fs: kill BDI_CAP_SWAP_BACKED
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
19c00ddc
CM
277static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
278 int verify)
279{
6c41761f 280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 281 char *result = NULL;
19c00ddc
CM
282 unsigned long len;
283 unsigned long cur_len;
284 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
285 char *kaddr;
286 unsigned long map_start;
287 unsigned long map_len;
288 int err;
289 u32 crc = ~(u32)0;
607d432d 290 unsigned long inline_result;
19c00ddc
CM
291
292 len = buf->len - offset;
d397712b 293 while (len > 0) {
19c00ddc 294 err = map_private_extent_buffer(buf, offset, 32,
a6591715 295 &kaddr, &map_start, &map_len);
d397712b 296 if (err)
19c00ddc 297 return 1;
19c00ddc 298 cur_len = min(len, map_len - (offset - map_start));
b0496686 299 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
300 crc, cur_len);
301 len -= cur_len;
302 offset += cur_len;
19c00ddc 303 }
607d432d
JB
304 if (csum_size > sizeof(inline_result)) {
305 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
306 if (!result)
307 return 1;
308 } else {
309 result = (char *)&inline_result;
310 }
311
19c00ddc
CM
312 btrfs_csum_final(crc, result);
313
314 if (verify) {
607d432d 315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
316 u32 val;
317 u32 found = 0;
607d432d 318 memcpy(&found, result, csum_size);
e4204ded 319
607d432d 320 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
321 printk_ratelimited(KERN_INFO
322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
323 "level %d\n",
324 root->fs_info->sb->s_id, buf->start,
325 val, found, btrfs_header_level(buf));
607d432d
JB
326 if (result != (char *)&inline_result)
327 kfree(result);
19c00ddc
CM
328 return 1;
329 }
330 } else {
607d432d 331 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 332 }
607d432d
JB
333 if (result != (char *)&inline_result)
334 kfree(result);
19c00ddc
CM
335 return 0;
336}
337
d352ac68
CM
338/*
339 * we can't consider a given block up to date unless the transid of the
340 * block matches the transid in the parent node's pointer. This is how we
341 * detect blocks that either didn't get written at all or got written
342 * in the wrong place.
343 */
1259ab75 344static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
345 struct extent_buffer *eb, u64 parent_transid,
346 int atomic)
1259ab75 347{
2ac55d41 348 struct extent_state *cached_state = NULL;
1259ab75 349 int ret;
2755a0de 350 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
351
352 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
353 return 0;
354
b9fab919
CM
355 if (atomic)
356 return -EAGAIN;
357
a26e8c9f
JB
358 if (need_lock) {
359 btrfs_tree_read_lock(eb);
360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
361 }
362
2ac55d41 363 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 364 0, &cached_state);
0b32f4bb 365 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
366 btrfs_header_generation(eb) == parent_transid) {
367 ret = 0;
368 goto out;
369 }
29549aec
WS
370 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
371 eb->fs_info->sb->s_id, eb->start,
372 parent_transid, btrfs_header_generation(eb));
1259ab75 373 ret = 1;
a26e8c9f
JB
374
375 /*
376 * Things reading via commit roots that don't have normal protection,
377 * like send, can have a really old block in cache that may point at a
378 * block that has been free'd and re-allocated. So don't clear uptodate
379 * if we find an eb that is under IO (dirty/writeback) because we could
380 * end up reading in the stale data and then writing it back out and
381 * making everybody very sad.
382 */
383 if (!extent_buffer_under_io(eb))
384 clear_extent_buffer_uptodate(eb);
33958dc6 385out:
2ac55d41
JB
386 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
387 &cached_state, GFP_NOFS);
472b909f
JB
388 if (need_lock)
389 btrfs_tree_read_unlock_blocking(eb);
1259ab75 390 return ret;
1259ab75
CM
391}
392
1104a885
DS
393/*
394 * Return 0 if the superblock checksum type matches the checksum value of that
395 * algorithm. Pass the raw disk superblock data.
396 */
397static int btrfs_check_super_csum(char *raw_disk_sb)
398{
399 struct btrfs_super_block *disk_sb =
400 (struct btrfs_super_block *)raw_disk_sb;
401 u16 csum_type = btrfs_super_csum_type(disk_sb);
402 int ret = 0;
403
404 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
405 u32 crc = ~(u32)0;
406 const int csum_size = sizeof(crc);
407 char result[csum_size];
408
409 /*
410 * The super_block structure does not span the whole
411 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
412 * is filled with zeros and is included in the checkum.
413 */
414 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
415 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
416 btrfs_csum_final(crc, result);
417
418 if (memcmp(raw_disk_sb, result, csum_size))
419 ret = 1;
667e7d94
CM
420
421 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
422 printk(KERN_WARNING
423 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
424 ret = 0;
425 }
1104a885
DS
426 }
427
428 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 429 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
430 csum_type);
431 ret = 1;
432 }
433
434 return ret;
435}
436
d352ac68
CM
437/*
438 * helper to read a given tree block, doing retries as required when
439 * the checksums don't match and we have alternate mirrors to try.
440 */
f188591e
CM
441static int btree_read_extent_buffer_pages(struct btrfs_root *root,
442 struct extent_buffer *eb,
ca7a79ad 443 u64 start, u64 parent_transid)
f188591e
CM
444{
445 struct extent_io_tree *io_tree;
ea466794 446 int failed = 0;
f188591e
CM
447 int ret;
448 int num_copies = 0;
449 int mirror_num = 0;
ea466794 450 int failed_mirror = 0;
f188591e 451
a826d6dc 452 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
453 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
454 while (1) {
bb82ab88
AJ
455 ret = read_extent_buffer_pages(io_tree, eb, start,
456 WAIT_COMPLETE,
f188591e 457 btree_get_extent, mirror_num);
256dd1bb
SB
458 if (!ret) {
459 if (!verify_parent_transid(io_tree, eb,
b9fab919 460 parent_transid, 0))
256dd1bb
SB
461 break;
462 else
463 ret = -EIO;
464 }
d397712b 465
a826d6dc
JB
466 /*
467 * This buffer's crc is fine, but its contents are corrupted, so
468 * there is no reason to read the other copies, they won't be
469 * any less wrong.
470 */
471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
472 break;
473
5d964051 474 num_copies = btrfs_num_copies(root->fs_info,
f188591e 475 eb->start, eb->len);
4235298e 476 if (num_copies == 1)
ea466794 477 break;
4235298e 478
5cf1ab56
JB
479 if (!failed_mirror) {
480 failed = 1;
481 failed_mirror = eb->read_mirror;
482 }
483
f188591e 484 mirror_num++;
ea466794
JB
485 if (mirror_num == failed_mirror)
486 mirror_num++;
487
4235298e 488 if (mirror_num > num_copies)
ea466794 489 break;
f188591e 490 }
ea466794 491
c0901581 492 if (failed && !ret && failed_mirror)
ea466794
JB
493 repair_eb_io_failure(root, eb, failed_mirror);
494
495 return ret;
f188591e 496}
19c00ddc 497
d352ac68 498/*
d397712b
CM
499 * checksum a dirty tree block before IO. This has extra checks to make sure
500 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 501 */
d397712b 502
b2950863 503static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 504{
4eee4fa4 505 u64 start = page_offset(page);
19c00ddc 506 u64 found_start;
19c00ddc 507 struct extent_buffer *eb;
f188591e 508
4f2de97a
JB
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
19c00ddc 512 found_start = btrfs_header_bytenr(eb);
fae7f21c 513 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 514 return 0;
19c00ddc 515 csum_tree_block(root, eb, 0);
19c00ddc
CM
516 return 0;
517}
518
2b82032c
YZ
519static int check_tree_block_fsid(struct btrfs_root *root,
520 struct extent_buffer *eb)
521{
522 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
523 u8 fsid[BTRFS_UUID_SIZE];
524 int ret = 1;
525
0a4e5586 526 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
527 while (fs_devices) {
528 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
529 ret = 0;
530 break;
531 }
532 fs_devices = fs_devices->seed;
533 }
534 return ret;
535}
536
a826d6dc 537#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
538 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
539 "root=%llu, slot=%d", reason, \
c1c9ff7c 540 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
541
542static noinline int check_leaf(struct btrfs_root *root,
543 struct extent_buffer *leaf)
544{
545 struct btrfs_key key;
546 struct btrfs_key leaf_key;
547 u32 nritems = btrfs_header_nritems(leaf);
548 int slot;
549
550 if (nritems == 0)
551 return 0;
552
553 /* Check the 0 item */
554 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
555 BTRFS_LEAF_DATA_SIZE(root)) {
556 CORRUPT("invalid item offset size pair", leaf, root, 0);
557 return -EIO;
558 }
559
560 /*
561 * Check to make sure each items keys are in the correct order and their
562 * offsets make sense. We only have to loop through nritems-1 because
563 * we check the current slot against the next slot, which verifies the
564 * next slot's offset+size makes sense and that the current's slot
565 * offset is correct.
566 */
567 for (slot = 0; slot < nritems - 1; slot++) {
568 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
569 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
570
571 /* Make sure the keys are in the right order */
572 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
573 CORRUPT("bad key order", leaf, root, slot);
574 return -EIO;
575 }
576
577 /*
578 * Make sure the offset and ends are right, remember that the
579 * item data starts at the end of the leaf and grows towards the
580 * front.
581 */
582 if (btrfs_item_offset_nr(leaf, slot) !=
583 btrfs_item_end_nr(leaf, slot + 1)) {
584 CORRUPT("slot offset bad", leaf, root, slot);
585 return -EIO;
586 }
587
588 /*
589 * Check to make sure that we don't point outside of the leaf,
590 * just incase all the items are consistent to eachother, but
591 * all point outside of the leaf.
592 */
593 if (btrfs_item_end_nr(leaf, slot) >
594 BTRFS_LEAF_DATA_SIZE(root)) {
595 CORRUPT("slot end outside of leaf", leaf, root, slot);
596 return -EIO;
597 }
598 }
599
600 return 0;
601}
602
facc8a22
MX
603static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
604 u64 phy_offset, struct page *page,
605 u64 start, u64 end, int mirror)
ce9adaa5 606{
ce9adaa5
CM
607 u64 found_start;
608 int found_level;
ce9adaa5
CM
609 struct extent_buffer *eb;
610 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 611 int ret = 0;
727011e0 612 int reads_done;
ce9adaa5 613
ce9adaa5
CM
614 if (!page->private)
615 goto out;
d397712b 616
4f2de97a 617 eb = (struct extent_buffer *)page->private;
d397712b 618
0b32f4bb
JB
619 /* the pending IO might have been the only thing that kept this buffer
620 * in memory. Make sure we have a ref for all this other checks
621 */
622 extent_buffer_get(eb);
623
624 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
625 if (!reads_done)
626 goto err;
f188591e 627
5cf1ab56 628 eb->read_mirror = mirror;
656f30db 629 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
630 ret = -EIO;
631 goto err;
632 }
633
ce9adaa5 634 found_start = btrfs_header_bytenr(eb);
727011e0 635 if (found_start != eb->start) {
29549aec 636 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
193f284d 637 "%llu %llu\n",
29549aec 638 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 639 ret = -EIO;
ce9adaa5
CM
640 goto err;
641 }
2b82032c 642 if (check_tree_block_fsid(root, eb)) {
29549aec
WS
643 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
644 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
645 ret = -EIO;
646 goto err;
647 }
ce9adaa5 648 found_level = btrfs_header_level(eb);
1c24c3ce 649 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 650 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
651 (int)btrfs_header_level(eb));
652 ret = -EIO;
653 goto err;
654 }
ce9adaa5 655
85d4e461
CM
656 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
657 eb, found_level);
4008c04a 658
ce9adaa5 659 ret = csum_tree_block(root, eb, 1);
a826d6dc 660 if (ret) {
f188591e 661 ret = -EIO;
a826d6dc
JB
662 goto err;
663 }
664
665 /*
666 * If this is a leaf block and it is corrupt, set the corrupt bit so
667 * that we don't try and read the other copies of this block, just
668 * return -EIO.
