btrfs: cleaner_kthread() doesn't need explicit freeze
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
70f6d82e 45#include "free-space-tree.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
fcebe456 52#include "qgroup.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
48a3b636
ES
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
127 int rw;
128 int mirror_num;
c8b97818 129 unsigned long bio_flags;
eaf25d93
CM
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
8b712842 135 struct btrfs_work work;
79787eaa 136 int error;
44b8bd7e
CM
137};
138
85d4e461
CM
139/*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
4008c04a 149 *
85d4e461
CM
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 153 *
85d4e461
CM
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 157 *
85d4e461
CM
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
4008c04a
CM
161 */
162#ifdef CONFIG_DEBUG_LOCK_ALLOC
163# if BTRFS_MAX_LEVEL != 8
164# error
165# endif
85d4e461
CM
166
167static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172} btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 185 { .id = 0, .name_stem = "tree" },
4008c04a 186};
85d4e461
CM
187
188void __init btrfs_init_lockdep(void)
189{
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200}
201
202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204{
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216}
217
4008c04a
CM
218#endif
219
d352ac68
CM
220/*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
b2950863 224static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 225 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 226 int create)
7eccb903 227{
5f39d397
CM
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
234 if (em) {
235 em->bdev =
236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 237 read_unlock(&em_tree->lock);
5f39d397 238 goto out;
a061fc8d 239 }
890871be 240 read_unlock(&em_tree->lock);
7b13b7b1 241
172ddd60 242 em = alloc_extent_map();
5f39d397
CM
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
0afbaf8c 248 em->len = (u64)-1;
c8b97818 249 em->block_len = (u64)-1;
5f39d397 250 em->block_start = 0;
a061fc8d 251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 252
890871be 253 write_lock(&em_tree->lock);
09a2a8f9 254 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
255 if (ret == -EEXIST) {
256 free_extent_map(em);
7b13b7b1 257 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 258 if (!em)
0433f20d 259 em = ERR_PTR(-EIO);
5f39d397 260 } else if (ret) {
7b13b7b1 261 free_extent_map(em);
0433f20d 262 em = ERR_PTR(ret);
5f39d397 263 }
890871be 264 write_unlock(&em_tree->lock);
7b13b7b1 265
5f39d397
CM
266out:
267 return em;
7eccb903
CM
268}
269
b0496686 270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 271{
0b947aff 272 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
273}
274
275void btrfs_csum_final(u32 crc, char *result)
276{
7e75bf3f 277 put_unaligned_le32(~crc, result);
19c00ddc
CM
278}
279
d352ac68
CM
280/*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
01d58472
DD
284static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
19c00ddc
CM
286 int verify)
287{
01d58472 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 289 char *result = NULL;
19c00ddc
CM
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
607d432d 298 unsigned long inline_result;
19c00ddc
CM
299
300 len = buf->len - offset;
d397712b 301 while (len > 0) {
19c00ddc 302 err = map_private_extent_buffer(buf, offset, 32,
a6591715 303 &kaddr, &map_start, &map_len);
d397712b 304 if (err)
8bd98f0e 305 return err;
19c00ddc 306 cur_len = min(len, map_len - (offset - map_start));
b0496686 307 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
19c00ddc 311 }
607d432d 312 if (csum_size > sizeof(inline_result)) {
31e818fe 313 result = kzalloc(csum_size, GFP_NOFS);
607d432d 314 if (!result)
8bd98f0e 315 return -ENOMEM;
607d432d
JB
316 } else {
317 result = (char *)&inline_result;
318 }
319
19c00ddc
CM
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
607d432d 323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
324 u32 val;
325 u32 found = 0;
607d432d 326 memcpy(&found, result, csum_size);
e4204ded 327
607d432d 328 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
329 btrfs_warn_rl(fs_info,
330 "%s checksum verify failed on %llu wanted %X found %X "
331 "level %d",
01d58472 332 fs_info->sb->s_id, buf->start,
efe120a0 333 val, found, btrfs_header_level(buf));
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
8bd98f0e 336 return -EUCLEAN;
19c00ddc
CM
337 }
338 } else {
607d432d 339 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 340 }
607d432d
JB
341 if (result != (char *)&inline_result)
342 kfree(result);
19c00ddc
CM
343 return 0;
344}
345
d352ac68
CM
346/*
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
351 */
1259ab75 352static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
1259ab75 355{
2ac55d41 356 struct extent_state *cached_state = NULL;
1259ab75 357 int ret;
2755a0de 358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
359
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
362
b9fab919
CM
363 if (atomic)
364 return -EAGAIN;
365
a26e8c9f
JB
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 }
370
2ac55d41 371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 372 &cached_state);
0b32f4bb 373 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
377 }
94647322
DS
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
29549aec 381 parent_transid, btrfs_header_generation(eb));
1259ab75 382 ret = 1;
a26e8c9f
JB
383
384 /*
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been free'd and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
391 */
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
33958dc6 394out:
2ac55d41
JB
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
472b909f
JB
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
1259ab75 399 return ret;
1259ab75
CM
400}
401
1104a885
DS
402/*
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
405 */
406static int btrfs_check_super_csum(char *raw_disk_sb)
407{
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 * is filled with zeros and is included in the checkum.
