Btrfs: don't clear uptodate if the eb is under IO
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
d458b054 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
d458b054 89 struct btrfs_work work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
d458b054 111 struct btrfs_work work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 160 { .id = 0, .name_stem = "tree" },
4008c04a 161};
85d4e461
CM
162
163void __init btrfs_init_lockdep(void)
164{
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175}
176
177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179{
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191}
192
4008c04a
CM
193#endif
194
d352ac68
CM
195/*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
b2950863 199static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 200 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 201 int create)
7eccb903 202{
5f39d397
CM
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
890871be 207 read_lock(&em_tree->lock);
d1310b2e 208 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 212 read_unlock(&em_tree->lock);
5f39d397 213 goto out;
a061fc8d 214 }
890871be 215 read_unlock(&em_tree->lock);
7b13b7b1 216
172ddd60 217 em = alloc_extent_map();
5f39d397
CM
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
0afbaf8c 223 em->len = (u64)-1;
c8b97818 224 em->block_len = (u64)-1;
5f39d397 225 em->block_start = 0;
a061fc8d 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 227
890871be 228 write_lock(&em_tree->lock);
09a2a8f9 229 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
230 if (ret == -EEXIST) {
231 free_extent_map(em);
7b13b7b1 232 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 233 if (!em)
0433f20d 234 em = ERR_PTR(-EIO);
5f39d397 235 } else if (ret) {
7b13b7b1 236 free_extent_map(em);
0433f20d 237 em = ERR_PTR(ret);
5f39d397 238 }
890871be 239 write_unlock(&em_tree->lock);
7b13b7b1 240
5f39d397
CM
241out:
242 return em;
7eccb903
CM
243}
244
b0496686 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 246{
0b947aff 247 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
248}
249
250void btrfs_csum_final(u32 crc, char *result)
251{
7e75bf3f 252 put_unaligned_le32(~crc, result);
19c00ddc
CM
253}
254
d352ac68
CM
255/*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
19c00ddc
CM
259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261{
6c41761f 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 263 char *result = NULL;
19c00ddc
CM
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
607d432d 272 unsigned long inline_result;
19c00ddc
CM
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
19c00ddc 276 err = map_private_extent_buffer(buf, offset, 32,
a6591715 277 &kaddr, &map_start, &map_len);
d397712b 278 if (err)
19c00ddc 279 return 1;
19c00ddc 280 cur_len = min(len, map_len - (offset - map_start));
b0496686 281 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
607d432d
JB
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75 331 int ret;
a26e8c9f
JB
332 bool need_lock = (current->journal_info ==
333 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
334
335 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
336 return 0;
337
b9fab919
CM
338 if (atomic)
339 return -EAGAIN;
340
a26e8c9f
JB
341 if (need_lock) {
342 btrfs_tree_read_lock(eb);
343 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344 }
345
2ac55d41 346 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 347 0, &cached_state);
0b32f4bb 348 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
349 btrfs_header_generation(eb) == parent_transid) {
350 ret = 0;
351 goto out;
352 }
7a36ddec 353 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 354 "found %llu\n",
c1c9ff7c 355 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 356 ret = 1;
a26e8c9f
JB
357
358 /*
359 * Things reading via commit roots that don't have normal protection,
360 * like send, can have a really old block in cache that may point at a
361 * block that has been free'd and re-allocated. So don't clear uptodate
362 * if we find an eb that is under IO (dirty/writeback) because we could
363 * end up reading in the stale data and then writing it back out and
364 * making everybody very sad.
365 */
366 if (!extent_buffer_under_io(eb))
367 clear_extent_buffer_uptodate(eb);
33958dc6 368out:
2ac55d41
JB
369 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state, GFP_NOFS);
a26e8c9f 371 btrfs_tree_read_unlock_blocking(eb);
1259ab75 372 return ret;
1259ab75
CM
373}
374
1104a885
DS
375/*
376 * Return 0 if the superblock checksum type matches the checksum value of that
377 * algorithm. Pass the raw disk superblock data.
378 */
379static int btrfs_check_super_csum(char *raw_disk_sb)
380{
381 struct btrfs_super_block *disk_sb =
382 (struct btrfs_super_block *)raw_disk_sb;
383 u16 csum_type = btrfs_super_csum_type(disk_sb);
384 int ret = 0;
385
386 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 u32 crc = ~(u32)0;
388 const int csum_size = sizeof(crc);
389 char result[csum_size];
390
391 /*
392 * The super_block structure does not span the whole
393 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394 * is filled with zeros and is included in the checkum.
395 */
396 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398 btrfs_csum_final(crc, result);
399
400 if (memcmp(raw_disk_sb, result, csum_size))
401 ret = 1;
667e7d94
CM
402
403 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
404 printk(KERN_WARNING
405 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
406 ret = 0;
407 }
1104a885
DS
408 }
409
410 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 411 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
412 csum_type);
413 ret = 1;
414 }
415
416 return ret;
417}
418
d352ac68
CM
419/*
420 * helper to read a given tree block, doing retries as required when
421 * the checksums don't match and we have alternate mirrors to try.
422 */
f188591e
CM
423static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424 struct extent_buffer *eb,
ca7a79ad 425 u64 start, u64 parent_transid)
f188591e
CM
426{
427 struct extent_io_tree *io_tree;
ea466794 428 int failed = 0;
f188591e
CM
429 int ret;
430 int num_copies = 0;
431 int mirror_num = 0;
ea466794 432 int failed_mirror = 0;
f188591e 433
a826d6dc 434 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
435 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436 while (1) {
bb82ab88
AJ
437 ret = read_extent_buffer_pages(io_tree, eb, start,
438 WAIT_COMPLETE,
f188591e 439 btree_get_extent, mirror_num);
256dd1bb
SB
440 if (!ret) {
441 if (!verify_parent_transid(io_tree, eb,
b9fab919 442 parent_transid, 0))
256dd1bb
SB
443 break;
444 else
445 ret = -EIO;
446 }
d397712b 447
a826d6dc
JB
448 /*
449 * This buffer's crc is fine, but its contents are corrupted, so
450 * there is no reason to read the other copies, they won't be
451 * any less wrong.
452 */
453 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
454 break;
455
5d964051 456 num_copies = btrfs_num_copies(root->fs_info,
f188591e 457 eb->start, eb->len);
4235298e 458 if (num_copies == 1)
ea466794 459 break;
4235298e 460
5cf1ab56
JB
461 if (!failed_mirror) {
462 failed = 1;
463 failed_mirror = eb->read_mirror;
464 }
465
f188591e 466 mirror_num++;
ea466794
JB
467 if (mirror_num == failed_mirror)
468 mirror_num++;
469
4235298e 470 if (mirror_num > num_copies)
ea466794 471 break;
f188591e 472 }
ea466794 473
c0901581 474 if (failed && !ret && failed_mirror)
ea466794
JB
475 repair_eb_io_failure(root, eb, failed_mirror);
476
477 return ret;
f188591e 478}
19c00ddc 479
d352ac68 480/*
d397712b
CM
481 * checksum a dirty tree block before IO. This has extra checks to make sure
482 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 483 */
d397712b 484
b2950863 485static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 486{
4eee4fa4 487 u64 start = page_offset(page);
19c00ddc 488 u64 found_start;
19c00ddc 489 struct extent_buffer *eb;
f188591e 490
4f2de97a
JB
491 eb = (struct extent_buffer *)page->private;
492 if (page != eb->pages[0])
493 return 0;
19c00ddc 494 found_start = btrfs_header_bytenr(eb);
fae7f21c 495 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 496 return 0;
19c00ddc 497 csum_tree_block(root, eb, 0);
19c00ddc
CM
498 return 0;
499}
500
2b82032c
YZ
501static int check_tree_block_fsid(struct btrfs_root *root,
502 struct extent_buffer *eb)
503{
504 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505 u8 fsid[BTRFS_UUID_SIZE];
506 int ret = 1;
507
0a4e5586 508 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
509 while (fs_devices) {
510 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511 ret = 0;
512 break;
513 }
514 fs_devices = fs_devices->seed;
515 }
516 return ret;
517}
518
a826d6dc 519#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
520 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
521 "root=%llu, slot=%d", reason, \
c1c9ff7c 522 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
523
524static noinline int check_leaf(struct btrfs_root *root,
525 struct extent_buffer *leaf)
526{
527 struct btrfs_key key;
528 struct btrfs_key leaf_key;
529 u32 nritems = btrfs_header_nritems(leaf);
530 int slot;
531
532 if (nritems == 0)
533 return 0;
534
535 /* Check the 0 item */
536 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537 BTRFS_LEAF_DATA_SIZE(root)) {
538 CORRUPT("invalid item offset size pair", leaf, root, 0);
539 return -EIO;
540 }
541
542 /*
543 * Check to make sure each items keys are in the correct order and their
544 * offsets make sense. We only have to loop through nritems-1 because
545 * we check the current slot against the next slot, which verifies the
546 * next slot's offset+size makes sense and that the current's slot
547 * offset is correct.
548 */
549 for (slot = 0; slot < nritems - 1; slot++) {
550 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552
553 /* Make sure the keys are in the right order */
554 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555 CORRUPT("bad key order", leaf, root, slot);
556 return -EIO;
557 }
558
559 /*
560 * Make sure the offset and ends are right, remember that the
561 * item data starts at the end of the leaf and grows towards the
562 * front.
563 */
564 if (btrfs_item_offset_nr(leaf, slot) !=
565 btrfs_item_end_nr(leaf, slot + 1)) {
566 CORRUPT("slot offset bad", leaf, root, slot);
567 return -EIO;
568 }
569
570 /*
571 * Check to make sure that we don't point outside of the leaf,
572 * just incase all the items are consistent to eachother, but
573 * all point outside of the leaf.
574 */
575 if (btrfs_item_end_nr(leaf, slot) >
576 BTRFS_LEAF_DATA_SIZE(root)) {
577 CORRUPT("slot end outside of leaf", leaf, root, slot);
578 return -EIO;
579 }
580 }
581
582 return 0;
583}
584
facc8a22
MX
585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 u64 phy_offset, struct page *page,
587 u64 start, u64 end, int mirror)
ce9adaa5 588{
ce9adaa5
CM
589 u64 found_start;
590 int found_level;
ce9adaa5
CM
591 struct extent_buffer *eb;
592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 593 int ret = 0;
727011e0 594 int reads_done;
ce9adaa5 595
ce9adaa5
CM
596 if (!page->private)
597 goto out;
d397712b 598
4f2de97a 599 eb = (struct extent_buffer *)page->private;
d397712b 600
0b32f4bb
JB
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
603 */
604 extent_buffer_get(eb);
605
606 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
607 if (!reads_done)
608 goto err;
f188591e 609
5cf1ab56 610 eb->read_mirror = mirror;
ea466794
JB
611 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612 ret = -EIO;
613 goto err;
614 }
615
ce9adaa5 616 found_start = btrfs_header_bytenr(eb);
727011e0 617 if (found_start != eb->start) {
efe120a0 618 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 619 "%llu %llu\n",
c1c9ff7c 620 found_start, eb->start);
f188591e 621 ret = -EIO;
ce9adaa5
CM
622 goto err;
623 }
2b82032c 624 if (check_tree_block_fsid(root, eb)) {
efe120a0 625 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 626 eb->start);
1259ab75
CM
627 ret = -EIO;
628 goto err;
629 }
ce9adaa5 630 found_level = btrfs_header_level(eb);
1c24c3ce 631 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 632 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
633 (int)btrfs_header_level(eb));
634 ret = -EIO;
635 goto err;
636 }
ce9adaa5 637
85d4e461
CM
638 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639 eb, found_level);
4008c04a 640
ce9adaa5 641 ret = csum_tree_block(root, eb, 1);
a826d6dc 642 if (ret) {
f188591e 643 ret = -EIO;
a826d6dc
JB
644 goto err;
645 }
646
647 /*
648 * If this is a leaf block and it is corrupt, set the corrupt bit so
649 * that we don't try and read the other copies of this block, just
650 * return -EIO.
