Btrfs: add a type field for the transaction handle
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
eb60ceac 48
d1310b2e 49static struct extent_io_ops btree_extent_io_ops;
8b712842 50static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 51static void free_fs_root(struct btrfs_root *root);
fcd1f065 52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 53 int read_only);
143bede5
JM
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
143bede5
JM
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
79787eaa 102 int error;
44b8bd7e
CM
103};
104
85d4e461
CM
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
4008c04a 115 *
85d4e461
CM
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 119 *
85d4e461
CM
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 123 *
85d4e461
CM
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
4008c04a
CM
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
85d4e461
CM
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
4008c04a 150};
85d4e461
CM
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
4008c04a
CM
182#endif
183
d352ac68
CM
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
b2950863 188static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 189 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 190 int create)
7eccb903 191{
5f39d397
CM
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
890871be 196 read_lock(&em_tree->lock);
d1310b2e 197 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 201 read_unlock(&em_tree->lock);
5f39d397 202 goto out;
a061fc8d 203 }
890871be 204 read_unlock(&em_tree->lock);
7b13b7b1 205
172ddd60 206 em = alloc_extent_map();
5f39d397
CM
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
0afbaf8c 212 em->len = (u64)-1;
c8b97818 213 em->block_len = (u64)-1;
5f39d397 214 em->block_start = 0;
a061fc8d 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 216
890871be 217 write_lock(&em_tree->lock);
5f39d397
CM
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 free_extent_map(em);
7b13b7b1 221 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 222 if (!em)
0433f20d 223 em = ERR_PTR(-EIO);
5f39d397 224 } else if (ret) {
7b13b7b1 225 free_extent_map(em);
0433f20d 226 em = ERR_PTR(ret);
5f39d397 227 }
890871be 228 write_unlock(&em_tree->lock);
7b13b7b1 229
5f39d397
CM
230out:
231 return em;
7eccb903
CM
232}
233
19c00ddc
CM
234u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
235{
163e783e 236 return crc32c(seed, data, len);
19c00ddc
CM
237}
238
239void btrfs_csum_final(u32 crc, char *result)
240{
7e75bf3f 241 put_unaligned_le32(~crc, result);
19c00ddc
CM
242}
243
d352ac68
CM
244/*
245 * compute the csum for a btree block, and either verify it or write it
246 * into the csum field of the block.
247 */
19c00ddc
CM
248static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
249 int verify)
250{
6c41761f 251 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 252 char *result = NULL;
19c00ddc
CM
253 unsigned long len;
254 unsigned long cur_len;
255 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
256 char *kaddr;
257 unsigned long map_start;
258 unsigned long map_len;
259 int err;
260 u32 crc = ~(u32)0;
607d432d 261 unsigned long inline_result;
19c00ddc
CM
262
263 len = buf->len - offset;
d397712b 264 while (len > 0) {
19c00ddc 265 err = map_private_extent_buffer(buf, offset, 32,
a6591715 266 &kaddr, &map_start, &map_len);
d397712b 267 if (err)
19c00ddc 268 return 1;
19c00ddc
CM
269 cur_len = min(len, map_len - (offset - map_start));
270 crc = btrfs_csum_data(root, kaddr + offset - map_start,
271 crc, cur_len);
272 len -= cur_len;
273 offset += cur_len;
19c00ddc 274 }
607d432d
JB
275 if (csum_size > sizeof(inline_result)) {
276 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
277 if (!result)
278 return 1;
279 } else {
280 result = (char *)&inline_result;
281 }
282
19c00ddc
CM
283 btrfs_csum_final(crc, result);
284
285 if (verify) {
607d432d 286 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
287 u32 val;
288 u32 found = 0;
607d432d 289 memcpy(&found, result, csum_size);
e4204ded 290
607d432d 291 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 292 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
293 "failed on %llu wanted %X found %X "
294 "level %d\n",
295 root->fs_info->sb->s_id,
296 (unsigned long long)buf->start, val, found,
297 btrfs_header_level(buf));
607d432d
JB
298 if (result != (char *)&inline_result)
299 kfree(result);
19c00ddc
CM
300 return 1;
301 }
302 } else {
607d432d 303 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 304 }
607d432d
JB
305 if (result != (char *)&inline_result)
306 kfree(result);
19c00ddc
CM
307 return 0;
308}
309
d352ac68
CM
310/*
311 * we can't consider a given block up to date unless the transid of the
312 * block matches the transid in the parent node's pointer. This is how we
313 * detect blocks that either didn't get written at all or got written
314 * in the wrong place.
315 */
1259ab75 316static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
317 struct extent_buffer *eb, u64 parent_transid,
318 int atomic)
1259ab75 319{
2ac55d41 320 struct extent_state *cached_state = NULL;
1259ab75
CM
321 int ret;
322
323 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
324 return 0;
325
b9fab919
CM
326 if (atomic)
327 return -EAGAIN;
328
2ac55d41 329 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 330 0, &cached_state);
0b32f4bb 331 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
332 btrfs_header_generation(eb) == parent_transid) {
333 ret = 0;
334 goto out;
335 }
7a36ddec 336 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
337 "found %llu\n",
338 (unsigned long long)eb->start,
339 (unsigned long long)parent_transid,
340 (unsigned long long)btrfs_header_generation(eb));
1259ab75 341 ret = 1;
0b32f4bb 342 clear_extent_buffer_uptodate(eb);
33958dc6 343out:
2ac55d41
JB
344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345 &cached_state, GFP_NOFS);
1259ab75 346 return ret;
1259ab75
CM
347}
348
d352ac68
CM
349/*
350 * helper to read a given tree block, doing retries as required when
351 * the checksums don't match and we have alternate mirrors to try.
352 */
f188591e
CM
353static int btree_read_extent_buffer_pages(struct btrfs_root *root,
354 struct extent_buffer *eb,
ca7a79ad 355 u64 start, u64 parent_transid)
f188591e
CM
356{
357 struct extent_io_tree *io_tree;
ea466794 358 int failed = 0;
f188591e
CM
359 int ret;
360 int num_copies = 0;
361 int mirror_num = 0;
ea466794 362 int failed_mirror = 0;
f188591e 363
a826d6dc 364 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
365 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
366 while (1) {
bb82ab88
AJ
367 ret = read_extent_buffer_pages(io_tree, eb, start,
368 WAIT_COMPLETE,
f188591e 369 btree_get_extent, mirror_num);
256dd1bb
SB
370 if (!ret) {
371 if (!verify_parent_transid(io_tree, eb,
b9fab919 372 parent_transid, 0))
256dd1bb
SB
373 break;
374 else
375 ret = -EIO;
376 }
d397712b 377
a826d6dc
JB
378 /*
379 * This buffer's crc is fine, but its contents are corrupted, so
380 * there is no reason to read the other copies, they won't be
381 * any less wrong.
382 */
383 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
384 break;
385
f188591e
CM
386 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
387 eb->start, eb->len);
4235298e 388 if (num_copies == 1)
ea466794 389 break;
4235298e 390
5cf1ab56
JB
391 if (!failed_mirror) {
392 failed = 1;
393 failed_mirror = eb->read_mirror;
394 }
395
f188591e 396 mirror_num++;
ea466794
JB
397 if (mirror_num == failed_mirror)
398 mirror_num++;
399
4235298e 400 if (mirror_num > num_copies)
ea466794 401 break;
f188591e 402 }
ea466794 403
c0901581 404 if (failed && !ret && failed_mirror)
ea466794
JB
405 repair_eb_io_failure(root, eb, failed_mirror);
406
407 return ret;
f188591e 408}
19c00ddc 409
d352ac68 410/*
d397712b
CM
411 * checksum a dirty tree block before IO. This has extra checks to make sure
412 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 413 */
d397712b 414
b2950863 415static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 416{
d1310b2e 417 struct extent_io_tree *tree;
35ebb934 418 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 419 u64 found_start;
19c00ddc 420 struct extent_buffer *eb;
f188591e 421
d1310b2e 422 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 423
4f2de97a
JB
424 eb = (struct extent_buffer *)page->private;
425 if (page != eb->pages[0])
426 return 0;
19c00ddc
CM
427 found_start = btrfs_header_bytenr(eb);
428 if (found_start != start) {
55c69072 429 WARN_ON(1);
4f2de97a 430 return 0;
55c69072 431 }
727011e0 432 if (eb->pages[0] != page) {
55c69072 433 WARN_ON(1);
4f2de97a 434 return 0;
55c69072
CM
435 }
436 if (!PageUptodate(page)) {
55c69072 437 WARN_ON(1);
4f2de97a 438 return 0;
19c00ddc 439 }
19c00ddc 440 csum_tree_block(root, eb, 0);
19c00ddc
CM
441 return 0;
442}
443
2b82032c
YZ
444static int check_tree_block_fsid(struct btrfs_root *root,
445 struct extent_buffer *eb)
446{
447 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
448 u8 fsid[BTRFS_UUID_SIZE];
449 int ret = 1;
450
451 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
452 BTRFS_FSID_SIZE);
453 while (fs_devices) {
454 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
455 ret = 0;
456 break;
457 }
458 fs_devices = fs_devices->seed;
459 }
460 return ret;
461}
462
a826d6dc
JB
463#define CORRUPT(reason, eb, root, slot) \
464 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
465 "root=%llu, slot=%d\n", reason, \
466 (unsigned long long)btrfs_header_bytenr(eb), \
467 (unsigned long long)root->objectid, slot)
468
469static noinline int check_leaf(struct btrfs_root *root,
470 struct extent_buffer *leaf)
471{
472 struct btrfs_key key;
473 struct btrfs_key leaf_key;
474 u32 nritems = btrfs_header_nritems(leaf);
475 int slot;
476
477 if (nritems == 0)
478 return 0;
479
480 /* Check the 0 item */
481 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
482 BTRFS_LEAF_DATA_SIZE(root)) {
483 CORRUPT("invalid item offset size pair", leaf, root, 0);
484 return -EIO;
485 }
486
487 /*
488 * Check to make sure each items keys are in the correct order and their
489 * offsets make sense. We only have to loop through nritems-1 because
490 * we check the current slot against the next slot, which verifies the
491 * next slot's offset+size makes sense and that the current's slot
492 * offset is correct.
493 */
494 for (slot = 0; slot < nritems - 1; slot++) {
495 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
496 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
497
498 /* Make sure the keys are in the right order */
499 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
500 CORRUPT("bad key order", leaf, root, slot);
501 return -EIO;
502 }
503
504 /*
505 * Make sure the offset and ends are right, remember that the
506 * item data starts at the end of the leaf and grows towards the
507 * front.
508 */
509 if (btrfs_item_offset_nr(leaf, slot) !=
510 btrfs_item_end_nr(leaf, slot + 1)) {
511 CORRUPT("slot offset bad", leaf, root, slot);
512 return -EIO;
513 }
514
515 /*
516 * Check to make sure that we don't point outside of the leaf,
517 * just incase all the items are consistent to eachother, but
518 * all point outside of the leaf.
519 */
520 if (btrfs_item_end_nr(leaf, slot) >
521 BTRFS_LEAF_DATA_SIZE(root)) {
522 CORRUPT("slot end outside of leaf", leaf, root, slot);
523 return -EIO;
524 }
525 }
526
527 return 0;
528}
529
727011e0
CM
530struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
531 struct page *page, int max_walk)
532{
533 struct extent_buffer *eb;
534 u64 start = page_offset(page);
535 u64 target = start;
536 u64 min_start;
537
538 if (start < max_walk)
539 min_start = 0;
540 else
541 min_start = start - max_walk;
542
543 while (start >= min_start) {
544 eb = find_extent_buffer(tree, start, 0);
545 if (eb) {
546 /*
547 * we found an extent buffer and it contains our page
548 * horray!
549 */
550 if (eb->start <= target &&
551 eb->start + eb->len > target)
552 return eb;
553
554 /* we found an extent buffer that wasn't for us */
555 free_extent_buffer(eb);
556 return NULL;
557 }
558 if (start == 0)
559 break;
560 start -= PAGE_CACHE_SIZE;
561 }
562 return NULL;
563}
564
b2950863 565static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 566 struct extent_state *state, int mirror)
ce9adaa5
CM
567{
568 struct extent_io_tree *tree;
569 u64 found_start;
570 int found_level;
ce9adaa5
CM
571 struct extent_buffer *eb;
572 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 573 int ret = 0;
727011e0 574 int reads_done;
ce9adaa5 575
ce9adaa5
CM
576 if (!page->private)
577 goto out;
d397712b 578
727011e0 579 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 580 eb = (struct extent_buffer *)page->private;
d397712b 581
0b32f4bb
JB
582 /* the pending IO might have been the only thing that kept this buffer
583 * in memory. Make sure we have a ref for all this other checks
584 */
585 extent_buffer_get(eb);
586
587 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
588 if (!reads_done)
589 goto err;
f188591e 590
5cf1ab56 591 eb->read_mirror = mirror;
ea466794
JB
592 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593 ret = -EIO;
594 goto err;
595 }
596
ce9adaa5 597 found_start = btrfs_header_bytenr(eb);
727011e0 598 if (found_start != eb->start) {
7a36ddec 599 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
600 "%llu %llu\n",
601 (unsigned long long)found_start,
602 (unsigned long long)eb->start);
f188591e 603 ret = -EIO;
ce9adaa5
CM
604 goto err;
605 }
2b82032c 606 if (check_tree_block_fsid(root, eb)) {
7a36ddec 607 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 608 (unsigned long long)eb->start);
1259ab75
CM
609 ret = -EIO;
610 goto err;
611 }
ce9adaa5
CM
612 found_level = btrfs_header_level(eb);
613
85d4e461
CM
614 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615 eb, found_level);
4008c04a 616
ce9adaa5 617 ret = csum_tree_block(root, eb, 1);
a826d6dc 618 if (ret) {
f188591e 619 ret = -EIO;
a826d6dc
JB
620 goto err;
621 }
622
623 /*
624 * If this is a leaf block and it is corrupt, set the corrupt bit so
625 * that we don't try and read the other copies of this block, just
626 * return -EIO.