669 */
670 if (found_level == 0 && check_leaf(root, eb)) {
671 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
672 ret = -EIO;
673 }
ce9adaa5 674
0b32f4bb
JB
675 if (!ret)
676 set_extent_buffer_uptodate(eb);
ce9adaa5 677err:
79fb65a1
JB
678 if (reads_done &&
679 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 680 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 681
53b381b3
DW
682 if (ret) {
683 /*
684 * our io error hook is going to dec the io pages
685 * again, we have to make sure it has something
686 * to decrement
687 */
688 atomic_inc(&eb->io_pages);
0b32f4bb 689 clear_extent_buffer_uptodate(eb);
53b381b3 690 }
0b32f4bb 691 free_extent_buffer(eb);
ce9adaa5 692out:
f188591e 693 return ret;
ce9adaa5
CM
694}
695
ea466794 696static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 697{
4bb31e92
AJ
698 struct extent_buffer *eb;
699 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
700
4f2de97a 701 eb = (struct extent_buffer *)page->private;
656f30db 702 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 703 eb->read_mirror = failed_mirror;
53b381b3 704 atomic_dec(&eb->io_pages);
ea466794 705 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 706 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
707 return -EIO; /* we fixed nothing */
708}
709
ce9adaa5 710static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5 711{
97eb6b69 712 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 713 struct btrfs_fs_info *fs_info;
9e0af237
LB
714 struct btrfs_workqueue *wq;
715 btrfs_work_func_t func;
ce9adaa5 716
ce9adaa5 717 fs_info = end_io_wq->info;
ce9adaa5 718 end_io_wq->error = err;
d20f7043 719
7b6d91da 720 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
721 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
722 wq = fs_info->endio_meta_write_workers;
723 func = btrfs_endio_meta_write_helper;
724 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
725 wq = fs_info->endio_freespace_worker;
726 func = btrfs_freespace_write_helper;
727 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
728 wq = fs_info->endio_raid56_workers;
729 func = btrfs_endio_raid56_helper;
730 } else {
731 wq = fs_info->endio_write_workers;
732 func = btrfs_endio_write_helper;
733 }
d20f7043 734 } else {
8b110e39
MX
735 if (unlikely(end_io_wq->metadata ==
736 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
737 wq = fs_info->endio_repair_workers;
738 func = btrfs_endio_repair_helper;
739 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
740 wq = fs_info->endio_raid56_workers;
741 func = btrfs_endio_raid56_helper;
742 } else if (end_io_wq->metadata) {
743 wq = fs_info->endio_meta_workers;
744 func = btrfs_endio_meta_helper;
745 } else {
746 wq = fs_info->endio_workers;
747 func = btrfs_endio_helper;
748 }
d20f7043 749 }
9e0af237
LB
750
751 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
752 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
753}
754
22c59948 755int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 756 enum btrfs_wq_endio_type metadata)
0b86a832 757{
97eb6b69 758 struct btrfs_end_io_wq *end_io_wq;
8b110e39 759
97eb6b69 760 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
761 if (!end_io_wq)
762 return -ENOMEM;
763
764 end_io_wq->private = bio->bi_private;
765 end_io_wq->end_io = bio->bi_end_io;
22c59948 766 end_io_wq->info = info;
ce9adaa5
CM
767 end_io_wq->error = 0;
768 end_io_wq->bio = bio;
22c59948 769 end_io_wq->metadata = metadata;
ce9adaa5
CM
770
771 bio->bi_private = end_io_wq;
772 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
773 return 0;
774}
775
b64a2851 776unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 777{
4854ddd0 778 unsigned long limit = min_t(unsigned long,
5cdc7ad3 779 info->thread_pool_size,
4854ddd0
CM
780 info->fs_devices->open_devices);
781 return 256 * limit;
782}
0986fe9e 783
4a69a410
CM
784static void run_one_async_start(struct btrfs_work *work)
785{
4a69a410 786 struct async_submit_bio *async;
79787eaa 787 int ret;
4a69a410
CM
788
789 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
790 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
791 async->mirror_num, async->bio_flags,
792 async->bio_offset);
793 if (ret)
794 async->error = ret;
4a69a410
CM
795}
796
797static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
798{
799 struct btrfs_fs_info *fs_info;
800 struct async_submit_bio *async;
4854ddd0 801 int limit;
8b712842
CM
802
803 async = container_of(work, struct async_submit_bio, work);
804 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 805
b64a2851 806 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
807 limit = limit * 2 / 3;
808
66657b31 809 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 810 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
811 wake_up(&fs_info->async_submit_wait);
812
79787eaa
JM
813 /* If an error occured we just want to clean up the bio and move on */
814 if (async->error) {
815 bio_endio(async->bio, async->error);
816 return;
817 }
818
4a69a410 819 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
820 async->mirror_num, async->bio_flags,
821 async->bio_offset);
4a69a410
CM
822}
823
824static void run_one_async_free(struct btrfs_work *work)
825{
826 struct async_submit_bio *async;
827
828 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
829 kfree(async);
830}
831
44b8bd7e
CM
832int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
833 int rw, struct bio *bio, int mirror_num,
c8b97818 834 unsigned long bio_flags,
eaf25d93 835 u64 bio_offset,
4a69a410
CM
836 extent_submit_bio_hook_t *submit_bio_start,
837 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
838{
839 struct async_submit_bio *async;
840
841 async = kmalloc(sizeof(*async), GFP_NOFS);
842 if (!async)
843 return -ENOMEM;
844
845 async->inode = inode;
846 async->rw = rw;
847 async->bio = bio;
848 async->mirror_num = mirror_num;
4a69a410
CM
849 async->submit_bio_start = submit_bio_start;
850 async->submit_bio_done = submit_bio_done;
851
9e0af237 852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 853 run_one_async_done, run_one_async_free);
4a69a410 854
c8b97818 855 async->bio_flags = bio_flags;
eaf25d93 856 async->bio_offset = bio_offset;
8c8bee1d 857
79787eaa
JM
858 async->error = 0;
859
cb03c743 860 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 861
7b6d91da 862 if (rw & REQ_SYNC)
5cdc7ad3 863 btrfs_set_work_high_priority(&async->work);
d313d7a3 864
5cdc7ad3 865 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 866
d397712b 867 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
868 atomic_read(&fs_info->nr_async_submits)) {
869 wait_event(fs_info->async_submit_wait,
870 (atomic_read(&fs_info->nr_async_submits) == 0));
871 }
872
44b8bd7e
CM
873 return 0;
874}
875
ce3ed71a
CM
876static int btree_csum_one_bio(struct bio *bio)
877{
2c30c71b 878 struct bio_vec *bvec;
ce3ed71a 879 struct btrfs_root *root;
2c30c71b 880 int i, ret = 0;
ce3ed71a 881
2c30c71b 882 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 883 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
884 ret = csum_dirty_buffer(root, bvec->bv_page);
885 if (ret)
886 break;
ce3ed71a 887 }
2c30c71b 888
79787eaa 889 return ret;
ce3ed71a
CM
890}
891
4a69a410
CM
892static int __btree_submit_bio_start(struct inode *inode, int rw,
893 struct bio *bio, int mirror_num,
eaf25d93
CM
894 unsigned long bio_flags,
895 u64 bio_offset)
22c59948 896{
8b712842
CM
897 /*
898 * when we're called for a write, we're already in the async
5443be45 899 * submission context. Just jump into btrfs_map_bio
8b712842 900 */
79787eaa 901 return btree_csum_one_bio(bio);
4a69a410 902}
22c59948 903
4a69a410 904static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
905 int mirror_num, unsigned long bio_flags,
906 u64 bio_offset)
4a69a410 907{
61891923
SB
908 int ret;
909
8b712842 910 /*
4a69a410
CM
911 * when we're called for a write, we're already in the async
912 * submission context. Just jump into btrfs_map_bio
8b712842 913 */
61891923
SB
914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
915 if (ret)
916 bio_endio(bio, ret);
917 return ret;
0b86a832
CM
918}
919
de0022b9
JB
920static int check_async_write(struct inode *inode, unsigned long bio_flags)
921{
922 if (bio_flags & EXTENT_BIO_TREE_LOG)
923 return 0;
924#ifdef CONFIG_X86
925 if (cpu_has_xmm4_2)
926 return 0;
927#endif
928 return 1;
929}
930
44b8bd7e 931static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
932 int mirror_num, unsigned long bio_flags,
933 u64 bio_offset)
44b8bd7e 934{
de0022b9 935 int async = check_async_write(inode, bio_flags);
cad321ad
CM
936 int ret;
937
7b6d91da 938 if (!(rw & REQ_WRITE)) {
4a69a410
CM
939 /*
940 * called for a read, do the setup so that checksum validation
941 * can happen in the async kernel threads
942 */
f3f266ab 943 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 944 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 945 if (ret)
61891923
SB
946 goto out_w_error;
947 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
948 mirror_num, 0);
de0022b9
JB
949 } else if (!async) {
950 ret = btree_csum_one_bio(bio);
951 if (ret)
61891923
SB
952 goto out_w_error;
953 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
954 mirror_num, 0);
955 } else {
956 /*
957 * kthread helpers are used to submit writes so that
958 * checksumming can happen in parallel across all CPUs
959 */
960 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
961 inode, rw, bio, mirror_num, 0,
962 bio_offset,
963 __btree_submit_bio_start,
964 __btree_submit_bio_done);
44b8bd7e 965 }
d313d7a3 966
61891923
SB
967 if (ret) {
968out_w_error:
969 bio_endio(bio, ret);
970 }
971 return ret;
44b8bd7e
CM
972}
973
3dd1462e 974#ifdef CONFIG_MIGRATION
784b4e29 975static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
976 struct page *newpage, struct page *page,
977 enum migrate_mode mode)
784b4e29
CM
978{
979 /*
980 * we can't safely write a btree page from here,
981 * we haven't done the locking hook
982 */
983 if (PageDirty(page))
984 return -EAGAIN;
985 /*
986 * Buffers may be managed in a filesystem specific way.
987 * We must have no buffers or drop them.
988 */
989 if (page_has_private(page) &&
990 !try_to_release_page(page, GFP_KERNEL))
991 return -EAGAIN;
a6bc32b8 992 return migrate_page(mapping, newpage, page, mode);
784b4e29 993}
3dd1462e 994#endif
784b4e29 995
0da5468f
CM
996
997static int btree_writepages(struct address_space *mapping,
998 struct writeback_control *wbc)
999{
e2d84521
MX
1000 struct btrfs_fs_info *fs_info;
1001 int ret;
1002
d8d5f3e1 1003 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1004
1005 if (wbc->for_kupdate)
1006 return 0;
1007
e2d84521 1008 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1009 /* this is a bit racy, but that's ok */
e2d84521
MX
1010 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1011 BTRFS_DIRTY_METADATA_THRESH);
1012 if (ret < 0)
793955bc 1013 return 0;
793955bc 1014 }
0b32f4bb 1015 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1016}
1017
b2950863 1018static int btree_readpage(struct file *file, struct page *page)
5f39d397 1019{
d1310b2e
CM
1020 struct extent_io_tree *tree;
1021 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1022 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1023}
22b0ebda 1024
70dec807 1025static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1026{
98509cfc 1027 if (PageWriteback(page) || PageDirty(page))
d397712b 1028 return 0;
0c4e538b 1029
f7a52a40 1030 return try_release_extent_buffer(page);
d98237b3
CM
1031}
1032
d47992f8
LC
1033static void btree_invalidatepage(struct page *page, unsigned int offset,
1034 unsigned int length)
d98237b3 1035{
d1310b2e
CM
1036 struct extent_io_tree *tree;
1037 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1038 extent_invalidatepage(tree, page, offset);
1039 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1040 if (PagePrivate(page)) {
efe120a0
FH
1041 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1042 "page private not zero on page %llu",
1043 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1044 ClearPagePrivate(page);
1045 set_page_private(page, 0);
1046 page_cache_release(page);
1047 }
d98237b3
CM
1048}
1049
0b32f4bb
JB
1050static int btree_set_page_dirty(struct page *page)
1051{
bb146eb2 1052#ifdef DEBUG
0b32f4bb
JB
1053 struct extent_buffer *eb;
1054
1055 BUG_ON(!PagePrivate(page));
1056 eb = (struct extent_buffer *)page->private;
1057 BUG_ON(!eb);
1058 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1059 BUG_ON(!atomic_read(&eb->refs));
1060 btrfs_assert_tree_locked(eb);
bb146eb2 1061#endif
0b32f4bb
JB
1062 return __set_page_dirty_nobuffers(page);
1063}
1064
7f09410b 1065static const struct address_space_operations btree_aops = {
d98237b3 1066 .readpage = btree_readpage,
0da5468f 1067 .writepages = btree_writepages,
5f39d397
CM
1068 .releasepage = btree_releasepage,
1069 .invalidatepage = btree_invalidatepage,
5a92bc88 1070#ifdef CONFIG_MIGRATION
784b4e29 1071 .migratepage = btree_migratepage,
5a92bc88 1072#endif
0b32f4bb 1073 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1074};
1075
6197d86e 1076void readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
090d1875 1077{
5f39d397
CM
1078 struct extent_buffer *buf = NULL;
1079 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1080
db94535d 1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1082 if (!buf)
6197d86e 1083 return;
d1310b2e 1084 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1085 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1086 free_extent_buffer(buf);
090d1875
CM
1087}
1088
ab0fff03
AJ
1089int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1090 int mirror_num, struct extent_buffer **eb)
1091{
1092 struct extent_buffer *buf = NULL;
1093 struct inode *btree_inode = root->fs_info->btree_inode;
1094 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1095 int ret;
1096
1097 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1098 if (!buf)
1099 return 0;
1100
1101 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1102
1103 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1104 btree_get_extent, mirror_num);
1105 if (ret) {
1106 free_extent_buffer(buf);
1107 return ret;
1108 }
1109
1110 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1111 free_extent_buffer(buf);
1112 return -EIO;
0b32f4bb 1113 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1114 *eb = buf;
1115 } else {
1116 free_extent_buffer(buf);
1117 }
1118 return 0;
1119}
1120
0999df54 1121struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
0308af44 1122 u64 bytenr)
0999df54 1123{
f28491e0 1124 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1125}
1126
1127struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1128 u64 bytenr, u32 blocksize)
1129{
fccb84c9 1130 if (btrfs_test_is_dummy_root(root))
faa2dbf0
JB
1131 return alloc_test_extent_buffer(root->fs_info, bytenr,
1132 blocksize);
f28491e0 1133 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1134}
1135
1136
e02119d5
CM
1137int btrfs_write_tree_block(struct extent_buffer *buf)
1138{
727011e0 1139 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1140 buf->start + buf->len - 1);
e02119d5
CM
1141}
1142
1143int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1144{
727011e0 1145 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1146 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1147}
1148
0999df54 1149struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1150 u64 parent_transid)
0999df54
CM
1151{
1152 struct extent_buffer *buf = NULL;
0999df54
CM
1153 int ret;
1154
ce86cd59 1155 buf = btrfs_find_create_tree_block(root, bytenr, root->nodesize);
0999df54
CM
1156 if (!buf)
1157 return NULL;
0999df54 1158
ca7a79ad 1159 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1160 if (ret) {
1161 free_extent_buffer(buf);
1162 return NULL;
1163 }
5f39d397 1164 return buf;
ce9adaa5 1165
eb60ceac
CM
1166}
1167
d5c13f92
JM
1168void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1169 struct extent_buffer *buf)
ed2ff2cb 1170{
e2d84521
MX
1171 struct btrfs_fs_info *fs_info = root->fs_info;
1172
55c69072 1173 if (btrfs_header_generation(buf) ==
e2d84521 1174 fs_info->running_transaction->transid) {
b9447ef8 1175 btrfs_assert_tree_locked(buf);
b4ce94de 1176
b9473439 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 -buf->len,
1180 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 btrfs_set_lock_blocking(buf);
1183 clear_extent_buffer_dirty(buf);
1184 }
925baedd 1185 }
5f39d397
CM
1186}
1187
8257b2dc
MX
1188static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189{
1190 struct btrfs_subvolume_writers *writers;
1191 int ret;
1192
1193 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 if (!writers)
1195 return ERR_PTR(-ENOMEM);
1196
908c7f19 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1198 if (ret < 0) {
1199 kfree(writers);
1200 return ERR_PTR(ret);
1201 }
1202
1203 init_waitqueue_head(&writers->wait);
1204 return writers;
1205}
1206
1207static void
1208btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209{
1210 percpu_counter_destroy(&writers->counter);
1211 kfree(writers);
1212}
1213
707e8a07
DS
1214static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1216 u64 objectid)
d97e63b6 1217{
cfaa7295 1218 root->node = NULL;
a28ec197 1219 root->commit_root = NULL;
db94535d
CM
1220 root->sectorsize = sectorsize;
1221 root->nodesize = nodesize;
87ee04eb 1222 root->stripesize = stripesize;
27cdeb70 1223 root->state = 0;
d68fc57b 1224 root->orphan_cleanup_state = 0;
0b86a832 1225
0f7d52f4
CM
1226 root->objectid = objectid;
1227 root->last_trans = 0;
13a8a7c8 1228 root->highest_objectid = 0;