651 */
652 if (found_level == 0 && check_leaf(root, eb)) {
653 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654 ret = -EIO;
655 }
ce9adaa5 656
0b32f4bb
JB
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
ce9adaa5 659err:
79fb65a1
JB
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 662 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 663
53b381b3
DW
664 if (ret) {
665 /*
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
669 */
670 atomic_inc(&eb->io_pages);
0b32f4bb 671 clear_extent_buffer_uptodate(eb);
53b381b3 672 }
0b32f4bb 673 free_extent_buffer(eb);
ce9adaa5 674out:
f188591e 675 return ret;
ce9adaa5
CM
676}
677
ea466794 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 679{
4bb31e92
AJ
680 struct extent_buffer *eb;
681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682
4f2de97a 683 eb = (struct extent_buffer *)page->private;
ea466794 684 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 685 eb->read_mirror = failed_mirror;
53b381b3 686 atomic_dec(&eb->io_pages);
ea466794 687 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 688 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
689 return -EIO; /* we fixed nothing */
690}
691
ce9adaa5 692static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
693{
694 struct end_io_wq *end_io_wq = bio->bi_private;
695 struct btrfs_fs_info *fs_info;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
ce9adaa5 698 end_io_wq->error = err;
fccb5d86 699 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
d20f7043 700
7b6d91da 701 if (bio->bi_rw & REQ_WRITE) {
53b381b3 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
fccb5d86
QW
703 btrfs_queue_work(fs_info->endio_meta_write_workers,
704 &end_io_wq->work);
53b381b3 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
fccb5d86
QW
706 btrfs_queue_work(fs_info->endio_freespace_worker,
707 &end_io_wq->work);
53b381b3 708 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
709 btrfs_queue_work(fs_info->endio_raid56_workers,
710 &end_io_wq->work);
cad321ad 711 else
fccb5d86
QW
712 btrfs_queue_work(fs_info->endio_write_workers,
713 &end_io_wq->work);
d20f7043 714 } else {
53b381b3 715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
716 btrfs_queue_work(fs_info->endio_raid56_workers,
717 &end_io_wq->work);
53b381b3 718 else if (end_io_wq->metadata)
fccb5d86
QW
719 btrfs_queue_work(fs_info->endio_meta_workers,
720 &end_io_wq->work);
d20f7043 721 else
fccb5d86
QW
722 btrfs_queue_work(fs_info->endio_workers,
723 &end_io_wq->work);
d20f7043 724 }
ce9adaa5
CM
725}
726
0cb59c99
JB
727/*
728 * For the metadata arg you want
729 *
730 * 0 - if data
731 * 1 - if normal metadta
732 * 2 - if writing to the free space cache area
53b381b3 733 * 3 - raid parity work
0cb59c99 734 */
22c59948
CM
735int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736 int metadata)
0b86a832 737{
ce9adaa5 738 struct end_io_wq *end_io_wq;
ce9adaa5
CM
739 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740 if (!end_io_wq)
741 return -ENOMEM;
742
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
22c59948 745 end_io_wq->info = info;
ce9adaa5
CM
746 end_io_wq->error = 0;
747 end_io_wq->bio = bio;
22c59948 748 end_io_wq->metadata = metadata;
ce9adaa5
CM
749
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
752 return 0;
753}
754
b64a2851 755unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 756{
4854ddd0 757 unsigned long limit = min_t(unsigned long,
5cdc7ad3 758 info->thread_pool_size,
4854ddd0
CM
759 info->fs_devices->open_devices);
760 return 256 * limit;
761}
0986fe9e 762
d458b054 763static void run_one_async_start(struct btrfs_work *work)
4a69a410 764{
4a69a410 765 struct async_submit_bio *async;
79787eaa 766 int ret;
4a69a410
CM
767
768 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
769 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772 if (ret)
773 async->error = ret;
4a69a410
CM
774}
775
d458b054 776static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
777{
778 struct btrfs_fs_info *fs_info;
779 struct async_submit_bio *async;
4854ddd0 780 int limit;
8b712842
CM
781
782 async = container_of(work, struct async_submit_bio, work);
783 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 784
b64a2851 785 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
786 limit = limit * 2 / 3;
787
66657b31 788 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 789 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
790 wake_up(&fs_info->async_submit_wait);
791
79787eaa
JM
792 /* If an error occured we just want to clean up the bio and move on */
793 if (async->error) {
794 bio_endio(async->bio, async->error);
795 return;
796 }
797
4a69a410 798 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
799 async->mirror_num, async->bio_flags,
800 async->bio_offset);
4a69a410
CM
801}
802
d458b054 803static void run_one_async_free(struct btrfs_work *work)
4a69a410
CM
804{
805 struct async_submit_bio *async;
806
807 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
808 kfree(async);
809}
810
44b8bd7e
CM
811int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812 int rw, struct bio *bio, int mirror_num,
c8b97818 813 unsigned long bio_flags,
eaf25d93 814 u64 bio_offset,
4a69a410
CM
815 extent_submit_bio_hook_t *submit_bio_start,
816 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
817{
818 struct async_submit_bio *async;
819
820 async = kmalloc(sizeof(*async), GFP_NOFS);
821 if (!async)
822 return -ENOMEM;
823
824 async->inode = inode;
825 async->rw = rw;
826 async->bio = bio;
827 async->mirror_num = mirror_num;
4a69a410
CM
828 async->submit_bio_start = submit_bio_start;
829 async->submit_bio_done = submit_bio_done;
830
5cdc7ad3
QW
831 btrfs_init_work(&async->work, run_one_async_start,
832 run_one_async_done, run_one_async_free);
4a69a410 833
c8b97818 834 async->bio_flags = bio_flags;
eaf25d93 835 async->bio_offset = bio_offset;
8c8bee1d 836
79787eaa
JM
837 async->error = 0;
838
cb03c743 839 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 840
7b6d91da 841 if (rw & REQ_SYNC)
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 845
d397712b 846 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
847 atomic_read(&fs_info->nr_async_submits)) {
848 wait_event(fs_info->async_submit_wait,
849 (atomic_read(&fs_info->nr_async_submits) == 0));
850 }
851
44b8bd7e
CM
852 return 0;
853}
854
ce3ed71a
CM
855static int btree_csum_one_bio(struct bio *bio)
856{
857 struct bio_vec *bvec = bio->bi_io_vec;
858 int bio_index = 0;
859 struct btrfs_root *root;
79787eaa 860 int ret = 0;
ce3ed71a
CM
861
862 WARN_ON(bio->bi_vcnt <= 0);
d397712b 863 while (bio_index < bio->bi_vcnt) {
ce3ed71a 864 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
865 ret = csum_dirty_buffer(root, bvec->bv_page);
866 if (ret)
867 break;
ce3ed71a
CM
868 bio_index++;
869 bvec++;
870 }
79787eaa 871 return ret;
ce3ed71a
CM
872}
873
4a69a410
CM
874static int __btree_submit_bio_start(struct inode *inode, int rw,
875 struct bio *bio, int mirror_num,
eaf25d93
CM
876 unsigned long bio_flags,
877 u64 bio_offset)
22c59948 878{
8b712842
CM
879 /*
880 * when we're called for a write, we're already in the async
5443be45 881 * submission context. Just jump into btrfs_map_bio
8b712842 882 */
79787eaa 883 return btree_csum_one_bio(bio);
4a69a410 884}
22c59948 885
4a69a410 886static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
887 int mirror_num, unsigned long bio_flags,
888 u64 bio_offset)
4a69a410 889{
61891923
SB
890 int ret;
891
8b712842 892 /*
4a69a410
CM
893 * when we're called for a write, we're already in the async
894 * submission context. Just jump into btrfs_map_bio
8b712842 895 */
61891923
SB
896 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
897 if (ret)
898 bio_endio(bio, ret);
899 return ret;
0b86a832
CM
900}
901
de0022b9
JB
902static int check_async_write(struct inode *inode, unsigned long bio_flags)
903{
904 if (bio_flags & EXTENT_BIO_TREE_LOG)
905 return 0;
906#ifdef CONFIG_X86
907 if (cpu_has_xmm4_2)
908 return 0;
909#endif
910 return 1;
911}
912
44b8bd7e 913static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
914 int mirror_num, unsigned long bio_flags,
915 u64 bio_offset)
44b8bd7e 916{
de0022b9 917 int async = check_async_write(inode, bio_flags);
cad321ad
CM
918 int ret;
919
7b6d91da 920 if (!(rw & REQ_WRITE)) {
4a69a410
CM
921 /*
922 * called for a read, do the setup so that checksum validation
923 * can happen in the async kernel threads
924 */
f3f266ab
CM
925 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
926 bio, 1);
1d4284bd 927 if (ret)
61891923
SB
928 goto out_w_error;
929 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
930 mirror_num, 0);
de0022b9
JB
931 } else if (!async) {
932 ret = btree_csum_one_bio(bio);
933 if (ret)
61891923
SB
934 goto out_w_error;
935 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
936 mirror_num, 0);
937 } else {
938 /*
939 * kthread helpers are used to submit writes so that
940 * checksumming can happen in parallel across all CPUs
941 */
942 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
943 inode, rw, bio, mirror_num, 0,
944 bio_offset,
945 __btree_submit_bio_start,
946 __btree_submit_bio_done);
44b8bd7e 947 }
d313d7a3 948
61891923
SB
949 if (ret) {
950out_w_error:
951 bio_endio(bio, ret);
952 }
953 return ret;
44b8bd7e
CM
954}
955
3dd1462e 956#ifdef CONFIG_MIGRATION
784b4e29 957static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
958 struct page *newpage, struct page *page,
959 enum migrate_mode mode)
784b4e29
CM
960{
961 /*
962 * we can't safely write a btree page from here,
963 * we haven't done the locking hook
964 */
965 if (PageDirty(page))
966 return -EAGAIN;
967 /*
968 * Buffers may be managed in a filesystem specific way.
969 * We must have no buffers or drop them.
970 */
971 if (page_has_private(page) &&
972 !try_to_release_page(page, GFP_KERNEL))
973 return -EAGAIN;
a6bc32b8 974 return migrate_page(mapping, newpage, page, mode);
784b4e29 975}
3dd1462e 976#endif
784b4e29 977
0da5468f
CM
978
979static int btree_writepages(struct address_space *mapping,
980 struct writeback_control *wbc)
981{
e2d84521
MX
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
d8d5f3e1 985 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
986
987 if (wbc->for_kupdate)
988 return 0;
989
e2d84521 990 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 991 /* this is a bit racy, but that's ok */
e2d84521
MX
992 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
993 BTRFS_DIRTY_METADATA_THRESH);
994 if (ret < 0)
793955bc 995 return 0;
793955bc 996 }
0b32f4bb 997 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
998}
999
b2950863 1000static int btree_readpage(struct file *file, struct page *page)
5f39d397 1001{
d1310b2e
CM
1002 struct extent_io_tree *tree;
1003 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1004 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1005}
22b0ebda 1006
70dec807 1007static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1008{
98509cfc 1009 if (PageWriteback(page) || PageDirty(page))
d397712b 1010 return 0;
0c4e538b 1011
f7a52a40 1012 return try_release_extent_buffer(page);
d98237b3
CM
1013}
1014
d47992f8
LC
1015static void btree_invalidatepage(struct page *page, unsigned int offset,
1016 unsigned int length)
d98237b3 1017{
d1310b2e
CM
1018 struct extent_io_tree *tree;
1019 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1020 extent_invalidatepage(tree, page, offset);
1021 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1022 if (PagePrivate(page)) {
efe120a0
FH
1023 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1024 "page private not zero on page %llu",
1025 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1026 ClearPagePrivate(page);
1027 set_page_private(page, 0);
1028 page_cache_release(page);
1029 }
d98237b3
CM
1030}
1031
0b32f4bb
JB
1032static int btree_set_page_dirty(struct page *page)
1033{
bb146eb2 1034#ifdef DEBUG
0b32f4bb
JB
1035 struct extent_buffer *eb;
1036
1037 BUG_ON(!PagePrivate(page));
1038 eb = (struct extent_buffer *)page->private;
1039 BUG_ON(!eb);
1040 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1041 BUG_ON(!atomic_read(&eb->refs));
1042 btrfs_assert_tree_locked(eb);
bb146eb2 1043#endif
0b32f4bb
JB
1044 return __set_page_dirty_nobuffers(page);
1045}
1046
7f09410b 1047static const struct address_space_operations btree_aops = {
d98237b3 1048 .readpage = btree_readpage,
0da5468f 1049 .writepages = btree_writepages,
5f39d397
CM
1050 .releasepage = btree_releasepage,
1051 .invalidatepage = btree_invalidatepage,
5a92bc88 1052#ifdef CONFIG_MIGRATION
784b4e29 1053 .migratepage = btree_migratepage,
5a92bc88 1054#endif
0b32f4bb 1055 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1056};
1057
ca7a79ad
CM
1058int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1059 u64 parent_transid)
090d1875 1060{
5f39d397
CM
1061 struct extent_buffer *buf = NULL;
1062 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1063 int ret = 0;
090d1875 1064
db94535d 1065 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1066 if (!buf)
090d1875 1067 return 0;
d1310b2e 1068 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1069 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1070 free_extent_buffer(buf);
de428b63 1071 return ret;
090d1875
CM
1072}
1073
ab0fff03
AJ
1074int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1075 int mirror_num, struct extent_buffer **eb)
1076{
1077 struct extent_buffer *buf = NULL;
1078 struct inode *btree_inode = root->fs_info->btree_inode;
1079 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1080 int ret;
1081
1082 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1083 if (!buf)
1084 return 0;
1085
1086 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1087
1088 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1089 btree_get_extent, mirror_num);
1090 if (ret) {
1091 free_extent_buffer(buf);
1092 return ret;
1093 }
1094
1095 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1096 free_extent_buffer(buf);
1097 return -EIO;
0b32f4bb 1098 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1099 *eb = buf;
1100 } else {
1101 free_extent_buffer(buf);
1102 }
1103 return 0;
1104}
1105
0999df54
CM
1106struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1107 u64 bytenr, u32 blocksize)
1108{
f28491e0 1109 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1110}
1111
1112struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1113 u64 bytenr, u32 blocksize)
1114{
f28491e0 1115 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1116}
1117
1118
e02119d5
CM
1119int btrfs_write_tree_block(struct extent_buffer *buf)
1120{
727011e0 1121 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1122 buf->start + buf->len - 1);
e02119d5
CM
1123}
1124
1125int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1126{
727011e0 1127 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1128 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1129}
1130
0999df54 1131struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1132 u32 blocksize, u64 parent_transid)
0999df54
CM
1133{
1134 struct extent_buffer *buf = NULL;
0999df54
CM
1135 int ret;
1136
0999df54
CM
1137 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1138 if (!buf)
1139 return NULL;
0999df54 1140
ca7a79ad 1141 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1142 if (ret) {
1143 free_extent_buffer(buf);
1144 return NULL;
1145 }
5f39d397 1146 return buf;
ce9adaa5 1147
eb60ceac
CM
1148}
1149
d5c13f92
JM
1150void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1151 struct extent_buffer *buf)
ed2ff2cb 1152{
e2d84521
MX
1153 struct btrfs_fs_info *fs_info = root->fs_info;
1154
55c69072 1155 if (btrfs_header_generation(buf) ==
e2d84521 1156 fs_info->running_transaction->transid) {
b9447ef8 1157 btrfs_assert_tree_locked(buf);
b4ce94de 1158
b9473439 1159 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1160 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1161 -buf->len,
1162 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1163 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1164 btrfs_set_lock_blocking(buf);
1165 clear_extent_buffer_dirty(buf);
1166 }
925baedd 1167 }
5f39d397
CM
1168}
1169
8257b2dc
MX
1170static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1171{
1172 struct btrfs_subvolume_writers *writers;
1173 int ret;
1174
1175 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1176 if (!writers)
1177 return ERR_PTR(-ENOMEM);
1178
1179 ret = percpu_counter_init(&writers->counter, 0);
1180 if (ret < 0) {
1181 kfree(writers);
1182 return ERR_PTR(ret);
1183 }
1184
1185 init_waitqueue_head(&writers->wait);
1186 return writers;
1187}
1188
1189static void
1190btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1191{
1192 percpu_counter_destroy(&writers->counter);
1193 kfree(writers);
1194}
1195
143bede5
JM
1196static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1197 u32 stripesize, struct btrfs_root *root,
