Btrfs: fix data corruption after fast fsync and writeback error
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68
CM
74/*
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
ce9adaa5
CM
79struct end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
22c59948 85 int metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
d352ac68
CM
90/*
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
94 */
44b8bd7e
CM
95struct async_submit_bio {
96 struct inode *inode;
97 struct bio *bio;
98 struct list_head list;
4a69a410
CM
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
101 int rw;
102 int mirror_num;
c8b97818 103 unsigned long bio_flags;
eaf25d93
CM
104 /*
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
107 */
108 u64 bio_offset;
8b712842 109 struct btrfs_work work;
79787eaa 110 int error;
44b8bd7e
CM
111};
112
85d4e461
CM
113/*
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
117 *
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
4008c04a 123 *
85d4e461
CM
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 127 *
85d4e461
CM
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 131 *
85d4e461
CM
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
4008c04a
CM
135 */
136#ifdef CONFIG_DEBUG_LOCK_ALLOC
137# if BTRFS_MAX_LEVEL != 8
138# error
139# endif
85d4e461
CM
140
141static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146} btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 153 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 157 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 158 { .id = 0, .name_stem = "tree" },
4008c04a 159};
85d4e461
CM
160
161void __init btrfs_init_lockdep(void)
162{
163 int i, j;
164
165 /* initialize lockdep class names */
166 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170 snprintf(ks->names[j], sizeof(ks->names[j]),
171 "btrfs-%s-%02d", ks->name_stem, j);
172 }
173}
174
175void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176 int level)
177{
178 struct btrfs_lockdep_keyset *ks;
179
180 BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182 /* find the matching keyset, id 0 is the default entry */
183 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184 if (ks->id == objectid)
185 break;
186
187 lockdep_set_class_and_name(&eb->lock,
188 &ks->keys[level], ks->names[level]);
189}
190
4008c04a
CM
191#endif
192
d352ac68
CM
193/*
194 * extents on the btree inode are pretty simple, there's one extent
195 * that covers the entire device
196 */
b2950863 197static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 198 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 199 int create)
7eccb903 200{
5f39d397
CM
201 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202 struct extent_map *em;
203 int ret;
204
890871be 205 read_lock(&em_tree->lock);
d1310b2e 206 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
207 if (em) {
208 em->bdev =
209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 210 read_unlock(&em_tree->lock);
5f39d397 211 goto out;
a061fc8d 212 }
890871be 213 read_unlock(&em_tree->lock);
7b13b7b1 214
172ddd60 215 em = alloc_extent_map();
5f39d397
CM
216 if (!em) {
217 em = ERR_PTR(-ENOMEM);
218 goto out;
219 }
220 em->start = 0;
0afbaf8c 221 em->len = (u64)-1;
c8b97818 222 em->block_len = (u64)-1;
5f39d397 223 em->block_start = 0;
a061fc8d 224 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 225
890871be 226 write_lock(&em_tree->lock);
09a2a8f9 227 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
228 if (ret == -EEXIST) {
229 free_extent_map(em);
7b13b7b1 230 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 231 if (!em)
0433f20d 232 em = ERR_PTR(-EIO);
5f39d397 233 } else if (ret) {
7b13b7b1 234 free_extent_map(em);
0433f20d 235 em = ERR_PTR(ret);
5f39d397 236 }
890871be 237 write_unlock(&em_tree->lock);
7b13b7b1 238
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
b0496686 243u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 244{
0b947aff 245 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc 278 cur_len = min(len, map_len - (offset - map_start));
b0496686 279 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
301 printk_ratelimited(KERN_INFO
302 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id, buf->start,
305 val, found, btrfs_header_level(buf));
607d432d
JB
306 if (result != (char *)&inline_result)
307 kfree(result);
19c00ddc
CM
308 return 1;
309 }
310 } else {
607d432d 311 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 312 }
607d432d
JB
313 if (result != (char *)&inline_result)
314 kfree(result);
19c00ddc
CM
315 return 0;
316}
317
d352ac68
CM
318/*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
1259ab75 324static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
325 struct extent_buffer *eb, u64 parent_transid,
326 int atomic)
1259ab75 327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75 329 int ret;
a26e8c9f
JB
330 bool need_lock = (current->journal_info ==
331 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
a26e8c9f
JB
339 if (need_lock) {
340 btrfs_tree_read_lock(eb);
341 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342 }
343
2ac55d41 344 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 345 0, &cached_state);
0b32f4bb 346 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
347 btrfs_header_generation(eb) == parent_transid) {
348 ret = 0;
349 goto out;
350 }
29549aec
WS
351 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352 eb->fs_info->sb->s_id, eb->start,
353 parent_transid, btrfs_header_generation(eb));
1259ab75 354 ret = 1;
a26e8c9f
JB
355
356 /*
357 * Things reading via commit roots that don't have normal protection,
358 * like send, can have a really old block in cache that may point at a
359 * block that has been free'd and re-allocated. So don't clear uptodate
360 * if we find an eb that is under IO (dirty/writeback) because we could
361 * end up reading in the stale data and then writing it back out and
362 * making everybody very sad.
363 */
364 if (!extent_buffer_under_io(eb))
365 clear_extent_buffer_uptodate(eb);
33958dc6 366out:
2ac55d41
JB
367 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 &cached_state, GFP_NOFS);
472b909f
JB
369 if (need_lock)
370 btrfs_tree_read_unlock_blocking(eb);
1259ab75 371 return ret;
1259ab75
CM
372}
373
1104a885
DS
374/*
375 * Return 0 if the superblock checksum type matches the checksum value of that
376 * algorithm. Pass the raw disk superblock data.
377 */
378static int btrfs_check_super_csum(char *raw_disk_sb)
379{
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
383 int ret = 0;
384
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 u32 crc = ~(u32)0;
387 const int csum_size = sizeof(crc);
388 char result[csum_size];
389
390 /*
391 * The super_block structure does not span the whole
392 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393 * is filled with zeros and is included in the checkum.
394 */
395 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397 btrfs_csum_final(crc, result);
398
399 if (memcmp(raw_disk_sb, result, csum_size))
400 ret = 1;
667e7d94
CM
401
402 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
403 printk(KERN_WARNING
404 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
405 ret = 0;
406 }
1104a885
DS
407 }
408
409 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 410 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
411 csum_type);
412 ret = 1;
413 }
414
415 return ret;
416}
417
d352ac68
CM
418/*
419 * helper to read a given tree block, doing retries as required when
420 * the checksums don't match and we have alternate mirrors to try.
421 */
f188591e
CM
422static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423 struct extent_buffer *eb,
ca7a79ad 424 u64 start, u64 parent_transid)
f188591e
CM
425{
426 struct extent_io_tree *io_tree;
ea466794 427 int failed = 0;
f188591e
CM
428 int ret;
429 int num_copies = 0;
430 int mirror_num = 0;
ea466794 431 int failed_mirror = 0;
f188591e 432
a826d6dc 433 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
434 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435 while (1) {
bb82ab88
AJ
436 ret = read_extent_buffer_pages(io_tree, eb, start,
437 WAIT_COMPLETE,
f188591e 438 btree_get_extent, mirror_num);
256dd1bb
SB
439 if (!ret) {
440 if (!verify_parent_transid(io_tree, eb,
b9fab919 441 parent_transid, 0))
256dd1bb
SB
442 break;
443 else
444 ret = -EIO;
445 }
d397712b 446
a826d6dc
JB
447 /*
448 * This buffer's crc is fine, but its contents are corrupted, so
449 * there is no reason to read the other copies, they won't be
450 * any less wrong.
451 */
452 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
453 break;
454
5d964051 455 num_copies = btrfs_num_copies(root->fs_info,
f188591e 456 eb->start, eb->len);
4235298e 457 if (num_copies == 1)
ea466794 458 break;
4235298e 459
5cf1ab56
JB
460 if (!failed_mirror) {
461 failed = 1;
462 failed_mirror = eb->read_mirror;
463 }
464
f188591e 465 mirror_num++;
ea466794
JB
466 if (mirror_num == failed_mirror)
467 mirror_num++;
468
4235298e 469 if (mirror_num > num_copies)
ea466794 470 break;
f188591e 471 }
ea466794 472
c0901581 473 if (failed && !ret && failed_mirror)
ea466794
JB
474 repair_eb_io_failure(root, eb, failed_mirror);
475
476 return ret;
f188591e 477}
19c00ddc 478
d352ac68 479/*
d397712b
CM
480 * checksum a dirty tree block before IO. This has extra checks to make sure
481 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 482 */
d397712b 483
b2950863 484static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 485{
4eee4fa4 486 u64 start = page_offset(page);
19c00ddc 487 u64 found_start;
19c00ddc 488 struct extent_buffer *eb;
f188591e 489
4f2de97a
JB
490 eb = (struct extent_buffer *)page->private;
491 if (page != eb->pages[0])
492 return 0;
19c00ddc 493 found_start = btrfs_header_bytenr(eb);
fae7f21c 494 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 495 return 0;
19c00ddc 496 csum_tree_block(root, eb, 0);
19c00ddc
CM
497 return 0;
498}
499
2b82032c
YZ
500static int check_tree_block_fsid(struct btrfs_root *root,
501 struct extent_buffer *eb)
502{
503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504 u8 fsid[BTRFS_UUID_SIZE];
505 int ret = 1;
506
0a4e5586 507 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
508 while (fs_devices) {
509 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510 ret = 0;
511 break;
512 }
513 fs_devices = fs_devices->seed;
514 }
515 return ret;
516}
517
a826d6dc 518#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
519 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
520 "root=%llu, slot=%d", reason, \
c1c9ff7c 521 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
522
523static noinline int check_leaf(struct btrfs_root *root,
524 struct extent_buffer *leaf)
525{
526 struct btrfs_key key;
527 struct btrfs_key leaf_key;
528 u32 nritems = btrfs_header_nritems(leaf);
529 int slot;
530
531 if (nritems == 0)
532 return 0;
533
534 /* Check the 0 item */
535 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536 BTRFS_LEAF_DATA_SIZE(root)) {
537 CORRUPT("invalid item offset size pair", leaf, root, 0);
538 return -EIO;
539 }
540
541 /*
542 * Check to make sure each items keys are in the correct order and their
543 * offsets make sense. We only have to loop through nritems-1 because
544 * we check the current slot against the next slot, which verifies the
545 * next slot's offset+size makes sense and that the current's slot
546 * offset is correct.
547 */
548 for (slot = 0; slot < nritems - 1; slot++) {
549 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552 /* Make sure the keys are in the right order */
553 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554 CORRUPT("bad key order", leaf, root, slot);
555 return -EIO;
556 }
557
558 /*
559 * Make sure the offset and ends are right, remember that the
560 * item data starts at the end of the leaf and grows towards the
561 * front.
562 */
563 if (btrfs_item_offset_nr(leaf, slot) !=
564 btrfs_item_end_nr(leaf, slot + 1)) {
565 CORRUPT("slot offset bad", leaf, root, slot);
566 return -EIO;
567 }
568
569 /*
570 * Check to make sure that we don't point outside of the leaf,
571 * just incase all the items are consistent to eachother, but
572 * all point outside of the leaf.
573 */
574 if (btrfs_item_end_nr(leaf, slot) >
575 BTRFS_LEAF_DATA_SIZE(root)) {
576 CORRUPT("slot end outside of leaf", leaf, root, slot);
577 return -EIO;
578 }
579 }
580
581 return 0;
582}
583
facc8a22
MX
584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
ce9adaa5 587{
ce9adaa5
CM
588 u64 found_start;
589 int found_level;
ce9adaa5
CM
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 592 int ret = 0;
727011e0 593 int reads_done;
ce9adaa5 594
ce9adaa5
CM
595 if (!page->private)
596 goto out;
d397712b 597
4f2de97a 598 eb = (struct extent_buffer *)page->private;
d397712b 599
0b32f4bb
JB
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
602 */
603 extent_buffer_get(eb);
604
605 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
606 if (!reads_done)
607 goto err;
f188591e 608
5cf1ab56 609 eb->read_mirror = mirror;
ea466794
JB
610 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611 ret = -EIO;
612 goto err;
613 }
614
ce9adaa5 615 found_start = btrfs_header_bytenr(eb);
727011e0 616 if (found_start != eb->start) {
29549aec 617 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
193f284d 618 "%llu %llu\n",
29549aec 619 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 620 ret = -EIO;
ce9adaa5
CM
621 goto err;
622 }
2b82032c 623 if (check_tree_block_fsid(root, eb)) {
29549aec
WS
624 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
626 ret = -EIO;
627 goto err;
628 }
ce9adaa5 629 found_level = btrfs_header_level(eb);
1c24c3ce 630 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 631 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
632 (int)btrfs_header_level(eb));
633 ret = -EIO;
634 goto err;
635 }
ce9adaa5 636
85d4e461
CM
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
4008c04a 639
ce9adaa5 640 ret = csum_tree_block(root, eb, 1);
a826d6dc 641 if (ret) {
f188591e 642 ret = -EIO;
a826d6dc
JB
643 goto err;
644 }
645
646 /*
647 * If this is a leaf block and it is corrupt, set the corrupt bit so
648 * that we don't try and read the other copies of this block, just
649 * return -EIO.
