode);
784b4e29 901}
3dd1462e 902#endif
784b4e29 903
0da5468f
CM
904
905static int btree_writepages(struct address_space *mapping,
906 struct writeback_control *wbc)
907{
d1310b2e
CM
908 struct extent_io_tree *tree;
909 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 910 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 911 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 912 u64 num_dirty;
24ab9cd8 913 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
914
915 if (wbc->for_kupdate)
916 return 0;
917
b9473439
CM
918 /* this is a bit racy, but that's ok */
919 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 920 if (num_dirty < thresh)
793955bc 921 return 0;
793955bc 922 }
0b32f4bb 923 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
924}
925
b2950863 926static int btree_readpage(struct file *file, struct page *page)
5f39d397 927{
d1310b2e
CM
928 struct extent_io_tree *tree;
929 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 930 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 931}
22b0ebda 932
70dec807 933static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 934{
98509cfc 935 if (PageWriteback(page) || PageDirty(page))
d397712b 936 return 0;
0c4e538b
DS
937 /*
938 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
939 * slab allocation from alloc_extent_state down the callchain where
940 * it'd hit a BUG_ON as those flags are not allowed.
941 */
942 gfp_flags &= ~GFP_SLAB_BUG_MASK;
943
3083ee2e 944 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
945}
946
5f39d397 947static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 948{
d1310b2e
CM
949 struct extent_io_tree *tree;
950 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
951 extent_invalidatepage(tree, page, offset);
952 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 953 if (PagePrivate(page)) {
d397712b
CM
954 printk(KERN_WARNING "btrfs warning page private not zero "
955 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
956 ClearPagePrivate(page);
957 set_page_private(page, 0);
958 page_cache_release(page);
959 }
d98237b3
CM
960}
961
0b32f4bb
JB
962static int btree_set_page_dirty(struct page *page)
963{
964 struct extent_buffer *eb;
965
966 BUG_ON(!PagePrivate(page));
967 eb = (struct extent_buffer *)page->private;
968 BUG_ON(!eb);
969 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
970 BUG_ON(!atomic_read(&eb->refs));
971 btrfs_assert_tree_locked(eb);
972 return __set_page_dirty_nobuffers(page);
973}
974
7f09410b 975static const struct address_space_operations btree_aops = {
d98237b3 976 .readpage = btree_readpage,
0da5468f 977 .writepages = btree_writepages,
5f39d397
CM
978 .releasepage = btree_releasepage,
979 .invalidatepage = btree_invalidatepage,
5a92bc88 980#ifdef CONFIG_MIGRATION
784b4e29 981 .migratepage = btree_migratepage,
5a92bc88 982#endif
0b32f4bb 983 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
984};
985
ca7a79ad
CM
986int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
987 u64 parent_transid)
090d1875 988{
5f39d397
CM
989 struct extent_buffer *buf = NULL;
990 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 991 int ret = 0;
090d1875 992
db94535d 993 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 994 if (!buf)
090d1875 995 return 0;
d1310b2e 996 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 997 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 998 free_extent_buffer(buf);
de428b63 999 return ret;
090d1875
CM
1000}
1001
ab0fff03
AJ
1002int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1003 int mirror_num, struct extent_buffer **eb)
1004{
1005 struct extent_buffer *buf = NULL;
1006 struct inode *btree_inode = root->fs_info->btree_inode;
1007 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1008 int ret;
1009
1010 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1011 if (!buf)
1012 return 0;
1013
1014 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1015
1016 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1017 btree_get_extent, mirror_num);
1018 if (ret) {
1019 free_extent_buffer(buf);
1020 return ret;
1021 }
1022
1023 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1024 free_extent_buffer(buf);
1025 return -EIO;
0b32f4bb 1026 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1027 *eb = buf;
1028 } else {
1029 free_extent_buffer(buf);
1030 }
1031 return 0;
1032}
1033
0999df54
CM
1034struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1035 u64 bytenr, u32 blocksize)
1036{
1037 struct inode *btree_inode = root->fs_info->btree_inode;
1038 struct extent_buffer *eb;
1039 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1040 bytenr, blocksize);
0999df54
CM
1041 return eb;
1042}
1043
1044struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1045 u64 bytenr, u32 blocksize)
1046{
1047 struct inode *btree_inode = root->fs_info->btree_inode;
1048 struct extent_buffer *eb;
1049
1050 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1051 bytenr, blocksize);
0999df54
CM
1052 return eb;
1053}
1054
1055
e02119d5
CM
1056int btrfs_write_tree_block(struct extent_buffer *buf)
1057{
727011e0 1058 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1059 buf->start + buf->len - 1);
e02119d5
CM
1060}
1061
1062int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1063{
727011e0 1064 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1065 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1066}
1067
0999df54 1068struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1069 u32 blocksize, u64 parent_transid)
0999df54
CM
1070{
1071 struct extent_buffer *buf = NULL;
0999df54
CM
1072 int ret;
1073
0999df54
CM
1074 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1075 if (!buf)
1076 return NULL;
0999df54 1077
ca7a79ad 1078 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1079 return buf;
ce9adaa5 1080
eb60ceac
CM
1081}
1082
e089f05c 1083int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1084 struct extent_buffer *buf)
ed2ff2cb 1085{
55c69072 1086 if (btrfs_header_generation(buf) ==
925baedd 1087 root->fs_info->running_transaction->transid) {
b9447ef8 1088 btrfs_assert_tree_locked(buf);
b4ce94de 1089
b9473439
CM
1090 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1091 spin_lock(&root->fs_info->delalloc_lock);
1092 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1093 root->fs_info->dirty_metadata_bytes -= buf->len;
1094 else
1095 WARN_ON(1);
1096 spin_unlock(&root->fs_info->delalloc_lock);
1097 }
b4ce94de 1098
b9473439
CM
1099 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1100 btrfs_set_lock_blocking(buf);
0b32f4bb 1101 clear_extent_buffer_dirty(buf);
925baedd 1102 }
5f39d397
CM
1103 return 0;
1104}
1105
db94535d 1106static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1107 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1108 struct btrfs_fs_info *fs_info,
e20d96d6 1109 u64 objectid)
d97e63b6 1110{
cfaa7295 1111 root->node = NULL;
a28ec197 1112 root->commit_root = NULL;
db94535d
CM
1113 root->sectorsize = sectorsize;
1114 root->nodesize = nodesize;
1115 root->leafsize = leafsize;
87ee04eb 1116 root->stripesize = stripesize;
123abc88 1117 root->ref_cows = 0;
0b86a832 1118 root->track_dirty = 0;
c71bf099 1119 root->in_radix = 0;
d68fc57b
YZ
1120 root->orphan_item_inserted = 0;
1121 root->orphan_cleanup_state = 0;
0b86a832 1122
0f7d52f4
CM
1123 root->objectid = objectid;
1124 root->last_trans = 0;
13a8a7c8 1125 root->highest_objectid = 0;
58176a96 1126 root->name = NULL;
6bef4d31 1127 root->inode_tree = RB_ROOT;
16cdcec7 1128 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1129 root->block_rsv = NULL;
d68fc57b 1130 root->orphan_block_rsv = NULL;
0b86a832
CM
1131
1132 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1133 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1134 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1135 spin_lock_init(&root->orphan_lock);
5d4f98a2 1136 spin_lock_init(&root->inode_lock);
f0486c68 1137 spin_lock_init(&root->accounting_lock);
a2135011 1138 mutex_init(&root->objectid_mutex);
e02119d5 1139 mutex_init(&root->log_mutex);
7237f183
YZ
1140 init_waitqueue_head(&root->log_writer_wait);
1141 init_waitqueue_head(&root->log_commit_wait[0]);
1142 init_waitqueue_head(&root->log_commit_wait[1]);
1143 atomic_set(&root->log_commit[0], 0);
1144 atomic_set(&root->log_commit[1], 0);
1145 atomic_set(&root->log_writers, 0);
1146 root->log_batch = 0;
1147 root->log_transid = 0;
257c62e1 1148 root->last_log_commit = 0;
d0c803c4 1149 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1150 fs_info->btree_inode->i_mapping);
017e5369 1151
3768f368
CM
1152 memset(&root->root_key, 0, sizeof(root->root_key));
1153 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1154 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1155 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1156 root->defrag_trans_start = fs_info->generation;
58176a96 1157 init_completion(&root->kobj_unregister);
6702ed49 1158 root->defrag_running = 0;
4d775673 1159 root->root_key.objectid = objectid;
0ee5dc67 1160 root->anon_dev = 0;
3768f368
CM
1161 return 0;
1162}
1163
db94535d 1164static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1165 struct btrfs_fs_info *fs_info,
1166 u64 objectid,
e20d96d6 1167 struct btrfs_root *root)
3768f368
CM
1168{
1169 int ret;
db94535d 1170 u32 blocksize;
84234f3a 1171 u64 generation;
3768f368 1172
db94535d 1173 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1174 tree_root->sectorsize, tree_root->stripesize,
1175 root, fs_info, objectid);
3768f368
CM
1176 ret = btrfs_find_last_root(tree_root, objectid,
1177 &root->root_item, &root->root_key);
4df27c4d
YZ
1178 if (ret > 0)
1179 return -ENOENT;
3768f368
CM
1180 BUG_ON(ret);
1181
84234f3a 1182 generation = btrfs_root_generation(&root->root_item);
db94535d 1183 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1184 root->commit_root = NULL;
db94535d 1185 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1186 blocksize, generation);
68433b73
CM
1187 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1188 free_extent_buffer(root->node);
af31f5e5 1189 root->node = NULL;
68433b73
CM
1190 return -EIO;
1191 }
4df27c4d 1192 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1193 return 0;
1194}
1195
f84a8bd6 1196static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1197{
1198 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1199 if (root)
1200 root->fs_info = fs_info;
1201 return root;
1202}
1203
7237f183
YZ
1204static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1205 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1206{
1207 struct btrfs_root *root;
1208 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1209 struct extent_buffer *leaf;
e02119d5 1210
6f07e42e 1211 root = btrfs_alloc_root(fs_info);
e02119d5 1212 if (!root)
7237f183 1213 return ERR_PTR(-ENOMEM);
e02119d5
CM
1214
1215 __setup_root(tree_root->nodesize, tree_root->leafsize,
1216 tree_root->sectorsize, tree_root->stripesize,
1217 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1218
1219 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1220 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1221 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1222 /*
1223 * log trees do not get reference counted because they go away
1224 * before a real commit is actually done. They do store pointers
1225 * to file data extents, and those reference counts still get
1226 * updated (along with back refs to the log tree).