1198 struct btrfs_fs_info *fs_info,
1199 u64 objectid)
d97e63b6 1200{
cfaa7295 1201 root->node = NULL;
a28ec197 1202 root->commit_root = NULL;
db94535d
CM
1203 root->sectorsize = sectorsize;
1204 root->nodesize = nodesize;
1205 root->leafsize = leafsize;
87ee04eb 1206 root->stripesize = stripesize;
123abc88 1207 root->ref_cows = 0;
0b86a832 1208 root->track_dirty = 0;
c71bf099 1209 root->in_radix = 0;
d68fc57b
YZ
1210 root->orphan_item_inserted = 0;
1211 root->orphan_cleanup_state = 0;
0b86a832 1212
0f7d52f4
CM
1213 root->objectid = objectid;
1214 root->last_trans = 0;
13a8a7c8 1215 root->highest_objectid = 0;
eb73c1b7 1216 root->nr_delalloc_inodes = 0;
199c2a9c 1217 root->nr_ordered_extents = 0;
58176a96 1218 root->name = NULL;
6bef4d31 1219 root->inode_tree = RB_ROOT;
16cdcec7 1220 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1221 root->block_rsv = NULL;
d68fc57b 1222 root->orphan_block_rsv = NULL;
0b86a832
CM
1223
1224 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1225 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1226 INIT_LIST_HEAD(&root->delalloc_inodes);
1227 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1228 INIT_LIST_HEAD(&root->ordered_extents);
1229 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1230 INIT_LIST_HEAD(&root->logged_list[0]);
1231 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1232 spin_lock_init(&root->orphan_lock);
5d4f98a2 1233 spin_lock_init(&root->inode_lock);
eb73c1b7 1234 spin_lock_init(&root->delalloc_lock);
199c2a9c 1235 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1236 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1237 spin_lock_init(&root->log_extents_lock[0]);
1238 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1239 mutex_init(&root->objectid_mutex);
e02119d5 1240 mutex_init(&root->log_mutex);
31f3d255 1241 mutex_init(&root->ordered_extent_mutex);
573bfb72 1242 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1243 init_waitqueue_head(&root->log_writer_wait);
1244 init_waitqueue_head(&root->log_commit_wait[0]);
1245 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1246 INIT_LIST_HEAD(&root->log_ctxs[0]);
1247 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1248 atomic_set(&root->log_commit[0], 0);
1249 atomic_set(&root->log_commit[1], 0);
1250 atomic_set(&root->log_writers, 0);
2ecb7923 1251 atomic_set(&root->log_batch, 0);
8a35d95f 1252 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1253 atomic_set(&root->refs, 1);
8257b2dc 1254 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1255 root->log_transid = 0;
d1433deb 1256 root->log_transid_committed = -1;
257c62e1 1257 root->last_log_commit = 0;
06ea65a3
JB
1258 if (fs_info)
1259 extent_io_tree_init(&root->dirty_log_pages,
1260 fs_info->btree_inode->i_mapping);
017e5369 1261
3768f368
CM
1262 memset(&root->root_key, 0, sizeof(root->root_key));
1263 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1264 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1265 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1266 if (fs_info)
1267 root->defrag_trans_start = fs_info->generation;
1268 else
1269 root->defrag_trans_start = 0;
58176a96 1270 init_completion(&root->kobj_unregister);
6702ed49 1271 root->defrag_running = 0;
4d775673 1272 root->root_key.objectid = objectid;
0ee5dc67 1273 root->anon_dev = 0;
8ea05e3a 1274
5f3ab90a 1275 spin_lock_init(&root->root_item_lock);
3768f368
CM
1276}
1277
f84a8bd6 1278static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1279{
1280 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1281 if (root)
1282 root->fs_info = fs_info;
1283 return root;
1284}
1285
06ea65a3
JB
1286#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1287/* Should only be used by the testing infrastructure */
1288struct btrfs_root *btrfs_alloc_dummy_root(void)
1289{
1290 struct btrfs_root *root;
1291
1292 root = btrfs_alloc_root(NULL);
1293 if (!root)
1294 return ERR_PTR(-ENOMEM);
1295 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1296 root->dummy_root = 1;
1297
1298 return root;
1299}
1300#endif
1301
20897f5c
AJ
1302struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1303 struct btrfs_fs_info *fs_info,
1304 u64 objectid)
1305{
1306 struct extent_buffer *leaf;
1307 struct btrfs_root *tree_root = fs_info->tree_root;
1308 struct btrfs_root *root;
1309 struct btrfs_key key;
1310 int ret = 0;
6463fe58 1311 uuid_le uuid;
20897f5c
AJ
1312
1313 root = btrfs_alloc_root(fs_info);
1314 if (!root)
1315 return ERR_PTR(-ENOMEM);
1316
1317 __setup_root(tree_root->nodesize, tree_root->leafsize,
1318 tree_root->sectorsize, tree_root->stripesize,
1319 root, fs_info, objectid);
1320 root->root_key.objectid = objectid;
1321 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322 root->root_key.offset = 0;
1323
1324 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1325 0, objectid, NULL, 0, 0, 0);
1326 if (IS_ERR(leaf)) {
1327 ret = PTR_ERR(leaf);
1dd05682 1328 leaf = NULL;
20897f5c
AJ
1329 goto fail;
1330 }
1331
20897f5c
AJ
1332 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1333 btrfs_set_header_bytenr(leaf, leaf->start);
1334 btrfs_set_header_generation(leaf, trans->transid);
1335 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1336 btrfs_set_header_owner(leaf, objectid);
1337 root->node = leaf;
1338
0a4e5586 1339 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1340 BTRFS_FSID_SIZE);
1341 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1342 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1343 BTRFS_UUID_SIZE);
1344 btrfs_mark_buffer_dirty(leaf);
1345
1346 root->commit_root = btrfs_root_node(root);
1347 root->track_dirty = 1;
1348
1349
1350 root->root_item.flags = 0;
1351 root->root_item.byte_limit = 0;
1352 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1353 btrfs_set_root_generation(&root->root_item, trans->transid);
1354 btrfs_set_root_level(&root->root_item, 0);
1355 btrfs_set_root_refs(&root->root_item, 1);
1356 btrfs_set_root_used(&root->root_item, leaf->len);
1357 btrfs_set_root_last_snapshot(&root->root_item, 0);
1358 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1359 uuid_le_gen(&uuid);
1360 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1361 root->root_item.drop_level = 0;
1362
1363 key.objectid = objectid;
1364 key.type = BTRFS_ROOT_ITEM_KEY;
1365 key.offset = 0;
1366 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367 if (ret)
1368 goto fail;
1369
1370 btrfs_tree_unlock(leaf);
1371
1dd05682
TI
1372 return root;
1373
20897f5c 1374fail:
1dd05682
TI
1375 if (leaf) {
1376 btrfs_tree_unlock(leaf);
1377 free_extent_buffer(leaf);
1378 }
1379 kfree(root);
20897f5c 1380
1dd05682 1381 return ERR_PTR(ret);
20897f5c
AJ
1382}
1383
7237f183
YZ
1384static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1385 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1386{
1387 struct btrfs_root *root;
1388 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1389 struct extent_buffer *leaf;
e02119d5 1390
6f07e42e 1391 root = btrfs_alloc_root(fs_info);
e02119d5 1392 if (!root)
7237f183 1393 return ERR_PTR(-ENOMEM);
e02119d5
CM
1394
1395 __setup_root(tree_root->nodesize, tree_root->leafsize,
1396 tree_root->sectorsize, tree_root->stripesize,
1397 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1398
1399 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1400 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1401 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1402 /*
1403 * log trees do not get reference counted because they go away
1404 * before a real commit is actually done. They do store pointers
1405 * to file data extents, and those reference counts still get
1406 * updated (along with back refs to the log tree).
1407 */
e02119d5
CM
1408 root->ref_cows = 0;
1409
5d4f98a2 1410 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1411 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1412 0, 0, 0);
7237f183
YZ
1413 if (IS_ERR(leaf)) {
1414 kfree(root);
1415 return ERR_CAST(leaf);
1416 }
e02119d5 1417
5d4f98a2
YZ
1418 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1419 btrfs_set_header_bytenr(leaf, leaf->start);
1420 btrfs_set_header_generation(leaf, trans->transid);
1421 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1422 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1423 root->node = leaf;
e02119d5
CM
1424
1425 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1426 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1427 btrfs_mark_buffer_dirty(root->node);
1428 btrfs_tree_unlock(root->node);
7237f183
YZ
1429 return root;
1430}
1431
1432int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1433 struct btrfs_fs_info *fs_info)
1434{
1435 struct btrfs_root *log_root;
1436
1437 log_root = alloc_log_tree(trans, fs_info);
1438 if (IS_ERR(log_root))
1439 return PTR_ERR(log_root);
1440 WARN_ON(fs_info->log_root_tree);
1441 fs_info->log_root_tree = log_root;
1442 return 0;
1443}
1444
1445int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root)
1447{
1448 struct btrfs_root *log_root;
1449 struct btrfs_inode_item *inode_item;
1450
1451 log_root = alloc_log_tree(trans, root->fs_info);
1452 if (IS_ERR(log_root))
1453 return PTR_ERR(log_root);
1454
1455 log_root->last_trans = trans->transid;
1456 log_root->root_key.offset = root->root_key.objectid;
1457
1458 inode_item = &log_root->root_item.inode;
3cae210f
QW
1459 btrfs_set_stack_inode_generation(inode_item, 1);
1460 btrfs_set_stack_inode_size(inode_item, 3);
1461 btrfs_set_stack_inode_nlink(inode_item, 1);
1462 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1463 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1464
5d4f98a2 1465 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1466
1467 WARN_ON(root->log_root);
1468 root->log_root = log_root;
1469 root->log_transid = 0;
d1433deb 1470 root->log_transid_committed = -1;
257c62e1 1471 root->last_log_commit = 0;
e02119d5
CM
1472 return 0;
1473}
1474
35a3621b
SB
1475static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1476 struct btrfs_key *key)
e02119d5
CM
1477{
1478 struct btrfs_root *root;
1479 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1480 struct btrfs_path *path;
84234f3a 1481 u64 generation;
db94535d 1482 u32 blocksize;
cb517eab 1483 int ret;
0f7d52f4 1484
cb517eab
MX
1485 path = btrfs_alloc_path();
1486 if (!path)
0f7d52f4 1487 return ERR_PTR(-ENOMEM);
cb517eab
MX
1488
1489 root = btrfs_alloc_root(fs_info);
1490 if (!root) {
1491 ret = -ENOMEM;
1492 goto alloc_fail;
0f7d52f4
CM
1493 }
1494
db94535d 1495 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1496 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1497 root, fs_info, key->objectid);
0f7d52f4 1498
cb517eab
MX
1499 ret = btrfs_find_root(tree_root, key, path,
1500 &root->root_item, &root->root_key);
0f7d52f4 1501 if (ret) {
13a8a7c8
YZ
1502 if (ret > 0)
1503 ret = -ENOENT;
cb517eab 1504 goto find_fail;
0f7d52f4 1505 }
13a8a7c8 1506
84234f3a 1507 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1508 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1509 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1510 blocksize, generation);
cb517eab
MX
1511 if (!root->node) {
1512 ret = -ENOMEM;
1513 goto find_fail;
1514 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1515 ret = -EIO;
1516 goto read_fail;
416bc658 1517 }
5d4f98a2 1518 root->commit_root = btrfs_root_node(root);
13a8a7c8 1519out:
cb517eab
MX
1520 btrfs_free_path(path);
1521 return root;
1522
1523read_fail:
1524 free_extent_buffer(root->node);
1525find_fail:
1526 kfree(root);
1527alloc_fail:
1528 root = ERR_PTR(ret);
1529 goto out;
1530}
1531
1532struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1533 struct btrfs_key *location)
1534{
1535 struct btrfs_root *root;
1536
1537 root = btrfs_read_tree_root(tree_root, location);
1538 if (IS_ERR(root))
1539 return root;
1540
1541 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1542 root->ref_cows = 1;
08fe4db1
LZ
1543 btrfs_check_and_init_root_item(&root->root_item);
1544 }
13a8a7c8 1545
5eda7b5e
CM
1546 return root;
1547}
1548
cb517eab
MX
1549int btrfs_init_fs_root(struct btrfs_root *root)
1550{
1551 int ret;
8257b2dc 1552 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1553
1554 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1555 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1556 GFP_NOFS);
1557 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1558 ret = -ENOMEM;
1559 goto fail;
1560 }
1561
8257b2dc
MX
1562 writers = btrfs_alloc_subvolume_writers();
1563 if (IS_ERR(writers)) {
1564 ret = PTR_ERR(writers);
1565 goto fail;
1566 }
1567 root->subv_writers = writers;
1568
cb517eab
MX
1569 btrfs_init_free_ino_ctl(root);
1570 mutex_init(&root->fs_commit_mutex);
1571 spin_lock_init(&root->cache_lock);
1572 init_waitqueue_head(&root->cache_wait);
1573
1574 ret = get_anon_bdev(&root->anon_dev);
1575 if (ret)
8257b2dc 1576 goto free_writers;
cb517eab 1577 return 0;
8257b2dc
MX
1578
1579free_writers:
1580 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1581fail:
1582 kfree(root->free_ino_ctl);
1583 kfree(root->free_ino_pinned);
1584 return ret;
1585}
1586
171170c1
ST
1587static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1588 u64 root_id)
cb517eab
MX
1589{
1590 struct btrfs_root *root;
1591
1592 spin_lock(&fs_info->fs_roots_radix_lock);
1593 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1594 (unsigned long)root_id);
1595 spin_unlock(&fs_info->fs_roots_radix_lock);
1596 return root;
1597}
1598
1599int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1600 struct btrfs_root *root)
1601{
1602 int ret;
1603
1604 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1605 if (ret)
1606 return ret;
1607
1608 spin_lock(&fs_info->fs_roots_radix_lock);
1609 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1610 (unsigned long)root->root_key.objectid,
1611 root);
1612 if (ret == 0)
1613 root->in_radix = 1;
1614 spin_unlock(&fs_info->fs_roots_radix_lock);
1615 radix_tree_preload_end();
1616
1617 return ret;
1618}
1619
c00869f1
MX
1620struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1621 struct btrfs_key *location,
1622 bool check_ref)
5eda7b5e
CM
1623{
1624 struct btrfs_root *root;
1625 int ret;
1626
edbd8d4e
CM
1627 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1628 return fs_info->tree_root;
1629 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1630 return fs_info->extent_root;
8f18cf13
CM
1631 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1632 return fs_info->chunk_root;
1633 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1634 return fs_info->dev_root;
0403e47e
YZ
1635 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1636 return fs_info->csum_root;
bcef60f2
AJ
1637 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1638 return fs_info->quota_root ? fs_info->quota_root :
1639 ERR_PTR(-ENOENT);
f7a81ea4
SB
1640 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1641 return fs_info->uuid_root ? fs_info->uuid_root :
1642 ERR_PTR(-ENOENT);
4df27c4d 1643again:
cb517eab 1644 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1645 if (root) {
c00869f1 1646 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1647 return ERR_PTR(-ENOENT);
5eda7b5e 1648 return root;
48475471 1649 }
5eda7b5e 1650
cb517eab 1651 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1652 if (IS_ERR(root))
1653 return root;
3394e160 1654
c00869f1 1655 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1656 ret = -ENOENT;
581bb050 1657 goto fail;
35a30d7c 1658 }
581bb050 1659
cb517eab 1660 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1661 if (ret)
1662 goto fail;
3394e160 1663
3f870c28
KN
1664 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1665 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1666 if (ret < 0)
1667 goto fail;
1668 if (ret == 0)
1669 root->orphan_item_inserted = 1;
1670
cb517eab 1671 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1672 if (ret) {
4df27c4d
YZ
1673 if (ret == -EEXIST) {
1674 free_fs_root(root);
1675 goto again;
1676 }
1677 goto fail;
0f7d52f4 1678 }
edbd8d4e 1679 return root;
4df27c4d
YZ
1680fail:
1681 free_fs_root(root);
1682 return ERR_PTR(ret);
edbd8d4e
CM
1683}
1684
04160088
CM
1685static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1686{
1687 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1688 int ret = 0;
04160088
CM
1689 struct btrfs_device *device;
1690 struct backing_dev_info *bdi;
b7967db7 1691
1f78160c
XG
1692 rcu_read_lock();
1693 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1694 if (!device->bdev)
1695 continue;
04160088
CM
1696 bdi = blk_get_backing_dev_info(device->bdev);
1697 if (bdi && bdi_congested(bdi, bdi_bits)) {
1698 ret = 1;
1699 break;
1700 }
1701 }
1f78160c 1702 rcu_read_unlock();
04160088
CM
1703 return ret;
1704}
1705
ad081f14
JA
1706/*
1707 * If this fails, caller must call bdi_destroy() to get rid of the
1708 * bdi again.