650 */
651 if (found_level == 0 && check_leaf(root, eb)) {
652 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653 ret = -EIO;
654 }
ce9adaa5 655
0b32f4bb
JB
656 if (!ret)
657 set_extent_buffer_uptodate(eb);
ce9adaa5 658err:
79fb65a1
JB
659 if (reads_done &&
660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 661 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 662
53b381b3
DW
663 if (ret) {
664 /*
665 * our io error hook is going to dec the io pages
666 * again, we have to make sure it has something
667 * to decrement
668 */
669 atomic_inc(&eb->io_pages);
0b32f4bb 670 clear_extent_buffer_uptodate(eb);
53b381b3 671 }
0b32f4bb 672 free_extent_buffer(eb);
ce9adaa5 673out:
f188591e 674 return ret;
ce9adaa5
CM
675}
676
ea466794 677static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 678{
4bb31e92
AJ
679 struct extent_buffer *eb;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
4f2de97a 682 eb = (struct extent_buffer *)page->private;
ea466794 683 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 684 eb->read_mirror = failed_mirror;
53b381b3 685 atomic_dec(&eb->io_pages);
ea466794 686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 687 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
688 return -EIO; /* we fixed nothing */
689}
690
ce9adaa5 691static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
692{
693 struct end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
9e0af237
LB
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
ce9adaa5 697
ce9adaa5 698 fs_info = end_io_wq->info;
ce9adaa5 699 end_io_wq->error = err;
d20f7043 700
7b6d91da 701 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
714 }
d20f7043 715 } else {
8b110e39
MX
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
726 } else {
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
729 }
d20f7043 730 }
9e0af237
LB
731
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
734}
735
0cb59c99
JB
736/*
737 * For the metadata arg you want
738 *
739 * 0 - if data
740 * 1 - if normal metadta
741 * 2 - if writing to the free space cache area
53b381b3 742 * 3 - raid parity work
0cb59c99 743 */
22c59948
CM
744int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
745 int metadata)
0b86a832 746{
ce9adaa5 747 struct end_io_wq *end_io_wq;
8b110e39 748
ce9adaa5
CM
749 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
750 if (!end_io_wq)
751 return -ENOMEM;
752
753 end_io_wq->private = bio->bi_private;
754 end_io_wq->end_io = bio->bi_end_io;
22c59948 755 end_io_wq->info = info;
ce9adaa5
CM
756 end_io_wq->error = 0;
757 end_io_wq->bio = bio;
22c59948 758 end_io_wq->metadata = metadata;
ce9adaa5
CM
759
760 bio->bi_private = end_io_wq;
761 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
762 return 0;
763}
764
b64a2851 765unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 766{
4854ddd0 767 unsigned long limit = min_t(unsigned long,
5cdc7ad3 768 info->thread_pool_size,
4854ddd0
CM
769 info->fs_devices->open_devices);
770 return 256 * limit;
771}
0986fe9e 772
4a69a410
CM
773static void run_one_async_start(struct btrfs_work *work)
774{
4a69a410 775 struct async_submit_bio *async;
79787eaa 776 int ret;
4a69a410
CM
777
778 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
779 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
780 async->mirror_num, async->bio_flags,
781 async->bio_offset);
782 if (ret)
783 async->error = ret;
4a69a410
CM
784}
785
786static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
787{
788 struct btrfs_fs_info *fs_info;
789 struct async_submit_bio *async;
4854ddd0 790 int limit;
8b712842
CM
791
792 async = container_of(work, struct async_submit_bio, work);
793 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 794
b64a2851 795 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
796 limit = limit * 2 / 3;
797
66657b31 798 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 799 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
800 wake_up(&fs_info->async_submit_wait);
801
79787eaa
JM
802 /* If an error occured we just want to clean up the bio and move on */
803 if (async->error) {
804 bio_endio(async->bio, async->error);
805 return;
806 }
807
4a69a410 808 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
809 async->mirror_num, async->bio_flags,
810 async->bio_offset);
4a69a410
CM
811}
812
813static void run_one_async_free(struct btrfs_work *work)
814{
815 struct async_submit_bio *async;
816
817 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
818 kfree(async);
819}
820
44b8bd7e
CM
821int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
822 int rw, struct bio *bio, int mirror_num,
c8b97818 823 unsigned long bio_flags,
eaf25d93 824 u64 bio_offset,
4a69a410
CM
825 extent_submit_bio_hook_t *submit_bio_start,
826 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
827{
828 struct async_submit_bio *async;
829
830 async = kmalloc(sizeof(*async), GFP_NOFS);
831 if (!async)
832 return -ENOMEM;
833
834 async->inode = inode;
835 async->rw = rw;
836 async->bio = bio;
837 async->mirror_num = mirror_num;
4a69a410
CM
838 async->submit_bio_start = submit_bio_start;
839 async->submit_bio_done = submit_bio_done;
840
9e0af237 841 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 842 run_one_async_done, run_one_async_free);
4a69a410 843
c8b97818 844 async->bio_flags = bio_flags;
eaf25d93 845 async->bio_offset = bio_offset;
8c8bee1d 846
79787eaa
JM
847 async->error = 0;
848
cb03c743 849 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 850
7b6d91da 851 if (rw & REQ_SYNC)
5cdc7ad3 852 btrfs_set_work_high_priority(&async->work);
d313d7a3 853
5cdc7ad3 854 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 855
d397712b 856 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
857 atomic_read(&fs_info->nr_async_submits)) {
858 wait_event(fs_info->async_submit_wait,
859 (atomic_read(&fs_info->nr_async_submits) == 0));
860 }
861
44b8bd7e
CM
862 return 0;
863}
864
ce3ed71a
CM
865static int btree_csum_one_bio(struct bio *bio)
866{
2c30c71b 867 struct bio_vec *bvec;
ce3ed71a 868 struct btrfs_root *root;
2c30c71b 869 int i, ret = 0;
ce3ed71a 870
2c30c71b 871 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 872 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
873 ret = csum_dirty_buffer(root, bvec->bv_page);
874 if (ret)
875 break;
ce3ed71a 876 }
2c30c71b 877
79787eaa 878 return ret;
ce3ed71a
CM
879}
880
4a69a410
CM
881static int __btree_submit_bio_start(struct inode *inode, int rw,
882 struct bio *bio, int mirror_num,
eaf25d93
CM
883 unsigned long bio_flags,
884 u64 bio_offset)
22c59948 885{
8b712842
CM
886 /*
887 * when we're called for a write, we're already in the async
5443be45 888 * submission context. Just jump into btrfs_map_bio
8b712842 889 */
79787eaa 890 return btree_csum_one_bio(bio);
4a69a410 891}
22c59948 892
4a69a410 893static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
894 int mirror_num, unsigned long bio_flags,
895 u64 bio_offset)
4a69a410 896{
61891923
SB
897 int ret;
898
8b712842 899 /*
4a69a410
CM
900 * when we're called for a write, we're already in the async
901 * submission context. Just jump into btrfs_map_bio
8b712842 902 */
61891923
SB
903 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
904 if (ret)
905 bio_endio(bio, ret);
906 return ret;
0b86a832
CM
907}
908
de0022b9
JB
909static int check_async_write(struct inode *inode, unsigned long bio_flags)
910{
911 if (bio_flags & EXTENT_BIO_TREE_LOG)
912 return 0;
913#ifdef CONFIG_X86
914 if (cpu_has_xmm4_2)
915 return 0;
916#endif
917 return 1;
918}
919
44b8bd7e 920static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
921 int mirror_num, unsigned long bio_flags,
922 u64 bio_offset)
44b8bd7e 923{
de0022b9 924 int async = check_async_write(inode, bio_flags);
cad321ad
CM
925 int ret;
926
7b6d91da 927 if (!(rw & REQ_WRITE)) {
4a69a410
CM
928 /*
929 * called for a read, do the setup so that checksum validation
930 * can happen in the async kernel threads
931 */
f3f266ab
CM
932 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
933 bio, 1);
1d4284bd 934 if (ret)
61891923
SB
935 goto out_w_error;
936 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
937 mirror_num, 0);
de0022b9
JB
938 } else if (!async) {
939 ret = btree_csum_one_bio(bio);
940 if (ret)
61891923
SB
941 goto out_w_error;
942 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
943 mirror_num, 0);
944 } else {
945 /*
946 * kthread helpers are used to submit writes so that
947 * checksumming can happen in parallel across all CPUs
948 */
949 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
950 inode, rw, bio, mirror_num, 0,
951 bio_offset,
952 __btree_submit_bio_start,
953 __btree_submit_bio_done);
44b8bd7e 954 }
d313d7a3 955
61891923
SB
956 if (ret) {
957out_w_error:
958 bio_endio(bio, ret);
959 }
960 return ret;
44b8bd7e
CM
961}
962
3dd1462e 963#ifdef CONFIG_MIGRATION
784b4e29 964static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
965 struct page *newpage, struct page *page,
966 enum migrate_mode mode)
784b4e29
CM
967{
968 /*
969 * we can't safely write a btree page from here,
970 * we haven't done the locking hook
971 */
972 if (PageDirty(page))
973 return -EAGAIN;
974 /*
975 * Buffers may be managed in a filesystem specific way.
976 * We must have no buffers or drop them.
977 */
978 if (page_has_private(page) &&
979 !try_to_release_page(page, GFP_KERNEL))
980 return -EAGAIN;
a6bc32b8 981 return migrate_page(mapping, newpage, page, mode);
784b4e29 982}
3dd1462e 983#endif
784b4e29 984
0da5468f
CM
985
986static int btree_writepages(struct address_space *mapping,
987 struct writeback_control *wbc)
988{
e2d84521
MX
989 struct btrfs_fs_info *fs_info;
990 int ret;
991
d8d5f3e1 992 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
993
994 if (wbc->for_kupdate)
995 return 0;
996
e2d84521 997 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 998 /* this is a bit racy, but that's ok */
e2d84521
MX
999 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000 BTRFS_DIRTY_METADATA_THRESH);
1001 if (ret < 0)
793955bc 1002 return 0;
793955bc 1003 }
0b32f4bb 1004 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1005}
1006
b2950863 1007static int btree_readpage(struct file *file, struct page *page)
5f39d397 1008{
d1310b2e
CM
1009 struct extent_io_tree *tree;
1010 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1011 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1012}
22b0ebda 1013
70dec807 1014static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1015{
98509cfc 1016 if (PageWriteback(page) || PageDirty(page))
d397712b 1017 return 0;
0c4e538b 1018
f7a52a40 1019 return try_release_extent_buffer(page);
d98237b3
CM
1020}
1021
d47992f8
LC
1022static void btree_invalidatepage(struct page *page, unsigned int offset,
1023 unsigned int length)
d98237b3 1024{
d1310b2e
CM
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1027 extent_invalidatepage(tree, page, offset);
1028 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1029 if (PagePrivate(page)) {
efe120a0
FH
1030 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1031 "page private not zero on page %llu",
1032 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1033 ClearPagePrivate(page);
1034 set_page_private(page, 0);
1035 page_cache_release(page);
1036 }
d98237b3
CM
1037}
1038
0b32f4bb
JB
1039static int btree_set_page_dirty(struct page *page)
1040{
bb146eb2 1041#ifdef DEBUG
0b32f4bb
JB
1042 struct extent_buffer *eb;
1043
1044 BUG_ON(!PagePrivate(page));
1045 eb = (struct extent_buffer *)page->private;
1046 BUG_ON(!eb);
1047 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1048 BUG_ON(!atomic_read(&eb->refs));
1049 btrfs_assert_tree_locked(eb);
bb146eb2 1050#endif
0b32f4bb
JB
1051 return __set_page_dirty_nobuffers(page);
1052}
1053
7f09410b 1054static const struct address_space_operations btree_aops = {
d98237b3 1055 .readpage = btree_readpage,
0da5468f 1056 .writepages = btree_writepages,
5f39d397
CM
1057 .releasepage = btree_releasepage,
1058 .invalidatepage = btree_invalidatepage,
5a92bc88 1059#ifdef CONFIG_MIGRATION
784b4e29 1060 .migratepage = btree_migratepage,
5a92bc88 1061#endif
0b32f4bb 1062 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1063};
1064
ca7a79ad
CM
1065int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1066 u64 parent_transid)
090d1875 1067{
5f39d397
CM
1068 struct extent_buffer *buf = NULL;
1069 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1070 int ret = 0;
090d1875 1071
db94535d 1072 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1073 if (!buf)
090d1875 1074 return 0;
d1310b2e 1075 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1076 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1077 free_extent_buffer(buf);
de428b63 1078 return ret;
090d1875
CM
1079}
1080
ab0fff03
AJ
1081int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1082 int mirror_num, struct extent_buffer **eb)
1083{
1084 struct extent_buffer *buf = NULL;
1085 struct inode *btree_inode = root->fs_info->btree_inode;
1086 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1087 int ret;
1088
1089 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1090 if (!buf)
1091 return 0;
1092
1093 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1094
1095 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1096 btree_get_extent, mirror_num);
1097 if (ret) {
1098 free_extent_buffer(buf);
1099 return ret;
1100 }
1101
1102 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1103 free_extent_buffer(buf);
1104 return -EIO;
0b32f4bb 1105 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1106 *eb = buf;
1107 } else {
1108 free_extent_buffer(buf);
1109 }
1110 return 0;
1111}
1112
0999df54
CM
1113struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1114 u64 bytenr, u32 blocksize)
1115{
f28491e0 1116 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1117}
1118
1119struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1120 u64 bytenr, u32 blocksize)
1121{
faa2dbf0
JB
1122#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1123 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1124 return alloc_test_extent_buffer(root->fs_info, bytenr,
1125 blocksize);
1126#endif
f28491e0 1127 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1128}
1129
1130
e02119d5
CM
1131int btrfs_write_tree_block(struct extent_buffer *buf)
1132{
727011e0 1133 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1134 buf->start + buf->len - 1);
e02119d5
CM
1135}
1136
1137int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1138{
727011e0 1139 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1140 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1141}
1142
0999df54 1143struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1144 u32 blocksize, u64 parent_transid)
0999df54
CM
1145{
1146 struct extent_buffer *buf = NULL;
0999df54
CM
1147 int ret;
1148
0999df54
CM
1149 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1150 if (!buf)
1151 return NULL;
0999df54 1152
ca7a79ad 1153 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1154 if (ret) {
1155 free_extent_buffer(buf);
1156 return NULL;
1157 }
5f39d397 1158 return buf;
ce9adaa5 1159
eb60ceac
CM
1160}
1161
d5c13f92
JM
1162void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1163 struct extent_buffer *buf)
ed2ff2cb 1164{
e2d84521
MX
1165 struct btrfs_fs_info *fs_info = root->fs_info;
1166
55c69072 1167 if (btrfs_header_generation(buf) ==
e2d84521 1168 fs_info->running_transaction->transid) {
b9447ef8 1169 btrfs_assert_tree_locked(buf);
b4ce94de 1170
b9473439 1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 -buf->len,
1174 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 btrfs_set_lock_blocking(buf);
1177 clear_extent_buffer_dirty(buf);
1178 }
925baedd 1179 }
5f39d397
CM
1180}
1181
8257b2dc
MX
1182static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183{
1184 struct btrfs_subvolume_writers *writers;
1185 int ret;
1186
1187 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 if (!writers)
1189 return ERR_PTR(-ENOMEM);
1190
1191 ret = percpu_counter_init(&writers->counter, 0);
1192 if (ret < 0) {
1193 kfree(writers);
1194 return ERR_PTR(ret);
1195 }
1196
1197 init_waitqueue_head(&writers->wait);
1198 return writers;
1199}
1200
1201static void
1202btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203{
1204 percpu_counter_destroy(&writers->counter);
1205 kfree(writers);
1206}
1207
707e8a07
DS
1208static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1210 u64 objectid)
d97e63b6 1211{
cfaa7295 1212 root->node = NULL;
a28ec197 1213 root->commit_root = NULL;
db94535d
CM
1214 root->sectorsize = sectorsize;
1215 root->nodesize = nodesize;
87ee04eb 1216 root->stripesize = stripesize;
27cdeb70 1217 root->state = 0;
d68fc57b 1218 root->orphan_cleanup_state = 0;
0b86a832 1219
0f7d52f4
CM
1220 root->objectid = objectid;
1221 root->last_trans = 0;
13a8a7c8 1222 root->highest_objectid = 0;
eb73c1b7 1223 root->nr_delalloc_inodes = 0;
199c2a9c 1224 root->nr_ordered_extents = 0;
58176a96 1225 root->name = NULL;
6bef4d31 1226 root->inode_tree = RB_ROOT;
16cdcec7 1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1228 root->block_rsv = NULL;
d68fc57b 1229 root->orphan_block_rsv = NULL;
0b86a832
CM
1230
1231 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1232 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1233 INIT_LIST_HEAD(&root->delalloc_inodes);
1234 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1235 INIT_LIST_HEAD(&root->ordered_extents);