627 */
628 if (found_level == 0 && check_leaf(root, eb)) {
629 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
630 ret = -EIO;
631 }
ce9adaa5 632
0b32f4bb
JB
633 if (!ret)
634 set_extent_buffer_uptodate(eb);
ce9adaa5 635err:
4bb31e92
AJ
636 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638 btree_readahead_hook(root, eb, eb->start, ret);
639 }
640
0b32f4bb
JB
641 if (ret)
642 clear_extent_buffer_uptodate(eb);
643 free_extent_buffer(eb);
ce9adaa5 644out:
f188591e 645 return ret;
ce9adaa5
CM
646}
647
ea466794 648static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 649{
4bb31e92
AJ
650 struct extent_buffer *eb;
651 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652
4f2de97a 653 eb = (struct extent_buffer *)page->private;
ea466794 654 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 655 eb->read_mirror = failed_mirror;
ea466794 656 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 657 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
658 return -EIO; /* we fixed nothing */
659}
660
ce9adaa5 661static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
662{
663 struct end_io_wq *end_io_wq = bio->bi_private;
664 struct btrfs_fs_info *fs_info;
ce9adaa5 665
ce9adaa5 666 fs_info = end_io_wq->info;
ce9adaa5 667 end_io_wq->error = err;
8b712842
CM
668 end_io_wq->work.func = end_workqueue_fn;
669 end_io_wq->work.flags = 0;
d20f7043 670
7b6d91da 671 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 672 if (end_io_wq->metadata == 1)
cad321ad
CM
673 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
674 &end_io_wq->work);
0cb59c99
JB
675 else if (end_io_wq->metadata == 2)
676 btrfs_queue_worker(&fs_info->endio_freespace_worker,
677 &end_io_wq->work);
cad321ad
CM
678 else
679 btrfs_queue_worker(&fs_info->endio_write_workers,
680 &end_io_wq->work);
d20f7043
CM
681 } else {
682 if (end_io_wq->metadata)
683 btrfs_queue_worker(&fs_info->endio_meta_workers,
684 &end_io_wq->work);
685 else
686 btrfs_queue_worker(&fs_info->endio_workers,
687 &end_io_wq->work);
688 }
ce9adaa5
CM
689}
690
0cb59c99
JB
691/*
692 * For the metadata arg you want
693 *
694 * 0 - if data
695 * 1 - if normal metadta
696 * 2 - if writing to the free space cache area
697 */
22c59948
CM
698int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699 int metadata)
0b86a832 700{
ce9adaa5 701 struct end_io_wq *end_io_wq;
ce9adaa5
CM
702 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703 if (!end_io_wq)
704 return -ENOMEM;
705
706 end_io_wq->private = bio->bi_private;
707 end_io_wq->end_io = bio->bi_end_io;
22c59948 708 end_io_wq->info = info;
ce9adaa5
CM
709 end_io_wq->error = 0;
710 end_io_wq->bio = bio;
22c59948 711 end_io_wq->metadata = metadata;
ce9adaa5
CM
712
713 bio->bi_private = end_io_wq;
714 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
715 return 0;
716}
717
b64a2851 718unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 719{
4854ddd0
CM
720 unsigned long limit = min_t(unsigned long,
721 info->workers.max_workers,
722 info->fs_devices->open_devices);
723 return 256 * limit;
724}
0986fe9e 725
4a69a410
CM
726static void run_one_async_start(struct btrfs_work *work)
727{
4a69a410 728 struct async_submit_bio *async;
79787eaa 729 int ret;
4a69a410
CM
730
731 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
732 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733 async->mirror_num, async->bio_flags,
734 async->bio_offset);
735 if (ret)
736 async->error = ret;
4a69a410
CM
737}
738
739static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
740{
741 struct btrfs_fs_info *fs_info;
742 struct async_submit_bio *async;
4854ddd0 743 int limit;
8b712842
CM
744
745 async = container_of(work, struct async_submit_bio, work);
746 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 747
b64a2851 748 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
749 limit = limit * 2 / 3;
750
66657b31 751 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 752 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
753 wake_up(&fs_info->async_submit_wait);
754
79787eaa
JM
755 /* If an error occured we just want to clean up the bio and move on */
756 if (async->error) {
757 bio_endio(async->bio, async->error);
758 return;
759 }
760
4a69a410 761 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
762 async->mirror_num, async->bio_flags,
763 async->bio_offset);
4a69a410
CM
764}
765
766static void run_one_async_free(struct btrfs_work *work)
767{
768 struct async_submit_bio *async;
769
770 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
771 kfree(async);
772}
773
44b8bd7e
CM
774int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775 int rw, struct bio *bio, int mirror_num,
c8b97818 776 unsigned long bio_flags,
eaf25d93 777 u64 bio_offset,
4a69a410
CM
778 extent_submit_bio_hook_t *submit_bio_start,
779 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
780{
781 struct async_submit_bio *async;
782
783 async = kmalloc(sizeof(*async), GFP_NOFS);
784 if (!async)
785 return -ENOMEM;
786
787 async->inode = inode;
788 async->rw = rw;
789 async->bio = bio;
790 async->mirror_num = mirror_num;
4a69a410
CM
791 async->submit_bio_start = submit_bio_start;
792 async->submit_bio_done = submit_bio_done;
793
794 async->work.func = run_one_async_start;
795 async->work.ordered_func = run_one_async_done;
796 async->work.ordered_free = run_one_async_free;
797
8b712842 798 async->work.flags = 0;
c8b97818 799 async->bio_flags = bio_flags;
eaf25d93 800 async->bio_offset = bio_offset;
8c8bee1d 801
79787eaa
JM
802 async->error = 0;
803
cb03c743 804 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 805
7b6d91da 806 if (rw & REQ_SYNC)
d313d7a3
CM
807 btrfs_set_work_high_prio(&async->work);
808
8b712842 809 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 810
d397712b 811 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
812 atomic_read(&fs_info->nr_async_submits)) {
813 wait_event(fs_info->async_submit_wait,
814 (atomic_read(&fs_info->nr_async_submits) == 0));
815 }
816
44b8bd7e
CM
817 return 0;
818}
819
ce3ed71a
CM
820static int btree_csum_one_bio(struct bio *bio)
821{
822 struct bio_vec *bvec = bio->bi_io_vec;
823 int bio_index = 0;
824 struct btrfs_root *root;
79787eaa 825 int ret = 0;
ce3ed71a
CM
826
827 WARN_ON(bio->bi_vcnt <= 0);
d397712b 828 while (bio_index < bio->bi_vcnt) {
ce3ed71a 829 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
830 ret = csum_dirty_buffer(root, bvec->bv_page);
831 if (ret)
832 break;
ce3ed71a
CM
833 bio_index++;
834 bvec++;
835 }
79787eaa 836 return ret;
ce3ed71a
CM
837}
838
4a69a410
CM
839static int __btree_submit_bio_start(struct inode *inode, int rw,
840 struct bio *bio, int mirror_num,
eaf25d93
CM
841 unsigned long bio_flags,
842 u64 bio_offset)
22c59948 843{
8b712842
CM
844 /*
845 * when we're called for a write, we're already in the async
5443be45 846 * submission context. Just jump into btrfs_map_bio
8b712842 847 */
79787eaa 848 return btree_csum_one_bio(bio);
4a69a410 849}
22c59948 850
4a69a410 851static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
852 int mirror_num, unsigned long bio_flags,
853 u64 bio_offset)
4a69a410 854{
8b712842 855 /*
4a69a410
CM
856 * when we're called for a write, we're already in the async
857 * submission context. Just jump into btrfs_map_bio
8b712842 858 */
8b712842 859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
860}
861
44b8bd7e 862static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
863 int mirror_num, unsigned long bio_flags,
864 u64 bio_offset)
44b8bd7e 865{
cad321ad
CM
866 int ret;
867
7b6d91da 868 if (!(rw & REQ_WRITE)) {
f3f266ab 869
4a69a410
CM
870 /*
871 * called for a read, do the setup so that checksum validation
872 * can happen in the async kernel threads
873 */
f3f266ab
CM
874 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
875 bio, 1);
1d4284bd
CM
876 if (ret)
877 return ret;
4a69a410 878 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 879 mirror_num, 0);
44b8bd7e 880 }
d313d7a3 881
cad321ad
CM
882 /*
883 * kthread helpers are used to submit writes so that checksumming
884 * can happen in parallel across all CPUs
885 */
44b8bd7e 886 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 887 inode, rw, bio, mirror_num, 0,
eaf25d93 888 bio_offset,
4a69a410
CM
889 __btree_submit_bio_start,
890 __btree_submit_bio_done);
44b8bd7e
CM
891}
892
3dd1462e 893#ifdef CONFIG_MIGRATION
784b4e29 894static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
895 struct page *newpage, struct page *page,
896 enum migrate_mode mode)
784b4e29
CM
897{
898 /*
899 * we can't safely write a btree page from here,
900 * we haven't done the locking hook
901 */
902 if (PageDirty(page))
903 return -EAGAIN;
904 /*
905 * Buffers may be managed in a filesystem specific way.
906 * We must have no buffers or drop them.
907 */
908 if (page_has_private(page) &&
909 !try_to_release_page(page, GFP_KERNEL))
910 return -EAGAIN;
a6bc32b8 911 return migrate_page(mapping, newpage, page, mode);
784b4e29 912}
3dd1462e 913#endif
784b4e29 914
0da5468f
CM
915
916static int btree_writepages(struct address_space *mapping,
917 struct writeback_control *wbc)
918{
d1310b2e
CM
919 struct extent_io_tree *tree;
920 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 921 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 922 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 923 u64 num_dirty;
24ab9cd8 924 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
925
926 if (wbc->for_kupdate)
927 return 0;
928
b9473439
CM
929 /* this is a bit racy, but that's ok */
930 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 931 if (num_dirty < thresh)
793955bc 932 return 0;
793955bc 933 }
0b32f4bb 934 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
935}
936
b2950863 937static int btree_readpage(struct file *file, struct page *page)
5f39d397 938{
d1310b2e
CM
939 struct extent_io_tree *tree;
940 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 941 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 942}
22b0ebda 943
70dec807 944static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 945{
98509cfc 946 if (PageWriteback(page) || PageDirty(page))
d397712b 947 return 0;
0c4e538b
DS
948 /*
949 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
950 * slab allocation from alloc_extent_state down the callchain where
951 * it'd hit a BUG_ON as those flags are not allowed.