1709 */
04160088
CM
1710static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1711{
ad081f14
JA
1712 int err;
1713
1714 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1715 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1716 if (err)
1717 return err;
1718
4575c9cc 1719 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1720 bdi->congested_fn = btrfs_congested_fn;
1721 bdi->congested_data = info;
1722 return 0;
1723}
1724
8b712842
CM
1725/*
1726 * called by the kthread helper functions to finally call the bio end_io
1727 * functions. This is where read checksum verification actually happens
1728 */
d458b054 1729static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1730{
ce9adaa5 1731 struct bio *bio;
8b712842 1732 struct end_io_wq *end_io_wq;
ce9adaa5 1733 int error;
ce9adaa5 1734
8b712842
CM
1735 end_io_wq = container_of(work, struct end_io_wq, work);
1736 bio = end_io_wq->bio;
ce9adaa5 1737
8b712842
CM
1738 error = end_io_wq->error;
1739 bio->bi_private = end_io_wq->private;
1740 bio->bi_end_io = end_io_wq->end_io;
1741 kfree(end_io_wq);
8b712842 1742 bio_endio(bio, error);
44b8bd7e
CM
1743}
1744
a74a4b97
CM
1745static int cleaner_kthread(void *arg)
1746{
1747 struct btrfs_root *root = arg;
d0278245 1748 int again;
a74a4b97
CM
1749
1750 do {
d0278245 1751 again = 0;
a74a4b97 1752
d0278245 1753 /* Make the cleaner go to sleep early. */
babbf170 1754 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1755 goto sleep;
1756
1757 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1758 goto sleep;
1759
dc7f370c
MX
1760 /*
1761 * Avoid the problem that we change the status of the fs
1762 * during the above check and trylock.
1763 */
babbf170 1764 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1765 mutex_unlock(&root->fs_info->cleaner_mutex);
1766 goto sleep;
76dda93c 1767 }
a74a4b97 1768
d0278245
MX
1769 btrfs_run_delayed_iputs(root);
1770 again = btrfs_clean_one_deleted_snapshot(root);
1771 mutex_unlock(&root->fs_info->cleaner_mutex);
1772
1773 /*
05323cd1
MX
1774 * The defragger has dealt with the R/O remount and umount,
1775 * needn't do anything special here.
d0278245
MX
1776 */
1777 btrfs_run_defrag_inodes(root->fs_info);
1778sleep:
9d1a2a3a 1779 if (!try_to_freeze() && !again) {
a74a4b97 1780 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1781 if (!kthread_should_stop())
1782 schedule();
a74a4b97
CM
1783 __set_current_state(TASK_RUNNING);
1784 }
1785 } while (!kthread_should_stop());
1786 return 0;
1787}
1788
1789static int transaction_kthread(void *arg)
1790{
1791 struct btrfs_root *root = arg;
1792 struct btrfs_trans_handle *trans;
1793 struct btrfs_transaction *cur;
8929ecfa 1794 u64 transid;
a74a4b97
CM
1795 unsigned long now;
1796 unsigned long delay;
914b2007 1797 bool cannot_commit;
a74a4b97
CM
1798
1799 do {
914b2007 1800 cannot_commit = false;
8b87dc17 1801 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1802 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1803
a4abeea4 1804 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1805 cur = root->fs_info->running_transaction;
1806 if (!cur) {
a4abeea4 1807 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1808 goto sleep;
1809 }
31153d81 1810
a74a4b97 1811 now = get_seconds();
4a9d8bde 1812 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1813 (now < cur->start_time ||
1814 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1815 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1816 delay = HZ * 5;
1817 goto sleep;
1818 }
8929ecfa 1819 transid = cur->transid;
a4abeea4 1820 spin_unlock(&root->fs_info->trans_lock);
56bec294 1821
79787eaa 1822 /* If the file system is aborted, this will always fail. */
354aa0fb 1823 trans = btrfs_attach_transaction(root);
914b2007 1824 if (IS_ERR(trans)) {
354aa0fb
MX
1825 if (PTR_ERR(trans) != -ENOENT)
1826 cannot_commit = true;
79787eaa 1827 goto sleep;
914b2007 1828 }
8929ecfa 1829 if (transid == trans->transid) {
79787eaa 1830 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1831 } else {
1832 btrfs_end_transaction(trans, root);
1833 }
a74a4b97
CM
1834sleep:
1835 wake_up_process(root->fs_info->cleaner_kthread);
1836 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1837
4e121c06
JB
1838 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1839 &root->fs_info->fs_state)))
1840 btrfs_cleanup_transaction(root);
a0acae0e 1841 if (!try_to_freeze()) {
a74a4b97 1842 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1843 if (!kthread_should_stop() &&
914b2007
JK
1844 (!btrfs_transaction_blocked(root->fs_info) ||
1845 cannot_commit))
8929ecfa 1846 schedule_timeout(delay);
a74a4b97
CM
1847 __set_current_state(TASK_RUNNING);
1848 }
1849 } while (!kthread_should_stop());
1850 return 0;
1851}
1852
af31f5e5
CM
1853/*
1854 * this will find the highest generation in the array of
1855 * root backups. The index of the highest array is returned,
1856 * or -1 if we can't find anything.
1857 *
1858 * We check to make sure the array is valid by comparing the
1859 * generation of the latest root in the array with the generation
1860 * in the super block. If they don't match we pitch it.
1861 */
1862static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1863{
1864 u64 cur;
1865 int newest_index = -1;
1866 struct btrfs_root_backup *root_backup;
1867 int i;
1868
1869 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1870 root_backup = info->super_copy->super_roots + i;
1871 cur = btrfs_backup_tree_root_gen(root_backup);
1872 if (cur == newest_gen)
1873 newest_index = i;
1874 }
1875
1876 /* check to see if we actually wrapped around */
1877 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1878 root_backup = info->super_copy->super_roots;
1879 cur = btrfs_backup_tree_root_gen(root_backup);
1880 if (cur == newest_gen)
1881 newest_index = 0;
1882 }
1883 return newest_index;
1884}
1885
1886
1887/*
1888 * find the oldest backup so we know where to store new entries
1889 * in the backup array. This will set the backup_root_index
1890 * field in the fs_info struct
1891 */
1892static void find_oldest_super_backup(struct btrfs_fs_info *info,
1893 u64 newest_gen)
1894{
1895 int newest_index = -1;
1896
1897 newest_index = find_newest_super_backup(info, newest_gen);
1898 /* if there was garbage in there, just move along */
1899 if (newest_index == -1) {
1900 info->backup_root_index = 0;
1901 } else {
1902 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1903 }
1904}
1905
1906/*
1907 * copy all the root pointers into the super backup array.
1908 * this will bump the backup pointer by one when it is
1909 * done
1910 */
1911static void backup_super_roots(struct btrfs_fs_info *info)
1912{
1913 int next_backup;
1914 struct btrfs_root_backup *root_backup;
1915 int last_backup;
1916
1917 next_backup = info->backup_root_index;
1918 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1919 BTRFS_NUM_BACKUP_ROOTS;
1920
1921 /*
1922 * just overwrite the last backup if we're at the same generation
1923 * this happens only at umount
1924 */
1925 root_backup = info->super_for_commit->super_roots + last_backup;
1926 if (btrfs_backup_tree_root_gen(root_backup) ==
1927 btrfs_header_generation(info->tree_root->node))
1928 next_backup = last_backup;
1929
1930 root_backup = info->super_for_commit->super_roots + next_backup;
1931
1932 /*
1933 * make sure all of our padding and empty slots get zero filled
1934 * regardless of which ones we use today
1935 */
1936 memset(root_backup, 0, sizeof(*root_backup));
1937
1938 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1939
1940 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1941 btrfs_set_backup_tree_root_gen(root_backup,
1942 btrfs_header_generation(info->tree_root->node));
1943
1944 btrfs_set_backup_tree_root_level(root_backup,
1945 btrfs_header_level(info->tree_root->node));
1946
1947 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1948 btrfs_set_backup_chunk_root_gen(root_backup,
1949 btrfs_header_generation(info->chunk_root->node));
1950 btrfs_set_backup_chunk_root_level(root_backup,
1951 btrfs_header_level(info->chunk_root->node));
1952
1953 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1954 btrfs_set_backup_extent_root_gen(root_backup,
1955 btrfs_header_generation(info->extent_root->node));
1956 btrfs_set_backup_extent_root_level(root_backup,
1957 btrfs_header_level(info->extent_root->node));
1958
7c7e82a7
CM
1959 /*
1960 * we might commit during log recovery, which happens before we set
1961 * the fs_root. Make sure it is valid before we fill it in.
1962 */
1963 if (info->fs_root && info->fs_root->node) {
1964 btrfs_set_backup_fs_root(root_backup,
1965 info->fs_root->node->start);
1966 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1967 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1968 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1969 btrfs_header_level(info->fs_root->node));
7c7e82a7 1970 }
af31f5e5
CM
1971
1972 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1973 btrfs_set_backup_dev_root_gen(root_backup,
1974 btrfs_header_generation(info->dev_root->node));
1975 btrfs_set_backup_dev_root_level(root_backup,
1976 btrfs_header_level(info->dev_root->node));
1977
1978 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1979 btrfs_set_backup_csum_root_gen(root_backup,
1980 btrfs_header_generation(info->csum_root->node));
1981 btrfs_set_backup_csum_root_level(root_backup,
1982 btrfs_header_level(info->csum_root->node));
1983
1984 btrfs_set_backup_total_bytes(root_backup,
1985 btrfs_super_total_bytes(info->super_copy));
1986 btrfs_set_backup_bytes_used(root_backup,
1987 btrfs_super_bytes_used(info->super_copy));
1988 btrfs_set_backup_num_devices(root_backup,
1989 btrfs_super_num_devices(info->super_copy));
1990
1991 /*
1992 * if we don't copy this out to the super_copy, it won't get remembered
1993 * for the next commit
1994 */
1995 memcpy(&info->super_copy->super_roots,
1996 &info->super_for_commit->super_roots,
1997 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1998}
1999
2000/*
2001 * this copies info out of the root backup array and back into
2002 * the in-memory super block. It is meant to help iterate through
2003 * the array, so you send it the number of backups you've already
2004 * tried and the last backup index you used.
2005 *
2006 * this returns -1 when it has tried all the backups
2007 */
2008static noinline int next_root_backup(struct btrfs_fs_info *info,
2009 struct btrfs_super_block *super,
2010 int *num_backups_tried, int *backup_index)
2011{
2012 struct btrfs_root_backup *root_backup;
2013 int newest = *backup_index;
2014
2015 if (*num_backups_tried == 0) {
2016 u64 gen = btrfs_super_generation(super);
2017
2018 newest = find_newest_super_backup(info, gen);
2019 if (newest == -1)
2020 return -1;
2021
2022 *backup_index = newest;
2023 *num_backups_tried = 1;
2024 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2025 /* we've tried all the backups, all done */
2026 return -1;
2027 } else {
2028 /* jump to the next oldest backup */
2029 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2030 BTRFS_NUM_BACKUP_ROOTS;
2031 *backup_index = newest;
2032 *num_backups_tried += 1;
2033 }
2034 root_backup = super->super_roots + newest;
2035
2036 btrfs_set_super_generation(super,
2037 btrfs_backup_tree_root_gen(root_backup));
2038 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2039 btrfs_set_super_root_level(super,
2040 btrfs_backup_tree_root_level(root_backup));
2041 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2042
2043 /*
2044 * fixme: the total bytes and num_devices need to match or we should
2045 * need a fsck
2046 */
2047 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2048 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2049 return 0;
2050}
2051
7abadb64
LB
2052/* helper to cleanup workers */
2053static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2054{
dc6e3209 2055 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2056 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2057 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2058 btrfs_destroy_workqueue(fs_info->endio_workers);
2059 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2060 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2061 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2062 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2063 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2064 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2065 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2066 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2067 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2068 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2069 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2070 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
7abadb64
LB
2071}
2072
2e9f5954
R
2073static void free_root_extent_buffers(struct btrfs_root *root)
2074{
2075 if (root) {
2076 free_extent_buffer(root->node);
2077 free_extent_buffer(root->commit_root);
2078 root->node = NULL;
2079 root->commit_root = NULL;
2080 }
2081}
2082
af31f5e5
CM
2083/* helper to cleanup tree roots */
2084static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2085{
2e9f5954 2086 free_root_extent_buffers(info->tree_root);
655b09fe 2087
2e9f5954
R
2088 free_root_extent_buffers(info->dev_root);
2089 free_root_extent_buffers(info->extent_root);
2090 free_root_extent_buffers(info->csum_root);
2091 free_root_extent_buffers(info->quota_root);
2092 free_root_extent_buffers(info->uuid_root);
2093 if (chunk_root)
2094 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2095}
2096
171f6537
JB
2097static void del_fs_roots(struct btrfs_fs_info *fs_info)
2098{
2099 int ret;
2100 struct btrfs_root *gang[8];
2101 int i;
2102
2103 while (!list_empty(&fs_info->dead_roots)) {
2104 gang[0] = list_entry(fs_info->dead_roots.next,
2105 struct btrfs_root, root_list);
2106 list_del(&gang[0]->root_list);
2107
2108 if (gang[0]->in_radix) {
cb517eab 2109 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2110 } else {
2111 free_extent_buffer(gang[0]->node);
2112 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2113 btrfs_put_fs_root(gang[0]);
171f6537
JB
2114 }
2115 }
2116
2117 while (1) {
2118 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2119 (void **)gang, 0,
2120 ARRAY_SIZE(gang));
2121 if (!ret)
2122 break;
2123 for (i = 0; i < ret; i++)
cb517eab 2124 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2125 }
1a4319cc
LB
2126
2127 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2128 btrfs_free_log_root_tree(NULL, fs_info);
2129 btrfs_destroy_pinned_extent(fs_info->tree_root,
2130 fs_info->pinned_extents);
2131 }
171f6537 2132}
af31f5e5 2133
ad2b2c80
AV
2134int open_ctree(struct super_block *sb,
2135 struct btrfs_fs_devices *fs_devices,
2136 char *options)
2e635a27 2137{
db94535d
CM
2138 u32 sectorsize;
2139 u32 nodesize;
2140 u32 leafsize;
2141 u32 blocksize;
87ee04eb 2142 u32 stripesize;
84234f3a 2143 u64 generation;
f2b636e8 2144 u64 features;
3de4586c 2145 struct btrfs_key location;
a061fc8d 2146 struct buffer_head *bh;
4d34b278 2147 struct btrfs_super_block *disk_super;
815745cf 2148 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2149 struct btrfs_root *tree_root;
4d34b278
ID
2150 struct btrfs_root *extent_root;
2151 struct btrfs_root *csum_root;
2152 struct btrfs_root *chunk_root;
2153 struct btrfs_root *dev_root;
bcef60f2 2154 struct btrfs_root *quota_root;
f7a81ea4 2155 struct btrfs_root *uuid_root;
e02119d5 2156 struct btrfs_root *log_tree_root;
eb60ceac 2157 int ret;
e58ca020 2158 int err = -EINVAL;
af31f5e5
CM
2159 int num_backups_tried = 0;
2160 int backup_index = 0;
5cdc7ad3
QW
2161 int max_active;
2162 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2163 bool create_uuid_tree;
2164 bool check_uuid_tree;
4543df7e 2165
f84a8bd6 2166 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2167 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2168 if (!tree_root || !chunk_root) {
39279cc3
CM
2169 err = -ENOMEM;
2170 goto fail;
2171 }
76dda93c
YZ
2172
2173 ret = init_srcu_struct(&fs_info->subvol_srcu);
2174 if (ret) {
2175 err = ret;
2176 goto fail;
2177 }
2178
2179 ret = setup_bdi(fs_info, &fs_info->bdi);
2180 if (ret) {
2181 err = ret;
2182 goto fail_srcu;
2183 }
2184
e2d84521
MX
2185 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2186 if (ret) {
2187 err = ret;
2188 goto fail_bdi;
2189 }
2190 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2191 (1 + ilog2(nr_cpu_ids));
2192
963d678b
MX
2193 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2194 if (ret) {
2195 err = ret;
2196 goto fail_dirty_metadata_bytes;
2197 }
2198
c404e0dc
MX
2199 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2200 if (ret) {
2201 err = ret;
2202 goto fail_delalloc_bytes;
2203 }
2204
76dda93c
YZ
2205 fs_info->btree_inode = new_inode(sb);
2206 if (!fs_info->btree_inode) {
2207 err = -ENOMEM;
c404e0dc 2208 goto fail_bio_counter;
76dda93c
YZ
2209 }
2210
a6591715 2211 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2212
76dda93c 2213 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2214 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2215 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2216 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2217 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2218 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2219 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2220 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2221 spin_lock_init(&fs_info->trans_lock);
76dda93c 2222 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2223 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2224 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2225 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2226 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2227 spin_lock_init(&fs_info->super_lock);
f28491e0 2228 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2229 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2230 mutex_init(&fs_info->reloc_mutex);
573bfb72 2231 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2232 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2233
58176a96 2234 init_completion(&fs_info->kobj_unregister);
0b86a832 2235 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2236 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2237 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2238 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2239 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2240 BTRFS_BLOCK_RSV_GLOBAL);
2241 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2242 BTRFS_BLOCK_RSV_DELALLOC);
2243 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2244 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2245 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2246 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2247 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2248 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2249 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2250 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2251 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2252 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2253 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2254 fs_info->sb = sb;
6f568d35 2255 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2256 fs_info->metadata_ratio = 0;
4cb5300b 2257 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2258 fs_info->free_chunk_space = 0;
f29021b2 2259 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2260 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2261 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2262 /* readahead state */
2263 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2264 spin_lock_init(&fs_info->reada_lock);
c8b97818 2265
b34b086c
CM
2266 fs_info->thread_pool_size = min_t(unsigned long,
2267 num_online_cpus() + 2, 8);
0afbaf8c 2268
199c2a9c
MX
2269 INIT_LIST_HEAD(&fs_info->ordered_roots);
2270 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2271 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2272 GFP_NOFS);
2273 if (!fs_info->delayed_root) {
2274 err = -ENOMEM;
2275 goto fail_iput;
2276 }
2277 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2278
a2de733c
AJ
2279 mutex_init(&fs_info->scrub_lock);
2280 atomic_set(&fs_info->scrubs_running, 0);
2281 atomic_set(&fs_info->scrub_pause_req, 0);
2282 atomic_set(&fs_info->scrubs_paused, 0);
2283 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2284 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2285 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2286 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2287#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2288 fs_info->check_integrity_print_mask = 0;
2289#endif
a2de733c 2290
c9e9f97b
ID
2291 spin_lock_init(&fs_info->balance_lock);
2292 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2293 atomic_set(&fs_info->balance_running, 0);
2294 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2295 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2296 fs_info->balance_ctl = NULL;
837d5b6e 2297 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2298
a061fc8d
CM
2299 sb->s_blocksize = 4096;
2300 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2301 sb->s_bdi = &fs_info->bdi;
a061fc8d 2302
76dda93c 2303 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2304 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2305 /*
2306 * we set the i_size on the btree inode to the max possible int.
