btrfs: let merge_reloc_roots return void
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
19c00ddc
CM
277static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
278 int verify)
279{
6c41761f 280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 281 char *result = NULL;
19c00ddc
CM
282 unsigned long len;
283 unsigned long cur_len;
284 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
285 char *kaddr;
286 unsigned long map_start;
287 unsigned long map_len;
288 int err;
289 u32 crc = ~(u32)0;
607d432d 290 unsigned long inline_result;
19c00ddc
CM
291
292 len = buf->len - offset;
d397712b 293 while (len > 0) {
19c00ddc 294 err = map_private_extent_buffer(buf, offset, 32,
a6591715 295 &kaddr, &map_start, &map_len);
d397712b 296 if (err)
19c00ddc 297 return 1;
19c00ddc 298 cur_len = min(len, map_len - (offset - map_start));
b0496686 299 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
300 crc, cur_len);
301 len -= cur_len;
302 offset += cur_len;
19c00ddc 303 }
607d432d
JB
304 if (csum_size > sizeof(inline_result)) {
305 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
306 if (!result)
307 return 1;
308 } else {
309 result = (char *)&inline_result;
310 }
311
19c00ddc
CM
312 btrfs_csum_final(crc, result);
313
314 if (verify) {
607d432d 315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
316 u32 val;
317 u32 found = 0;
607d432d 318 memcpy(&found, result, csum_size);
e4204ded 319
607d432d 320 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
321 printk_ratelimited(KERN_INFO
322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
323 "level %d\n",
324 root->fs_info->sb->s_id, buf->start,
325 val, found, btrfs_header_level(buf));
607d432d
JB
326 if (result != (char *)&inline_result)
327 kfree(result);
19c00ddc
CM
328 return 1;
329 }
330 } else {
607d432d 331 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 332 }
607d432d
JB
333 if (result != (char *)&inline_result)
334 kfree(result);
19c00ddc
CM
335 return 0;
336}
337
d352ac68
CM
338/*
339 * we can't consider a given block up to date unless the transid of the
340 * block matches the transid in the parent node's pointer. This is how we
341 * detect blocks that either didn't get written at all or got written
342 * in the wrong place.
343 */
1259ab75 344static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
345 struct extent_buffer *eb, u64 parent_transid,
346 int atomic)
1259ab75 347{
2ac55d41 348 struct extent_state *cached_state = NULL;
1259ab75 349 int ret;
a26e8c9f
JB
350 bool need_lock = (current->journal_info ==
351 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
b9fab919
CM
356 if (atomic)
357 return -EAGAIN;
358
a26e8c9f
JB
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
2ac55d41 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 365 0, &cached_state);
0b32f4bb 366 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
29549aec
WS
371 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
372 eb->fs_info->sb->s_id, eb->start,
373 parent_transid, btrfs_header_generation(eb));
1259ab75 374 ret = 1;
a26e8c9f
JB
375
376 /*
377 * Things reading via commit roots that don't have normal protection,
378 * like send, can have a really old block in cache that may point at a
379 * block that has been free'd and re-allocated. So don't clear uptodate
380 * if we find an eb that is under IO (dirty/writeback) because we could
381 * end up reading in the stale data and then writing it back out and
382 * making everybody very sad.
383 */
384 if (!extent_buffer_under_io(eb))
385 clear_extent_buffer_uptodate(eb);
33958dc6 386out:
2ac55d41
JB
387 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
388 &cached_state, GFP_NOFS);
472b909f
JB
389 if (need_lock)
390 btrfs_tree_read_unlock_blocking(eb);
1259ab75 391 return ret;
1259ab75
CM
392}
393
1104a885
DS
394/*
395 * Return 0 if the superblock checksum type matches the checksum value of that
396 * algorithm. Pass the raw disk superblock data.
397 */
398static int btrfs_check_super_csum(char *raw_disk_sb)
399{
400 struct btrfs_super_block *disk_sb =
401 (struct btrfs_super_block *)raw_disk_sb;
402 u16 csum_type = btrfs_super_csum_type(disk_sb);
403 int ret = 0;
404
405 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
406 u32 crc = ~(u32)0;
407 const int csum_size = sizeof(crc);
408 char result[csum_size];
409
410 /*
411 * The super_block structure does not span the whole
412 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
413 * is filled with zeros and is included in the checkum.
414 */
415 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
416 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
417 btrfs_csum_final(crc, result);
418
419 if (memcmp(raw_disk_sb, result, csum_size))
420 ret = 1;
667e7d94
CM
421
422 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
423 printk(KERN_WARNING
424 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
425 ret = 0;
426 }
1104a885
DS
427 }
428
429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 430 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
431 csum_type);
432 ret = 1;
433 }
434
435 return ret;
436}
437
d352ac68
CM
438/*
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
441 */
f188591e
CM
442static int btree_read_extent_buffer_pages(struct btrfs_root *root,
443 struct extent_buffer *eb,
ca7a79ad 444 u64 start, u64 parent_transid)
f188591e
CM
445{
446 struct extent_io_tree *io_tree;
ea466794 447 int failed = 0;
f188591e
CM
448 int ret;
449 int num_copies = 0;
450 int mirror_num = 0;
ea466794 451 int failed_mirror = 0;
f188591e 452
a826d6dc 453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
454 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
455 while (1) {
bb82ab88
AJ
456 ret = read_extent_buffer_pages(io_tree, eb, start,
457 WAIT_COMPLETE,
f188591e 458 btree_get_extent, mirror_num);
256dd1bb
SB
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
b9fab919 461 parent_transid, 0))
256dd1bb
SB
462 break;
463 else
464 ret = -EIO;
465 }
d397712b 466
a826d6dc
JB
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
473 break;
474
5d964051 475 num_copies = btrfs_num_copies(root->fs_info,
f188591e 476 eb->start, eb->len);
4235298e 477 if (num_copies == 1)
ea466794 478 break;
4235298e 479
5cf1ab56
JB
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
f188591e 485 mirror_num++;
ea466794
JB
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
4235298e 489 if (mirror_num > num_copies)
ea466794 490 break;
f188591e 491 }
ea466794 492
c0901581 493 if (failed && !ret && failed_mirror)
ea466794
JB
494 repair_eb_io_failure(root, eb, failed_mirror);
495
496 return ret;
f188591e 497}
19c00ddc 498
d352ac68 499/*
d397712b
CM
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 502 */
d397712b 503
b2950863 504static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 505{
4eee4fa4 506 u64 start = page_offset(page);
19c00ddc 507 u64 found_start;
19c00ddc 508 struct extent_buffer *eb;
f188591e 509
4f2de97a
JB
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
19c00ddc 513 found_start = btrfs_header_bytenr(eb);
fae7f21c 514 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 515 return 0;
19c00ddc 516 csum_tree_block(root, eb, 0);
19c00ddc
CM
517 return 0;
518}
519
2b82032c
YZ
520static int check_tree_block_fsid(struct btrfs_root *root,
521 struct extent_buffer *eb)
522{
523 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
524 u8 fsid[BTRFS_UUID_SIZE];
525 int ret = 1;
526
0a4e5586 527 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
528 while (fs_devices) {
529 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
530 ret = 0;
531 break;
532 }
533 fs_devices = fs_devices->seed;
534 }
535 return ret;
536}
537
a826d6dc 538#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
539 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
540 "root=%llu, slot=%d", reason, \
c1c9ff7c 541 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
542
543static noinline int check_leaf(struct btrfs_root *root,
544 struct extent_buffer *leaf)
545{
546 struct btrfs_key key;
547 struct btrfs_key leaf_key;
548 u32 nritems = btrfs_header_nritems(leaf);
549 int slot;
550
551 if (nritems == 0)
552 return 0;
553
554 /* Check the 0 item */
555 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
556 BTRFS_LEAF_DATA_SIZE(root)) {
557 CORRUPT("invalid item offset size pair", leaf, root, 0);
558 return -EIO;
559 }
560
561 /*
562 * Check to make sure each items keys are in the correct order and their
563 * offsets make sense. We only have to loop through nritems-1 because
564 * we check the current slot against the next slot, which verifies the
565 * next slot's offset+size makes sense and that the current's slot
566 * offset is correct.
567 */
568 for (slot = 0; slot < nritems - 1; slot++) {
569 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
570 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
571
572 /* Make sure the keys are in the right order */
573 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
574 CORRUPT("bad key order", leaf, root, slot);
575 return -EIO;
576 }
577
578 /*
579 * Make sure the offset and ends are right, remember that the
580 * item data starts at the end of the leaf and grows towards the
581 * front.
582 */
583 if (btrfs_item_offset_nr(leaf, slot) !=
584 btrfs_item_end_nr(leaf, slot + 1)) {
585 CORRUPT("slot offset bad", leaf, root, slot);
586 return -EIO;
587 }
588
589 /*
590 * Check to make sure that we don't point outside of the leaf,
591 * just incase all the items are consistent to eachother, but
592 * all point outside of the leaf.
593 */
594 if (btrfs_item_end_nr(leaf, slot) >
595 BTRFS_LEAF_DATA_SIZE(root)) {
596 CORRUPT("slot end outside of leaf", leaf, root, slot);
597 return -EIO;
598 }
599 }
600
601 return 0;
602}
603
facc8a22
MX
604static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
605 u64 phy_offset, struct page *page,
606 u64 start, u64 end, int mirror)
ce9adaa5 607{
ce9adaa5
CM
608 u64 found_start;
609 int found_level;
ce9adaa5
CM
610 struct extent_buffer *eb;
611 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 612 int ret = 0;
727011e0 613 int reads_done;
ce9adaa5 614
ce9adaa5
CM
615 if (!page->private)
616 goto out;
d397712b 617
4f2de97a 618 eb = (struct extent_buffer *)page->private;
d397712b 619
0b32f4bb
JB
620 /* the pending IO might have been the only thing that kept this buffer
621 * in memory. Make sure we have a ref for all this other checks
622 */
623 extent_buffer_get(eb);
624
625 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
626 if (!reads_done)
627 goto err;
f188591e 628
5cf1ab56 629 eb->read_mirror = mirror;
ea466794
JB
630 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
631 ret = -EIO;
632 goto err;
633 }
634
ce9adaa5 635 found_start = btrfs_header_bytenr(eb);
727011e0 636 if (found_start != eb->start) {
29549aec 637 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
193f284d 638 "%llu %llu\n",
29549aec 639 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 640 ret = -EIO;
ce9adaa5
CM
641 goto err;
642 }
2b82032c 643 if (check_tree_block_fsid(root, eb)) {
29549aec
WS
644 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
645 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
646 ret = -EIO;
647 goto err;
648 }
ce9adaa5 649 found_level = btrfs_header_level(eb);
1c24c3ce 650 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 651 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
652 (int)btrfs_header_level(eb));
653 ret = -EIO;
654 goto err;
655 }
ce9adaa5 656
85d4e461
CM
657 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
658 eb, found_level);
4008c04a 659
ce9adaa5 660 ret = csum_tree_block(root, eb, 1);
a826d6dc 661 if (ret) {
f188591e 662 ret = -EIO;
a826d6dc
JB
663 goto err;
664 }
665
666 /*
667 * If this is a leaf block and it is corrupt, set the corrupt bit so
668 * that we don't try and read the other copies of this block, just
669 * return -EIO.