952 */
953 gfp_flags &= ~GFP_SLAB_BUG_MASK;
954
3083ee2e 955 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
956}
957
5f39d397 958static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 959{
d1310b2e
CM
960 struct extent_io_tree *tree;
961 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
962 extent_invalidatepage(tree, page, offset);
963 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 964 if (PagePrivate(page)) {
d397712b
CM
965 printk(KERN_WARNING "btrfs warning page private not zero "
966 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
967 ClearPagePrivate(page);
968 set_page_private(page, 0);
969 page_cache_release(page);
970 }
d98237b3
CM
971}
972
0b32f4bb
JB
973static int btree_set_page_dirty(struct page *page)
974{
975 struct extent_buffer *eb;
976
977 BUG_ON(!PagePrivate(page));
978 eb = (struct extent_buffer *)page->private;
979 BUG_ON(!eb);
980 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
981 BUG_ON(!atomic_read(&eb->refs));
982 btrfs_assert_tree_locked(eb);
983 return __set_page_dirty_nobuffers(page);
984}
985
7f09410b 986static const struct address_space_operations btree_aops = {
d98237b3 987 .readpage = btree_readpage,
0da5468f 988 .writepages = btree_writepages,
5f39d397
CM
989 .releasepage = btree_releasepage,
990 .invalidatepage = btree_invalidatepage,
5a92bc88 991#ifdef CONFIG_MIGRATION
784b4e29 992 .migratepage = btree_migratepage,
5a92bc88 993#endif
0b32f4bb 994 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
995};
996
ca7a79ad
CM
997int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
998 u64 parent_transid)
090d1875 999{
5f39d397
CM
1000 struct extent_buffer *buf = NULL;
1001 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1002 int ret = 0;
090d1875 1003
db94535d 1004 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1005 if (!buf)
090d1875 1006 return 0;
d1310b2e 1007 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1008 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1009 free_extent_buffer(buf);
de428b63 1010 return ret;
090d1875
CM
1011}
1012
ab0fff03
AJ
1013int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1014 int mirror_num, struct extent_buffer **eb)
1015{
1016 struct extent_buffer *buf = NULL;
1017 struct inode *btree_inode = root->fs_info->btree_inode;
1018 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1019 int ret;
1020
1021 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1022 if (!buf)
1023 return 0;
1024
1025 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1026
1027 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1028 btree_get_extent, mirror_num);
1029 if (ret) {
1030 free_extent_buffer(buf);
1031 return ret;
1032 }
1033
1034 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1035 free_extent_buffer(buf);
1036 return -EIO;
0b32f4bb 1037 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1038 *eb = buf;
1039 } else {
1040 free_extent_buffer(buf);
1041 }
1042 return 0;
1043}
1044
0999df54
CM
1045struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1046 u64 bytenr, u32 blocksize)
1047{
1048 struct inode *btree_inode = root->fs_info->btree_inode;
1049 struct extent_buffer *eb;
1050 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1051 bytenr, blocksize);
0999df54
CM
1052 return eb;
1053}
1054
1055struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1056 u64 bytenr, u32 blocksize)
1057{
1058 struct inode *btree_inode = root->fs_info->btree_inode;
1059 struct extent_buffer *eb;
1060
1061 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1062 bytenr, blocksize);
0999df54
CM
1063 return eb;
1064}
1065
1066
e02119d5
CM
1067int btrfs_write_tree_block(struct extent_buffer *buf)
1068{
727011e0 1069 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1070 buf->start + buf->len - 1);
e02119d5
CM
1071}
1072
1073int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1074{
727011e0 1075 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1076 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1077}
1078
0999df54 1079struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1080 u32 blocksize, u64 parent_transid)
0999df54
CM
1081{
1082 struct extent_buffer *buf = NULL;
0999df54
CM
1083 int ret;
1084
0999df54
CM
1085 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1086 if (!buf)
1087 return NULL;
0999df54 1088
ca7a79ad 1089 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1090 return buf;
ce9adaa5 1091
eb60ceac
CM
1092}
1093
d5c13f92
JM
1094void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1095 struct extent_buffer *buf)
ed2ff2cb 1096{
55c69072 1097 if (btrfs_header_generation(buf) ==
925baedd 1098 root->fs_info->running_transaction->transid) {
b9447ef8 1099 btrfs_assert_tree_locked(buf);
b4ce94de 1100
b9473439
CM
1101 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1102 spin_lock(&root->fs_info->delalloc_lock);
1103 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1104 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1105 else {
1106 spin_unlock(&root->fs_info->delalloc_lock);
1107 btrfs_panic(root->fs_info, -EOVERFLOW,
1108 "Can't clear %lu bytes from "
533574c6 1109 " dirty_mdatadata_bytes (%llu)",
d5c13f92
JM
1110 buf->len,
1111 root->fs_info->dirty_metadata_bytes);
1112 }
b9473439
CM
1113 spin_unlock(&root->fs_info->delalloc_lock);
1114 }
b4ce94de 1115
b9473439
CM
1116 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1117 btrfs_set_lock_blocking(buf);
0b32f4bb 1118 clear_extent_buffer_dirty(buf);
925baedd 1119 }
5f39d397
CM
1120}
1121
143bede5
JM
1122static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1123 u32 stripesize, struct btrfs_root *root,
1124 struct btrfs_fs_info *fs_info,
1125 u64 objectid)
d97e63b6 1126{
cfaa7295 1127 root->node = NULL;
a28ec197 1128 root->commit_root = NULL;
db94535d
CM
1129 root->sectorsize = sectorsize;
1130 root->nodesize = nodesize;
1131 root->leafsize = leafsize;
87ee04eb 1132 root->stripesize = stripesize;
123abc88 1133 root->ref_cows = 0;
0b86a832 1134 root->track_dirty = 0;
c71bf099 1135 root->in_radix = 0;
d68fc57b
YZ
1136 root->orphan_item_inserted = 0;
1137 root->orphan_cleanup_state = 0;
0b86a832 1138
0f7d52f4
CM
1139 root->objectid = objectid;
1140 root->last_trans = 0;
13a8a7c8 1141 root->highest_objectid = 0;
58176a96 1142 root->name = NULL;
6bef4d31 1143 root->inode_tree = RB_ROOT;
16cdcec7 1144 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1145 root->block_rsv = NULL;
d68fc57b 1146 root->orphan_block_rsv = NULL;
0b86a832
CM
1147
1148 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1149 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1150 spin_lock_init(&root->orphan_lock);
5d4f98a2 1151 spin_lock_init(&root->inode_lock);
f0486c68 1152 spin_lock_init(&root->accounting_lock);
a2135011 1153 mutex_init(&root->objectid_mutex);
e02119d5 1154 mutex_init(&root->log_mutex);
7237f183
YZ
1155 init_waitqueue_head(&root->log_writer_wait);
1156 init_waitqueue_head(&root->log_commit_wait[0]);
1157 init_waitqueue_head(&root->log_commit_wait[1]);
1158 atomic_set(&root->log_commit[0], 0);
1159 atomic_set(&root->log_commit[1], 0);
1160 atomic_set(&root->log_writers, 0);
2ecb7923 1161 atomic_set(&root->log_batch, 0);
8a35d95f 1162 atomic_set(&root->orphan_inodes, 0);
7237f183 1163 root->log_transid = 0;
257c62e1 1164 root->last_log_commit = 0;
d0c803c4 1165 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1166 fs_info->btree_inode->i_mapping);
017e5369 1167
3768f368
CM
1168 memset(&root->root_key, 0, sizeof(root->root_key));
1169 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1170 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1171 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1172 root->defrag_trans_start = fs_info->generation;
58176a96 1173 init_completion(&root->kobj_unregister);
6702ed49 1174 root->defrag_running = 0;
4d775673 1175 root->root_key.objectid = objectid;
0ee5dc67 1176 root->anon_dev = 0;
8ea05e3a
AB
1177
1178 spin_lock_init(&root->root_times_lock);
3768f368
CM
1179}
1180
200a5c17
JM
1181static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1182 struct btrfs_fs_info *fs_info,
1183 u64 objectid,
1184 struct btrfs_root *root)
3768f368
CM
1185{
1186 int ret;
db94535d 1187 u32 blocksize;
84234f3a 1188 u64 generation;
3768f368 1189
db94535d 1190 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1191 tree_root->sectorsize, tree_root->stripesize,
1192 root, fs_info, objectid);
3768f368
CM
1193 ret = btrfs_find_last_root(tree_root, objectid,
1194 &root->root_item, &root->root_key);
4df27c4d
YZ
1195 if (ret > 0)
1196 return -ENOENT;
200a5c17
JM
1197 else if (ret < 0)
1198 return ret;
3768f368 1199
84234f3a 1200 generation = btrfs_root_generation(&root->root_item);
db94535d 1201 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1202 root->commit_root = NULL;
db94535d 1203 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1204 blocksize, generation);
b9fab919 1205 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1206 free_extent_buffer(root->node);
af31f5e5 1207 root->node = NULL;
68433b73
CM
1208 return -EIO;
1209 }
4df27c4d 1210 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1211 return 0;
1212}
1213
f84a8bd6 1214static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1215{
1216 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1217 if (root)
1218 root->fs_info = fs_info;
1219 return root;
1220}
1221
20897f5c
AJ
1222struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1223 struct btrfs_fs_info *fs_info,
1224 u64 objectid)
1225{
1226 struct extent_buffer *leaf;
1227 struct btrfs_root *tree_root = fs_info->tree_root;
1228 struct btrfs_root *root;
1229 struct btrfs_key key;
1230 int ret = 0;
1231 u64 bytenr;
1232
1233 root = btrfs_alloc_root(fs_info);
1234 if (!root)
1235 return ERR_PTR(-ENOMEM);
1236
1237 __setup_root(tree_root->nodesize, tree_root->leafsize,
1238 tree_root->sectorsize, tree_root->stripesize,
1239 root, fs_info, objectid);
1240 root->root_key.objectid = objectid;
1241 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1242 root->root_key.offset = 0;
1243
1244 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1245 0, objectid, NULL, 0, 0, 0);
1246 if (IS_ERR(leaf)) {
1247 ret = PTR_ERR(leaf);
1248 goto fail;
1249 }
1250
1251 bytenr = leaf->start;
1252 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1253 btrfs_set_header_bytenr(leaf, leaf->start);
1254 btrfs_set_header_generation(leaf, trans->transid);
1255 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1256 btrfs_set_header_owner(leaf, objectid);
1257 root->node = leaf;
1258
1259 write_extent_buffer(leaf, fs_info->fsid,
1260 (unsigned long)btrfs_header_fsid(leaf),
1261 BTRFS_FSID_SIZE);
1262 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1263 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1264 BTRFS_UUID_SIZE);
1265 btrfs_mark_buffer_dirty(leaf);
1266
1267 root->commit_root = btrfs_root_node(root);
1268 root->track_dirty = 1;
1269
1270
1271 root->root_item.flags = 0;
1272 root->root_item.byte_limit = 0;
1273 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1274 btrfs_set_root_generation(&root->root_item, trans->transid);
1275 btrfs_set_root_level(&root->root_item, 0);
1276 btrfs_set_root_refs(&root->root_item, 1);
1277 btrfs_set_root_used(&root->root_item, leaf->len);
1278 btrfs_set_root_last_snapshot(&root->root_item, 0);
1279 btrfs_set_root_dirid(&root->root_item, 0);
1280 root->root_item.drop_level = 0;
1281
1282 key.objectid = objectid;
1283 key.type = BTRFS_ROOT_ITEM_KEY;
1284 key.offset = 0;
1285 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1286 if (ret)
1287 goto fail;
1288
1289 btrfs_tree_unlock(leaf);
1290
1291fail:
1292 if (ret)
1293 return ERR_PTR(ret);
1294
1295 return root;
1296}
1297
7237f183
YZ
1298static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1299 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1300{
1301 struct btrfs_root *root;
1302 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1303 struct extent_buffer *leaf;
e02119d5 1304
6f07e42e 1305 root = btrfs_alloc_root(fs_info);
e02119d5 1306 if (!root)
7237f183 1307 return ERR_PTR(-ENOMEM);
e02119d5
CM
1308
1309 __setup_root(tree_root->nodesize, tree_root->leafsize,
1310 tree_root->sectorsize, tree_root->stripesize,
1311 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1312
1313 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1314 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1315 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1316 /*
1317 * log trees do not get reference counted because they go away
1318 * before a real commit is actually done. They do store pointers
1319 * to file data extents, and those reference counts still get
1320 * updated (along with back refs to the log tree).
1321 */
e02119d5
CM
1322 root->ref_cows = 0;
1323
5d4f98a2 1324 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1325 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1326 0, 0, 0);
7237f183
YZ
1327 if (IS_ERR(leaf)) {
1328 kfree(root);
1329 return ERR_CAST(leaf);
1330 }
e02119d5 1331
5d4f98a2
YZ
1332 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1333 btrfs_set_header_bytenr(leaf, leaf->start);
1334 btrfs_set_header_generation(leaf, trans->transid);
1335 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1336 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1337 root->node = leaf;
e02119d5
CM
1338
1339 write_extent_buffer(root->node, root->fs_info->fsid,
1340 (unsigned long)btrfs_header_fsid(root->node),
1341 BTRFS_FSID_SIZE);
1342 btrfs_mark_buffer_dirty(root->node);
1343 btrfs_tree_unlock(root->node);
7237f183
YZ
1344 return root;
1345}
1346
1347int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1348 struct btrfs_fs_info *fs_info)
1349{
1350 struct btrfs_root *log_root;
1351
1352 log_root = alloc_log_tree(trans, fs_info);
1353 if (IS_ERR(log_root))
1354 return PTR_ERR(log_root);
1355 WARN_ON(fs_info->log_root_tree);
1356 fs_info->log_root_tree = log_root;
1357 return 0;
1358}
1359
1360int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root)
1362{
1363 struct btrfs_root *log_root;
1364 struct btrfs_inode_item *inode_item;
1365
1366 log_root = alloc_log_tree(trans, root->fs_info);
1367 if (IS_ERR(log_root))
1368 return PTR_ERR(log_root);
1369
1370 log_root->last_trans = trans->transid;
1371 log_root->root_key.offset = root->root_key.objectid;
1372
1373 inode_item = &log_root->root_item.inode;
1374 inode_item->generation = cpu_to_le64(1);
1375 inode_item->size = cpu_to_le64(3);
1376 inode_item->nlink = cpu_to_le32(1);
1377 inode_item->nbytes = cpu_to_le64(root->leafsize);
1378 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1379
5d4f98a2 1380 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1381
1382 WARN_ON(root->log_root);
1383 root->log_root = log_root;
1384 root->log_transid = 0;
257c62e1 1385 root->last_log_commit = 0;
e02119d5
CM
1386 return 0;
1387}
1388
1389struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1390 struct btrfs_key *location)
1391{
1392 struct btrfs_root *root;
1393 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1394 struct btrfs_path *path;
5f39d397 1395 struct extent_buffer *l;
84234f3a 1396 u64 generation;
db94535d 1397 u32 blocksize;
0f7d52f4 1398 int ret = 0;
8ea05e3a 1399 int slot;
0f7d52f4 1400
6f07e42e 1401 root = btrfs_alloc_root(fs_info);
0cf6c620 1402 if (!root)
0f7d52f4 1403 return ERR_PTR(-ENOMEM);
0f7d52f4 1404 if (location->offset == (u64)-1) {
db94535d 1405 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1406 location->objectid, root);
1407 if (ret) {
0f7d52f4
CM
1408 kfree(root);
1409 return ERR_PTR(ret);
1410 }
13a8a7c8 1411 goto out;
0f7d52f4
CM
1412 }
1413
db94535d 1414 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1415 tree_root->sectorsize, tree_root->stripesize,
1416 root, fs_info, location->objectid);
0f7d52f4
CM
1417
1418 path = btrfs_alloc_path();
db5b493a
TI
1419 if (!path) {
1420 kfree(root);
1421 return ERR_PTR(-ENOMEM);
1422 }
0f7d52f4 1423 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1424 if (ret == 0) {
1425 l = path->nodes[0];
8ea05e3a
AB
1426 slot = path->slots[0];
1427 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1428 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1429 }
0f7d52f4
CM
1430 btrfs_free_path(path);
1431 if (ret) {
5e540f77 1432 kfree(root);
13a8a7c8
YZ
1433 if (ret > 0)
1434 ret = -ENOENT;
0f7d52f4
CM
1435 return ERR_PTR(ret);
1436 }
13a8a7c8 1437
84234f3a 1438 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1439 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1440 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1441 blocksize, generation);
5d4f98a2 1442 root->commit_root = btrfs_root_node(root);
79787eaa 1443 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1444out:
08fe4db1 1445 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1446 root->ref_cows = 1;
08fe4db1
LZ
1447 btrfs_check_and_init_root_item(&root->root_item);
1448 }
13a8a7c8 1449
5eda7b5e
CM
1450 return root;
1451}
1452
edbd8d4e
CM
1453struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1454 struct btrfs_key *location)
5eda7b5e
CM
1455{
1456 struct btrfs_root *root;
1457 int ret;
1458
edbd8d4e
CM
1459 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1460 return fs_info->tree_root;
1461 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1462 return fs_info->extent_root;
8f18cf13
CM
1463 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1464 return fs_info->chunk_root;
1465 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1466 return fs_info->dev_root;
0403e47e
YZ
1467 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1468 return fs_info->csum_root;
bcef60f2
AJ
1469 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1470 return fs_info->quota_root ? fs_info->quota_root :
1471 ERR_PTR(-ENOENT);
4df27c4d
YZ
1472again:
1473 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1474 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1475 (unsigned long)location->objectid);
4df27c4d 1476 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1477 if (root)
1478 return root;
1479
e02119d5 1480 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1481 if (IS_ERR(root))
1482 return root;
3394e160 1483
581bb050 1484 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1485 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1486 GFP_NOFS);
35a30d7c
DS
1487 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1488 ret = -ENOMEM;
581bb050 1489 goto fail;
35a30d7c 1490 }
581bb050
LZ
1491
1492 btrfs_init_free_ino_ctl(root);
1493 mutex_init(&root->fs_commit_mutex);
1494 spin_lock_init(&root->cache_lock);
1495 init_waitqueue_head(&root->cache_wait);
1496
0ee5dc67 1497 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1498 if (ret)
1499 goto fail;
3394e160 1500
d68fc57b
YZ
1501 if (btrfs_root_refs(&root->root_item) == 0) {
1502 ret = -ENOENT;
1503 goto fail;
1504 }
1505
1506 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1507 if (ret < 0)
1508 goto fail;
1509 if (ret == 0)
1510 root->orphan_item_inserted = 1;
1511
4df27c4d
YZ
1512 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1513 if (ret)
1514 goto fail;
1515
1516 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1517 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1518 (unsigned long)root->root_key.objectid,
0f7d52f4 1519 root);
d68fc57b 1520 if (ret == 0)
4df27c4d 1521 root->in_radix = 1;
d68fc57b 1522
4df27c4d
YZ
1523 spin_unlock(&fs_info->fs_roots_radix_lock);
1524 radix_tree_preload_end();
0f7d52f4 1525 if (ret) {
4df27c4d
YZ
1526 if (ret == -EEXIST) {
1527 free_fs_root(root);
1528 goto again;
1529 }
1530 goto fail;
0f7d52f4 1531 }
4df27c4d
YZ
1532
1533 ret = btrfs_find_dead_roots(fs_info->tree_root,
1534 root->root_key.objectid);
1535 WARN_ON(ret);
edbd8d4e 1536 return root;
4df27c4d
YZ
1537fail:
1538 free_fs_root(root);
1539 return ERR_PTR(ret);
edbd8d4e
CM
1540}
1541
04160088
CM
1542static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1543{
1544 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1545 int ret = 0;
04160088
CM
1546 struct btrfs_device *device;
1547 struct backing_dev_info *bdi;
b7967db7 1548
1f78160c
XG
1549 rcu_read_lock();
1550 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1551 if (!device->bdev)
1552 continue;
04160088
CM
1553 bdi = blk_get_backing_dev_info(device->bdev);
1554 if (bdi && bdi_congested(bdi, bdi_bits)) {
1555 ret = 1;
1556 break;
1557 }
1558 }
1f78160c 1559 rcu_read_unlock();
04160088
CM
1560 return ret;
1561}
1562
ad081f14
JA
1563/*
1564 * If this fails, caller must call bdi_destroy() to get rid of the
1565 * bdi again.