2307 * the real end of the address space is determined by all of
2308 * the devices in the system
2309 */
2310 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2311 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2312 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2313
5d4f98a2 2314 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2315 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2316 fs_info->btree_inode->i_mapping);
0b32f4bb 2317 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2318 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2319
2320 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2321
76dda93c
YZ
2322 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2323 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2324 sizeof(struct btrfs_key));
72ac3c0d
JB
2325 set_bit(BTRFS_INODE_DUMMY,
2326 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2327 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2328
0f9dd46c 2329 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2330 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2331 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2332
11833d66 2333 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2334 fs_info->btree_inode->i_mapping);
11833d66 2335 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2336 fs_info->btree_inode->i_mapping);
11833d66 2337 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2338 fs_info->do_barriers = 1;
e18e4809 2339
39279cc3 2340
5a3f23d5 2341 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2342 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2343 mutex_init(&fs_info->tree_log_mutex);
925baedd 2344 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2345 mutex_init(&fs_info->transaction_kthread_mutex);
2346 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2347 mutex_init(&fs_info->volume_mutex);
276e680d 2348 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2349 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2350 init_rwsem(&fs_info->subvol_sem);
803b2f54 2351 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2352 fs_info->dev_replace.lock_owner = 0;
2353 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2354 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2355 mutex_init(&fs_info->dev_replace.lock_management_lock);
2356 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2357
416ac51d 2358 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2359 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2360 fs_info->qgroup_tree = RB_ROOT;
2361 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2362 fs_info->qgroup_seq = 1;
2363 fs_info->quota_enabled = 0;
2364 fs_info->pending_quota_state = 0;
1e8f9158 2365 fs_info->qgroup_ulist = NULL;
2f232036 2366 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2367
fa9c0d79
CM
2368 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2369 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2370
e6dcd2dc 2371 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2372 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2373 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2374 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2375
53b381b3
DW
2376 ret = btrfs_alloc_stripe_hash_table(fs_info);
2377 if (ret) {
83c8266a 2378 err = ret;
53b381b3
DW
2379 goto fail_alloc;
2380 }
2381
0b86a832 2382 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2383 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2384
3c4bb26b 2385 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2386
2387 /*
2388 * Read super block and check the signature bytes only
2389 */
a512bbf8 2390 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2391 if (!bh) {
2392 err = -EINVAL;
16cdcec7 2393 goto fail_alloc;
20b45077 2394 }
39279cc3 2395
1104a885
DS
2396 /*
2397 * We want to check superblock checksum, the type is stored inside.
2398 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2399 */
2400 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2401 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2402 err = -EINVAL;
2403 goto fail_alloc;
2404 }
2405
2406 /*
2407 * super_copy is zeroed at allocation time and we never touch the
2408 * following bytes up to INFO_SIZE, the checksum is calculated from
2409 * the whole block of INFO_SIZE
2410 */
6c41761f
DS
2411 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2412 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2413 sizeof(*fs_info->super_for_commit));
a061fc8d 2414 brelse(bh);
5f39d397 2415
6c41761f 2416 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2417
1104a885
DS
2418 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2419 if (ret) {
efe120a0 2420 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2421 err = -EINVAL;
2422 goto fail_alloc;
2423 }
2424
6c41761f 2425 disk_super = fs_info->super_copy;
0f7d52f4 2426 if (!btrfs_super_root(disk_super))
16cdcec7 2427 goto fail_alloc;
0f7d52f4 2428
acce952b 2429 /* check FS state, whether FS is broken. */
87533c47
MX
2430 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2431 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2432
af31f5e5
CM
2433 /*
2434 * run through our array of backup supers and setup
2435 * our ring pointer to the oldest one
2436 */
2437 generation = btrfs_super_generation(disk_super);
2438 find_oldest_super_backup(fs_info, generation);
2439
75e7cb7f
LB
2440 /*
2441 * In the long term, we'll store the compression type in the super
2442 * block, and it'll be used for per file compression control.
2443 */
2444 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2445
2b82032c
YZ
2446 ret = btrfs_parse_options(tree_root, options);
2447 if (ret) {
2448 err = ret;
16cdcec7 2449 goto fail_alloc;
2b82032c 2450 }
dfe25020 2451
f2b636e8
JB
2452 features = btrfs_super_incompat_flags(disk_super) &
2453 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2454 if (features) {
2455 printk(KERN_ERR "BTRFS: couldn't mount because of "
2456 "unsupported optional features (%Lx).\n",
c1c9ff7c 2457 features);
f2b636e8 2458 err = -EINVAL;
16cdcec7 2459 goto fail_alloc;
f2b636e8
JB
2460 }
2461
727011e0
CM
2462 if (btrfs_super_leafsize(disk_super) !=
2463 btrfs_super_nodesize(disk_super)) {
2464 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2465 "blocksizes don't match. node %d leaf %d\n",
2466 btrfs_super_nodesize(disk_super),
2467 btrfs_super_leafsize(disk_super));
2468 err = -EINVAL;
2469 goto fail_alloc;
2470 }
2471 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2472 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2473 "blocksize (%d) was too large\n",
2474 btrfs_super_leafsize(disk_super));
2475 err = -EINVAL;
2476 goto fail_alloc;
2477 }
2478
5d4f98a2 2479 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2480 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2481 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2482 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2483
3173a18f 2484 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2485 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2486
727011e0
CM
2487 /*
2488 * flag our filesystem as having big metadata blocks if
2489 * they are bigger than the page size
2490 */
2491 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2492 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2493 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2494 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2495 }
2496
bc3f116f
CM
2497 nodesize = btrfs_super_nodesize(disk_super);
2498 leafsize = btrfs_super_leafsize(disk_super);
2499 sectorsize = btrfs_super_sectorsize(disk_super);
2500 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2501 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2502 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2503
2504 /*
2505 * mixed block groups end up with duplicate but slightly offset
2506 * extent buffers for the same range. It leads to corruptions
2507 */
2508 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2509 (sectorsize != leafsize)) {
efe120a0 2510 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2511 "are not allowed for mixed block groups on %s\n",
2512 sb->s_id);
2513 goto fail_alloc;
2514 }
2515
ceda0864
MX
2516 /*
2517 * Needn't use the lock because there is no other task which will
2518 * update the flag.
2519 */
a6fa6fae 2520 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2521
f2b636e8
JB
2522 features = btrfs_super_compat_ro_flags(disk_super) &
2523 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2524 if (!(sb->s_flags & MS_RDONLY) && features) {
2525 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2526 "unsupported option features (%Lx).\n",
c1c9ff7c 2527 features);
f2b636e8 2528 err = -EINVAL;
16cdcec7 2529 goto fail_alloc;
f2b636e8 2530 }
61d92c32 2531
5cdc7ad3 2532 max_active = fs_info->thread_pool_size;
61d92c32 2533
5cdc7ad3
QW
2534 fs_info->workers =
2535 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2536 max_active, 16);
c8b97818 2537
afe3d242
QW
2538 fs_info->delalloc_workers =
2539 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2540
a44903ab
QW
2541 fs_info->flush_workers =
2542 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
61b49440 2543
e66f0bb1
QW
2544 fs_info->caching_workers =
2545 btrfs_alloc_workqueue("cache", flags, max_active, 0);
bab39bf9 2546
a8c93d4e
QW
2547 /*
2548 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2549 * likely that bios will be send down in a sane order to the
2550 * devices
2551 */
a8c93d4e
QW
2552 fs_info->submit_workers =
2553 btrfs_alloc_workqueue("submit", flags,
2554 min_t(u64, fs_devices->num_devices,
2555 max_active), 64);
53863232 2556
dc6e3209
QW
2557 fs_info->fixup_workers =
2558 btrfs_alloc_workqueue("fixup", flags, 1, 0);
fccb5d86
QW
2559
2560 /*
2561 * endios are largely parallel and should have a very
2562 * low idle thresh
2563 */
2564 fs_info->endio_workers =
2565 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2566 fs_info->endio_meta_workers =
2567 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2568 fs_info->endio_meta_write_workers =
2569 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2570 fs_info->endio_raid56_workers =
2571 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
d05a33ac
QW
2572 fs_info->rmw_workers =
2573 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2574 fs_info->endio_write_workers =
2575 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2576 fs_info->endio_freespace_worker =
2577 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2578 fs_info->delayed_workers =
2579 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2580 fs_info->readahead_workers =
2581 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2582 fs_info->qgroup_rescan_workers =
2583 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
61b49440 2584
a8c93d4e 2585 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2586 fs_info->submit_workers && fs_info->flush_workers &&
2587 fs_info->endio_workers && fs_info->endio_meta_workers &&
2588 fs_info->endio_meta_write_workers &&
2589 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2590 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2591 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0
QW
2592 fs_info->fixup_workers && fs_info->delayed_workers &&
2593 fs_info->qgroup_rescan_workers)) {
5cdc7ad3
QW
2594 err = -ENOMEM;
2595 goto fail_sb_buffer;
2596 }
4543df7e 2597
4575c9cc 2598 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2599 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2600 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2601
db94535d
CM
2602 tree_root->nodesize = nodesize;
2603 tree_root->leafsize = leafsize;
2604 tree_root->sectorsize = sectorsize;
87ee04eb 2605 tree_root->stripesize = stripesize;
a061fc8d
CM
2606
2607 sb->s_blocksize = sectorsize;
2608 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2609
3cae210f 2610 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2611 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2612 goto fail_sb_buffer;
2613 }
19c00ddc 2614
8d082fb7 2615 if (sectorsize != PAGE_SIZE) {
efe120a0 2616 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2617 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2618 goto fail_sb_buffer;
2619 }
2620
925baedd 2621 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2622 ret = btrfs_read_sys_array(tree_root);
925baedd 2623 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2624 if (ret) {
efe120a0 2625 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2626 "array on %s\n", sb->s_id);
5d4f98a2 2627 goto fail_sb_buffer;
84eed90f 2628 }
0b86a832
CM
2629
2630 blocksize = btrfs_level_size(tree_root,
2631 btrfs_super_chunk_root_level(disk_super));
84234f3a 2632 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2633
2634 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2635 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2636
2637 chunk_root->node = read_tree_block(chunk_root,
2638 btrfs_super_chunk_root(disk_super),
84234f3a 2639 blocksize, generation);
416bc658
JB
2640 if (!chunk_root->node ||
2641 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2642 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2643 sb->s_id);
af31f5e5 2644 goto fail_tree_roots;
83121942 2645 }
5d4f98a2
YZ
2646 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2647 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2648
e17cade2 2649 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2650 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2651
0b86a832 2652 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2653 if (ret) {
efe120a0 2654 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2655 sb->s_id);
af31f5e5 2656 goto fail_tree_roots;
2b82032c 2657 }
0b86a832 2658
8dabb742
SB
2659 /*
2660 * keep the device that is marked to be the target device for the
2661 * dev_replace procedure
2662 */
2663 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2664
a6b0d5c8 2665 if (!fs_devices->latest_bdev) {
efe120a0 2666 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2667 sb->s_id);
2668 goto fail_tree_roots;
2669 }
2670
af31f5e5 2671retry_root_backup:
db94535d
CM
2672 blocksize = btrfs_level_size(tree_root,
2673 btrfs_super_root_level(disk_super));
84234f3a 2674 generation = btrfs_super_generation(disk_super);
0b86a832 2675
e20d96d6 2676 tree_root->node = read_tree_block(tree_root,
db94535d 2677 btrfs_super_root(disk_super),
84234f3a 2678 blocksize, generation);
af31f5e5
CM
2679 if (!tree_root->node ||
2680 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2681 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2682 sb->s_id);
af31f5e5
CM
2683
2684 goto recovery_tree_root;
83121942 2685 }
af31f5e5 2686
5d4f98a2
YZ
2687 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2688 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2689 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2690
cb517eab
MX
2691 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2692 location.type = BTRFS_ROOT_ITEM_KEY;
2693 location.offset = 0;
2694
2695 extent_root = btrfs_read_tree_root(tree_root, &location);
2696 if (IS_ERR(extent_root)) {
2697 ret = PTR_ERR(extent_root);
af31f5e5 2698 goto recovery_tree_root;
cb517eab 2699 }
0b86a832 2700 extent_root->track_dirty = 1;
cb517eab 2701 fs_info->extent_root = extent_root;
0b86a832 2702
cb517eab
MX
2703 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2704 dev_root = btrfs_read_tree_root(tree_root, &location);
2705 if (IS_ERR(dev_root)) {
2706 ret = PTR_ERR(dev_root);
af31f5e5 2707 goto recovery_tree_root;
cb517eab 2708 }