1236 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1237 INIT_LIST_HEAD(&root->logged_list[0]);
1238 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1239 spin_lock_init(&root->orphan_lock);
5d4f98a2 1240 spin_lock_init(&root->inode_lock);
eb73c1b7 1241 spin_lock_init(&root->delalloc_lock);
199c2a9c 1242 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1243 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1244 spin_lock_init(&root->log_extents_lock[0]);
1245 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1246 mutex_init(&root->objectid_mutex);
e02119d5 1247 mutex_init(&root->log_mutex);
31f3d255 1248 mutex_init(&root->ordered_extent_mutex);
573bfb72 1249 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1250 init_waitqueue_head(&root->log_writer_wait);
1251 init_waitqueue_head(&root->log_commit_wait[0]);
1252 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1253 INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1255 atomic_set(&root->log_commit[0], 0);
1256 atomic_set(&root->log_commit[1], 0);
1257 atomic_set(&root->log_writers, 0);
2ecb7923 1258 atomic_set(&root->log_batch, 0);
8a35d95f 1259 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1260 atomic_set(&root->refs, 1);
8257b2dc 1261 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1262 root->log_transid = 0;
d1433deb 1263 root->log_transid_committed = -1;
257c62e1 1264 root->last_log_commit = 0;
06ea65a3
JB
1265 if (fs_info)
1266 extent_io_tree_init(&root->dirty_log_pages,
1267 fs_info->btree_inode->i_mapping);
017e5369 1268
3768f368
CM
1269 memset(&root->root_key, 0, sizeof(root->root_key));
1270 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1272 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1273 if (fs_info)
1274 root->defrag_trans_start = fs_info->generation;
1275 else
1276 root->defrag_trans_start = 0;
58176a96 1277 init_completion(&root->kobj_unregister);
4d775673 1278 root->root_key.objectid = objectid;
0ee5dc67 1279 root->anon_dev = 0;
8ea05e3a 1280
5f3ab90a 1281 spin_lock_init(&root->root_item_lock);
3768f368
CM
1282}
1283
f84a8bd6 1284static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1285{
1286 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1287 if (root)
1288 root->fs_info = fs_info;
1289 return root;
1290}
1291
06ea65a3
JB
1292#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1293/* Should only be used by the testing infrastructure */
1294struct btrfs_root *btrfs_alloc_dummy_root(void)
1295{
1296 struct btrfs_root *root;
1297
1298 root = btrfs_alloc_root(NULL);
1299 if (!root)
1300 return ERR_PTR(-ENOMEM);
707e8a07 1301 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1302 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1303 root->alloc_bytenr = 0;
06ea65a3
JB
1304
1305 return root;
1306}
1307#endif
1308
20897f5c
AJ
1309struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_fs_info *fs_info,
1311 u64 objectid)
1312{
1313 struct extent_buffer *leaf;
1314 struct btrfs_root *tree_root = fs_info->tree_root;
1315 struct btrfs_root *root;
1316 struct btrfs_key key;
1317 int ret = 0;
6463fe58 1318 uuid_le uuid;
20897f5c
AJ
1319
1320 root = btrfs_alloc_root(fs_info);
1321 if (!root)
1322 return ERR_PTR(-ENOMEM);
1323
707e8a07
DS
1324 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1325 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1326 root->root_key.objectid = objectid;
1327 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1328 root->root_key.offset = 0;
1329
707e8a07 1330 leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
20897f5c
AJ
1331 0, objectid, NULL, 0, 0, 0);
1332 if (IS_ERR(leaf)) {
1333 ret = PTR_ERR(leaf);
1dd05682 1334 leaf = NULL;
20897f5c
AJ
1335 goto fail;
1336 }
1337
20897f5c
AJ
1338 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339 btrfs_set_header_bytenr(leaf, leaf->start);
1340 btrfs_set_header_generation(leaf, trans->transid);
1341 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342 btrfs_set_header_owner(leaf, objectid);
1343 root->node = leaf;
1344
0a4e5586 1345 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1346 BTRFS_FSID_SIZE);
1347 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1348 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1349 BTRFS_UUID_SIZE);
1350 btrfs_mark_buffer_dirty(leaf);
1351
1352 root->commit_root = btrfs_root_node(root);
27cdeb70 1353 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1354
1355 root->root_item.flags = 0;
1356 root->root_item.byte_limit = 0;
1357 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1358 btrfs_set_root_generation(&root->root_item, trans->transid);
1359 btrfs_set_root_level(&root->root_item, 0);
1360 btrfs_set_root_refs(&root->root_item, 1);
1361 btrfs_set_root_used(&root->root_item, leaf->len);
1362 btrfs_set_root_last_snapshot(&root->root_item, 0);
1363 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1364 uuid_le_gen(&uuid);
1365 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1366 root->root_item.drop_level = 0;
1367
1368 key.objectid = objectid;
1369 key.type = BTRFS_ROOT_ITEM_KEY;
1370 key.offset = 0;
1371 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1372 if (ret)
1373 goto fail;
1374
1375 btrfs_tree_unlock(leaf);
1376
1dd05682
TI
1377 return root;
1378
20897f5c 1379fail:
1dd05682
TI
1380 if (leaf) {
1381 btrfs_tree_unlock(leaf);
59885b39 1382 free_extent_buffer(root->commit_root);
1dd05682
TI
1383 free_extent_buffer(leaf);
1384 }
1385 kfree(root);
20897f5c 1386
1dd05682 1387 return ERR_PTR(ret);
20897f5c
AJ
1388}
1389
7237f183
YZ
1390static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1391 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1392{
1393 struct btrfs_root *root;
1394 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1395 struct extent_buffer *leaf;
e02119d5 1396
6f07e42e 1397 root = btrfs_alloc_root(fs_info);
e02119d5 1398 if (!root)
7237f183 1399 return ERR_PTR(-ENOMEM);
e02119d5 1400
707e8a07
DS
1401 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1402 tree_root->stripesize, root, fs_info,
1403 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1404
1405 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1406 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1407 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1408
7237f183 1409 /*
27cdeb70
MX
1410 * DON'T set REF_COWS for log trees
1411 *
7237f183
YZ
1412 * log trees do not get reference counted because they go away
1413 * before a real commit is actually done. They do store pointers
1414 * to file data extents, and those reference counts still get
1415 * updated (along with back refs to the log tree).
1416 */
e02119d5 1417
707e8a07 1418 leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
66d7e7f0 1419 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1420 0, 0, 0);
7237f183
YZ
1421 if (IS_ERR(leaf)) {
1422 kfree(root);
1423 return ERR_CAST(leaf);
1424 }
e02119d5 1425
5d4f98a2
YZ
1426 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1427 btrfs_set_header_bytenr(leaf, leaf->start);
1428 btrfs_set_header_generation(leaf, trans->transid);
1429 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1430 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1431 root->node = leaf;
e02119d5
CM
1432
1433 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1434 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1435 btrfs_mark_buffer_dirty(root->node);
1436 btrfs_tree_unlock(root->node);
7237f183
YZ
1437 return root;
1438}
1439
1440int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1441 struct btrfs_fs_info *fs_info)
1442{
1443 struct btrfs_root *log_root;
1444
1445 log_root = alloc_log_tree(trans, fs_info);
1446 if (IS_ERR(log_root))
1447 return PTR_ERR(log_root);
1448 WARN_ON(fs_info->log_root_tree);
1449 fs_info->log_root_tree = log_root;
1450 return 0;
1451}
1452
1453int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1454 struct btrfs_root *root)
1455{
1456 struct btrfs_root *log_root;
1457 struct btrfs_inode_item *inode_item;
1458
1459 log_root = alloc_log_tree(trans, root->fs_info);
1460 if (IS_ERR(log_root))
1461 return PTR_ERR(log_root);
1462
1463 log_root->last_trans = trans->transid;
1464 log_root->root_key.offset = root->root_key.objectid;
1465
1466 inode_item = &log_root->root_item.inode;
3cae210f
QW
1467 btrfs_set_stack_inode_generation(inode_item, 1);
1468 btrfs_set_stack_inode_size(inode_item, 3);
1469 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1470 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1471 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1472
5d4f98a2 1473 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1474
1475 WARN_ON(root->log_root);
1476 root->log_root = log_root;
1477 root->log_transid = 0;
d1433deb 1478 root->log_transid_committed = -1;
257c62e1 1479 root->last_log_commit = 0;
e02119d5
CM
1480 return 0;
1481}
1482
35a3621b
SB
1483static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1484 struct btrfs_key *key)
e02119d5
CM
1485{
1486 struct btrfs_root *root;
1487 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1488 struct btrfs_path *path;
84234f3a 1489 u64 generation;
db94535d 1490 u32 blocksize;
cb517eab 1491 int ret;
0f7d52f4 1492
cb517eab
MX
1493 path = btrfs_alloc_path();
1494 if (!path)
0f7d52f4 1495 return ERR_PTR(-ENOMEM);
cb517eab
MX
1496
1497 root = btrfs_alloc_root(fs_info);
1498 if (!root) {
1499 ret = -ENOMEM;
1500 goto alloc_fail;
0f7d52f4
CM
1501 }
1502
707e8a07
DS
1503 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1504 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1505
cb517eab
MX
1506 ret = btrfs_find_root(tree_root, key, path,
1507 &root->root_item, &root->root_key);
0f7d52f4 1508 if (ret) {
13a8a7c8
YZ
1509 if (ret > 0)
1510 ret = -ENOENT;
cb517eab 1511 goto find_fail;
0f7d52f4 1512 }
13a8a7c8 1513
84234f3a 1514 generation = btrfs_root_generation(&root->root_item);
707e8a07 1515 blocksize = root->nodesize;
db94535d 1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1517 blocksize, generation);
cb517eab
MX
1518 if (!root->node) {
1519 ret = -ENOMEM;
1520 goto find_fail;
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 ret = -EIO;
1523 goto read_fail;
416bc658 1524 }
5d4f98a2 1525 root->commit_root = btrfs_root_node(root);
13a8a7c8 1526out:
cb517eab
MX
1527 btrfs_free_path(path);
1528 return root;
1529
1530read_fail:
1531 free_extent_buffer(root->node);
1532find_fail:
1533 kfree(root);
1534alloc_fail:
1535 root = ERR_PTR(ret);
1536 goto out;
1537}
1538
1539struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1540 struct btrfs_key *location)
1541{
1542 struct btrfs_root *root;
1543
1544 root = btrfs_read_tree_root(tree_root, location);
1545 if (IS_ERR(root))
1546 return root;
1547
1548 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1549 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1550 btrfs_check_and_init_root_item(&root->root_item);
1551 }
13a8a7c8 1552
5eda7b5e
CM
1553 return root;
1554}
1555
cb517eab
MX
1556int btrfs_init_fs_root(struct btrfs_root *root)
1557{
1558 int ret;
8257b2dc 1559 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1560
1561 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1562 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1563 GFP_NOFS);
1564 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1565 ret = -ENOMEM;
1566 goto fail;
1567 }
1568
8257b2dc
MX
1569 writers = btrfs_alloc_subvolume_writers();
1570 if (IS_ERR(writers)) {
1571 ret = PTR_ERR(writers);
1572 goto fail;
1573 }
1574 root->subv_writers = writers;
1575
cb517eab 1576 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1577 spin_lock_init(&root->ino_cache_lock);
1578 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1579
1580 ret = get_anon_bdev(&root->anon_dev);
1581 if (ret)
8257b2dc 1582 goto free_writers;
cb517eab 1583 return 0;
8257b2dc
MX
1584
1585free_writers:
1586 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1587fail:
1588 kfree(root->free_ino_ctl);
1589 kfree(root->free_ino_pinned);
1590 return ret;
1591}
1592
171170c1
ST
1593static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1594 u64 root_id)
cb517eab
MX
1595{
1596 struct btrfs_root *root;
1597
1598 spin_lock(&fs_info->fs_roots_radix_lock);
1599 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1600 (unsigned long)root_id);
1601 spin_unlock(&fs_info->fs_roots_radix_lock);
1602 return root;
1603}
1604
1605int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1606 struct btrfs_root *root)
1607{
1608 int ret;
1609
1610 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1611 if (ret)
1612 return ret;
1613
1614 spin_lock(&fs_info->fs_roots_radix_lock);
1615 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1616 (unsigned long)root->root_key.objectid,
1617 root);
1618 if (ret == 0)
27cdeb70 1619 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1620 spin_unlock(&fs_info->fs_roots_radix_lock);
1621 radix_tree_preload_end();
1622
1623 return ret;
1624}
1625
c00869f1
MX
1626struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627 struct btrfs_key *location,
1628 bool check_ref)
5eda7b5e
CM
1629{
1630 struct btrfs_root *root;
1631 int ret;
1632
edbd8d4e
CM
1633 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1634 return fs_info->tree_root;
1635 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1636 return fs_info->extent_root;
8f18cf13
CM
1637 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1638 return fs_info->chunk_root;
1639 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1640 return fs_info->dev_root;
0403e47e
YZ
1641 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1642 return fs_info->csum_root;
bcef60f2
AJ
1643 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1644 return fs_info->quota_root ? fs_info->quota_root :
1645 ERR_PTR(-ENOENT);
f7a81ea4
SB
1646 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1647 return fs_info->uuid_root ? fs_info->uuid_root :
1648 ERR_PTR(-ENOENT);
4df27c4d 1649again:
cb517eab 1650 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1651 if (root) {
c00869f1 1652 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1653 return ERR_PTR(-ENOENT);
5eda7b5e 1654 return root;
48475471 1655 }
5eda7b5e 1656
cb517eab 1657 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1658 if (IS_ERR(root))
1659 return root;
3394e160 1660
c00869f1 1661 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1662 ret = -ENOENT;
581bb050 1663 goto fail;
35a30d7c 1664 }
581bb050 1665
cb517eab 1666 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1667 if (ret)
1668 goto fail;
3394e160 1669
3f870c28
KN
1670 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1671 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1672 if (ret < 0)
1673 goto fail;
1674 if (ret == 0)
27cdeb70 1675 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1676
cb517eab 1677 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1678 if (ret) {
4df27c4d
YZ
1679 if (ret == -EEXIST) {
1680 free_fs_root(root);
1681 goto again;
1682 }
1683 goto fail;
0f7d52f4 1684 }
edbd8d4e 1685 return root;
4df27c4d
YZ
1686fail:
1687 free_fs_root(root);
1688 return ERR_PTR(ret);
edbd8d4e
CM
1689}
1690
04160088
CM
1691static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1692{
1693 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1694 int ret = 0;
04160088
CM
1695 struct btrfs_device *device;
1696 struct backing_dev_info *bdi;
b7967db7 1697
1f78160c
XG
1698 rcu_read_lock();
1699 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1700 if (!device->bdev)
1701 continue;
04160088
CM
1702 bdi = blk_get_backing_dev_info(device->bdev);
1703 if (bdi && bdi_congested(bdi, bdi_bits)) {
1704 ret = 1;
1705 break;
1706 }
1707 }
1f78160c 1708 rcu_read_unlock();
04160088
CM
1709 return ret;
1710}
1711
04160088
CM
1712static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1713{
ad081f14
JA
1714 int err;
1715
1716 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1717 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1718 if (err)
1719 return err;
1720
4575c9cc 1721 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1722 bdi->congested_fn = btrfs_congested_fn;
1723 bdi->congested_data = info;
1724 return 0;
1725}
1726
8b712842
CM
1727/*
1728 * called by the kthread helper functions to finally call the bio end_io
1729 * functions. This is where read checksum verification actually happens
1730 */
1731static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1732{
ce9adaa5 1733 struct bio *bio;
8b712842 1734 struct end_io_wq *end_io_wq;
ce9adaa5 1735 int error;
ce9adaa5 1736
8b712842
CM
1737 end_io_wq = container_of(work, struct end_io_wq, work);
1738 bio = end_io_wq->bio;
ce9adaa5 1739
8b712842
CM
1740 error = end_io_wq->error;
1741 bio->bi_private = end_io_wq->private;
1742 bio->bi_end_io = end_io_wq->end_io;
1743 kfree(end_io_wq);
bc1e79ac 1744 bio_endio_nodec(bio, error);
44b8bd7e
CM
1745}
1746
a74a4b97
CM
1747static int cleaner_kthread(void *arg)
1748{
1749 struct btrfs_root *root = arg;
d0278245 1750 int again;
a74a4b97
CM
1751
1752 do {
d0278245 1753 again = 0;
a74a4b97 1754
d0278245 1755 /* Make the cleaner go to sleep early. */
babbf170 1756 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1757 goto sleep;
1758
1759 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1760 goto sleep;
1761
dc7f370c
MX
1762 /*
1763 * Avoid the problem that we change the status of the fs
1764 * during the above check and trylock.