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438}
439
d352ac68
CM
440/*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
f188591e
CM
444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 struct extent_buffer *eb,
ca7a79ad 446 u64 start, u64 parent_transid)
f188591e
CM
447{
448 struct extent_io_tree *io_tree;
ea466794 449 int failed = 0;
f188591e
CM
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
ea466794 453 int failed_mirror = 0;
f188591e 454
a826d6dc 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
bb82ab88
AJ
458 ret = read_extent_buffer_pages(io_tree, eb, start,
459 WAIT_COMPLETE,
f188591e 460 btree_get_extent, mirror_num);
256dd1bb
SB
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
b9fab919 463 parent_transid, 0))
256dd1bb
SB
464 break;
465 else
466 ret = -EIO;
467 }
d397712b 468
a826d6dc
JB
469 /*
470 * This buffer's crc is fine, but its contents are corrupted, so
471 * there is no reason to read the other copies, they won't be
472 * any less wrong.
473 */
474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
475 break;
476
5d964051 477 num_copies = btrfs_num_copies(root->fs_info,
f188591e 478 eb->start, eb->len);
4235298e 479 if (num_copies == 1)
ea466794 480 break;
4235298e 481
5cf1ab56
JB
482 if (!failed_mirror) {
483 failed = 1;
484 failed_mirror = eb->read_mirror;
485 }
486
f188591e 487 mirror_num++;
ea466794
JB
488 if (mirror_num == failed_mirror)
489 mirror_num++;
490
4235298e 491 if (mirror_num > num_copies)
ea466794 492 break;
f188591e 493 }
ea466794 494
c0901581 495 if (failed && !ret && failed_mirror)
ea466794
JB
496 repair_eb_io_failure(root, eb, failed_mirror);
497
498 return ret;
f188591e 499}
19c00ddc 500
d352ac68 501/*
d397712b
CM
502 * checksum a dirty tree block before IO. This has extra checks to make sure
503 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 504 */
d397712b 505
01d58472 506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 507{
4eee4fa4 508 u64 start = page_offset(page);
19c00ddc 509 u64 found_start;
19c00ddc 510 struct extent_buffer *eb;
f188591e 511
4f2de97a
JB
512 eb = (struct extent_buffer *)page->private;
513 if (page != eb->pages[0])
514 return 0;
0f805531 515
19c00ddc 516 found_start = btrfs_header_bytenr(eb);
0f805531
AL
517 /*
518 * Please do not consolidate these warnings into a single if.
519 * It is useful to know what went wrong.
520 */
521 if (WARN_ON(found_start != start))
522 return -EUCLEAN;
523 if (WARN_ON(!PageUptodate(page)))
524 return -EUCLEAN;
525
526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
8bd98f0e 529 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
530}
531
01d58472 532static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
533 struct extent_buffer *eb)
534{
01d58472 535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
536 u8 fsid[BTRFS_UUID_SIZE];
537 int ret = 1;
538
0a4e5586 539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
540 while (fs_devices) {
541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 ret = 0;
543 break;
544 }
545 fs_devices = fs_devices->seed;
546 }
547 return ret;
548}
549
a826d6dc 550#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
552 "root=%llu, slot=%d", reason, \
c1c9ff7c 553 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
554
555static noinline int check_leaf(struct btrfs_root *root,
556 struct extent_buffer *leaf)
557{
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
563 if (nritems == 0)
564 return 0;
565
566 /* Check the 0 item */
567 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568 BTRFS_LEAF_DATA_SIZE(root)) {
569 CORRUPT("invalid item offset size pair", leaf, root, 0);
570 return -EIO;
571 }
572
573 /*
574 * Check to make sure each items keys are in the correct order and their
575 * offsets make sense. We only have to loop through nritems-1 because
576 * we check the current slot against the next slot, which verifies the
577 * next slot's offset+size makes sense and that the current's slot
578 * offset is correct.