1227 */
e02119d5
CM
1228 root->ref_cows = 0;
1229
5d4f98a2 1230 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1231 BTRFS_TREE_LOG_OBJECTID, NULL,
1232 0, 0, 0, 0);
7237f183
YZ
1233 if (IS_ERR(leaf)) {
1234 kfree(root);
1235 return ERR_CAST(leaf);
1236 }
e02119d5 1237
5d4f98a2
YZ
1238 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1239 btrfs_set_header_bytenr(leaf, leaf->start);
1240 btrfs_set_header_generation(leaf, trans->transid);
1241 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1242 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1243 root->node = leaf;
e02119d5
CM
1244
1245 write_extent_buffer(root->node, root->fs_info->fsid,
1246 (unsigned long)btrfs_header_fsid(root->node),
1247 BTRFS_FSID_SIZE);
1248 btrfs_mark_buffer_dirty(root->node);
1249 btrfs_tree_unlock(root->node);
7237f183
YZ
1250 return root;
1251}
1252
1253int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info)
1255{
1256 struct btrfs_root *log_root;
1257
1258 log_root = alloc_log_tree(trans, fs_info);
1259 if (IS_ERR(log_root))
1260 return PTR_ERR(log_root);
1261 WARN_ON(fs_info->log_root_tree);
1262 fs_info->log_root_tree = log_root;
1263 return 0;
1264}
1265
1266int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1267 struct btrfs_root *root)
1268{
1269 struct btrfs_root *log_root;
1270 struct btrfs_inode_item *inode_item;
1271
1272 log_root = alloc_log_tree(trans, root->fs_info);
1273 if (IS_ERR(log_root))
1274 return PTR_ERR(log_root);
1275
1276 log_root->last_trans = trans->transid;
1277 log_root->root_key.offset = root->root_key.objectid;
1278
1279 inode_item = &log_root->root_item.inode;
1280 inode_item->generation = cpu_to_le64(1);
1281 inode_item->size = cpu_to_le64(3);
1282 inode_item->nlink = cpu_to_le32(1);
1283 inode_item->nbytes = cpu_to_le64(root->leafsize);
1284 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1285
5d4f98a2 1286 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1287
1288 WARN_ON(root->log_root);
1289 root->log_root = log_root;
1290 root->log_transid = 0;
257c62e1 1291 root->last_log_commit = 0;
e02119d5
CM
1292 return 0;
1293}
1294
1295struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1296 struct btrfs_key *location)
1297{
1298 struct btrfs_root *root;
1299 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1300 struct btrfs_path *path;
5f39d397 1301 struct extent_buffer *l;
84234f3a 1302 u64 generation;
db94535d 1303 u32 blocksize;
0f7d52f4
CM
1304 int ret = 0;
1305
6f07e42e 1306 root = btrfs_alloc_root(fs_info);
0cf6c620 1307 if (!root)
0f7d52f4 1308 return ERR_PTR(-ENOMEM);
0f7d52f4 1309 if (location->offset == (u64)-1) {
db94535d 1310 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1311 location->objectid, root);
1312 if (ret) {
0f7d52f4
CM
1313 kfree(root);
1314 return ERR_PTR(ret);
1315 }
13a8a7c8 1316 goto out;
0f7d52f4
CM
1317 }
1318
db94535d 1319 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1320 tree_root->sectorsize, tree_root->stripesize,
1321 root, fs_info, location->objectid);
0f7d52f4
CM
1322
1323 path = btrfs_alloc_path();
db5b493a
TI
1324 if (!path) {
1325 kfree(root);
1326 return ERR_PTR(-ENOMEM);
1327 }
0f7d52f4 1328 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1329 if (ret == 0) {
1330 l = path->nodes[0];
1331 read_extent_buffer(l, &root->root_item,
1332 btrfs_item_ptr_offset(l, path->slots[0]),
1333 sizeof(root->root_item));
1334 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1335 }
0f7d52f4
CM
1336 btrfs_free_path(path);
1337 if (ret) {
5e540f77 1338 kfree(root);
13a8a7c8
YZ
1339 if (ret > 0)
1340 ret = -ENOENT;
0f7d52f4
CM
1341 return ERR_PTR(ret);
1342 }
13a8a7c8 1343
84234f3a 1344 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1345 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1346 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1347 blocksize, generation);
5d4f98a2 1348 root->commit_root = btrfs_root_node(root);
0f7d52f4 1349 BUG_ON(!root->node);
13a8a7c8 1350out:
08fe4db1 1351 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1352 root->ref_cows = 1;
08fe4db1
LZ
1353 btrfs_check_and_init_root_item(&root->root_item);
1354 }
13a8a7c8 1355
5eda7b5e
CM
1356 return root;
1357}
1358
edbd8d4e
CM
1359struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1360 struct btrfs_key *location)
5eda7b5e
CM
1361{
1362 struct btrfs_root *root;
1363 int ret;
1364
edbd8d4e
CM
1365 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1366 return fs_info->tree_root;
1367 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1368 return fs_info->extent_root;
8f18cf13
CM
1369 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1370 return fs_info->chunk_root;
1371 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1372 return fs_info->dev_root;
0403e47e
YZ
1373 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1374 return fs_info->csum_root;
4df27c4d
YZ
1375again:
1376 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1377 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1378 (unsigned long)location->objectid);
4df27c4d 1379 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1380 if (root)
1381 return root;
1382
e02119d5 1383 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1384 if (IS_ERR(root))
1385 return root;
3394e160 1386
581bb050 1387 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1388 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1389 GFP_NOFS);
35a30d7c
DS
1390 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1391 ret = -ENOMEM;
581bb050 1392 goto fail;
35a30d7c 1393 }
581bb050
LZ
1394
1395 btrfs_init_free_ino_ctl(root);
1396 mutex_init(&root->fs_commit_mutex);
1397 spin_lock_init(&root->cache_lock);
1398 init_waitqueue_head(&root->cache_wait);
1399
0ee5dc67 1400 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1401 if (ret)
1402 goto fail;
3394e160 1403
d68fc57b
YZ
1404 if (btrfs_root_refs(&root->root_item) == 0) {
1405 ret = -ENOENT;
1406 goto fail;
1407 }
1408
1409 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1410 if (ret < 0)
1411 goto fail;
1412 if (ret == 0)
1413 root->orphan_item_inserted = 1;
1414
4df27c4d
YZ
1415 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1416 if (ret)
1417 goto fail;
1418
1419 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1420 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1421 (unsigned long)root->root_key.objectid,
0f7d52f4 1422 root);
d68fc57b 1423 if (ret == 0)
4df27c4d 1424 root->in_radix = 1;
d68fc57b 1425
4df27c4d
YZ
1426 spin_unlock(&fs_info->fs_roots_radix_lock);
1427 radix_tree_preload_end();
0f7d52f4 1428 if (ret) {
4df27c4d
YZ
1429 if (ret == -EEXIST) {
1430 free_fs_root(root);
1431 goto again;
1432 }
1433 goto fail;
0f7d52f4 1434 }
4df27c4d
YZ
1435
1436 ret = btrfs_find_dead_roots(fs_info->tree_root,
1437 root->root_key.objectid);
1438 WARN_ON(ret);
edbd8d4e 1439 return root;
4df27c4d
YZ
1440fail:
1441 free_fs_root(root);
1442 return ERR_PTR(ret);
edbd8d4e
CM
1443}
1444
04160088
CM
1445static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1446{
1447 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1448 int ret = 0;
04160088
CM
1449 struct btrfs_device *device;
1450 struct backing_dev_info *bdi;
b7967db7 1451
1f78160c
XG
1452 rcu_read_lock();
1453 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1454 if (!device->bdev)
1455 continue;
04160088
CM
1456 bdi = blk_get_backing_dev_info(device->bdev);
1457 if (bdi && bdi_congested(bdi, bdi_bits)) {
1458 ret = 1;
1459 break;
1460 }
1461 }
1f78160c 1462 rcu_read_unlock();
04160088
CM
1463 return ret;
1464}
1465
ad081f14
JA
1466/*
1467 * If this fails, caller must call bdi_destroy() to get rid of the
1468 * bdi again.
1469 */
04160088
CM
1470static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1471{
ad081f14
JA
1472 int err;
1473
1474 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1475 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1476 if (err)
1477 return err;
1478
4575c9cc 1479 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1480 bdi->congested_fn = btrfs_congested_fn;
1481 bdi->congested_data = info;
1482 return 0;
1483}
1484
8b712842
CM
1485/*
1486 * called by the kthread helper functions to finally call the bio end_io
1487 * functions. This is where read checksum verification actually happens
1488 */
1489static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1490{
ce9adaa5 1491 struct bio *bio;
8b712842
CM
1492 struct end_io_wq *end_io_wq;
1493 struct btrfs_fs_info *fs_info;
ce9adaa5 1494 int error;
ce9adaa5 1495
8b712842
CM
1496 end_io_wq = container_of(work, struct end_io_wq, work);
1497 bio = end_io_wq->bio;
1498 fs_info = end_io_wq->info;
ce9adaa5 1499
8b712842
CM
1500 error = end_io_wq->error;
1501 bio->bi_private = end_io_wq->private;
1502 bio->bi_end_io = end_io_wq->end_io;
1503 kfree(end_io_wq);
8b712842 1504 bio_endio(bio, error);
44b8bd7e
CM
1505}
1506
a74a4b97
CM
1507static int cleaner_kthread(void *arg)
1508{
1509 struct btrfs_root *root = arg;
1510
1511 do {
a74a4b97 1512 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1513
1514 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1515 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1516 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1517 btrfs_clean_old_snapshots(root);
1518 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1519 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1520 }
a74a4b97 1521
a0acae0e 1522 if (!try_to_freeze()) {
a74a4b97 1523 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1524 if (!kthread_should_stop())
1525 schedule();
a74a4b97
CM
1526 __set_current_state(TASK_RUNNING);
1527 }
1528 } while (!kthread_should_stop());
1529 return 0;
1530}
1531
1532static int transaction_kthread(void *arg)
1533{
1534 struct btrfs_root *root = arg;
1535 struct btrfs_trans_handle *trans;
1536 struct btrfs_transaction *cur;
8929ecfa 1537 u64 transid;
a74a4b97
CM
1538 unsigned long now;
1539 unsigned long delay;
1540 int ret;
1541
1542 do {
a74a4b97
CM
1543 delay = HZ * 30;
1544 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1545 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1546
a4abeea4 1547 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1548 cur = root->fs_info->running_transaction;
1549 if (!cur) {
a4abeea4 1550 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1551 goto sleep;
1552 }
31153d81 1553
a74a4b97 1554 now = get_seconds();
8929ecfa
YZ
1555 if (!cur->blocked &&
1556 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1557 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1558 delay = HZ * 5;
1559 goto sleep;
1560 }
8929ecfa 1561 transid = cur->transid;
a4abeea4 1562 spin_unlock(&root->fs_info->trans_lock);
56bec294 1563
7a7eaa40 1564 trans = btrfs_join_transaction(root);
3612b495 1565 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1566 if (transid == trans->transid) {
1567 ret = btrfs_commit_transaction(trans, root);
1568 BUG_ON(ret);
1569 } else {
1570 btrfs_end_transaction(trans, root);
1571 }
a74a4b97
CM
1572sleep:
1573 wake_up_process(root->fs_info->cleaner_kthread);
1574 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1575
a0acae0e 1576 if (!try_to_freeze()) {
a74a4b97 1577 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1578 if (!kthread_should_stop() &&
1579 !btrfs_transaction_blocked(root->fs_info))
1580 schedule_timeout(delay);
a74a4b97
CM
1581 __set_current_state(TASK_RUNNING);
1582 }
1583 } while (!kthread_should_stop());
1584 return 0;
1585}
1586
af31f5e5
CM
1587/*
1588 * this will find the highest generation in the array of
1589 * root backups. The index of the highest array is returned,
1590 * or -1 if we can't find anything.