eb73c1b7 1229 root->nr_delalloc_inodes = 0;
199c2a9c 1230 root->nr_ordered_extents = 0;
58176a96 1231 root->name = NULL;
6bef4d31 1232 root->inode_tree = RB_ROOT;
16cdcec7 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1234 root->block_rsv = NULL;
d68fc57b 1235 root->orphan_block_rsv = NULL;
0b86a832
CM
1236
1237 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1238 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1239 INIT_LIST_HEAD(&root->delalloc_inodes);
1240 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1241 INIT_LIST_HEAD(&root->ordered_extents);
1242 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1243 INIT_LIST_HEAD(&root->logged_list[0]);
1244 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1245 spin_lock_init(&root->orphan_lock);
5d4f98a2 1246 spin_lock_init(&root->inode_lock);
eb73c1b7 1247 spin_lock_init(&root->delalloc_lock);
199c2a9c 1248 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1249 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1250 spin_lock_init(&root->log_extents_lock[0]);
1251 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1252 mutex_init(&root->objectid_mutex);
e02119d5 1253 mutex_init(&root->log_mutex);
31f3d255 1254 mutex_init(&root->ordered_extent_mutex);
573bfb72 1255 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1256 init_waitqueue_head(&root->log_writer_wait);
1257 init_waitqueue_head(&root->log_commit_wait[0]);
1258 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1259 INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1261 atomic_set(&root->log_commit[0], 0);
1262 atomic_set(&root->log_commit[1], 0);
1263 atomic_set(&root->log_writers, 0);
2ecb7923 1264 atomic_set(&root->log_batch, 0);
8a35d95f 1265 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1266 atomic_set(&root->refs, 1);
8257b2dc 1267 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1268 root->log_transid = 0;
d1433deb 1269 root->log_transid_committed = -1;
257c62e1 1270 root->last_log_commit = 0;
06ea65a3
JB
1271 if (fs_info)
1272 extent_io_tree_init(&root->dirty_log_pages,
1273 fs_info->btree_inode->i_mapping);
017e5369 1274
3768f368
CM
1275 memset(&root->root_key, 0, sizeof(root->root_key));
1276 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1278 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1279 if (fs_info)
1280 root->defrag_trans_start = fs_info->generation;
1281 else
1282 root->defrag_trans_start = 0;
58176a96 1283 init_completion(&root->kobj_unregister);
4d775673 1284 root->root_key.objectid = objectid;
0ee5dc67 1285 root->anon_dev = 0;
8ea05e3a 1286
5f3ab90a 1287 spin_lock_init(&root->root_item_lock);
3768f368
CM
1288}
1289
f84a8bd6 1290static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1291{
1292 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1293 if (root)
1294 root->fs_info = fs_info;
1295 return root;
1296}
1297
06ea65a3
JB
1298#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1299/* Should only be used by the testing infrastructure */
1300struct btrfs_root *btrfs_alloc_dummy_root(void)
1301{
1302 struct btrfs_root *root;
1303
1304 root = btrfs_alloc_root(NULL);
1305 if (!root)
1306 return ERR_PTR(-ENOMEM);
707e8a07 1307 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1308 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1309 root->alloc_bytenr = 0;
06ea65a3
JB
1310
1311 return root;
1312}
1313#endif
1314
20897f5c
AJ
1315struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1316 struct btrfs_fs_info *fs_info,
1317 u64 objectid)
1318{
1319 struct extent_buffer *leaf;
1320 struct btrfs_root *tree_root = fs_info->tree_root;
1321 struct btrfs_root *root;
1322 struct btrfs_key key;
1323 int ret = 0;
6463fe58 1324 uuid_le uuid;
20897f5c
AJ
1325
1326 root = btrfs_alloc_root(fs_info);
1327 if (!root)
1328 return ERR_PTR(-ENOMEM);
1329
707e8a07
DS
1330 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1331 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1332 root->root_key.objectid = objectid;
1333 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1334 root->root_key.offset = 0;
1335
4d75f8a9 1336 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1337 if (IS_ERR(leaf)) {
1338 ret = PTR_ERR(leaf);
1dd05682 1339 leaf = NULL;
20897f5c
AJ
1340 goto fail;
1341 }
1342
20897f5c
AJ
1343 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1344 btrfs_set_header_bytenr(leaf, leaf->start);
1345 btrfs_set_header_generation(leaf, trans->transid);
1346 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1347 btrfs_set_header_owner(leaf, objectid);
1348 root->node = leaf;
1349
0a4e5586 1350 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1351 BTRFS_FSID_SIZE);
1352 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1353 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1354 BTRFS_UUID_SIZE);
1355 btrfs_mark_buffer_dirty(leaf);
1356
1357 root->commit_root = btrfs_root_node(root);
27cdeb70 1358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1359
1360 root->root_item.flags = 0;
1361 root->root_item.byte_limit = 0;
1362 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1363 btrfs_set_root_generation(&root->root_item, trans->transid);
1364 btrfs_set_root_level(&root->root_item, 0);
1365 btrfs_set_root_refs(&root->root_item, 1);
1366 btrfs_set_root_used(&root->root_item, leaf->len);
1367 btrfs_set_root_last_snapshot(&root->root_item, 0);
1368 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1369 uuid_le_gen(&uuid);
1370 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1371 root->root_item.drop_level = 0;
1372
1373 key.objectid = objectid;
1374 key.type = BTRFS_ROOT_ITEM_KEY;
1375 key.offset = 0;
1376 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1377 if (ret)
1378 goto fail;
1379
1380 btrfs_tree_unlock(leaf);
1381
1dd05682
TI
1382 return root;
1383
20897f5c 1384fail:
1dd05682
TI
1385 if (leaf) {
1386 btrfs_tree_unlock(leaf);
59885b39 1387 free_extent_buffer(root->commit_root);
1dd05682
TI
1388 free_extent_buffer(leaf);
1389 }
1390 kfree(root);
20897f5c 1391
1dd05682 1392 return ERR_PTR(ret);
20897f5c
AJ
1393}
1394
7237f183
YZ
1395static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1397{
1398 struct btrfs_root *root;
1399 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1400 struct extent_buffer *leaf;
e02119d5 1401
6f07e42e 1402 root = btrfs_alloc_root(fs_info);
e02119d5 1403 if (!root)
7237f183 1404 return ERR_PTR(-ENOMEM);
e02119d5 1405
707e8a07
DS
1406 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1407 tree_root->stripesize, root, fs_info,
1408 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1409
1410 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1413
7237f183 1414 /*
27cdeb70
MX
1415 * DON'T set REF_COWS for log trees
1416 *
7237f183
YZ
1417 * log trees do not get reference counted because they go away
1418 * before a real commit is actually done. They do store pointers
1419 * to file data extents, and those reference counts still get
1420 * updated (along with back refs to the log tree).
1421 */
e02119d5 1422
4d75f8a9
DS
1423 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1424 NULL, 0, 0, 0);
7237f183
YZ
1425 if (IS_ERR(leaf)) {
1426 kfree(root);
1427 return ERR_CAST(leaf);
1428 }
e02119d5 1429
5d4f98a2
YZ
1430 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1431 btrfs_set_header_bytenr(leaf, leaf->start);
1432 btrfs_set_header_generation(leaf, trans->transid);
1433 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1434 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1435 root->node = leaf;
e02119d5
CM
1436
1437 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1438 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1439 btrfs_mark_buffer_dirty(root->node);
1440 btrfs_tree_unlock(root->node);
7237f183
YZ
1441 return root;
1442}
1443
1444int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1445 struct btrfs_fs_info *fs_info)
1446{
1447 struct btrfs_root *log_root;
1448
1449 log_root = alloc_log_tree(trans, fs_info);
1450 if (IS_ERR(log_root))
1451 return PTR_ERR(log_root);
1452 WARN_ON(fs_info->log_root_tree);
1453 fs_info->log_root_tree = log_root;
1454 return 0;
1455}
1456
1457int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root)
1459{
1460 struct btrfs_root *log_root;
1461 struct btrfs_inode_item *inode_item;
1462
1463 log_root = alloc_log_tree(trans, root->fs_info);
1464 if (IS_ERR(log_root))
1465 return PTR_ERR(log_root);
1466
1467 log_root->last_trans = trans->transid;
1468 log_root->root_key.offset = root->root_key.objectid;
1469
1470 inode_item = &log_root->root_item.inode;
3cae210f
QW
1471 btrfs_set_stack_inode_generation(inode_item, 1);
1472 btrfs_set_stack_inode_size(inode_item, 3);
1473 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1474 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1475 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1476
5d4f98a2 1477 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1478
1479 WARN_ON(root->log_root);
1480 root->log_root = log_root;
1481 root->log_transid = 0;
d1433deb 1482 root->log_transid_committed = -1;
257c62e1 1483 root->last_log_commit = 0;
e02119d5
CM
1484 return 0;
1485}
1486
35a3621b
SB
1487static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1488 struct btrfs_key *key)
e02119d5
CM
1489{
1490 struct btrfs_root *root;
1491 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1492 struct btrfs_path *path;
84234f3a 1493 u64 generation;
cb517eab 1494 int ret;
0f7d52f4 1495
cb517eab
MX
1496 path = btrfs_alloc_path();
1497 if (!path)
0f7d52f4 1498 return ERR_PTR(-ENOMEM);
cb517eab
MX
1499
1500 root = btrfs_alloc_root(fs_info);
1501 if (!root) {
1502 ret = -ENOMEM;
1503 goto alloc_fail;
0f7d52f4
CM
1504 }
1505
707e8a07
DS
1506 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1507 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1508
cb517eab
MX
1509 ret = btrfs_find_root(tree_root, key, path,
1510 &root->root_item, &root->root_key);
0f7d52f4 1511 if (ret) {
13a8a7c8
YZ
1512 if (ret > 0)
1513 ret = -ENOENT;
cb517eab 1514 goto find_fail;
0f7d52f4 1515 }
13a8a7c8 1516
84234f3a 1517 generation = btrfs_root_generation(&root->root_item);
db94535d 1518 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1519 generation);
cb517eab
MX
1520 if (!root->node) {
1521 ret = -ENOMEM;
1522 goto find_fail;
1523 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1524 ret = -EIO;
1525 goto read_fail;
416bc658 1526 }
5d4f98a2 1527 root->commit_root = btrfs_root_node(root);
13a8a7c8 1528out:
cb517eab
MX
1529 btrfs_free_path(path);
1530 return root;
1531
1532read_fail:
1533 free_extent_buffer(root->node);
1534find_fail:
1535 kfree(root);
1536alloc_fail:
1537 root = ERR_PTR(ret);
1538 goto out;
1539}
1540
1541struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542 struct btrfs_key *location)
1543{
1544 struct btrfs_root *root;
1545
1546 root = btrfs_read_tree_root(tree_root, location);
1547 if (IS_ERR(root))
1548 return root;
1549
1550 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1551 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1552 btrfs_check_and_init_root_item(&root->root_item);
1553 }
13a8a7c8 1554
5eda7b5e
CM
1555 return root;
1556}
1557
cb517eab
MX
1558int btrfs_init_fs_root(struct btrfs_root *root)
1559{
1560 int ret;
8257b2dc 1561 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1562
1563 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565 GFP_NOFS);
1566 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567 ret = -ENOMEM;
1568 goto fail;
1569 }
1570
8257b2dc
MX
1571 writers = btrfs_alloc_subvolume_writers();
1572 if (IS_ERR(writers)) {
1573 ret = PTR_ERR(writers);
1574 goto fail;
1575 }
1576 root->subv_writers = writers;
1577
cb517eab 1578 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1579 spin_lock_init(&root->ino_cache_lock);
1580 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1581
1582 ret = get_anon_bdev(&root->anon_dev);
1583 if (ret)
8257b2dc 1584 goto free_writers;
cb517eab 1585 return 0;
8257b2dc
MX
1586
1587free_writers:
1588 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1589fail:
1590 kfree(root->free_ino_ctl);
1591 kfree(root->free_ino_pinned);
1592 return ret;
1593}
1594
171170c1
ST
1595static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1596 u64 root_id)
cb517eab
MX
1597{
1598 struct btrfs_root *root;
1599
1600 spin_lock(&fs_info->fs_roots_radix_lock);
1601 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1602 (unsigned long)root_id);
1603 spin_unlock(&fs_info->fs_roots_radix_lock);
1604 return root;
1605}
1606
1607int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1608 struct btrfs_root *root)
1609{
1610 int ret;
1611
1612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1613 if (ret)
1614 return ret;
1615
1616 spin_lock(&fs_info->fs_roots_radix_lock);
1617 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1618 (unsigned long)root->root_key.objectid,
1619 root);
1620 if (ret == 0)
27cdeb70 1621 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1622 spin_unlock(&fs_info->fs_roots_radix_lock);
1623 radix_tree_preload_end();
1624
1625 return ret;
1626}
1627
c00869f1
MX
1628struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1629 struct btrfs_key *location,
1630 bool check_ref)
5eda7b5e
CM
1631{
1632 struct btrfs_root *root;
1633 int ret;
1634
edbd8d4e
CM
1635 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1636 return fs_info->tree_root;
1637 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1638 return fs_info->extent_root;
8f18cf13
CM
1639 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1640 return fs_info->chunk_root;
1641 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1642 return fs_info->dev_root;
0403e47e
YZ
1643 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1644 return fs_info->csum_root;
bcef60f2
AJ
1645 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1646 return fs_info->quota_root ? fs_info->quota_root :
1647 ERR_PTR(-ENOENT);
f7a81ea4
SB
1648 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1649 return fs_info->uuid_root ? fs_info->uuid_root :
1650 ERR_PTR(-ENOENT);
4df27c4d 1651again:
cb517eab 1652 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1653 if (root) {
c00869f1 1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1655 return ERR_PTR(-ENOENT);
5eda7b5e 1656 return root;
48475471 1657 }
5eda7b5e 1658
cb517eab 1659 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1660 if (IS_ERR(root))
1661 return root;
3394e160 1662
c00869f1 1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1664 ret = -ENOENT;
581bb050 1665 goto fail;
35a30d7c 1666 }
581bb050 1667
cb517eab 1668 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1669 if (ret)
1670 goto fail;
3394e160 1671
3f870c28
KN
1672 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1673 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1674 if (ret < 0)
1675 goto fail;
1676 if (ret == 0)
27cdeb70 1677 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1678
cb517eab 1679 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1680 if (ret) {
4df27c4d
YZ
1681 if (ret == -EEXIST) {
1682 free_fs_root(root);
1683 goto again;
1684 }
1685 goto fail;
0f7d52f4 1686 }
edbd8d4e 1687 return root;
4df27c4d
YZ
1688fail:
1689 free_fs_root(root);
1690 return ERR_PTR(ret);
edbd8d4e
CM
1691}
1692
04160088
CM
1693static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1694{
1695 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1696 int ret = 0;
04160088
CM
1697 struct btrfs_device *device;
1698 struct backing_dev_info *bdi;
b7967db7 1699
1f78160c
XG
1700 rcu_read_lock();
1701 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1702 if (!device->bdev)
1703 continue;
04160088 1704 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1705 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1706 ret = 1;
1707 break;
1708 }
1709 }
1f78160c 1710 rcu_read_unlock();
04160088
CM
1711 return ret;
1712}
1713
04160088
CM
1714static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1715{
ad081f14
JA
1716 int err;
1717
1718 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1719 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1720 if (err)
1721 return err;
1722
4575c9cc 1723 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1724 bdi->congested_fn = btrfs_congested_fn;
1725 bdi->congested_data = info;
1726 return 0;
1727}
1728
8b712842
CM
1729/*
1730 * called by the kthread helper functions to finally call the bio end_io
1731 * functions. This is where read checksum verification actually happens
1732 */
1733static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1734{
ce9adaa5 1735 struct bio *bio;
97eb6b69 1736 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1737 int error;
ce9adaa5 1738
97eb6b69 1739 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1740 bio = end_io_wq->bio;
ce9adaa5 1741
8b712842
CM
1742 error = end_io_wq->error;
1743 bio->bi_private = end_io_wq->private;
1744 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1745 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
bc1e79ac 1746 bio_endio_nodec(bio, error);
44b8bd7e
CM
1747}
1748
a74a4b97
CM
1749static int cleaner_kthread(void *arg)
1750{
1751 struct btrfs_root *root = arg;
d0278245 1752 int again;
a74a4b97
CM
1753
1754 do {
d0278245 1755 again = 0;
a74a4b97 1756
d0278245 1757 /* Make the cleaner go to sleep early. */
babbf170 1758 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1759 goto sleep;
1760
1761 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1762 goto sleep;
1763
dc7f370c
MX
1764 /*
1765 * Avoid the problem that we change the status of the fs
1766 * during the above check and trylock.