579 */
580 for (slot = 0; slot < nritems - 1; slot++) {
581 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584 /* Make sure the keys are in the right order */
585 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586 CORRUPT("bad key order", leaf, root, slot);
587 return -EIO;
588 }
589
590 /*
591 * Make sure the offset and ends are right, remember that the
592 * item data starts at the end of the leaf and grows towards the
593 * front.
594 */
595 if (btrfs_item_offset_nr(leaf, slot) !=
596 btrfs_item_end_nr(leaf, slot + 1)) {
597 CORRUPT("slot offset bad", leaf, root, slot);
598 return -EIO;
599 }
600
601 /*
602 * Check to make sure that we don't point outside of the leaf,
603 * just incase all the items are consistent to eachother, but
604 * all point outside of the leaf.
605 */
606 if (btrfs_item_end_nr(leaf, slot) >
607 BTRFS_LEAF_DATA_SIZE(root)) {
608 CORRUPT("slot end outside of leaf", leaf, root, slot);
609 return -EIO;
610 }
611 }
612
613 return 0;
614}
615
facc8a22
MX
616static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617 u64 phy_offset, struct page *page,
618 u64 start, u64 end, int mirror)
ce9adaa5 619{
ce9adaa5
CM
620 u64 found_start;
621 int found_level;
ce9adaa5
CM
622 struct extent_buffer *eb;
623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 624 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 625 int ret = 0;
727011e0 626 int reads_done;
ce9adaa5 627
ce9adaa5
CM
628 if (!page->private)
629 goto out;
d397712b 630
4f2de97a 631 eb = (struct extent_buffer *)page->private;
d397712b 632
0b32f4bb
JB
633 /* the pending IO might have been the only thing that kept this buffer
634 * in memory. Make sure we have a ref for all this other checks
635 */
636 extent_buffer_get(eb);
637
638 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
639 if (!reads_done)
640 goto err;
f188591e 641
5cf1ab56 642 eb->read_mirror = mirror;
656f30db 643 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
644 ret = -EIO;
645 goto err;
646 }
647
ce9adaa5 648 found_start = btrfs_header_bytenr(eb);
727011e0 649 if (found_start != eb->start) {
02873e43
ZL
650 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651 found_start, eb->start);
f188591e 652 ret = -EIO;
ce9adaa5
CM
653 goto err;
654 }
02873e43
ZL
655 if (check_tree_block_fsid(fs_info, eb)) {
656 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657 eb->start);
1259ab75
CM
658 ret = -EIO;
659 goto err;
660 }
ce9adaa5 661 found_level = btrfs_header_level(eb);
1c24c3ce 662 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
663 btrfs_err(fs_info, "bad tree block level %d",
664 (int)btrfs_header_level(eb));
1c24c3ce
JB
665 ret = -EIO;
666 goto err;
667 }
ce9adaa5 668
85d4e461
CM
669 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670 eb, found_level);
4008c04a 671
02873e43 672 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 673 if (ret)
a826d6dc 674 goto err;
a826d6dc
JB
675
676 /*
677 * If this is a leaf block and it is corrupt, set the corrupt bit so
678 * that we don't try and read the other copies of this block, just
679 * return -EIO.