1765 */
babbf170 1766 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1767 mutex_unlock(&root->fs_info->cleaner_mutex);
1768 goto sleep;
76dda93c 1769 }
a74a4b97 1770
d0278245
MX
1771 btrfs_run_delayed_iputs(root);
1772 again = btrfs_clean_one_deleted_snapshot(root);
1773 mutex_unlock(&root->fs_info->cleaner_mutex);
1774
1775 /*
05323cd1
MX
1776 * The defragger has dealt with the R/O remount and umount,
1777 * needn't do anything special here.
d0278245
MX
1778 */
1779 btrfs_run_defrag_inodes(root->fs_info);
1780sleep:
9d1a2a3a 1781 if (!try_to_freeze() && !again) {
a74a4b97 1782 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1783 if (!kthread_should_stop())
1784 schedule();
a74a4b97
CM
1785 __set_current_state(TASK_RUNNING);
1786 }
1787 } while (!kthread_should_stop());
1788 return 0;
1789}
1790
1791static int transaction_kthread(void *arg)
1792{
1793 struct btrfs_root *root = arg;
1794 struct btrfs_trans_handle *trans;
1795 struct btrfs_transaction *cur;
8929ecfa 1796 u64 transid;
a74a4b97
CM
1797 unsigned long now;
1798 unsigned long delay;
914b2007 1799 bool cannot_commit;
a74a4b97
CM
1800
1801 do {
914b2007 1802 cannot_commit = false;
8b87dc17 1803 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1804 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1805
a4abeea4 1806 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1807 cur = root->fs_info->running_transaction;
1808 if (!cur) {
a4abeea4 1809 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1810 goto sleep;
1811 }
31153d81 1812
a74a4b97 1813 now = get_seconds();
4a9d8bde 1814 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1815 (now < cur->start_time ||
1816 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1817 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1818 delay = HZ * 5;
1819 goto sleep;
1820 }
8929ecfa 1821 transid = cur->transid;
a4abeea4 1822 spin_unlock(&root->fs_info->trans_lock);
56bec294 1823
79787eaa 1824 /* If the file system is aborted, this will always fail. */
354aa0fb 1825 trans = btrfs_attach_transaction(root);
914b2007 1826 if (IS_ERR(trans)) {
354aa0fb
MX
1827 if (PTR_ERR(trans) != -ENOENT)
1828 cannot_commit = true;
79787eaa 1829 goto sleep;
914b2007 1830 }
8929ecfa 1831 if (transid == trans->transid) {
79787eaa 1832 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1833 } else {
1834 btrfs_end_transaction(trans, root);
1835 }
a74a4b97
CM
1836sleep:
1837 wake_up_process(root->fs_info->cleaner_kthread);
1838 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1839
4e121c06
JB
1840 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1841 &root->fs_info->fs_state)))
1842 btrfs_cleanup_transaction(root);
a0acae0e 1843 if (!try_to_freeze()) {
a74a4b97 1844 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1845 if (!kthread_should_stop() &&
914b2007
JK
1846 (!btrfs_transaction_blocked(root->fs_info) ||
1847 cannot_commit))
8929ecfa 1848 schedule_timeout(delay);
a74a4b97
CM
1849 __set_current_state(TASK_RUNNING);
1850 }
1851 } while (!kthread_should_stop());
1852 return 0;
1853}
1854
af31f5e5
CM
1855/*
1856 * this will find the highest generation in the array of
1857 * root backups. The index of the highest array is returned,
1858 * or -1 if we can't find anything.
1859 *
1860 * We check to make sure the array is valid by comparing the
1861 * generation of the latest root in the array with the generation
1862 * in the super block. If they don't match we pitch it.
1863 */
1864static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1865{
1866 u64 cur;
1867 int newest_index = -1;
1868 struct btrfs_root_backup *root_backup;
1869 int i;
1870
1871 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1872 root_backup = info->super_copy->super_roots + i;
1873 cur = btrfs_backup_tree_root_gen(root_backup);
1874 if (cur == newest_gen)
1875 newest_index = i;
1876 }
1877
1878 /* check to see if we actually wrapped around */
1879 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1880 root_backup = info->super_copy->super_roots;
1881 cur = btrfs_backup_tree_root_gen(root_backup);
1882 if (cur == newest_gen)
1883 newest_index = 0;
1884 }
1885 return newest_index;
1886}
1887
1888
1889/*
1890 * find the oldest backup so we know where to store new entries
1891 * in the backup array. This will set the backup_root_index
1892 * field in the fs_info struct
1893 */
1894static void find_oldest_super_backup(struct btrfs_fs_info *info,
1895 u64 newest_gen)
1896{
1897 int newest_index = -1;
1898
1899 newest_index = find_newest_super_backup(info, newest_gen);
1900 /* if there was garbage in there, just move along */
1901 if (newest_index == -1) {
1902 info->backup_root_index = 0;
1903 } else {
1904 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905 }
1906}
1907
1908/*
1909 * copy all the root pointers into the super backup array.
1910 * this will bump the backup pointer by one when it is
1911 * done
1912 */
1913static void backup_super_roots(struct btrfs_fs_info *info)
1914{
1915 int next_backup;
1916 struct btrfs_root_backup *root_backup;
1917 int last_backup;
1918
1919 next_backup = info->backup_root_index;
1920 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921 BTRFS_NUM_BACKUP_ROOTS;
1922
1923 /*
1924 * just overwrite the last backup if we're at the same generation
1925 * this happens only at umount
1926 */
1927 root_backup = info->super_for_commit->super_roots + last_backup;
1928 if (btrfs_backup_tree_root_gen(root_backup) ==
1929 btrfs_header_generation(info->tree_root->node))
1930 next_backup = last_backup;
1931
1932 root_backup = info->super_for_commit->super_roots + next_backup;
1933
1934 /*
1935 * make sure all of our padding and empty slots get zero filled
1936 * regardless of which ones we use today
1937 */
1938 memset(root_backup, 0, sizeof(*root_backup));
1939
1940 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1941
1942 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1943 btrfs_set_backup_tree_root_gen(root_backup,
1944 btrfs_header_generation(info->tree_root->node));
1945
1946 btrfs_set_backup_tree_root_level(root_backup,
1947 btrfs_header_level(info->tree_root->node));
1948
1949 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1950 btrfs_set_backup_chunk_root_gen(root_backup,
1951 btrfs_header_generation(info->chunk_root->node));
1952 btrfs_set_backup_chunk_root_level(root_backup,
1953 btrfs_header_level(info->chunk_root->node));
1954
1955 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1956 btrfs_set_backup_extent_root_gen(root_backup,
1957 btrfs_header_generation(info->extent_root->node));
1958 btrfs_set_backup_extent_root_level(root_backup,
1959 btrfs_header_level(info->extent_root->node));
1960
7c7e82a7
CM
1961 /*
1962 * we might commit during log recovery, which happens before we set
1963 * the fs_root. Make sure it is valid before we fill it in.
1964 */
1965 if (info->fs_root && info->fs_root->node) {
1966 btrfs_set_backup_fs_root(root_backup,
1967 info->fs_root->node->start);
1968 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1969 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1970 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1971 btrfs_header_level(info->fs_root->node));
7c7e82a7 1972 }
af31f5e5
CM
1973
1974 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1975 btrfs_set_backup_dev_root_gen(root_backup,
1976 btrfs_header_generation(info->dev_root->node));
1977 btrfs_set_backup_dev_root_level(root_backup,
1978 btrfs_header_level(info->dev_root->node));
1979
1980 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1981 btrfs_set_backup_csum_root_gen(root_backup,
1982 btrfs_header_generation(info->csum_root->node));
1983 btrfs_set_backup_csum_root_level(root_backup,
1984 btrfs_header_level(info->csum_root->node));
1985
1986 btrfs_set_backup_total_bytes(root_backup,
1987 btrfs_super_total_bytes(info->super_copy));
1988 btrfs_set_backup_bytes_used(root_backup,
1989 btrfs_super_bytes_used(info->super_copy));
1990 btrfs_set_backup_num_devices(root_backup,
1991 btrfs_super_num_devices(info->super_copy));
1992
1993 /*
1994 * if we don't copy this out to the super_copy, it won't get remembered
1995 * for the next commit
1996 */
1997 memcpy(&info->super_copy->super_roots,
1998 &info->super_for_commit->super_roots,
1999 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2000}
2001
2002/*
2003 * this copies info out of the root backup array and back into
2004 * the in-memory super block. It is meant to help iterate through
2005 * the array, so you send it the number of backups you've already
2006 * tried and the last backup index you used.
2007 *
2008 * this returns -1 when it has tried all the backups
2009 */
2010static noinline int next_root_backup(struct btrfs_fs_info *info,
2011 struct btrfs_super_block *super,
2012 int *num_backups_tried, int *backup_index)
2013{
2014 struct btrfs_root_backup *root_backup;
2015 int newest = *backup_index;
2016
2017 if (*num_backups_tried == 0) {
2018 u64 gen = btrfs_super_generation(super);
2019
2020 newest = find_newest_super_backup(info, gen);
2021 if (newest == -1)
2022 return -1;
2023
2024 *backup_index = newest;
2025 *num_backups_tried = 1;
2026 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2027 /* we've tried all the backups, all done */
2028 return -1;
2029 } else {
2030 /* jump to the next oldest backup */
2031 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2032 BTRFS_NUM_BACKUP_ROOTS;
2033 *backup_index = newest;
2034 *num_backups_tried += 1;
2035 }
2036 root_backup = super->super_roots + newest;
2037
2038 btrfs_set_super_generation(super,
2039 btrfs_backup_tree_root_gen(root_backup));
2040 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2041 btrfs_set_super_root_level(super,
2042 btrfs_backup_tree_root_level(root_backup));
2043 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2044
2045 /*
2046 * fixme: the total bytes and num_devices need to match or we should
2047 * need a fsck
2048 */
2049 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2050 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2051 return 0;
2052}
2053
7abadb64
LB
2054/* helper to cleanup workers */
2055static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2056{
dc6e3209 2057 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2058 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2059 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2060 btrfs_destroy_workqueue(fs_info->endio_workers);
2061 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2062 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2063 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2064 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2065 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2066 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2067 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2068 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2069 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2070 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2071 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2072 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2073 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2074 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2075}
2076
2e9f5954
R
2077static void free_root_extent_buffers(struct btrfs_root *root)
2078{
2079 if (root) {
2080 free_extent_buffer(root->node);
2081 free_extent_buffer(root->commit_root);
2082 root->node = NULL;
2083 root->commit_root = NULL;
2084 }
2085}
2086
af31f5e5
CM
2087/* helper to cleanup tree roots */
2088static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2089{
2e9f5954 2090 free_root_extent_buffers(info->tree_root);
655b09fe 2091
2e9f5954
R
2092 free_root_extent_buffers(info->dev_root);
2093 free_root_extent_buffers(info->extent_root);
2094 free_root_extent_buffers(info->csum_root);
2095 free_root_extent_buffers(info->quota_root);
2096 free_root_extent_buffers(info->uuid_root);
2097 if (chunk_root)
2098 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2099}
2100
faa2dbf0 2101void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2102{
2103 int ret;
2104 struct btrfs_root *gang[8];
2105 int i;
2106
2107 while (!list_empty(&fs_info->dead_roots)) {
2108 gang[0] = list_entry(fs_info->dead_roots.next,
2109 struct btrfs_root, root_list);
2110 list_del(&gang[0]->root_list);
2111
27cdeb70 2112 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2113 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2114 } else {
2115 free_extent_buffer(gang[0]->node);
2116 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2117 btrfs_put_fs_root(gang[0]);
171f6537
JB
2118 }
2119 }
2120
2121 while (1) {
2122 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2123 (void **)gang, 0,
2124 ARRAY_SIZE(gang));
2125 if (!ret)
2126 break;
2127 for (i = 0; i < ret; i++)
cb517eab 2128 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2129 }
1a4319cc
LB
2130
2131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2132 btrfs_free_log_root_tree(NULL, fs_info);
2133 btrfs_destroy_pinned_extent(fs_info->tree_root,
2134 fs_info->pinned_extents);
2135 }
171f6537 2136}
af31f5e5 2137
ad2b2c80
AV
2138int open_ctree(struct super_block *sb,
2139 struct btrfs_fs_devices *fs_devices,
2140 char *options)
2e635a27 2141{
db94535d
CM
2142 u32 sectorsize;
2143 u32 nodesize;
db94535d 2144 u32 blocksize;
87ee04eb 2145 u32 stripesize;
84234f3a 2146 u64 generation;
f2b636e8 2147 u64 features;
3de4586c 2148 struct btrfs_key location;
a061fc8d 2149 struct buffer_head *bh;
4d34b278 2150 struct btrfs_super_block *disk_super;
815745cf 2151 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2152 struct btrfs_root *tree_root;
4d34b278
ID
2153 struct btrfs_root *extent_root;
2154 struct btrfs_root *csum_root;
2155 struct btrfs_root *chunk_root;
2156 struct btrfs_root *dev_root;
bcef60f2 2157 struct btrfs_root *quota_root;
f7a81ea4 2158 struct btrfs_root *uuid_root;
e02119d5 2159 struct btrfs_root *log_tree_root;
eb60ceac 2160 int ret;
e58ca020 2161 int err = -EINVAL;
af31f5e5
CM
2162 int num_backups_tried = 0;
2163 int backup_index = 0;
5cdc7ad3
QW
2164 int max_active;
2165 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2166 bool create_uuid_tree;
2167 bool check_uuid_tree;
4543df7e 2168
f84a8bd6 2169 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2170 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2171 if (!tree_root || !chunk_root) {
39279cc3
CM
2172 err = -ENOMEM;
2173 goto fail;
2174 }
76dda93c
YZ
2175
2176 ret = init_srcu_struct(&fs_info->subvol_srcu);
2177 if (ret) {
2178 err = ret;
2179 goto fail;
2180 }
2181
2182 ret = setup_bdi(fs_info, &fs_info->bdi);
2183 if (ret) {
2184 err = ret;
2185 goto fail_srcu;
2186 }
2187
e2d84521
MX
2188 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2189 if (ret) {
2190 err = ret;
2191 goto fail_bdi;
2192 }
2193 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2194 (1 + ilog2(nr_cpu_ids));
2195
963d678b
MX
2196 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2197 if (ret) {
2198 err = ret;
2199 goto fail_dirty_metadata_bytes;
2200 }
2201
c404e0dc
MX
2202 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2203 if (ret) {
2204 err = ret;
2205 goto fail_delalloc_bytes;
2206 }
2207
76dda93c
YZ
2208 fs_info->btree_inode = new_inode(sb);
2209 if (!fs_info->btree_inode) {
2210 err = -ENOMEM;
c404e0dc 2211 goto fail_bio_counter;
76dda93c
YZ
2212 }
2213
a6591715 2214 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2215
76dda93c 2216 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2217 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2218 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2219 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2220 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2221 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2222 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2223 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2224 spin_lock_init(&fs_info->trans_lock);
76dda93c 2225 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2226 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2227 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2228 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2229 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2230 spin_lock_init(&fs_info->super_lock);
fcebe456 2231 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2232 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2233 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2234 mutex_init(&fs_info->reloc_mutex);
573bfb72 2235 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2236 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2237
58176a96 2238 init_completion(&fs_info->kobj_unregister);
0b86a832 2239 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2240 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2241 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2242 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2243 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2244 BTRFS_BLOCK_RSV_GLOBAL);
2245 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2246 BTRFS_BLOCK_RSV_DELALLOC);
2247 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2248 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2249 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2250 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2251 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2252 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2253 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2254 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2255 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2256 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2257 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2258 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2259 fs_info->sb = sb;
6f568d35 2260 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2261 fs_info->metadata_ratio = 0;
4cb5300b 2262 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2263 fs_info->free_chunk_space = 0;
f29021b2 2264 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2265 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2266 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2267 /* readahead state */
2268 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2269 spin_lock_init(&fs_info->reada_lock);
c8b97818 2270
b34b086c
CM
2271 fs_info->thread_pool_size = min_t(unsigned long,
2272 num_online_cpus() + 2, 8);
0afbaf8c 2273
199c2a9c
MX
2274 INIT_LIST_HEAD(&fs_info->ordered_roots);
2275 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2276 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2277 GFP_NOFS);
2278 if (!fs_info->delayed_root) {
2279 err = -ENOMEM;
2280 goto fail_iput;
2281 }
2282 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2283
a2de733c
AJ
2284 mutex_init(&fs_info->scrub_lock);
2285 atomic_set(&fs_info->scrubs_running, 0);
2286 atomic_set(&fs_info->scrub_pause_req, 0);
2287 atomic_set(&fs_info->scrubs_paused, 0);
2288 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2289 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2290 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2291 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2292#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2293 fs_info->check_integrity_print_mask = 0;
2294#endif
a2de733c 2295
c9e9f97b
ID
2296 spin_lock_init(&fs_info->balance_lock);
2297 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2298 atomic_set(&fs_info->balance_running, 0);
2299 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2300 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2301 fs_info->balance_ctl = NULL;
837d5b6e 2302 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2303 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2304
a061fc8d
CM
2305 sb->s_blocksize = 4096;
2306 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2307 sb->s_bdi = &fs_info->bdi;
a061fc8d 2308
76dda93c 2309 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2310 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2311 /*
2312 * we set the i_size on the btree inode to the max possible int.