670 */
671 if (found_level == 0 && check_leaf(root, eb)) {
672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673 ret = -EIO;
674 }
ce9adaa5 675
0b32f4bb
JB
676 if (!ret)
677 set_extent_buffer_uptodate(eb);
ce9adaa5 678err:
79fb65a1
JB
679 if (reads_done &&
680 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 681 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 682
53b381b3
DW
683 if (ret) {
684 /*
685 * our io error hook is going to dec the io pages
686 * again, we have to make sure it has something
687 * to decrement
688 */
689 atomic_inc(&eb->io_pages);
0b32f4bb 690 clear_extent_buffer_uptodate(eb);
53b381b3 691 }
0b32f4bb 692 free_extent_buffer(eb);
ce9adaa5 693out:
f188591e 694 return ret;
ce9adaa5
CM
695}
696
ea466794 697static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 698{
4bb31e92
AJ
699 struct extent_buffer *eb;
700 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
701
4f2de97a 702 eb = (struct extent_buffer *)page->private;
ea466794 703 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 704 eb->read_mirror = failed_mirror;
53b381b3 705 atomic_dec(&eb->io_pages);
ea466794 706 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 707 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
708 return -EIO; /* we fixed nothing */
709}
710
ce9adaa5 711static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5 712{
97eb6b69 713 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 714 struct btrfs_fs_info *fs_info;
9e0af237
LB
715 struct btrfs_workqueue *wq;
716 btrfs_work_func_t func;
ce9adaa5 717
ce9adaa5 718 fs_info = end_io_wq->info;
ce9adaa5 719 end_io_wq->error = err;
d20f7043 720
7b6d91da 721 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
722 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
723 wq = fs_info->endio_meta_write_workers;
724 func = btrfs_endio_meta_write_helper;
725 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
726 wq = fs_info->endio_freespace_worker;
727 func = btrfs_freespace_write_helper;
728 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
729 wq = fs_info->endio_raid56_workers;
730 func = btrfs_endio_raid56_helper;
731 } else {
732 wq = fs_info->endio_write_workers;
733 func = btrfs_endio_write_helper;
734 }
d20f7043 735 } else {
8b110e39
MX
736 if (unlikely(end_io_wq->metadata ==
737 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
738 wq = fs_info->endio_repair_workers;
739 func = btrfs_endio_repair_helper;
740 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
741 wq = fs_info->endio_raid56_workers;
742 func = btrfs_endio_raid56_helper;
743 } else if (end_io_wq->metadata) {
744 wq = fs_info->endio_meta_workers;
745 func = btrfs_endio_meta_helper;
746 } else {
747 wq = fs_info->endio_workers;
748 func = btrfs_endio_helper;
749 }
d20f7043 750 }
9e0af237
LB
751
752 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
753 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
754}
755
22c59948 756int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 757 enum btrfs_wq_endio_type metadata)
0b86a832 758{
97eb6b69 759 struct btrfs_end_io_wq *end_io_wq;
8b110e39 760
97eb6b69 761 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
762 if (!end_io_wq)
763 return -ENOMEM;
764
765 end_io_wq->private = bio->bi_private;
766 end_io_wq->end_io = bio->bi_end_io;
22c59948 767 end_io_wq->info = info;
ce9adaa5
CM
768 end_io_wq->error = 0;
769 end_io_wq->bio = bio;
22c59948 770 end_io_wq->metadata = metadata;
ce9adaa5
CM
771
772 bio->bi_private = end_io_wq;
773 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
774 return 0;
775}
776
b64a2851 777unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 778{
4854ddd0 779 unsigned long limit = min_t(unsigned long,
5cdc7ad3 780 info->thread_pool_size,
4854ddd0
CM
781 info->fs_devices->open_devices);
782 return 256 * limit;
783}
0986fe9e 784
4a69a410
CM
785static void run_one_async_start(struct btrfs_work *work)
786{
4a69a410 787 struct async_submit_bio *async;
79787eaa 788 int ret;
4a69a410
CM
789
790 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
791 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
792 async->mirror_num, async->bio_flags,
793 async->bio_offset);
794 if (ret)
795 async->error = ret;
4a69a410
CM
796}
797
798static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
799{
800 struct btrfs_fs_info *fs_info;
801 struct async_submit_bio *async;
4854ddd0 802 int limit;
8b712842
CM
803
804 async = container_of(work, struct async_submit_bio, work);
805 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 806
b64a2851 807 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
808 limit = limit * 2 / 3;
809
66657b31 810 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 811 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
812 wake_up(&fs_info->async_submit_wait);
813
79787eaa
JM
814 /* If an error occured we just want to clean up the bio and move on */
815 if (async->error) {
816 bio_endio(async->bio, async->error);
817 return;
818 }
819
4a69a410 820 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
821 async->mirror_num, async->bio_flags,
822 async->bio_offset);
4a69a410
CM
823}
824
825static void run_one_async_free(struct btrfs_work *work)
826{
827 struct async_submit_bio *async;
828
829 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
830 kfree(async);
831}
832
44b8bd7e
CM
833int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
834 int rw, struct bio *bio, int mirror_num,
c8b97818 835 unsigned long bio_flags,
eaf25d93 836 u64 bio_offset,
4a69a410
CM
837 extent_submit_bio_hook_t *submit_bio_start,
838 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
839{
840 struct async_submit_bio *async;
841
842 async = kmalloc(sizeof(*async), GFP_NOFS);
843 if (!async)
844 return -ENOMEM;
845
846 async->inode = inode;
847 async->rw = rw;
848 async->bio = bio;
849 async->mirror_num = mirror_num;
4a69a410
CM
850 async->submit_bio_start = submit_bio_start;
851 async->submit_bio_done = submit_bio_done;
852
9e0af237 853 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 854 run_one_async_done, run_one_async_free);
4a69a410 855
c8b97818 856 async->bio_flags = bio_flags;
eaf25d93 857 async->bio_offset = bio_offset;
8c8bee1d 858
79787eaa
JM
859 async->error = 0;
860
cb03c743 861 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 862
7b6d91da 863 if (rw & REQ_SYNC)
5cdc7ad3 864 btrfs_set_work_high_priority(&async->work);
d313d7a3 865
5cdc7ad3 866 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 867
d397712b 868 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
869 atomic_read(&fs_info->nr_async_submits)) {
870 wait_event(fs_info->async_submit_wait,
871 (atomic_read(&fs_info->nr_async_submits) == 0));
872 }
873
44b8bd7e
CM
874 return 0;
875}
876
ce3ed71a
CM
877static int btree_csum_one_bio(struct bio *bio)
878{
2c30c71b 879 struct bio_vec *bvec;
ce3ed71a 880 struct btrfs_root *root;
2c30c71b 881 int i, ret = 0;
ce3ed71a 882
2c30c71b 883 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 884 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
885 ret = csum_dirty_buffer(root, bvec->bv_page);
886 if (ret)
887 break;
ce3ed71a 888 }
2c30c71b 889
79787eaa 890 return ret;
ce3ed71a
CM
891}
892
4a69a410
CM
893static int __btree_submit_bio_start(struct inode *inode, int rw,
894 struct bio *bio, int mirror_num,
eaf25d93
CM
895 unsigned long bio_flags,
896 u64 bio_offset)
22c59948 897{
8b712842
CM
898 /*
899 * when we're called for a write, we're already in the async
5443be45 900 * submission context. Just jump into btrfs_map_bio
8b712842 901 */
79787eaa 902 return btree_csum_one_bio(bio);
4a69a410 903}
22c59948 904
4a69a410 905static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
906 int mirror_num, unsigned long bio_flags,
907 u64 bio_offset)
4a69a410 908{
61891923
SB
909 int ret;
910
8b712842 911 /*
4a69a410
CM
912 * when we're called for a write, we're already in the async
913 * submission context. Just jump into btrfs_map_bio
8b712842 914 */
61891923
SB
915 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
916 if (ret)
917 bio_endio(bio, ret);
918 return ret;
0b86a832
CM
919}
920
de0022b9
JB
921static int check_async_write(struct inode *inode, unsigned long bio_flags)
922{
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925#ifdef CONFIG_X86
926 if (cpu_has_xmm4_2)
927 return 0;
928#endif
929 return 1;
930}
931
44b8bd7e 932static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
44b8bd7e 935{
de0022b9 936 int async = check_async_write(inode, bio_flags);
cad321ad
CM
937 int ret;
938
7b6d91da 939 if (!(rw & REQ_WRITE)) {
4a69a410
CM
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
f3f266ab 944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 945 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 946 if (ret)
61891923
SB
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
de0022b9
JB
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
61891923
SB
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
957 /*
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
960 */
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
44b8bd7e 966 }
d313d7a3 967
61891923
SB
968 if (ret) {
969out_w_error:
970 bio_endio(bio, ret);
971 }
972 return ret;
44b8bd7e
CM
973}
974
3dd1462e 975#ifdef CONFIG_MIGRATION
784b4e29 976static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
977 struct page *newpage, struct page *page,
978 enum migrate_mode mode)
784b4e29
CM
979{
980 /*
981 * we can't safely write a btree page from here,
982 * we haven't done the locking hook
983 */
984 if (PageDirty(page))
985 return -EAGAIN;
986 /*
987 * Buffers may be managed in a filesystem specific way.
988 * We must have no buffers or drop them.
989 */
990 if (page_has_private(page) &&
991 !try_to_release_page(page, GFP_KERNEL))
992 return -EAGAIN;
a6bc32b8 993 return migrate_page(mapping, newpage, page, mode);
784b4e29 994}
3dd1462e 995#endif
784b4e29 996
0da5468f
CM
997
998static int btree_writepages(struct address_space *mapping,
999 struct writeback_control *wbc)
1000{
e2d84521
MX
1001 struct btrfs_fs_info *fs_info;
1002 int ret;
1003
d8d5f3e1 1004 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1005
1006 if (wbc->for_kupdate)
1007 return 0;
1008
e2d84521 1009 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1010 /* this is a bit racy, but that's ok */
e2d84521
MX
1011 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1012 BTRFS_DIRTY_METADATA_THRESH);
1013 if (ret < 0)
793955bc 1014 return 0;
793955bc 1015 }
0b32f4bb 1016 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1017}
1018
b2950863 1019static int btree_readpage(struct file *file, struct page *page)
5f39d397 1020{
d1310b2e
CM
1021 struct extent_io_tree *tree;
1022 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1023 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1024}
22b0ebda 1025
70dec807 1026static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1027{
98509cfc 1028 if (PageWriteback(page) || PageDirty(page))
d397712b 1029 return 0;
0c4e538b 1030
f7a52a40 1031 return try_release_extent_buffer(page);
d98237b3
CM
1032}
1033
d47992f8
LC
1034static void btree_invalidatepage(struct page *page, unsigned int offset,
1035 unsigned int length)
d98237b3 1036{
d1310b2e
CM
1037 struct extent_io_tree *tree;
1038 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1039 extent_invalidatepage(tree, page, offset);
1040 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1041 if (PagePrivate(page)) {
efe120a0
FH
1042 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1043 "page private not zero on page %llu",
1044 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1045 ClearPagePrivate(page);
1046 set_page_private(page, 0);
1047 page_cache_release(page);
1048 }
d98237b3
CM
1049}
1050
0b32f4bb
JB
1051static int btree_set_page_dirty(struct page *page)
1052{
bb146eb2 1053#ifdef DEBUG
0b32f4bb
JB
1054 struct extent_buffer *eb;
1055
1056 BUG_ON(!PagePrivate(page));
1057 eb = (struct extent_buffer *)page->private;
1058 BUG_ON(!eb);
1059 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1060 BUG_ON(!atomic_read(&eb->refs));
1061 btrfs_assert_tree_locked(eb);
bb146eb2 1062#endif
0b32f4bb
JB
1063 return __set_page_dirty_nobuffers(page);
1064}
1065
7f09410b 1066static const struct address_space_operations btree_aops = {
d98237b3 1067 .readpage = btree_readpage,
0da5468f 1068 .writepages = btree_writepages,
5f39d397
CM
1069 .releasepage = btree_releasepage,
1070 .invalidatepage = btree_invalidatepage,
5a92bc88 1071#ifdef CONFIG_MIGRATION
784b4e29 1072 .migratepage = btree_migratepage,
5a92bc88 1073#endif
0b32f4bb 1074 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1075};
1076
ca7a79ad
CM
1077int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1078 u64 parent_transid)
090d1875 1079{
5f39d397
CM
1080 struct extent_buffer *buf = NULL;
1081 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1082 int ret = 0;
090d1875 1083
db94535d 1084 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1085 if (!buf)
090d1875 1086 return 0;
d1310b2e 1087 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1088 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1089 free_extent_buffer(buf);
de428b63 1090 return ret;
090d1875
CM
1091}
1092
ab0fff03
AJ
1093int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1094 int mirror_num, struct extent_buffer **eb)
1095{
1096 struct extent_buffer *buf = NULL;
1097 struct inode *btree_inode = root->fs_info->btree_inode;
1098 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099 int ret;
1100
1101 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1102 if (!buf)
1103 return 0;
1104
1105 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108 btree_get_extent, mirror_num);
1109 if (ret) {
1110 free_extent_buffer(buf);
1111 return ret;
1112 }
1113
1114 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115 free_extent_buffer(buf);
1116 return -EIO;
0b32f4bb 1117 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1118 *eb = buf;
1119 } else {
1120 free_extent_buffer(buf);
1121 }
1122 return 0;
1123}
1124
0999df54
CM
1125struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1126 u64 bytenr, u32 blocksize)
1127{
f28491e0 1128 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1129}
1130
1131struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132 u64 bytenr, u32 blocksize)
1133{
faa2dbf0
JB
1134#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1135 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1136 return alloc_test_extent_buffer(root->fs_info, bytenr,
1137 blocksize);
1138#endif
f28491e0 1139 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1140}
1141
1142
e02119d5
CM
1143int btrfs_write_tree_block(struct extent_buffer *buf)
1144{
727011e0 1145 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1146 buf->start + buf->len - 1);
e02119d5
CM
1147}
1148
1149int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1150{
727011e0 1151 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1152 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1153}
1154
0999df54 1155struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1156 u32 blocksize, u64 parent_transid)
0999df54
CM
1157{
1158 struct extent_buffer *buf = NULL;
0999df54
CM
1159 int ret;
1160
0999df54
CM
1161 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1162 if (!buf)
1163 return NULL;
0999df54 1164
ca7a79ad 1165 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1166 if (ret) {
1167 free_extent_buffer(buf);
1168 return NULL;
1169 }
5f39d397 1170 return buf;
ce9adaa5 1171
eb60ceac
CM
1172}
1173
d5c13f92
JM
1174void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1175 struct extent_buffer *buf)
ed2ff2cb 1176{
e2d84521
MX
1177 struct btrfs_fs_info *fs_info = root->fs_info;
1178
55c69072 1179 if (btrfs_header_generation(buf) ==
e2d84521 1180 fs_info->running_transaction->transid) {
b9447ef8 1181 btrfs_assert_tree_locked(buf);
b4ce94de 1182
b9473439 1183 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1184 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1185 -buf->len,
1186 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1187 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1188 btrfs_set_lock_blocking(buf);
1189 clear_extent_buffer_dirty(buf);
1190 }
925baedd 1191 }
5f39d397
CM
1192}
1193
8257b2dc
MX
1194static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1195{
1196 struct btrfs_subvolume_writers *writers;
1197 int ret;
1198
1199 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1200 if (!writers)
1201 return ERR_PTR(-ENOMEM);
1202
1203 ret = percpu_counter_init(&writers->counter, 0);
1204 if (ret < 0) {
1205 kfree(writers);
1206 return ERR_PTR(ret);
1207 }
1208
1209 init_waitqueue_head(&writers->wait);
1210 return writers;
1211}
1212
1213static void
1214btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1215{
1216 percpu_counter_destroy(&writers->counter);
1217 kfree(writers);
1218}
1219
707e8a07
DS
1220static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1221 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1222 u64 objectid)
d97e63b6 1223{
cfaa7295 1224 root->node = NULL;
a28ec197 1225 root->commit_root = NULL;
db94535d
CM
1226 root->sectorsize = sectorsize;
1227 root->nodesize = nodesize;
87ee04eb 1228 root->stripesize = stripesize;
27cdeb70 1229 root->state = 0;
d68fc57b 1230 root->orphan_cleanup_state = 0;
0b86a832 1231
0f7d52f4
CM
1232 root->objectid = objectid;
1233 root->last_trans = 0;
13a8a7c8 1234 root->highest_objectid = 0;
eb73c1b7 1235 root->nr_delalloc_inodes = 0;
199c2a9c 1236 root->nr_ordered_extents = 0;
58176a96 1237 root->name = NULL;
6bef4d31 1238 root->inode_tree = RB_ROOT;
16cdcec7 1239 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1240 root->block_rsv = NULL;
d68fc57b 1241 root->orphan_block_rsv = NULL;
0b86a832
CM
1242
1243 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1244 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1245 INIT_LIST_HEAD(&root->delalloc_inodes);
1246 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1247 INIT_LIST_HEAD(&root->ordered_extents);
1248 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1249 INIT_LIST_HEAD(&root->logged_list[0]);
1250 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1251 spin_lock_init(&root->orphan_lock);
5d4f98a2 1252 spin_lock_init(&root->inode_lock);
eb73c1b7 1253 spin_lock_init(&root->delalloc_lock);
199c2a9c 1254 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1255 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1256 spin_lock_init(&root->log_extents_lock[0]);
1257 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1258 mutex_init(&root->objectid_mutex);
e02119d5 1259 mutex_init(&root->log_mutex);
31f3d255 1260 mutex_init(&root->ordered_extent_mutex);
573bfb72 1261 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1262 init_waitqueue_head(&root->log_writer_wait);
1263 init_waitqueue_head(&root->log_commit_wait[0]);
1264 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1265 INIT_LIST_HEAD(&root->log_ctxs[0]);
1266 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1267 atomic_set(&root->log_commit[0], 0);
1268 atomic_set(&root->log_commit[1], 0);
1269 atomic_set(&root->log_writers, 0);
2ecb7923 1270 atomic_set(&root->log_batch, 0);
8a35d95f 1271 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1272 atomic_set(&root->refs, 1);
8257b2dc 1273 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1274 root->log_transid = 0;
d1433deb 1275 root->log_transid_committed = -1;
257c62e1 1276 root->last_log_commit = 0;
06ea65a3
JB
1277 if (fs_info)
1278 extent_io_tree_init(&root->dirty_log_pages,
1279 fs_info->btree_inode->i_mapping);
017e5369 1280
3768f368
CM
1281 memset(&root->root_key, 0, sizeof(root->root_key));
1282 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1283 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1284 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1285 if (fs_info)
1286 root->defrag_trans_start = fs_info->generation;
1287 else
1288 root->defrag_trans_start = 0;
58176a96 1289 init_completion(&root->kobj_unregister);
4d775673 1290 root->root_key.objectid = objectid;
0ee5dc67 1291 root->anon_dev = 0;
8ea05e3a 1292
5f3ab90a 1293 spin_lock_init(&root->root_item_lock);
3768f368
CM
1294}
1295
f84a8bd6 1296static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1297{
1298 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1299 if (root)
1300 root->fs_info = fs_info;
1301 return root;
1302}
1303
06ea65a3
JB
1304#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1305/* Should only be used by the testing infrastructure */
1306struct btrfs_root *btrfs_alloc_dummy_root(void)
1307{
1308 struct btrfs_root *root;
1309
1310 root = btrfs_alloc_root(NULL);
1311 if (!root)
1312 return ERR_PTR(-ENOMEM);
707e8a07 1313 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1314 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1315 root->alloc_bytenr = 0;
06ea65a3
JB
1316
1317 return root;
1318}
1319#endif
1320
20897f5c
AJ
1321struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1322 struct btrfs_fs_info *fs_info,
1323 u64 objectid)
1324{
1325 struct extent_buffer *leaf;
1326 struct btrfs_root *tree_root = fs_info->tree_root;
1327 struct btrfs_root *root;
1328 struct btrfs_key key;
1329 int ret = 0;
6463fe58 1330 uuid_le uuid;
20897f5c
AJ
1331
1332 root = btrfs_alloc_root(fs_info);
1333 if (!root)
1334 return ERR_PTR(-ENOMEM);
1335
707e8a07
DS
1336 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1337 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1338 root->root_key.objectid = objectid;
1339 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1340 root->root_key.offset = 0;
1341
707e8a07 1342 leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
20897f5c
AJ
1343 0, objectid, NULL, 0, 0, 0);
1344 if (IS_ERR(leaf)) {
1345 ret = PTR_ERR(leaf);
1dd05682 1346 leaf = NULL;
20897f5c
AJ
1347 goto fail;
1348 }
1349
20897f5c
AJ
1350 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1351 btrfs_set_header_bytenr(leaf, leaf->start);
1352 btrfs_set_header_generation(leaf, trans->transid);
1353 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1354 btrfs_set_header_owner(leaf, objectid);
1355 root->node = leaf;
1356
0a4e5586 1357 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1358 BTRFS_FSID_SIZE);
1359 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1360 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1361 BTRFS_UUID_SIZE);
1362 btrfs_mark_buffer_dirty(leaf);
1363
1364 root->commit_root = btrfs_root_node(root);
27cdeb70 1365 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1366
1367 root->root_item.flags = 0;
1368 root->root_item.byte_limit = 0;
1369 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1370 btrfs_set_root_generation(&root->root_item, trans->transid);
1371 btrfs_set_root_level(&root->root_item, 0);
1372 btrfs_set_root_refs(&root->root_item, 1);
1373 btrfs_set_root_used(&root->root_item, leaf->len);
1374 btrfs_set_root_last_snapshot(&root->root_item, 0);
1375 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1376 uuid_le_gen(&uuid);
1377 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1378 root->root_item.drop_level = 0;
1379
1380 key.objectid = objectid;
1381 key.type = BTRFS_ROOT_ITEM_KEY;
1382 key.offset = 0;
1383 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1384 if (ret)
1385 goto fail;
1386
1387 btrfs_tree_unlock(leaf);
1388
1dd05682
TI
1389 return root;
1390
20897f5c 1391fail:
1dd05682
TI
1392 if (leaf) {
1393 btrfs_tree_unlock(leaf);
59885b39 1394 free_extent_buffer(root->commit_root);
1dd05682
TI
1395 free_extent_buffer(leaf);
1396 }
1397 kfree(root);
20897f5c 1398
1dd05682 1399 return ERR_PTR(ret);
20897f5c
AJ
1400}
1401
7237f183
YZ
1402static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1403 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1404{
1405 struct btrfs_root *root;
1406 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1407 struct extent_buffer *leaf;
e02119d5 1408
6f07e42e 1409 root = btrfs_alloc_root(fs_info);
e02119d5 1410 if (!root)
7237f183 1411 return ERR_PTR(-ENOMEM);
e02119d5 1412
707e8a07
DS
1413 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1414 tree_root->stripesize, root, fs_info,
1415 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1416
1417 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1418 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1419 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1420
7237f183 1421 /*
27cdeb70
MX
1422 * DON'T set REF_COWS for log trees
1423 *
7237f183
YZ
1424 * log trees do not get reference counted because they go away
1425 * before a real commit is actually done. They do store pointers
1426 * to file data extents, and those reference counts still get
1427 * updated (along with back refs to the log tree).