1767 */
babbf170 1768 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1769 mutex_unlock(&root->fs_info->cleaner_mutex);
1770 goto sleep;
76dda93c 1771 }
a74a4b97 1772
d0278245 1773 btrfs_run_delayed_iputs(root);
47ab2a6c 1774 btrfs_delete_unused_bgs(root->fs_info);
d0278245
MX
1775 again = btrfs_clean_one_deleted_snapshot(root);
1776 mutex_unlock(&root->fs_info->cleaner_mutex);
1777
1778 /*
05323cd1
MX
1779 * The defragger has dealt with the R/O remount and umount,
1780 * needn't do anything special here.
d0278245
MX
1781 */
1782 btrfs_run_defrag_inodes(root->fs_info);
1783sleep:
9d1a2a3a 1784 if (!try_to_freeze() && !again) {
a74a4b97 1785 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1786 if (!kthread_should_stop())
1787 schedule();
a74a4b97
CM
1788 __set_current_state(TASK_RUNNING);
1789 }
1790 } while (!kthread_should_stop());
1791 return 0;
1792}
1793
1794static int transaction_kthread(void *arg)
1795{
1796 struct btrfs_root *root = arg;
1797 struct btrfs_trans_handle *trans;
1798 struct btrfs_transaction *cur;
8929ecfa 1799 u64 transid;
a74a4b97
CM
1800 unsigned long now;
1801 unsigned long delay;
914b2007 1802 bool cannot_commit;
a74a4b97
CM
1803
1804 do {
914b2007 1805 cannot_commit = false;
8b87dc17 1806 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1807 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1808
a4abeea4 1809 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1810 cur = root->fs_info->running_transaction;
1811 if (!cur) {
a4abeea4 1812 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1813 goto sleep;
1814 }
31153d81 1815
a74a4b97 1816 now = get_seconds();
4a9d8bde 1817 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1818 (now < cur->start_time ||
1819 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1820 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1821 delay = HZ * 5;
1822 goto sleep;
1823 }
8929ecfa 1824 transid = cur->transid;
a4abeea4 1825 spin_unlock(&root->fs_info->trans_lock);
56bec294 1826
79787eaa 1827 /* If the file system is aborted, this will always fail. */
354aa0fb 1828 trans = btrfs_attach_transaction(root);
914b2007 1829 if (IS_ERR(trans)) {
354aa0fb
MX
1830 if (PTR_ERR(trans) != -ENOENT)
1831 cannot_commit = true;
79787eaa 1832 goto sleep;
914b2007 1833 }
8929ecfa 1834 if (transid == trans->transid) {
79787eaa 1835 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1836 } else {
1837 btrfs_end_transaction(trans, root);
1838 }
a74a4b97
CM
1839sleep:
1840 wake_up_process(root->fs_info->cleaner_kthread);
1841 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1842
4e121c06
JB
1843 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1844 &root->fs_info->fs_state)))
1845 btrfs_cleanup_transaction(root);
a0acae0e 1846 if (!try_to_freeze()) {
a74a4b97 1847 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1848 if (!kthread_should_stop() &&
914b2007
JK
1849 (!btrfs_transaction_blocked(root->fs_info) ||
1850 cannot_commit))
8929ecfa 1851 schedule_timeout(delay);
a74a4b97
CM
1852 __set_current_state(TASK_RUNNING);
1853 }
1854 } while (!kthread_should_stop());
1855 return 0;
1856}
1857
af31f5e5
CM
1858/*
1859 * this will find the highest generation in the array of
1860 * root backups. The index of the highest array is returned,
1861 * or -1 if we can't find anything.
1862 *
1863 * We check to make sure the array is valid by comparing the
1864 * generation of the latest root in the array with the generation
1865 * in the super block. If they don't match we pitch it.
1866 */
1867static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1868{
1869 u64 cur;
1870 int newest_index = -1;
1871 struct btrfs_root_backup *root_backup;
1872 int i;
1873
1874 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1875 root_backup = info->super_copy->super_roots + i;
1876 cur = btrfs_backup_tree_root_gen(root_backup);
1877 if (cur == newest_gen)
1878 newest_index = i;
1879 }
1880
1881 /* check to see if we actually wrapped around */
1882 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1883 root_backup = info->super_copy->super_roots;
1884 cur = btrfs_backup_tree_root_gen(root_backup);
1885 if (cur == newest_gen)
1886 newest_index = 0;
1887 }
1888 return newest_index;
1889}
1890
1891
1892/*
1893 * find the oldest backup so we know where to store new entries
1894 * in the backup array. This will set the backup_root_index
1895 * field in the fs_info struct
1896 */
1897static void find_oldest_super_backup(struct btrfs_fs_info *info,
1898 u64 newest_gen)
1899{
1900 int newest_index = -1;
1901
1902 newest_index = find_newest_super_backup(info, newest_gen);
1903 /* if there was garbage in there, just move along */
1904 if (newest_index == -1) {
1905 info->backup_root_index = 0;
1906 } else {
1907 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1908 }
1909}
1910
1911/*
1912 * copy all the root pointers into the super backup array.
1913 * this will bump the backup pointer by one when it is
1914 * done
1915 */
1916static void backup_super_roots(struct btrfs_fs_info *info)
1917{
1918 int next_backup;
1919 struct btrfs_root_backup *root_backup;
1920 int last_backup;
1921
1922 next_backup = info->backup_root_index;
1923 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1924 BTRFS_NUM_BACKUP_ROOTS;
1925
1926 /*
1927 * just overwrite the last backup if we're at the same generation
1928 * this happens only at umount
1929 */
1930 root_backup = info->super_for_commit->super_roots + last_backup;
1931 if (btrfs_backup_tree_root_gen(root_backup) ==
1932 btrfs_header_generation(info->tree_root->node))
1933 next_backup = last_backup;
1934
1935 root_backup = info->super_for_commit->super_roots + next_backup;
1936
1937 /*
1938 * make sure all of our padding and empty slots get zero filled
1939 * regardless of which ones we use today
1940 */
1941 memset(root_backup, 0, sizeof(*root_backup));
1942
1943 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1944
1945 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1946 btrfs_set_backup_tree_root_gen(root_backup,
1947 btrfs_header_generation(info->tree_root->node));
1948
1949 btrfs_set_backup_tree_root_level(root_backup,
1950 btrfs_header_level(info->tree_root->node));
1951
1952 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1953 btrfs_set_backup_chunk_root_gen(root_backup,
1954 btrfs_header_generation(info->chunk_root->node));
1955 btrfs_set_backup_chunk_root_level(root_backup,
1956 btrfs_header_level(info->chunk_root->node));
1957
1958 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1959 btrfs_set_backup_extent_root_gen(root_backup,
1960 btrfs_header_generation(info->extent_root->node));
1961 btrfs_set_backup_extent_root_level(root_backup,
1962 btrfs_header_level(info->extent_root->node));
1963
7c7e82a7
CM
1964 /*
1965 * we might commit during log recovery, which happens before we set
1966 * the fs_root. Make sure it is valid before we fill it in.
1967 */
1968 if (info->fs_root && info->fs_root->node) {
1969 btrfs_set_backup_fs_root(root_backup,
1970 info->fs_root->node->start);
1971 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1972 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1973 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1974 btrfs_header_level(info->fs_root->node));
7c7e82a7 1975 }
af31f5e5
CM
1976
1977 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1978 btrfs_set_backup_dev_root_gen(root_backup,
1979 btrfs_header_generation(info->dev_root->node));
1980 btrfs_set_backup_dev_root_level(root_backup,
1981 btrfs_header_level(info->dev_root->node));
1982
1983 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1984 btrfs_set_backup_csum_root_gen(root_backup,
1985 btrfs_header_generation(info->csum_root->node));
1986 btrfs_set_backup_csum_root_level(root_backup,
1987 btrfs_header_level(info->csum_root->node));
1988
1989 btrfs_set_backup_total_bytes(root_backup,
1990 btrfs_super_total_bytes(info->super_copy));
1991 btrfs_set_backup_bytes_used(root_backup,
1992 btrfs_super_bytes_used(info->super_copy));
1993 btrfs_set_backup_num_devices(root_backup,
1994 btrfs_super_num_devices(info->super_copy));
1995
1996 /*
1997 * if we don't copy this out to the super_copy, it won't get remembered
1998 * for the next commit
1999 */
2000 memcpy(&info->super_copy->super_roots,
2001 &info->super_for_commit->super_roots,
2002 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2003}
2004
2005/*
2006 * this copies info out of the root backup array and back into
2007 * the in-memory super block. It is meant to help iterate through
2008 * the array, so you send it the number of backups you've already
2009 * tried and the last backup index you used.
2010 *
2011 * this returns -1 when it has tried all the backups
2012 */
2013static noinline int next_root_backup(struct btrfs_fs_info *info,
2014 struct btrfs_super_block *super,
2015 int *num_backups_tried, int *backup_index)
2016{
2017 struct btrfs_root_backup *root_backup;
2018 int newest = *backup_index;
2019
2020 if (*num_backups_tried == 0) {
2021 u64 gen = btrfs_super_generation(super);
2022
2023 newest = find_newest_super_backup(info, gen);
2024 if (newest == -1)
2025 return -1;
2026
2027 *backup_index = newest;
2028 *num_backups_tried = 1;
2029 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2030 /* we've tried all the backups, all done */
2031 return -1;
2032 } else {
2033 /* jump to the next oldest backup */
2034 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2035 BTRFS_NUM_BACKUP_ROOTS;
2036 *backup_index = newest;
2037 *num_backups_tried += 1;
2038 }
2039 root_backup = super->super_roots + newest;
2040
2041 btrfs_set_super_generation(super,
2042 btrfs_backup_tree_root_gen(root_backup));
2043 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2044 btrfs_set_super_root_level(super,
2045 btrfs_backup_tree_root_level(root_backup));
2046 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2047
2048 /*
2049 * fixme: the total bytes and num_devices need to match or we should
2050 * need a fsck
2051 */
2052 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2053 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2054 return 0;
2055}
2056
7abadb64
LB
2057/* helper to cleanup workers */
2058static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2059{
dc6e3209 2060 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2061 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2062 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2063 btrfs_destroy_workqueue(fs_info->endio_workers);
2064 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2065 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2066 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2067 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2068 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2069 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2070 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2071 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2072 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2073 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2074 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2075 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2076 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2077 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2078}
2079
2e9f5954
R
2080static void free_root_extent_buffers(struct btrfs_root *root)
2081{
2082 if (root) {
2083 free_extent_buffer(root->node);
2084 free_extent_buffer(root->commit_root);
2085 root->node = NULL;
2086 root->commit_root = NULL;
2087 }
2088}
2089
af31f5e5
CM
2090/* helper to cleanup tree roots */
2091static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2092{
2e9f5954 2093 free_root_extent_buffers(info->tree_root);
655b09fe 2094
2e9f5954
R
2095 free_root_extent_buffers(info->dev_root);
2096 free_root_extent_buffers(info->extent_root);
2097 free_root_extent_buffers(info->csum_root);
2098 free_root_extent_buffers(info->quota_root);
2099 free_root_extent_buffers(info->uuid_root);
2100 if (chunk_root)
2101 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2102}
2103
faa2dbf0 2104void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2105{
2106 int ret;
2107 struct btrfs_root *gang[8];
2108 int i;
2109
2110 while (!list_empty(&fs_info->dead_roots)) {
2111 gang[0] = list_entry(fs_info->dead_roots.next,
2112 struct btrfs_root, root_list);
2113 list_del(&gang[0]->root_list);
2114
27cdeb70 2115 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2116 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2117 } else {
2118 free_extent_buffer(gang[0]->node);
2119 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2120 btrfs_put_fs_root(gang[0]);
171f6537
JB
2121 }
2122 }
2123
2124 while (1) {
2125 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2126 (void **)gang, 0,
2127 ARRAY_SIZE(gang));
2128 if (!ret)
2129 break;
2130 for (i = 0; i < ret; i++)
cb517eab 2131 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2132 }
1a4319cc
LB
2133
2134 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2135 btrfs_free_log_root_tree(NULL, fs_info);
2136 btrfs_destroy_pinned_extent(fs_info->tree_root,
2137 fs_info->pinned_extents);
2138 }
171f6537 2139}
af31f5e5 2140
ad2b2c80
AV
2141int open_ctree(struct super_block *sb,
2142 struct btrfs_fs_devices *fs_devices,
2143 char *options)
2e635a27 2144{
db94535d
CM
2145 u32 sectorsize;
2146 u32 nodesize;
87ee04eb 2147 u32 stripesize;
84234f3a 2148 u64 generation;
f2b636e8 2149 u64 features;
3de4586c 2150 struct btrfs_key location;
a061fc8d 2151 struct buffer_head *bh;
4d34b278 2152 struct btrfs_super_block *disk_super;
815745cf 2153 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2154 struct btrfs_root *tree_root;
4d34b278
ID
2155 struct btrfs_root *extent_root;
2156 struct btrfs_root *csum_root;
2157 struct btrfs_root *chunk_root;
2158 struct btrfs_root *dev_root;
bcef60f2 2159 struct btrfs_root *quota_root;
f7a81ea4 2160 struct btrfs_root *uuid_root;
e02119d5 2161 struct btrfs_root *log_tree_root;
eb60ceac 2162 int ret;
e58ca020 2163 int err = -EINVAL;
af31f5e5
CM
2164 int num_backups_tried = 0;
2165 int backup_index = 0;
5cdc7ad3
QW
2166 int max_active;
2167 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2168 bool create_uuid_tree;
2169 bool check_uuid_tree;
4543df7e 2170
f84a8bd6 2171 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2172 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2173 if (!tree_root || !chunk_root) {
39279cc3
CM
2174 err = -ENOMEM;
2175 goto fail;
2176 }
76dda93c
YZ
2177
2178 ret = init_srcu_struct(&fs_info->subvol_srcu);
2179 if (ret) {
2180 err = ret;
2181 goto fail;
2182 }
2183
2184 ret = setup_bdi(fs_info, &fs_info->bdi);
2185 if (ret) {
2186 err = ret;
2187 goto fail_srcu;
2188 }
2189
908c7f19 2190 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2191 if (ret) {
2192 err = ret;
2193 goto fail_bdi;
2194 }
2195 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2196 (1 + ilog2(nr_cpu_ids));
2197
908c7f19 2198 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2199 if (ret) {
2200 err = ret;
2201 goto fail_dirty_metadata_bytes;
2202 }
2203
908c7f19 2204 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2205 if (ret) {
2206 err = ret;
2207 goto fail_delalloc_bytes;
2208 }
2209
76dda93c
YZ
2210 fs_info->btree_inode = new_inode(sb);
2211 if (!fs_info->btree_inode) {
2212 err = -ENOMEM;
c404e0dc 2213 goto fail_bio_counter;
76dda93c
YZ
2214 }
2215
a6591715 2216 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2217
76dda93c 2218 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2219 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2220 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2221 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2222 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2223 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2224 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2225 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2226 spin_lock_init(&fs_info->trans_lock);
76dda93c 2227 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2228 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2229 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2230 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2231 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2232 spin_lock_init(&fs_info->super_lock);
fcebe456 2233 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2234 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2235 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2236 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2237 mutex_init(&fs_info->reloc_mutex);
573bfb72 2238 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2239 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2240
58176a96 2241 init_completion(&fs_info->kobj_unregister);
0b86a832 2242 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2243 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2244 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2245 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2246 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2247 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2248 BTRFS_BLOCK_RSV_GLOBAL);
2249 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2250 BTRFS_BLOCK_RSV_DELALLOC);
2251 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2252 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2253 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2254 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2255 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2256 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2257 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2258 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2259 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2260 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2261 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2262 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2263 fs_info->sb = sb;
95ac567a 2264 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2265 fs_info->metadata_ratio = 0;
4cb5300b 2266 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2267 fs_info->free_chunk_space = 0;
f29021b2 2268 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2269 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2270 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2271 /* readahead state */
2272 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2273 spin_lock_init(&fs_info->reada_lock);
c8b97818 2274
b34b086c
CM
2275 fs_info->thread_pool_size = min_t(unsigned long,
2276 num_online_cpus() + 2, 8);
0afbaf8c 2277
199c2a9c
MX
2278 INIT_LIST_HEAD(&fs_info->ordered_roots);
2279 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2280 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2281 GFP_NOFS);
2282 if (!fs_info->delayed_root) {
2283 err = -ENOMEM;
2284 goto fail_iput;
2285 }
2286 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2287
a2de733c
AJ
2288 mutex_init(&fs_info->scrub_lock);
2289 atomic_set(&fs_info->scrubs_running, 0);
2290 atomic_set(&fs_info->scrub_pause_req, 0);
2291 atomic_set(&fs_info->scrubs_paused, 0);
2292 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2293 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2294 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2295 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2296#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2297 fs_info->check_integrity_print_mask = 0;
2298#endif
a2de733c 2299
c9e9f97b
ID
2300 spin_lock_init(&fs_info->balance_lock);
2301 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2302 atomic_set(&fs_info->balance_running, 0);
2303 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2304 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2305 fs_info->balance_ctl = NULL;
837d5b6e 2306 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2307 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2308
a061fc8d
CM
2309 sb->s_blocksize = 4096;
2310 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2311 sb->s_bdi = &fs_info->bdi;
a061fc8d 2312
76dda93c 2313 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2314 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2315 /*
2316 * we set the i_size on the btree inode to the max possible int.