2313 * the real end of the address space is determined by all of
2314 * the devices in the system
2315 */
2316 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2317 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2318 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2319
5d4f98a2 2320 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2321 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2322 fs_info->btree_inode->i_mapping);
0b32f4bb 2323 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2324 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2325
2326 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2327
76dda93c
YZ
2328 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2329 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2330 sizeof(struct btrfs_key));
72ac3c0d
JB
2331 set_bit(BTRFS_INODE_DUMMY,
2332 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2333 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2334
0f9dd46c 2335 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2336 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2337 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2338
11833d66 2339 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2340 fs_info->btree_inode->i_mapping);
11833d66 2341 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2342 fs_info->btree_inode->i_mapping);
11833d66 2343 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2344 fs_info->do_barriers = 1;
e18e4809 2345
39279cc3 2346
5a3f23d5 2347 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2348 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2349 mutex_init(&fs_info->tree_log_mutex);
925baedd 2350 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2351 mutex_init(&fs_info->transaction_kthread_mutex);
2352 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2353 mutex_init(&fs_info->volume_mutex);
9e351cc8 2354 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2355 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2356 init_rwsem(&fs_info->subvol_sem);
803b2f54 2357 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2358 fs_info->dev_replace.lock_owner = 0;
2359 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2360 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2361 mutex_init(&fs_info->dev_replace.lock_management_lock);
2362 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2363
416ac51d 2364 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2365 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2366 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2367 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2368 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2369 fs_info->qgroup_seq = 1;
2370 fs_info->quota_enabled = 0;
2371 fs_info->pending_quota_state = 0;
1e8f9158 2372 fs_info->qgroup_ulist = NULL;
2f232036 2373 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2374
fa9c0d79
CM
2375 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2376 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2377
e6dcd2dc 2378 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2379 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2380 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2381 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2382
53b381b3
DW
2383 ret = btrfs_alloc_stripe_hash_table(fs_info);
2384 if (ret) {
83c8266a 2385 err = ret;
53b381b3
DW
2386 goto fail_alloc;
2387 }
2388
707e8a07 2389 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2390 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2391
3c4bb26b 2392 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2393
2394 /*
2395 * Read super block and check the signature bytes only
2396 */
a512bbf8 2397 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2398 if (!bh) {
2399 err = -EINVAL;
16cdcec7 2400 goto fail_alloc;
20b45077 2401 }
39279cc3 2402
1104a885
DS
2403 /*
2404 * We want to check superblock checksum, the type is stored inside.
2405 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2406 */
2407 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2408 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2409 err = -EINVAL;
2410 goto fail_alloc;
2411 }
2412
2413 /*
2414 * super_copy is zeroed at allocation time and we never touch the
2415 * following bytes up to INFO_SIZE, the checksum is calculated from
2416 * the whole block of INFO_SIZE
2417 */
6c41761f
DS
2418 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2419 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2420 sizeof(*fs_info->super_for_commit));
a061fc8d 2421 brelse(bh);
5f39d397 2422
6c41761f 2423 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2424
1104a885
DS
2425 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2426 if (ret) {
efe120a0 2427 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2428 err = -EINVAL;
2429 goto fail_alloc;
2430 }
2431
6c41761f 2432 disk_super = fs_info->super_copy;
0f7d52f4 2433 if (!btrfs_super_root(disk_super))
16cdcec7 2434 goto fail_alloc;
0f7d52f4 2435
acce952b 2436 /* check FS state, whether FS is broken. */
87533c47
MX
2437 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2438 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2439
af31f5e5
CM
2440 /*
2441 * run through our array of backup supers and setup
2442 * our ring pointer to the oldest one
2443 */
2444 generation = btrfs_super_generation(disk_super);
2445 find_oldest_super_backup(fs_info, generation);
2446
75e7cb7f
LB
2447 /*
2448 * In the long term, we'll store the compression type in the super
2449 * block, and it'll be used for per file compression control.
2450 */
2451 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2452
2b82032c
YZ
2453 ret = btrfs_parse_options(tree_root, options);
2454 if (ret) {
2455 err = ret;
16cdcec7 2456 goto fail_alloc;
2b82032c 2457 }
dfe25020 2458
f2b636e8
JB
2459 features = btrfs_super_incompat_flags(disk_super) &
2460 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2461 if (features) {
2462 printk(KERN_ERR "BTRFS: couldn't mount because of "
2463 "unsupported optional features (%Lx).\n",
c1c9ff7c 2464 features);
f2b636e8 2465 err = -EINVAL;
16cdcec7 2466 goto fail_alloc;
f2b636e8
JB
2467 }
2468
707e8a07
DS
2469 /*
2470 * Leafsize and nodesize were always equal, this is only a sanity check.
2471 */
2472 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2473 btrfs_super_nodesize(disk_super)) {
2474 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2475 "blocksizes don't match. node %d leaf %d\n",
2476 btrfs_super_nodesize(disk_super),
707e8a07 2477 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2478 err = -EINVAL;
2479 goto fail_alloc;
2480 }
707e8a07 2481 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2482 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2483 "blocksize (%d) was too large\n",
707e8a07 2484 btrfs_super_nodesize(disk_super));
727011e0
CM
2485 err = -EINVAL;
2486 goto fail_alloc;
2487 }
2488
5d4f98a2 2489 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2490 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2491 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2492 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2493
3173a18f 2494 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2495 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2496
727011e0
CM
2497 /*
2498 * flag our filesystem as having big metadata blocks if
2499 * they are bigger than the page size
2500 */
707e8a07 2501 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2502 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2503 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2504 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2505 }
2506
bc3f116f 2507 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2508 sectorsize = btrfs_super_sectorsize(disk_super);
2509 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2510 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2511 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2512
2513 /*
2514 * mixed block groups end up with duplicate but slightly offset
2515 * extent buffers for the same range. It leads to corruptions
2516 */
2517 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2518 (sectorsize != nodesize)) {
efe120a0 2519 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2520 "are not allowed for mixed block groups on %s\n",
2521 sb->s_id);
2522 goto fail_alloc;
2523 }
2524
ceda0864
MX
2525 /*
2526 * Needn't use the lock because there is no other task which will
2527 * update the flag.
2528 */
a6fa6fae 2529 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2530
f2b636e8
JB
2531 features = btrfs_super_compat_ro_flags(disk_super) &
2532 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2533 if (!(sb->s_flags & MS_RDONLY) && features) {
2534 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2535 "unsupported option features (%Lx).\n",
c1c9ff7c 2536 features);
f2b636e8 2537 err = -EINVAL;
16cdcec7 2538 goto fail_alloc;
f2b636e8 2539 }
61d92c32 2540
5cdc7ad3 2541 max_active = fs_info->thread_pool_size;
61d92c32 2542
5cdc7ad3
QW
2543 fs_info->workers =
2544 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2545 max_active, 16);
c8b97818 2546
afe3d242
QW
2547 fs_info->delalloc_workers =
2548 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2549
a44903ab
QW
2550 fs_info->flush_workers =
2551 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2552
e66f0bb1
QW
2553 fs_info->caching_workers =
2554 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2555
a8c93d4e
QW
2556 /*
2557 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2558 * likely that bios will be send down in a sane order to the
2559 * devices
2560 */
a8c93d4e
QW
2561 fs_info->submit_workers =
2562 btrfs_alloc_workqueue("submit", flags,
2563 min_t(u64, fs_devices->num_devices,
2564 max_active), 64);
53863232 2565
dc6e3209
QW
2566 fs_info->fixup_workers =
2567 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2568
2569 /*
2570 * endios are largely parallel and should have a very
2571 * low idle thresh
2572 */
fccb5d86
QW
2573 fs_info->endio_workers =
2574 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2575 fs_info->endio_meta_workers =
2576 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2577 fs_info->endio_meta_write_workers =
2578 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2579 fs_info->endio_raid56_workers =
2580 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
8b110e39
MX
2581 fs_info->endio_repair_workers =
2582 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
d05a33ac
QW
2583 fs_info->rmw_workers =
2584 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2585 fs_info->endio_write_workers =
2586 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2587 fs_info->endio_freespace_worker =
2588 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2589 fs_info->delayed_workers =
2590 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2591 fs_info->readahead_workers =
2592 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2593 fs_info->qgroup_rescan_workers =
2594 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2595 fs_info->extent_workers =
2596 btrfs_alloc_workqueue("extent-refs", flags,
2597 min_t(u64, fs_devices->num_devices,
2598 max_active), 8);
61b49440 2599
a8c93d4e 2600 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2601 fs_info->submit_workers && fs_info->flush_workers &&
2602 fs_info->endio_workers && fs_info->endio_meta_workers &&
2603 fs_info->endio_meta_write_workers &&
8b110e39 2604 fs_info->endio_repair_workers &&
fccb5d86 2605 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2606 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2607 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2608 fs_info->fixup_workers && fs_info->delayed_workers &&
56094eec 2609 fs_info->extent_workers &&
fc97fab0 2610 fs_info->qgroup_rescan_workers)) {
fed425c7 2611 err = -ENOMEM;
0dc3b84a
JB
2612 goto fail_sb_buffer;
2613 }
4543df7e 2614
4575c9cc 2615 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2616 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2617 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2618
db94535d 2619 tree_root->nodesize = nodesize;
db94535d 2620 tree_root->sectorsize = sectorsize;
87ee04eb 2621 tree_root->stripesize = stripesize;
a061fc8d
CM
2622
2623 sb->s_blocksize = sectorsize;
2624 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2625
3cae210f 2626 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2627 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2628 goto fail_sb_buffer;
2629 }
19c00ddc 2630
8d082fb7 2631 if (sectorsize != PAGE_SIZE) {
efe120a0 2632 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2633 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2634 goto fail_sb_buffer;
2635 }
2636
925baedd 2637 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2638 ret = btrfs_read_sys_array(tree_root);
925baedd 2639 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2640 if (ret) {
efe120a0 2641 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2642 "array on %s\n", sb->s_id);
5d4f98a2 2643 goto fail_sb_buffer;
84eed90f 2644 }
0b86a832 2645
707e8a07 2646 blocksize = tree_root->nodesize;
84234f3a 2647 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2648
707e8a07
DS
2649 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2650 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2651
2652 chunk_root->node = read_tree_block(chunk_root,
2653 btrfs_super_chunk_root(disk_super),
84234f3a 2654 blocksize, generation);
416bc658
JB
2655 if (!chunk_root->node ||
2656 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2657 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2658 sb->s_id);
af31f5e5 2659 goto fail_tree_roots;
83121942 2660 }
5d4f98a2
YZ
2661 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2662 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2663
e17cade2 2664 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2665 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2666
0b86a832 2667 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2668 if (ret) {
efe120a0 2669 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2670 sb->s_id);
af31f5e5 2671 goto fail_tree_roots;
2b82032c 2672 }
0b86a832 2673
8dabb742
SB
2674 /*
2675 * keep the device that is marked to be the target device for the
2676 * dev_replace procedure
2677 */
2678 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2679
a6b0d5c8 2680 if (!fs_devices->latest_bdev) {
efe120a0 2681 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2682 sb->s_id);
2683 goto fail_tree_roots;
2684 }
2685
af31f5e5 2686retry_root_backup:
707e8a07 2687 blocksize = tree_root->nodesize;
84234f3a 2688 generation = btrfs_super_generation(disk_super);
0b86a832 2689
e20d96d6 2690 tree_root->node = read_tree_block(tree_root,
db94535d 2691 btrfs_super_root(disk_super),
84234f3a 2692 blocksize, generation);
af31f5e5
CM
2693 if (!tree_root->node ||
2694 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2695 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2696 sb->s_id);
af31f5e5
CM
2697
2698 goto recovery_tree_root;
83121942 2699 }
af31f5e5 2700
5d4f98a2
YZ
2701 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2702 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2703 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2704
cb517eab
MX
2705 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2706 location.type = BTRFS_ROOT_ITEM_KEY;
2707 location.offset = 0;
2708
2709 extent_root = btrfs_read_tree_root(tree_root, &location);
2710 if (IS_ERR(extent_root)) {
2711 ret = PTR_ERR(extent_root);
af31f5e5 2712 goto recovery_tree_root;
cb517eab 2713 }
27cdeb70 2714 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2715 fs_info->extent_root = extent_root;
0b86a832 2716
cb517eab
MX
2717 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2718 dev_root = btrfs_read_tree_root(tree_root, &location);
2719 if (IS_ERR(dev_root)) {