1428 */
e02119d5 1429
707e8a07 1430 leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
66d7e7f0 1431 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1432 0, 0, 0);
7237f183
YZ
1433 if (IS_ERR(leaf)) {
1434 kfree(root);
1435 return ERR_CAST(leaf);
1436 }
e02119d5 1437
5d4f98a2
YZ
1438 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1439 btrfs_set_header_bytenr(leaf, leaf->start);
1440 btrfs_set_header_generation(leaf, trans->transid);
1441 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1442 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1443 root->node = leaf;
e02119d5
CM
1444
1445 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1446 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1447 btrfs_mark_buffer_dirty(root->node);
1448 btrfs_tree_unlock(root->node);
7237f183
YZ
1449 return root;
1450}
1451
1452int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1453 struct btrfs_fs_info *fs_info)
1454{
1455 struct btrfs_root *log_root;
1456
1457 log_root = alloc_log_tree(trans, fs_info);
1458 if (IS_ERR(log_root))
1459 return PTR_ERR(log_root);
1460 WARN_ON(fs_info->log_root_tree);
1461 fs_info->log_root_tree = log_root;
1462 return 0;
1463}
1464
1465int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1466 struct btrfs_root *root)
1467{
1468 struct btrfs_root *log_root;
1469 struct btrfs_inode_item *inode_item;
1470
1471 log_root = alloc_log_tree(trans, root->fs_info);
1472 if (IS_ERR(log_root))
1473 return PTR_ERR(log_root);
1474
1475 log_root->last_trans = trans->transid;
1476 log_root->root_key.offset = root->root_key.objectid;
1477
1478 inode_item = &log_root->root_item.inode;
3cae210f
QW
1479 btrfs_set_stack_inode_generation(inode_item, 1);
1480 btrfs_set_stack_inode_size(inode_item, 3);
1481 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1482 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1483 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1484
5d4f98a2 1485 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1486
1487 WARN_ON(root->log_root);
1488 root->log_root = log_root;
1489 root->log_transid = 0;
d1433deb 1490 root->log_transid_committed = -1;
257c62e1 1491 root->last_log_commit = 0;
e02119d5
CM
1492 return 0;
1493}
1494
35a3621b
SB
1495static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1496 struct btrfs_key *key)
e02119d5
CM
1497{
1498 struct btrfs_root *root;
1499 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1500 struct btrfs_path *path;
84234f3a 1501 u64 generation;
db94535d 1502 u32 blocksize;
cb517eab 1503 int ret;
0f7d52f4 1504
cb517eab
MX
1505 path = btrfs_alloc_path();
1506 if (!path)
0f7d52f4 1507 return ERR_PTR(-ENOMEM);
cb517eab
MX
1508
1509 root = btrfs_alloc_root(fs_info);
1510 if (!root) {
1511 ret = -ENOMEM;
1512 goto alloc_fail;
0f7d52f4
CM
1513 }
1514
707e8a07
DS
1515 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1516 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1517
cb517eab
MX
1518 ret = btrfs_find_root(tree_root, key, path,
1519 &root->root_item, &root->root_key);
0f7d52f4 1520 if (ret) {
13a8a7c8
YZ
1521 if (ret > 0)
1522 ret = -ENOENT;
cb517eab 1523 goto find_fail;
0f7d52f4 1524 }
13a8a7c8 1525
84234f3a 1526 generation = btrfs_root_generation(&root->root_item);
707e8a07 1527 blocksize = root->nodesize;
db94535d 1528 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1529 blocksize, generation);
cb517eab
MX
1530 if (!root->node) {
1531 ret = -ENOMEM;
1532 goto find_fail;
1533 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1534 ret = -EIO;
1535 goto read_fail;
416bc658 1536 }
5d4f98a2 1537 root->commit_root = btrfs_root_node(root);
13a8a7c8 1538out:
cb517eab
MX
1539 btrfs_free_path(path);
1540 return root;
1541
1542read_fail:
1543 free_extent_buffer(root->node);
1544find_fail:
1545 kfree(root);
1546alloc_fail:
1547 root = ERR_PTR(ret);
1548 goto out;
1549}
1550
1551struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1552 struct btrfs_key *location)
1553{
1554 struct btrfs_root *root;
1555
1556 root = btrfs_read_tree_root(tree_root, location);
1557 if (IS_ERR(root))
1558 return root;
1559
1560 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1561 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1562 btrfs_check_and_init_root_item(&root->root_item);
1563 }
13a8a7c8 1564
5eda7b5e
CM
1565 return root;
1566}
1567
cb517eab
MX
1568int btrfs_init_fs_root(struct btrfs_root *root)
1569{
1570 int ret;
8257b2dc 1571 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1572
1573 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1574 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1575 GFP_NOFS);
1576 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1577 ret = -ENOMEM;
1578 goto fail;
1579 }
1580
8257b2dc
MX
1581 writers = btrfs_alloc_subvolume_writers();
1582 if (IS_ERR(writers)) {
1583 ret = PTR_ERR(writers);
1584 goto fail;
1585 }
1586 root->subv_writers = writers;
1587
cb517eab 1588 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1589 spin_lock_init(&root->ino_cache_lock);
1590 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1591
1592 ret = get_anon_bdev(&root->anon_dev);
1593 if (ret)
8257b2dc 1594 goto free_writers;
cb517eab 1595 return 0;
8257b2dc
MX
1596
1597free_writers:
1598 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1599fail:
1600 kfree(root->free_ino_ctl);
1601 kfree(root->free_ino_pinned);
1602 return ret;
1603}
1604
171170c1
ST
1605static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1606 u64 root_id)
cb517eab
MX
1607{
1608 struct btrfs_root *root;
1609
1610 spin_lock(&fs_info->fs_roots_radix_lock);
1611 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1612 (unsigned long)root_id);
1613 spin_unlock(&fs_info->fs_roots_radix_lock);
1614 return root;
1615}
1616
1617int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1618 struct btrfs_root *root)
1619{
1620 int ret;
1621
1622 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1623 if (ret)
1624 return ret;
1625
1626 spin_lock(&fs_info->fs_roots_radix_lock);
1627 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1628 (unsigned long)root->root_key.objectid,
1629 root);
1630 if (ret == 0)
27cdeb70 1631 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1632 spin_unlock(&fs_info->fs_roots_radix_lock);
1633 radix_tree_preload_end();
1634
1635 return ret;
1636}
1637
c00869f1
MX
1638struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1639 struct btrfs_key *location,
1640 bool check_ref)
5eda7b5e
CM
1641{
1642 struct btrfs_root *root;
1643 int ret;
1644
edbd8d4e
CM
1645 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1646 return fs_info->tree_root;
1647 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1648 return fs_info->extent_root;
8f18cf13
CM
1649 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1650 return fs_info->chunk_root;
1651 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1652 return fs_info->dev_root;
0403e47e
YZ
1653 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1654 return fs_info->csum_root;
bcef60f2
AJ
1655 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1656 return fs_info->quota_root ? fs_info->quota_root :
1657 ERR_PTR(-ENOENT);
f7a81ea4
SB
1658 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1659 return fs_info->uuid_root ? fs_info->uuid_root :
1660 ERR_PTR(-ENOENT);
4df27c4d 1661again:
cb517eab 1662 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1663 if (root) {
c00869f1 1664 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1665 return ERR_PTR(-ENOENT);
5eda7b5e 1666 return root;
48475471 1667 }
5eda7b5e 1668
cb517eab 1669 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1670 if (IS_ERR(root))
1671 return root;
3394e160 1672
c00869f1 1673 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1674 ret = -ENOENT;
581bb050 1675 goto fail;
35a30d7c 1676 }
581bb050 1677
cb517eab 1678 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1679 if (ret)
1680 goto fail;
3394e160 1681
3f870c28
KN
1682 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1683 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1684 if (ret < 0)
1685 goto fail;
1686 if (ret == 0)
27cdeb70 1687 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1688
cb517eab 1689 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1690 if (ret) {
4df27c4d
YZ
1691 if (ret == -EEXIST) {
1692 free_fs_root(root);
1693 goto again;
1694 }
1695 goto fail;
0f7d52f4 1696 }
edbd8d4e 1697 return root;
4df27c4d
YZ
1698fail:
1699 free_fs_root(root);
1700 return ERR_PTR(ret);
edbd8d4e
CM
1701}
1702
04160088
CM
1703static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1704{
1705 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1706 int ret = 0;
04160088
CM
1707 struct btrfs_device *device;
1708 struct backing_dev_info *bdi;
b7967db7 1709
1f78160c
XG
1710 rcu_read_lock();
1711 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1712 if (!device->bdev)
1713 continue;
04160088
CM
1714 bdi = blk_get_backing_dev_info(device->bdev);
1715 if (bdi && bdi_congested(bdi, bdi_bits)) {
1716 ret = 1;
1717 break;
1718 }
1719 }
1f78160c 1720 rcu_read_unlock();
04160088
CM
1721 return ret;
1722}
1723
04160088
CM
1724static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1725{
ad081f14
JA
1726 int err;
1727
1728 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1729 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1730 if (err)
1731 return err;
1732
4575c9cc 1733 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1734 bdi->congested_fn = btrfs_congested_fn;
1735 bdi->congested_data = info;
1736 return 0;
1737}
1738
8b712842
CM
1739/*
1740 * called by the kthread helper functions to finally call the bio end_io
1741 * functions. This is where read checksum verification actually happens
1742 */
1743static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1744{
ce9adaa5 1745 struct bio *bio;
97eb6b69 1746 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1747 int error;
ce9adaa5 1748
97eb6b69 1749 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1750 bio = end_io_wq->bio;
ce9adaa5 1751
8b712842
CM
1752 error = end_io_wq->error;
1753 bio->bi_private = end_io_wq->private;
1754 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1755 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
bc1e79ac 1756 bio_endio_nodec(bio, error);
44b8bd7e
CM
1757}
1758
a74a4b97
CM
1759static int cleaner_kthread(void *arg)
1760{
1761 struct btrfs_root *root = arg;
d0278245 1762 int again;
a74a4b97
CM
1763
1764 do {
d0278245 1765 again = 0;
a74a4b97 1766
d0278245 1767 /* Make the cleaner go to sleep early. */
babbf170 1768 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1769 goto sleep;
1770
1771 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1772 goto sleep;
1773
dc7f370c
MX
1774 /*
1775 * Avoid the problem that we change the status of the fs
1776 * during the above check and trylock.