1591 *
1592 * We check to make sure the array is valid by comparing the
1593 * generation of the latest root in the array with the generation
1594 * in the super block. If they don't match we pitch it.
1595 */
1596static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1597{
1598 u64 cur;
1599 int newest_index = -1;
1600 struct btrfs_root_backup *root_backup;
1601 int i;
1602
1603 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1604 root_backup = info->super_copy->super_roots + i;
1605 cur = btrfs_backup_tree_root_gen(root_backup);
1606 if (cur == newest_gen)
1607 newest_index = i;
1608 }
1609
1610 /* check to see if we actually wrapped around */
1611 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1612 root_backup = info->super_copy->super_roots;
1613 cur = btrfs_backup_tree_root_gen(root_backup);
1614 if (cur == newest_gen)
1615 newest_index = 0;
1616 }
1617 return newest_index;
1618}
1619
1620
1621/*
1622 * find the oldest backup so we know where to store new entries
1623 * in the backup array. This will set the backup_root_index
1624 * field in the fs_info struct
1625 */
1626static void find_oldest_super_backup(struct btrfs_fs_info *info,
1627 u64 newest_gen)
1628{
1629 int newest_index = -1;
1630
1631 newest_index = find_newest_super_backup(info, newest_gen);
1632 /* if there was garbage in there, just move along */
1633 if (newest_index == -1) {
1634 info->backup_root_index = 0;
1635 } else {
1636 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1637 }
1638}
1639
1640/*
1641 * copy all the root pointers into the super backup array.
1642 * this will bump the backup pointer by one when it is
1643 * done
1644 */
1645static void backup_super_roots(struct btrfs_fs_info *info)
1646{
1647 int next_backup;
1648 struct btrfs_root_backup *root_backup;
1649 int last_backup;
1650
1651 next_backup = info->backup_root_index;
1652 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1653 BTRFS_NUM_BACKUP_ROOTS;
1654
1655 /*
1656 * just overwrite the last backup if we're at the same generation
1657 * this happens only at umount
1658 */
1659 root_backup = info->super_for_commit->super_roots + last_backup;
1660 if (btrfs_backup_tree_root_gen(root_backup) ==
1661 btrfs_header_generation(info->tree_root->node))
1662 next_backup = last_backup;
1663
1664 root_backup = info->super_for_commit->super_roots + next_backup;
1665
1666 /*
1667 * make sure all of our padding and empty slots get zero filled
1668 * regardless of which ones we use today
1669 */
1670 memset(root_backup, 0, sizeof(*root_backup));
1671
1672 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1673
1674 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1675 btrfs_set_backup_tree_root_gen(root_backup,
1676 btrfs_header_generation(info->tree_root->node));
1677
1678 btrfs_set_backup_tree_root_level(root_backup,
1679 btrfs_header_level(info->tree_root->node));
1680
1681 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1682 btrfs_set_backup_chunk_root_gen(root_backup,
1683 btrfs_header_generation(info->chunk_root->node));
1684 btrfs_set_backup_chunk_root_level(root_backup,
1685 btrfs_header_level(info->chunk_root->node));
1686
1687 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1688 btrfs_set_backup_extent_root_gen(root_backup,
1689 btrfs_header_generation(info->extent_root->node));
1690 btrfs_set_backup_extent_root_level(root_backup,
1691 btrfs_header_level(info->extent_root->node));
1692
7c7e82a7
CM
1693 /*
1694 * we might commit during log recovery, which happens before we set
1695 * the fs_root. Make sure it is valid before we fill it in.
1696 */
1697 if (info->fs_root && info->fs_root->node) {
1698 btrfs_set_backup_fs_root(root_backup,
1699 info->fs_root->node->start);
1700 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1701 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1702 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1703 btrfs_header_level(info->fs_root->node));
7c7e82a7 1704 }
af31f5e5
CM
1705
1706 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1707 btrfs_set_backup_dev_root_gen(root_backup,
1708 btrfs_header_generation(info->dev_root->node));
1709 btrfs_set_backup_dev_root_level(root_backup,
1710 btrfs_header_level(info->dev_root->node));
1711
1712 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1713 btrfs_set_backup_csum_root_gen(root_backup,
1714 btrfs_header_generation(info->csum_root->node));
1715 btrfs_set_backup_csum_root_level(root_backup,
1716 btrfs_header_level(info->csum_root->node));
1717
1718 btrfs_set_backup_total_bytes(root_backup,
1719 btrfs_super_total_bytes(info->super_copy));
1720 btrfs_set_backup_bytes_used(root_backup,
1721 btrfs_super_bytes_used(info->super_copy));
1722 btrfs_set_backup_num_devices(root_backup,
1723 btrfs_super_num_devices(info->super_copy));
1724
1725 /*
1726 * if we don't copy this out to the super_copy, it won't get remembered
1727 * for the next commit
1728 */
1729 memcpy(&info->super_copy->super_roots,
1730 &info->super_for_commit->super_roots,
1731 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1732}
1733
1734/*
1735 * this copies info out of the root backup array and back into
1736 * the in-memory super block. It is meant to help iterate through
1737 * the array, so you send it the number of backups you've already
1738 * tried and the last backup index you used.
1739 *
1740 * this returns -1 when it has tried all the backups
1741 */
1742static noinline int next_root_backup(struct btrfs_fs_info *info,
1743 struct btrfs_super_block *super,
1744 int *num_backups_tried, int *backup_index)
1745{
1746 struct btrfs_root_backup *root_backup;
1747 int newest = *backup_index;
1748
1749 if (*num_backups_tried == 0) {
1750 u64 gen = btrfs_super_generation(super);
1751
1752 newest = find_newest_super_backup(info, gen);
1753 if (newest == -1)
1754 return -1;
1755
1756 *backup_index = newest;
1757 *num_backups_tried = 1;
1758 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1759 /* we've tried all the backups, all done */
1760 return -1;
1761 } else {
1762 /* jump to the next oldest backup */
1763 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1764 BTRFS_NUM_BACKUP_ROOTS;
1765 *backup_index = newest;
1766 *num_backups_tried += 1;
1767 }
1768 root_backup = super->super_roots + newest;
1769
1770 btrfs_set_super_generation(super,
1771 btrfs_backup_tree_root_gen(root_backup));
1772 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1773 btrfs_set_super_root_level(super,
1774 btrfs_backup_tree_root_level(root_backup));
1775 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1776
1777 /*
1778 * fixme: the total bytes and num_devices need to match or we should
1779 * need a fsck
1780 */
1781 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1782 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1783 return 0;
1784}
1785
1786/* helper to cleanup tree roots */
1787static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1788{
1789 free_extent_buffer(info->tree_root->node);
1790 free_extent_buffer(info->tree_root->commit_root);
1791 free_extent_buffer(info->dev_root->node);
1792 free_extent_buffer(info->dev_root->commit_root);
1793 free_extent_buffer(info->extent_root->node);
1794 free_extent_buffer(info->extent_root->commit_root);
1795 free_extent_buffer(info->csum_root->node);
1796 free_extent_buffer(info->csum_root->commit_root);
1797
1798 info->tree_root->node = NULL;
1799 info->tree_root->commit_root = NULL;
1800 info->dev_root->node = NULL;
1801 info->dev_root->commit_root = NULL;
1802 info->extent_root->node = NULL;
1803 info->extent_root->commit_root = NULL;
1804 info->csum_root->node = NULL;
1805 info->csum_root->commit_root = NULL;
1806
1807 if (chunk_root) {
1808 free_extent_buffer(info->chunk_root->node);
1809 free_extent_buffer(info->chunk_root->commit_root);
1810 info->chunk_root->node = NULL;
1811 info->chunk_root->commit_root = NULL;
1812 }
1813}
1814
1815
ad2b2c80
AV
1816int open_ctree(struct super_block *sb,
1817 struct btrfs_fs_devices *fs_devices,
1818 char *options)
2e635a27 1819{
db94535d
CM
1820 u32 sectorsize;
1821 u32 nodesize;
1822 u32 leafsize;
1823 u32 blocksize;
87ee04eb 1824 u32 stripesize;
84234f3a 1825 u64 generation;
f2b636e8 1826 u64 features;
3de4586c 1827 struct btrfs_key location;
a061fc8d 1828 struct buffer_head *bh;
4d34b278 1829 struct btrfs_super_block *disk_super;
815745cf 1830 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1831 struct btrfs_root *tree_root;
4d34b278
ID
1832 struct btrfs_root *extent_root;
1833 struct btrfs_root *csum_root;
1834 struct btrfs_root *chunk_root;
1835 struct btrfs_root *dev_root;
e02119d5 1836 struct btrfs_root *log_tree_root;
eb60ceac 1837 int ret;
e58ca020 1838 int err = -EINVAL;
af31f5e5
CM
1839 int num_backups_tried = 0;
1840 int backup_index = 0;
4543df7e 1841
f84a8bd6 1842 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1843 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1844 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1845 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1846 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1847
f84a8bd6
AV
1848 if (!tree_root || !extent_root || !csum_root ||
1849 !chunk_root || !dev_root) {
39279cc3
CM
1850 err = -ENOMEM;
1851 goto fail;
1852 }
76dda93c
YZ
1853
1854 ret = init_srcu_struct(&fs_info->subvol_srcu);
1855 if (ret) {
1856 err = ret;
1857 goto fail;
1858 }
1859
1860 ret = setup_bdi(fs_info, &fs_info->bdi);
1861 if (ret) {
1862 err = ret;
1863 goto fail_srcu;
1864 }
1865
1866 fs_info->btree_inode = new_inode(sb);
1867 if (!fs_info->btree_inode) {
1868 err = -ENOMEM;
1869 goto fail_bdi;
1870 }
1871
a6591715 1872 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1873
76dda93c 1874 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1875 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1876 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1877 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1878 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1879 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1880 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1881 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1882 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1883 spin_lock_init(&fs_info->trans_lock);
31153d81 1884 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1885 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1886 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1887 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1888 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1889 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1890
58176a96 1891 init_completion(&fs_info->kobj_unregister);
0b86a832 1892 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1893 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1894 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1895 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1896 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1897 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1898 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1899 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1900 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1901 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1902 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1903 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1904 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1905 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1906 fs_info->sb = sb;
6f568d35 1907 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1908 fs_info->metadata_ratio = 0;
4cb5300b 1909 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1910 fs_info->trans_no_join = 0;
2bf64758 1911 fs_info->free_chunk_space = 0;
c8b97818 1912
90519d66
AJ
1913 /* readahead state */
1914 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1915 spin_lock_init(&fs_info->reada_lock);
c8b97818 1916
b34b086c
CM
1917 fs_info->thread_pool_size = min_t(unsigned long,
1918 num_online_cpus() + 2, 8);
0afbaf8c 1919
3eaa2885
CM
1920 INIT_LIST_HEAD(&fs_info->ordered_extents);
1921 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1922 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1923 GFP_NOFS);
1924 if (!fs_info->delayed_root) {
1925 err = -ENOMEM;
1926 goto fail_iput;
1927 }
1928 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1929
a2de733c
AJ
1930 mutex_init(&fs_info->scrub_lock);
1931 atomic_set(&fs_info->scrubs_running, 0);
1932 atomic_set(&fs_info->scrub_pause_req, 0);
1933 atomic_set(&fs_info->scrubs_paused, 0);
1934 atomic_set(&fs_info->scrub_cancel_req, 0);
1935 init_waitqueue_head(&fs_info->scrub_pause_wait);
1936 init_rwsem(&fs_info->scrub_super_lock);
1937 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
1938#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1939 fs_info->check_integrity_print_mask = 0;
1940#endif
a2de733c 1941
c9e9f97b
ID
1942 spin_lock_init(&fs_info->balance_lock);
1943 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
1944 atomic_set(&fs_info->balance_running, 0);
1945 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 1946 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 1947 fs_info->balance_ctl = NULL;
837d5b6e 1948 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 1949
a061fc8d
CM
1950 sb->s_blocksize = 4096;
1951 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 1952 sb->s_bdi = &fs_info->bdi;
a061fc8d 1953
76dda93c 1954 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 1955 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
1956 /*
1957 * we set the i_size on the btree inode to the max possible int.