2720 ret = PTR_ERR(dev_root);
af31f5e5 2721 goto recovery_tree_root;
cb517eab 2722 }
27cdeb70 2723 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2724 fs_info->dev_root = dev_root;
2725 btrfs_init_devices_late(fs_info);
3768f368 2726
cb517eab
MX
2727 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2728 csum_root = btrfs_read_tree_root(tree_root, &location);
2729 if (IS_ERR(csum_root)) {
2730 ret = PTR_ERR(csum_root);
af31f5e5 2731 goto recovery_tree_root;
cb517eab 2732 }
27cdeb70 2733 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2734 fs_info->csum_root = csum_root;
d20f7043 2735
cb517eab
MX
2736 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2737 quota_root = btrfs_read_tree_root(tree_root, &location);
2738 if (!IS_ERR(quota_root)) {
27cdeb70 2739 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2740 fs_info->quota_enabled = 1;
2741 fs_info->pending_quota_state = 1;
cb517eab 2742 fs_info->quota_root = quota_root;
bcef60f2
AJ
2743 }
2744
f7a81ea4
SB
2745 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2746 uuid_root = btrfs_read_tree_root(tree_root, &location);
2747 if (IS_ERR(uuid_root)) {
2748 ret = PTR_ERR(uuid_root);
2749 if (ret != -ENOENT)
2750 goto recovery_tree_root;
2751 create_uuid_tree = true;
70f80175 2752 check_uuid_tree = false;
f7a81ea4 2753 } else {
27cdeb70 2754 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2755 fs_info->uuid_root = uuid_root;
70f80175
SB
2756 create_uuid_tree = false;
2757 check_uuid_tree =
2758 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2759 }
2760
8929ecfa
YZ
2761 fs_info->generation = generation;
2762 fs_info->last_trans_committed = generation;
8929ecfa 2763
68310a5e
ID
2764 ret = btrfs_recover_balance(fs_info);
2765 if (ret) {
efe120a0 2766 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2767 goto fail_block_groups;
2768 }
2769
733f4fbb
SB
2770 ret = btrfs_init_dev_stats(fs_info);
2771 if (ret) {
efe120a0 2772 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2773 ret);
2774 goto fail_block_groups;
2775 }
2776
8dabb742
SB
2777 ret = btrfs_init_dev_replace(fs_info);
2778 if (ret) {
efe120a0 2779 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2780 goto fail_block_groups;
2781 }
2782
2783 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2784
5ac1d209 2785 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2786 if (ret) {
efe120a0 2787 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2788 goto fail_block_groups;
2789 }
2790
c59021f8 2791 ret = btrfs_init_space_info(fs_info);
2792 if (ret) {
efe120a0 2793 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2794 goto fail_sysfs;
c59021f8 2795 }
2796
1b1d1f66
JB
2797 ret = btrfs_read_block_groups(extent_root);
2798 if (ret) {
efe120a0 2799 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2800 goto fail_sysfs;
1b1d1f66 2801 }
5af3e8cc
SB
2802 fs_info->num_tolerated_disk_barrier_failures =
2803 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2804 if (fs_info->fs_devices->missing_devices >
2805 fs_info->num_tolerated_disk_barrier_failures &&
2806 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2807 printk(KERN_WARNING "BTRFS: "
2808 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2809 goto fail_sysfs;
292fd7fc 2810 }
9078a3e1 2811
a74a4b97
CM
2812 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2813 "btrfs-cleaner");
57506d50 2814 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2815 goto fail_sysfs;
a74a4b97
CM
2816
2817 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2818 tree_root,
2819 "btrfs-transaction");
57506d50 2820 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2821 goto fail_cleaner;
a74a4b97 2822
c289811c
CM
2823 if (!btrfs_test_opt(tree_root, SSD) &&
2824 !btrfs_test_opt(tree_root, NOSSD) &&
2825 !fs_info->fs_devices->rotating) {
efe120a0 2826 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2827 "mode\n");
2828 btrfs_set_opt(fs_info->mount_opt, SSD);
2829 }
2830
3818aea2
QW
2831 /* Set the real inode map cache flag */
2832 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2833 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2834
21adbd5c
SB
2835#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2836 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2837 ret = btrfsic_mount(tree_root, fs_devices,
2838 btrfs_test_opt(tree_root,
2839 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2840 1 : 0,
2841 fs_info->check_integrity_print_mask);
2842 if (ret)
efe120a0 2843 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2844 " integrity check module %s\n", sb->s_id);
2845 }
2846#endif
bcef60f2
AJ
2847 ret = btrfs_read_qgroup_config(fs_info);
2848 if (ret)
2849 goto fail_trans_kthread;
21adbd5c 2850
acce952b 2851 /* do not make disk changes in broken FS */
68ce9682 2852 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2853 u64 bytenr = btrfs_super_log_root(disk_super);
2854
7c2ca468 2855 if (fs_devices->rw_devices == 0) {
efe120a0 2856 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2857 "on RO media\n");
7c2ca468 2858 err = -EIO;
bcef60f2 2859 goto fail_qgroup;
7c2ca468 2860 }
707e8a07 2861 blocksize = tree_root->nodesize;
d18a2c44 2862
6f07e42e 2863 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2864 if (!log_tree_root) {
2865 err = -ENOMEM;
bcef60f2 2866 goto fail_qgroup;
676e4c86 2867 }
e02119d5 2868
707e8a07 2869 __setup_root(nodesize, sectorsize, stripesize,
e02119d5
CM
2870 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2871
2872 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2873 blocksize,
2874 generation + 1);
416bc658
JB
2875 if (!log_tree_root->node ||
2876 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2877 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2878 free_extent_buffer(log_tree_root->node);
2879 kfree(log_tree_root);
28c16cbb 2880 goto fail_qgroup;
416bc658 2881 }
79787eaa 2882 /* returns with log_tree_root freed on success */
e02119d5 2883 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2884 if (ret) {
2885 btrfs_error(tree_root->fs_info, ret,
2886 "Failed to recover log tree");
2887 free_extent_buffer(log_tree_root->node);
2888 kfree(log_tree_root);
28c16cbb 2889 goto fail_qgroup;
79787eaa 2890 }
e556ce2c
YZ
2891
2892 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2893 ret = btrfs_commit_super(tree_root);
2894 if (ret)
28c16cbb 2895 goto fail_qgroup;
e556ce2c 2896 }
e02119d5 2897 }
1a40e23b 2898
76dda93c 2899 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2900 if (ret)
28c16cbb 2901 goto fail_qgroup;
76dda93c 2902
7c2ca468 2903 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2904 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2905 if (ret)
28c16cbb 2906 goto fail_qgroup;
d68fc57b 2907
5f316481 2908 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2909 ret = btrfs_recover_relocation(tree_root);
5f316481 2910 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2911 if (ret < 0) {
2912 printk(KERN_WARNING
efe120a0 2913 "BTRFS: failed to recover relocation\n");
d7ce5843 2914 err = -EINVAL;
bcef60f2 2915 goto fail_qgroup;
d7ce5843 2916 }
7c2ca468 2917 }
1a40e23b 2918
3de4586c
CM
2919 location.objectid = BTRFS_FS_TREE_OBJECTID;
2920 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2921 location.offset = 0;
3de4586c 2922
3de4586c 2923 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2924 if (IS_ERR(fs_info->fs_root)) {
2925 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2926 goto fail_qgroup;
3140c9a3 2927 }
c289811c 2928
2b6ba629
ID
2929 if (sb->s_flags & MS_RDONLY)
2930 return 0;
59641015 2931
2b6ba629
ID
2932 down_read(&fs_info->cleanup_work_sem);
2933 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2934 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2935 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2936 close_ctree(tree_root);
2937 return ret;
2938 }
2939 up_read(&fs_info->cleanup_work_sem);
59641015 2940
2b6ba629
ID
2941 ret = btrfs_resume_balance_async(fs_info);
2942 if (ret) {
efe120a0 2943 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2944 close_ctree(tree_root);
2945 return ret;
e3acc2a6
JB
2946 }
2947
8dabb742
SB
2948 ret = btrfs_resume_dev_replace_async(fs_info);
2949 if (ret) {
efe120a0 2950 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2951 close_ctree(tree_root);
2952 return ret;
2953 }
2954
b382a324
JS
2955 btrfs_qgroup_rescan_resume(fs_info);
2956
f7a81ea4 2957 if (create_uuid_tree) {
efe120a0 2958 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2959 ret = btrfs_create_uuid_tree(fs_info);
2960 if (ret) {
efe120a0 2961 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2962 ret);
2963 close_ctree(tree_root);
2964 return ret;
2965 }
f420ee1e
SB
2966 } else if (check_uuid_tree ||
2967 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2968 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2969 ret = btrfs_check_uuid_tree(fs_info);
2970 if (ret) {
efe120a0 2971 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2972 ret);
2973 close_ctree(tree_root);
2974 return ret;
2975 }
2976 } else {
2977 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2978 }
2979
ad2b2c80 2980 return 0;
39279cc3 2981
bcef60f2
AJ
2982fail_qgroup:
2983 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2984fail_trans_kthread:
2985 kthread_stop(fs_info->transaction_kthread);
54067ae9 2986 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 2987 btrfs_free_fs_roots(fs_info);
3f157a2f 2988fail_cleaner:
a74a4b97 2989 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2990
2991 /*
2992 * make sure we're done with the btree inode before we stop our
2993 * kthreads
2994 */
2995 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2996
2365dd3c
AJ
2997fail_sysfs:
2998 btrfs_sysfs_remove_one(fs_info);
2999
1b1d1f66 3000fail_block_groups:
54067ae9 3001 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3002 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3003
3004fail_tree_roots:
3005 free_root_pointers(fs_info, 1);
2b8195bb 3006 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3007
39279cc3 3008fail_sb_buffer:
7abadb64 3009 btrfs_stop_all_workers(fs_info);
16cdcec7 3010fail_alloc:
4543df7e 3011fail_iput:
586e46e2
ID
3012 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3013
4543df7e 3014 iput(fs_info->btree_inode);
c404e0dc
MX
3015fail_bio_counter:
3016 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3017fail_delalloc_bytes:
3018 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3019fail_dirty_metadata_bytes:
3020 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3021fail_bdi:
7e662854 3022 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3023fail_srcu:
3024 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3025fail:
53b381b3 3026 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3027 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3028 return err;
af31f5e5
CM
3029
3030recovery_tree_root:
af31f5e5
CM
3031 if (!btrfs_test_opt(tree_root, RECOVERY))
3032 goto fail_tree_roots;
3033
3034 free_root_pointers(fs_info, 0);
3035
3036 /* don't use the log in recovery mode, it won't be valid */
3037 btrfs_set_super_log_root(disk_super, 0);
3038
3039 /* we can't trust the free space cache either */
3040 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3041
3042 ret = next_root_backup(fs_info, fs_info->super_copy,
3043 &num_backups_tried, &backup_index);
3044 if (ret == -1)
3045 goto fail_block_groups;
3046 goto retry_root_backup;
eb60ceac
CM
3047}
3048
f2984462
CM
3049static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3050{
f2984462
CM
3051 if (uptodate) {
3052 set_buffer_uptodate(bh);
3053 } else {
442a4f63
SB
3054 struct btrfs_device *device = (struct btrfs_device *)
3055 bh->b_private;
3056
efe120a0 3057 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3058 "I/O error on %s\n",
3059 rcu_str_deref(device->name));
1259ab75
CM
3060 /* note, we dont' set_buffer_write_io_error because we have
3061 * our own ways of dealing with the IO errors
3062 */
f2984462 3063 clear_buffer_uptodate(bh);
442a4f63 3064 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3065 }
3066 unlock_buffer(bh);
3067 put_bh(bh);
3068}
3069
a512bbf8
YZ
3070struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3071{
3072 struct buffer_head *bh;
3073 struct buffer_head *latest = NULL;
3074 struct btrfs_super_block *super;
3075 int i;
3076 u64 transid = 0;
3077 u64 bytenr;
3078
3079 /* we would like to check all the supers, but that would make
3080 * a btrfs mount succeed after a mkfs from a different FS.
3081 * So, we need to add a special mount option to scan for
3082 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3083 */
3084 for (i = 0; i < 1; i++) {
3085 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3086 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3087 i_size_read(bdev->bd_inode))
a512bbf8 3088 break;
8068a47e
AJ
3089 bh = __bread(bdev, bytenr / 4096,
3090 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3091 if (!bh)
3092 continue;
3093
3094 super = (struct btrfs_super_block *)bh->b_data;
3095 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3096 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3097 brelse(bh);
3098 continue;
3099 }
3100
3101 if (!latest || btrfs_super_generation(super) > transid) {
3102 brelse(latest);
3103 latest = bh;
3104 transid = btrfs_super_generation(super);
3105 } else {
3106 brelse(bh);
3107 }
3108 }
3109 return latest;
3110}
3111
4eedeb75
HH
3112/*
3113 * this should be called twice, once with wait == 0 and
3114 * once with wait == 1. When wait == 0 is done, all the buffer heads
3115 * we write are pinned.
3116 *
3117 * They are released when wait == 1 is done.
3118 * max_mirrors must be the same for both runs, and it indicates how
3119 * many supers on this one device should be written.
3120 *
3121 * max_mirrors == 0 means to write them all.
3122 */
a512bbf8
YZ
3123static int write_dev_supers(struct btrfs_device *device,
3124 struct btrfs_super_block *sb,
3125 int do_barriers, int wait, int max_mirrors)
3126{
3127 struct buffer_head *bh;
3128 int i;
3129 int ret;
3130 int errors = 0;
3131 u32 crc;
3132 u64 bytenr;
a512bbf8
YZ
3133
3134 if (max_mirrors == 0)
3135 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3136
a512bbf8
YZ
3137 for (i = 0; i < max_mirrors; i++) {
3138 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3139 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3140 device->commit_total_bytes)
a512bbf8
YZ
3141 break;
3142
3143 if (wait) {
3144 bh = __find_get_block(device->bdev, bytenr / 4096,
3145 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3146 if (!bh) {
3147 errors++;
3148 continue;
3149 }
a512bbf8 3150 wait_on_buffer(bh);
4eedeb75
HH
3151 if (!buffer_uptodate(bh))
3152 errors++;
3153
3154 /* drop our reference */
3155 brelse(bh);
3156
3157 /* drop the reference from the wait == 0 run */
3158 brelse(bh);
3159 continue;
a512bbf8
YZ
3160 } else {
3161 btrfs_set_super_bytenr(sb, bytenr);
3162
3163 crc = ~(u32)0;
b0496686 3164 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3165 BTRFS_CSUM_SIZE, crc,
3166 BTRFS_SUPER_INFO_SIZE -
3167 BTRFS_CSUM_SIZE);
3168 btrfs_csum_final(crc, sb->csum);
3169
4eedeb75
HH
3170 /*
3171 * one reference for us, and we leave it for the
3172 * caller
3173 */
a512bbf8
YZ
3174 bh = __getblk(device->bdev, bytenr / 4096,
3175 BTRFS_SUPER_INFO_SIZE);
634554dc 3176 if (!bh) {
efe120a0 3177 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3178 "buffer head for bytenr %Lu\n", bytenr);
3179 errors++;
3180 continue;
3181 }
3182
a512bbf8
YZ
3183 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3184
4eedeb75 3185 /* one reference for submit_bh */
a512bbf8 3186 get_bh(bh);
4eedeb75
HH
3187
3188 set_buffer_uptodate(bh);
a512bbf8
YZ
3189 lock_buffer(bh);
3190 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3191 bh->b_private = device;
a512bbf8
YZ
3192 }
3193
387125fc
CM
3194 /*
3195 * we fua the first super. The others we allow
3196 * to go down lazy.