1777 */
babbf170 1778 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1779 mutex_unlock(&root->fs_info->cleaner_mutex);
1780 goto sleep;
76dda93c 1781 }
a74a4b97 1782
d0278245 1783 btrfs_run_delayed_iputs(root);
47ab2a6c 1784 btrfs_delete_unused_bgs(root->fs_info);
d0278245
MX
1785 again = btrfs_clean_one_deleted_snapshot(root);
1786 mutex_unlock(&root->fs_info->cleaner_mutex);
1787
1788 /*
05323cd1
MX
1789 * The defragger has dealt with the R/O remount and umount,
1790 * needn't do anything special here.
d0278245
MX
1791 */
1792 btrfs_run_defrag_inodes(root->fs_info);
1793sleep:
9d1a2a3a 1794 if (!try_to_freeze() && !again) {
a74a4b97 1795 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1796 if (!kthread_should_stop())
1797 schedule();
a74a4b97
CM
1798 __set_current_state(TASK_RUNNING);
1799 }
1800 } while (!kthread_should_stop());
1801 return 0;
1802}
1803
1804static int transaction_kthread(void *arg)
1805{
1806 struct btrfs_root *root = arg;
1807 struct btrfs_trans_handle *trans;
1808 struct btrfs_transaction *cur;
8929ecfa 1809 u64 transid;
a74a4b97
CM
1810 unsigned long now;
1811 unsigned long delay;
914b2007 1812 bool cannot_commit;
a74a4b97
CM
1813
1814 do {
914b2007 1815 cannot_commit = false;
8b87dc17 1816 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1817 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1818
a4abeea4 1819 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1820 cur = root->fs_info->running_transaction;
1821 if (!cur) {
a4abeea4 1822 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1823 goto sleep;
1824 }
31153d81 1825
a74a4b97 1826 now = get_seconds();
4a9d8bde 1827 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1828 (now < cur->start_time ||
1829 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1830 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1831 delay = HZ * 5;
1832 goto sleep;
1833 }
8929ecfa 1834 transid = cur->transid;
a4abeea4 1835 spin_unlock(&root->fs_info->trans_lock);
56bec294 1836
79787eaa 1837 /* If the file system is aborted, this will always fail. */
354aa0fb 1838 trans = btrfs_attach_transaction(root);
914b2007 1839 if (IS_ERR(trans)) {
354aa0fb
MX
1840 if (PTR_ERR(trans) != -ENOENT)
1841 cannot_commit = true;
79787eaa 1842 goto sleep;
914b2007 1843 }
8929ecfa 1844 if (transid == trans->transid) {
79787eaa 1845 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1846 } else {
1847 btrfs_end_transaction(trans, root);
1848 }
a74a4b97
CM
1849sleep:
1850 wake_up_process(root->fs_info->cleaner_kthread);
1851 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1852
4e121c06
JB
1853 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1854 &root->fs_info->fs_state)))
1855 btrfs_cleanup_transaction(root);
a0acae0e 1856 if (!try_to_freeze()) {
a74a4b97 1857 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1858 if (!kthread_should_stop() &&
914b2007
JK
1859 (!btrfs_transaction_blocked(root->fs_info) ||
1860 cannot_commit))
8929ecfa 1861 schedule_timeout(delay);
a74a4b97
CM
1862 __set_current_state(TASK_RUNNING);
1863 }
1864 } while (!kthread_should_stop());
1865 return 0;
1866}
1867
af31f5e5
CM
1868/*
1869 * this will find the highest generation in the array of
1870 * root backups. The index of the highest array is returned,
1871 * or -1 if we can't find anything.
1872 *
1873 * We check to make sure the array is valid by comparing the
1874 * generation of the latest root in the array with the generation
1875 * in the super block. If they don't match we pitch it.
1876 */
1877static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1878{
1879 u64 cur;
1880 int newest_index = -1;
1881 struct btrfs_root_backup *root_backup;
1882 int i;
1883
1884 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1885 root_backup = info->super_copy->super_roots + i;
1886 cur = btrfs_backup_tree_root_gen(root_backup);
1887 if (cur == newest_gen)
1888 newest_index = i;
1889 }
1890
1891 /* check to see if we actually wrapped around */
1892 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1893 root_backup = info->super_copy->super_roots;
1894 cur = btrfs_backup_tree_root_gen(root_backup);
1895 if (cur == newest_gen)
1896 newest_index = 0;
1897 }
1898 return newest_index;
1899}
1900
1901
1902/*
1903 * find the oldest backup so we know where to store new entries
1904 * in the backup array. This will set the backup_root_index
1905 * field in the fs_info struct
1906 */
1907static void find_oldest_super_backup(struct btrfs_fs_info *info,
1908 u64 newest_gen)
1909{
1910 int newest_index = -1;
1911
1912 newest_index = find_newest_super_backup(info, newest_gen);
1913 /* if there was garbage in there, just move along */
1914 if (newest_index == -1) {
1915 info->backup_root_index = 0;
1916 } else {
1917 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1918 }
1919}
1920
1921/*
1922 * copy all the root pointers into the super backup array.
1923 * this will bump the backup pointer by one when it is
1924 * done
1925 */
1926static void backup_super_roots(struct btrfs_fs_info *info)
1927{
1928 int next_backup;
1929 struct btrfs_root_backup *root_backup;
1930 int last_backup;
1931
1932 next_backup = info->backup_root_index;
1933 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1934 BTRFS_NUM_BACKUP_ROOTS;
1935
1936 /*
1937 * just overwrite the last backup if we're at the same generation
1938 * this happens only at umount
1939 */
1940 root_backup = info->super_for_commit->super_roots + last_backup;
1941 if (btrfs_backup_tree_root_gen(root_backup) ==
1942 btrfs_header_generation(info->tree_root->node))
1943 next_backup = last_backup;
1944
1945 root_backup = info->super_for_commit->super_roots + next_backup;
1946
1947 /*
1948 * make sure all of our padding and empty slots get zero filled
1949 * regardless of which ones we use today
1950 */
1951 memset(root_backup, 0, sizeof(*root_backup));
1952
1953 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1954
1955 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1956 btrfs_set_backup_tree_root_gen(root_backup,
1957 btrfs_header_generation(info->tree_root->node));
1958
1959 btrfs_set_backup_tree_root_level(root_backup,
1960 btrfs_header_level(info->tree_root->node));
1961
1962 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1963 btrfs_set_backup_chunk_root_gen(root_backup,
1964 btrfs_header_generation(info->chunk_root->node));
1965 btrfs_set_backup_chunk_root_level(root_backup,
1966 btrfs_header_level(info->chunk_root->node));
1967
1968 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1969 btrfs_set_backup_extent_root_gen(root_backup,
1970 btrfs_header_generation(info->extent_root->node));
1971 btrfs_set_backup_extent_root_level(root_backup,
1972 btrfs_header_level(info->extent_root->node));
1973
7c7e82a7
CM
1974 /*
1975 * we might commit during log recovery, which happens before we set
1976 * the fs_root. Make sure it is valid before we fill it in.
1977 */
1978 if (info->fs_root && info->fs_root->node) {
1979 btrfs_set_backup_fs_root(root_backup,
1980 info->fs_root->node->start);
1981 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1982 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1983 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1984 btrfs_header_level(info->fs_root->node));
7c7e82a7 1985 }
af31f5e5
CM
1986
1987 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1988 btrfs_set_backup_dev_root_gen(root_backup,
1989 btrfs_header_generation(info->dev_root->node));
1990 btrfs_set_backup_dev_root_level(root_backup,
1991 btrfs_header_level(info->dev_root->node));
1992
1993 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1994 btrfs_set_backup_csum_root_gen(root_backup,
1995 btrfs_header_generation(info->csum_root->node));
1996 btrfs_set_backup_csum_root_level(root_backup,
1997 btrfs_header_level(info->csum_root->node));
1998
1999 btrfs_set_backup_total_bytes(root_backup,
2000 btrfs_super_total_bytes(info->super_copy));
2001 btrfs_set_backup_bytes_used(root_backup,
2002 btrfs_super_bytes_used(info->super_copy));
2003 btrfs_set_backup_num_devices(root_backup,
2004 btrfs_super_num_devices(info->super_copy));
2005
2006 /*
2007 * if we don't copy this out to the super_copy, it won't get remembered
2008 * for the next commit
2009 */
2010 memcpy(&info->super_copy->super_roots,
2011 &info->super_for_commit->super_roots,
2012 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2013}
2014
2015/*
2016 * this copies info out of the root backup array and back into
2017 * the in-memory super block. It is meant to help iterate through
2018 * the array, so you send it the number of backups you've already
2019 * tried and the last backup index you used.
2020 *
2021 * this returns -1 when it has tried all the backups
2022 */
2023static noinline int next_root_backup(struct btrfs_fs_info *info,
2024 struct btrfs_super_block *super,
2025 int *num_backups_tried, int *backup_index)
2026{
2027 struct btrfs_root_backup *root_backup;
2028 int newest = *backup_index;
2029
2030 if (*num_backups_tried == 0) {
2031 u64 gen = btrfs_super_generation(super);
2032
2033 newest = find_newest_super_backup(info, gen);
2034 if (newest == -1)
2035 return -1;
2036
2037 *backup_index = newest;
2038 *num_backups_tried = 1;
2039 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2040 /* we've tried all the backups, all done */
2041 return -1;
2042 } else {
2043 /* jump to the next oldest backup */
2044 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2045 BTRFS_NUM_BACKUP_ROOTS;
2046 *backup_index = newest;
2047 *num_backups_tried += 1;
2048 }
2049 root_backup = super->super_roots + newest;
2050
2051 btrfs_set_super_generation(super,
2052 btrfs_backup_tree_root_gen(root_backup));
2053 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2054 btrfs_set_super_root_level(super,
2055 btrfs_backup_tree_root_level(root_backup));
2056 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2057
2058 /*
2059 * fixme: the total bytes and num_devices need to match or we should
2060 * need a fsck
2061 */
2062 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2063 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2064 return 0;
2065}
2066
7abadb64
LB
2067/* helper to cleanup workers */
2068static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2069{
dc6e3209 2070 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2071 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2072 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2073 btrfs_destroy_workqueue(fs_info->endio_workers);
2074 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2075 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2076 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2077 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2078 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2079 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2080 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2081 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2082 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2083 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2084 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2085 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2086 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2087 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2088}
2089
2e9f5954
R
2090static void free_root_extent_buffers(struct btrfs_root *root)
2091{
2092 if (root) {
2093 free_extent_buffer(root->node);
2094 free_extent_buffer(root->commit_root);
2095 root->node = NULL;
2096 root->commit_root = NULL;
2097 }
2098}
2099
af31f5e5
CM
2100/* helper to cleanup tree roots */
2101static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2102{
2e9f5954 2103 free_root_extent_buffers(info->tree_root);
655b09fe 2104
2e9f5954
R
2105 free_root_extent_buffers(info->dev_root);
2106 free_root_extent_buffers(info->extent_root);
2107 free_root_extent_buffers(info->csum_root);
2108 free_root_extent_buffers(info->quota_root);
2109 free_root_extent_buffers(info->uuid_root);
2110 if (chunk_root)
2111 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2112}
2113
faa2dbf0 2114void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2115{
2116 int ret;
2117 struct btrfs_root *gang[8];
2118 int i;
2119
2120 while (!list_empty(&fs_info->dead_roots)) {
2121 gang[0] = list_entry(fs_info->dead_roots.next,
2122 struct btrfs_root, root_list);
2123 list_del(&gang[0]->root_list);
2124
27cdeb70 2125 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2126 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2127 } else {
2128 free_extent_buffer(gang[0]->node);
2129 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2130 btrfs_put_fs_root(gang[0]);
171f6537
JB
2131 }
2132 }
2133
2134 while (1) {
2135 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2136 (void **)gang, 0,
2137 ARRAY_SIZE(gang));
2138 if (!ret)
2139 break;
2140 for (i = 0; i < ret; i++)
cb517eab 2141 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2142 }
1a4319cc
LB
2143
2144 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2145 btrfs_free_log_root_tree(NULL, fs_info);
2146 btrfs_destroy_pinned_extent(fs_info->tree_root,
2147 fs_info->pinned_extents);
2148 }
171f6537 2149}
af31f5e5 2150
ad2b2c80
AV
2151int open_ctree(struct super_block *sb,
2152 struct btrfs_fs_devices *fs_devices,
2153 char *options)
2e635a27 2154{
db94535d
CM
2155 u32 sectorsize;
2156 u32 nodesize;
db94535d 2157 u32 blocksize;
87ee04eb 2158 u32 stripesize;
84234f3a 2159 u64 generation;
f2b636e8 2160 u64 features;
3de4586c 2161 struct btrfs_key location;
a061fc8d 2162 struct buffer_head *bh;
4d34b278 2163 struct btrfs_super_block *disk_super;
815745cf 2164 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2165 struct btrfs_root *tree_root;
4d34b278
ID
2166 struct btrfs_root *extent_root;
2167 struct btrfs_root *csum_root;
2168 struct btrfs_root *chunk_root;
2169 struct btrfs_root *dev_root;
bcef60f2 2170 struct btrfs_root *quota_root;
f7a81ea4 2171 struct btrfs_root *uuid_root;
e02119d5 2172 struct btrfs_root *log_tree_root;
eb60ceac 2173 int ret;
e58ca020 2174 int err = -EINVAL;
af31f5e5
CM
2175 int num_backups_tried = 0;
2176 int backup_index = 0;
5cdc7ad3
QW
2177 int max_active;
2178 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2179 bool create_uuid_tree;
2180 bool check_uuid_tree;
4543df7e 2181
f84a8bd6 2182 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2183 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2184 if (!tree_root || !chunk_root) {
39279cc3
CM
2185 err = -ENOMEM;
2186 goto fail;
2187 }
76dda93c
YZ
2188
2189 ret = init_srcu_struct(&fs_info->subvol_srcu);
2190 if (ret) {
2191 err = ret;
2192 goto fail;
2193 }
2194
2195 ret = setup_bdi(fs_info, &fs_info->bdi);
2196 if (ret) {
2197 err = ret;
2198 goto fail_srcu;
2199 }
2200
e2d84521
MX
2201 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2202 if (ret) {
2203 err = ret;
2204 goto fail_bdi;
2205 }
2206 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2207 (1 + ilog2(nr_cpu_ids));
2208
963d678b
MX
2209 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2210 if (ret) {
2211 err = ret;
2212 goto fail_dirty_metadata_bytes;
2213 }
2214
c404e0dc
MX
2215 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2216 if (ret) {
2217 err = ret;
2218 goto fail_delalloc_bytes;
2219 }
2220
76dda93c
YZ
2221 fs_info->btree_inode = new_inode(sb);
2222 if (!fs_info->btree_inode) {
2223 err = -ENOMEM;
c404e0dc 2224 goto fail_bio_counter;
76dda93c
YZ
2225 }
2226
a6591715 2227 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2228
76dda93c 2229 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2230 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2231 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2232 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2233 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2234 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2235 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2236 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2237 spin_lock_init(&fs_info->trans_lock);
76dda93c 2238 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2239 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2240 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2241 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2242 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2243 spin_lock_init(&fs_info->super_lock);
fcebe456 2244 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2245 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2246 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2247 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2248 mutex_init(&fs_info->reloc_mutex);
573bfb72 2249 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2250 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2251
58176a96 2252 init_completion(&fs_info->kobj_unregister);
0b86a832 2253 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2254 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2255 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2256 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2257 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2258 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2259 BTRFS_BLOCK_RSV_GLOBAL);
2260 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2261 BTRFS_BLOCK_RSV_DELALLOC);
2262 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2263 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2264 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2265 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2266 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2267 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2268 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2269 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2270 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2271 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2272 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2273 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2274 fs_info->sb = sb;
95ac567a 2275 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2276 fs_info->metadata_ratio = 0;
4cb5300b 2277 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2278 fs_info->free_chunk_space = 0;
f29021b2 2279 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2280 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2281 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2282 /* readahead state */
2283 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2284 spin_lock_init(&fs_info->reada_lock);
c8b97818 2285
b34b086c
CM
2286 fs_info->thread_pool_size = min_t(unsigned long,
2287 num_online_cpus() + 2, 8);
0afbaf8c 2288
199c2a9c
MX
2289 INIT_LIST_HEAD(&fs_info->ordered_roots);
2290 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2291 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2292 GFP_NOFS);
2293 if (!fs_info->delayed_root) {
2294 err = -ENOMEM;
2295 goto fail_iput;
2296 }
2297 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2298
a2de733c
AJ
2299 mutex_init(&fs_info->scrub_lock);
2300 atomic_set(&fs_info->scrubs_running, 0);
2301 atomic_set(&fs_info->scrub_pause_req, 0);
2302 atomic_set(&fs_info->scrubs_paused, 0);
2303 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2304 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2305 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2306 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2307#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2308 fs_info->check_integrity_print_mask = 0;
2309#endif
a2de733c 2310
c9e9f97b
ID
2311 spin_lock_init(&fs_info->balance_lock);
2312 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2313 atomic_set(&fs_info->balance_running, 0);
2314 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2315 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2316 fs_info->balance_ctl = NULL;
837d5b6e 2317 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2318 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2319
a061fc8d
CM
2320 sb->s_blocksize = 4096;
2321 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2322 sb->s_bdi = &fs_info->bdi;
a061fc8d 2323
76dda93c 2324 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2325 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2326 /*
2327 * we set the i_size on the btree inode to the max possible int.