1958 * the real end of the address space is determined by all of
1959 * the devices in the system
1960 */
1961 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 1962 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
1963 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1964
5d4f98a2 1965 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 1966 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 1967 fs_info->btree_inode->i_mapping);
0b32f4bb 1968 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 1969 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
1970
1971 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 1972
76dda93c
YZ
1973 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1974 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1975 sizeof(struct btrfs_key));
1976 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 1977 insert_inode_hash(fs_info->btree_inode);
76dda93c 1978
0f9dd46c 1979 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 1980 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 1981
11833d66 1982 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 1983 fs_info->btree_inode->i_mapping);
11833d66 1984 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 1985 fs_info->btree_inode->i_mapping);
11833d66 1986 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 1987 fs_info->do_barriers = 1;
e18e4809 1988
39279cc3 1989
5a3f23d5 1990 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 1991 mutex_init(&fs_info->tree_log_mutex);
925baedd 1992 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
1993 mutex_init(&fs_info->transaction_kthread_mutex);
1994 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 1995 mutex_init(&fs_info->volume_mutex);
276e680d 1996 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 1997 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 1998 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
1999
2000 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2001 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2002
e6dcd2dc 2003 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2004 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2005 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2006 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2007
0b86a832 2008 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2009 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2010
a512bbf8 2011 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2012 if (!bh) {
2013 err = -EINVAL;
16cdcec7 2014 goto fail_alloc;
20b45077 2015 }
39279cc3 2016
6c41761f
DS
2017 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2018 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2019 sizeof(*fs_info->super_for_commit));
a061fc8d 2020 brelse(bh);
5f39d397 2021
6c41761f 2022 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2023
6c41761f 2024 disk_super = fs_info->super_copy;
0f7d52f4 2025 if (!btrfs_super_root(disk_super))
16cdcec7 2026 goto fail_alloc;
0f7d52f4 2027
acce952b 2028 /* check FS state, whether FS is broken. */
2029 fs_info->fs_state |= btrfs_super_flags(disk_super);
2030
2031 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2032
af31f5e5
CM
2033 /*
2034 * run through our array of backup supers and setup
2035 * our ring pointer to the oldest one
2036 */
2037 generation = btrfs_super_generation(disk_super);
2038 find_oldest_super_backup(fs_info, generation);
2039
75e7cb7f
LB
2040 /*
2041 * In the long term, we'll store the compression type in the super
2042 * block, and it'll be used for per file compression control.
2043 */
2044 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2045
2b82032c
YZ
2046 ret = btrfs_parse_options(tree_root, options);
2047 if (ret) {
2048 err = ret;
16cdcec7 2049 goto fail_alloc;
2b82032c 2050 }
dfe25020 2051
f2b636e8
JB
2052 features = btrfs_super_incompat_flags(disk_super) &
2053 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2054 if (features) {
2055 printk(KERN_ERR "BTRFS: couldn't mount because of "
2056 "unsupported optional features (%Lx).\n",
21380931 2057 (unsigned long long)features);
f2b636e8 2058 err = -EINVAL;
16cdcec7 2059 goto fail_alloc;
f2b636e8
JB
2060 }
2061
727011e0
CM
2062 if (btrfs_super_leafsize(disk_super) !=
2063 btrfs_super_nodesize(disk_super)) {
2064 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2065 "blocksizes don't match. node %d leaf %d\n",
2066 btrfs_super_nodesize(disk_super),
2067 btrfs_super_leafsize(disk_super));
2068 err = -EINVAL;
2069 goto fail_alloc;
2070 }
2071 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2072 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2073 "blocksize (%d) was too large\n",
2074 btrfs_super_leafsize(disk_super));
2075 err = -EINVAL;
2076 goto fail_alloc;
2077 }
2078
5d4f98a2 2079 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2080 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2081 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2082 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2083
2084 /*
2085 * flag our filesystem as having big metadata blocks if
2086 * they are bigger than the page size
2087 */
2088 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2089 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2090 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2091 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2092 }
2093
a6fa6fae 2094 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2095
f2b636e8
JB
2096 features = btrfs_super_compat_ro_flags(disk_super) &
2097 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2098 if (!(sb->s_flags & MS_RDONLY) && features) {
2099 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2100 "unsupported option features (%Lx).\n",
21380931 2101 (unsigned long long)features);
f2b636e8 2102 err = -EINVAL;
16cdcec7 2103 goto fail_alloc;
f2b636e8 2104 }
61d92c32
CM
2105
2106 btrfs_init_workers(&fs_info->generic_worker,
2107 "genwork", 1, NULL);
2108
5443be45 2109 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2110 fs_info->thread_pool_size,
2111 &fs_info->generic_worker);
c8b97818 2112
771ed689 2113 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2114 fs_info->thread_pool_size,
2115 &fs_info->generic_worker);
771ed689 2116
5443be45 2117 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2118 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2119 fs_info->thread_pool_size),
2120 &fs_info->generic_worker);
61b49440 2121
bab39bf9
JB
2122 btrfs_init_workers(&fs_info->caching_workers, "cache",
2123 2, &fs_info->generic_worker);
2124
61b49440
CM
2125 /* a higher idle thresh on the submit workers makes it much more
2126 * likely that bios will be send down in a sane order to the
2127 * devices
2128 */
2129 fs_info->submit_workers.idle_thresh = 64;
53863232 2130
771ed689 2131 fs_info->workers.idle_thresh = 16;
4a69a410 2132 fs_info->workers.ordered = 1;
61b49440 2133
771ed689
CM
2134 fs_info->delalloc_workers.idle_thresh = 2;
2135 fs_info->delalloc_workers.ordered = 1;
2136
61d92c32
CM
2137 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2138 &fs_info->generic_worker);
5443be45 2139 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2140 fs_info->thread_pool_size,
2141 &fs_info->generic_worker);
d20f7043 2142 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2143 fs_info->thread_pool_size,
2144 &fs_info->generic_worker);
cad321ad 2145 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2146 "endio-meta-write", fs_info->thread_pool_size,
2147 &fs_info->generic_worker);
5443be45 2148 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2149 fs_info->thread_pool_size,
2150 &fs_info->generic_worker);
0cb59c99
JB
2151 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2152 1, &fs_info->generic_worker);
16cdcec7
MX
2153 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2154 fs_info->thread_pool_size,
2155 &fs_info->generic_worker);
90519d66
AJ
2156 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2157 fs_info->thread_pool_size,
2158 &fs_info->generic_worker);
61b49440
CM
2159
2160 /*
2161 * endios are largely parallel and should have a very
2162 * low idle thresh
2163 */
2164 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2165 fs_info->endio_meta_workers.idle_thresh = 4;
2166
9042846b
CM
2167 fs_info->endio_write_workers.idle_thresh = 2;
2168 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2169 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2170
0dc3b84a
JB
2171 /*
2172 * btrfs_start_workers can really only fail because of ENOMEM so just
2173 * return -ENOMEM if any of these fail.