680 */
681 if (found_level == 0 && check_leaf(root, eb)) {
682 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683 ret = -EIO;
684 }
ce9adaa5 685
0b32f4bb
JB
686 if (!ret)
687 set_extent_buffer_uptodate(eb);
ce9adaa5 688err:
79fb65a1
JB
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 691 btree_readahead_hook(fs_info, eb, eb->start, ret);
4bb31e92 692
53b381b3
DW
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
0b32f4bb 700 clear_extent_buffer_uptodate(eb);
53b381b3 701 }
0b32f4bb 702 free_extent_buffer(eb);
ce9adaa5 703out:
f188591e 704 return ret;
ce9adaa5
CM
705}
706
ea466794 707static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 708{
4bb31e92 709 struct extent_buffer *eb;
4bb31e92 710
4f2de97a 711 eb = (struct extent_buffer *)page->private;
656f30db 712 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 713 eb->read_mirror = failed_mirror;
53b381b3 714 atomic_dec(&eb->io_pages);
ea466794 715 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 716 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
4bb31e92
AJ
717 return -EIO; /* we fixed nothing */
718}
719
4246a0b6 720static void end_workqueue_bio(struct bio *bio)
ce9adaa5 721{
97eb6b69 722 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 723 struct btrfs_fs_info *fs_info;
9e0af237
LB
724 struct btrfs_workqueue *wq;
725 btrfs_work_func_t func;
ce9adaa5 726
ce9adaa5 727 fs_info = end_io_wq->info;
4246a0b6 728 end_io_wq->error = bio->bi_error;
d20f7043 729
7b6d91da 730 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
731 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732 wq = fs_info->endio_meta_write_workers;
733 func = btrfs_endio_meta_write_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735 wq = fs_info->endio_freespace_worker;
736 func = btrfs_freespace_write_helper;
737 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738 wq = fs_info->endio_raid56_workers;
739 func = btrfs_endio_raid56_helper;
740 } else {
741 wq = fs_info->endio_write_workers;
742 func = btrfs_endio_write_helper;
743 }
d20f7043 744 } else {
8b110e39
MX
745 if (unlikely(end_io_wq->metadata ==
746 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747 wq = fs_info->endio_repair_workers;
748 func = btrfs_endio_repair_helper;
749 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
750 wq = fs_info->endio_raid56_workers;
751 func = btrfs_endio_raid56_helper;
752 } else if (end_io_wq->metadata) {
753 wq = fs_info->endio_meta_workers;
754 func = btrfs_endio_meta_helper;
755 } else {
756 wq = fs_info->endio_workers;
757 func = btrfs_endio_helper;
758 }
d20f7043 759 }
9e0af237
LB
760
761 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
763}
764
22c59948 765int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 766 enum btrfs_wq_endio_type metadata)
0b86a832 767{
97eb6b69 768 struct btrfs_end_io_wq *end_io_wq;
8b110e39 769
97eb6b69 770 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
771 if (!end_io_wq)
772 return -ENOMEM;
773
774 end_io_wq->private = bio->bi_private;
775 end_io_wq->end_io = bio->bi_end_io;
22c59948 776 end_io_wq->info = info;
ce9adaa5
CM
777 end_io_wq->error = 0;
778 end_io_wq->bio = bio;
22c59948 779 end_io_wq->metadata = metadata;
ce9adaa5
CM
780
781 bio->bi_private = end_io_wq;
782 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
783 return 0;
784}
785
b64a2851 786unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 787{
4854ddd0 788 unsigned long limit = min_t(unsigned long,
5cdc7ad3 789 info->thread_pool_size,
4854ddd0
CM
790 info->fs_devices->open_devices);
791 return 256 * limit;
792}
0986fe9e 793
4a69a410
CM
794static void run_one_async_start(struct btrfs_work *work)
795{
4a69a410 796 struct async_submit_bio *async;
79787eaa 797 int ret;
4a69a410
CM
798
799 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
800 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801 async->mirror_num, async->bio_flags,
802 async->bio_offset);
803 if (ret)
804 async->error = ret;
4a69a410
CM
805}
806
807static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
808{
809 struct btrfs_fs_info *fs_info;
810 struct async_submit_bio *async;
4854ddd0 811 int limit;
8b712842
CM
812
813 async = container_of(work, struct async_submit_bio, work);
814 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 815
b64a2851 816 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
817 limit = limit * 2 / 3;
818
ee863954
DS
819 /*
820 * atomic_dec_return implies a barrier for waitqueue_active
821 */
66657b31 822 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 823 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
824 wake_up(&fs_info->async_submit_wait);
825
79787eaa
JM
826 /* If an error occured we just want to clean up the bio and move on */
827 if (async->error) {
4246a0b6
CH
828 async->bio->bi_error = async->error;
829 bio_endio(async->bio);
79787eaa
JM
830 return;
831 }
832
4a69a410 833 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
834 async->mirror_num, async->bio_flags,
835 async->bio_offset);
4a69a410
CM
836}
837