1566 */
04160088
CM
1567static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1568{
ad081f14
JA
1569 int err;
1570
1571 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1572 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1573 if (err)
1574 return err;
1575
4575c9cc 1576 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1577 bdi->congested_fn = btrfs_congested_fn;
1578 bdi->congested_data = info;
1579 return 0;
1580}
1581
8b712842
CM
1582/*
1583 * called by the kthread helper functions to finally call the bio end_io
1584 * functions. This is where read checksum verification actually happens
1585 */
1586static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1587{
ce9adaa5 1588 struct bio *bio;
8b712842
CM
1589 struct end_io_wq *end_io_wq;
1590 struct btrfs_fs_info *fs_info;
ce9adaa5 1591 int error;
ce9adaa5 1592
8b712842
CM
1593 end_io_wq = container_of(work, struct end_io_wq, work);
1594 bio = end_io_wq->bio;
1595 fs_info = end_io_wq->info;
ce9adaa5 1596
8b712842
CM
1597 error = end_io_wq->error;
1598 bio->bi_private = end_io_wq->private;
1599 bio->bi_end_io = end_io_wq->end_io;
1600 kfree(end_io_wq);
8b712842 1601 bio_endio(bio, error);
44b8bd7e
CM
1602}
1603
a74a4b97
CM
1604static int cleaner_kthread(void *arg)
1605{
1606 struct btrfs_root *root = arg;
1607
1608 do {
76dda93c
YZ
1609 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1610 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1611 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1612 btrfs_clean_old_snapshots(root);
1613 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1614 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1615 }
a74a4b97 1616
a0acae0e 1617 if (!try_to_freeze()) {
a74a4b97 1618 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1619 if (!kthread_should_stop())
1620 schedule();
a74a4b97
CM
1621 __set_current_state(TASK_RUNNING);
1622 }
1623 } while (!kthread_should_stop());
1624 return 0;
1625}
1626
1627static int transaction_kthread(void *arg)
1628{
1629 struct btrfs_root *root = arg;
1630 struct btrfs_trans_handle *trans;
1631 struct btrfs_transaction *cur;
8929ecfa 1632 u64 transid;
a74a4b97
CM
1633 unsigned long now;
1634 unsigned long delay;
914b2007 1635 bool cannot_commit;
a74a4b97
CM
1636
1637 do {
914b2007 1638 cannot_commit = false;
a74a4b97 1639 delay = HZ * 30;
a74a4b97
CM
1640 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1641
a4abeea4 1642 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1643 cur = root->fs_info->running_transaction;
1644 if (!cur) {
a4abeea4 1645 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1646 goto sleep;
1647 }
31153d81 1648
a74a4b97 1649 now = get_seconds();
8929ecfa
YZ
1650 if (!cur->blocked &&
1651 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1652 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1653 delay = HZ * 5;
1654 goto sleep;
1655 }
8929ecfa 1656 transid = cur->transid;
a4abeea4 1657 spin_unlock(&root->fs_info->trans_lock);
56bec294 1658
79787eaa 1659 /* If the file system is aborted, this will always fail. */
7a7eaa40 1660 trans = btrfs_join_transaction(root);
914b2007
JK
1661 if (IS_ERR(trans)) {
1662 cannot_commit = true;
79787eaa 1663 goto sleep;
914b2007 1664 }
8929ecfa 1665 if (transid == trans->transid) {
79787eaa 1666 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1667 } else {
1668 btrfs_end_transaction(trans, root);
1669 }
a74a4b97
CM
1670sleep:
1671 wake_up_process(root->fs_info->cleaner_kthread);
1672 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1673
a0acae0e 1674 if (!try_to_freeze()) {
a74a4b97 1675 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1676 if (!kthread_should_stop() &&
914b2007
JK
1677 (!btrfs_transaction_blocked(root->fs_info) ||
1678 cannot_commit))
8929ecfa 1679 schedule_timeout(delay);
a74a4b97
CM
1680 __set_current_state(TASK_RUNNING);
1681 }
1682 } while (!kthread_should_stop());
1683 return 0;
1684}
1685
af31f5e5
CM
1686/*
1687 * this will find the highest generation in the array of
1688 * root backups. The index of the highest array is returned,
1689 * or -1 if we can't find anything.
1690 *
1691 * We check to make sure the array is valid by comparing the
1692 * generation of the latest root in the array with the generation
1693 * in the super block. If they don't match we pitch it.
1694 */
1695static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1696{
1697 u64 cur;
1698 int newest_index = -1;
1699 struct btrfs_root_backup *root_backup;
1700 int i;
1701
1702 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1703 root_backup = info->super_copy->super_roots + i;
1704 cur = btrfs_backup_tree_root_gen(root_backup);
1705 if (cur == newest_gen)
1706 newest_index = i;
1707 }
1708
1709 /* check to see if we actually wrapped around */
1710 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1711 root_backup = info->super_copy->super_roots;
1712 cur = btrfs_backup_tree_root_gen(root_backup);
1713 if (cur == newest_gen)
1714 newest_index = 0;
1715 }
1716 return newest_index;
1717}
1718
1719
1720/*
1721 * find the oldest backup so we know where to store new entries
1722 * in the backup array. This will set the backup_root_index
1723 * field in the fs_info struct
1724 */
1725static void find_oldest_super_backup(struct btrfs_fs_info *info,
1726 u64 newest_gen)
1727{
1728 int newest_index = -1;
1729
1730 newest_index = find_newest_super_backup(info, newest_gen);
1731 /* if there was garbage in there, just move along */
1732 if (newest_index == -1) {
1733 info->backup_root_index = 0;
1734 } else {
1735 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1736 }
1737}
1738
1739/*
1740 * copy all the root pointers into the super backup array.
1741 * this will bump the backup pointer by one when it is
1742 * done
1743 */
1744static void backup_super_roots(struct btrfs_fs_info *info)
1745{
1746 int next_backup;
1747 struct btrfs_root_backup *root_backup;
1748 int last_backup;
1749
1750 next_backup = info->backup_root_index;
1751 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1752 BTRFS_NUM_BACKUP_ROOTS;
1753
1754 /*
1755 * just overwrite the last backup if we're at the same generation
1756 * this happens only at umount
1757 */
1758 root_backup = info->super_for_commit->super_roots + last_backup;
1759 if (btrfs_backup_tree_root_gen(root_backup) ==
1760 btrfs_header_generation(info->tree_root->node))
1761 next_backup = last_backup;
1762
1763 root_backup = info->super_for_commit->super_roots + next_backup;
1764
1765 /*
1766 * make sure all of our padding and empty slots get zero filled
1767 * regardless of which ones we use today
1768 */
1769 memset(root_backup, 0, sizeof(*root_backup));
1770
1771 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1772
1773 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1774 btrfs_set_backup_tree_root_gen(root_backup,
1775 btrfs_header_generation(info->tree_root->node));
1776
1777 btrfs_set_backup_tree_root_level(root_backup,
1778 btrfs_header_level(info->tree_root->node));
1779
1780 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1781 btrfs_set_backup_chunk_root_gen(root_backup,
1782 btrfs_header_generation(info->chunk_root->node));
1783 btrfs_set_backup_chunk_root_level(root_backup,
1784 btrfs_header_level(info->chunk_root->node));
1785
1786 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1787 btrfs_set_backup_extent_root_gen(root_backup,
1788 btrfs_header_generation(info->extent_root->node));
1789 btrfs_set_backup_extent_root_level(root_backup,
1790 btrfs_header_level(info->extent_root->node));
1791
7c7e82a7
CM
1792 /*
1793 * we might commit during log recovery, which happens before we set
1794 * the fs_root. Make sure it is valid before we fill it in.
1795 */
1796 if (info->fs_root && info->fs_root->node) {
1797 btrfs_set_backup_fs_root(root_backup,
1798 info->fs_root->node->start);
1799 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1800 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1801 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1802 btrfs_header_level(info->fs_root->node));
7c7e82a7 1803 }
af31f5e5
CM
1804
1805 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1806 btrfs_set_backup_dev_root_gen(root_backup,
1807 btrfs_header_generation(info->dev_root->node));
1808 btrfs_set_backup_dev_root_level(root_backup,
1809 btrfs_header_level(info->dev_root->node));
1810
1811 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1812 btrfs_set_backup_csum_root_gen(root_backup,
1813 btrfs_header_generation(info->csum_root->node));
1814 btrfs_set_backup_csum_root_level(root_backup,
1815 btrfs_header_level(info->csum_root->node));
1816
1817 btrfs_set_backup_total_bytes(root_backup,
1818 btrfs_super_total_bytes(info->super_copy));
1819 btrfs_set_backup_bytes_used(root_backup,
1820 btrfs_super_bytes_used(info->super_copy));
1821 btrfs_set_backup_num_devices(root_backup,
1822 btrfs_super_num_devices(info->super_copy));
1823
1824 /*
1825 * if we don't copy this out to the super_copy, it won't get remembered
1826 * for the next commit
1827 */
1828 memcpy(&info->super_copy->super_roots,
1829 &info->super_for_commit->super_roots,
1830 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1831}
1832
1833/*
1834 * this copies info out of the root backup array and back into
1835 * the in-memory super block. It is meant to help iterate through
1836 * the array, so you send it the number of backups you've already
1837 * tried and the last backup index you used.