2174 */
2175 ret = btrfs_start_workers(&fs_info->workers);
2176 ret |= btrfs_start_workers(&fs_info->generic_worker);
2177 ret |= btrfs_start_workers(&fs_info->submit_workers);
2178 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2179 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2180 ret |= btrfs_start_workers(&fs_info->endio_workers);
2181 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2182 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2183 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2184 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2185 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2186 ret |= btrfs_start_workers(&fs_info->caching_workers);
2187 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2188 if (ret) {
2189 ret = -ENOMEM;
2190 goto fail_sb_buffer;
2191 }
4543df7e 2192
4575c9cc 2193 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2194 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2195 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2196
db94535d
CM
2197 nodesize = btrfs_super_nodesize(disk_super);
2198 leafsize = btrfs_super_leafsize(disk_super);
2199 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2200 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2201 tree_root->nodesize = nodesize;
2202 tree_root->leafsize = leafsize;
2203 tree_root->sectorsize = sectorsize;
87ee04eb 2204 tree_root->stripesize = stripesize;
a061fc8d
CM
2205
2206 sb->s_blocksize = sectorsize;
2207 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2208
39279cc3
CM
2209 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2210 sizeof(disk_super->magic))) {
d397712b 2211 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2212 goto fail_sb_buffer;
2213 }
19c00ddc 2214
941b2ddf
KM
2215 if (sectorsize < PAGE_SIZE) {
2216 printk(KERN_WARNING "btrfs: Incompatible sector size "
2217 "found on %s\n", sb->s_id);
2218 goto fail_sb_buffer;
2219 }
2220
925baedd 2221 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2222 ret = btrfs_read_sys_array(tree_root);
925baedd 2223 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2224 if (ret) {
d397712b
CM
2225 printk(KERN_WARNING "btrfs: failed to read the system "
2226 "array on %s\n", sb->s_id);
5d4f98a2 2227 goto fail_sb_buffer;
84eed90f 2228 }
0b86a832
CM
2229
2230 blocksize = btrfs_level_size(tree_root,
2231 btrfs_super_chunk_root_level(disk_super));
84234f3a 2232 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2233
2234 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2235 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2236
2237 chunk_root->node = read_tree_block(chunk_root,
2238 btrfs_super_chunk_root(disk_super),
84234f3a 2239 blocksize, generation);
0b86a832 2240 BUG_ON(!chunk_root->node);
83121942
DW
2241 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2242 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2243 sb->s_id);
af31f5e5 2244 goto fail_tree_roots;
83121942 2245 }
5d4f98a2
YZ
2246 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2247 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2248
e17cade2 2249 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2250 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2251 BTRFS_UUID_SIZE);
e17cade2 2252
0b86a832 2253 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2254 if (ret) {
d397712b
CM
2255 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2256 sb->s_id);
af31f5e5 2257 goto fail_tree_roots;
2b82032c 2258 }
0b86a832 2259
dfe25020
CM
2260 btrfs_close_extra_devices(fs_devices);
2261
a6b0d5c8
CM
2262 if (!fs_devices->latest_bdev) {
2263 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2264 sb->s_id);
2265 goto fail_tree_roots;
2266 }
2267
af31f5e5 2268retry_root_backup:
db94535d
CM
2269 blocksize = btrfs_level_size(tree_root,
2270 btrfs_super_root_level(disk_super));
84234f3a 2271 generation = btrfs_super_generation(disk_super);
0b86a832 2272
e20d96d6 2273 tree_root->node = read_tree_block(tree_root,
db94535d 2274 btrfs_super_root(disk_super),
84234f3a 2275 blocksize, generation);
af31f5e5
CM
2276 if (!tree_root->node ||
2277 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2278 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2279 sb->s_id);
af31f5e5
CM
2280
2281 goto recovery_tree_root;
83121942 2282 }
af31f5e5 2283
5d4f98a2
YZ
2284 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2285 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2286
2287 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2288 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2289 if (ret)
af31f5e5 2290 goto recovery_tree_root;
0b86a832
CM
2291 extent_root->track_dirty = 1;
2292
2293 ret = find_and_setup_root(tree_root, fs_info,
2294 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2295 if (ret)
af31f5e5 2296 goto recovery_tree_root;
5d4f98a2 2297 dev_root->track_dirty = 1;
3768f368 2298
d20f7043
CM
2299 ret = find_and_setup_root(tree_root, fs_info,
2300 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2301 if (ret)
af31f5e5 2302 goto recovery_tree_root;
d20f7043
CM
2303
2304 csum_root->track_dirty = 1;
2305
8929ecfa
YZ
2306 fs_info->generation = generation;
2307 fs_info->last_trans_committed = generation;
8929ecfa 2308
c59021f8 2309 ret = btrfs_init_space_info(fs_info);
2310 if (ret) {
2311 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2312 goto fail_block_groups;
2313 }
2314
1b1d1f66
JB
2315 ret = btrfs_read_block_groups(extent_root);
2316 if (ret) {
2317 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2318 goto fail_block_groups;
2319 }
9078a3e1 2320
a74a4b97
CM
2321 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2322 "btrfs-cleaner");
57506d50 2323 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2324 goto fail_block_groups;
a74a4b97
CM
2325
2326 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2327 tree_root,
2328 "btrfs-transaction");
57506d50 2329 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2330 goto fail_cleaner;
a74a4b97 2331
c289811c
CM
2332 if (!btrfs_test_opt(tree_root, SSD) &&
2333 !btrfs_test_opt(tree_root, NOSSD) &&
2334 !fs_info->fs_devices->rotating) {
2335 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2336 "mode\n");
2337 btrfs_set_opt(fs_info->mount_opt, SSD);
2338 }
2339
21adbd5c
SB
2340#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2341 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2342 ret = btrfsic_mount(tree_root, fs_devices,
2343 btrfs_test_opt(tree_root,
2344 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2345 1 : 0,
2346 fs_info->check_integrity_print_mask);
2347 if (ret)
2348 printk(KERN_WARNING "btrfs: failed to initialize"
2349 " integrity check module %s\n", sb->s_id);
2350 }
2351#endif
2352
acce952b 2353 /* do not make disk changes in broken FS */
2354 if (btrfs_super_log_root(disk_super) != 0 &&
2355 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2356 u64 bytenr = btrfs_super_log_root(disk_super);
2357
7c2ca468 2358 if (fs_devices->rw_devices == 0) {
d397712b
CM
2359 printk(KERN_WARNING "Btrfs log replay required "
2360 "on RO media\n");
7c2ca468
CM
2361 err = -EIO;
2362 goto fail_trans_kthread;
2363 }
e02119d5
CM
2364 blocksize =
2365 btrfs_level_size(tree_root,
2366 btrfs_super_log_root_level(disk_super));
d18a2c44 2367
6f07e42e 2368 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2369 if (!log_tree_root) {
2370 err = -ENOMEM;
2371 goto fail_trans_kthread;
2372 }
e02119d5
CM
2373
2374 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2375 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2376
2377 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2378 blocksize,
2379 generation + 1);
e02119d5
CM
2380 ret = btrfs_recover_log_trees(log_tree_root);
2381 BUG_ON(ret);
e556ce2c
YZ
2382
2383 if (sb->s_flags & MS_RDONLY) {
2384 ret = btrfs_commit_super(tree_root);
2385 BUG_ON(ret);
2386 }
e02119d5 2387 }
1a40e23b 2388
76dda93c
YZ
2389 ret = btrfs_find_orphan_roots(tree_root);
2390 BUG_ON(ret);
2391
7c2ca468 2392 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2393 ret = btrfs_cleanup_fs_roots(fs_info);
2394 BUG_ON(ret);
2395
5d4f98a2 2396 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2397 if (ret < 0) {
2398 printk(KERN_WARNING
2399 "btrfs: failed to recover relocation\n");
2400 err = -EINVAL;
2401 goto fail_trans_kthread;
2402 }
7c2ca468 2403 }
1a40e23b 2404
3de4586c
CM
2405 location.objectid = BTRFS_FS_TREE_OBJECTID;
2406 location.type = BTRFS_ROOT_ITEM_KEY;
2407 location.offset = (u64)-1;
2408
3de4586c
CM
2409 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2410 if (!fs_info->fs_root)
7c2ca468 2411 goto fail_trans_kthread;
3140c9a3
DC
2412 if (IS_ERR(fs_info->fs_root)) {
2413 err = PTR_ERR(fs_info->fs_root);
2414 goto fail_trans_kthread;
2415 }
c289811c 2416
e3acc2a6
JB
2417 if (!(sb->s_flags & MS_RDONLY)) {
2418 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2419 err = btrfs_orphan_cleanup(fs_info->fs_root);
2420 if (!err)
2421 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2422 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2423
2424 if (!err)
2425 err = btrfs_recover_balance(fs_info->tree_root);
2426
66b4ffd1
JB
2427 if (err) {
2428 close_ctree(tree_root);
ad2b2c80 2429 return err;
66b4ffd1 2430 }
e3acc2a6
JB
2431 }
2432
ad2b2c80 2433 return 0;
39279cc3 2434
7c2ca468
CM
2435fail_trans_kthread:
2436 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2437fail_cleaner:
a74a4b97 2438 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2439
2440 /*
2441 * make sure we're done with the btree inode before we stop our
2442 * kthreads
2443 */
2444 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2445 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2446
1b1d1f66
JB
2447fail_block_groups:
2448 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2449
2450fail_tree_roots:
2451 free_root_pointers(fs_info, 1);
2452
39279cc3 2453fail_sb_buffer:
61d92c32 2454 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2455 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2456 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2457 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2458 btrfs_stop_workers(&fs_info->workers);
2459 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2460 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2461 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2462 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2463 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2464 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2465 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2466 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2467fail_alloc:
4543df7e 2468fail_iput:
586e46e2
ID
2469 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2470
7c2ca468 2471 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2472 iput(fs_info->btree_inode);
ad081f14 2473fail_bdi:
7e662854 2474 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2475fail_srcu:
2476 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2477fail:
586e46e2 2478 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2479 return err;
af31f5e5
CM
2480
2481recovery_tree_root:
af31f5e5
CM
2482 if (!btrfs_test_opt(tree_root, RECOVERY))
2483 goto fail_tree_roots;
2484
2485 free_root_pointers(fs_info, 0);
2486
2487 /* don't use the log in recovery mode, it won't be valid */
2488 btrfs_set_super_log_root(disk_super, 0);
2489
2490 /* we can't trust the free space cache either */
2491 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2492
2493 ret = next_root_backup(fs_info, fs_info->super_copy,
2494 &num_backups_tried, &backup_index);
2495 if (ret == -1)
2496 goto fail_block_groups;
2497 goto retry_root_backup;
eb60ceac
CM
2498}
2499
f2984462
CM
2500static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2501{
2502 char b[BDEVNAME_SIZE];
2503
2504 if (uptodate) {
2505 set_buffer_uptodate(bh);
2506 } else {
7a36ddec 2507 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2508 "I/O error on %s\n",
2509 bdevname(bh->b_bdev, b));
1259ab75
CM
2510 /* note, we dont' set_buffer_write_io_error because we have
2511 * our own ways of dealing with the IO errors
2512 */
f2984462
CM
2513 clear_buffer_uptodate(bh);
2514 }
2515 unlock_buffer(bh);
2516 put_bh(bh);
2517}
2518
a512bbf8
YZ
2519struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2520{
2521 struct buffer_head *bh;
2522 struct buffer_head *latest = NULL;
2523 struct btrfs_super_block *super;
2524 int i;
2525 u64 transid = 0;
2526 u64 bytenr;
2527
2528 /* we would like to check all the supers, but that would make
2529 * a btrfs mount succeed after a mkfs from a different FS.