838static void run_one_async_free(struct btrfs_work *work)
839{
840 struct async_submit_bio *async;
841
842 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
843 kfree(async);
844}
845
44b8bd7e
CM
846int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847 int rw, struct bio *bio, int mirror_num,
c8b97818 848 unsigned long bio_flags,
eaf25d93 849 u64 bio_offset,
4a69a410
CM
850 extent_submit_bio_hook_t *submit_bio_start,
851 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
852{
853 struct async_submit_bio *async;
854
855 async = kmalloc(sizeof(*async), GFP_NOFS);
856 if (!async)
857 return -ENOMEM;
858
859 async->inode = inode;
860 async->rw = rw;
861 async->bio = bio;
862 async->mirror_num = mirror_num;
4a69a410
CM
863 async->submit_bio_start = submit_bio_start;
864 async->submit_bio_done = submit_bio_done;
865
9e0af237 866 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 867 run_one_async_done, run_one_async_free);
4a69a410 868
c8b97818 869 async->bio_flags = bio_flags;
eaf25d93 870 async->bio_offset = bio_offset;
8c8bee1d 871
79787eaa
JM
872 async->error = 0;
873
cb03c743 874 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 875
7b6d91da 876 if (rw & REQ_SYNC)
5cdc7ad3 877 btrfs_set_work_high_priority(&async->work);
d313d7a3 878
5cdc7ad3 879 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 880
d397712b 881 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
882 atomic_read(&fs_info->nr_async_submits)) {
883 wait_event(fs_info->async_submit_wait,
884 (atomic_read(&fs_info->nr_async_submits) == 0));
885 }
886
44b8bd7e
CM
887 return 0;
888}
889
ce3ed71a
CM
890static int btree_csum_one_bio(struct bio *bio)
891{
2c30c71b 892 struct bio_vec *bvec;
ce3ed71a 893 struct btrfs_root *root;
2c30c71b 894 int i, ret = 0;
ce3ed71a 895
2c30c71b 896 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 897 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 898 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
899 if (ret)
900 break;
ce3ed71a 901 }
2c30c71b 902
79787eaa 903 return ret;
ce3ed71a
CM
904}
905
4a69a410
CM
906static int __btree_submit_bio_start(struct inode *inode, int rw,
907 struct bio *bio, int mirror_num,
eaf25d93
CM
908 unsigned long bio_flags,
909 u64 bio_offset)
22c59948 910{
8b712842
CM
911 /*
912 * when we're called for a write, we're already in the async
5443be45 913 * submission context. Just jump into btrfs_map_bio
8b712842 914 */
79787eaa 915 return btree_csum_one_bio(bio);
4a69a410 916}
22c59948 917
4a69a410 918static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset)
4a69a410 921{
61891923
SB
922 int ret;
923
8b712842 924 /*
4a69a410
CM
925 * when we're called for a write, we're already in the async
926 * submission context. Just jump into btrfs_map_bio
8b712842 927 */
61891923 928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
929 if (ret) {
930 bio->bi_error = ret;
931 bio_endio(bio);
932 }
61891923 933 return ret;
0b86a832
CM
934}
935
de0022b9
JB
936static int check_async_write(struct inode *inode, unsigned long bio_flags)
937{
938 if (bio_flags & EXTENT_BIO_TREE_LOG)
939 return 0;
940#ifdef CONFIG_X86
362f924b 941 if (static_cpu_has_safe(X86_FEATURE_XMM4_2))
de0022b9
JB
942 return 0;
943#endif
944 return 1;
945}
946
44b8bd7e 947static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
948 int mirror_num, unsigned long bio_flags,
949 u64 bio_offset)
44b8bd7e 950{
de0022b9 951 int async = check_async_write(inode, bio_flags);
cad321ad
CM
952 int ret;
953
7b6d91da 954 if (!(rw & REQ_WRITE)) {
4a69a410
CM
955 /*
956 * called for a read, do the setup so that checksum validation
957 * can happen in the async kernel threads
958 */
f3f266ab 959 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 960 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 961 if (ret)
61891923
SB
962 goto out_w_error;
963 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964 mirror_num, 0);
de0022b9
JB
965 } else if (!async) {
966 ret = btree_csum_one_bio(bio);
967 if (ret)
61891923
SB
968 goto out_w_error;
969 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970 mirror_num, 0);
971 } else {
972 /*
973 * kthread helpers are used to submit writes so that
974 * checksumming can happen in parallel across all CPUs
975 */
976 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977 inode, rw, bio, mirror_num, 0,
978 bio_offset,
979 __btree_submit_bio_start,
980 __btree_submit_bio_done);
44b8bd7e 981 }
d313d7a3 982
4246a0b6
CH
983 if (ret)
984 goto out_w_error;
985 return 0;
986
61891923 987out_w_error:
4246a0b6
CH
988 bio->bi_error = ret;
989 bio_endio(bio);
61891923 990 return ret;
44b8bd7e
CM
991}
992
3dd1462e 993#ifdef CONFIG_MIGRATION
784b4e29 994static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
995 struct page *newpage, struct page *page,
996 enum migrate_mode mode)
784b4e29
CM
997{
998 /*
999 * we can't safely write a btree page from here,
1000 * we haven't done the locking hook
1001 */
1002 if (PageDirty(page))
1003 return -EAGAIN;
1004 /*
1005 * Buffers may be managed in a filesystem specific way.