5d4f98a2 2709 dev_root->track_dirty = 1;
cb517eab
MX
2710 fs_info->dev_root = dev_root;
2711 btrfs_init_devices_late(fs_info);
3768f368 2712
cb517eab
MX
2713 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2714 csum_root = btrfs_read_tree_root(tree_root, &location);
2715 if (IS_ERR(csum_root)) {
2716 ret = PTR_ERR(csum_root);
af31f5e5 2717 goto recovery_tree_root;
cb517eab 2718 }
d20f7043 2719 csum_root->track_dirty = 1;
cb517eab 2720 fs_info->csum_root = csum_root;
d20f7043 2721
cb517eab
MX
2722 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2723 quota_root = btrfs_read_tree_root(tree_root, &location);
2724 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2725 quota_root->track_dirty = 1;
2726 fs_info->quota_enabled = 1;
2727 fs_info->pending_quota_state = 1;
cb517eab 2728 fs_info->quota_root = quota_root;
bcef60f2
AJ
2729 }
2730
f7a81ea4
SB
2731 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2732 uuid_root = btrfs_read_tree_root(tree_root, &location);
2733 if (IS_ERR(uuid_root)) {
2734 ret = PTR_ERR(uuid_root);
2735 if (ret != -ENOENT)
2736 goto recovery_tree_root;
2737 create_uuid_tree = true;
70f80175 2738 check_uuid_tree = false;
f7a81ea4
SB
2739 } else {
2740 uuid_root->track_dirty = 1;
2741 fs_info->uuid_root = uuid_root;
70f80175
SB
2742 create_uuid_tree = false;
2743 check_uuid_tree =
2744 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2745 }
2746
8929ecfa
YZ
2747 fs_info->generation = generation;
2748 fs_info->last_trans_committed = generation;
8929ecfa 2749
68310a5e
ID
2750 ret = btrfs_recover_balance(fs_info);
2751 if (ret) {
efe120a0 2752 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2753 goto fail_block_groups;
2754 }
2755
733f4fbb
SB
2756 ret = btrfs_init_dev_stats(fs_info);
2757 if (ret) {
efe120a0 2758 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2759 ret);
2760 goto fail_block_groups;
2761 }
2762
8dabb742
SB
2763 ret = btrfs_init_dev_replace(fs_info);
2764 if (ret) {
efe120a0 2765 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2766 goto fail_block_groups;
2767 }
2768
2769 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2770
5ac1d209
JM
2771 ret = btrfs_sysfs_add_one(fs_info);
2772 if (ret) {
efe120a0 2773 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
5ac1d209
JM
2774 goto fail_block_groups;
2775 }
2776
c59021f8 2777 ret = btrfs_init_space_info(fs_info);
2778 if (ret) {
efe120a0 2779 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2780 goto fail_sysfs;
c59021f8 2781 }
2782
1b1d1f66
JB
2783 ret = btrfs_read_block_groups(extent_root);
2784 if (ret) {
efe120a0 2785 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2786 goto fail_sysfs;
1b1d1f66 2787 }
5af3e8cc
SB
2788 fs_info->num_tolerated_disk_barrier_failures =
2789 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2790 if (fs_info->fs_devices->missing_devices >
2791 fs_info->num_tolerated_disk_barrier_failures &&
2792 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2793 printk(KERN_WARNING "BTRFS: "
2794 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2795 goto fail_sysfs;
292fd7fc 2796 }
9078a3e1 2797
a74a4b97
CM
2798 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2799 "btrfs-cleaner");
57506d50 2800 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2801 goto fail_sysfs;
a74a4b97
CM
2802
2803 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2804 tree_root,
2805 "btrfs-transaction");
57506d50 2806 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2807 goto fail_cleaner;
a74a4b97 2808
c289811c
CM
2809 if (!btrfs_test_opt(tree_root, SSD) &&
2810 !btrfs_test_opt(tree_root, NOSSD) &&
2811 !fs_info->fs_devices->rotating) {
efe120a0 2812 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2813 "mode\n");
2814 btrfs_set_opt(fs_info->mount_opt, SSD);
2815 }
2816
3818aea2
QW
2817 /* Set the real inode map cache flag */
2818 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2819 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2820
21adbd5c
SB
2821#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2822 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2823 ret = btrfsic_mount(tree_root, fs_devices,
2824 btrfs_test_opt(tree_root,
2825 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2826 1 : 0,
2827 fs_info->check_integrity_print_mask);
2828 if (ret)
efe120a0 2829 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2830 " integrity check module %s\n", sb->s_id);
2831 }
2832#endif
bcef60f2
AJ
2833 ret = btrfs_read_qgroup_config(fs_info);
2834 if (ret)
2835 goto fail_trans_kthread;
21adbd5c 2836
acce952b 2837 /* do not make disk changes in broken FS */
68ce9682 2838 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2839 u64 bytenr = btrfs_super_log_root(disk_super);
2840
7c2ca468 2841 if (fs_devices->rw_devices == 0) {
efe120a0 2842 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2843 "on RO media\n");
7c2ca468 2844 err = -EIO;
bcef60f2 2845 goto fail_qgroup;
7c2ca468 2846 }
e02119d5
CM
2847 blocksize =
2848 btrfs_level_size(tree_root,
2849 btrfs_super_log_root_level(disk_super));
d18a2c44 2850
6f07e42e 2851 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2852 if (!log_tree_root) {
2853 err = -ENOMEM;
bcef60f2 2854 goto fail_qgroup;
676e4c86 2855 }
e02119d5
CM
2856
2857 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2858 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2859
2860 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2861 blocksize,
2862 generation + 1);
416bc658
JB
2863 if (!log_tree_root->node ||
2864 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2865 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2866 free_extent_buffer(log_tree_root->node);
2867 kfree(log_tree_root);
2868 goto fail_trans_kthread;
2869 }
79787eaa 2870 /* returns with log_tree_root freed on success */
e02119d5 2871 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2872 if (ret) {
2873 btrfs_error(tree_root->fs_info, ret,
2874 "Failed to recover log tree");
2875 free_extent_buffer(log_tree_root->node);
2876 kfree(log_tree_root);
2877 goto fail_trans_kthread;
2878 }
e556ce2c
YZ
2879
2880 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2881 ret = btrfs_commit_super(tree_root);
2882 if (ret)
2883 goto fail_trans_kthread;
e556ce2c 2884 }
e02119d5 2885 }
1a40e23b 2886
76dda93c 2887 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2888 if (ret)
2889 goto fail_trans_kthread;
76dda93c 2890
7c2ca468 2891 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2892 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2893 if (ret)
2894 goto fail_trans_kthread;
d68fc57b 2895
5d4f98a2 2896 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2897 if (ret < 0) {
2898 printk(KERN_WARNING
efe120a0 2899 "BTRFS: failed to recover relocation\n");
d7ce5843 2900 err = -EINVAL;
bcef60f2 2901 goto fail_qgroup;
d7ce5843 2902 }
7c2ca468 2903 }
1a40e23b 2904
3de4586c
CM
2905 location.objectid = BTRFS_FS_TREE_OBJECTID;
2906 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2907 location.offset = 0;
3de4586c 2908
3de4586c 2909 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2910 if (IS_ERR(fs_info->fs_root)) {
2911 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2912 goto fail_qgroup;
3140c9a3 2913 }
c289811c 2914
2b6ba629
ID
2915 if (sb->s_flags & MS_RDONLY)
2916 return 0;
59641015 2917
2b6ba629
ID
2918 down_read(&fs_info->cleanup_work_sem);
2919 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2920 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2921 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2922 close_ctree(tree_root);
2923 return ret;
2924 }
2925 up_read(&fs_info->cleanup_work_sem);
59641015 2926
2b6ba629
ID
2927 ret = btrfs_resume_balance_async(fs_info);
2928 if (ret) {
efe120a0 2929 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2930 close_ctree(tree_root);
2931 return ret;
e3acc2a6
JB
2932 }
2933
8dabb742
SB
2934 ret = btrfs_resume_dev_replace_async(fs_info);
2935 if (ret) {
efe120a0 2936 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2937 close_ctree(tree_root);
2938 return ret;
2939 }
2940
b382a324
JS
2941 btrfs_qgroup_rescan_resume(fs_info);
2942
f7a81ea4 2943 if (create_uuid_tree) {
efe120a0 2944 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2945 ret = btrfs_create_uuid_tree(fs_info);
2946 if (ret) {
efe120a0 2947 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2948 ret);
2949 close_ctree(tree_root);
2950 return ret;
2951 }
f420ee1e
SB
2952 } else if (check_uuid_tree ||
2953 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2954 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2955 ret = btrfs_check_uuid_tree(fs_info);
2956 if (ret) {
efe120a0 2957 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2958 ret);
2959 close_ctree(tree_root);
2960 return ret;
2961 }
2962 } else {
2963 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2964 }
2965
ad2b2c80 2966 return 0;
39279cc3 2967
bcef60f2
AJ
2968fail_qgroup:
2969 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2970fail_trans_kthread:
2971 kthread_stop(fs_info->transaction_kthread);
54067ae9 2972 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2973 del_fs_roots(fs_info);
3f157a2f 2974fail_cleaner:
a74a4b97 2975 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2976
2977 /*
2978 * make sure we're done with the btree inode before we stop our
2979 * kthreads
2980 */
2981 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2982
2365dd3c
AJ
2983fail_sysfs:
2984 btrfs_sysfs_remove_one(fs_info);
2985
1b1d1f66 2986fail_block_groups:
54067ae9 2987 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2988 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2989
2990fail_tree_roots:
2991 free_root_pointers(fs_info, 1);
2b8195bb 2992 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2993
39279cc3 2994fail_sb_buffer:
7abadb64 2995 btrfs_stop_all_workers(fs_info);
16cdcec7 2996fail_alloc:
4543df7e 2997fail_iput:
586e46e2
ID
2998 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2999
4543df7e 3000 iput(fs_info->btree_inode);
c404e0dc
MX
3001fail_bio_counter:
3002 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3003fail_delalloc_bytes:
3004 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3005fail_dirty_metadata_bytes:
3006 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3007fail_bdi:
7e662854 3008 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3009fail_srcu:
3010 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3011fail:
53b381b3 3012 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3013 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3014 return err;
af31f5e5
CM
3015
3016recovery_tree_root:
af31f5e5
CM
3017 if (!btrfs_test_opt(tree_root, RECOVERY))
3018 goto fail_tree_roots;
3019
3020 free_root_pointers(fs_info, 0);
3021
3022 /* don't use the log in recovery mode, it won't be valid */
3023 btrfs_set_super_log_root(disk_super, 0);
3024
3025 /* we can't trust the free space cache either */
3026 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3027
3028 ret = next_root_backup(fs_info, fs_info->super_copy,
3029 &num_backups_tried, &backup_index);
3030 if (ret == -1)
3031 goto fail_block_groups;
3032 goto retry_root_backup;
eb60ceac
CM
3033}
3034
f2984462
CM
3035static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3036{
f2984462
CM
3037 if (uptodate) {
3038 set_buffer_uptodate(bh);
3039 } else {
442a4f63
SB
3040 struct btrfs_device *device = (struct btrfs_device *)
3041 bh->b_private;
3042
efe120a0 3043 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3044 "I/O error on %s\n",
3045 rcu_str_deref(device->name));
1259ab75
CM
3046 /* note, we dont' set_buffer_write_io_error because we have
3047 * our own ways of dealing with the IO errors
3048 */
f2984462 3049 clear_buffer_uptodate(bh);
442a4f63 3050 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3051 }
3052 unlock_buffer(bh);
3053 put_bh(bh);
3054}
3055
a512bbf8
YZ
3056struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3057{
3058 struct buffer_head *bh;
3059 struct buffer_head *latest = NULL;
3060 struct btrfs_super_block *super;
3061 int i;
3062 u64 transid = 0;
3063 u64 bytenr;
3064
3065 /* we would like to check all the supers, but that would make
3066 * a btrfs mount succeed after a mkfs from a different FS.
3067 * So, we need to add a special mount option to scan for
3068 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3069 */
3070 for (i = 0; i < 1; i++) {
3071 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3072 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3073 i_size_read(bdev->bd_inode))
a512bbf8 3074 break;
8068a47e
AJ
3075 bh = __bread(bdev, bytenr / 4096,
3076 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3077 if (!bh)
3078 continue;
3079
3080 super = (struct btrfs_super_block *)bh->b_data;
3081 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3082 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3083 brelse(bh);
3084 continue;
3085 }
3086
3087 if (!latest || btrfs_super_generation(super) > transid) {
3088 brelse(latest);
3089 latest = bh;
3090 transid = btrfs_super_generation(super);
3091 } else {
3092 brelse(bh);
3093 }
3094 }
3095 return latest;
3096}
3097
4eedeb75
HH
3098/*
3099 * this should be called twice, once with wait == 0 and
3100 * once with wait == 1. When wait == 0 is done, all the buffer heads
3101 * we write are pinned.
3102 *
3103 * They are released when wait == 1 is done.
3104 * max_mirrors must be the same for both runs, and it indicates how
3105 * many supers on this one device should be written.
3106 *
3107 * max_mirrors == 0 means to write them all.
3108 */
a512bbf8
YZ
3109static int write_dev_supers(struct btrfs_device *device,
3110 struct btrfs_super_block *sb,
3111 int do_barriers, int wait, int max_mirrors)
3112{
3113 struct buffer_head *bh;
3114 int i;
3115 int ret;
3116 int errors = 0;
3117 u32 crc;
3118 u64 bytenr;
a512bbf8
YZ
3119
3120 if (max_mirrors == 0)
3121 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3122
a512bbf8
YZ
3123 for (i = 0; i < max_mirrors; i++) {
3124 bytenr = btrfs_sb_offset(i);
3125 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3126 break;
3127
3128 if (wait) {
3129 bh = __find_get_block(device->bdev, bytenr / 4096,
3130 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3131 if (!bh) {
3132 errors++;
3133 continue;
3134 }
a512bbf8 3135 wait_on_buffer(bh);
4eedeb75
HH
3136 if (!buffer_uptodate(bh))
3137 errors++;
3138
3139 /* drop our reference */
3140 brelse(bh);
3141
3142 /* drop the reference from the wait == 0 run */
3143 brelse(bh);
3144 continue;
a512bbf8
YZ
3145 } else {
3146 btrfs_set_super_bytenr(sb, bytenr);
3147
3148 crc = ~(u32)0;
b0496686 3149 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3150 BTRFS_CSUM_SIZE, crc,
3151 BTRFS_SUPER_INFO_SIZE -
3152 BTRFS_CSUM_SIZE);
3153 btrfs_csum_final(crc, sb->csum);
3154
4eedeb75
HH
3155 /*
3156 * one reference for us, and we leave it for the
3157 * caller
3158 */
a512bbf8
YZ
3159 bh = __getblk(device->bdev, bytenr / 4096,
3160 BTRFS_SUPER_INFO_SIZE);
634554dc 3161 if (!bh) {
efe120a0 3162 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3163 "buffer head for bytenr %Lu\n", bytenr);
3164 errors++;
3165 continue;
3166 }
3167
a512bbf8
YZ
3168 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3169
4eedeb75 3170 /* one reference for submit_bh */
a512bbf8 3171 get_bh(bh);
4eedeb75
HH
3172
3173 set_buffer_uptodate(bh);
a512bbf8
YZ
3174 lock_buffer(bh);
3175 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3176 bh->b_private = device;
a512bbf8
YZ
3177 }
3178
387125fc
CM
3179 /*
3180 * we fua the first super. The others we allow
3181 * to go down lazy.