2530 * So, we need to add a special mount option to scan for
2531 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2532 */
2533 for (i = 0; i < 1; i++) {
2534 bytenr = btrfs_sb_offset(i);
2535 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2536 break;
2537 bh = __bread(bdev, bytenr / 4096, 4096);
2538 if (!bh)
2539 continue;
2540
2541 super = (struct btrfs_super_block *)bh->b_data;
2542 if (btrfs_super_bytenr(super) != bytenr ||
2543 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2544 sizeof(super->magic))) {
2545 brelse(bh);
2546 continue;
2547 }
2548
2549 if (!latest || btrfs_super_generation(super) > transid) {
2550 brelse(latest);
2551 latest = bh;
2552 transid = btrfs_super_generation(super);
2553 } else {
2554 brelse(bh);
2555 }
2556 }
2557 return latest;
2558}
2559
4eedeb75
HH
2560/*
2561 * this should be called twice, once with wait == 0 and
2562 * once with wait == 1. When wait == 0 is done, all the buffer heads
2563 * we write are pinned.
2564 *
2565 * They are released when wait == 1 is done.
2566 * max_mirrors must be the same for both runs, and it indicates how
2567 * many supers on this one device should be written.
2568 *
2569 * max_mirrors == 0 means to write them all.
2570 */
a512bbf8
YZ
2571static int write_dev_supers(struct btrfs_device *device,
2572 struct btrfs_super_block *sb,
2573 int do_barriers, int wait, int max_mirrors)
2574{
2575 struct buffer_head *bh;
2576 int i;
2577 int ret;
2578 int errors = 0;
2579 u32 crc;
2580 u64 bytenr;
a512bbf8
YZ
2581
2582 if (max_mirrors == 0)
2583 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2584
a512bbf8
YZ
2585 for (i = 0; i < max_mirrors; i++) {
2586 bytenr = btrfs_sb_offset(i);
2587 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2588 break;
2589
2590 if (wait) {
2591 bh = __find_get_block(device->bdev, bytenr / 4096,
2592 BTRFS_SUPER_INFO_SIZE);
2593 BUG_ON(!bh);
a512bbf8 2594 wait_on_buffer(bh);
4eedeb75
HH
2595 if (!buffer_uptodate(bh))
2596 errors++;
2597
2598 /* drop our reference */
2599 brelse(bh);
2600
2601 /* drop the reference from the wait == 0 run */
2602 brelse(bh);
2603 continue;
a512bbf8
YZ
2604 } else {
2605 btrfs_set_super_bytenr(sb, bytenr);
2606
2607 crc = ~(u32)0;
2608 crc = btrfs_csum_data(NULL, (char *)sb +
2609 BTRFS_CSUM_SIZE, crc,
2610 BTRFS_SUPER_INFO_SIZE -
2611 BTRFS_CSUM_SIZE);
2612 btrfs_csum_final(crc, sb->csum);
2613
4eedeb75
HH
2614 /*
2615 * one reference for us, and we leave it for the
2616 * caller
2617 */
a512bbf8
YZ
2618 bh = __getblk(device->bdev, bytenr / 4096,
2619 BTRFS_SUPER_INFO_SIZE);
2620 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2621
4eedeb75 2622 /* one reference for submit_bh */
a512bbf8 2623 get_bh(bh);
4eedeb75
HH
2624
2625 set_buffer_uptodate(bh);
a512bbf8
YZ
2626 lock_buffer(bh);
2627 bh->b_end_io = btrfs_end_buffer_write_sync;
2628 }
2629
387125fc
CM
2630 /*
2631 * we fua the first super. The others we allow
2632 * to go down lazy.
2633 */
21adbd5c 2634 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2635 if (ret)
a512bbf8 2636 errors++;
a512bbf8
YZ
2637 }
2638 return errors < i ? 0 : -1;
2639}
2640
387125fc
CM
2641/*
2642 * endio for the write_dev_flush, this will wake anyone waiting
2643 * for the barrier when it is done
2644 */
2645static void btrfs_end_empty_barrier(struct bio *bio, int err)
2646{
2647 if (err) {
2648 if (err == -EOPNOTSUPP)
2649 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2650 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2651 }
2652 if (bio->bi_private)
2653 complete(bio->bi_private);
2654 bio_put(bio);
2655}
2656
2657/*
2658 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2659 * sent down. With wait == 1, it waits for the previous flush.
2660 *
2661 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2662 * capable
2663 */
2664static int write_dev_flush(struct btrfs_device *device, int wait)
2665{
2666 struct bio *bio;
2667 int ret = 0;
2668
2669 if (device->nobarriers)
2670 return 0;
2671
2672 if (wait) {
2673 bio = device->flush_bio;
2674 if (!bio)
2675 return 0;
2676
2677 wait_for_completion(&device->flush_wait);
2678
2679 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2680 printk("btrfs: disabling barriers on dev %s\n",
2681 device->name);
2682 device->nobarriers = 1;
2683 }
2684 if (!bio_flagged(bio, BIO_UPTODATE)) {
2685 ret = -EIO;
2686 }
2687
2688 /* drop the reference from the wait == 0 run */
2689 bio_put(bio);
2690 device->flush_bio = NULL;
2691
2692 return ret;
2693 }
2694
2695 /*
2696 * one reference for us, and we leave it for the
2697 * caller
2698 */
2699 device->flush_bio = NULL;;
2700 bio = bio_alloc(GFP_NOFS, 0);
2701 if (!bio)
2702 return -ENOMEM;
2703
2704 bio->bi_end_io = btrfs_end_empty_barrier;
2705 bio->bi_bdev = device->bdev;
2706 init_completion(&device->flush_wait);
2707 bio->bi_private = &device->flush_wait;
2708 device->flush_bio = bio;
2709
2710 bio_get(bio);
21adbd5c 2711 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2712
2713 return 0;
2714}
2715
2716/*
2717 * send an empty flush down to each device in parallel,
2718 * then wait for them
2719 */
2720static int barrier_all_devices(struct btrfs_fs_info *info)
2721{
2722 struct list_head *head;
2723 struct btrfs_device *dev;
2724 int errors = 0;
2725 int ret;
2726
2727 /* send down all the barriers */
2728 head = &info->fs_devices->devices;
2729 list_for_each_entry_rcu(dev, head, dev_list) {
2730 if (!dev->bdev) {
2731 errors++;
2732 continue;
2733 }
2734 if (!dev->in_fs_metadata || !dev->writeable)
2735 continue;
2736
2737 ret = write_dev_flush(dev, 0);
2738 if (ret)
2739 errors++;
2740 }
2741
2742 /* wait for all the barriers */
2743 list_for_each_entry_rcu(dev, head, dev_list) {
2744 if (!dev->bdev) {
2745 errors++;
2746 continue;
2747 }
2748 if (!dev->in_fs_metadata || !dev->writeable)
2749 continue;
2750
2751 ret = write_dev_flush(dev, 1);
2752 if (ret)
2753 errors++;
2754 }
2755 if (errors)
2756 return -EIO;
2757 return 0;
2758}
2759
a512bbf8 2760int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2761{
e5e9a520 2762 struct list_head *head;
f2984462 2763 struct btrfs_device *dev;
a061fc8d 2764 struct btrfs_super_block *sb;
f2984462 2765 struct btrfs_dev_item *dev_item;
f2984462
CM
2766 int ret;
2767 int do_barriers;
a236aed1
CM
2768 int max_errors;
2769 int total_errors = 0;
a061fc8d 2770 u64 flags;
f2984462 2771
6c41761f 2772 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2773 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2774 backup_super_roots(root->fs_info);
f2984462 2775
6c41761f 2776 sb = root->fs_info->super_for_commit;
a061fc8d 2777 dev_item = &sb->dev_item;
e5e9a520 2778
174ba509 2779 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2780 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2781
2782 if (do_barriers)
2783 barrier_all_devices(root->fs_info);
2784
1f78160c 2785 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2786 if (!dev->bdev) {
2787 total_errors++;
2788 continue;
2789 }
2b82032c 2790 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2791 continue;
2792
2b82032c 2793 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2794 btrfs_set_stack_device_type(dev_item, dev->type);
2795 btrfs_set_stack_device_id(dev_item, dev->devid);
2796 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2797 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2798 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2799 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2800 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2801 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2802 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2803
a061fc8d
CM
2804 flags = btrfs_super_flags(sb);
2805 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2806
a512bbf8 2807 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2808 if (ret)
2809 total_errors++;
f2984462 2810 }
a236aed1 2811 if (total_errors > max_errors) {
d397712b
CM
2812 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2813 total_errors);
a236aed1
CM
2814 BUG();
2815 }
f2984462 2816
a512bbf8 2817 total_errors = 0;
1f78160c 2818 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2819 if (!dev->bdev)
2820 continue;
2b82032c 2821 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2822 continue;
2823
a512bbf8
YZ
2824 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2825 if (ret)
2826 total_errors++;
f2984462 2827 }
174ba509 2828 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2829 if (total_errors > max_errors) {
d397712b
CM
2830 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2831 total_errors);
a236aed1
CM
2832 BUG();
2833 }
f2984462
CM
2834 return 0;
2835}
2836
a512bbf8
YZ
2837int write_ctree_super(struct btrfs_trans_handle *trans,
2838 struct btrfs_root *root, int max_mirrors)
eb60ceac 2839{
e66f709b 2840 int ret;
5f39d397 2841
a512bbf8 2842 ret = write_all_supers(root, max_mirrors);
5f39d397 2843 return ret;
cfaa7295
CM
2844}
2845
5eda7b5e 2846int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2847{
4df27c4d 2848 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2849 radix_tree_delete(&fs_info->fs_roots_radix,
2850 (unsigned long)root->root_key.objectid);
4df27c4d 2851 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2852
2853 if (btrfs_root_refs(&root->root_item) == 0)
2854 synchronize_srcu(&fs_info->subvol_srcu);
2855
581bb050
LZ
2856 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2857 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2858 free_fs_root(root);
2859 return 0;
2860}
2861
2862static void free_fs_root(struct btrfs_root *root)
2863{
82d5902d 2864 iput(root->cache_inode);
4df27c4d 2865 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2866 if (root->anon_dev)
2867 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2868 free_extent_buffer(root->node);
2869 free_extent_buffer(root->commit_root);
581bb050
LZ
2870 kfree(root->free_ino_ctl);
2871 kfree(root->free_ino_pinned);
d397712b 2872 kfree(root->name);
2619ba1f 2873 kfree(root);
2619ba1f
CM
2874}
2875
35b7e476 2876static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2877{
2878 int ret;