2328 * the real end of the address space is determined by all of
2329 * the devices in the system
2330 */
2331 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2332 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2333 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2334
5d4f98a2 2335 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2336 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2337 fs_info->btree_inode->i_mapping);
0b32f4bb 2338 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2339 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2340
2341 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2342
76dda93c
YZ
2343 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2344 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2345 sizeof(struct btrfs_key));
72ac3c0d
JB
2346 set_bit(BTRFS_INODE_DUMMY,
2347 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2348 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2349
0f9dd46c 2350 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2351 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2352 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2353
11833d66 2354 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2355 fs_info->btree_inode->i_mapping);
11833d66 2356 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2357 fs_info->btree_inode->i_mapping);
11833d66 2358 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2359 fs_info->do_barriers = 1;
e18e4809 2360
39279cc3 2361
5a3f23d5 2362 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2363 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2364 mutex_init(&fs_info->tree_log_mutex);
925baedd 2365 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2366 mutex_init(&fs_info->transaction_kthread_mutex);
2367 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2368 mutex_init(&fs_info->volume_mutex);
9e351cc8 2369 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2370 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2371 init_rwsem(&fs_info->subvol_sem);
803b2f54 2372 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2373 fs_info->dev_replace.lock_owner = 0;
2374 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2375 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2376 mutex_init(&fs_info->dev_replace.lock_management_lock);
2377 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2378
416ac51d 2379 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2380 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2381 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2382 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2383 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2384 fs_info->qgroup_seq = 1;
2385 fs_info->quota_enabled = 0;
2386 fs_info->pending_quota_state = 0;
1e8f9158 2387 fs_info->qgroup_ulist = NULL;
2f232036 2388 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2389
fa9c0d79
CM
2390 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2391 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2392
e6dcd2dc 2393 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2394 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2395 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2396 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2397
53b381b3
DW
2398 ret = btrfs_alloc_stripe_hash_table(fs_info);
2399 if (ret) {
83c8266a 2400 err = ret;
53b381b3
DW
2401 goto fail_alloc;
2402 }
2403
707e8a07 2404 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2405 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2406
3c4bb26b 2407 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2408
2409 /*
2410 * Read super block and check the signature bytes only
2411 */
a512bbf8 2412 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2413 if (!bh) {
2414 err = -EINVAL;
16cdcec7 2415 goto fail_alloc;
20b45077 2416 }
39279cc3 2417
1104a885
DS
2418 /*
2419 * We want to check superblock checksum, the type is stored inside.
2420 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2421 */
2422 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2423 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2424 err = -EINVAL;
2425 goto fail_alloc;
2426 }
2427
2428 /*
2429 * super_copy is zeroed at allocation time and we never touch the
2430 * following bytes up to INFO_SIZE, the checksum is calculated from
2431 * the whole block of INFO_SIZE
2432 */
6c41761f
DS
2433 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2434 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2435 sizeof(*fs_info->super_for_commit));
a061fc8d 2436 brelse(bh);
5f39d397 2437
6c41761f 2438 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2439
1104a885
DS
2440 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2441 if (ret) {
efe120a0 2442 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2443 err = -EINVAL;
2444 goto fail_alloc;
2445 }
2446
6c41761f 2447 disk_super = fs_info->super_copy;
0f7d52f4 2448 if (!btrfs_super_root(disk_super))
16cdcec7 2449 goto fail_alloc;
0f7d52f4 2450
acce952b 2451 /* check FS state, whether FS is broken. */
87533c47
MX
2452 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2453 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2454
af31f5e5
CM
2455 /*
2456 * run through our array of backup supers and setup
2457 * our ring pointer to the oldest one
2458 */
2459 generation = btrfs_super_generation(disk_super);
2460 find_oldest_super_backup(fs_info, generation);
2461
75e7cb7f
LB
2462 /*
2463 * In the long term, we'll store the compression type in the super
2464 * block, and it'll be used for per file compression control.
2465 */
2466 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2467
2b82032c
YZ
2468 ret = btrfs_parse_options(tree_root, options);
2469 if (ret) {
2470 err = ret;
16cdcec7 2471 goto fail_alloc;
2b82032c 2472 }
dfe25020 2473
f2b636e8
JB
2474 features = btrfs_super_incompat_flags(disk_super) &
2475 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2476 if (features) {
2477 printk(KERN_ERR "BTRFS: couldn't mount because of "
2478 "unsupported optional features (%Lx).\n",
c1c9ff7c 2479 features);
f2b636e8 2480 err = -EINVAL;
16cdcec7 2481 goto fail_alloc;
f2b636e8
JB
2482 }
2483
707e8a07
DS
2484 /*
2485 * Leafsize and nodesize were always equal, this is only a sanity check.
2486 */
2487 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2488 btrfs_super_nodesize(disk_super)) {
2489 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2490 "blocksizes don't match. node %d leaf %d\n",
2491 btrfs_super_nodesize(disk_super),
707e8a07 2492 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2493 err = -EINVAL;
2494 goto fail_alloc;
2495 }
707e8a07 2496 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2497 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2498 "blocksize (%d) was too large\n",
707e8a07 2499 btrfs_super_nodesize(disk_super));
727011e0
CM
2500 err = -EINVAL;
2501 goto fail_alloc;
2502 }
2503
5d4f98a2 2504 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2505 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2506 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2507 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2508
3173a18f 2509 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2510 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2511
727011e0
CM
2512 /*
2513 * flag our filesystem as having big metadata blocks if
2514 * they are bigger than the page size
2515 */
707e8a07 2516 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2517 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2518 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2519 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2520 }
2521
bc3f116f 2522 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2523 sectorsize = btrfs_super_sectorsize(disk_super);
2524 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2525 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2526 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2527
2528 /*
2529 * mixed block groups end up with duplicate but slightly offset
2530 * extent buffers for the same range. It leads to corruptions
2531 */
2532 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2533 (sectorsize != nodesize)) {
efe120a0 2534 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2535 "are not allowed for mixed block groups on %s\n",
2536 sb->s_id);
2537 goto fail_alloc;
2538 }
2539
ceda0864
MX
2540 /*
2541 * Needn't use the lock because there is no other task which will
2542 * update the flag.
2543 */
a6fa6fae 2544 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2545
f2b636e8
JB
2546 features = btrfs_super_compat_ro_flags(disk_super) &
2547 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2548 if (!(sb->s_flags & MS_RDONLY) && features) {
2549 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2550 "unsupported option features (%Lx).\n",
c1c9ff7c 2551 features);
f2b636e8 2552 err = -EINVAL;
16cdcec7 2553 goto fail_alloc;
f2b636e8 2554 }
61d92c32 2555
5cdc7ad3 2556 max_active = fs_info->thread_pool_size;
61d92c32 2557
5cdc7ad3
QW
2558 fs_info->workers =
2559 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2560 max_active, 16);
c8b97818 2561
afe3d242
QW
2562 fs_info->delalloc_workers =
2563 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2564
a44903ab
QW
2565 fs_info->flush_workers =
2566 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2567
e66f0bb1
QW
2568 fs_info->caching_workers =
2569 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2570
a8c93d4e
QW
2571 /*
2572 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2573 * likely that bios will be send down in a sane order to the
2574 * devices
2575 */
a8c93d4e
QW
2576 fs_info->submit_workers =
2577 btrfs_alloc_workqueue("submit", flags,
2578 min_t(u64, fs_devices->num_devices,
2579 max_active), 64);
53863232 2580
dc6e3209
QW
2581 fs_info->fixup_workers =
2582 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2583
2584 /*
2585 * endios are largely parallel and should have a very
2586 * low idle thresh
2587 */
fccb5d86
QW
2588 fs_info->endio_workers =
2589 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2590 fs_info->endio_meta_workers =
2591 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2592 fs_info->endio_meta_write_workers =
2593 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2594 fs_info->endio_raid56_workers =
2595 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
8b110e39
MX
2596 fs_info->endio_repair_workers =
2597 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
d05a33ac
QW
2598 fs_info->rmw_workers =
2599 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2600 fs_info->endio_write_workers =
2601 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2602 fs_info->endio_freespace_worker =
2603 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2604 fs_info->delayed_workers =
2605 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2606 fs_info->readahead_workers =
2607 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2608 fs_info->qgroup_rescan_workers =
2609 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2610 fs_info->extent_workers =
2611 btrfs_alloc_workqueue("extent-refs", flags,
2612 min_t(u64, fs_devices->num_devices,
2613 max_active), 8);
61b49440 2614
a8c93d4e 2615 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2616 fs_info->submit_workers && fs_info->flush_workers &&
2617 fs_info->endio_workers && fs_info->endio_meta_workers &&
2618 fs_info->endio_meta_write_workers &&
8b110e39 2619 fs_info->endio_repair_workers &&
fccb5d86 2620 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2621 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2622 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2623 fs_info->fixup_workers && fs_info->delayed_workers &&
56094eec 2624 fs_info->extent_workers &&
fc97fab0 2625 fs_info->qgroup_rescan_workers)) {
fed425c7 2626 err = -ENOMEM;
0dc3b84a
JB
2627 goto fail_sb_buffer;
2628 }
4543df7e 2629
4575c9cc 2630 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2631 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2632 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2633
db94535d 2634 tree_root->nodesize = nodesize;
db94535d 2635 tree_root->sectorsize = sectorsize;
87ee04eb 2636 tree_root->stripesize = stripesize;
a061fc8d
CM
2637
2638 sb->s_blocksize = sectorsize;
2639 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2640
3cae210f 2641 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2642 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2643 goto fail_sb_buffer;
2644 }
19c00ddc 2645
8d082fb7 2646 if (sectorsize != PAGE_SIZE) {
efe120a0 2647 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2648 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2649 goto fail_sb_buffer;
2650 }
2651
925baedd 2652 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2653 ret = btrfs_read_sys_array(tree_root);
925baedd 2654 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2655 if (ret) {
efe120a0 2656 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2657 "array on %s\n", sb->s_id);
5d4f98a2 2658 goto fail_sb_buffer;
84eed90f 2659 }
0b86a832 2660
707e8a07 2661 blocksize = tree_root->nodesize;
84234f3a 2662 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2663
707e8a07
DS
2664 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2665 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2666
2667 chunk_root->node = read_tree_block(chunk_root,
2668 btrfs_super_chunk_root(disk_super),
84234f3a 2669 blocksize, generation);
416bc658
JB
2670 if (!chunk_root->node ||
2671 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2672 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2673 sb->s_id);
af31f5e5 2674 goto fail_tree_roots;
83121942 2675 }
5d4f98a2
YZ
2676 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2677 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2678
e17cade2 2679 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2680 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2681
0b86a832 2682 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2683 if (ret) {
efe120a0 2684 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2685 sb->s_id);
af31f5e5 2686 goto fail_tree_roots;
2b82032c 2687 }
0b86a832 2688
8dabb742
SB
2689 /*
2690 * keep the device that is marked to be the target device for the
2691 * dev_replace procedure
2692 */
2693 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2694
a6b0d5c8 2695 if (!fs_devices->latest_bdev) {
efe120a0 2696 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2697 sb->s_id);
2698 goto fail_tree_roots;
2699 }
2700
af31f5e5 2701retry_root_backup:
707e8a07 2702 blocksize = tree_root->nodesize;
84234f3a 2703 generation = btrfs_super_generation(disk_super);
0b86a832 2704
e20d96d6 2705 tree_root->node = read_tree_block(tree_root,
db94535d 2706 btrfs_super_root(disk_super),
84234f3a 2707 blocksize, generation);
af31f5e5
CM
2708 if (!tree_root->node ||
2709 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2710 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2711 sb->s_id);
af31f5e5
CM
2712
2713 goto recovery_tree_root;
83121942 2714 }
af31f5e5 2715
5d4f98a2
YZ
2716 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2717 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2718 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2719
cb517eab
MX
2720 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2721 location.type = BTRFS_ROOT_ITEM_KEY;
2722 location.offset = 0;
2723
2724 extent_root = btrfs_read_tree_root(tree_root, &location);
2725 if (IS_ERR(extent_root)) {
2726 ret = PTR_ERR(extent_root);
af31f5e5 2727 goto recovery_tree_root;
cb517eab 2728 }
27cdeb70 2729 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2730 fs_info->extent_root = extent_root;
0b86a832 2731
cb517eab
MX
2732 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2733 dev_root = btrfs_read_tree_root(tree_root, &location);
2734 if (IS_ERR(dev_root)) {