3182 */
e8117c26
WS
3183 if (i == 0)
3184 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3185 else
3186 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3187 if (ret)
a512bbf8 3188 errors++;
a512bbf8
YZ
3189 }
3190 return errors < i ? 0 : -1;
3191}
3192
387125fc
CM
3193/*
3194 * endio for the write_dev_flush, this will wake anyone waiting
3195 * for the barrier when it is done
3196 */
3197static void btrfs_end_empty_barrier(struct bio *bio, int err)
3198{
3199 if (err) {
3200 if (err == -EOPNOTSUPP)
3201 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3202 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3203 }
3204 if (bio->bi_private)
3205 complete(bio->bi_private);
3206 bio_put(bio);
3207}
3208
3209/*
3210 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3211 * sent down. With wait == 1, it waits for the previous flush.
3212 *
3213 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3214 * capable
3215 */
3216static int write_dev_flush(struct btrfs_device *device, int wait)
3217{
3218 struct bio *bio;
3219 int ret = 0;
3220
3221 if (device->nobarriers)
3222 return 0;
3223
3224 if (wait) {
3225 bio = device->flush_bio;
3226 if (!bio)
3227 return 0;
3228
3229 wait_for_completion(&device->flush_wait);
3230
3231 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3232 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3233 rcu_str_deref(device->name));
387125fc 3234 device->nobarriers = 1;
5af3e8cc 3235 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3236 ret = -EIO;
5af3e8cc
SB
3237 btrfs_dev_stat_inc_and_print(device,
3238 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3239 }
3240
3241 /* drop the reference from the wait == 0 run */
3242 bio_put(bio);
3243 device->flush_bio = NULL;
3244
3245 return ret;
3246 }
3247
3248 /*
3249 * one reference for us, and we leave it for the
3250 * caller
3251 */
9c017abc 3252 device->flush_bio = NULL;
9be3395b 3253 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3254 if (!bio)
3255 return -ENOMEM;
3256
3257 bio->bi_end_io = btrfs_end_empty_barrier;
3258 bio->bi_bdev = device->bdev;
3259 init_completion(&device->flush_wait);
3260 bio->bi_private = &device->flush_wait;
3261 device->flush_bio = bio;
3262
3263 bio_get(bio);
21adbd5c 3264 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3265
3266 return 0;
3267}
3268
3269/*
3270 * send an empty flush down to each device in parallel,
3271 * then wait for them
3272 */
3273static int barrier_all_devices(struct btrfs_fs_info *info)
3274{
3275 struct list_head *head;
3276 struct btrfs_device *dev;
5af3e8cc
SB
3277 int errors_send = 0;
3278 int errors_wait = 0;
387125fc
CM
3279 int ret;
3280
3281 /* send down all the barriers */
3282 head = &info->fs_devices->devices;
3283 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3284 if (dev->missing)
3285 continue;
387125fc 3286 if (!dev->bdev) {
5af3e8cc 3287 errors_send++;
387125fc
CM
3288 continue;
3289 }
3290 if (!dev->in_fs_metadata || !dev->writeable)
3291 continue;
3292
3293 ret = write_dev_flush(dev, 0);
3294 if (ret)
5af3e8cc 3295 errors_send++;
387125fc
CM
3296 }
3297
3298 /* wait for all the barriers */
3299 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3300 if (dev->missing)
3301 continue;
387125fc 3302 if (!dev->bdev) {
5af3e8cc 3303 errors_wait++;
387125fc
CM
3304 continue;
3305 }
3306 if (!dev->in_fs_metadata || !dev->writeable)
3307 continue;
3308
3309 ret = write_dev_flush(dev, 1);
3310 if (ret)
5af3e8cc 3311 errors_wait++;
387125fc 3312 }
5af3e8cc
SB
3313 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3314 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3315 return -EIO;
3316 return 0;
3317}
3318
5af3e8cc
SB
3319int btrfs_calc_num_tolerated_disk_barrier_failures(
3320 struct btrfs_fs_info *fs_info)
3321{
3322 struct btrfs_ioctl_space_info space;
3323 struct btrfs_space_info *sinfo;
3324 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3325 BTRFS_BLOCK_GROUP_SYSTEM,
3326 BTRFS_BLOCK_GROUP_METADATA,
3327 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3328 int num_types = 4;
3329 int i;
3330 int c;
3331 int num_tolerated_disk_barrier_failures =
3332 (int)fs_info->fs_devices->num_devices;
3333
3334 for (i = 0; i < num_types; i++) {
3335 struct btrfs_space_info *tmp;
3336
3337 sinfo = NULL;
3338 rcu_read_lock();
3339 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3340 if (tmp->flags == types[i]) {
3341 sinfo = tmp;
3342 break;
3343 }
3344 }
3345 rcu_read_unlock();
3346
3347 if (!sinfo)
3348 continue;
3349
3350 down_read(&sinfo->groups_sem);
3351 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3352 if (!list_empty(&sinfo->block_groups[c])) {
3353 u64 flags;
3354
3355 btrfs_get_block_group_info(
3356 &sinfo->block_groups[c], &space);
3357 if (space.total_bytes == 0 ||
3358 space.used_bytes == 0)
3359 continue;
3360 flags = space.flags;
3361 /*
3362 * return
3363 * 0: if dup, single or RAID0 is configured for
3364 * any of metadata, system or data, else
3365 * 1: if RAID5 is configured, or if RAID1 or
3366 * RAID10 is configured and only two mirrors
3367 * are used, else
3368 * 2: if RAID6 is configured, else
3369 * num_mirrors - 1: if RAID1 or RAID10 is
3370 * configured and more than
3371 * 2 mirrors are used.
3372 */
3373 if (num_tolerated_disk_barrier_failures > 0 &&
3374 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3375 BTRFS_BLOCK_GROUP_RAID0)) ||
3376 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3377 == 0)))
3378 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3379 else if (num_tolerated_disk_barrier_failures > 1) {
3380 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3381 BTRFS_BLOCK_GROUP_RAID5 |
3382 BTRFS_BLOCK_GROUP_RAID10)) {
3383 num_tolerated_disk_barrier_failures = 1;
3384 } else if (flags &
15b0a89d 3385 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3386 num_tolerated_disk_barrier_failures = 2;
3387 }
3388 }
5af3e8cc
SB
3389 }
3390 }
3391 up_read(&sinfo->groups_sem);
3392 }
3393
3394 return num_tolerated_disk_barrier_failures;
3395}
3396
48a3b636 3397static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3398{
e5e9a520 3399 struct list_head *head;
f2984462 3400 struct btrfs_device *dev;
a061fc8d 3401 struct btrfs_super_block *sb;
f2984462 3402 struct btrfs_dev_item *dev_item;
f2984462
CM
3403 int ret;
3404 int do_barriers;
a236aed1
CM
3405 int max_errors;
3406 int total_errors = 0;
a061fc8d 3407 u64 flags;
f2984462
CM
3408
3409 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3410 backup_super_roots(root->fs_info);
f2984462 3411
6c41761f 3412 sb = root->fs_info->super_for_commit;
a061fc8d 3413 dev_item = &sb->dev_item;
e5e9a520 3414
174ba509 3415 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3416 head = &root->fs_info->fs_devices->devices;
d7306801 3417 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3418
5af3e8cc
SB
3419 if (do_barriers) {
3420 ret = barrier_all_devices(root->fs_info);
3421 if (ret) {
3422 mutex_unlock(
3423 &root->fs_info->fs_devices->device_list_mutex);
3424 btrfs_error(root->fs_info, ret,
3425 "errors while submitting device barriers.");
3426 return ret;
3427 }
3428 }
387125fc 3429
1f78160c 3430 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3431 if (!dev->bdev) {
3432 total_errors++;
3433 continue;
3434 }
2b82032c 3435 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3436 continue;
3437
2b82032c 3438 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3439 btrfs_set_stack_device_type(dev_item, dev->type);
3440 btrfs_set_stack_device_id(dev_item, dev->devid);
3441 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3442 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3443 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3444 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3445 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3446 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3447 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3448
a061fc8d
CM
3449 flags = btrfs_super_flags(sb);
3450 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3451
a512bbf8 3452 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3453 if (ret)
3454 total_errors++;
f2984462 3455 }
a236aed1 3456 if (total_errors > max_errors) {
efe120a0 3457 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3458 total_errors);
a724b436 3459 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3460
9d565ba4
SB
3461 /* FUA is masked off if unsupported and can't be the reason */
3462 btrfs_error(root->fs_info, -EIO,
3463 "%d errors while writing supers", total_errors);
3464 return -EIO;
a236aed1 3465 }
f2984462 3466
a512bbf8 3467 total_errors = 0;
1f78160c 3468 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3469 if (!dev->bdev)
3470 continue;
2b82032c 3471 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3472 continue;
3473
a512bbf8
YZ
3474 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3475 if (ret)
3476 total_errors++;
f2984462 3477 }
174ba509 3478 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3479 if (total_errors > max_errors) {
79787eaa
JM
3480 btrfs_error(root->fs_info, -EIO,
3481 "%d errors while writing supers", total_errors);
3482 return -EIO;
a236aed1 3483 }
f2984462
CM
3484 return 0;
3485}
3486
a512bbf8
YZ
3487int write_ctree_super(struct btrfs_trans_handle *trans,
3488 struct btrfs_root *root, int max_mirrors)
eb60ceac 3489{
f570e757 3490 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3491}
3492
cb517eab
MX
3493/* Drop a fs root from the radix tree and free it. */
3494void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3495 struct btrfs_root *root)
2619ba1f 3496{
4df27c4d 3497 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3498 radix_tree_delete(&fs_info->fs_roots_radix,
3499 (unsigned long)root->root_key.objectid);
4df27c4d 3500 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3501
3502 if (btrfs_root_refs(&root->root_item) == 0)
3503 synchronize_srcu(&fs_info->subvol_srcu);
3504
1a4319cc 3505 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3506 btrfs_free_log(NULL, root);
3321719e 3507
581bb050
LZ
3508 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3509 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3510 free_fs_root(root);
4df27c4d
YZ
3511}
3512
3513static void free_fs_root(struct btrfs_root *root)
3514{
82d5902d 3515 iput(root->cache_inode);
4df27c4d 3516 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3517 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3518 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3519 if (root->anon_dev)
3520 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3521 if (root->subv_writers)
3522 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3523 free_extent_buffer(root->node);
3524 free_extent_buffer(root->commit_root);
581bb050
LZ
3525 kfree(root->free_ino_ctl);
3526 kfree(root->free_ino_pinned);
d397712b 3527 kfree(root->name);
b0feb9d9 3528 btrfs_put_fs_root(root);
2619ba1f
CM
3529}
3530
cb517eab
MX
3531void btrfs_free_fs_root(struct btrfs_root *root)
3532{
3533 free_fs_root(root);
2619ba1f
CM
3534}
3535
c146afad 3536int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3537{
c146afad
YZ
3538 u64 root_objectid = 0;
3539 struct btrfs_root *gang[8];
3540 int i;
3768f368 3541 int ret;
e089f05c 3542
c146afad
YZ
3543 while (1) {
3544 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3545 (void **)gang, root_objectid,
3546 ARRAY_SIZE(gang));
3547 if (!ret)
3548 break;
5d4f98a2
YZ
3549
3550 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3551 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3552 int err;
3553
c146afad 3554 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3555 err = btrfs_orphan_cleanup(gang[i]);
3556 if (err)
3557 return err;
c146afad
YZ
3558 }
3559 root_objectid++;
3560 }
3561 return 0;
3562}
a2135011 3563
c146afad
YZ
3564int btrfs_commit_super(struct btrfs_root *root)
3565{
3566 struct btrfs_trans_handle *trans;
a74a4b97 3567
c146afad 3568 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3569 btrfs_run_delayed_iputs(root);
c146afad 3570 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3571 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3572
3573 /* wait until ongoing cleanup work done */
3574 down_write(&root->fs_info->cleanup_work_sem);
3575 up_write(&root->fs_info->cleanup_work_sem);
3576
7a7eaa40 3577 trans = btrfs_join_transaction(root);
3612b495
TI
3578 if (IS_ERR(trans))
3579 return PTR_ERR(trans);
d52c1bcc 3580 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3581}
3582
3583int close_ctree(struct btrfs_root *root)
3584{
3585 struct btrfs_fs_info *fs_info = root->fs_info;
3586 int ret;
3587
3588 fs_info->closing = 1;
3589 smp_mb();
3590
803b2f54
SB
3591 /* wait for the uuid_scan task to finish */
3592 down(&fs_info->uuid_tree_rescan_sem);
3593 /* avoid complains from lockdep et al., set sem back to initial state */
3594 up(&fs_info->uuid_tree_rescan_sem);
3595
837d5b6e 3596 /* pause restriper - we want to resume on mount */
aa1b8cd4 3597 btrfs_pause_balance(fs_info);
837d5b6e 3598
8dabb742
SB
3599 btrfs_dev_replace_suspend_for_unmount(fs_info);
3600
aa1b8cd4 3601 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3602
3603 /* wait for any defraggers to finish */
3604 wait_event(fs_info->transaction_wait,
3605 (atomic_read(&fs_info->defrag_running) == 0));
3606
3607 /* clear out the rbtree of defraggable inodes */
26176e7c 3608 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3609
c146afad 3610 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3611 ret = btrfs_commit_super(root);
3612 if (ret)
efe120a0 3613 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3614 }
3615
87533c47 3616 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3617 btrfs_error_commit_super(root);
0f7d52f4 3618
e3029d9f
AV
3619 kthread_stop(fs_info->transaction_kthread);
3620 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3621
f25784b3
YZ
3622 fs_info->closing = 2;
3623 smp_mb();
3624
bcef60f2
AJ
3625 btrfs_free_qgroup_config(root->fs_info);
3626
963d678b 3627 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3628 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3629 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3630 }
bcc63abb 3631
5ac1d209
JM
3632 btrfs_sysfs_remove_one(fs_info);
3633
c146afad 3634 del_fs_roots(fs_info);
d10c5f31 3635
1a4319cc
LB
3636 btrfs_put_block_group_cache(fs_info);
3637
2b1360da
JB
3638 btrfs_free_block_groups(fs_info);
3639
96192499
JB
3640 btrfs_stop_all_workers(fs_info);
3641
13e6c37b 3642 free_root_pointers(fs_info, 1);
9ad6b7bc 3643
13e6c37b 3644 iput(fs_info->btree_inode);
d6bfde87 3645
21adbd5c
SB
3646#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3647 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3648 btrfsic_unmount(root, fs_info->fs_devices);
3649#endif
3650
dfe25020 3651 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3652 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3653
e2d84521 3654 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3655 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3656 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3657 bdi_destroy(&fs_info->bdi);
76dda93c 3658 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3659
53b381b3
DW
3660 btrfs_free_stripe_hash_table(fs_info);
3661
1cb048f5
FDBM
3662 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3663 root->orphan_block_rsv = NULL;
3664
eb60ceac
CM
3665 return 0;
3666}
3667
b9fab919
CM
3668int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3669 int atomic)
5f39d397 3670{
1259ab75 3671 int ret;
727011e0 3672 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3673
0b32f4bb 3674 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3675 if (!ret)
3676 return ret;
3677
3678 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3679 parent_transid, atomic);
3680 if (ret == -EAGAIN)
3681 return ret;
1259ab75 3682 return !ret;
5f39d397
CM
3683}
3684
3685int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3686{
0b32f4bb 3687 return set_extent_buffer_uptodate(buf);
5f39d397 3688}
6702ed49 3689
5f39d397
CM
3690void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3691{
06ea65a3 3692 struct btrfs_root *root;
5f39d397 3693 u64 transid = btrfs_header_generation(buf);
b9473439 3694 int was_dirty;
b4ce94de 3695
06ea65a3
JB
3696#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3697 /*
3698 * This is a fast path so only do this check if we have sanity tests
3699 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3700 * outside of the sanity tests.