2879 struct btrfs_root *gang[8];
2880 int i;
2881
76dda93c
YZ
2882 while (!list_empty(&fs_info->dead_roots)) {
2883 gang[0] = list_entry(fs_info->dead_roots.next,
2884 struct btrfs_root, root_list);
2885 list_del(&gang[0]->root_list);
2886
2887 if (gang[0]->in_radix) {
2888 btrfs_free_fs_root(fs_info, gang[0]);
2889 } else {
2890 free_extent_buffer(gang[0]->node);
2891 free_extent_buffer(gang[0]->commit_root);
2892 kfree(gang[0]);
2893 }
2894 }
2895
d397712b 2896 while (1) {
0f7d52f4
CM
2897 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2898 (void **)gang, 0,
2899 ARRAY_SIZE(gang));
2900 if (!ret)
2901 break;
2619ba1f 2902 for (i = 0; i < ret; i++)
5eda7b5e 2903 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2904 }
2905 return 0;
2906}
b4100d64 2907
c146afad 2908int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2909{
c146afad
YZ
2910 u64 root_objectid = 0;
2911 struct btrfs_root *gang[8];
2912 int i;
3768f368 2913 int ret;
e089f05c 2914
c146afad
YZ
2915 while (1) {
2916 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2917 (void **)gang, root_objectid,
2918 ARRAY_SIZE(gang));
2919 if (!ret)
2920 break;
5d4f98a2
YZ
2921
2922 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2923 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2924 int err;
2925
c146afad 2926 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2927 err = btrfs_orphan_cleanup(gang[i]);
2928 if (err)
2929 return err;
c146afad
YZ
2930 }
2931 root_objectid++;
2932 }
2933 return 0;
2934}
a2135011 2935
c146afad
YZ
2936int btrfs_commit_super(struct btrfs_root *root)
2937{
2938 struct btrfs_trans_handle *trans;
2939 int ret;
a74a4b97 2940
c146afad 2941 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2942 btrfs_run_delayed_iputs(root);
a74a4b97 2943 btrfs_clean_old_snapshots(root);
c146afad 2944 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2945
2946 /* wait until ongoing cleanup work done */
2947 down_write(&root->fs_info->cleanup_work_sem);
2948 up_write(&root->fs_info->cleanup_work_sem);
2949
7a7eaa40 2950 trans = btrfs_join_transaction(root);
3612b495
TI
2951 if (IS_ERR(trans))
2952 return PTR_ERR(trans);
54aa1f4d 2953 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2954 BUG_ON(ret);
2955 /* run commit again to drop the original snapshot */
7a7eaa40 2956 trans = btrfs_join_transaction(root);
3612b495
TI
2957 if (IS_ERR(trans))
2958 return PTR_ERR(trans);
79154b1b
CM
2959 btrfs_commit_transaction(trans, root);
2960 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 2961 BUG_ON(ret);
d6bfde87 2962
a512bbf8 2963 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
2964 return ret;
2965}
2966
2967int close_ctree(struct btrfs_root *root)
2968{
2969 struct btrfs_fs_info *fs_info = root->fs_info;
2970 int ret;
2971
2972 fs_info->closing = 1;
2973 smp_mb();
2974
837d5b6e
ID
2975 /* pause restriper - we want to resume on mount */
2976 btrfs_pause_balance(root->fs_info);
2977
a2de733c 2978 btrfs_scrub_cancel(root);
4cb5300b
CM
2979
2980 /* wait for any defraggers to finish */
2981 wait_event(fs_info->transaction_wait,
2982 (atomic_read(&fs_info->defrag_running) == 0));
2983
2984 /* clear out the rbtree of defraggable inodes */
e3029d9f 2985 btrfs_run_defrag_inodes(fs_info);
4cb5300b 2986
acce952b 2987 /*
2988 * Here come 2 situations when btrfs is broken to flip readonly:
2989 *
2990 * 1. when btrfs flips readonly somewhere else before
2991 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2992 * and btrfs will skip to write sb directly to keep
2993 * ERROR state on disk.
2994 *
2995 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 2996 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 2997 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2998 * btrfs will cleanup all FS resources first and write sb then.
2999 */
c146afad 3000 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3001 ret = btrfs_commit_super(root);
3002 if (ret)
3003 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3004 }
3005
3006 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3007 ret = btrfs_error_commit_super(root);
d397712b
CM
3008 if (ret)
3009 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3010 }
0f7d52f4 3011
300e4f8a
JB
3012 btrfs_put_block_group_cache(fs_info);
3013
e3029d9f
AV
3014 kthread_stop(fs_info->transaction_kthread);
3015 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3016
f25784b3
YZ
3017 fs_info->closing = 2;
3018 smp_mb();
3019
b0c68f8b 3020 if (fs_info->delalloc_bytes) {
d397712b 3021 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3022 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3023 }
31153d81 3024 if (fs_info->total_ref_cache_size) {
d397712b
CM
3025 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3026 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3027 }
bcc63abb 3028
5d4f98a2
YZ
3029 free_extent_buffer(fs_info->extent_root->node);
3030 free_extent_buffer(fs_info->extent_root->commit_root);
3031 free_extent_buffer(fs_info->tree_root->node);
3032 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3033 free_extent_buffer(fs_info->chunk_root->node);
3034 free_extent_buffer(fs_info->chunk_root->commit_root);
3035 free_extent_buffer(fs_info->dev_root->node);
3036 free_extent_buffer(fs_info->dev_root->commit_root);
3037 free_extent_buffer(fs_info->csum_root->node);
3038 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3039
e3029d9f 3040 btrfs_free_block_groups(fs_info);
d10c5f31 3041
c146afad 3042 del_fs_roots(fs_info);
d10c5f31 3043
c146afad 3044 iput(fs_info->btree_inode);
9ad6b7bc 3045
61d92c32 3046 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3047 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3048 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3049 btrfs_stop_workers(&fs_info->workers);
3050 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3051 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3052 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3053 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3054 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3055 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3056 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3057 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3058 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3059
21adbd5c
SB
3060#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3061 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3062 btrfsic_unmount(root, fs_info->fs_devices);
3063#endif
3064
dfe25020 3065 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3066 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3067
04160088 3068 bdi_destroy(&fs_info->bdi);
76dda93c 3069 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3070
eb60ceac
CM
3071 return 0;
3072}
3073
1259ab75 3074int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3075{
1259ab75 3076 int ret;
727011e0 3077 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3078
0b32f4bb 3079 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3080 if (!ret)
3081 return ret;
3082
3083 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3084 parent_transid);
3085 return !ret;
5f39d397
CM
3086}
3087
3088int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3089{
0b32f4bb 3090 return set_extent_buffer_uptodate(buf);
5f39d397 3091}
6702ed49 3092
5f39d397
CM
3093void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3094{
727011e0 3095 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3096 u64 transid = btrfs_header_generation(buf);
b9473439 3097 int was_dirty;
b4ce94de 3098
b9447ef8 3099 btrfs_assert_tree_locked(buf);
ccd467d6 3100 if (transid != root->fs_info->generation) {
d397712b
CM
3101 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3102 "found %llu running %llu\n",
db94535d 3103 (unsigned long long)buf->start,
d397712b
CM
3104 (unsigned long long)transid,
3105 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3106 WARN_ON(1);
3107 }
0b32f4bb 3108 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3109 if (!was_dirty) {
3110 spin_lock(&root->fs_info->delalloc_lock);
3111 root->fs_info->dirty_metadata_bytes += buf->len;
3112 spin_unlock(&root->fs_info->delalloc_lock);
3113 }
eb60ceac
CM
3114}
3115
d3c2fdcf 3116void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3117{
3118 /*
3119 * looks as though older kernels can get into trouble with
3120 * this code, they end up stuck in balance_dirty_pages forever
3121 */
3122 u64 num_dirty;
3123 unsigned long thresh = 32 * 1024 * 1024;
3124
3125 if (current->flags & PF_MEMALLOC)
3126 return;
3127
3128 btrfs_balance_delayed_items(root);
3129
3130 num_dirty = root->fs_info->dirty_metadata_bytes;
3131
3132 if (num_dirty > thresh) {
3133 balance_dirty_pages_ratelimited_nr(
3134 root->fs_info->btree_inode->i_mapping, 1);
3135 }
3136 return;
3137}
3138
3139void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3140{
188de649
CM
3141 /*
3142 * looks as though older kernels can get into trouble with
3143 * this code, they end up stuck in balance_dirty_pages forever
3144 */
d6bfde87 3145 u64 num_dirty;
771ed689 3146 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3147
6933c02e 3148 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3149 return;
3150
585ad2c3
CM
3151 num_dirty = root->fs_info->dirty_metadata_bytes;
3152
d6bfde87
CM
3153 if (num_dirty > thresh) {
3154 balance_dirty_pages_ratelimited_nr(
d7fc640e 3155 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3156 }
188de649 3157 return;
35b7e476 3158}
6b80053d 3159
ca7a79ad 3160int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3161{
727011e0 3162 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3163 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3164}
0da5468f 3165
01d658f2
CM
3166static int btree_lock_page_hook(struct page *page, void *data,
3167 void (*flush_fn)(void *))
4bef0848
CM
3168{
3169 struct inode *inode = page->mapping->host;
b9473439 3170 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3171 struct extent_buffer *eb;
4bef0848 3172
4f2de97a
JB
3173 /*
3174 * We culled this eb but the page is still hanging out on the mapping,
3175 * carry on.