2317 * the real end of the address space is determined by all of
2318 * the devices in the system
2319 */
2320 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2321 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2322 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2323
5d4f98a2 2324 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2325 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2326 fs_info->btree_inode->i_mapping);
0b32f4bb 2327 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2328 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2329
2330 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2331
76dda93c
YZ
2332 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2333 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2334 sizeof(struct btrfs_key));
72ac3c0d
JB
2335 set_bit(BTRFS_INODE_DUMMY,
2336 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2337 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2338
0f9dd46c 2339 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2340 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2341 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2342
11833d66 2343 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2344 fs_info->btree_inode->i_mapping);
11833d66 2345 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2346 fs_info->btree_inode->i_mapping);
11833d66 2347 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2348 fs_info->do_barriers = 1;
e18e4809 2349
39279cc3 2350
5a3f23d5 2351 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2352 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2353 mutex_init(&fs_info->tree_log_mutex);
925baedd 2354 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2355 mutex_init(&fs_info->transaction_kthread_mutex);
2356 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2357 mutex_init(&fs_info->volume_mutex);
9e351cc8 2358 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2359 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2360 init_rwsem(&fs_info->subvol_sem);
803b2f54 2361 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2362 fs_info->dev_replace.lock_owner = 0;
2363 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2364 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2365 mutex_init(&fs_info->dev_replace.lock_management_lock);
2366 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2367
416ac51d 2368 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2369 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2370 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2371 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2372 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2373 fs_info->qgroup_seq = 1;
2374 fs_info->quota_enabled = 0;
2375 fs_info->pending_quota_state = 0;
1e8f9158 2376 fs_info->qgroup_ulist = NULL;
2f232036 2377 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2378
fa9c0d79
CM
2379 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2380 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2381
e6dcd2dc 2382 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2383 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2384 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2385 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2386
04216820
FM
2387 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2388
53b381b3
DW
2389 ret = btrfs_alloc_stripe_hash_table(fs_info);
2390 if (ret) {
83c8266a 2391 err = ret;
53b381b3
DW
2392 goto fail_alloc;
2393 }
2394
707e8a07 2395 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2396 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2397
3c4bb26b 2398 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2399
2400 /*
2401 * Read super block and check the signature bytes only
2402 */
a512bbf8 2403 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2404 if (!bh) {
2405 err = -EINVAL;
16cdcec7 2406 goto fail_alloc;
20b45077 2407 }
39279cc3 2408
1104a885
DS
2409 /*
2410 * We want to check superblock checksum, the type is stored inside.
2411 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2412 */
2413 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2414 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2415 err = -EINVAL;
2416 goto fail_alloc;
2417 }
2418
2419 /*
2420 * super_copy is zeroed at allocation time and we never touch the
2421 * following bytes up to INFO_SIZE, the checksum is calculated from
2422 * the whole block of INFO_SIZE
2423 */
6c41761f
DS
2424 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2425 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2426 sizeof(*fs_info->super_for_commit));
a061fc8d 2427 brelse(bh);
5f39d397 2428
6c41761f 2429 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2430
1104a885
DS
2431 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2432 if (ret) {
efe120a0 2433 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2434 err = -EINVAL;
2435 goto fail_alloc;
2436 }
2437
6c41761f 2438 disk_super = fs_info->super_copy;
0f7d52f4 2439 if (!btrfs_super_root(disk_super))
16cdcec7 2440 goto fail_alloc;
0f7d52f4 2441
acce952b 2442 /* check FS state, whether FS is broken. */
87533c47
MX
2443 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2444 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2445
af31f5e5
CM
2446 /*
2447 * run through our array of backup supers and setup
2448 * our ring pointer to the oldest one
2449 */
2450 generation = btrfs_super_generation(disk_super);
2451 find_oldest_super_backup(fs_info, generation);
2452
75e7cb7f
LB
2453 /*
2454 * In the long term, we'll store the compression type in the super
2455 * block, and it'll be used for per file compression control.
2456 */
2457 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2458
2b82032c
YZ
2459 ret = btrfs_parse_options(tree_root, options);
2460 if (ret) {
2461 err = ret;
16cdcec7 2462 goto fail_alloc;
2b82032c 2463 }
dfe25020 2464
f2b636e8
JB
2465 features = btrfs_super_incompat_flags(disk_super) &
2466 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2467 if (features) {
2468 printk(KERN_ERR "BTRFS: couldn't mount because of "
2469 "unsupported optional features (%Lx).\n",
c1c9ff7c 2470 features);
f2b636e8 2471 err = -EINVAL;
16cdcec7 2472 goto fail_alloc;
f2b636e8
JB
2473 }
2474
707e8a07
DS
2475 /*
2476 * Leafsize and nodesize were always equal, this is only a sanity check.
2477 */
2478 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2479 btrfs_super_nodesize(disk_super)) {
2480 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2481 "blocksizes don't match. node %d leaf %d\n",
2482 btrfs_super_nodesize(disk_super),
707e8a07 2483 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2484 err = -EINVAL;
2485 goto fail_alloc;
2486 }
707e8a07 2487 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2488 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2489 "blocksize (%d) was too large\n",
707e8a07 2490 btrfs_super_nodesize(disk_super));
727011e0
CM
2491 err = -EINVAL;
2492 goto fail_alloc;
2493 }
2494
5d4f98a2 2495 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2496 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2497 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2498 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2499
3173a18f 2500 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2501 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2502
727011e0
CM
2503 /*
2504 * flag our filesystem as having big metadata blocks if
2505 * they are bigger than the page size
2506 */
707e8a07 2507 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2508 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2509 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2510 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2511 }
2512
bc3f116f 2513 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2514 sectorsize = btrfs_super_sectorsize(disk_super);
2515 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2516 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2517 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2518
2519 /*
2520 * mixed block groups end up with duplicate but slightly offset
2521 * extent buffers for the same range. It leads to corruptions
2522 */
2523 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2524 (sectorsize != nodesize)) {
efe120a0 2525 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2526 "are not allowed for mixed block groups on %s\n",
2527 sb->s_id);
2528 goto fail_alloc;
2529 }
2530
ceda0864
MX
2531 /*
2532 * Needn't use the lock because there is no other task which will
2533 * update the flag.
2534 */
a6fa6fae 2535 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2536
f2b636e8
JB
2537 features = btrfs_super_compat_ro_flags(disk_super) &
2538 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2539 if (!(sb->s_flags & MS_RDONLY) && features) {
2540 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2541 "unsupported option features (%Lx).\n",
c1c9ff7c 2542 features);
f2b636e8 2543 err = -EINVAL;
16cdcec7 2544 goto fail_alloc;
f2b636e8 2545 }
61d92c32 2546
5cdc7ad3 2547 max_active = fs_info->thread_pool_size;
61d92c32 2548
5cdc7ad3
QW
2549 fs_info->workers =
2550 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2551 max_active, 16);
c8b97818 2552
afe3d242
QW
2553 fs_info->delalloc_workers =
2554 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2555
a44903ab
QW
2556 fs_info->flush_workers =
2557 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2558
e66f0bb1
QW
2559 fs_info->caching_workers =
2560 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2561
a8c93d4e
QW
2562 /*
2563 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2564 * likely that bios will be send down in a sane order to the
2565 * devices
2566 */
a8c93d4e
QW
2567 fs_info->submit_workers =
2568 btrfs_alloc_workqueue("submit", flags,
2569 min_t(u64, fs_devices->num_devices,
2570 max_active), 64);
53863232 2571
dc6e3209
QW
2572 fs_info->fixup_workers =
2573 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2574
2575 /*
2576 * endios are largely parallel and should have a very
2577 * low idle thresh
2578 */
fccb5d86
QW
2579 fs_info->endio_workers =
2580 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2581 fs_info->endio_meta_workers =
2582 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2583 fs_info->endio_meta_write_workers =
2584 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2585 fs_info->endio_raid56_workers =
2586 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
8b110e39
MX
2587 fs_info->endio_repair_workers =
2588 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
d05a33ac
QW
2589 fs_info->rmw_workers =
2590 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2591 fs_info->endio_write_workers =
2592 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2593 fs_info->endio_freespace_worker =
2594 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2595 fs_info->delayed_workers =
2596 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2597 fs_info->readahead_workers =
2598 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2599 fs_info->qgroup_rescan_workers =
2600 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2601 fs_info->extent_workers =
2602 btrfs_alloc_workqueue("extent-refs", flags,
2603 min_t(u64, fs_devices->num_devices,
2604 max_active), 8);
61b49440 2605
a8c93d4e 2606 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2607 fs_info->submit_workers && fs_info->flush_workers &&
2608 fs_info->endio_workers && fs_info->endio_meta_workers &&
2609 fs_info->endio_meta_write_workers &&
8b110e39 2610 fs_info->endio_repair_workers &&
fccb5d86 2611 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2612 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2613 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2614 fs_info->fixup_workers && fs_info->delayed_workers &&
56094eec 2615 fs_info->extent_workers &&
fc97fab0 2616 fs_info->qgroup_rescan_workers)) {
fed425c7 2617 err = -ENOMEM;
0dc3b84a
JB
2618 goto fail_sb_buffer;
2619 }
4543df7e 2620
4575c9cc 2621 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2622 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2623 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2624
db94535d 2625 tree_root->nodesize = nodesize;
db94535d 2626 tree_root->sectorsize = sectorsize;
87ee04eb 2627 tree_root->stripesize = stripesize;
a061fc8d
CM
2628
2629 sb->s_blocksize = sectorsize;
2630 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2631
3cae210f 2632 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2633 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2634 goto fail_sb_buffer;
2635 }
19c00ddc 2636
8d082fb7 2637 if (sectorsize != PAGE_SIZE) {
efe120a0 2638 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2639 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2640 goto fail_sb_buffer;
2641 }
2642
925baedd 2643 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2644 ret = btrfs_read_sys_array(tree_root);
925baedd 2645 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2646 if (ret) {
efe120a0 2647 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2648 "array on %s\n", sb->s_id);
5d4f98a2 2649 goto fail_sb_buffer;
84eed90f 2650 }
0b86a832 2651
84234f3a 2652 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2653
707e8a07
DS
2654 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2655 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2656
2657 chunk_root->node = read_tree_block(chunk_root,
2658 btrfs_super_chunk_root(disk_super),
ce86cd59 2659 generation);
416bc658
JB
2660 if (!chunk_root->node ||
2661 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2662 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2663 sb->s_id);
af31f5e5 2664 goto fail_tree_roots;
83121942 2665 }
5d4f98a2
YZ
2666 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2667 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2668
e17cade2 2669 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2670 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2671
0b86a832 2672 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2673 if (ret) {
efe120a0 2674 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2675 sb->s_id);
af31f5e5 2676 goto fail_tree_roots;
2b82032c 2677 }
0b86a832 2678
8dabb742
SB
2679 /*
2680 * keep the device that is marked to be the target device for the
2681 * dev_replace procedure
2682 */
2683 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2684
a6b0d5c8 2685 if (!fs_devices->latest_bdev) {
efe120a0 2686 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2687 sb->s_id);
2688 goto fail_tree_roots;
2689 }
2690
af31f5e5 2691retry_root_backup:
84234f3a 2692 generation = btrfs_super_generation(disk_super);
0b86a832 2693
e20d96d6 2694 tree_root->node = read_tree_block(tree_root,
db94535d 2695 btrfs_super_root(disk_super),
ce86cd59 2696 generation);
af31f5e5
CM
2697 if (!tree_root->node ||
2698 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2699 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2700 sb->s_id);
af31f5e5
CM
2701
2702 goto recovery_tree_root;
83121942 2703 }
af31f5e5 2704
5d4f98a2
YZ
2705 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2706 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2707 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2708
cb517eab
MX
2709 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2710 location.type = BTRFS_ROOT_ITEM_KEY;
2711 location.offset = 0;
2712
2713 extent_root = btrfs_read_tree_root(tree_root, &location);
2714 if (IS_ERR(extent_root)) {
2715 ret = PTR_ERR(extent_root);
af31f5e5 2716 goto recovery_tree_root;
cb517eab 2717 }
27cdeb70 2718 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2719 fs_info->extent_root = extent_root;
0b86a832 2720
cb517eab
MX
2721 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2722 dev_root = btrfs_read_tree_root(tree_root, &location);
2723 if (IS_ERR(dev_root)) {
2724 ret = PTR_ERR(dev_root);
af31f5e5 2725 goto recovery_tree_root;
cb517eab 2726 }
27cdeb70 2727 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2728 fs_info->dev_root = dev_root;
2729 btrfs_init_devices_late(fs_info);
3768f368 2730
cb517eab
MX
2731 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2732 csum_root = btrfs_read_tree_root(tree_root, &location);
2733 if (IS_ERR(csum_root)) {
2734 ret = PTR_ERR(csum_root);