3701 */
3702 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3703 return;
3704#endif
3705 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3706 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3707 if (transid != root->fs_info->generation)
3708 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3709 "found %llu running %llu\n",
c1c9ff7c 3710 buf->start, transid, root->fs_info->generation);
0b32f4bb 3711 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3712 if (!was_dirty)
3713 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3714 buf->len,
3715 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3716}
3717
b53d3f5d
LB
3718static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3719 int flush_delayed)
16cdcec7
MX
3720{
3721 /*
3722 * looks as though older kernels can get into trouble with
3723 * this code, they end up stuck in balance_dirty_pages forever
3724 */
e2d84521 3725 int ret;
16cdcec7
MX
3726
3727 if (current->flags & PF_MEMALLOC)
3728 return;
3729
b53d3f5d
LB
3730 if (flush_delayed)
3731 btrfs_balance_delayed_items(root);
16cdcec7 3732
e2d84521
MX
3733 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3734 BTRFS_DIRTY_METADATA_THRESH);
3735 if (ret > 0) {
d0e1d66b
NJ
3736 balance_dirty_pages_ratelimited(
3737 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3738 }
3739 return;
3740}
3741
b53d3f5d 3742void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3743{
b53d3f5d
LB
3744 __btrfs_btree_balance_dirty(root, 1);
3745}
585ad2c3 3746
b53d3f5d
LB
3747void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3748{
3749 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3750}
6b80053d 3751
ca7a79ad 3752int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3753{
727011e0 3754 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3755 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3756}
0da5468f 3757
fcd1f065 3758static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3759 int read_only)
3760{
1104a885
DS
3761 /*
3762 * Placeholder for checks
3763 */
fcd1f065 3764 return 0;
acce952b 3765}
3766
48a3b636 3767static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3768{
acce952b 3769 mutex_lock(&root->fs_info->cleaner_mutex);
3770 btrfs_run_delayed_iputs(root);
3771 mutex_unlock(&root->fs_info->cleaner_mutex);
3772
3773 down_write(&root->fs_info->cleanup_work_sem);
3774 up_write(&root->fs_info->cleanup_work_sem);
3775
3776 /* cleanup FS via transaction */
3777 btrfs_cleanup_transaction(root);
acce952b 3778}
3779
569e0f35
JB
3780static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3781 struct btrfs_root *root)
acce952b 3782{
3783 struct btrfs_inode *btrfs_inode;
3784 struct list_head splice;
3785
3786 INIT_LIST_HEAD(&splice);
3787
3788 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3789 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3790
569e0f35 3791 list_splice_init(&t->ordered_operations, &splice);
acce952b 3792 while (!list_empty(&splice)) {
3793 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3794 ordered_operations);
3795
3796 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3797 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3798
3799 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3800
199c2a9c 3801 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3802 }
3803
199c2a9c 3804 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3805 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3806}
3807
143bede5 3808static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3809{
acce952b 3810 struct btrfs_ordered_extent *ordered;
acce952b 3811
199c2a9c 3812 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3813 /*
3814 * This will just short circuit the ordered completion stuff which will
3815 * make sure the ordered extent gets properly cleaned up.
3816 */
199c2a9c 3817 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3818 root_extent_list)
3819 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3820 spin_unlock(&root->ordered_extent_lock);
3821}
3822
3823static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3824{
3825 struct btrfs_root *root;
3826 struct list_head splice;
3827
3828 INIT_LIST_HEAD(&splice);
3829
3830 spin_lock(&fs_info->ordered_root_lock);
3831 list_splice_init(&fs_info->ordered_roots, &splice);
3832 while (!list_empty(&splice)) {
3833 root = list_first_entry(&splice, struct btrfs_root,
3834 ordered_root);
1de2cfde
JB
3835 list_move_tail(&root->ordered_root,
3836 &fs_info->ordered_roots);
199c2a9c 3837
2a85d9ca 3838 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3839 btrfs_destroy_ordered_extents(root);
3840
2a85d9ca
LB
3841 cond_resched();
3842 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3843 }
3844 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3845}
3846
35a3621b
SB
3847static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3848 struct btrfs_root *root)
acce952b 3849{
3850 struct rb_node *node;
3851 struct btrfs_delayed_ref_root *delayed_refs;
3852 struct btrfs_delayed_ref_node *ref;
3853 int ret = 0;
3854
3855 delayed_refs = &trans->delayed_refs;
3856
3857 spin_lock(&delayed_refs->lock);
d7df2c79 3858 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3859 spin_unlock(&delayed_refs->lock);
efe120a0 3860 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3861 return ret;
3862 }
3863
d7df2c79
JB
3864 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3865 struct btrfs_delayed_ref_head *head;
e78417d1 3866 bool pin_bytes = false;
acce952b 3867
d7df2c79
JB
3868 head = rb_entry(node, struct btrfs_delayed_ref_head,
3869 href_node);
3870 if (!mutex_trylock(&head->mutex)) {
3871 atomic_inc(&head->node.refs);
3872 spin_unlock(&delayed_refs->lock);
acce952b 3873
d7df2c79 3874 mutex_lock(&head->mutex);
e78417d1 3875 mutex_unlock(&head->mutex);
d7df2c79
JB
3876 btrfs_put_delayed_ref(&head->node);
3877 spin_lock(&delayed_refs->lock);
3878 continue;
3879 }
3880 spin_lock(&head->lock);
3881 while ((node = rb_first(&head->ref_root)) != NULL) {
3882 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3883 rb_node);
3884 ref->in_tree = 0;
3885 rb_erase(&ref->rb_node, &head->ref_root);
3886 atomic_dec(&delayed_refs->num_entries);
3887 btrfs_put_delayed_ref(ref);
e78417d1 3888 }
d7df2c79
JB
3889 if (head->must_insert_reserved)
3890 pin_bytes = true;
3891 btrfs_free_delayed_extent_op(head->extent_op);
3892 delayed_refs->num_heads--;
3893 if (head->processing == 0)
3894 delayed_refs->num_heads_ready--;
3895 atomic_dec(&delayed_refs->num_entries);
3896 head->node.in_tree = 0;
3897 rb_erase(&head->href_node, &delayed_refs->href_root);
3898 spin_unlock(&head->lock);
3899 spin_unlock(&delayed_refs->lock);
3900 mutex_unlock(&head->mutex);
acce952b 3901
d7df2c79
JB
3902 if (pin_bytes)
3903 btrfs_pin_extent(root, head->node.bytenr,
3904 head->node.num_bytes, 1);
3905 btrfs_put_delayed_ref(&head->node);
acce952b 3906 cond_resched();
3907 spin_lock(&delayed_refs->lock);
3908 }
3909
3910 spin_unlock(&delayed_refs->lock);
3911
3912 return ret;
3913}
3914
143bede5 3915static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3916{
3917 struct btrfs_inode *btrfs_inode;
3918 struct list_head splice;
3919
3920 INIT_LIST_HEAD(&splice);
3921
eb73c1b7
MX
3922 spin_lock(&root->delalloc_lock);
3923 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3924
3925 while (!list_empty(&splice)) {
eb73c1b7
MX
3926 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3927 delalloc_inodes);
acce952b 3928
3929 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3930 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3931 &btrfs_inode->runtime_flags);
eb73c1b7 3932 spin_unlock(&root->delalloc_lock);
acce952b 3933
3934 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3935
eb73c1b7 3936 spin_lock(&root->delalloc_lock);
acce952b 3937 }
3938
eb73c1b7
MX
3939 spin_unlock(&root->delalloc_lock);
3940}
3941
3942static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3943{
3944 struct btrfs_root *root;
3945 struct list_head splice;
3946
3947 INIT_LIST_HEAD(&splice);
3948
3949 spin_lock(&fs_info->delalloc_root_lock);
3950 list_splice_init(&fs_info->delalloc_roots, &splice);
3951 while (!list_empty(&splice)) {
3952 root = list_first_entry(&splice, struct btrfs_root,
3953 delalloc_root);
3954 list_del_init(&root->delalloc_root);
3955 root = btrfs_grab_fs_root(root);
3956 BUG_ON(!root);
3957 spin_unlock(&fs_info->delalloc_root_lock);
3958
3959 btrfs_destroy_delalloc_inodes(root);
3960 btrfs_put_fs_root(root);
3961
3962 spin_lock(&fs_info->delalloc_root_lock);
3963 }
3964 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3965}
3966
3967static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3968 struct extent_io_tree *dirty_pages,
3969 int mark)
3970{
3971 int ret;
acce952b 3972 struct extent_buffer *eb;
3973 u64 start = 0;
3974 u64 end;
acce952b 3975
3976 while (1) {
3977 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3978 mark, NULL);
acce952b 3979 if (ret)
3980 break;
3981
3982 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3983 while (start <= end) {
fd8b2b61
JB
3984 eb = btrfs_find_tree_block(root, start,
3985 root->leafsize);
69a85bd8 3986 start += root->leafsize;
fd8b2b61 3987 if (!eb)
acce952b 3988 continue;
fd8b2b61 3989 wait_on_extent_buffer_writeback(eb);
acce952b 3990
fd8b2b61
JB
3991 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3992 &eb->bflags))
3993 clear_extent_buffer_dirty(eb);
3994 free_extent_buffer_stale(eb);
acce952b 3995 }
3996 }
3997
3998 return ret;
3999}
4000
4001static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4002 struct extent_io_tree *pinned_extents)
4003{
4004 struct extent_io_tree *unpin;
4005 u64 start;
4006 u64 end;
4007 int ret;
ed0eaa14 4008 bool loop = true;
acce952b 4009
4010 unpin = pinned_extents;
ed0eaa14 4011again:
acce952b 4012 while (1) {
4013 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4014 EXTENT_DIRTY, NULL);
acce952b 4015 if (ret)
4016 break;
4017
4018 /* opt_discard */
5378e607
LD
4019 if (btrfs_test_opt(root, DISCARD))
4020 ret = btrfs_error_discard_extent(root, start,
4021 end + 1 - start,
4022 NULL);
acce952b 4023
4024 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4025 btrfs_error_unpin_extent_range(root, start, end);
4026 cond_resched();
4027 }
4028
ed0eaa14
LB
4029 if (loop) {
4030 if (unpin == &root->fs_info->freed_extents[0])
4031 unpin = &root->fs_info->freed_extents[1];
4032 else
4033 unpin = &root->fs_info->freed_extents[0];
4034 loop = false;
4035 goto again;
4036 }
4037
acce952b 4038 return 0;
4039}
4040
49b25e05
JM
4041void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4042 struct btrfs_root *root)
4043{
724e2315
JB
4044 btrfs_destroy_ordered_operations(cur_trans, root);
4045
49b25e05 4046 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4047
4a9d8bde 4048 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4049 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4050
4a9d8bde 4051 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4052 wake_up(&root->fs_info->transaction_wait);
49b25e05 4053
67cde344
MX
4054 btrfs_destroy_delayed_inodes(root);
4055 btrfs_assert_delayed_root_empty(root);
49b25e05 4056
49b25e05
JM
4057 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4058 EXTENT_DIRTY);
6e841e32
LB
4059 btrfs_destroy_pinned_extent(root,
4060 root->fs_info->pinned_extents);
49b25e05 4061
4a9d8bde
MX
4062 cur_trans->state =TRANS_STATE_COMPLETED;
4063 wake_up(&cur_trans->commit_wait);
4064
49b25e05
JM
4065 /*
4066 memset(cur_trans, 0, sizeof(*cur_trans));
4067 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4068 */
4069}
4070
48a3b636 4071static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4072{
4073 struct btrfs_transaction *t;
acce952b 4074
acce952b 4075 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4076
a4abeea4 4077 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4078 while (!list_empty(&root->fs_info->trans_list)) {
4079 t = list_first_entry(&root->fs_info->trans_list,
4080 struct btrfs_transaction, list);
4081 if (t->state >= TRANS_STATE_COMMIT_START) {
4082 atomic_inc(&t->use_count);
4083 spin_unlock(&root->fs_info->trans_lock);
4084 btrfs_wait_for_commit(root, t->transid);
4085 btrfs_put_transaction(t);
4086 spin_lock(&root->fs_info->trans_lock);
4087 continue;
4088 }
4089 if (t == root->fs_info->running_transaction) {
4090 t->state = TRANS_STATE_COMMIT_DOING;
4091 spin_unlock(&root->fs_info->trans_lock);
4092 /*
4093 * We wait for 0 num_writers since we don't hold a trans
4094 * handle open currently for this transaction.
4095 */
4096 wait_event(t->writer_wait,
4097 atomic_read(&t->num_writers) == 0);
4098 } else {
4099 spin_unlock(&root->fs_info->trans_lock);
4100 }
4101 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4102
724e2315
JB
4103 spin_lock(&root->fs_info->trans_lock);
4104 if (t == root->fs_info->running_transaction)
4105 root->fs_info->running_transaction = NULL;
acce952b 4106 list_del_init(&t->list);
724e2315 4107 spin_unlock(&root->fs_info->trans_lock);
acce952b 4108
724e2315
JB
4109 btrfs_put_transaction(t);
4110 trace_btrfs_transaction_commit(root);
4111 spin_lock(&root->fs_info->trans_lock);
4112 }
4113 spin_unlock(&root->fs_info->trans_lock);
4114 btrfs_destroy_all_ordered_extents(root->fs_info);
4115 btrfs_destroy_delayed_inodes(root);
4116 btrfs_assert_delayed_root_empty(root);
4117 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4118 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4119 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4120
4121 return 0;
4122}
4123
d1310b2e 4124static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4125 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4126 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4127 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4128 /* note we're sharing with inode.c for the merge bio hook */
4129 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4130};