1838 *
1839 * this returns -1 when it has tried all the backups
1840 */
1841static noinline int next_root_backup(struct btrfs_fs_info *info,
1842 struct btrfs_super_block *super,
1843 int *num_backups_tried, int *backup_index)
1844{
1845 struct btrfs_root_backup *root_backup;
1846 int newest = *backup_index;
1847
1848 if (*num_backups_tried == 0) {
1849 u64 gen = btrfs_super_generation(super);
1850
1851 newest = find_newest_super_backup(info, gen);
1852 if (newest == -1)
1853 return -1;
1854
1855 *backup_index = newest;
1856 *num_backups_tried = 1;
1857 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1858 /* we've tried all the backups, all done */
1859 return -1;
1860 } else {
1861 /* jump to the next oldest backup */
1862 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1863 BTRFS_NUM_BACKUP_ROOTS;
1864 *backup_index = newest;
1865 *num_backups_tried += 1;
1866 }
1867 root_backup = super->super_roots + newest;
1868
1869 btrfs_set_super_generation(super,
1870 btrfs_backup_tree_root_gen(root_backup));
1871 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1872 btrfs_set_super_root_level(super,
1873 btrfs_backup_tree_root_level(root_backup));
1874 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1875
1876 /*
1877 * fixme: the total bytes and num_devices need to match or we should
1878 * need a fsck
1879 */
1880 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1881 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1882 return 0;
1883}
1884
1885/* helper to cleanup tree roots */
1886static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1887{
1888 free_extent_buffer(info->tree_root->node);
1889 free_extent_buffer(info->tree_root->commit_root);
1890 free_extent_buffer(info->dev_root->node);
1891 free_extent_buffer(info->dev_root->commit_root);
1892 free_extent_buffer(info->extent_root->node);
1893 free_extent_buffer(info->extent_root->commit_root);
1894 free_extent_buffer(info->csum_root->node);
1895 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1896 if (info->quota_root) {
1897 free_extent_buffer(info->quota_root->node);
1898 free_extent_buffer(info->quota_root->commit_root);
1899 }
af31f5e5
CM
1900
1901 info->tree_root->node = NULL;
1902 info->tree_root->commit_root = NULL;
1903 info->dev_root->node = NULL;
1904 info->dev_root->commit_root = NULL;
1905 info->extent_root->node = NULL;
1906 info->extent_root->commit_root = NULL;
1907 info->csum_root->node = NULL;
1908 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1909 if (info->quota_root) {
1910 info->quota_root->node = NULL;
1911 info->quota_root->commit_root = NULL;
1912 }
af31f5e5
CM
1913
1914 if (chunk_root) {
1915 free_extent_buffer(info->chunk_root->node);
1916 free_extent_buffer(info->chunk_root->commit_root);
1917 info->chunk_root->node = NULL;
1918 info->chunk_root->commit_root = NULL;
1919 }
1920}
1921
1922
ad2b2c80
AV
1923int open_ctree(struct super_block *sb,
1924 struct btrfs_fs_devices *fs_devices,
1925 char *options)
2e635a27 1926{
db94535d
CM
1927 u32 sectorsize;
1928 u32 nodesize;
1929 u32 leafsize;
1930 u32 blocksize;
87ee04eb 1931 u32 stripesize;
84234f3a 1932 u64 generation;
f2b636e8 1933 u64 features;
3de4586c 1934 struct btrfs_key location;
a061fc8d 1935 struct buffer_head *bh;
4d34b278 1936 struct btrfs_super_block *disk_super;
815745cf 1937 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1938 struct btrfs_root *tree_root;
4d34b278
ID
1939 struct btrfs_root *extent_root;
1940 struct btrfs_root *csum_root;
1941 struct btrfs_root *chunk_root;
1942 struct btrfs_root *dev_root;
bcef60f2 1943 struct btrfs_root *quota_root;
e02119d5 1944 struct btrfs_root *log_tree_root;
eb60ceac 1945 int ret;
e58ca020 1946 int err = -EINVAL;
af31f5e5
CM
1947 int num_backups_tried = 0;
1948 int backup_index = 0;
4543df7e 1949
f84a8bd6 1950 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1951 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1952 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1953 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1954 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1955 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1956
f84a8bd6 1957 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1958 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1959 err = -ENOMEM;
1960 goto fail;
1961 }
76dda93c
YZ
1962
1963 ret = init_srcu_struct(&fs_info->subvol_srcu);
1964 if (ret) {
1965 err = ret;
1966 goto fail;
1967 }
1968
1969 ret = setup_bdi(fs_info, &fs_info->bdi);
1970 if (ret) {
1971 err = ret;
1972 goto fail_srcu;
1973 }
1974
1975 fs_info->btree_inode = new_inode(sb);
1976 if (!fs_info->btree_inode) {
1977 err = -ENOMEM;
1978 goto fail_bdi;
1979 }
1980
a6591715 1981 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1982
76dda93c 1983 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1984 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1985 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1986 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 1987 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1988 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1989 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1990 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1991 spin_lock_init(&fs_info->trans_lock);
76dda93c 1992 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1993 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1994 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1995 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
1996 spin_lock_init(&fs_info->tree_mod_seq_lock);
1997 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 1998 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1999
58176a96 2000 init_completion(&fs_info->kobj_unregister);
0b86a832 2001 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2002 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2003 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2004 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2005 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2006 BTRFS_BLOCK_RSV_GLOBAL);
2007 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2008 BTRFS_BLOCK_RSV_DELALLOC);
2009 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2010 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2011 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2012 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2013 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2014 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2015 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2016 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2017 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2018 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2019 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2020 fs_info->sb = sb;
6f568d35 2021 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2022 fs_info->metadata_ratio = 0;
4cb5300b 2023 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2024 fs_info->trans_no_join = 0;
2bf64758 2025 fs_info->free_chunk_space = 0;
f29021b2 2026 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2027
90519d66
AJ
2028 /* readahead state */
2029 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2030 spin_lock_init(&fs_info->reada_lock);
c8b97818 2031
b34b086c
CM
2032 fs_info->thread_pool_size = min_t(unsigned long,
2033 num_online_cpus() + 2, 8);
0afbaf8c 2034
3eaa2885
CM
2035 INIT_LIST_HEAD(&fs_info->ordered_extents);
2036 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2037 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2038 GFP_NOFS);
2039 if (!fs_info->delayed_root) {
2040 err = -ENOMEM;
2041 goto fail_iput;
2042 }
2043 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2044
a2de733c
AJ
2045 mutex_init(&fs_info->scrub_lock);
2046 atomic_set(&fs_info->scrubs_running, 0);
2047 atomic_set(&fs_info->scrub_pause_req, 0);
2048 atomic_set(&fs_info->scrubs_paused, 0);
2049 atomic_set(&fs_info->scrub_cancel_req, 0);
2050 init_waitqueue_head(&fs_info->scrub_pause_wait);
2051 init_rwsem(&fs_info->scrub_super_lock);
2052 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2053#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2054 fs_info->check_integrity_print_mask = 0;
2055#endif
a2de733c 2056
c9e9f97b
ID
2057 spin_lock_init(&fs_info->balance_lock);
2058 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2059 atomic_set(&fs_info->balance_running, 0);
2060 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2061 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2062 fs_info->balance_ctl = NULL;
837d5b6e 2063 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2064
a061fc8d
CM
2065 sb->s_blocksize = 4096;
2066 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2067 sb->s_bdi = &fs_info->bdi;
a061fc8d 2068
76dda93c 2069 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2070 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2071 /*
2072 * we set the i_size on the btree inode to the max possible int.
2073 * the real end of the address space is determined by all of
2074 * the devices in the system
2075 */
2076 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2077 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2078 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2079
5d4f98a2 2080 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2081 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2082 fs_info->btree_inode->i_mapping);
0b32f4bb 2083 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2084 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2085
2086 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2087
76dda93c
YZ
2088 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2089 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2090 sizeof(struct btrfs_key));
72ac3c0d
JB
2091 set_bit(BTRFS_INODE_DUMMY,
2092 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2093 insert_inode_hash(fs_info->btree_inode);
76dda93c 2094
0f9dd46c 2095 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2096 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2097
11833d66 2098 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2099 fs_info->btree_inode->i_mapping);
11833d66 2100 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2101 fs_info->btree_inode->i_mapping);
11833d66 2102 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2103 fs_info->do_barriers = 1;
e18e4809 2104
39279cc3 2105
5a3f23d5 2106 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2107 mutex_init(&fs_info->tree_log_mutex);
925baedd 2108 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2109 mutex_init(&fs_info->transaction_kthread_mutex);
2110 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2111 mutex_init(&fs_info->volume_mutex);
276e680d 2112 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2113 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2114 init_rwsem(&fs_info->subvol_sem);
fa9c0d79 2115
416ac51d
AJ
2116 spin_lock_init(&fs_info->qgroup_lock);
2117 fs_info->qgroup_tree = RB_ROOT;
2118 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2119 fs_info->qgroup_seq = 1;
2120 fs_info->quota_enabled = 0;
2121 fs_info->pending_quota_state = 0;
2122
fa9c0d79
CM
2123 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2124 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2125
e6dcd2dc 2126 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2127 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2128 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2129 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2130
0b86a832 2131 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2132 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2133
3c4bb26b 2134 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2135 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2136 if (!bh) {
2137 err = -EINVAL;
16cdcec7 2138 goto fail_alloc;
20b45077 2139 }
39279cc3 2140
6c41761f
DS
2141 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2142 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2143 sizeof(*fs_info->super_for_commit));
a061fc8d 2144 brelse(bh);
5f39d397 2145
6c41761f 2146 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2147
6c41761f 2148 disk_super = fs_info->super_copy;
0f7d52f4 2149 if (!btrfs_super_root(disk_super))
16cdcec7 2150 goto fail_alloc;
0f7d52f4 2151
acce952b 2152 /* check FS state, whether FS is broken. */
2153 fs_info->fs_state |= btrfs_super_flags(disk_super);
2154
fcd1f065
DS
2155 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2156 if (ret) {
2157 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2158 err = ret;
2159 goto fail_alloc;
2160 }
acce952b 2161
af31f5e5
CM
2162 /*
2163 * run through our array of backup supers and setup
2164 * our ring pointer to the oldest one
2165 */
2166 generation = btrfs_super_generation(disk_super);
2167 find_oldest_super_backup(fs_info, generation);
2168
75e7cb7f
LB
2169 /*
2170 * In the long term, we'll store the compression type in the super
2171 * block, and it'll be used for per file compression control.
2172 */
2173 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2174
2b82032c
YZ
2175 ret = btrfs_parse_options(tree_root, options);
2176 if (ret) {
2177 err = ret;
16cdcec7 2178 goto fail_alloc;
2b82032c 2179 }
dfe25020 2180
f2b636e8
JB
2181 features = btrfs_super_incompat_flags(disk_super) &
2182 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2183 if (features) {
2184 printk(KERN_ERR "BTRFS: couldn't mount because of "
2185 "unsupported optional features (%Lx).\n",
21380931 2186 (unsigned long long)features);
f2b636e8 2187 err = -EINVAL;
16cdcec7 2188 goto fail_alloc;
f2b636e8
JB
2189 }
2190
727011e0
CM
2191 if (btrfs_super_leafsize(disk_super) !=
2192 btrfs_super_nodesize(disk_super)) {
2193 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2194 "blocksizes don't match. node %d leaf %d\n",
2195 btrfs_super_nodesize(disk_super),
2196 btrfs_super_leafsize(disk_super));
2197 err = -EINVAL;
2198 goto fail_alloc;
2199 }
2200 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2201 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2202 "blocksize (%d) was too large\n",
2203 btrfs_super_leafsize(disk_super));
2204 err = -EINVAL;
2205 goto fail_alloc;
2206 }
2207
5d4f98a2 2208 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2209 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2210 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2211 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2212
2213 /*
2214 * flag our filesystem as having big metadata blocks if
2215 * they are bigger than the page size
2216 */
2217 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2218 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2219 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2220 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2221 }
2222
bc3f116f
CM
2223 nodesize = btrfs_super_nodesize(disk_super);
2224 leafsize = btrfs_super_leafsize(disk_super);
2225 sectorsize = btrfs_super_sectorsize(disk_super);
2226 stripesize = btrfs_super_stripesize(disk_super);
2227
2228 /*
2229 * mixed block groups end up with duplicate but slightly offset
2230 * extent buffers for the same range. It leads to corruptions
2231 */
2232 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2233 (sectorsize != leafsize)) {
2234 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2235 "are not allowed for mixed block groups on %s\n",
2236 sb->s_id);
2237 goto fail_alloc;
2238 }
2239
a6fa6fae 2240 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2241
f2b636e8
JB
2242 features = btrfs_super_compat_ro_flags(disk_super) &
2243 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2244 if (!(sb->s_flags & MS_RDONLY) && features) {
2245 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2246 "unsupported option features (%Lx).\n",
21380931 2247 (unsigned long long)features);
f2b636e8 2248 err = -EINVAL;
16cdcec7 2249 goto fail_alloc;
f2b636e8 2250 }
61d92c32
CM
2251
2252 btrfs_init_workers(&fs_info->generic_worker,
2253 "genwork", 1, NULL);
2254
5443be45 2255 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2256 fs_info->thread_pool_size,
2257 &fs_info->generic_worker);
c8b97818 2258
771ed689 2259 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2260 fs_info->thread_pool_size,
2261 &fs_info->generic_worker);
771ed689 2262
5443be45 2263 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2264 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2265 fs_info->thread_pool_size),
2266 &fs_info->generic_worker);
61b49440 2267
bab39bf9
JB
2268 btrfs_init_workers(&fs_info->caching_workers, "cache",
2269 2, &fs_info->generic_worker);
2270
61b49440
CM
2271 /* a higher idle thresh on the submit workers makes it much more
2272 * likely that bios will be send down in a sane order to the
2273 * devices
2274 */
2275 fs_info->submit_workers.idle_thresh = 64;
53863232 2276
771ed689 2277 fs_info->workers.idle_thresh = 16;
4a69a410 2278 fs_info->workers.ordered = 1;
61b49440 2279
771ed689
CM
2280 fs_info->delalloc_workers.idle_thresh = 2;
2281 fs_info->delalloc_workers.ordered = 1;
2282
61d92c32
CM
2283 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2284 &fs_info->generic_worker);
5443be45 2285 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2286 fs_info->thread_pool_size,
2287 &fs_info->generic_worker);
d20f7043 2288 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2289 fs_info->thread_pool_size,
2290 &fs_info->generic_worker);
cad321ad 2291 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2292 "endio-meta-write", fs_info->thread_pool_size,
2293 &fs_info->generic_worker);
5443be45 2294 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2295 fs_info->thread_pool_size,
2296 &fs_info->generic_worker);
0cb59c99
JB
2297 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2298 1, &fs_info->generic_worker);
16cdcec7
MX
2299 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2300 fs_info->thread_pool_size,
2301 &fs_info->generic_worker);
90519d66
AJ
2302 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2303 fs_info->thread_pool_size,
2304 &fs_info->generic_worker);
61b49440
CM
2305
2306 /*
2307 * endios are largely parallel and should have a very
2308 * low idle thresh
2309 */
2310 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2311 fs_info->endio_meta_workers.idle_thresh = 4;
2312
9042846b
CM
2313 fs_info->endio_write_workers.idle_thresh = 2;
2314 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2315 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2316
0dc3b84a
JB
2317 /*
2318 * btrfs_start_workers can really only fail because of ENOMEM so just
2319 * return -ENOMEM if any of these fail.