af31f5e5 2735 goto recovery_tree_root;
cb517eab 2736 }
27cdeb70 2737 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2738 fs_info->csum_root = csum_root;
d20f7043 2739
cb517eab
MX
2740 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2741 quota_root = btrfs_read_tree_root(tree_root, &location);
2742 if (!IS_ERR(quota_root)) {
27cdeb70 2743 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2744 fs_info->quota_enabled = 1;
2745 fs_info->pending_quota_state = 1;
cb517eab 2746 fs_info->quota_root = quota_root;
bcef60f2
AJ
2747 }
2748
f7a81ea4
SB
2749 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2750 uuid_root = btrfs_read_tree_root(tree_root, &location);
2751 if (IS_ERR(uuid_root)) {
2752 ret = PTR_ERR(uuid_root);
2753 if (ret != -ENOENT)
2754 goto recovery_tree_root;
2755 create_uuid_tree = true;
70f80175 2756 check_uuid_tree = false;
f7a81ea4 2757 } else {
27cdeb70 2758 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2759 fs_info->uuid_root = uuid_root;
70f80175
SB
2760 create_uuid_tree = false;
2761 check_uuid_tree =
2762 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2763 }
2764
8929ecfa
YZ
2765 fs_info->generation = generation;
2766 fs_info->last_trans_committed = generation;
8929ecfa 2767
68310a5e
ID
2768 ret = btrfs_recover_balance(fs_info);
2769 if (ret) {
efe120a0 2770 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2771 goto fail_block_groups;
2772 }
2773
733f4fbb
SB
2774 ret = btrfs_init_dev_stats(fs_info);
2775 if (ret) {
efe120a0 2776 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2777 ret);
2778 goto fail_block_groups;
2779 }
2780
8dabb742
SB
2781 ret = btrfs_init_dev_replace(fs_info);
2782 if (ret) {
efe120a0 2783 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2784 goto fail_block_groups;
2785 }
2786
2787 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2788
5ac1d209 2789 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2790 if (ret) {
efe120a0 2791 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2792 goto fail_block_groups;
2793 }
2794
c59021f8 2795 ret = btrfs_init_space_info(fs_info);
2796 if (ret) {
efe120a0 2797 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2798 goto fail_sysfs;
c59021f8 2799 }
2800
1b1d1f66
JB
2801 ret = btrfs_read_block_groups(extent_root);
2802 if (ret) {
efe120a0 2803 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2804 goto fail_sysfs;
1b1d1f66 2805 }
5af3e8cc
SB
2806 fs_info->num_tolerated_disk_barrier_failures =
2807 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2808 if (fs_info->fs_devices->missing_devices >
2809 fs_info->num_tolerated_disk_barrier_failures &&
2810 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2811 printk(KERN_WARNING "BTRFS: "
2812 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2813 goto fail_sysfs;
292fd7fc 2814 }
9078a3e1 2815
a74a4b97
CM
2816 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2817 "btrfs-cleaner");
57506d50 2818 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2819 goto fail_sysfs;
a74a4b97
CM
2820
2821 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2822 tree_root,
2823 "btrfs-transaction");
57506d50 2824 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2825 goto fail_cleaner;
a74a4b97 2826
c289811c
CM
2827 if (!btrfs_test_opt(tree_root, SSD) &&
2828 !btrfs_test_opt(tree_root, NOSSD) &&
2829 !fs_info->fs_devices->rotating) {
efe120a0 2830 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2831 "mode\n");
2832 btrfs_set_opt(fs_info->mount_opt, SSD);
2833 }
2834
572d9ab7
DS
2835 /*
2836 * Mount does not set all options immediatelly, we can do it now and do
2837 * not have to wait for transaction commit
2838 */
2839 btrfs_apply_pending_changes(fs_info);
3818aea2 2840
21adbd5c
SB
2841#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2842 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2843 ret = btrfsic_mount(tree_root, fs_devices,
2844 btrfs_test_opt(tree_root,
2845 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2846 1 : 0,
2847 fs_info->check_integrity_print_mask);
2848 if (ret)
efe120a0 2849 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2850 " integrity check module %s\n", sb->s_id);
2851 }
2852#endif
bcef60f2
AJ
2853 ret = btrfs_read_qgroup_config(fs_info);
2854 if (ret)
2855 goto fail_trans_kthread;
21adbd5c 2856
acce952b 2857 /* do not make disk changes in broken FS */
68ce9682 2858 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2859 u64 bytenr = btrfs_super_log_root(disk_super);
2860
7c2ca468 2861 if (fs_devices->rw_devices == 0) {
efe120a0 2862 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2863 "on RO media\n");
7c2ca468 2864 err = -EIO;
bcef60f2 2865 goto fail_qgroup;
7c2ca468 2866 }
d18a2c44 2867
6f07e42e 2868 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2869 if (!log_tree_root) {
2870 err = -ENOMEM;
bcef60f2 2871 goto fail_qgroup;
676e4c86 2872 }
e02119d5 2873
707e8a07 2874 __setup_root(nodesize, sectorsize, stripesize,
e02119d5
CM
2875 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2876
2877 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a 2878 generation + 1);
416bc658
JB
2879 if (!log_tree_root->node ||
2880 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2881 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2882 free_extent_buffer(log_tree_root->node);
2883 kfree(log_tree_root);
28c16cbb 2884 goto fail_qgroup;
416bc658 2885 }
79787eaa 2886 /* returns with log_tree_root freed on success */
e02119d5 2887 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2888 if (ret) {
2889 btrfs_error(tree_root->fs_info, ret,
2890 "Failed to recover log tree");
2891 free_extent_buffer(log_tree_root->node);
2892 kfree(log_tree_root);
28c16cbb 2893 goto fail_qgroup;
79787eaa 2894 }
e556ce2c
YZ
2895
2896 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2897 ret = btrfs_commit_super(tree_root);
2898 if (ret)
28c16cbb 2899 goto fail_qgroup;
e556ce2c 2900 }
e02119d5 2901 }
1a40e23b 2902
76dda93c 2903 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2904 if (ret)
28c16cbb 2905 goto fail_qgroup;
76dda93c 2906
7c2ca468 2907 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2908 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2909 if (ret)
28c16cbb 2910 goto fail_qgroup;
d68fc57b 2911
5f316481 2912 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2913 ret = btrfs_recover_relocation(tree_root);
5f316481 2914 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2915 if (ret < 0) {
2916 printk(KERN_WARNING
efe120a0 2917 "BTRFS: failed to recover relocation\n");
d7ce5843 2918 err = -EINVAL;
bcef60f2 2919 goto fail_qgroup;
d7ce5843 2920 }
7c2ca468 2921 }
1a40e23b 2922
3de4586c
CM
2923 location.objectid = BTRFS_FS_TREE_OBJECTID;
2924 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2925 location.offset = 0;
3de4586c 2926
3de4586c 2927 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2928 if (IS_ERR(fs_info->fs_root)) {
2929 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2930 goto fail_qgroup;
3140c9a3 2931 }
c289811c 2932
2b6ba629
ID
2933 if (sb->s_flags & MS_RDONLY)
2934 return 0;
59641015 2935
2b6ba629
ID
2936 down_read(&fs_info->cleanup_work_sem);
2937 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2938 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2939 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2940 close_ctree(tree_root);
2941 return ret;
2942 }
2943 up_read(&fs_info->cleanup_work_sem);
59641015 2944
2b6ba629
ID
2945 ret = btrfs_resume_balance_async(fs_info);
2946 if (ret) {
efe120a0 2947 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2948 close_ctree(tree_root);
2949 return ret;
e3acc2a6
JB
2950 }
2951
8dabb742
SB
2952 ret = btrfs_resume_dev_replace_async(fs_info);
2953 if (ret) {
efe120a0 2954 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2955 close_ctree(tree_root);
2956 return ret;
2957 }
2958
b382a324
JS
2959 btrfs_qgroup_rescan_resume(fs_info);
2960
f7a81ea4 2961 if (create_uuid_tree) {
efe120a0 2962 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2963 ret = btrfs_create_uuid_tree(fs_info);
2964 if (ret) {
efe120a0 2965 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2966 ret);
2967 close_ctree(tree_root);
2968 return ret;
2969 }
f420ee1e
SB
2970 } else if (check_uuid_tree ||
2971 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2972 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2973 ret = btrfs_check_uuid_tree(fs_info);
2974 if (ret) {
efe120a0 2975 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2976 ret);
2977 close_ctree(tree_root);
2978 return ret;
2979 }
2980 } else {
2981 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2982 }
2983
47ab2a6c
JB
2984 fs_info->open = 1;
2985
ad2b2c80 2986 return 0;
39279cc3 2987
bcef60f2
AJ
2988fail_qgroup:
2989 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2990fail_trans_kthread:
2991 kthread_stop(fs_info->transaction_kthread);
54067ae9 2992 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 2993 btrfs_free_fs_roots(fs_info);
3f157a2f 2994fail_cleaner:
a74a4b97 2995 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2996
2997 /*
2998 * make sure we're done with the btree inode before we stop our
2999 * kthreads
3000 */
3001 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3002
2365dd3c
AJ
3003fail_sysfs:
3004 btrfs_sysfs_remove_one(fs_info);
3005
1b1d1f66 3006fail_block_groups:
54067ae9 3007 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3008 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3009
3010fail_tree_roots:
3011 free_root_pointers(fs_info, 1);
2b8195bb 3012 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3013
39279cc3 3014fail_sb_buffer:
7abadb64 3015 btrfs_stop_all_workers(fs_info);
16cdcec7 3016fail_alloc:
4543df7e 3017fail_iput:
586e46e2
ID
3018 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3019
4543df7e 3020 iput(fs_info->btree_inode);
c404e0dc
MX
3021fail_bio_counter:
3022 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3023fail_delalloc_bytes:
3024 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3025fail_dirty_metadata_bytes:
3026 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3027fail_bdi:
7e662854 3028 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3029fail_srcu:
3030 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3031fail:
53b381b3 3032 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3033 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3034 return err;
af31f5e5
CM
3035
3036recovery_tree_root:
af31f5e5
CM
3037 if (!btrfs_test_opt(tree_root, RECOVERY))
3038 goto fail_tree_roots;
3039
3040 free_root_pointers(fs_info, 0);
3041
3042 /* don't use the log in recovery mode, it won't be valid */
3043 btrfs_set_super_log_root(disk_super, 0);
3044
3045 /* we can't trust the free space cache either */
3046 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3047
3048 ret = next_root_backup(fs_info, fs_info->super_copy,
3049 &num_backups_tried, &backup_index);
3050 if (ret == -1)
3051 goto fail_block_groups;
3052 goto retry_root_backup;
eb60ceac
CM
3053}
3054
f2984462
CM
3055static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3056{
f2984462
CM
3057 if (uptodate) {
3058 set_buffer_uptodate(bh);
3059 } else {
442a4f63
SB
3060 struct btrfs_device *device = (struct btrfs_device *)
3061 bh->b_private;
3062
efe120a0 3063 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3064 "I/O error on %s\n",
3065 rcu_str_deref(device->name));
1259ab75
CM
3066 /* note, we dont' set_buffer_write_io_error because we have
3067 * our own ways of dealing with the IO errors
3068 */
f2984462 3069 clear_buffer_uptodate(bh);
442a4f63 3070 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3071 }
3072 unlock_buffer(bh);
3073 put_bh(bh);
3074}
3075
a512bbf8
YZ
3076struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3077{
3078 struct buffer_head *bh;
3079 struct buffer_head *latest = NULL;
3080 struct btrfs_super_block *super;
3081 int i;
3082 u64 transid = 0;
3083 u64 bytenr;
3084
3085 /* we would like to check all the supers, but that would make
3086 * a btrfs mount succeed after a mkfs from a different FS.
3087 * So, we need to add a special mount option to scan for
3088 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3089 */
3090 for (i = 0; i < 1; i++) {
3091 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3092 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3093 i_size_read(bdev->bd_inode))
a512bbf8 3094 break;
8068a47e
AJ
3095 bh = __bread(bdev, bytenr / 4096,
3096 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3097 if (!bh)
3098 continue;
3099
3100 super = (struct btrfs_super_block *)bh->b_data;
3101 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3102 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3103 brelse(bh);
3104 continue;
3105 }
3106
3107 if (!latest || btrfs_super_generation(super) > transid) {
3108 brelse(latest);
3109 latest = bh;
3110 transid = btrfs_super_generation(super);
3111 } else {
3112 brelse(bh);
3113 }
3114 }
3115 return latest;
3116}
3117
4eedeb75
HH
3118/*
3119 * this should be called twice, once with wait == 0 and
3120 * once with wait == 1. When wait == 0 is done, all the buffer heads
3121 * we write are pinned.
3122 *
3123 * They are released when wait == 1 is done.
3124 * max_mirrors must be the same for both runs, and it indicates how
3125 * many supers on this one device should be written.
3126 *
3127 * max_mirrors == 0 means to write them all.
3128 */
a512bbf8
YZ
3129static int write_dev_supers(struct btrfs_device *device,
3130 struct btrfs_super_block *sb,
3131 int do_barriers, int wait, int max_mirrors)
3132{
3133 struct buffer_head *bh;
3134 int i;
3135 int ret;
3136 int errors = 0;
3137 u32 crc;
3138 u64 bytenr;
a512bbf8
YZ
3139
3140 if (max_mirrors == 0)
3141 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3142
a512bbf8
YZ
3143 for (i = 0; i < max_mirrors; i++) {
3144 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3145 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3146 device->commit_total_bytes)
a512bbf8
YZ
3147 break;
3148
3149 if (wait) {
3150 bh = __find_get_block(device->bdev, bytenr / 4096,
3151 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3152 if (!bh) {
3153 errors++;
3154 continue;
3155 }
a512bbf8 3156 wait_on_buffer(bh);
4eedeb75
HH
3157 if (!buffer_uptodate(bh))
3158 errors++;
3159
3160 /* drop our reference */
3161 brelse(bh);
3162
3163 /* drop the reference from the wait == 0 run */
3164 brelse(bh);
3165 continue;
a512bbf8
YZ
3166 } else {
3167 btrfs_set_super_bytenr(sb, bytenr);
3168
3169 crc = ~(u32)0;
b0496686 3170 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3171 BTRFS_CSUM_SIZE, crc,
3172 BTRFS_SUPER_INFO_SIZE -
3173 BTRFS_CSUM_SIZE);
3174 btrfs_csum_final(crc, sb->csum);
3175
4eedeb75
HH
3176 /*
3177 * one reference for us, and we leave it for the
3178 * caller
3179 */
a512bbf8
YZ
3180 bh = __getblk(device->bdev, bytenr / 4096,
3181 BTRFS_SUPER_INFO_SIZE);
634554dc 3182 if (!bh) {
efe120a0 3183 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3184 "buffer head for bytenr %Lu\n", bytenr);
3185 errors++;
3186 continue;
3187 }
3188
a512bbf8
YZ
3189 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3190
4eedeb75 3191 /* one reference for submit_bh */
a512bbf8 3192 get_bh(bh);
4eedeb75
HH
3193
3194 set_buffer_uptodate(bh);
a512bbf8
YZ
3195 lock_buffer(bh);
3196 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3197 bh->b_private = device;
a512bbf8
YZ
3198 }
3199
387125fc
CM
3200 /*
3201 * we fua the first super. The others we allow
3202 * to go down lazy.
3203 */
e8117c26
WS
3204 if (i == 0)
3205 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3206 else
3207 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3208 if (ret)
a512bbf8 3209 errors++;
a512bbf8
YZ
3210 }
3211 return errors < i ? 0 : -1;
3212}
3213
387125fc
CM
3214/*
3215 * endio for the write_dev_flush, this will wake anyone waiting
3216 * for the barrier when it is done
3217 */
3218static void btrfs_end_empty_barrier(struct bio *bio, int err)
3219{
3220 if (err) {
3221 if (err == -EOPNOTSUPP)
3222 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3223 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3224 }
3225 if (bio->bi_private)
3226 complete(bio->bi_private);
3227 bio_put(bio);
3228}
3229
3230/*
3231 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3232 * sent down. With wait == 1, it waits for the previous flush.