1006 * We must have no buffers or drop them.
1007 */
1008 if (page_has_private(page) &&
1009 !try_to_release_page(page, GFP_KERNEL))
1010 return -EAGAIN;
a6bc32b8 1011 return migrate_page(mapping, newpage, page, mode);
784b4e29 1012}
3dd1462e 1013#endif
784b4e29 1014
0da5468f
CM
1015
1016static int btree_writepages(struct address_space *mapping,
1017 struct writeback_control *wbc)
1018{
e2d84521
MX
1019 struct btrfs_fs_info *fs_info;
1020 int ret;
1021
d8d5f3e1 1022 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1023
1024 if (wbc->for_kupdate)
1025 return 0;
1026
e2d84521 1027 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1028 /* this is a bit racy, but that's ok */
e2d84521
MX
1029 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030 BTRFS_DIRTY_METADATA_THRESH);
1031 if (ret < 0)
793955bc 1032 return 0;
793955bc 1033 }
0b32f4bb 1034 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1035}
1036
b2950863 1037static int btree_readpage(struct file *file, struct page *page)
5f39d397 1038{
d1310b2e
CM
1039 struct extent_io_tree *tree;
1040 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1041 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1042}
22b0ebda 1043
70dec807 1044static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1045{
98509cfc 1046 if (PageWriteback(page) || PageDirty(page))
d397712b 1047 return 0;
0c4e538b 1048
f7a52a40 1049 return try_release_extent_buffer(page);
d98237b3
CM
1050}
1051
d47992f8
LC
1052static void btree_invalidatepage(struct page *page, unsigned int offset,
1053 unsigned int length)
d98237b3 1054{
d1310b2e
CM
1055 struct extent_io_tree *tree;
1056 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1057 extent_invalidatepage(tree, page, offset);
1058 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1059 if (PagePrivate(page)) {
efe120a0
FH
1060 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061 "page private not zero on page %llu",
1062 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1063 ClearPagePrivate(page);
1064 set_page_private(page, 0);
1065 page_cache_release(page);
1066 }
d98237b3
CM
1067}
1068
0b32f4bb
JB
1069static int btree_set_page_dirty(struct page *page)
1070{
bb146eb2 1071#ifdef DEBUG
0b32f4bb
JB
1072 struct extent_buffer *eb;
1073
1074 BUG_ON(!PagePrivate(page));
1075 eb = (struct extent_buffer *)page->private;
1076 BUG_ON(!eb);
1077 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078 BUG_ON(!atomic_read(&eb->refs));
1079 btrfs_assert_tree_locked(eb);
bb146eb2 1080#endif
0b32f4bb
JB
1081 return __set_page_dirty_nobuffers(page);
1082}
1083
7f09410b 1084static const struct address_space_operations btree_aops = {
d98237b3 1085 .readpage = btree_readpage,
0da5468f 1086 .writepages = btree_writepages,
5f39d397
CM
1087 .releasepage = btree_releasepage,
1088 .invalidatepage = btree_invalidatepage,
5a92bc88 1089#ifdef CONFIG_MIGRATION
784b4e29 1090 .migratepage = btree_migratepage,
5a92bc88 1091#endif
0b32f4bb 1092 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1093};
1094
d3e46fea 1095void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1096{
5f39d397
CM
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1099
a83fffb7 1100 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1101 if (!buf)
6197d86e 1102 return;
d1310b2e 1103 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1104 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1105 free_extent_buffer(buf);
090d1875
CM
1106}
1107
c0dcaa4d 1108int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1109 int mirror_num, struct extent_buffer **eb)
1110{
1111 struct extent_buffer *buf = NULL;
1112 struct inode *btree_inode = root->fs_info->btree_inode;
1113 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114 int ret;
1115
a83fffb7 1116 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1117 if (!buf)
1118 return 0;
1119
1120 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123 btree_get_extent, mirror_num);
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return ret;
1127 }
1128
1129 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130 free_extent_buffer(buf);
1131 return -EIO;
0b32f4bb 1132 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1133 *eb = buf;
1134 } else {
1135 free_extent_buffer(buf);
1136 }
1137 return 0;
1138}
1139
01d58472 1140struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1141 u64 bytenr)
0999df54 1142{
01d58472 1143 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1144}
1145
1146struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1147 u64 bytenr)
0999df54 1148{
fccb84c9 1149 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1150 return alloc_test_extent_buffer(root->fs_info, bytenr);