3176 */
3177 if (!PagePrivate(page))
4bef0848
CM
3178 goto out;
3179
4f2de97a
JB
3180 eb = (struct extent_buffer *)page->private;
3181 if (!eb) {
3182 WARN_ON(1);
3183 goto out;
3184 }
3185 if (page != eb->pages[0])
4bef0848
CM
3186 goto out;
3187
01d658f2
CM
3188 if (!btrfs_try_tree_write_lock(eb)) {
3189 flush_fn(data);
3190 btrfs_tree_lock(eb);
3191 }
4bef0848 3192 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3193
3194 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3195 spin_lock(&root->fs_info->delalloc_lock);
3196 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3197 root->fs_info->dirty_metadata_bytes -= eb->len;
3198 else
3199 WARN_ON(1);
3200 spin_unlock(&root->fs_info->delalloc_lock);
3201 }
3202
4bef0848 3203 btrfs_tree_unlock(eb);
4bef0848 3204out:
01d658f2
CM
3205 if (!trylock_page(page)) {
3206 flush_fn(data);
3207 lock_page(page);
3208 }
4bef0848
CM
3209 return 0;
3210}
3211
acce952b 3212static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3213 int read_only)
3214{
3215 if (read_only)
3216 return;
3217
3218 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3219 printk(KERN_WARNING "warning: mount fs with errors, "
3220 "running btrfsck is recommended\n");
3221}
3222
3223int btrfs_error_commit_super(struct btrfs_root *root)
3224{
3225 int ret;
3226
3227 mutex_lock(&root->fs_info->cleaner_mutex);
3228 btrfs_run_delayed_iputs(root);
3229 mutex_unlock(&root->fs_info->cleaner_mutex);
3230
3231 down_write(&root->fs_info->cleanup_work_sem);
3232 up_write(&root->fs_info->cleanup_work_sem);
3233
3234 /* cleanup FS via transaction */
3235 btrfs_cleanup_transaction(root);
3236
3237 ret = write_ctree_super(NULL, root, 0);
3238
3239 return ret;
3240}
3241
3242static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3243{
3244 struct btrfs_inode *btrfs_inode;
3245 struct list_head splice;
3246
3247 INIT_LIST_HEAD(&splice);
3248
3249 mutex_lock(&root->fs_info->ordered_operations_mutex);
3250 spin_lock(&root->fs_info->ordered_extent_lock);
3251
3252 list_splice_init(&root->fs_info->ordered_operations, &splice);
3253 while (!list_empty(&splice)) {
3254 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3255 ordered_operations);
3256
3257 list_del_init(&btrfs_inode->ordered_operations);
3258
3259 btrfs_invalidate_inodes(btrfs_inode->root);
3260 }
3261
3262 spin_unlock(&root->fs_info->ordered_extent_lock);
3263 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3264
3265 return 0;
3266}
3267
3268static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3269{
3270 struct list_head splice;
3271 struct btrfs_ordered_extent *ordered;
3272 struct inode *inode;
3273
3274 INIT_LIST_HEAD(&splice);
3275
3276 spin_lock(&root->fs_info->ordered_extent_lock);
3277
3278 list_splice_init(&root->fs_info->ordered_extents, &splice);
3279 while (!list_empty(&splice)) {
3280 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3281 root_extent_list);
3282
3283 list_del_init(&ordered->root_extent_list);
3284 atomic_inc(&ordered->refs);
3285
3286 /* the inode may be getting freed (in sys_unlink path). */
3287 inode = igrab(ordered->inode);
3288
3289 spin_unlock(&root->fs_info->ordered_extent_lock);
3290 if (inode)
3291 iput(inode);
3292
3293 atomic_set(&ordered->refs, 1);
3294 btrfs_put_ordered_extent(ordered);
3295
3296 spin_lock(&root->fs_info->ordered_extent_lock);
3297 }
3298
3299 spin_unlock(&root->fs_info->ordered_extent_lock);
3300
3301 return 0;
3302}
3303
3304static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3305 struct btrfs_root *root)
3306{
3307 struct rb_node *node;
3308 struct btrfs_delayed_ref_root *delayed_refs;
3309 struct btrfs_delayed_ref_node *ref;
3310 int ret = 0;
3311
3312 delayed_refs = &trans->delayed_refs;
3313
3314 spin_lock(&delayed_refs->lock);
3315 if (delayed_refs->num_entries == 0) {
cfece4db 3316 spin_unlock(&delayed_refs->lock);
acce952b 3317 printk(KERN_INFO "delayed_refs has NO entry\n");
3318 return ret;
3319 }
3320
3321 node = rb_first(&delayed_refs->root);
3322 while (node) {
3323 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3324 node = rb_next(node);
3325
3326 ref->in_tree = 0;
3327 rb_erase(&ref->rb_node, &delayed_refs->root);
3328 delayed_refs->num_entries--;
3329
3330 atomic_set(&ref->refs, 1);
3331 if (btrfs_delayed_ref_is_head(ref)) {
3332 struct btrfs_delayed_ref_head *head;
3333
3334 head = btrfs_delayed_node_to_head(ref);
3335 mutex_lock(&head->mutex);
3336 kfree(head->extent_op);
3337 delayed_refs->num_heads--;
3338 if (list_empty(&head->cluster))
3339 delayed_refs->num_heads_ready--;
3340 list_del_init(&head->cluster);
3341 mutex_unlock(&head->mutex);
3342 }
3343
3344 spin_unlock(&delayed_refs->lock);
3345 btrfs_put_delayed_ref(ref);
3346
3347 cond_resched();
3348 spin_lock(&delayed_refs->lock);
3349 }
3350
3351 spin_unlock(&delayed_refs->lock);
3352
3353 return ret;
3354}
3355
3356static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3357{
3358 struct btrfs_pending_snapshot *snapshot;
3359 struct list_head splice;
3360
3361 INIT_LIST_HEAD(&splice);
3362
3363 list_splice_init(&t->pending_snapshots, &splice);
3364
3365 while (!list_empty(&splice)) {
3366 snapshot = list_entry(splice.next,
3367 struct btrfs_pending_snapshot,
3368 list);
3369
3370 list_del_init(&snapshot->list);
3371
3372 kfree(snapshot);
3373 }
3374
3375 return 0;
3376}
3377
3378static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3379{
3380 struct btrfs_inode *btrfs_inode;
3381 struct list_head splice;
3382
3383 INIT_LIST_HEAD(&splice);
3384
acce952b 3385 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3386 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3387
3388 while (!list_empty(&splice)) {
3389 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3390 delalloc_inodes);
3391
3392 list_del_init(&btrfs_inode->delalloc_inodes);
3393
3394 btrfs_invalidate_inodes(btrfs_inode->root);
3395 }
3396
3397 spin_unlock(&root->fs_info->delalloc_lock);
3398
3399 return 0;
3400}
3401
3402static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3403 struct extent_io_tree *dirty_pages,
3404 int mark)
3405{
3406 int ret;
3407 struct page *page;
3408 struct inode *btree_inode = root->fs_info->btree_inode;
3409 struct extent_buffer *eb;
3410 u64 start = 0;
3411 u64 end;
3412 u64 offset;
3413 unsigned long index;
3414
3415 while (1) {
3416 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3417 mark);
3418 if (ret)
3419 break;
3420
3421 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3422 while (start <= end) {
3423 index = start >> PAGE_CACHE_SHIFT;
3424 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3425 page = find_get_page(btree_inode->i_mapping, index);
3426 if (!page)
3427 continue;
3428 offset = page_offset(page);
3429
3430 spin_lock(&dirty_pages->buffer_lock);
3431 eb = radix_tree_lookup(
3432 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3433 offset >> PAGE_CACHE_SHIFT);
3434 spin_unlock(&dirty_pages->buffer_lock);
3435 if (eb) {
3436 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3437 &eb->bflags);
3438 atomic_set(&eb->refs, 1);
3439 }
3440 if (PageWriteback(page))
3441 end_page_writeback(page);
3442
3443 lock_page(page);
3444 if (PageDirty(page)) {
3445 clear_page_dirty_for_io(page);
3446 spin_lock_irq(&page->mapping->tree_lock);
3447 radix_tree_tag_clear(&page->mapping->page_tree,
3448 page_index(page),
3449 PAGECACHE_TAG_DIRTY);
3450 spin_unlock_irq(&page->mapping->tree_lock);
3451 }
3452
3453 page->mapping->a_ops->invalidatepage(page, 0);
3454 unlock_page(page);
3455 }
3456 }
3457
3458 return ret;
3459}
3460
3461static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3462 struct extent_io_tree *pinned_extents)
3463{
3464 struct extent_io_tree *unpin;
3465 u64 start;
3466 u64 end;
3467 int ret;
3468
3469 unpin = pinned_extents;
3470 while (1) {
3471 ret = find_first_extent_bit(unpin, 0, &start, &end,
3472 EXTENT_DIRTY);
3473 if (ret)
3474 break;
3475
3476 /* opt_discard */
5378e607
LD
3477 if (btrfs_test_opt(root, DISCARD))
3478 ret = btrfs_error_discard_extent(root, start,
3479 end + 1 - start,
3480 NULL);
acce952b 3481
3482 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3483 btrfs_error_unpin_extent_range(root, start, end);
3484 cond_resched();
3485 }
3486
3487 return 0;
3488}
3489
3490static int btrfs_cleanup_transaction(struct btrfs_root *root)
3491{
3492 struct btrfs_transaction *t;
3493 LIST_HEAD(list);
3494
3495 WARN_ON(1);
3496
acce952b 3497 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3498
a4abeea4 3499 spin_lock(&root->fs_info->trans_lock);
acce952b 3500 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3501 root->fs_info->trans_no_join = 1;
3502 spin_unlock(&root->fs_info->trans_lock);
3503
acce952b 3504 while (!list_empty(&list)) {
3505 t = list_entry(list.next, struct btrfs_transaction, list);
3506 if (!t)
3507 break;
3508
3509 btrfs_destroy_ordered_operations(root);
3510
3511 btrfs_destroy_ordered_extents(root);
3512
3513 btrfs_destroy_delayed_refs(t, root);
3514
3515 btrfs_block_rsv_release(root,
3516 &root->fs_info->trans_block_rsv,
3517 t->dirty_pages.dirty_bytes);
3518
3519 /* FIXME: cleanup wait for commit */
3520 t->in_commit = 1;
3521 t->blocked = 1;
3522 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3523 wake_up(&root->fs_info->transaction_blocked_wait);
3524
3525 t->blocked = 0;
3526 if (waitqueue_active(&root->fs_info->transaction_wait))
3527 wake_up(&root->fs_info->transaction_wait);
acce952b 3528
acce952b 3529 t->commit_done = 1;
3530 if (waitqueue_active(&t->commit_wait))
3531 wake_up(&t->commit_wait);
acce952b 3532
3533 btrfs_destroy_pending_snapshots(t);
3534
3535 btrfs_destroy_delalloc_inodes(root);
3536
a4abeea4 3537 spin_lock(&root->fs_info->trans_lock);
acce952b 3538 root->fs_info->running_transaction = NULL;
a4abeea4 3539 spin_unlock(&root->fs_info->trans_lock);
acce952b 3540
3541 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3542 EXTENT_DIRTY);
3543
3544 btrfs_destroy_pinned_extent(root,
3545 root->fs_info->pinned_extents);
3546
13c5a93e 3547 atomic_set(&t->use_count, 0);
acce952b 3548 list_del_init(&t->list);
3549 memset(t, 0, sizeof(*t));
3550 kmem_cache_free(btrfs_transaction_cachep, t);
3551 }
3552
a4abeea4
JB
3553 spin_lock(&root->fs_info->trans_lock);
3554 root->fs_info->trans_no_join = 0;
3555 spin_unlock(&root->fs_info->trans_lock);
acce952b 3556 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3557
3558 return 0;
3559}
3560
d1310b2e 3561static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3562 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3563 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3564 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3565 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3566 /* note we're sharing with inode.c for the merge bio hook */
3567 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3568};