3233 *
3234 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3235 * capable
3236 */
3237static int write_dev_flush(struct btrfs_device *device, int wait)
3238{
3239 struct bio *bio;
3240 int ret = 0;
3241
3242 if (device->nobarriers)
3243 return 0;
3244
3245 if (wait) {
3246 bio = device->flush_bio;
3247 if (!bio)
3248 return 0;
3249
3250 wait_for_completion(&device->flush_wait);
3251
3252 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3253 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3254 rcu_str_deref(device->name));
387125fc 3255 device->nobarriers = 1;
5af3e8cc 3256 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3257 ret = -EIO;
5af3e8cc
SB
3258 btrfs_dev_stat_inc_and_print(device,
3259 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3260 }
3261
3262 /* drop the reference from the wait == 0 run */
3263 bio_put(bio);
3264 device->flush_bio = NULL;
3265
3266 return ret;
3267 }
3268
3269 /*
3270 * one reference for us, and we leave it for the
3271 * caller
3272 */
9c017abc 3273 device->flush_bio = NULL;
9be3395b 3274 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3275 if (!bio)
3276 return -ENOMEM;
3277
3278 bio->bi_end_io = btrfs_end_empty_barrier;
3279 bio->bi_bdev = device->bdev;
3280 init_completion(&device->flush_wait);
3281 bio->bi_private = &device->flush_wait;
3282 device->flush_bio = bio;
3283
3284 bio_get(bio);
21adbd5c 3285 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3286
3287 return 0;
3288}
3289
3290/*
3291 * send an empty flush down to each device in parallel,
3292 * then wait for them
3293 */
3294static int barrier_all_devices(struct btrfs_fs_info *info)
3295{
3296 struct list_head *head;
3297 struct btrfs_device *dev;
5af3e8cc
SB
3298 int errors_send = 0;
3299 int errors_wait = 0;
387125fc
CM
3300 int ret;
3301
3302 /* send down all the barriers */
3303 head = &info->fs_devices->devices;
3304 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3305 if (dev->missing)
3306 continue;
387125fc 3307 if (!dev->bdev) {
5af3e8cc 3308 errors_send++;
387125fc
CM
3309 continue;
3310 }
3311 if (!dev->in_fs_metadata || !dev->writeable)
3312 continue;
3313
3314 ret = write_dev_flush(dev, 0);
3315 if (ret)
5af3e8cc 3316 errors_send++;
387125fc
CM
3317 }
3318
3319 /* wait for all the barriers */
3320 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3321 if (dev->missing)
3322 continue;
387125fc 3323 if (!dev->bdev) {
5af3e8cc 3324 errors_wait++;
387125fc
CM
3325 continue;
3326 }
3327 if (!dev->in_fs_metadata || !dev->writeable)
3328 continue;
3329
3330 ret = write_dev_flush(dev, 1);
3331 if (ret)
5af3e8cc 3332 errors_wait++;
387125fc 3333 }
5af3e8cc
SB
3334 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3335 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3336 return -EIO;
3337 return 0;
3338}
3339
5af3e8cc
SB
3340int btrfs_calc_num_tolerated_disk_barrier_failures(
3341 struct btrfs_fs_info *fs_info)
3342{
3343 struct btrfs_ioctl_space_info space;
3344 struct btrfs_space_info *sinfo;
3345 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3346 BTRFS_BLOCK_GROUP_SYSTEM,
3347 BTRFS_BLOCK_GROUP_METADATA,
3348 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3349 int num_types = 4;
3350 int i;
3351 int c;
3352 int num_tolerated_disk_barrier_failures =
3353 (int)fs_info->fs_devices->num_devices;
3354
3355 for (i = 0; i < num_types; i++) {
3356 struct btrfs_space_info *tmp;
3357
3358 sinfo = NULL;
3359 rcu_read_lock();
3360 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3361 if (tmp->flags == types[i]) {
3362 sinfo = tmp;
3363 break;
3364 }
3365 }
3366 rcu_read_unlock();
3367
3368 if (!sinfo)
3369 continue;
3370
3371 down_read(&sinfo->groups_sem);
3372 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3373 if (!list_empty(&sinfo->block_groups[c])) {
3374 u64 flags;
3375
3376 btrfs_get_block_group_info(
3377 &sinfo->block_groups[c], &space);
3378 if (space.total_bytes == 0 ||
3379 space.used_bytes == 0)
3380 continue;
3381 flags = space.flags;
3382 /*
3383 * return
3384 * 0: if dup, single or RAID0 is configured for
3385 * any of metadata, system or data, else
3386 * 1: if RAID5 is configured, or if RAID1 or
3387 * RAID10 is configured and only two mirrors
3388 * are used, else
3389 * 2: if RAID6 is configured, else
3390 * num_mirrors - 1: if RAID1 or RAID10 is
3391 * configured and more than
3392 * 2 mirrors are used.
3393 */
3394 if (num_tolerated_disk_barrier_failures > 0 &&
3395 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3396 BTRFS_BLOCK_GROUP_RAID0)) ||
3397 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3398 == 0)))
3399 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3400 else if (num_tolerated_disk_barrier_failures > 1) {
3401 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3402 BTRFS_BLOCK_GROUP_RAID5 |
3403 BTRFS_BLOCK_GROUP_RAID10)) {
3404 num_tolerated_disk_barrier_failures = 1;
3405 } else if (flags &
15b0a89d 3406 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3407 num_tolerated_disk_barrier_failures = 2;
3408 }
3409 }
5af3e8cc
SB
3410 }
3411 }
3412 up_read(&sinfo->groups_sem);
3413 }
3414
3415 return num_tolerated_disk_barrier_failures;
3416}
3417
48a3b636 3418static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3419{
e5e9a520 3420 struct list_head *head;
f2984462 3421 struct btrfs_device *dev;
a061fc8d 3422 struct btrfs_super_block *sb;
f2984462 3423 struct btrfs_dev_item *dev_item;
f2984462
CM
3424 int ret;
3425 int do_barriers;
a236aed1
CM
3426 int max_errors;
3427 int total_errors = 0;
a061fc8d 3428 u64 flags;
f2984462
CM
3429
3430 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3431 backup_super_roots(root->fs_info);
f2984462 3432
6c41761f 3433 sb = root->fs_info->super_for_commit;
a061fc8d 3434 dev_item = &sb->dev_item;
e5e9a520 3435
174ba509 3436 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3437 head = &root->fs_info->fs_devices->devices;
d7306801 3438 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3439
5af3e8cc
SB
3440 if (do_barriers) {
3441 ret = barrier_all_devices(root->fs_info);
3442 if (ret) {
3443 mutex_unlock(
3444 &root->fs_info->fs_devices->device_list_mutex);
3445 btrfs_error(root->fs_info, ret,
3446 "errors while submitting device barriers.");
3447 return ret;
3448 }
3449 }
387125fc 3450
1f78160c 3451 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3452 if (!dev->bdev) {
3453 total_errors++;
3454 continue;
3455 }
2b82032c 3456 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3457 continue;
3458
2b82032c 3459 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3460 btrfs_set_stack_device_type(dev_item, dev->type);
3461 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3462 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3463 dev->commit_total_bytes);
ce7213c7
MX
3464 btrfs_set_stack_device_bytes_used(dev_item,
3465 dev->commit_bytes_used);
a061fc8d
CM
3466 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3467 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3468 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3469 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3470 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3471
a061fc8d
CM
3472 flags = btrfs_super_flags(sb);
3473 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3474
a512bbf8 3475 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3476 if (ret)
3477 total_errors++;
f2984462 3478 }
a236aed1 3479 if (total_errors > max_errors) {
efe120a0 3480 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3481 total_errors);
a724b436 3482 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3483
9d565ba4
SB
3484 /* FUA is masked off if unsupported and can't be the reason */
3485 btrfs_error(root->fs_info, -EIO,
3486 "%d errors while writing supers", total_errors);
3487 return -EIO;
a236aed1 3488 }
f2984462 3489
a512bbf8 3490 total_errors = 0;
1f78160c 3491 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3492 if (!dev->bdev)
3493 continue;
2b82032c 3494 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3495 continue;
3496
a512bbf8
YZ
3497 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3498 if (ret)
3499 total_errors++;
f2984462 3500 }
174ba509 3501 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3502 if (total_errors > max_errors) {
79787eaa
JM
3503 btrfs_error(root->fs_info, -EIO,
3504 "%d errors while writing supers", total_errors);
3505 return -EIO;
a236aed1 3506 }
f2984462
CM
3507 return 0;
3508}
3509
a512bbf8
YZ
3510int write_ctree_super(struct btrfs_trans_handle *trans,
3511 struct btrfs_root *root, int max_mirrors)
eb60ceac 3512{
f570e757 3513 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3514}
3515
cb517eab
MX
3516/* Drop a fs root from the radix tree and free it. */
3517void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3518 struct btrfs_root *root)
2619ba1f 3519{
4df27c4d 3520 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3521 radix_tree_delete(&fs_info->fs_roots_radix,
3522 (unsigned long)root->root_key.objectid);
4df27c4d 3523 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3524
3525 if (btrfs_root_refs(&root->root_item) == 0)
3526 synchronize_srcu(&fs_info->subvol_srcu);
3527
1a4319cc 3528 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3529 btrfs_free_log(NULL, root);
3321719e 3530
faa2dbf0
JB
3531 if (root->free_ino_pinned)
3532 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3533 if (root->free_ino_ctl)
3534 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3535 free_fs_root(root);
4df27c4d
YZ
3536}
3537
3538static void free_fs_root(struct btrfs_root *root)
3539{
57cdc8db 3540 iput(root->ino_cache_inode);
4df27c4d 3541 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3542 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3543 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3544 if (root->anon_dev)
3545 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3546 if (root->subv_writers)
3547 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3548 free_extent_buffer(root->node);
3549 free_extent_buffer(root->commit_root);
581bb050
LZ
3550 kfree(root->free_ino_ctl);
3551 kfree(root->free_ino_pinned);
d397712b 3552 kfree(root->name);
b0feb9d9 3553 btrfs_put_fs_root(root);
2619ba1f
CM
3554}
3555
cb517eab
MX
3556void btrfs_free_fs_root(struct btrfs_root *root)
3557{
3558 free_fs_root(root);
2619ba1f
CM
3559}
3560
c146afad 3561int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3562{
c146afad
YZ
3563 u64 root_objectid = 0;
3564 struct btrfs_root *gang[8];
65d33fd7
QW
3565 int i = 0;
3566 int err = 0;
3567 unsigned int ret = 0;
3568 int index;
e089f05c 3569
c146afad 3570 while (1) {
65d33fd7 3571 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3572 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3573 (void **)gang, root_objectid,
3574 ARRAY_SIZE(gang));
65d33fd7
QW
3575 if (!ret) {
3576 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3577 break;
65d33fd7 3578 }
5d4f98a2 3579 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3580
c146afad 3581 for (i = 0; i < ret; i++) {
65d33fd7
QW
3582 /* Avoid to grab roots in dead_roots */
3583 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3584 gang[i] = NULL;
3585 continue;
3586 }
3587 /* grab all the search result for later use */
3588 gang[i] = btrfs_grab_fs_root(gang[i]);
3589 }
3590 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3591
65d33fd7
QW
3592 for (i = 0; i < ret; i++) {
3593 if (!gang[i])
3594 continue;
c146afad 3595 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3596 err = btrfs_orphan_cleanup(gang[i]);
3597 if (err)
65d33fd7
QW
3598 break;
3599 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3600 }
3601 root_objectid++;
3602 }
65d33fd7
QW
3603
3604 /* release the uncleaned roots due to error */
3605 for (; i < ret; i++) {
3606 if (gang[i])
3607 btrfs_put_fs_root(gang[i]);
3608 }
3609 return err;
c146afad 3610}
a2135011 3611
c146afad
YZ
3612int btrfs_commit_super(struct btrfs_root *root)
3613{
3614 struct btrfs_trans_handle *trans;
a74a4b97 3615
c146afad 3616 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3617 btrfs_run_delayed_iputs(root);
c146afad 3618 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3619 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3620
3621 /* wait until ongoing cleanup work done */
3622 down_write(&root->fs_info->cleanup_work_sem);
3623 up_write(&root->fs_info->cleanup_work_sem);
3624
7a7eaa40 3625 trans = btrfs_join_transaction(root);
3612b495
TI
3626 if (IS_ERR(trans))
3627 return PTR_ERR(trans);
d52c1bcc 3628 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3629}
3630
3abdbd78 3631void close_ctree(struct btrfs_root *root)
c146afad
YZ
3632{
3633 struct btrfs_fs_info *fs_info = root->fs_info;
3634 int ret;
3635
3636 fs_info->closing = 1;
3637 smp_mb();
3638
803b2f54
SB
3639 /* wait for the uuid_scan task to finish */
3640 down(&fs_info->uuid_tree_rescan_sem);
3641 /* avoid complains from lockdep et al., set sem back to initial state */
3642 up(&fs_info->uuid_tree_rescan_sem);
3643
837d5b6e 3644 /* pause restriper - we want to resume on mount */
aa1b8cd4 3645 btrfs_pause_balance(fs_info);
837d5b6e 3646
8dabb742
SB
3647 btrfs_dev_replace_suspend_for_unmount(fs_info);
3648
aa1b8cd4 3649 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3650
3651 /* wait for any defraggers to finish */
3652 wait_event(fs_info->transaction_wait,
3653 (atomic_read(&fs_info->defrag_running) == 0));
3654
3655 /* clear out the rbtree of defraggable inodes */
26176e7c 3656 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3657
21c7e756
MX
3658 cancel_work_sync(&fs_info->async_reclaim_work);
3659
c146afad 3660 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3661 ret = btrfs_commit_super(root);
3662 if (ret)
efe120a0 3663 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3664 }
3665
87533c47 3666 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3667 btrfs_error_commit_super(root);
0f7d52f4 3668
e3029d9f
AV
3669 kthread_stop(fs_info->transaction_kthread);
3670 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3671
f25784b3
YZ
3672 fs_info->closing = 2;
3673 smp_mb();
3674
bcef60f2
AJ
3675 btrfs_free_qgroup_config(root->fs_info);
3676
963d678b 3677 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3678 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3679 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3680 }
bcc63abb 3681
5ac1d209
JM
3682 btrfs_sysfs_remove_one(fs_info);
3683
faa2dbf0 3684 btrfs_free_fs_roots(fs_info);
d10c5f31 3685
1a4319cc
LB
3686 btrfs_put_block_group_cache(fs_info);
3687
2b1360da
JB
3688 btrfs_free_block_groups(fs_info);
3689
de348ee0
WS
3690 /*
3691 * we must make sure there is not any read request to
3692 * submit after we stopping all workers.
3693 */
3694 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3695 btrfs_stop_all_workers(fs_info);
3696
47ab2a6c 3697 fs_info->open = 0;
13e6c37b 3698 free_root_pointers(fs_info, 1);
9ad6b7bc 3699
13e6c37b 3700 iput(fs_info->btree_inode);
d6bfde87 3701
21adbd5c
SB
3702#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3703 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3704 btrfsic_unmount(root, fs_info->fs_devices);
3705#endif
3706
dfe25020 3707 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3708 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3709
e2d84521 3710 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3711 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3712 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3713 bdi_destroy(&fs_info->bdi);
76dda93c 3714 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3715
53b381b3
DW
3716 btrfs_free_stripe_hash_table(fs_info);
3717
1cb048f5
FDBM
3718 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3719 root->orphan_block_rsv = NULL;
04216820
FM
3720
3721 lock_chunks(root);
3722 while (!list_empty(&fs_info->pinned_chunks)) {
3723 struct extent_map *em;
3724
3725 em = list_first_entry(&fs_info->pinned_chunks,
3726 struct extent_map, list);
3727 list_del_init(&em->list);
3728 free_extent_map(em);
3729 }
3730 unlock_chunks(root);
eb60ceac
CM
3731}
3732
b9fab919
CM
3733int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3734 int atomic)
5f39d397 3735{
1259ab75 3736 int ret;
727011e0 3737 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3738
0b32f4bb 3739 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3740 if (!ret)
3741 return ret;
3742
3743 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3744 parent_transid, atomic);
3745 if (ret == -EAGAIN)
3746 return ret;
1259ab75 3747 return !ret;
5f39d397
CM
3748}
3749
3750int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3751{
0b32f4bb 3752 return set_extent_buffer_uptodate(buf);
5f39d397 3753}
6702ed49 3754
5f39d397
CM
3755void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3756{
06ea65a3 3757 struct btrfs_root *root;
5f39d397 3758 u64 transid = btrfs_header_generation(buf);
b9473439 3759 int was_dirty;
b4ce94de 3760
06ea65a3
JB
3761#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3762 /*
3763 * This is a fast path so only do this check if we have sanity tests
3764 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3765 * outside of the sanity tests.