1151 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1152}
1153
1154
e02119d5
CM
1155int btrfs_write_tree_block(struct extent_buffer *buf)
1156{
727011e0 1157 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1158 buf->start + buf->len - 1);
e02119d5
CM
1159}
1160
1161int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1162{
727011e0 1163 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1164 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1165}
1166
0999df54 1167struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1168 u64 parent_transid)
0999df54
CM
1169{
1170 struct extent_buffer *buf = NULL;
0999df54
CM
1171 int ret;
1172
a83fffb7 1173 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1174 if (!buf)
64c043de 1175 return ERR_PTR(-ENOMEM);
0999df54 1176
ca7a79ad 1177 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1178 if (ret) {
1179 free_extent_buffer(buf);
64c043de 1180 return ERR_PTR(ret);
0f0fe8f7 1181 }
5f39d397 1182 return buf;
ce9adaa5 1183
eb60ceac
CM
1184}
1185
01d58472
DD
1186void clean_tree_block(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info,
d5c13f92 1188 struct extent_buffer *buf)
ed2ff2cb 1189{
55c69072 1190 if (btrfs_header_generation(buf) ==
e2d84521 1191 fs_info->running_transaction->transid) {
b9447ef8 1192 btrfs_assert_tree_locked(buf);
b4ce94de 1193
b9473439 1194 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1195 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1196 -buf->len,
1197 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1198 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1199 btrfs_set_lock_blocking(buf);
1200 clear_extent_buffer_dirty(buf);
1201 }
925baedd 1202 }
5f39d397
CM
1203}
1204
8257b2dc
MX
1205static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1206{
1207 struct btrfs_subvolume_writers *writers;
1208 int ret;
1209
1210 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1211 if (!writers)
1212 return ERR_PTR(-ENOMEM);
1213
908c7f19 1214 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1215 if (ret < 0) {
1216 kfree(writers);
1217 return ERR_PTR(ret);
1218 }
1219
1220 init_waitqueue_head(&writers->wait);
1221 return writers;
1222}
1223
1224static void
1225btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1226{
1227 percpu_counter_destroy(&writers->counter);
1228 kfree(writers);
1229}
1230
707e8a07
DS
1231static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1232 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1233 u64 objectid)
d97e63b6 1234{
cfaa7295 1235 root->node = NULL;
a28ec197 1236 root->commit_root = NULL;
db94535d
CM
1237 root->sectorsize = sectorsize;
1238 root->nodesize = nodesize;
87ee04eb 1239 root->stripesize = stripesize;
27cdeb70 1240 root->state = 0;
d68fc57b 1241 root->orphan_cleanup_state = 0;
0b86a832 1242
0f7d52f4
CM
1243 root->objectid = objectid;
1244 root->last_trans = 0;
13a8a7c8 1245 root->highest_objectid = 0;
eb73c1b7 1246 root->nr_delalloc_inodes = 0;
199c2a9c 1247 root->nr_ordered_extents = 0;
58176a96 1248 root->name = NULL;
6bef4d31 1249 root->inode_tree = RB_ROOT;
16cdcec7 1250 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1251 root->block_rsv = NULL;
d68fc57b 1252 root->orphan_block_rsv = NULL;
0b86a832
CM
1253
1254 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1255 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1256 INIT_LIST_HEAD(&root->delalloc_inodes);
1257 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1258 INIT_LIST_HEAD(&root->ordered_extents);
1259 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1260 INIT_LIST_HEAD(&root->logged_list[0]);
1261 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1262 spin_lock_init(&root->orphan_lock);
5d4f98a2 1263 spin_lock_init(&root->inode_lock);
eb73c1b7 1264 spin_lock_init(&root->delalloc_lock);
199c2a9c 1265 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1266 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1267 spin_lock_init(&root->log_extents_lock[0]);
1268 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1269 mutex_init(&root->objectid_mutex);
e02119d5 1270 mutex_init(&root->log_mutex);
31f3d255 1271 mutex_init(&root->ordered_extent_mutex);
573bfb72 1272 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1273 init_waitqueue_head(&root->log_writer_wait);
1274 init_waitqueue_head(&root->log_commit_wait[0]);
1275 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1276 INIT_LIST_HEAD(&root->log_ctxs[0]);
1277 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1278 atomic_set(&root->log_commit[0], 0);
1279 atomic_set(&root->log_commit[1], 0);
1280 atomic_set(&root->log_writers, 0);
2ecb7923 1281 atomic_set(&root->log_batch, 0);