2320 */
2321 ret = btrfs_start_workers(&fs_info->workers);
2322 ret |= btrfs_start_workers(&fs_info->generic_worker);
2323 ret |= btrfs_start_workers(&fs_info->submit_workers);
2324 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2325 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2326 ret |= btrfs_start_workers(&fs_info->endio_workers);
2327 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2328 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2329 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2330 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2331 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2332 ret |= btrfs_start_workers(&fs_info->caching_workers);
2333 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2334 if (ret) {
fed425c7 2335 err = -ENOMEM;
0dc3b84a
JB
2336 goto fail_sb_buffer;
2337 }
4543df7e 2338
4575c9cc 2339 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2340 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2341 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2342
db94535d
CM
2343 tree_root->nodesize = nodesize;
2344 tree_root->leafsize = leafsize;
2345 tree_root->sectorsize = sectorsize;
87ee04eb 2346 tree_root->stripesize = stripesize;
a061fc8d
CM
2347
2348 sb->s_blocksize = sectorsize;
2349 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2350
39279cc3
CM
2351 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2352 sizeof(disk_super->magic))) {
d397712b 2353 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2354 goto fail_sb_buffer;
2355 }
19c00ddc 2356
8d082fb7
LB
2357 if (sectorsize != PAGE_SIZE) {
2358 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2359 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2360 goto fail_sb_buffer;
2361 }
2362
925baedd 2363 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2364 ret = btrfs_read_sys_array(tree_root);
925baedd 2365 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2366 if (ret) {
d397712b
CM
2367 printk(KERN_WARNING "btrfs: failed to read the system "
2368 "array on %s\n", sb->s_id);
5d4f98a2 2369 goto fail_sb_buffer;
84eed90f 2370 }
0b86a832
CM
2371
2372 blocksize = btrfs_level_size(tree_root,
2373 btrfs_super_chunk_root_level(disk_super));
84234f3a 2374 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2375
2376 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2377 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2378
2379 chunk_root->node = read_tree_block(chunk_root,
2380 btrfs_super_chunk_root(disk_super),
84234f3a 2381 blocksize, generation);
79787eaa 2382 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2383 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2384 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2385 sb->s_id);
af31f5e5 2386 goto fail_tree_roots;
83121942 2387 }
5d4f98a2
YZ
2388 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2389 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2390
e17cade2 2391 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2392 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2393 BTRFS_UUID_SIZE);
e17cade2 2394
0b86a832 2395 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2396 if (ret) {
d397712b
CM
2397 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2398 sb->s_id);
af31f5e5 2399 goto fail_tree_roots;
2b82032c 2400 }
0b86a832 2401
dfe25020
CM
2402 btrfs_close_extra_devices(fs_devices);
2403
a6b0d5c8
CM
2404 if (!fs_devices->latest_bdev) {
2405 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2406 sb->s_id);
2407 goto fail_tree_roots;
2408 }
2409
af31f5e5 2410retry_root_backup:
db94535d
CM
2411 blocksize = btrfs_level_size(tree_root,
2412 btrfs_super_root_level(disk_super));
84234f3a 2413 generation = btrfs_super_generation(disk_super);
0b86a832 2414
e20d96d6 2415 tree_root->node = read_tree_block(tree_root,
db94535d 2416 btrfs_super_root(disk_super),
84234f3a 2417 blocksize, generation);
af31f5e5
CM
2418 if (!tree_root->node ||
2419 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2420 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2421 sb->s_id);
af31f5e5
CM
2422
2423 goto recovery_tree_root;
83121942 2424 }
af31f5e5 2425
5d4f98a2
YZ
2426 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2427 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2428
2429 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2430 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2431 if (ret)
af31f5e5 2432 goto recovery_tree_root;
0b86a832
CM
2433 extent_root->track_dirty = 1;
2434
2435 ret = find_and_setup_root(tree_root, fs_info,
2436 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2437 if (ret)
af31f5e5 2438 goto recovery_tree_root;
5d4f98a2 2439 dev_root->track_dirty = 1;
3768f368 2440
d20f7043
CM
2441 ret = find_and_setup_root(tree_root, fs_info,
2442 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2443 if (ret)
af31f5e5 2444 goto recovery_tree_root;
d20f7043
CM
2445 csum_root->track_dirty = 1;
2446
bcef60f2
AJ
2447 ret = find_and_setup_root(tree_root, fs_info,
2448 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2449 if (ret) {
2450 kfree(quota_root);
2451 quota_root = fs_info->quota_root = NULL;
2452 } else {
2453 quota_root->track_dirty = 1;
2454 fs_info->quota_enabled = 1;
2455 fs_info->pending_quota_state = 1;
2456 }
2457
8929ecfa
YZ
2458 fs_info->generation = generation;
2459 fs_info->last_trans_committed = generation;
8929ecfa 2460
68310a5e
ID
2461 ret = btrfs_recover_balance(fs_info);
2462 if (ret) {
2463 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2464 goto fail_block_groups;
2465 }
2466
733f4fbb
SB
2467 ret = btrfs_init_dev_stats(fs_info);
2468 if (ret) {
2469 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2470 ret);
2471 goto fail_block_groups;
2472 }
2473
c59021f8 2474 ret = btrfs_init_space_info(fs_info);
2475 if (ret) {
2476 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2477 goto fail_block_groups;
2478 }
2479
1b1d1f66
JB
2480 ret = btrfs_read_block_groups(extent_root);
2481 if (ret) {
2482 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2483 goto fail_block_groups;
2484 }
9078a3e1 2485
a74a4b97
CM
2486 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2487 "btrfs-cleaner");
57506d50 2488 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2489 goto fail_block_groups;
a74a4b97
CM
2490
2491 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2492 tree_root,
2493 "btrfs-transaction");
57506d50 2494 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2495 goto fail_cleaner;
a74a4b97 2496
c289811c
CM
2497 if (!btrfs_test_opt(tree_root, SSD) &&
2498 !btrfs_test_opt(tree_root, NOSSD) &&
2499 !fs_info->fs_devices->rotating) {
2500 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2501 "mode\n");
2502 btrfs_set_opt(fs_info->mount_opt, SSD);
2503 }
2504
21adbd5c
SB
2505#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2506 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2507 ret = btrfsic_mount(tree_root, fs_devices,
2508 btrfs_test_opt(tree_root,
2509 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2510 1 : 0,
2511 fs_info->check_integrity_print_mask);
2512 if (ret)
2513 printk(KERN_WARNING "btrfs: failed to initialize"
2514 " integrity check module %s\n", sb->s_id);
2515 }
2516#endif
bcef60f2
AJ
2517 ret = btrfs_read_qgroup_config(fs_info);
2518 if (ret)
2519 goto fail_trans_kthread;
21adbd5c 2520
acce952b 2521 /* do not make disk changes in broken FS */
68ce9682 2522 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2523 u64 bytenr = btrfs_super_log_root(disk_super);
2524
7c2ca468 2525 if (fs_devices->rw_devices == 0) {
d397712b
CM
2526 printk(KERN_WARNING "Btrfs log replay required "
2527 "on RO media\n");
7c2ca468 2528 err = -EIO;
bcef60f2 2529 goto fail_qgroup;
7c2ca468 2530 }
e02119d5
CM
2531 blocksize =
2532 btrfs_level_size(tree_root,
2533 btrfs_super_log_root_level(disk_super));
d18a2c44 2534
6f07e42e 2535 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2536 if (!log_tree_root) {
2537 err = -ENOMEM;
bcef60f2 2538 goto fail_qgroup;
676e4c86 2539 }
e02119d5
CM
2540
2541 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2542 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2543
2544 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2545 blocksize,
2546 generation + 1);
79787eaa 2547 /* returns with log_tree_root freed on success */
e02119d5 2548 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2549 if (ret) {
2550 btrfs_error(tree_root->fs_info, ret,
2551 "Failed to recover log tree");
2552 free_extent_buffer(log_tree_root->node);
2553 kfree(log_tree_root);
2554 goto fail_trans_kthread;
2555 }
e556ce2c
YZ
2556
2557 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2558 ret = btrfs_commit_super(tree_root);
2559 if (ret)
2560 goto fail_trans_kthread;
e556ce2c 2561 }
e02119d5 2562 }
1a40e23b 2563
76dda93c 2564 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2565 if (ret)
2566 goto fail_trans_kthread;
76dda93c 2567
7c2ca468 2568 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2569 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2570 if (ret)
2571 goto fail_trans_kthread;
d68fc57b 2572
5d4f98a2 2573 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2574 if (ret < 0) {
2575 printk(KERN_WARNING
2576 "btrfs: failed to recover relocation\n");
2577 err = -EINVAL;
bcef60f2 2578 goto fail_qgroup;
d7ce5843 2579 }
7c2ca468 2580 }
1a40e23b 2581
3de4586c
CM
2582 location.objectid = BTRFS_FS_TREE_OBJECTID;
2583 location.type = BTRFS_ROOT_ITEM_KEY;
2584 location.offset = (u64)-1;
2585
3de4586c
CM
2586 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2587 if (!fs_info->fs_root)
bcef60f2 2588 goto fail_qgroup;
3140c9a3
DC
2589 if (IS_ERR(fs_info->fs_root)) {
2590 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2591 goto fail_qgroup;
3140c9a3 2592 }
c289811c 2593
2b6ba629
ID
2594 if (sb->s_flags & MS_RDONLY)
2595 return 0;
59641015 2596
2b6ba629
ID
2597 down_read(&fs_info->cleanup_work_sem);
2598 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2599 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2600 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2601 close_ctree(tree_root);
2602 return ret;
2603 }
2604 up_read(&fs_info->cleanup_work_sem);
59641015 2605
2b6ba629
ID
2606 ret = btrfs_resume_balance_async(fs_info);
2607 if (ret) {
2608 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2609 close_ctree(tree_root);
2610 return ret;
e3acc2a6
JB
2611 }
2612
ad2b2c80 2613 return 0;
39279cc3 2614
bcef60f2
AJ
2615fail_qgroup:
2616 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2617fail_trans_kthread:
2618 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2619fail_cleaner:
a74a4b97 2620 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2621
2622 /*
2623 * make sure we're done with the btree inode before we stop our
2624 * kthreads
2625 */
2626 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2627 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2628
1b1d1f66
JB
2629fail_block_groups:
2630 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2631
2632fail_tree_roots:
2633 free_root_pointers(fs_info, 1);
2634
39279cc3 2635fail_sb_buffer:
61d92c32 2636 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2637 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2638 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2639 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2640 btrfs_stop_workers(&fs_info->workers);
2641 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2642 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2643 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2644 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2645 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2646 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2647 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2648 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2649fail_alloc:
4543df7e 2650fail_iput:
586e46e2
ID
2651 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2652
7c2ca468 2653 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2654 iput(fs_info->btree_inode);
ad081f14 2655fail_bdi:
7e662854 2656 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2657fail_srcu:
2658 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2659fail:
586e46e2 2660 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2661 return err;
af31f5e5
CM
2662
2663recovery_tree_root:
af31f5e5
CM
2664 if (!btrfs_test_opt(tree_root, RECOVERY))
2665 goto fail_tree_roots;
2666
2667 free_root_pointers(fs_info, 0);
2668
2669 /* don't use the log in recovery mode, it won't be valid */
2670 btrfs_set_super_log_root(disk_super, 0);
2671
2672 /* we can't trust the free space cache either */
2673 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2674
2675 ret = next_root_backup(fs_info, fs_info->super_copy,
2676 &num_backups_tried, &backup_index);
2677 if (ret == -1)
2678 goto fail_block_groups;
2679 goto retry_root_backup;
eb60ceac
CM
2680}
2681
f2984462
CM
2682static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2683{
f2984462
CM
2684 if (uptodate) {
2685 set_buffer_uptodate(bh);
2686 } else {
442a4f63
SB
2687 struct btrfs_device *device = (struct btrfs_device *)
2688 bh->b_private;
2689
606686ee
JB
2690 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2691 "I/O error on %s\n",
2692 rcu_str_deref(device->name));
1259ab75
CM
2693 /* note, we dont' set_buffer_write_io_error because we have
2694 * our own ways of dealing with the IO errors
2695 */
f2984462 2696 clear_buffer_uptodate(bh);
442a4f63 2697 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2698 }
2699 unlock_buffer(bh);
2700 put_bh(bh);
2701}
2702
a512bbf8
YZ
2703struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2704{
2705 struct buffer_head *bh;
2706 struct buffer_head *latest = NULL;
2707 struct btrfs_super_block *super;
2708 int i;
2709 u64 transid = 0;
2710 u64 bytenr;
2711
2712 /* we would like to check all the supers, but that would make
2713 * a btrfs mount succeed after a mkfs from a different FS.
2714 * So, we need to add a special mount option to scan for
2715 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2716 */
2717 for (i = 0; i < 1; i++) {
2718 bytenr = btrfs_sb_offset(i);
2719 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2720 break;
2721 bh = __bread(bdev, bytenr / 4096, 4096);
2722 if (!bh)
2723 continue;
2724
2725 super = (struct btrfs_super_block *)bh->b_data;
2726 if (btrfs_super_bytenr(super) != bytenr ||
2727 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2728 sizeof(super->magic))) {
2729 brelse(bh);
2730 continue;
2731 }
2732
2733 if (!latest || btrfs_super_generation(super) > transid) {
2734 brelse(latest);
2735 latest = bh;
2736 transid = btrfs_super_generation(super);
2737 } else {
2738 brelse(bh);
2739 }
2740 }
2741 return latest;
2742}
2743
4eedeb75
HH
2744/*
2745 * this should be called twice, once with wait == 0 and
2746 * once with wait == 1. When wait == 0 is done, all the buffer heads
2747 * we write are pinned.
2748 *
2749 * They are released when wait == 1 is done.
2750 * max_mirrors must be the same for both runs, and it indicates how
2751 * many supers on this one device should be written.
2752 *
2753 * max_mirrors == 0 means to write them all.
2754 */
a512bbf8
YZ
2755static int write_dev_supers(struct btrfs_device *device,
2756 struct btrfs_super_block *sb,
2757 int do_barriers, int wait, int max_mirrors)
2758{
2759 struct buffer_head *bh;
2760 int i;
2761 int ret;
2762 int errors = 0;
2763 u32 crc;
2764 u64 bytenr;
a512bbf8
YZ
2765
2766 if (max_mirrors == 0)
2767 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2768
a512bbf8
YZ
2769 for (i = 0; i < max_mirrors; i++) {
2770 bytenr = btrfs_sb_offset(i);
2771 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2772 break;
2773
2774 if (wait) {
2775 bh = __find_get_block(device->bdev, bytenr / 4096,
2776 BTRFS_SUPER_INFO_SIZE);
2777 BUG_ON(!bh);
a512bbf8 2778 wait_on_buffer(bh);
4eedeb75
HH
2779 if (!buffer_uptodate(bh))
2780 errors++;
2781
2782 /* drop our reference */
2783 brelse(bh);
2784
2785 /* drop the reference from the wait == 0 run */
2786 brelse(bh);
2787 continue;
a512bbf8
YZ
2788 } else {
2789 btrfs_set_super_bytenr(sb, bytenr);
2790
2791 crc = ~(u32)0;
2792 crc = btrfs_csum_data(NULL, (char *)sb +
2793 BTRFS_CSUM_SIZE, crc,
2794 BTRFS_SUPER_INFO_SIZE -
2795 BTRFS_CSUM_SIZE);
2796 btrfs_csum_final(crc, sb->csum);
2797
4eedeb75
HH
2798 /*
2799 * one reference for us, and we leave it for the
2800 * caller
2801 */
a512bbf8
YZ
2802 bh = __getblk(device->bdev, bytenr / 4096,
2803 BTRFS_SUPER_INFO_SIZE);
2804 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2805
4eedeb75 2806 /* one reference for submit_bh */
a512bbf8 2807 get_bh(bh);
4eedeb75
HH
2808
2809 set_buffer_uptodate(bh);
a512bbf8
YZ
2810 lock_buffer(bh);
2811 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2812 bh->b_private = device;
a512bbf8
YZ
2813 }
2814
387125fc
CM
2815 /*
2816 * we fua the first super. The others we allow
2817 * to go down lazy.