2735 ret = PTR_ERR(dev_root);
af31f5e5 2736 goto recovery_tree_root;
cb517eab 2737 }
27cdeb70 2738 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2739 fs_info->dev_root = dev_root;
2740 btrfs_init_devices_late(fs_info);
3768f368 2741
cb517eab
MX
2742 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2743 csum_root = btrfs_read_tree_root(tree_root, &location);
2744 if (IS_ERR(csum_root)) {
2745 ret = PTR_ERR(csum_root);
af31f5e5 2746 goto recovery_tree_root;
cb517eab 2747 }
27cdeb70 2748 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2749 fs_info->csum_root = csum_root;
d20f7043 2750
cb517eab
MX
2751 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2752 quota_root = btrfs_read_tree_root(tree_root, &location);
2753 if (!IS_ERR(quota_root)) {
27cdeb70 2754 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2755 fs_info->quota_enabled = 1;
2756 fs_info->pending_quota_state = 1;
cb517eab 2757 fs_info->quota_root = quota_root;
bcef60f2
AJ
2758 }
2759
f7a81ea4
SB
2760 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2761 uuid_root = btrfs_read_tree_root(tree_root, &location);
2762 if (IS_ERR(uuid_root)) {
2763 ret = PTR_ERR(uuid_root);
2764 if (ret != -ENOENT)
2765 goto recovery_tree_root;
2766 create_uuid_tree = true;
70f80175 2767 check_uuid_tree = false;
f7a81ea4 2768 } else {
27cdeb70 2769 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2770 fs_info->uuid_root = uuid_root;
70f80175
SB
2771 create_uuid_tree = false;
2772 check_uuid_tree =
2773 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2774 }
2775
8929ecfa
YZ
2776 fs_info->generation = generation;
2777 fs_info->last_trans_committed = generation;
8929ecfa 2778
68310a5e
ID
2779 ret = btrfs_recover_balance(fs_info);
2780 if (ret) {
efe120a0 2781 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2782 goto fail_block_groups;
2783 }
2784
733f4fbb
SB
2785 ret = btrfs_init_dev_stats(fs_info);
2786 if (ret) {
efe120a0 2787 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2788 ret);
2789 goto fail_block_groups;
2790 }
2791
8dabb742
SB
2792 ret = btrfs_init_dev_replace(fs_info);
2793 if (ret) {
efe120a0 2794 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2795 goto fail_block_groups;
2796 }
2797
2798 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2799
5ac1d209 2800 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2801 if (ret) {
efe120a0 2802 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2803 goto fail_block_groups;
2804 }
2805
c59021f8 2806 ret = btrfs_init_space_info(fs_info);
2807 if (ret) {
efe120a0 2808 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2809 goto fail_sysfs;
c59021f8 2810 }
2811
1b1d1f66
JB
2812 ret = btrfs_read_block_groups(extent_root);
2813 if (ret) {
efe120a0 2814 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2815 goto fail_sysfs;
1b1d1f66 2816 }
5af3e8cc
SB
2817 fs_info->num_tolerated_disk_barrier_failures =
2818 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2819 if (fs_info->fs_devices->missing_devices >
2820 fs_info->num_tolerated_disk_barrier_failures &&
2821 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2822 printk(KERN_WARNING "BTRFS: "
2823 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2824 goto fail_sysfs;
292fd7fc 2825 }
9078a3e1 2826
a74a4b97
CM
2827 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2828 "btrfs-cleaner");
57506d50 2829 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2830 goto fail_sysfs;
a74a4b97
CM
2831
2832 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2833 tree_root,
2834 "btrfs-transaction");
57506d50 2835 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2836 goto fail_cleaner;
a74a4b97 2837
c289811c
CM
2838 if (!btrfs_test_opt(tree_root, SSD) &&
2839 !btrfs_test_opt(tree_root, NOSSD) &&
2840 !fs_info->fs_devices->rotating) {
efe120a0 2841 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2842 "mode\n");
2843 btrfs_set_opt(fs_info->mount_opt, SSD);
2844 }
2845
3818aea2
QW
2846 /* Set the real inode map cache flag */
2847 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2848 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2849
21adbd5c
SB
2850#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2851 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2852 ret = btrfsic_mount(tree_root, fs_devices,
2853 btrfs_test_opt(tree_root,
2854 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2855 1 : 0,
2856 fs_info->check_integrity_print_mask);
2857 if (ret)
efe120a0 2858 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2859 " integrity check module %s\n", sb->s_id);
2860 }
2861#endif
bcef60f2
AJ
2862 ret = btrfs_read_qgroup_config(fs_info);
2863 if (ret)
2864 goto fail_trans_kthread;
21adbd5c 2865
acce952b 2866 /* do not make disk changes in broken FS */
68ce9682 2867 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2868 u64 bytenr = btrfs_super_log_root(disk_super);
2869
7c2ca468 2870 if (fs_devices->rw_devices == 0) {
efe120a0 2871 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2872 "on RO media\n");
7c2ca468 2873 err = -EIO;
bcef60f2 2874 goto fail_qgroup;
7c2ca468 2875 }
707e8a07 2876 blocksize = tree_root->nodesize;
d18a2c44 2877
6f07e42e 2878 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2879 if (!log_tree_root) {
2880 err = -ENOMEM;
bcef60f2 2881 goto fail_qgroup;
676e4c86 2882 }
e02119d5 2883
707e8a07 2884 __setup_root(nodesize, sectorsize, stripesize,
e02119d5
CM
2885 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2886
2887 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2888 blocksize,
2889 generation + 1);
416bc658
JB
2890 if (!log_tree_root->node ||
2891 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2892 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2893 free_extent_buffer(log_tree_root->node);
2894 kfree(log_tree_root);
28c16cbb 2895 goto fail_qgroup;
416bc658 2896 }
79787eaa 2897 /* returns with log_tree_root freed on success */
e02119d5 2898 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2899 if (ret) {
2900 btrfs_error(tree_root->fs_info, ret,
2901 "Failed to recover log tree");
2902 free_extent_buffer(log_tree_root->node);
2903 kfree(log_tree_root);
28c16cbb 2904 goto fail_qgroup;
79787eaa 2905 }
e556ce2c
YZ
2906
2907 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2908 ret = btrfs_commit_super(tree_root);
2909 if (ret)
28c16cbb 2910 goto fail_qgroup;
e556ce2c 2911 }
e02119d5 2912 }
1a40e23b 2913
76dda93c 2914 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2915 if (ret)
28c16cbb 2916 goto fail_qgroup;
76dda93c 2917
7c2ca468 2918 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2919 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2920 if (ret)
28c16cbb 2921 goto fail_qgroup;
d68fc57b 2922
5f316481 2923 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2924 ret = btrfs_recover_relocation(tree_root);
5f316481 2925 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2926 if (ret < 0) {
2927 printk(KERN_WARNING
efe120a0 2928 "BTRFS: failed to recover relocation\n");
d7ce5843 2929 err = -EINVAL;
bcef60f2 2930 goto fail_qgroup;
d7ce5843 2931 }
7c2ca468 2932 }
1a40e23b 2933
3de4586c
CM
2934 location.objectid = BTRFS_FS_TREE_OBJECTID;
2935 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2936 location.offset = 0;
3de4586c 2937
3de4586c 2938 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2939 if (IS_ERR(fs_info->fs_root)) {
2940 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2941 goto fail_qgroup;
3140c9a3 2942 }
c289811c 2943
2b6ba629
ID
2944 if (sb->s_flags & MS_RDONLY)
2945 return 0;
59641015 2946
2b6ba629
ID
2947 down_read(&fs_info->cleanup_work_sem);
2948 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2949 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2950 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2951 close_ctree(tree_root);
2952 return ret;
2953 }
2954 up_read(&fs_info->cleanup_work_sem);
59641015 2955
2b6ba629
ID
2956 ret = btrfs_resume_balance_async(fs_info);
2957 if (ret) {
efe120a0 2958 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2959 close_ctree(tree_root);
2960 return ret;
e3acc2a6
JB
2961 }
2962
8dabb742
SB
2963 ret = btrfs_resume_dev_replace_async(fs_info);
2964 if (ret) {
efe120a0 2965 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2966 close_ctree(tree_root);
2967 return ret;
2968 }
2969
b382a324
JS
2970 btrfs_qgroup_rescan_resume(fs_info);
2971
f7a81ea4 2972 if (create_uuid_tree) {
efe120a0 2973 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2974 ret = btrfs_create_uuid_tree(fs_info);
2975 if (ret) {
efe120a0 2976 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2977 ret);
2978 close_ctree(tree_root);
2979 return ret;
2980 }
f420ee1e
SB
2981 } else if (check_uuid_tree ||
2982 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2983 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2984 ret = btrfs_check_uuid_tree(fs_info);
2985 if (ret) {
efe120a0 2986 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2987 ret);
2988 close_ctree(tree_root);
2989 return ret;
2990 }
2991 } else {
2992 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2993 }
2994
47ab2a6c
JB
2995 fs_info->open = 1;
2996
ad2b2c80 2997 return 0;
39279cc3 2998
bcef60f2
AJ
2999fail_qgroup:
3000 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3001fail_trans_kthread:
3002 kthread_stop(fs_info->transaction_kthread);
54067ae9 3003 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3004 btrfs_free_fs_roots(fs_info);
3f157a2f 3005fail_cleaner:
a74a4b97 3006 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3007
3008 /*
3009 * make sure we're done with the btree inode before we stop our
3010 * kthreads
3011 */
3012 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3013
2365dd3c
AJ
3014fail_sysfs:
3015 btrfs_sysfs_remove_one(fs_info);
3016
1b1d1f66 3017fail_block_groups:
54067ae9 3018 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3019 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3020
3021fail_tree_roots:
3022 free_root_pointers(fs_info, 1);
2b8195bb 3023 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3024
39279cc3 3025fail_sb_buffer:
7abadb64 3026 btrfs_stop_all_workers(fs_info);
16cdcec7 3027fail_alloc:
4543df7e 3028fail_iput:
586e46e2
ID
3029 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3030
4543df7e 3031 iput(fs_info->btree_inode);
c404e0dc
MX
3032fail_bio_counter:
3033 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3034fail_delalloc_bytes:
3035 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3036fail_dirty_metadata_bytes:
3037 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3038fail_bdi:
7e662854 3039 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3040fail_srcu:
3041 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3042fail:
53b381b3 3043 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3044 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3045 return err;
af31f5e5
CM
3046
3047recovery_tree_root:
af31f5e5
CM
3048 if (!btrfs_test_opt(tree_root, RECOVERY))
3049 goto fail_tree_roots;
3050
3051 free_root_pointers(fs_info, 0);
3052
3053 /* don't use the log in recovery mode, it won't be valid */
3054 btrfs_set_super_log_root(disk_super, 0);
3055
3056 /* we can't trust the free space cache either */
3057 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3058
3059 ret = next_root_backup(fs_info, fs_info->super_copy,
3060 &num_backups_tried, &backup_index);
3061 if (ret == -1)
3062 goto fail_block_groups;
3063 goto retry_root_backup;
eb60ceac
CM
3064}
3065
f2984462
CM
3066static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3067{
f2984462
CM
3068 if (uptodate) {
3069 set_buffer_uptodate(bh);
3070 } else {
442a4f63
SB
3071 struct btrfs_device *device = (struct btrfs_device *)
3072 bh->b_private;
3073
efe120a0 3074 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3075 "I/O error on %s\n",
3076 rcu_str_deref(device->name));
1259ab75
CM
3077 /* note, we dont' set_buffer_write_io_error because we have
3078 * our own ways of dealing with the IO errors
3079 */
f2984462 3080 clear_buffer_uptodate(bh);
442a4f63 3081 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3082 }
3083 unlock_buffer(bh);
3084 put_bh(bh);
3085}
3086
a512bbf8
YZ
3087struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3088{
3089 struct buffer_head *bh;
3090 struct buffer_head *latest = NULL;
3091 struct btrfs_super_block *super;
3092 int i;
3093 u64 transid = 0;
3094 u64 bytenr;
3095
3096 /* we would like to check all the supers, but that would make
3097 * a btrfs mount succeed after a mkfs from a different FS.
3098 * So, we need to add a special mount option to scan for
3099 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3100 */
3101 for (i = 0; i < 1; i++) {
3102 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3103 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3104 i_size_read(bdev->bd_inode))
a512bbf8 3105 break;
8068a47e
AJ
3106 bh = __bread(bdev, bytenr / 4096,
3107 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3108 if (!bh)
3109 continue;
3110
3111 super = (struct btrfs_super_block *)bh->b_data;
3112 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3113 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3114 brelse(bh);
3115 continue;
3116 }
3117
3118 if (!latest || btrfs_super_generation(super) > transid) {
3119 brelse(latest);
3120 latest = bh;
3121 transid = btrfs_super_generation(super);
3122 } else {
3123 brelse(bh);
3124 }
3125 }
3126 return latest;
3127}
3128
4eedeb75
HH
3129/*
3130 * this should be called twice, once with wait == 0 and
3131 * once with wait == 1. When wait == 0 is done, all the buffer heads
3132 * we write are pinned.
3133 *
3134 * They are released when wait == 1 is done.
3135 * max_mirrors must be the same for both runs, and it indicates how
3136 * many supers on this one device should be written.
3137 *
3138 * max_mirrors == 0 means to write them all.
3139 */
a512bbf8
YZ
3140static int write_dev_supers(struct btrfs_device *device,
3141 struct btrfs_super_block *sb,
3142 int do_barriers, int wait, int max_mirrors)
3143{
3144 struct buffer_head *bh;
3145 int i;
3146 int ret;
3147 int errors = 0;
3148 u32 crc;
3149 u64 bytenr;
a512bbf8
YZ
3150
3151 if (max_mirrors == 0)
3152 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3153
a512bbf8
YZ
3154 for (i = 0; i < max_mirrors; i++) {
3155 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3156 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3157 device->commit_total_bytes)
a512bbf8
YZ
3158 break;
3159
3160 if (wait) {
3161 bh = __find_get_block(device->bdev, bytenr / 4096,
3162 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3163 if (!bh) {
3164 errors++;
3165 continue;
3166 }
a512bbf8 3167 wait_on_buffer(bh);
4eedeb75
HH
3168 if (!buffer_uptodate(bh))
3169 errors++;
3170
3171 /* drop our reference */
3172 brelse(bh);
3173
3174 /* drop the reference from the wait == 0 run */
3175 brelse(bh);
3176 continue;
a512bbf8
YZ
3177 } else {
3178 btrfs_set_super_bytenr(sb, bytenr);
3179
3180 crc = ~(u32)0;
b0496686 3181 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3182 BTRFS_CSUM_SIZE, crc,
3183 BTRFS_SUPER_INFO_SIZE -
3184 BTRFS_CSUM_SIZE);
3185 btrfs_csum_final(crc, sb->csum);
3186
4eedeb75
HH
3187 /*
3188 * one reference for us, and we leave it for the
3189 * caller
3190 */
a512bbf8
YZ
3191 bh = __getblk(device->bdev, bytenr / 4096,
3192 BTRFS_SUPER_INFO_SIZE);
634554dc 3193 if (!bh) {
efe120a0 3194 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3195 "buffer head for bytenr %Lu\n", bytenr);
3196 errors++;
3197 continue;
3198 }
3199
a512bbf8
YZ
3200 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3201
4eedeb75 3202 /* one reference for submit_bh */
a512bbf8 3203 get_bh(bh);
4eedeb75
HH
3204
3205 set_buffer_uptodate(bh);
a512bbf8
YZ
3206 lock_buffer(bh);
3207 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3208 bh->b_private = device;
a512bbf8
YZ
3209 }
3210
387125fc
CM
3211 /*
3212 * we fua the first super. The others we allow
3213 * to go down lazy.