3197 */
e8117c26
WS
3198 if (i == 0)
3199 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3200 else
3201 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3202 if (ret)
a512bbf8 3203 errors++;
a512bbf8
YZ
3204 }
3205 return errors < i ? 0 : -1;
3206}
3207
387125fc
CM
3208/*
3209 * endio for the write_dev_flush, this will wake anyone waiting
3210 * for the barrier when it is done
3211 */
3212static void btrfs_end_empty_barrier(struct bio *bio, int err)
3213{
3214 if (err) {
3215 if (err == -EOPNOTSUPP)
3216 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3217 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3218 }
3219 if (bio->bi_private)
3220 complete(bio->bi_private);
3221 bio_put(bio);
3222}
3223
3224/*
3225 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3226 * sent down. With wait == 1, it waits for the previous flush.
3227 *
3228 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3229 * capable
3230 */
3231static int write_dev_flush(struct btrfs_device *device, int wait)
3232{
3233 struct bio *bio;
3234 int ret = 0;
3235
3236 if (device->nobarriers)
3237 return 0;
3238
3239 if (wait) {
3240 bio = device->flush_bio;
3241 if (!bio)
3242 return 0;
3243
3244 wait_for_completion(&device->flush_wait);
3245
3246 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3247 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3248 rcu_str_deref(device->name));
387125fc 3249 device->nobarriers = 1;
5af3e8cc 3250 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3251 ret = -EIO;
5af3e8cc
SB
3252 btrfs_dev_stat_inc_and_print(device,
3253 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3254 }
3255
3256 /* drop the reference from the wait == 0 run */
3257 bio_put(bio);
3258 device->flush_bio = NULL;
3259
3260 return ret;
3261 }
3262
3263 /*
3264 * one reference for us, and we leave it for the
3265 * caller
3266 */
9c017abc 3267 device->flush_bio = NULL;
9be3395b 3268 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3269 if (!bio)
3270 return -ENOMEM;
3271
3272 bio->bi_end_io = btrfs_end_empty_barrier;
3273 bio->bi_bdev = device->bdev;
3274 init_completion(&device->flush_wait);
3275 bio->bi_private = &device->flush_wait;
3276 device->flush_bio = bio;
3277
3278 bio_get(bio);
21adbd5c 3279 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3280
3281 return 0;
3282}
3283
3284/*
3285 * send an empty flush down to each device in parallel,
3286 * then wait for them
3287 */
3288static int barrier_all_devices(struct btrfs_fs_info *info)
3289{
3290 struct list_head *head;
3291 struct btrfs_device *dev;
5af3e8cc
SB
3292 int errors_send = 0;
3293 int errors_wait = 0;
387125fc
CM
3294 int ret;
3295
3296 /* send down all the barriers */
3297 head = &info->fs_devices->devices;
3298 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3299 if (dev->missing)
3300 continue;
387125fc 3301 if (!dev->bdev) {
5af3e8cc 3302 errors_send++;
387125fc
CM
3303 continue;
3304 }
3305 if (!dev->in_fs_metadata || !dev->writeable)
3306 continue;
3307
3308 ret = write_dev_flush(dev, 0);
3309 if (ret)
5af3e8cc 3310 errors_send++;
387125fc
CM
3311 }
3312
3313 /* wait for all the barriers */
3314 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3315 if (dev->missing)
3316 continue;
387125fc 3317 if (!dev->bdev) {
5af3e8cc 3318 errors_wait++;
387125fc
CM
3319 continue;
3320 }
3321 if (!dev->in_fs_metadata || !dev->writeable)
3322 continue;
3323
3324 ret = write_dev_flush(dev, 1);
3325 if (ret)
5af3e8cc 3326 errors_wait++;
387125fc 3327 }
5af3e8cc
SB
3328 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3329 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3330 return -EIO;
3331 return 0;
3332}
3333
5af3e8cc
SB
3334int btrfs_calc_num_tolerated_disk_barrier_failures(
3335 struct btrfs_fs_info *fs_info)
3336{
3337 struct btrfs_ioctl_space_info space;
3338 struct btrfs_space_info *sinfo;
3339 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3340 BTRFS_BLOCK_GROUP_SYSTEM,
3341 BTRFS_BLOCK_GROUP_METADATA,
3342 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3343 int num_types = 4;
3344 int i;
3345 int c;
3346 int num_tolerated_disk_barrier_failures =
3347 (int)fs_info->fs_devices->num_devices;
3348
3349 for (i = 0; i < num_types; i++) {
3350 struct btrfs_space_info *tmp;
3351
3352 sinfo = NULL;
3353 rcu_read_lock();
3354 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3355 if (tmp->flags == types[i]) {
3356 sinfo = tmp;
3357 break;
3358 }
3359 }
3360 rcu_read_unlock();
3361
3362 if (!sinfo)
3363 continue;
3364
3365 down_read(&sinfo->groups_sem);
3366 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3367 if (!list_empty(&sinfo->block_groups[c])) {
3368 u64 flags;
3369
3370 btrfs_get_block_group_info(
3371 &sinfo->block_groups[c], &space);
3372 if (space.total_bytes == 0 ||
3373 space.used_bytes == 0)
3374 continue;
3375 flags = space.flags;
3376 /*
3377 * return
3378 * 0: if dup, single or RAID0 is configured for
3379 * any of metadata, system or data, else
3380 * 1: if RAID5 is configured, or if RAID1 or
3381 * RAID10 is configured and only two mirrors
3382 * are used, else
3383 * 2: if RAID6 is configured, else
3384 * num_mirrors - 1: if RAID1 or RAID10 is
3385 * configured and more than
3386 * 2 mirrors are used.
3387 */
3388 if (num_tolerated_disk_barrier_failures > 0 &&
3389 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3390 BTRFS_BLOCK_GROUP_RAID0)) ||
3391 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3392 == 0)))
3393 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3394 else if (num_tolerated_disk_barrier_failures > 1) {
3395 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3396 BTRFS_BLOCK_GROUP_RAID5 |
3397 BTRFS_BLOCK_GROUP_RAID10)) {
3398 num_tolerated_disk_barrier_failures = 1;
3399 } else if (flags &
15b0a89d 3400 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3401 num_tolerated_disk_barrier_failures = 2;
3402 }
3403 }
5af3e8cc
SB
3404 }
3405 }
3406 up_read(&sinfo->groups_sem);
3407 }
3408
3409 return num_tolerated_disk_barrier_failures;
3410}
3411
48a3b636 3412static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3413{
e5e9a520 3414 struct list_head *head;
f2984462 3415 struct btrfs_device *dev;
a061fc8d 3416 struct btrfs_super_block *sb;
f2984462 3417 struct btrfs_dev_item *dev_item;
f2984462
CM
3418 int ret;
3419 int do_barriers;
a236aed1
CM
3420 int max_errors;
3421 int total_errors = 0;
a061fc8d 3422 u64 flags;
f2984462
CM
3423
3424 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3425 backup_super_roots(root->fs_info);
f2984462 3426
6c41761f 3427 sb = root->fs_info->super_for_commit;
a061fc8d 3428 dev_item = &sb->dev_item;
e5e9a520 3429
174ba509 3430 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3431 head = &root->fs_info->fs_devices->devices;
d7306801 3432 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3433
5af3e8cc
SB
3434 if (do_barriers) {
3435 ret = barrier_all_devices(root->fs_info);
3436 if (ret) {
3437 mutex_unlock(
3438 &root->fs_info->fs_devices->device_list_mutex);
3439 btrfs_error(root->fs_info, ret,
3440 "errors while submitting device barriers.");
3441 return ret;
3442 }
3443 }
387125fc 3444
1f78160c 3445 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3446 if (!dev->bdev) {
3447 total_errors++;
3448 continue;
3449 }
2b82032c 3450 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3451 continue;
3452
2b82032c 3453 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3454 btrfs_set_stack_device_type(dev_item, dev->type);
3455 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3456 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3457 dev->commit_total_bytes);
ce7213c7
MX
3458 btrfs_set_stack_device_bytes_used(dev_item,
3459 dev->commit_bytes_used);
a061fc8d
CM
3460 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3461 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3462 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3463 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3464 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3465
a061fc8d
CM
3466 flags = btrfs_super_flags(sb);
3467 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3468
a512bbf8 3469 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3470 if (ret)
3471 total_errors++;
f2984462 3472 }
a236aed1 3473 if (total_errors > max_errors) {
efe120a0 3474 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3475 total_errors);
a724b436 3476 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3477
9d565ba4
SB
3478 /* FUA is masked off if unsupported and can't be the reason */
3479 btrfs_error(root->fs_info, -EIO,
3480 "%d errors while writing supers", total_errors);
3481 return -EIO;
a236aed1 3482 }
f2984462 3483
a512bbf8 3484 total_errors = 0;
1f78160c 3485 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3486 if (!dev->bdev)
3487 continue;
2b82032c 3488 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3489 continue;
3490
a512bbf8
YZ
3491 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3492 if (ret)
3493 total_errors++;
f2984462 3494 }
174ba509 3495 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3496 if (total_errors > max_errors) {
79787eaa
JM
3497 btrfs_error(root->fs_info, -EIO,
3498 "%d errors while writing supers", total_errors);
3499 return -EIO;
a236aed1 3500 }
f2984462
CM
3501 return 0;
3502}
3503
a512bbf8
YZ
3504int write_ctree_super(struct btrfs_trans_handle *trans,
3505 struct btrfs_root *root, int max_mirrors)
eb60ceac 3506{
f570e757 3507 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3508}
3509
cb517eab
MX
3510/* Drop a fs root from the radix tree and free it. */
3511void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3512 struct btrfs_root *root)
2619ba1f 3513{
4df27c4d 3514 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3515 radix_tree_delete(&fs_info->fs_roots_radix,
3516 (unsigned long)root->root_key.objectid);
4df27c4d 3517 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3518
3519 if (btrfs_root_refs(&root->root_item) == 0)
3520 synchronize_srcu(&fs_info->subvol_srcu);
3521
1a4319cc 3522 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3523 btrfs_free_log(NULL, root);
3321719e 3524
faa2dbf0
JB
3525 if (root->free_ino_pinned)
3526 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3527 if (root->free_ino_ctl)
3528 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3529 free_fs_root(root);
4df27c4d
YZ
3530}
3531
3532static void free_fs_root(struct btrfs_root *root)
3533{
57cdc8db 3534 iput(root->ino_cache_inode);
4df27c4d 3535 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3536 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3537 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3538 if (root->anon_dev)
3539 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3540 if (root->subv_writers)
3541 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3542 free_extent_buffer(root->node);
3543 free_extent_buffer(root->commit_root);
581bb050
LZ
3544 kfree(root->free_ino_ctl);
3545 kfree(root->free_ino_pinned);
d397712b 3546 kfree(root->name);
b0feb9d9 3547 btrfs_put_fs_root(root);
2619ba1f
CM
3548}
3549
cb517eab
MX
3550void btrfs_free_fs_root(struct btrfs_root *root)
3551{
3552 free_fs_root(root);
2619ba1f
CM
3553}
3554
c146afad 3555int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3556{
c146afad
YZ
3557 u64 root_objectid = 0;
3558 struct btrfs_root *gang[8];
65d33fd7
QW
3559 int i = 0;
3560 int err = 0;
3561 unsigned int ret = 0;
3562 int index;
e089f05c 3563
c146afad 3564 while (1) {
65d33fd7 3565 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3566 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3567 (void **)gang, root_objectid,
3568 ARRAY_SIZE(gang));
65d33fd7
QW
3569 if (!ret) {
3570 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3571 break;
65d33fd7 3572 }
5d4f98a2 3573 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3574
c146afad 3575 for (i = 0; i < ret; i++) {
65d33fd7
QW
3576 /* Avoid to grab roots in dead_roots */
3577 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3578 gang[i] = NULL;
3579 continue;
3580 }
3581 /* grab all the search result for later use */
3582 gang[i] = btrfs_grab_fs_root(gang[i]);
3583 }
3584 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3585
65d33fd7
QW
3586 for (i = 0; i < ret; i++) {
3587 if (!gang[i])
3588 continue;
c146afad 3589 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3590 err = btrfs_orphan_cleanup(gang[i]);
3591 if (err)
65d33fd7
QW
3592 break;
3593 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3594 }
3595 root_objectid++;
3596 }
65d33fd7
QW
3597
3598 /* release the uncleaned roots due to error */
3599 for (; i < ret; i++) {
3600 if (gang[i])
3601 btrfs_put_fs_root(gang[i]);
3602 }
3603 return err;
c146afad 3604}
a2135011 3605
c146afad
YZ
3606int btrfs_commit_super(struct btrfs_root *root)
3607{
3608 struct btrfs_trans_handle *trans;
a74a4b97 3609
c146afad 3610 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3611 btrfs_run_delayed_iputs(root);
c146afad 3612 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3613 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3614
3615 /* wait until ongoing cleanup work done */
3616 down_write(&root->fs_info->cleanup_work_sem);
3617 up_write(&root->fs_info->cleanup_work_sem);
3618
7a7eaa40 3619 trans = btrfs_join_transaction(root);
3612b495
TI
3620 if (IS_ERR(trans))
3621 return PTR_ERR(trans);
d52c1bcc 3622 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3623}
3624
3abdbd78 3625void close_ctree(struct btrfs_root *root)
c146afad
YZ
3626{
3627 struct btrfs_fs_info *fs_info = root->fs_info;
3628 int ret;
3629
3630 fs_info->closing = 1;
3631 smp_mb();
3632
803b2f54
SB
3633 /* wait for the uuid_scan task to finish */
3634 down(&fs_info->uuid_tree_rescan_sem);
3635 /* avoid complains from lockdep et al., set sem back to initial state */
3636 up(&fs_info->uuid_tree_rescan_sem);
3637
837d5b6e 3638 /* pause restriper - we want to resume on mount */
aa1b8cd4 3639 btrfs_pause_balance(fs_info);
837d5b6e 3640
8dabb742
SB
3641 btrfs_dev_replace_suspend_for_unmount(fs_info);
3642
aa1b8cd4 3643 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3644
3645 /* wait for any defraggers to finish */
3646 wait_event(fs_info->transaction_wait,
3647 (atomic_read(&fs_info->defrag_running) == 0));
3648
3649 /* clear out the rbtree of defraggable inodes */
26176e7c 3650 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3651
21c7e756
MX
3652 cancel_work_sync(&fs_info->async_reclaim_work);
3653
c146afad 3654 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3655 ret = btrfs_commit_super(root);
3656 if (ret)
efe120a0 3657 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3658 }
3659
87533c47 3660 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3661 btrfs_error_commit_super(root);
0f7d52f4 3662
e3029d9f
AV
3663 kthread_stop(fs_info->transaction_kthread);
3664 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3665
f25784b3
YZ
3666 fs_info->closing = 2;
3667 smp_mb();
3668
bcef60f2
AJ
3669 btrfs_free_qgroup_config(root->fs_info);
3670
963d678b 3671 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3672 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3673 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3674 }
bcc63abb 3675
5ac1d209
JM
3676 btrfs_sysfs_remove_one(fs_info);
3677
faa2dbf0 3678 btrfs_free_fs_roots(fs_info);
d10c5f31 3679
1a4319cc
LB
3680 btrfs_put_block_group_cache(fs_info);
3681
2b1360da
JB
3682 btrfs_free_block_groups(fs_info);
3683
de348ee0
WS
3684 /*
3685 * we must make sure there is not any read request to
3686 * submit after we stopping all workers.