2818 */
21adbd5c 2819 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2820 if (ret)
a512bbf8 2821 errors++;
a512bbf8
YZ
2822 }
2823 return errors < i ? 0 : -1;
2824}
2825
387125fc
CM
2826/*
2827 * endio for the write_dev_flush, this will wake anyone waiting
2828 * for the barrier when it is done
2829 */
2830static void btrfs_end_empty_barrier(struct bio *bio, int err)
2831{
2832 if (err) {
2833 if (err == -EOPNOTSUPP)
2834 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2835 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2836 }
2837 if (bio->bi_private)
2838 complete(bio->bi_private);
2839 bio_put(bio);
2840}
2841
2842/*
2843 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2844 * sent down. With wait == 1, it waits for the previous flush.
2845 *
2846 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2847 * capable
2848 */
2849static int write_dev_flush(struct btrfs_device *device, int wait)
2850{
2851 struct bio *bio;
2852 int ret = 0;
2853
2854 if (device->nobarriers)
2855 return 0;
2856
2857 if (wait) {
2858 bio = device->flush_bio;
2859 if (!bio)
2860 return 0;
2861
2862 wait_for_completion(&device->flush_wait);
2863
2864 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2865 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2866 rcu_str_deref(device->name));
387125fc
CM
2867 device->nobarriers = 1;
2868 }
2869 if (!bio_flagged(bio, BIO_UPTODATE)) {
2870 ret = -EIO;
442a4f63
SB
2871 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2872 btrfs_dev_stat_inc_and_print(device,
2873 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2874 }
2875
2876 /* drop the reference from the wait == 0 run */
2877 bio_put(bio);
2878 device->flush_bio = NULL;
2879
2880 return ret;
2881 }
2882
2883 /*
2884 * one reference for us, and we leave it for the
2885 * caller
2886 */
9c017abc 2887 device->flush_bio = NULL;
387125fc
CM
2888 bio = bio_alloc(GFP_NOFS, 0);
2889 if (!bio)
2890 return -ENOMEM;
2891
2892 bio->bi_end_io = btrfs_end_empty_barrier;
2893 bio->bi_bdev = device->bdev;
2894 init_completion(&device->flush_wait);
2895 bio->bi_private = &device->flush_wait;
2896 device->flush_bio = bio;
2897
2898 bio_get(bio);
21adbd5c 2899 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2900
2901 return 0;
2902}
2903
2904/*
2905 * send an empty flush down to each device in parallel,
2906 * then wait for them
2907 */
2908static int barrier_all_devices(struct btrfs_fs_info *info)
2909{
2910 struct list_head *head;
2911 struct btrfs_device *dev;
2912 int errors = 0;
2913 int ret;
2914
2915 /* send down all the barriers */
2916 head = &info->fs_devices->devices;
2917 list_for_each_entry_rcu(dev, head, dev_list) {
2918 if (!dev->bdev) {
2919 errors++;
2920 continue;
2921 }
2922 if (!dev->in_fs_metadata || !dev->writeable)
2923 continue;
2924
2925 ret = write_dev_flush(dev, 0);
2926 if (ret)
2927 errors++;
2928 }
2929
2930 /* wait for all the barriers */
2931 list_for_each_entry_rcu(dev, head, dev_list) {
2932 if (!dev->bdev) {
2933 errors++;
2934 continue;
2935 }
2936 if (!dev->in_fs_metadata || !dev->writeable)
2937 continue;
2938
2939 ret = write_dev_flush(dev, 1);
2940 if (ret)
2941 errors++;
2942 }
2943 if (errors)
2944 return -EIO;
2945 return 0;
2946}
2947
a512bbf8 2948int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2949{
e5e9a520 2950 struct list_head *head;
f2984462 2951 struct btrfs_device *dev;
a061fc8d 2952 struct btrfs_super_block *sb;
f2984462 2953 struct btrfs_dev_item *dev_item;
f2984462
CM
2954 int ret;
2955 int do_barriers;
a236aed1
CM
2956 int max_errors;
2957 int total_errors = 0;
a061fc8d 2958 u64 flags;
f2984462 2959
6c41761f 2960 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2961 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2962 backup_super_roots(root->fs_info);
f2984462 2963
6c41761f 2964 sb = root->fs_info->super_for_commit;
a061fc8d 2965 dev_item = &sb->dev_item;
e5e9a520 2966
174ba509 2967 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2968 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2969
2970 if (do_barriers)
2971 barrier_all_devices(root->fs_info);
2972
1f78160c 2973 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2974 if (!dev->bdev) {
2975 total_errors++;
2976 continue;
2977 }
2b82032c 2978 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2979 continue;
2980
2b82032c 2981 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2982 btrfs_set_stack_device_type(dev_item, dev->type);
2983 btrfs_set_stack_device_id(dev_item, dev->devid);
2984 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2985 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2986 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2987 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2988 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2989 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2990 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2991
a061fc8d
CM
2992 flags = btrfs_super_flags(sb);
2993 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2994
a512bbf8 2995 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2996 if (ret)
2997 total_errors++;
f2984462 2998 }
a236aed1 2999 if (total_errors > max_errors) {
d397712b
CM
3000 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3001 total_errors);
79787eaa
JM
3002
3003 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3004 BUG();
3005 }
f2984462 3006
a512bbf8 3007 total_errors = 0;
1f78160c 3008 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3009 if (!dev->bdev)
3010 continue;
2b82032c 3011 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3012 continue;
3013
a512bbf8
YZ
3014 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3015 if (ret)
3016 total_errors++;
f2984462 3017 }
174ba509 3018 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3019 if (total_errors > max_errors) {
79787eaa
JM
3020 btrfs_error(root->fs_info, -EIO,
3021 "%d errors while writing supers", total_errors);
3022 return -EIO;
a236aed1 3023 }
f2984462
CM
3024 return 0;
3025}
3026
a512bbf8
YZ
3027int write_ctree_super(struct btrfs_trans_handle *trans,
3028 struct btrfs_root *root, int max_mirrors)
eb60ceac 3029{
e66f709b 3030 int ret;
5f39d397 3031
a512bbf8 3032 ret = write_all_supers(root, max_mirrors);
5f39d397 3033 return ret;
cfaa7295
CM
3034}
3035
143bede5 3036void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3037{
4df27c4d 3038 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3039 radix_tree_delete(&fs_info->fs_roots_radix,
3040 (unsigned long)root->root_key.objectid);
4df27c4d 3041 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3042
3043 if (btrfs_root_refs(&root->root_item) == 0)
3044 synchronize_srcu(&fs_info->subvol_srcu);
3045
581bb050
LZ
3046 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3047 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3048 free_fs_root(root);
4df27c4d
YZ
3049}
3050
3051static void free_fs_root(struct btrfs_root *root)
3052{
82d5902d 3053 iput(root->cache_inode);
4df27c4d 3054 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3055 if (root->anon_dev)
3056 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3057 free_extent_buffer(root->node);
3058 free_extent_buffer(root->commit_root);
581bb050
LZ
3059 kfree(root->free_ino_ctl);
3060 kfree(root->free_ino_pinned);
d397712b 3061 kfree(root->name);
2619ba1f 3062 kfree(root);
2619ba1f
CM
3063}
3064
143bede5 3065static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3066{
3067 int ret;
3068 struct btrfs_root *gang[8];
3069 int i;
3070
76dda93c
YZ
3071 while (!list_empty(&fs_info->dead_roots)) {
3072 gang[0] = list_entry(fs_info->dead_roots.next,
3073 struct btrfs_root, root_list);
3074 list_del(&gang[0]->root_list);
3075
3076 if (gang[0]->in_radix) {
3077 btrfs_free_fs_root(fs_info, gang[0]);
3078 } else {
3079 free_extent_buffer(gang[0]->node);
3080 free_extent_buffer(gang[0]->commit_root);
3081 kfree(gang[0]);
3082 }
3083 }
3084
d397712b 3085 while (1) {
0f7d52f4
CM
3086 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3087 (void **)gang, 0,
3088 ARRAY_SIZE(gang));
3089 if (!ret)
3090 break;
2619ba1f 3091 for (i = 0; i < ret; i++)
5eda7b5e 3092 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3093 }
0f7d52f4 3094}
b4100d64 3095
c146afad 3096int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3097{
c146afad
YZ
3098 u64 root_objectid = 0;
3099 struct btrfs_root *gang[8];
3100 int i;
3768f368 3101 int ret;
e089f05c 3102
c146afad
YZ
3103 while (1) {
3104 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3105 (void **)gang, root_objectid,
3106 ARRAY_SIZE(gang));
3107 if (!ret)
3108 break;
5d4f98a2
YZ
3109
3110 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3111 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3112 int err;
3113
c146afad 3114 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3115 err = btrfs_orphan_cleanup(gang[i]);
3116 if (err)
3117 return err;
c146afad
YZ
3118 }
3119 root_objectid++;
3120 }
3121 return 0;
3122}
a2135011 3123
c146afad
YZ
3124int btrfs_commit_super(struct btrfs_root *root)
3125{
3126 struct btrfs_trans_handle *trans;
3127 int ret;
a74a4b97 3128
c146afad 3129 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3130 btrfs_run_delayed_iputs(root);
a74a4b97 3131 btrfs_clean_old_snapshots(root);
c146afad 3132 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3133
3134 /* wait until ongoing cleanup work done */
3135 down_write(&root->fs_info->cleanup_work_sem);
3136 up_write(&root->fs_info->cleanup_work_sem);
3137
7a7eaa40 3138 trans = btrfs_join_transaction(root);
3612b495
TI
3139 if (IS_ERR(trans))
3140 return PTR_ERR(trans);
54aa1f4d 3141 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3142 if (ret)
3143 return ret;
c146afad 3144 /* run commit again to drop the original snapshot */
7a7eaa40 3145 trans = btrfs_join_transaction(root);
3612b495
TI
3146 if (IS_ERR(trans))
3147 return PTR_ERR(trans);
79787eaa
JM
3148 ret = btrfs_commit_transaction(trans, root);
3149 if (ret)
3150 return ret;
79154b1b 3151 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3152 if (ret) {
3153 btrfs_error(root->fs_info, ret,
3154 "Failed to sync btree inode to disk.");
3155 return ret;
3156 }
d6bfde87 3157
a512bbf8 3158 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3159 return ret;
3160}
3161
3162int close_ctree(struct btrfs_root *root)
3163{
3164 struct btrfs_fs_info *fs_info = root->fs_info;
3165 int ret;
3166
3167 fs_info->closing = 1;
3168 smp_mb();
3169
837d5b6e
ID
3170 /* pause restriper - we want to resume on mount */
3171 btrfs_pause_balance(root->fs_info);
3172
a2de733c 3173 btrfs_scrub_cancel(root);
4cb5300b
CM
3174
3175 /* wait for any defraggers to finish */
3176 wait_event(fs_info->transaction_wait,
3177 (atomic_read(&fs_info->defrag_running) == 0));
3178
3179 /* clear out the rbtree of defraggable inodes */
e3029d9f 3180 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3181
c146afad 3182 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3183 ret = btrfs_commit_super(root);
3184 if (ret)
3185 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3186 }
3187
68ce9682
SB
3188 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3189 btrfs_error_commit_super(root);
0f7d52f4 3190
300e4f8a
JB
3191 btrfs_put_block_group_cache(fs_info);
3192
e3029d9f
AV
3193 kthread_stop(fs_info->transaction_kthread);
3194 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3195
f25784b3
YZ
3196 fs_info->closing = 2;
3197 smp_mb();
3198
bcef60f2
AJ
3199 btrfs_free_qgroup_config(root->fs_info);
3200
b0c68f8b 3201 if (fs_info->delalloc_bytes) {
d397712b 3202 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3203 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3204 }
bcc63abb 3205
5d4f98a2
YZ
3206 free_extent_buffer(fs_info->extent_root->node);
3207 free_extent_buffer(fs_info->extent_root->commit_root);
3208 free_extent_buffer(fs_info->tree_root->node);
3209 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3210 free_extent_buffer(fs_info->chunk_root->node);
3211 free_extent_buffer(fs_info->chunk_root->commit_root);
3212 free_extent_buffer(fs_info->dev_root->node);
3213 free_extent_buffer(fs_info->dev_root->commit_root);
3214 free_extent_buffer(fs_info->csum_root->node);
3215 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3216 if (fs_info->quota_root) {
3217 free_extent_buffer(fs_info->quota_root->node);
3218 free_extent_buffer(fs_info->quota_root->commit_root);
3219 }
d20f7043 3220
e3029d9f 3221 btrfs_free_block_groups(fs_info);
d10c5f31 3222
c146afad 3223 del_fs_roots(fs_info);
d10c5f31 3224
c146afad 3225 iput(fs_info->btree_inode);
9ad6b7bc 3226
61d92c32 3227 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3228 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3229 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3230 btrfs_stop_workers(&fs_info->workers);
3231 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3232 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3233 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3234 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3235 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3236 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3237 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3238 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3239 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3240
21adbd5c
SB
3241#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3242 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3243 btrfsic_unmount(root, fs_info->fs_devices);
3244#endif
3245
dfe25020 3246 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3247 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3248
04160088 3249 bdi_destroy(&fs_info->bdi);
76dda93c 3250 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3251
eb60ceac
CM
3252 return 0;
3253}
3254
b9fab919
CM
3255int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3256 int atomic)
5f39d397 3257{
1259ab75 3258 int ret;
727011e0 3259 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3260
0b32f4bb 3261 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3262 if (!ret)
3263 return ret;
3264
3265 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3266 parent_transid, atomic);
3267 if (ret == -EAGAIN)
3268 return ret;
1259ab75 3269 return !ret;
5f39d397
CM
3270}
3271