3214 */
e8117c26
WS
3215 if (i == 0)
3216 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3217 else
3218 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3219 if (ret)
a512bbf8 3220 errors++;
a512bbf8
YZ
3221 }
3222 return errors < i ? 0 : -1;
3223}
3224
387125fc
CM
3225/*
3226 * endio for the write_dev_flush, this will wake anyone waiting
3227 * for the barrier when it is done
3228 */
3229static void btrfs_end_empty_barrier(struct bio *bio, int err)
3230{
3231 if (err) {
3232 if (err == -EOPNOTSUPP)
3233 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3234 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3235 }
3236 if (bio->bi_private)
3237 complete(bio->bi_private);
3238 bio_put(bio);
3239}
3240
3241/*
3242 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3243 * sent down. With wait == 1, it waits for the previous flush.
3244 *
3245 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3246 * capable
3247 */
3248static int write_dev_flush(struct btrfs_device *device, int wait)
3249{
3250 struct bio *bio;
3251 int ret = 0;
3252
3253 if (device->nobarriers)
3254 return 0;
3255
3256 if (wait) {
3257 bio = device->flush_bio;
3258 if (!bio)
3259 return 0;
3260
3261 wait_for_completion(&device->flush_wait);
3262
3263 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3264 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3265 rcu_str_deref(device->name));
387125fc 3266 device->nobarriers = 1;
5af3e8cc 3267 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3268 ret = -EIO;
5af3e8cc
SB
3269 btrfs_dev_stat_inc_and_print(device,
3270 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3271 }
3272
3273 /* drop the reference from the wait == 0 run */
3274 bio_put(bio);
3275 device->flush_bio = NULL;
3276
3277 return ret;
3278 }
3279
3280 /*
3281 * one reference for us, and we leave it for the
3282 * caller
3283 */
9c017abc 3284 device->flush_bio = NULL;
9be3395b 3285 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3286 if (!bio)
3287 return -ENOMEM;
3288
3289 bio->bi_end_io = btrfs_end_empty_barrier;
3290 bio->bi_bdev = device->bdev;
3291 init_completion(&device->flush_wait);
3292 bio->bi_private = &device->flush_wait;
3293 device->flush_bio = bio;
3294
3295 bio_get(bio);
21adbd5c 3296 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3297
3298 return 0;
3299}
3300
3301/*
3302 * send an empty flush down to each device in parallel,
3303 * then wait for them
3304 */
3305static int barrier_all_devices(struct btrfs_fs_info *info)
3306{
3307 struct list_head *head;
3308 struct btrfs_device *dev;
5af3e8cc
SB
3309 int errors_send = 0;
3310 int errors_wait = 0;
387125fc
CM
3311 int ret;
3312
3313 /* send down all the barriers */
3314 head = &info->fs_devices->devices;
3315 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3316 if (dev->missing)
3317 continue;
387125fc 3318 if (!dev->bdev) {
5af3e8cc 3319 errors_send++;
387125fc
CM
3320 continue;
3321 }
3322 if (!dev->in_fs_metadata || !dev->writeable)
3323 continue;
3324
3325 ret = write_dev_flush(dev, 0);
3326 if (ret)
5af3e8cc 3327 errors_send++;
387125fc
CM
3328 }
3329
3330 /* wait for all the barriers */
3331 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3332 if (dev->missing)
3333 continue;
387125fc 3334 if (!dev->bdev) {
5af3e8cc 3335 errors_wait++;
387125fc
CM
3336 continue;
3337 }
3338 if (!dev->in_fs_metadata || !dev->writeable)
3339 continue;
3340
3341 ret = write_dev_flush(dev, 1);
3342 if (ret)
5af3e8cc 3343 errors_wait++;
387125fc 3344 }
5af3e8cc
SB
3345 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3346 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3347 return -EIO;
3348 return 0;
3349}
3350
5af3e8cc
SB
3351int btrfs_calc_num_tolerated_disk_barrier_failures(
3352 struct btrfs_fs_info *fs_info)
3353{
3354 struct btrfs_ioctl_space_info space;
3355 struct btrfs_space_info *sinfo;
3356 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3357 BTRFS_BLOCK_GROUP_SYSTEM,
3358 BTRFS_BLOCK_GROUP_METADATA,
3359 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3360 int num_types = 4;
3361 int i;
3362 int c;
3363 int num_tolerated_disk_barrier_failures =
3364 (int)fs_info->fs_devices->num_devices;
3365
3366 for (i = 0; i < num_types; i++) {
3367 struct btrfs_space_info *tmp;
3368
3369 sinfo = NULL;
3370 rcu_read_lock();
3371 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3372 if (tmp->flags == types[i]) {
3373 sinfo = tmp;
3374 break;
3375 }
3376 }
3377 rcu_read_unlock();
3378
3379 if (!sinfo)
3380 continue;
3381
3382 down_read(&sinfo->groups_sem);
3383 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3384 if (!list_empty(&sinfo->block_groups[c])) {
3385 u64 flags;
3386
3387 btrfs_get_block_group_info(
3388 &sinfo->block_groups[c], &space);
3389 if (space.total_bytes == 0 ||
3390 space.used_bytes == 0)
3391 continue;
3392 flags = space.flags;
3393 /*
3394 * return
3395 * 0: if dup, single or RAID0 is configured for
3396 * any of metadata, system or data, else
3397 * 1: if RAID5 is configured, or if RAID1 or
3398 * RAID10 is configured and only two mirrors
3399 * are used, else
3400 * 2: if RAID6 is configured, else
3401 * num_mirrors - 1: if RAID1 or RAID10 is
3402 * configured and more than
3403 * 2 mirrors are used.
3404 */
3405 if (num_tolerated_disk_barrier_failures > 0 &&
3406 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3407 BTRFS_BLOCK_GROUP_RAID0)) ||
3408 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3409 == 0)))
3410 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3411 else if (num_tolerated_disk_barrier_failures > 1) {
3412 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3413 BTRFS_BLOCK_GROUP_RAID5 |
3414 BTRFS_BLOCK_GROUP_RAID10)) {
3415 num_tolerated_disk_barrier_failures = 1;
3416 } else if (flags &
15b0a89d 3417 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3418 num_tolerated_disk_barrier_failures = 2;
3419 }
3420 }
5af3e8cc
SB
3421 }
3422 }
3423 up_read(&sinfo->groups_sem);
3424 }
3425
3426 return num_tolerated_disk_barrier_failures;
3427}
3428
48a3b636 3429static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3430{
e5e9a520 3431 struct list_head *head;
f2984462 3432 struct btrfs_device *dev;
a061fc8d 3433 struct btrfs_super_block *sb;
f2984462 3434 struct btrfs_dev_item *dev_item;
f2984462
CM
3435 int ret;
3436 int do_barriers;
a236aed1
CM
3437 int max_errors;
3438 int total_errors = 0;
a061fc8d 3439 u64 flags;
f2984462
CM
3440
3441 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3442 backup_super_roots(root->fs_info);
f2984462 3443
6c41761f 3444 sb = root->fs_info->super_for_commit;
a061fc8d 3445 dev_item = &sb->dev_item;
e5e9a520 3446
174ba509 3447 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3448 head = &root->fs_info->fs_devices->devices;
d7306801 3449 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3450
5af3e8cc
SB
3451 if (do_barriers) {
3452 ret = barrier_all_devices(root->fs_info);
3453 if (ret) {
3454 mutex_unlock(
3455 &root->fs_info->fs_devices->device_list_mutex);
3456 btrfs_error(root->fs_info, ret,
3457 "errors while submitting device barriers.");
3458 return ret;
3459 }
3460 }
387125fc 3461
1f78160c 3462 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3463 if (!dev->bdev) {
3464 total_errors++;
3465 continue;
3466 }
2b82032c 3467 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3468 continue;
3469
2b82032c 3470 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3471 btrfs_set_stack_device_type(dev_item, dev->type);
3472 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3473 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3474 dev->commit_total_bytes);
ce7213c7
MX
3475 btrfs_set_stack_device_bytes_used(dev_item,
3476 dev->commit_bytes_used);
a061fc8d
CM
3477 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3478 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3479 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3480 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3481 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3482
a061fc8d
CM
3483 flags = btrfs_super_flags(sb);
3484 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3485
a512bbf8 3486 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3487 if (ret)
3488 total_errors++;
f2984462 3489 }
a236aed1 3490 if (total_errors > max_errors) {
efe120a0 3491 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3492 total_errors);
a724b436 3493 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3494
9d565ba4
SB
3495 /* FUA is masked off if unsupported and can't be the reason */
3496 btrfs_error(root->fs_info, -EIO,
3497 "%d errors while writing supers", total_errors);
3498 return -EIO;
a236aed1 3499 }
f2984462 3500
a512bbf8 3501 total_errors = 0;
1f78160c 3502 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3503 if (!dev->bdev)
3504 continue;
2b82032c 3505 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3506 continue;
3507
a512bbf8
YZ
3508 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3509 if (ret)
3510 total_errors++;
f2984462 3511 }
174ba509 3512 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3513 if (total_errors > max_errors) {
79787eaa
JM
3514 btrfs_error(root->fs_info, -EIO,
3515 "%d errors while writing supers", total_errors);
3516 return -EIO;
a236aed1 3517 }
f2984462
CM
3518 return 0;
3519}
3520
a512bbf8
YZ
3521int write_ctree_super(struct btrfs_trans_handle *trans,
3522 struct btrfs_root *root, int max_mirrors)
eb60ceac 3523{
f570e757 3524 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3525}
3526
cb517eab
MX
3527/* Drop a fs root from the radix tree and free it. */
3528void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3529 struct btrfs_root *root)
2619ba1f 3530{
4df27c4d 3531 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3532 radix_tree_delete(&fs_info->fs_roots_radix,
3533 (unsigned long)root->root_key.objectid);
4df27c4d 3534 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3535
3536 if (btrfs_root_refs(&root->root_item) == 0)
3537 synchronize_srcu(&fs_info->subvol_srcu);
3538
1a4319cc 3539 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3540 btrfs_free_log(NULL, root);
3321719e 3541
faa2dbf0
JB
3542 if (root->free_ino_pinned)
3543 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3544 if (root->free_ino_ctl)
3545 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3546 free_fs_root(root);
4df27c4d
YZ
3547}
3548
3549static void free_fs_root(struct btrfs_root *root)
3550{
57cdc8db 3551 iput(root->ino_cache_inode);
4df27c4d 3552 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3553 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3554 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3555 if (root->anon_dev)
3556 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3557 if (root->subv_writers)
3558 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3559 free_extent_buffer(root->node);
3560 free_extent_buffer(root->commit_root);
581bb050
LZ
3561 kfree(root->free_ino_ctl);
3562 kfree(root->free_ino_pinned);
d397712b 3563 kfree(root->name);
b0feb9d9 3564 btrfs_put_fs_root(root);
2619ba1f
CM
3565}
3566
cb517eab
MX
3567void btrfs_free_fs_root(struct btrfs_root *root)
3568{
3569 free_fs_root(root);
2619ba1f
CM
3570}
3571
c146afad 3572int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3573{
c146afad
YZ
3574 u64 root_objectid = 0;
3575 struct btrfs_root *gang[8];
65d33fd7
QW
3576 int i = 0;
3577 int err = 0;
3578 unsigned int ret = 0;
3579 int index;
e089f05c 3580
c146afad 3581 while (1) {
65d33fd7 3582 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3583 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3584 (void **)gang, root_objectid,
3585 ARRAY_SIZE(gang));
65d33fd7
QW
3586 if (!ret) {
3587 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3588 break;
65d33fd7 3589 }
5d4f98a2 3590 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3591
c146afad 3592 for (i = 0; i < ret; i++) {
65d33fd7
QW
3593 /* Avoid to grab roots in dead_roots */
3594 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3595 gang[i] = NULL;
3596 continue;
3597 }
3598 /* grab all the search result for later use */
3599 gang[i] = btrfs_grab_fs_root(gang[i]);
3600 }
3601 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3602
65d33fd7
QW
3603 for (i = 0; i < ret; i++) {
3604 if (!gang[i])
3605 continue;
c146afad 3606 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3607 err = btrfs_orphan_cleanup(gang[i]);
3608 if (err)
65d33fd7
QW
3609 break;
3610 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3611 }
3612 root_objectid++;
3613 }
65d33fd7
QW
3614
3615 /* release the uncleaned roots due to error */
3616 for (; i < ret; i++) {
3617 if (gang[i])
3618 btrfs_put_fs_root(gang[i]);
3619 }
3620 return err;
c146afad 3621}
a2135011 3622
c146afad
YZ
3623int btrfs_commit_super(struct btrfs_root *root)
3624{
3625 struct btrfs_trans_handle *trans;
a74a4b97 3626
c146afad 3627 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3628 btrfs_run_delayed_iputs(root);
c146afad 3629 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3630 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3631
3632 /* wait until ongoing cleanup work done */
3633 down_write(&root->fs_info->cleanup_work_sem);
3634 up_write(&root->fs_info->cleanup_work_sem);
3635
7a7eaa40 3636 trans = btrfs_join_transaction(root);
3612b495
TI
3637 if (IS_ERR(trans))
3638 return PTR_ERR(trans);
d52c1bcc 3639 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3640}
3641
3abdbd78 3642void close_ctree(struct btrfs_root *root)
c146afad
YZ
3643{
3644 struct btrfs_fs_info *fs_info = root->fs_info;
3645 int ret;
3646
3647 fs_info->closing = 1;
3648 smp_mb();
3649
803b2f54
SB
3650 /* wait for the uuid_scan task to finish */
3651 down(&fs_info->uuid_tree_rescan_sem);
3652 /* avoid complains from lockdep et al., set sem back to initial state */
3653 up(&fs_info->uuid_tree_rescan_sem);
3654
837d5b6e 3655 /* pause restriper - we want to resume on mount */
aa1b8cd4 3656 btrfs_pause_balance(fs_info);
837d5b6e 3657
8dabb742
SB
3658 btrfs_dev_replace_suspend_for_unmount(fs_info);
3659
aa1b8cd4 3660 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3661
3662 /* wait for any defraggers to finish */
3663 wait_event(fs_info->transaction_wait,
3664 (atomic_read(&fs_info->defrag_running) == 0));
3665
3666 /* clear out the rbtree of defraggable inodes */
26176e7c 3667 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3668
21c7e756
MX
3669 cancel_work_sync(&fs_info->async_reclaim_work);
3670
c146afad 3671 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3672 ret = btrfs_commit_super(root);
3673 if (ret)
efe120a0 3674 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3675 }
3676
87533c47 3677 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3678 btrfs_error_commit_super(root);
0f7d52f4 3679
e3029d9f
AV
3680 kthread_stop(fs_info->transaction_kthread);
3681 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3682
f25784b3
YZ
3683 fs_info->closing = 2;
3684 smp_mb();
3685
bcef60f2
AJ
3686 btrfs_free_qgroup_config(root->fs_info);
3687
963d678b 3688 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3689 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3690 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3691 }
bcc63abb 3692
5ac1d209
JM
3693 btrfs_sysfs_remove_one(fs_info);
3694
faa2dbf0 3695 btrfs_free_fs_roots(fs_info);
d10c5f31 3696
1a4319cc
LB
3697 btrfs_put_block_group_cache(fs_info);
3698
2b1360da
JB
3699 btrfs_free_block_groups(fs_info);
3700
de348ee0
WS
3701 /*
3702 * we must make sure there is not any read request to
3703 * submit after we stopping all workers.