3766 */
3767 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3768 return;
3769#endif
3770 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3771 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3772 if (transid != root->fs_info->generation)
3773 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3774 "found %llu running %llu\n",
c1c9ff7c 3775 buf->start, transid, root->fs_info->generation);
0b32f4bb 3776 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3777 if (!was_dirty)
3778 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3779 buf->len,
3780 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3781#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3782 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3783 btrfs_print_leaf(root, buf);
3784 ASSERT(0);
3785 }
3786#endif
eb60ceac
CM
3787}
3788
b53d3f5d
LB
3789static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3790 int flush_delayed)
16cdcec7
MX
3791{
3792 /*
3793 * looks as though older kernels can get into trouble with
3794 * this code, they end up stuck in balance_dirty_pages forever
3795 */
e2d84521 3796 int ret;
16cdcec7
MX
3797
3798 if (current->flags & PF_MEMALLOC)
3799 return;
3800
b53d3f5d
LB
3801 if (flush_delayed)
3802 btrfs_balance_delayed_items(root);
16cdcec7 3803
e2d84521
MX
3804 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3805 BTRFS_DIRTY_METADATA_THRESH);
3806 if (ret > 0) {
d0e1d66b
NJ
3807 balance_dirty_pages_ratelimited(
3808 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3809 }
3810 return;
3811}
3812
b53d3f5d 3813void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3814{
b53d3f5d
LB
3815 __btrfs_btree_balance_dirty(root, 1);
3816}
585ad2c3 3817
b53d3f5d
LB
3818void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3819{
3820 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3821}
6b80053d 3822
ca7a79ad 3823int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3824{
727011e0 3825 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3826 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3827}
0da5468f 3828
fcd1f065 3829static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3830 int read_only)
3831{
c926093e
DS
3832 struct btrfs_super_block *sb = fs_info->super_copy;
3833 int ret = 0;
3834
21e7626b
DS
3835 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3836 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3837 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3838 ret = -EINVAL;
3839 }
21e7626b
DS
3840 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3841 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3842 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3843 ret = -EINVAL;
3844 }
21e7626b
DS
3845 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3846 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3847 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3848 ret = -EINVAL;
3849 }
3850
1104a885 3851 /*
c926093e
DS
3852 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3853 * items yet, they'll be verified later. Issue just a warning.
1104a885 3854 */
21e7626b 3855 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 3856 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 3857 btrfs_super_root(sb));
21e7626b 3858 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
3859 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3860 btrfs_super_chunk_root(sb));
21e7626b 3861 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 3862 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 3863 btrfs_super_log_root(sb));
c926093e
DS
3864
3865 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3866 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3867 fs_info->fsid, sb->dev_item.fsid);
3868 ret = -EINVAL;
3869 }
3870
3871 /*
3872 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3873 * done later
3874 */
21e7626b 3875 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 3876 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 3877 btrfs_super_num_devices(sb));
c926093e 3878
21e7626b 3879 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 3880 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 3881 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
3882 ret = -EINVAL;
3883 }
3884
3885 /*
3886 * The generation is a global counter, we'll trust it more than the others
3887 * but it's still possible that it's the one that's wrong.
3888 */
21e7626b 3889 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
3890 printk(KERN_WARNING
3891 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
3892 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3893 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3894 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
3895 printk(KERN_WARNING
3896 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 3897 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
3898
3899 return ret;
acce952b 3900}
3901
48a3b636 3902static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3903{
acce952b 3904 mutex_lock(&root->fs_info->cleaner_mutex);
3905 btrfs_run_delayed_iputs(root);
3906 mutex_unlock(&root->fs_info->cleaner_mutex);
3907
3908 down_write(&root->fs_info->cleanup_work_sem);
3909 up_write(&root->fs_info->cleanup_work_sem);
3910
3911 /* cleanup FS via transaction */
3912 btrfs_cleanup_transaction(root);
acce952b 3913}
3914
143bede5 3915static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3916{
acce952b 3917 struct btrfs_ordered_extent *ordered;
acce952b 3918
199c2a9c 3919 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3920 /*
3921 * This will just short circuit the ordered completion stuff which will
3922 * make sure the ordered extent gets properly cleaned up.
3923 */
199c2a9c 3924 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3925 root_extent_list)
3926 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3927 spin_unlock(&root->ordered_extent_lock);
3928}
3929
3930static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3931{
3932 struct btrfs_root *root;
3933 struct list_head splice;
3934
3935 INIT_LIST_HEAD(&splice);
3936
3937 spin_lock(&fs_info->ordered_root_lock);
3938 list_splice_init(&fs_info->ordered_roots, &splice);
3939 while (!list_empty(&splice)) {
3940 root = list_first_entry(&splice, struct btrfs_root,
3941 ordered_root);
1de2cfde
JB
3942 list_move_tail(&root->ordered_root,
3943 &fs_info->ordered_roots);
199c2a9c 3944
2a85d9ca 3945 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3946 btrfs_destroy_ordered_extents(root);
3947
2a85d9ca
LB
3948 cond_resched();
3949 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3950 }
3951 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3952}
3953
35a3621b
SB
3954static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3955 struct btrfs_root *root)
acce952b 3956{
3957 struct rb_node *node;
3958 struct btrfs_delayed_ref_root *delayed_refs;
3959 struct btrfs_delayed_ref_node *ref;
3960 int ret = 0;
3961
3962 delayed_refs = &trans->delayed_refs;
3963
3964 spin_lock(&delayed_refs->lock);
d7df2c79 3965 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3966 spin_unlock(&delayed_refs->lock);
efe120a0 3967 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3968 return ret;
3969 }
3970
d7df2c79
JB
3971 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3972 struct btrfs_delayed_ref_head *head;
e78417d1 3973 bool pin_bytes = false;
acce952b 3974
d7df2c79
JB
3975 head = rb_entry(node, struct btrfs_delayed_ref_head,
3976 href_node);
3977 if (!mutex_trylock(&head->mutex)) {
3978 atomic_inc(&head->node.refs);
3979 spin_unlock(&delayed_refs->lock);
eb12db69 3980
d7df2c79 3981 mutex_lock(&head->mutex);
e78417d1 3982 mutex_unlock(&head->mutex);
d7df2c79
JB
3983 btrfs_put_delayed_ref(&head->node);
3984 spin_lock(&delayed_refs->lock);
3985 continue;
3986 }
3987 spin_lock(&head->lock);
3988 while ((node = rb_first(&head->ref_root)) != NULL) {
3989 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3990 rb_node);
3991 ref->in_tree = 0;
3992 rb_erase(&ref->rb_node, &head->ref_root);
3993 atomic_dec(&delayed_refs->num_entries);
3994 btrfs_put_delayed_ref(ref);
e78417d1 3995 }
d7df2c79
JB
3996 if (head->must_insert_reserved)
3997 pin_bytes = true;
3998 btrfs_free_delayed_extent_op(head->extent_op);
3999 delayed_refs->num_heads--;
4000 if (head->processing == 0)
4001 delayed_refs->num_heads_ready--;
4002 atomic_dec(&delayed_refs->num_entries);
4003 head->node.in_tree = 0;
4004 rb_erase(&head->href_node, &delayed_refs->href_root);
4005 spin_unlock(&head->lock);
4006 spin_unlock(&delayed_refs->lock);
4007 mutex_unlock(&head->mutex);
acce952b 4008
d7df2c79
JB
4009 if (pin_bytes)
4010 btrfs_pin_extent(root, head->node.bytenr,
4011 head->node.num_bytes, 1);
4012 btrfs_put_delayed_ref(&head->node);
acce952b 4013 cond_resched();
4014 spin_lock(&delayed_refs->lock);
4015 }
4016
4017 spin_unlock(&delayed_refs->lock);
4018
4019 return ret;
4020}
4021
143bede5 4022static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4023{
4024 struct btrfs_inode *btrfs_inode;
4025 struct list_head splice;
4026
4027 INIT_LIST_HEAD(&splice);
4028
eb73c1b7
MX
4029 spin_lock(&root->delalloc_lock);
4030 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4031
4032 while (!list_empty(&splice)) {
eb73c1b7
MX
4033 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4034 delalloc_inodes);
acce952b 4035
4036 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4037 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4038 &btrfs_inode->runtime_flags);
eb73c1b7 4039 spin_unlock(&root->delalloc_lock);
acce952b 4040
4041 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4042
eb73c1b7 4043 spin_lock(&root->delalloc_lock);
acce952b 4044 }
4045
eb73c1b7
MX
4046 spin_unlock(&root->delalloc_lock);
4047}
4048
4049static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4050{
4051 struct btrfs_root *root;
4052 struct list_head splice;
4053
4054 INIT_LIST_HEAD(&splice);
4055
4056 spin_lock(&fs_info->delalloc_root_lock);
4057 list_splice_init(&fs_info->delalloc_roots, &splice);
4058 while (!list_empty(&splice)) {
4059 root = list_first_entry(&splice, struct btrfs_root,
4060 delalloc_root);
4061 list_del_init(&root->delalloc_root);
4062 root = btrfs_grab_fs_root(root);
4063 BUG_ON(!root);
4064 spin_unlock(&fs_info->delalloc_root_lock);
4065
4066 btrfs_destroy_delalloc_inodes(root);
4067 btrfs_put_fs_root(root);
4068
4069 spin_lock(&fs_info->delalloc_root_lock);
4070 }
4071 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4072}
4073
4074static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4075 struct extent_io_tree *dirty_pages,
4076 int mark)
4077{
4078 int ret;
acce952b 4079 struct extent_buffer *eb;
4080 u64 start = 0;
4081 u64 end;
acce952b 4082
4083 while (1) {
4084 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4085 mark, NULL);
acce952b 4086 if (ret)
4087 break;
4088
4089 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4090 while (start <= end) {
0308af44 4091 eb = btrfs_find_tree_block(root, start);
707e8a07 4092 start += root->nodesize;
fd8b2b61 4093 if (!eb)
acce952b 4094 continue;
fd8b2b61 4095 wait_on_extent_buffer_writeback(eb);
acce952b 4096
fd8b2b61
JB
4097 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4098 &eb->bflags))
4099 clear_extent_buffer_dirty(eb);
4100 free_extent_buffer_stale(eb);
acce952b 4101 }
4102 }
4103
4104 return ret;
4105}
4106
4107static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4108 struct extent_io_tree *pinned_extents)
4109{
4110 struct extent_io_tree *unpin;
4111 u64 start;
4112 u64 end;
4113 int ret;
ed0eaa14 4114 bool loop = true;
acce952b 4115
4116 unpin = pinned_extents;
ed0eaa14 4117again:
acce952b 4118 while (1) {
4119 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4120 EXTENT_DIRTY, NULL);
acce952b 4121 if (ret)
4122 break;
4123
acce952b 4124 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4125 btrfs_error_unpin_extent_range(root, start, end);
4126 cond_resched();
4127 }
4128
ed0eaa14
LB
4129 if (loop) {
4130 if (unpin == &root->fs_info->freed_extents[0])
4131 unpin = &root->fs_info->freed_extents[1];
4132 else
4133 unpin = &root->fs_info->freed_extents[0];
4134 loop = false;
4135 goto again;
4136 }
4137
acce952b 4138 return 0;
4139}
4140
50d9aa99
JB
4141static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4142 struct btrfs_fs_info *fs_info)
4143{
4144 struct btrfs_ordered_extent *ordered;
4145
4146 spin_lock(&fs_info->trans_lock);
4147 while (!list_empty(&cur_trans->pending_ordered)) {
4148 ordered = list_first_entry(&cur_trans->pending_ordered,
4149 struct btrfs_ordered_extent,
4150 trans_list);
4151 list_del_init(&ordered->trans_list);
4152 spin_unlock(&fs_info->trans_lock);
4153
4154 btrfs_put_ordered_extent(ordered);
4155 spin_lock(&fs_info->trans_lock);
4156 }
4157 spin_unlock(&fs_info->trans_lock);
4158}
4159
49b25e05
JM
4160void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4161 struct btrfs_root *root)
4162{
4163 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4164
4a9d8bde 4165 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4166 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4167
4a9d8bde 4168 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4169 wake_up(&root->fs_info->transaction_wait);
49b25e05 4170
50d9aa99 4171 btrfs_free_pending_ordered(cur_trans, root->fs_info);
67cde344
MX
4172 btrfs_destroy_delayed_inodes(root);
4173 btrfs_assert_delayed_root_empty(root);
49b25e05 4174
49b25e05
JM
4175 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4176 EXTENT_DIRTY);
6e841e32
LB
4177 btrfs_destroy_pinned_extent(root,
4178 root->fs_info->pinned_extents);
49b25e05 4179
4a9d8bde
MX
4180 cur_trans->state =TRANS_STATE_COMPLETED;
4181 wake_up(&cur_trans->commit_wait);
4182
49b25e05
JM
4183 /*
4184 memset(cur_trans, 0, sizeof(*cur_trans));
4185 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4186 */
4187}
4188
48a3b636 4189static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4190{
4191 struct btrfs_transaction *t;
acce952b 4192
acce952b 4193 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4194
a4abeea4 4195 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4196 while (!list_empty(&root->fs_info->trans_list)) {
4197 t = list_first_entry(&root->fs_info->trans_list,
4198 struct btrfs_transaction, list);
4199 if (t->state >= TRANS_STATE_COMMIT_START) {
4200 atomic_inc(&t->use_count);
4201 spin_unlock(&root->fs_info->trans_lock);
4202 btrfs_wait_for_commit(root, t->transid);
4203 btrfs_put_transaction(t);
4204 spin_lock(&root->fs_info->trans_lock);
4205 continue;
4206 }
4207 if (t == root->fs_info->running_transaction) {
4208 t->state = TRANS_STATE_COMMIT_DOING;
4209 spin_unlock(&root->fs_info->trans_lock);
4210 /*
4211 * We wait for 0 num_writers since we don't hold a trans
4212 * handle open currently for this transaction.
4213 */
4214 wait_event(t->writer_wait,
4215 atomic_read(&t->num_writers) == 0);
4216 } else {
4217 spin_unlock(&root->fs_info->trans_lock);
4218 }
4219 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4220
724e2315
JB
4221 spin_lock(&root->fs_info->trans_lock);
4222 if (t == root->fs_info->running_transaction)
4223 root->fs_info->running_transaction = NULL;
acce952b 4224 list_del_init(&t->list);
724e2315 4225 spin_unlock(&root->fs_info->trans_lock);
acce952b 4226
724e2315
JB
4227 btrfs_put_transaction(t);
4228 trace_btrfs_transaction_commit(root);
4229 spin_lock(&root->fs_info->trans_lock);
4230 }
4231 spin_unlock(&root->fs_info->trans_lock);
4232 btrfs_destroy_all_ordered_extents(root->fs_info);
4233 btrfs_destroy_delayed_inodes(root);
4234 btrfs_assert_delayed_root_empty(root);
4235 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4236 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4237 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4238
4239 return 0;
4240}
4241
d1310b2e 4242static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4243 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4244 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4245 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4246 /* note we're sharing with inode.c for the merge bio hook */
4247 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4248};