3272int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3273{
0b32f4bb 3274 return set_extent_buffer_uptodate(buf);
5f39d397 3275}
6702ed49 3276
5f39d397
CM
3277void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3278{
727011e0 3279 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3280 u64 transid = btrfs_header_generation(buf);
b9473439 3281 int was_dirty;
b4ce94de 3282
b9447ef8 3283 btrfs_assert_tree_locked(buf);
ccd467d6 3284 if (transid != root->fs_info->generation) {
d397712b
CM
3285 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3286 "found %llu running %llu\n",
db94535d 3287 (unsigned long long)buf->start,
d397712b
CM
3288 (unsigned long long)transid,
3289 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3290 WARN_ON(1);
3291 }
0b32f4bb 3292 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3293 if (!was_dirty) {
3294 spin_lock(&root->fs_info->delalloc_lock);
3295 root->fs_info->dirty_metadata_bytes += buf->len;
3296 spin_unlock(&root->fs_info->delalloc_lock);
3297 }
eb60ceac
CM
3298}
3299
d3c2fdcf 3300void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3301{
3302 /*
3303 * looks as though older kernels can get into trouble with
3304 * this code, they end up stuck in balance_dirty_pages forever
3305 */
3306 u64 num_dirty;
3307 unsigned long thresh = 32 * 1024 * 1024;
3308
3309 if (current->flags & PF_MEMALLOC)
3310 return;
3311
3312 btrfs_balance_delayed_items(root);
3313
3314 num_dirty = root->fs_info->dirty_metadata_bytes;
3315
3316 if (num_dirty > thresh) {
3317 balance_dirty_pages_ratelimited_nr(
3318 root->fs_info->btree_inode->i_mapping, 1);
3319 }
3320 return;
3321}
3322
3323void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3324{
188de649
CM
3325 /*
3326 * looks as though older kernels can get into trouble with
3327 * this code, they end up stuck in balance_dirty_pages forever
3328 */
d6bfde87 3329 u64 num_dirty;
771ed689 3330 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3331
6933c02e 3332 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3333 return;
3334
585ad2c3
CM
3335 num_dirty = root->fs_info->dirty_metadata_bytes;
3336
d6bfde87
CM
3337 if (num_dirty > thresh) {
3338 balance_dirty_pages_ratelimited_nr(
d7fc640e 3339 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3340 }
188de649 3341 return;
35b7e476 3342}
6b80053d 3343
ca7a79ad 3344int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3345{
727011e0 3346 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3347 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3348}
0da5468f 3349
fcd1f065 3350static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3351 int read_only)
3352{
fcd1f065
DS
3353 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3354 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3355 return -EINVAL;
3356 }
3357
acce952b 3358 if (read_only)
fcd1f065 3359 return 0;
acce952b 3360
fcd1f065 3361 return 0;
acce952b 3362}
3363
68ce9682 3364void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3365{
acce952b 3366 mutex_lock(&root->fs_info->cleaner_mutex);
3367 btrfs_run_delayed_iputs(root);
3368 mutex_unlock(&root->fs_info->cleaner_mutex);
3369
3370 down_write(&root->fs_info->cleanup_work_sem);
3371 up_write(&root->fs_info->cleanup_work_sem);
3372
3373 /* cleanup FS via transaction */
3374 btrfs_cleanup_transaction(root);
acce952b 3375}
3376
143bede5 3377static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3378{
3379 struct btrfs_inode *btrfs_inode;
3380 struct list_head splice;
3381
3382 INIT_LIST_HEAD(&splice);
3383
3384 mutex_lock(&root->fs_info->ordered_operations_mutex);
3385 spin_lock(&root->fs_info->ordered_extent_lock);
3386
3387 list_splice_init(&root->fs_info->ordered_operations, &splice);
3388 while (!list_empty(&splice)) {
3389 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3390 ordered_operations);
3391
3392 list_del_init(&btrfs_inode->ordered_operations);
3393
3394 btrfs_invalidate_inodes(btrfs_inode->root);
3395 }
3396
3397 spin_unlock(&root->fs_info->ordered_extent_lock);
3398 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3399}
3400
143bede5 3401static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3402{
3403 struct list_head splice;
3404 struct btrfs_ordered_extent *ordered;
3405 struct inode *inode;
3406
3407 INIT_LIST_HEAD(&splice);
3408
3409 spin_lock(&root->fs_info->ordered_extent_lock);
3410
3411 list_splice_init(&root->fs_info->ordered_extents, &splice);
3412 while (!list_empty(&splice)) {
3413 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3414 root_extent_list);
3415
3416 list_del_init(&ordered->root_extent_list);
3417 atomic_inc(&ordered->refs);
3418
3419 /* the inode may be getting freed (in sys_unlink path). */
3420 inode = igrab(ordered->inode);
3421
3422 spin_unlock(&root->fs_info->ordered_extent_lock);
3423 if (inode)
3424 iput(inode);
3425
3426 atomic_set(&ordered->refs, 1);
3427 btrfs_put_ordered_extent(ordered);
3428
3429 spin_lock(&root->fs_info->ordered_extent_lock);
3430 }
3431
3432 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3433}
3434
79787eaa
JM
3435int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3436 struct btrfs_root *root)
acce952b 3437{
3438 struct rb_node *node;
3439 struct btrfs_delayed_ref_root *delayed_refs;
3440 struct btrfs_delayed_ref_node *ref;
3441 int ret = 0;
3442
3443 delayed_refs = &trans->delayed_refs;
3444
3445 spin_lock(&delayed_refs->lock);
3446 if (delayed_refs->num_entries == 0) {
cfece4db 3447 spin_unlock(&delayed_refs->lock);
acce952b 3448 printk(KERN_INFO "delayed_refs has NO entry\n");
3449 return ret;
3450 }
3451
b939d1ab 3452 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3453 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3454
3455 atomic_set(&ref->refs, 1);
3456 if (btrfs_delayed_ref_is_head(ref)) {
3457 struct btrfs_delayed_ref_head *head;
3458
3459 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3460 if (!mutex_trylock(&head->mutex)) {
3461 atomic_inc(&ref->refs);
3462 spin_unlock(&delayed_refs->lock);
3463
3464 /* Need to wait for the delayed ref to run */
3465 mutex_lock(&head->mutex);
3466 mutex_unlock(&head->mutex);
3467 btrfs_put_delayed_ref(ref);
3468
e18fca73 3469 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3470 continue;
3471 }
3472
acce952b 3473 kfree(head->extent_op);
3474 delayed_refs->num_heads--;
3475 if (list_empty(&head->cluster))
3476 delayed_refs->num_heads_ready--;
3477 list_del_init(&head->cluster);
acce952b 3478 }
b939d1ab
JB
3479 ref->in_tree = 0;
3480 rb_erase(&ref->rb_node, &delayed_refs->root);
3481 delayed_refs->num_entries--;
3482
acce952b 3483 spin_unlock(&delayed_refs->lock);
3484 btrfs_put_delayed_ref(ref);
3485
3486 cond_resched();
3487 spin_lock(&delayed_refs->lock);
3488 }
3489
3490 spin_unlock(&delayed_refs->lock);
3491
3492 return ret;
3493}
3494
143bede5 3495static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3496{
3497 struct btrfs_pending_snapshot *snapshot;
3498 struct list_head splice;
3499
3500 INIT_LIST_HEAD(&splice);
3501
3502 list_splice_init(&t->pending_snapshots, &splice);
3503
3504 while (!list_empty(&splice)) {
3505 snapshot = list_entry(splice.next,
3506 struct btrfs_pending_snapshot,
3507 list);
3508
3509 list_del_init(&snapshot->list);
3510
3511 kfree(snapshot);
3512 }
acce952b 3513}
3514
143bede5 3515static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3516{
3517 struct btrfs_inode *btrfs_inode;
3518 struct list_head splice;
3519
3520 INIT_LIST_HEAD(&splice);
3521
acce952b 3522 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3523 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3524
3525 while (!list_empty(&splice)) {
3526 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3527 delalloc_inodes);
3528
3529 list_del_init(&btrfs_inode->delalloc_inodes);
3530
3531 btrfs_invalidate_inodes(btrfs_inode->root);
3532 }
3533
3534 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3535}
3536
3537static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3538 struct extent_io_tree *dirty_pages,
3539 int mark)
3540{
3541 int ret;
3542 struct page *page;
3543 struct inode *btree_inode = root->fs_info->btree_inode;
3544 struct extent_buffer *eb;
3545 u64 start = 0;
3546 u64 end;
3547 u64 offset;
3548 unsigned long index;
3549
3550 while (1) {
3551 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3552 mark);
3553 if (ret)
3554 break;
3555
3556 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3557 while (start <= end) {
3558 index = start >> PAGE_CACHE_SHIFT;
3559 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3560 page = find_get_page(btree_inode->i_mapping, index);
3561 if (!page)
3562 continue;
3563 offset = page_offset(page);
3564
3565 spin_lock(&dirty_pages->buffer_lock);
3566 eb = radix_tree_lookup(
3567 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3568 offset >> PAGE_CACHE_SHIFT);
3569 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3570 if (eb)
acce952b 3571 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3572 &eb->bflags);
acce952b 3573 if (PageWriteback(page))
3574 end_page_writeback(page);
3575
3576 lock_page(page);
3577 if (PageDirty(page)) {
3578 clear_page_dirty_for_io(page);
3579 spin_lock_irq(&page->mapping->tree_lock);
3580 radix_tree_tag_clear(&page->mapping->page_tree,
3581 page_index(page),
3582 PAGECACHE_TAG_DIRTY);
3583 spin_unlock_irq(&page->mapping->tree_lock);
3584 }
3585
acce952b 3586 unlock_page(page);
ee670f0a 3587 page_cache_release(page);
acce952b 3588 }
3589 }
3590
3591 return ret;
3592}
3593
3594static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3595 struct extent_io_tree *pinned_extents)
3596{
3597 struct extent_io_tree *unpin;
3598 u64 start;
3599 u64 end;
3600 int ret;
ed0eaa14 3601 bool loop = true;
acce952b 3602
3603 unpin = pinned_extents;
ed0eaa14 3604again:
acce952b 3605 while (1) {
3606 ret = find_first_extent_bit(unpin, 0, &start, &end,
3607 EXTENT_DIRTY);
3608 if (ret)
3609 break;
3610
3611 /* opt_discard */
5378e607
LD
3612 if (btrfs_test_opt(root, DISCARD))
3613 ret = btrfs_error_discard_extent(root, start,
3614 end + 1 - start,
3615 NULL);
acce952b 3616
3617 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3618 btrfs_error_unpin_extent_range(root, start, end);
3619 cond_resched();
3620 }
3621
ed0eaa14
LB
3622 if (loop) {
3623 if (unpin == &root->fs_info->freed_extents[0])
3624 unpin = &root->fs_info->freed_extents[1];
3625 else
3626 unpin = &root->fs_info->freed_extents[0];
3627 loop = false;
3628 goto again;
3629 }
3630
acce952b 3631 return 0;
3632}
3633
49b25e05
JM
3634void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3635 struct btrfs_root *root)
3636{
3637 btrfs_destroy_delayed_refs(cur_trans, root);
3638 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3639 cur_trans->dirty_pages.dirty_bytes);
3640
3641 /* FIXME: cleanup wait for commit */
3642 cur_trans->in_commit = 1;
3643 cur_trans->blocked = 1;
d7096fc3 3644 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3645
3646 cur_trans->blocked = 0;
d7096fc3 3647 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3648
3649 cur_trans->commit_done = 1;
d7096fc3 3650 wake_up(&cur_trans->commit_wait);
49b25e05 3651
67cde344
MX
3652 btrfs_destroy_delayed_inodes(root);
3653 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3654
3655 btrfs_destroy_pending_snapshots(cur_trans);
3656
3657 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3658 EXTENT_DIRTY);
6e841e32
LB
3659 btrfs_destroy_pinned_extent(root,
3660 root->fs_info->pinned_extents);
49b25e05
JM
3661
3662 /*
3663 memset(cur_trans, 0, sizeof(*cur_trans));
3664 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3665 */
3666}
3667
3668int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3669{
3670 struct btrfs_transaction *t;
3671 LIST_HEAD(list);
3672
acce952b 3673 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3674
a4abeea4 3675 spin_lock(&root->fs_info->trans_lock);
acce952b 3676 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3677 root->fs_info->trans_no_join = 1;
3678 spin_unlock(&root->fs_info->trans_lock);
3679
acce952b 3680 while (!list_empty(&list)) {
3681 t = list_entry(list.next, struct btrfs_transaction, list);
3682 if (!t)
3683 break;
3684
3685 btrfs_destroy_ordered_operations(root);
3686
3687 btrfs_destroy_ordered_extents(root);
3688
3689 btrfs_destroy_delayed_refs(t, root);
3690
3691 btrfs_block_rsv_release(root,
3692 &root->fs_info->trans_block_rsv,
3693 t->dirty_pages.dirty_bytes);
3694
3695 /* FIXME: cleanup wait for commit */
3696 t->in_commit = 1;
3697 t->blocked = 1;
66657b31 3698 smp_mb();
acce952b 3699 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3700 wake_up(&root->fs_info->transaction_blocked_wait);
3701
3702 t->blocked = 0;
66657b31 3703 smp_mb();
acce952b 3704 if (waitqueue_active(&root->fs_info->transaction_wait))
3705 wake_up(&root->fs_info->transaction_wait);
acce952b 3706
acce952b 3707 t->commit_done = 1;
66657b31 3708 smp_mb();
acce952b 3709 if (waitqueue_active(&t->commit_wait))
3710 wake_up(&t->commit_wait);
acce952b 3711
67cde344
MX
3712 btrfs_destroy_delayed_inodes(root);
3713 btrfs_assert_delayed_root_empty(root);
3714
acce952b 3715 btrfs_destroy_pending_snapshots(t);
3716
3717 btrfs_destroy_delalloc_inodes(root);
3718
a4abeea4 3719 spin_lock(&root->fs_info->trans_lock);
acce952b 3720 root->fs_info->running_transaction = NULL;
a4abeea4 3721 spin_unlock(&root->fs_info->trans_lock);
acce952b 3722
3723 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3724 EXTENT_DIRTY);
3725
3726 btrfs_destroy_pinned_extent(root,
3727 root->fs_info->pinned_extents);
3728
13c5a93e 3729 atomic_set(&t->use_count, 0);
acce952b 3730 list_del_init(&t->list);
3731 memset(t, 0, sizeof(*t));
3732 kmem_cache_free(btrfs_transaction_cachep, t);
3733 }
3734
a4abeea4
JB
3735 spin_lock(&root->fs_info->trans_lock);
3736 root->fs_info->trans_no_join = 0;
3737 spin_unlock(&root->fs_info->trans_lock);
acce952b 3738 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3739
3740 return 0;
3741}
3742
d1310b2e 3743static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 3744 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3745 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3746 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3747 /* note we're sharing with inode.c for the merge bio hook */
3748 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3749};