3704 */
3705 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3706 btrfs_stop_all_workers(fs_info);
3707
47ab2a6c 3708 fs_info->open = 0;
13e6c37b 3709 free_root_pointers(fs_info, 1);
9ad6b7bc 3710
13e6c37b 3711 iput(fs_info->btree_inode);
d6bfde87 3712
21adbd5c
SB
3713#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3714 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3715 btrfsic_unmount(root, fs_info->fs_devices);
3716#endif
3717
dfe25020 3718 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3719 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3720
e2d84521 3721 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3722 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3723 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3724 bdi_destroy(&fs_info->bdi);
76dda93c 3725 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3726
53b381b3
DW
3727 btrfs_free_stripe_hash_table(fs_info);
3728
1cb048f5
FDBM
3729 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3730 root->orphan_block_rsv = NULL;
eb60ceac
CM
3731}
3732
b9fab919
CM
3733int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3734 int atomic)
5f39d397 3735{
1259ab75 3736 int ret;
727011e0 3737 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3738
0b32f4bb 3739 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3740 if (!ret)
3741 return ret;
3742
3743 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3744 parent_transid, atomic);
3745 if (ret == -EAGAIN)
3746 return ret;
1259ab75 3747 return !ret;
5f39d397
CM
3748}
3749
3750int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3751{
0b32f4bb 3752 return set_extent_buffer_uptodate(buf);
5f39d397 3753}
6702ed49 3754
5f39d397
CM
3755void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3756{
06ea65a3 3757 struct btrfs_root *root;
5f39d397 3758 u64 transid = btrfs_header_generation(buf);
b9473439 3759 int was_dirty;
b4ce94de 3760
06ea65a3
JB
3761#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3762 /*
3763 * This is a fast path so only do this check if we have sanity tests
3764 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3765 * outside of the sanity tests.
3766 */
3767 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3768 return;
3769#endif
3770 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3771 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3772 if (transid != root->fs_info->generation)
3773 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3774 "found %llu running %llu\n",
c1c9ff7c 3775 buf->start, transid, root->fs_info->generation);
0b32f4bb 3776 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3777 if (!was_dirty)
3778 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3779 buf->len,
3780 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3781#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3782 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3783 btrfs_print_leaf(root, buf);
3784 ASSERT(0);
3785 }
3786#endif
eb60ceac
CM
3787}
3788
b53d3f5d
LB
3789static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3790 int flush_delayed)
16cdcec7
MX
3791{
3792 /*
3793 * looks as though older kernels can get into trouble with
3794 * this code, they end up stuck in balance_dirty_pages forever
3795 */
e2d84521 3796 int ret;
16cdcec7
MX
3797
3798 if (current->flags & PF_MEMALLOC)
3799 return;
3800
b53d3f5d
LB
3801 if (flush_delayed)
3802 btrfs_balance_delayed_items(root);
16cdcec7 3803
e2d84521
MX
3804 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3805 BTRFS_DIRTY_METADATA_THRESH);
3806 if (ret > 0) {
d0e1d66b
NJ
3807 balance_dirty_pages_ratelimited(
3808 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3809 }
3810 return;
3811}
3812
b53d3f5d 3813void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3814{
b53d3f5d
LB
3815 __btrfs_btree_balance_dirty(root, 1);
3816}
585ad2c3 3817
b53d3f5d
LB
3818void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3819{
3820 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3821}
6b80053d 3822
ca7a79ad 3823int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3824{
727011e0 3825 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3826 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3827}
0da5468f 3828
fcd1f065 3829static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3830 int read_only)
3831{
1104a885
DS
3832 /*
3833 * Placeholder for checks
3834 */
fcd1f065 3835 return 0;
acce952b 3836}
3837
48a3b636 3838static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3839{
acce952b 3840 mutex_lock(&root->fs_info->cleaner_mutex);
3841 btrfs_run_delayed_iputs(root);
3842 mutex_unlock(&root->fs_info->cleaner_mutex);
3843
3844 down_write(&root->fs_info->cleanup_work_sem);
3845 up_write(&root->fs_info->cleanup_work_sem);
3846
3847 /* cleanup FS via transaction */
3848 btrfs_cleanup_transaction(root);
acce952b 3849}
3850
143bede5 3851static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3852{
acce952b 3853 struct btrfs_ordered_extent *ordered;
acce952b 3854
199c2a9c 3855 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3856 /*
3857 * This will just short circuit the ordered completion stuff which will
3858 * make sure the ordered extent gets properly cleaned up.
3859 */
199c2a9c 3860 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3861 root_extent_list)
3862 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3863 spin_unlock(&root->ordered_extent_lock);
3864}
3865
3866static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3867{
3868 struct btrfs_root *root;
3869 struct list_head splice;
3870
3871 INIT_LIST_HEAD(&splice);
3872
3873 spin_lock(&fs_info->ordered_root_lock);
3874 list_splice_init(&fs_info->ordered_roots, &splice);
3875 while (!list_empty(&splice)) {
3876 root = list_first_entry(&splice, struct btrfs_root,
3877 ordered_root);
1de2cfde
JB
3878 list_move_tail(&root->ordered_root,
3879 &fs_info->ordered_roots);
199c2a9c 3880
2a85d9ca 3881 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3882 btrfs_destroy_ordered_extents(root);
3883
2a85d9ca
LB
3884 cond_resched();
3885 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3886 }
3887 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3888}
3889
35a3621b
SB
3890static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3891 struct btrfs_root *root)
acce952b 3892{
3893 struct rb_node *node;
3894 struct btrfs_delayed_ref_root *delayed_refs;
3895 struct btrfs_delayed_ref_node *ref;
3896 int ret = 0;
3897
3898 delayed_refs = &trans->delayed_refs;
3899
3900 spin_lock(&delayed_refs->lock);
d7df2c79 3901 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3902 spin_unlock(&delayed_refs->lock);
efe120a0 3903 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3904 return ret;
3905 }
3906
d7df2c79
JB
3907 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3908 struct btrfs_delayed_ref_head *head;
e78417d1 3909 bool pin_bytes = false;
acce952b 3910
d7df2c79
JB
3911 head = rb_entry(node, struct btrfs_delayed_ref_head,
3912 href_node);
3913 if (!mutex_trylock(&head->mutex)) {
3914 atomic_inc(&head->node.refs);
3915 spin_unlock(&delayed_refs->lock);
eb12db69 3916
d7df2c79 3917 mutex_lock(&head->mutex);
e78417d1 3918 mutex_unlock(&head->mutex);
d7df2c79
JB
3919 btrfs_put_delayed_ref(&head->node);
3920 spin_lock(&delayed_refs->lock);
3921 continue;
3922 }
3923 spin_lock(&head->lock);
3924 while ((node = rb_first(&head->ref_root)) != NULL) {
3925 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3926 rb_node);
3927 ref->in_tree = 0;
3928 rb_erase(&ref->rb_node, &head->ref_root);
3929 atomic_dec(&delayed_refs->num_entries);
3930 btrfs_put_delayed_ref(ref);
e78417d1 3931 }
d7df2c79
JB
3932 if (head->must_insert_reserved)
3933 pin_bytes = true;
3934 btrfs_free_delayed_extent_op(head->extent_op);
3935 delayed_refs->num_heads--;
3936 if (head->processing == 0)
3937 delayed_refs->num_heads_ready--;
3938 atomic_dec(&delayed_refs->num_entries);
3939 head->node.in_tree = 0;
3940 rb_erase(&head->href_node, &delayed_refs->href_root);
3941 spin_unlock(&head->lock);
3942 spin_unlock(&delayed_refs->lock);
3943 mutex_unlock(&head->mutex);
acce952b 3944
d7df2c79
JB
3945 if (pin_bytes)
3946 btrfs_pin_extent(root, head->node.bytenr,
3947 head->node.num_bytes, 1);
3948 btrfs_put_delayed_ref(&head->node);
acce952b 3949 cond_resched();
3950 spin_lock(&delayed_refs->lock);
3951 }
3952
3953 spin_unlock(&delayed_refs->lock);
3954
3955 return ret;
3956}
3957
143bede5 3958static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3959{
3960 struct btrfs_inode *btrfs_inode;
3961 struct list_head splice;
3962
3963 INIT_LIST_HEAD(&splice);
3964
eb73c1b7
MX
3965 spin_lock(&root->delalloc_lock);
3966 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3967
3968 while (!list_empty(&splice)) {
eb73c1b7
MX
3969 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3970 delalloc_inodes);
acce952b 3971
3972 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3973 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3974 &btrfs_inode->runtime_flags);
eb73c1b7 3975 spin_unlock(&root->delalloc_lock);
acce952b 3976
3977 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3978
eb73c1b7 3979 spin_lock(&root->delalloc_lock);
acce952b 3980 }
3981
eb73c1b7
MX
3982 spin_unlock(&root->delalloc_lock);
3983}
3984
3985static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3986{
3987 struct btrfs_root *root;
3988 struct list_head splice;
3989
3990 INIT_LIST_HEAD(&splice);
3991
3992 spin_lock(&fs_info->delalloc_root_lock);
3993 list_splice_init(&fs_info->delalloc_roots, &splice);
3994 while (!list_empty(&splice)) {
3995 root = list_first_entry(&splice, struct btrfs_root,
3996 delalloc_root);
3997 list_del_init(&root->delalloc_root);
3998 root = btrfs_grab_fs_root(root);
3999 BUG_ON(!root);
4000 spin_unlock(&fs_info->delalloc_root_lock);
4001
4002 btrfs_destroy_delalloc_inodes(root);
4003 btrfs_put_fs_root(root);
4004
4005 spin_lock(&fs_info->delalloc_root_lock);
4006 }
4007 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4008}
4009
4010static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4011 struct extent_io_tree *dirty_pages,
4012 int mark)
4013{
4014 int ret;
acce952b 4015 struct extent_buffer *eb;
4016 u64 start = 0;
4017 u64 end;
acce952b 4018
4019 while (1) {
4020 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4021 mark, NULL);
acce952b 4022 if (ret)
4023 break;
4024
4025 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4026 while (start <= end) {
fd8b2b61 4027 eb = btrfs_find_tree_block(root, start,
707e8a07
DS
4028 root->nodesize);
4029 start += root->nodesize;
fd8b2b61 4030 if (!eb)
acce952b 4031 continue;
fd8b2b61 4032 wait_on_extent_buffer_writeback(eb);
acce952b 4033
fd8b2b61
JB
4034 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4035 &eb->bflags))
4036 clear_extent_buffer_dirty(eb);
4037 free_extent_buffer_stale(eb);
acce952b 4038 }
4039 }
4040
4041 return ret;
4042}
4043
4044static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4045 struct extent_io_tree *pinned_extents)
4046{
4047 struct extent_io_tree *unpin;
4048 u64 start;
4049 u64 end;
4050 int ret;
ed0eaa14 4051 bool loop = true;
acce952b 4052
4053 unpin = pinned_extents;
ed0eaa14 4054again:
acce952b 4055 while (1) {
4056 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4057 EXTENT_DIRTY, NULL);
acce952b 4058 if (ret)
4059 break;
4060
4061 /* opt_discard */
5378e607
LD
4062 if (btrfs_test_opt(root, DISCARD))
4063 ret = btrfs_error_discard_extent(root, start,
4064 end + 1 - start,
4065 NULL);
acce952b 4066
4067 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4068 btrfs_error_unpin_extent_range(root, start, end);
4069 cond_resched();
4070 }
4071
ed0eaa14
LB
4072 if (loop) {
4073 if (unpin == &root->fs_info->freed_extents[0])
4074 unpin = &root->fs_info->freed_extents[1];
4075 else
4076 unpin = &root->fs_info->freed_extents[0];
4077 loop = false;
4078 goto again;
4079 }
4080
acce952b 4081 return 0;
4082}
4083
49b25e05
JM
4084void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4085 struct btrfs_root *root)
4086{
4087 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4088
4a9d8bde 4089 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4090 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4091
4a9d8bde 4092 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4093 wake_up(&root->fs_info->transaction_wait);
49b25e05 4094
67cde344
MX
4095 btrfs_destroy_delayed_inodes(root);
4096 btrfs_assert_delayed_root_empty(root);
49b25e05 4097
49b25e05
JM
4098 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4099 EXTENT_DIRTY);
6e841e32
LB
4100 btrfs_destroy_pinned_extent(root,
4101 root->fs_info->pinned_extents);
49b25e05 4102
4a9d8bde
MX
4103 cur_trans->state =TRANS_STATE_COMPLETED;
4104 wake_up(&cur_trans->commit_wait);
4105
49b25e05
JM
4106 /*
4107 memset(cur_trans, 0, sizeof(*cur_trans));
4108 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4109 */
4110}
4111
48a3b636 4112static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4113{
4114 struct btrfs_transaction *t;
acce952b 4115
acce952b 4116 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4117
a4abeea4 4118 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4119 while (!list_empty(&root->fs_info->trans_list)) {
4120 t = list_first_entry(&root->fs_info->trans_list,
4121 struct btrfs_transaction, list);
4122 if (t->state >= TRANS_STATE_COMMIT_START) {
4123 atomic_inc(&t->use_count);
4124 spin_unlock(&root->fs_info->trans_lock);
4125 btrfs_wait_for_commit(root, t->transid);
4126 btrfs_put_transaction(t);
4127 spin_lock(&root->fs_info->trans_lock);
4128 continue;
4129 }
4130 if (t == root->fs_info->running_transaction) {
4131 t->state = TRANS_STATE_COMMIT_DOING;
4132 spin_unlock(&root->fs_info->trans_lock);
4133 /*
4134 * We wait for 0 num_writers since we don't hold a trans
4135 * handle open currently for this transaction.
4136 */
4137 wait_event(t->writer_wait,
4138 atomic_read(&t->num_writers) == 0);
4139 } else {
4140 spin_unlock(&root->fs_info->trans_lock);
4141 }
4142 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4143
724e2315
JB
4144 spin_lock(&root->fs_info->trans_lock);
4145 if (t == root->fs_info->running_transaction)
4146 root->fs_info->running_transaction = NULL;
acce952b 4147 list_del_init(&t->list);
724e2315 4148 spin_unlock(&root->fs_info->trans_lock);
acce952b 4149
724e2315
JB
4150 btrfs_put_transaction(t);
4151 trace_btrfs_transaction_commit(root);
4152 spin_lock(&root->fs_info->trans_lock);
4153 }
4154 spin_unlock(&root->fs_info->trans_lock);
4155 btrfs_destroy_all_ordered_extents(root->fs_info);
4156 btrfs_destroy_delayed_inodes(root);
4157 btrfs_assert_delayed_root_empty(root);
4158 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4159 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4160 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4161
4162 return 0;
4163}
4164
d1310b2e 4165static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4166 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4167 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4168 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4169 /* note we're sharing with inode.c for the merge bio hook */
4170 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4171};