3687 */
3688 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3689 btrfs_stop_all_workers(fs_info);
3690
13e6c37b 3691 free_root_pointers(fs_info, 1);
9ad6b7bc 3692
13e6c37b 3693 iput(fs_info->btree_inode);
d6bfde87 3694
21adbd5c
SB
3695#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3696 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3697 btrfsic_unmount(root, fs_info->fs_devices);
3698#endif
3699
dfe25020 3700 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3701 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3702
e2d84521 3703 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3704 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3705 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3706 bdi_destroy(&fs_info->bdi);
76dda93c 3707 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3708
53b381b3
DW
3709 btrfs_free_stripe_hash_table(fs_info);
3710
1cb048f5
FDBM
3711 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3712 root->orphan_block_rsv = NULL;
eb60ceac
CM
3713}
3714
b9fab919
CM
3715int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3716 int atomic)
5f39d397 3717{
1259ab75 3718 int ret;
727011e0 3719 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3720
0b32f4bb 3721 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3722 if (!ret)
3723 return ret;
3724
3725 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3726 parent_transid, atomic);
3727 if (ret == -EAGAIN)
3728 return ret;
1259ab75 3729 return !ret;
5f39d397
CM
3730}
3731
3732int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3733{
0b32f4bb 3734 return set_extent_buffer_uptodate(buf);
5f39d397 3735}
6702ed49 3736
5f39d397
CM
3737void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3738{
06ea65a3 3739 struct btrfs_root *root;
5f39d397 3740 u64 transid = btrfs_header_generation(buf);
b9473439 3741 int was_dirty;
b4ce94de 3742
06ea65a3
JB
3743#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3744 /*
3745 * This is a fast path so only do this check if we have sanity tests
3746 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3747 * outside of the sanity tests.
3748 */
3749 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3750 return;
3751#endif
3752 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3753 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3754 if (transid != root->fs_info->generation)
3755 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3756 "found %llu running %llu\n",
c1c9ff7c 3757 buf->start, transid, root->fs_info->generation);
0b32f4bb 3758 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3759 if (!was_dirty)
3760 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3761 buf->len,
3762 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3763#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3764 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3765 btrfs_print_leaf(root, buf);
3766 ASSERT(0);
3767 }
3768#endif
eb60ceac
CM
3769}
3770
b53d3f5d
LB
3771static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3772 int flush_delayed)
16cdcec7
MX
3773{
3774 /*
3775 * looks as though older kernels can get into trouble with
3776 * this code, they end up stuck in balance_dirty_pages forever
3777 */
e2d84521 3778 int ret;
16cdcec7
MX
3779
3780 if (current->flags & PF_MEMALLOC)
3781 return;
3782
b53d3f5d
LB
3783 if (flush_delayed)
3784 btrfs_balance_delayed_items(root);
16cdcec7 3785
e2d84521
MX
3786 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3787 BTRFS_DIRTY_METADATA_THRESH);
3788 if (ret > 0) {
d0e1d66b
NJ
3789 balance_dirty_pages_ratelimited(
3790 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3791 }
3792 return;
3793}
3794
b53d3f5d 3795void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3796{
b53d3f5d
LB
3797 __btrfs_btree_balance_dirty(root, 1);
3798}
585ad2c3 3799
b53d3f5d
LB
3800void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3801{
3802 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3803}
6b80053d 3804
ca7a79ad 3805int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3806{
727011e0 3807 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3808 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3809}
0da5468f 3810
fcd1f065 3811static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3812 int read_only)
3813{
1104a885
DS
3814 /*
3815 * Placeholder for checks
3816 */
fcd1f065 3817 return 0;
acce952b 3818}
3819
48a3b636 3820static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3821{
acce952b 3822 mutex_lock(&root->fs_info->cleaner_mutex);
3823 btrfs_run_delayed_iputs(root);
3824 mutex_unlock(&root->fs_info->cleaner_mutex);
3825
3826 down_write(&root->fs_info->cleanup_work_sem);
3827 up_write(&root->fs_info->cleanup_work_sem);
3828
3829 /* cleanup FS via transaction */
3830 btrfs_cleanup_transaction(root);
acce952b 3831}
3832
143bede5 3833static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3834{
acce952b 3835 struct btrfs_ordered_extent *ordered;
acce952b 3836
199c2a9c 3837 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3838 /*
3839 * This will just short circuit the ordered completion stuff which will
3840 * make sure the ordered extent gets properly cleaned up.
3841 */
199c2a9c 3842 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3843 root_extent_list)
3844 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3845 spin_unlock(&root->ordered_extent_lock);
3846}
3847
3848static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3849{
3850 struct btrfs_root *root;
3851 struct list_head splice;
3852
3853 INIT_LIST_HEAD(&splice);
3854
3855 spin_lock(&fs_info->ordered_root_lock);
3856 list_splice_init(&fs_info->ordered_roots, &splice);
3857 while (!list_empty(&splice)) {
3858 root = list_first_entry(&splice, struct btrfs_root,
3859 ordered_root);
1de2cfde
JB
3860 list_move_tail(&root->ordered_root,
3861 &fs_info->ordered_roots);
199c2a9c 3862
2a85d9ca 3863 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3864 btrfs_destroy_ordered_extents(root);
3865
2a85d9ca
LB
3866 cond_resched();
3867 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3868 }
3869 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3870}
3871
35a3621b
SB
3872static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3873 struct btrfs_root *root)
acce952b 3874{
3875 struct rb_node *node;
3876 struct btrfs_delayed_ref_root *delayed_refs;
3877 struct btrfs_delayed_ref_node *ref;
3878 int ret = 0;
3879
3880 delayed_refs = &trans->delayed_refs;
3881
3882 spin_lock(&delayed_refs->lock);
d7df2c79 3883 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3884 spin_unlock(&delayed_refs->lock);
efe120a0 3885 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3886 return ret;
3887 }
3888
d7df2c79
JB
3889 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3890 struct btrfs_delayed_ref_head *head;
e78417d1 3891 bool pin_bytes = false;
acce952b 3892
d7df2c79
JB
3893 head = rb_entry(node, struct btrfs_delayed_ref_head,
3894 href_node);
3895 if (!mutex_trylock(&head->mutex)) {
3896 atomic_inc(&head->node.refs);
3897 spin_unlock(&delayed_refs->lock);
eb12db69 3898
d7df2c79 3899 mutex_lock(&head->mutex);
e78417d1 3900 mutex_unlock(&head->mutex);
d7df2c79
JB
3901 btrfs_put_delayed_ref(&head->node);
3902 spin_lock(&delayed_refs->lock);
3903 continue;
3904 }
3905 spin_lock(&head->lock);
3906 while ((node = rb_first(&head->ref_root)) != NULL) {
3907 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3908 rb_node);
3909 ref->in_tree = 0;
3910 rb_erase(&ref->rb_node, &head->ref_root);
3911 atomic_dec(&delayed_refs->num_entries);
3912 btrfs_put_delayed_ref(ref);
e78417d1 3913 }
d7df2c79
JB
3914 if (head->must_insert_reserved)
3915 pin_bytes = true;
3916 btrfs_free_delayed_extent_op(head->extent_op);
3917 delayed_refs->num_heads--;
3918 if (head->processing == 0)
3919 delayed_refs->num_heads_ready--;
3920 atomic_dec(&delayed_refs->num_entries);
3921 head->node.in_tree = 0;
3922 rb_erase(&head->href_node, &delayed_refs->href_root);
3923 spin_unlock(&head->lock);
3924 spin_unlock(&delayed_refs->lock);
3925 mutex_unlock(&head->mutex);
acce952b 3926
d7df2c79
JB
3927 if (pin_bytes)
3928 btrfs_pin_extent(root, head->node.bytenr,
3929 head->node.num_bytes, 1);
3930 btrfs_put_delayed_ref(&head->node);
acce952b 3931 cond_resched();
3932 spin_lock(&delayed_refs->lock);
3933 }
3934
3935 spin_unlock(&delayed_refs->lock);
3936
3937 return ret;
3938}
3939
143bede5 3940static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3941{
3942 struct btrfs_inode *btrfs_inode;
3943 struct list_head splice;
3944
3945 INIT_LIST_HEAD(&splice);
3946
eb73c1b7
MX
3947 spin_lock(&root->delalloc_lock);
3948 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3949
3950 while (!list_empty(&splice)) {
eb73c1b7
MX
3951 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3952 delalloc_inodes);
acce952b 3953
3954 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3955 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3956 &btrfs_inode->runtime_flags);
eb73c1b7 3957 spin_unlock(&root->delalloc_lock);
acce952b 3958
3959 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3960
eb73c1b7 3961 spin_lock(&root->delalloc_lock);
acce952b 3962 }
3963
eb73c1b7
MX
3964 spin_unlock(&root->delalloc_lock);
3965}
3966
3967static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3968{
3969 struct btrfs_root *root;
3970 struct list_head splice;
3971
3972 INIT_LIST_HEAD(&splice);
3973
3974 spin_lock(&fs_info->delalloc_root_lock);
3975 list_splice_init(&fs_info->delalloc_roots, &splice);
3976 while (!list_empty(&splice)) {
3977 root = list_first_entry(&splice, struct btrfs_root,
3978 delalloc_root);
3979 list_del_init(&root->delalloc_root);
3980 root = btrfs_grab_fs_root(root);
3981 BUG_ON(!root);
3982 spin_unlock(&fs_info->delalloc_root_lock);
3983
3984 btrfs_destroy_delalloc_inodes(root);
3985 btrfs_put_fs_root(root);
3986
3987 spin_lock(&fs_info->delalloc_root_lock);
3988 }
3989 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3990}
3991
3992static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3993 struct extent_io_tree *dirty_pages,
3994 int mark)
3995{
3996 int ret;
acce952b 3997 struct extent_buffer *eb;
3998 u64 start = 0;
3999 u64 end;
acce952b 4000
4001 while (1) {
4002 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4003 mark, NULL);
acce952b 4004 if (ret)
4005 break;
4006
4007 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4008 while (start <= end) {
fd8b2b61 4009 eb = btrfs_find_tree_block(root, start,
707e8a07
DS
4010 root->nodesize);
4011 start += root->nodesize;
fd8b2b61 4012 if (!eb)
acce952b 4013 continue;
fd8b2b61 4014 wait_on_extent_buffer_writeback(eb);
acce952b 4015
fd8b2b61
JB
4016 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4017 &eb->bflags))
4018 clear_extent_buffer_dirty(eb);
4019 free_extent_buffer_stale(eb);
acce952b 4020 }
4021 }
4022
4023 return ret;
4024}
4025
4026static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4027 struct extent_io_tree *pinned_extents)
4028{
4029 struct extent_io_tree *unpin;
4030 u64 start;
4031 u64 end;
4032 int ret;
ed0eaa14 4033 bool loop = true;
acce952b 4034
4035 unpin = pinned_extents;
ed0eaa14 4036again:
acce952b 4037 while (1) {
4038 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4039 EXTENT_DIRTY, NULL);
acce952b 4040 if (ret)
4041 break;
4042
4043 /* opt_discard */
5378e607
LD
4044 if (btrfs_test_opt(root, DISCARD))
4045 ret = btrfs_error_discard_extent(root, start,
4046 end + 1 - start,
4047 NULL);
acce952b 4048
4049 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4050 btrfs_error_unpin_extent_range(root, start, end);
4051 cond_resched();
4052 }
4053
ed0eaa14
LB
4054 if (loop) {
4055 if (unpin == &root->fs_info->freed_extents[0])
4056 unpin = &root->fs_info->freed_extents[1];
4057 else
4058 unpin = &root->fs_info->freed_extents[0];
4059 loop = false;
4060 goto again;
4061 }
4062
acce952b 4063 return 0;
4064}
4065
49b25e05
JM
4066void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4067 struct btrfs_root *root)
4068{
4069 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4070
4a9d8bde 4071 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4072 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4073
4a9d8bde 4074 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4075 wake_up(&root->fs_info->transaction_wait);
49b25e05 4076
67cde344
MX
4077 btrfs_destroy_delayed_inodes(root);
4078 btrfs_assert_delayed_root_empty(root);
49b25e05 4079
49b25e05
JM
4080 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4081 EXTENT_DIRTY);
6e841e32
LB
4082 btrfs_destroy_pinned_extent(root,
4083 root->fs_info->pinned_extents);
49b25e05 4084
4a9d8bde
MX
4085 cur_trans->state =TRANS_STATE_COMPLETED;
4086 wake_up(&cur_trans->commit_wait);
4087
49b25e05
JM
4088 /*
4089 memset(cur_trans, 0, sizeof(*cur_trans));
4090 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4091 */
4092}
4093
48a3b636 4094static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4095{
4096 struct btrfs_transaction *t;
acce952b 4097
acce952b 4098 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4099
a4abeea4 4100 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4101 while (!list_empty(&root->fs_info->trans_list)) {
4102 t = list_first_entry(&root->fs_info->trans_list,
4103 struct btrfs_transaction, list);
4104 if (t->state >= TRANS_STATE_COMMIT_START) {
4105 atomic_inc(&t->use_count);
4106 spin_unlock(&root->fs_info->trans_lock);
4107 btrfs_wait_for_commit(root, t->transid);
4108 btrfs_put_transaction(t);
4109 spin_lock(&root->fs_info->trans_lock);
4110 continue;
4111 }
4112 if (t == root->fs_info->running_transaction) {
4113 t->state = TRANS_STATE_COMMIT_DOING;
4114 spin_unlock(&root->fs_info->trans_lock);
4115 /*
4116 * We wait for 0 num_writers since we don't hold a trans
4117 * handle open currently for this transaction.
4118 */
4119 wait_event(t->writer_wait,
4120 atomic_read(&t->num_writers) == 0);
4121 } else {
4122 spin_unlock(&root->fs_info->trans_lock);
4123 }
4124 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4125
724e2315
JB
4126 spin_lock(&root->fs_info->trans_lock);
4127 if (t == root->fs_info->running_transaction)
4128 root->fs_info->running_transaction = NULL;
acce952b 4129 list_del_init(&t->list);
724e2315 4130 spin_unlock(&root->fs_info->trans_lock);
acce952b 4131
724e2315
JB
4132 btrfs_put_transaction(t);
4133 trace_btrfs_transaction_commit(root);
4134 spin_lock(&root->fs_info->trans_lock);
4135 }
4136 spin_unlock(&root->fs_info->trans_lock);
4137 btrfs_destroy_all_ordered_extents(root->fs_info);
4138 btrfs_destroy_delayed_inodes(root);
4139 btrfs_assert_delayed_root_empty(root);
4140 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4141 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4142 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4143
4144 return 0;
4145}
4146
d1310b2e 4147static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4148 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4149 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4150 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4151 /* note we're sharing with inode.c for the merge bio hook */
4152 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4153};