8a35d95f 1282 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1283 atomic_set(&root->refs, 1);
8257b2dc 1284 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1285 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1286 root->log_transid = 0;
d1433deb 1287 root->log_transid_committed = -1;
257c62e1 1288 root->last_log_commit = 0;
06ea65a3
JB
1289 if (fs_info)
1290 extent_io_tree_init(&root->dirty_log_pages,
1291 fs_info->btree_inode->i_mapping);
017e5369 1292
3768f368
CM
1293 memset(&root->root_key, 0, sizeof(root->root_key));
1294 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1295 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1296 if (fs_info)
1297 root->defrag_trans_start = fs_info->generation;
1298 else
1299 root->defrag_trans_start = 0;
4d775673 1300 root->root_key.objectid = objectid;
0ee5dc67 1301 root->anon_dev = 0;
8ea05e3a 1302
5f3ab90a 1303 spin_lock_init(&root->root_item_lock);
3768f368
CM
1304}
1305
74e4d827
DS
1306static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1307 gfp_t flags)
6f07e42e 1308{
74e4d827 1309 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1310 if (root)
1311 root->fs_info = fs_info;
1312 return root;
1313}
1314
06ea65a3
JB
1315#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1316/* Should only be used by the testing infrastructure */
1317struct btrfs_root *btrfs_alloc_dummy_root(void)
1318{
1319 struct btrfs_root *root;
1320
74e4d827 1321 root = btrfs_alloc_root(NULL, GFP_KERNEL);
06ea65a3
JB
1322 if (!root)
1323 return ERR_PTR(-ENOMEM);
707e8a07 1324 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1325 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1326 root->alloc_bytenr = 0;
06ea65a3
JB
1327
1328 return root;
1329}
1330#endif
1331
20897f5c
AJ
1332struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1333 struct btrfs_fs_info *fs_info,
1334 u64 objectid)
1335{
1336 struct extent_buffer *leaf;
1337 struct btrfs_root *tree_root = fs_info->tree_root;
1338 struct btrfs_root *root;
1339 struct btrfs_key key;
1340 int ret = 0;
6463fe58 1341 uuid_le uuid;
20897f5c 1342
74e4d827 1343 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1344 if (!root)
1345 return ERR_PTR(-ENOMEM);
1346
707e8a07
DS
1347 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1348 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1349 root->root_key.objectid = objectid;
1350 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351 root->root_key.offset = 0;
1352
4d75f8a9 1353 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1354 if (IS_ERR(leaf)) {
1355 ret = PTR_ERR(leaf);
1dd05682 1356 leaf = NULL;
20897f5c
AJ
1357 goto fail;
1358 }
1359
20897f5c
AJ
1360 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1361 btrfs_set_header_bytenr(leaf, leaf->start);
1362 btrfs_set_header_generation(leaf, trans->transid);
1363 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364 btrfs_set_header_owner(leaf, objectid);
1365 root->node = leaf;
1366
0a4e5586 1367 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1368 BTRFS_FSID_SIZE);
1369 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1370 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1371 BTRFS_UUID_SIZE);
1372 btrfs_mark_buffer_dirty(leaf);
1373
1374 root->commit_root = btrfs_root_node(root);
27cdeb70 1375 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1376
1377 root->root_item.flags = 0;
1378 root->root_item.byte_limit = 0;
1379 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1380 btrfs_set_root_generation(&root->root_item, trans->transid);
1381 btrfs_set_root_level(&root->root_item, 0);
1382 btrfs_set_root_refs(&root->root_item, 1);
1383 btrfs_set_root_used(&root->root_item, leaf->len);
1384 btrfs_set_root_last_snapshot(&root->root_item, 0);
1385 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1386 uuid_le_gen(&uuid);
1387 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1388 root->root_item.drop_level = 0;
1389
1390 key.objectid = objectid;
1391 key.type = BTRFS_ROOT_ITEM_KEY;
1392 key.offset = 0;
1393 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1394 if (ret)
1395 goto fail;
1396
1397 btrfs_tree_unlock(leaf);
1398
1dd05682
TI
1399 return root;
1400
20897f5c 1401fail:
1dd05682
TI
1402 if (leaf) {
1403 btrfs_tree_unlock(leaf);
59885b39 1404 free_extent_buffer(root->commit_root);
1dd05682
TI
1405 free_extent_buffer(leaf);
1406 }
1407 kfree(root);
20897f5c 1408
1dd05682 1409 return ERR_PTR(ret);
20897f5c
AJ
1410}
1411
7237f183
YZ
1412static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1414{
1415 struct btrfs_root *root;
1416 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1417 struct extent_buffer *leaf;
e02119d5 1418
74e4d827 1419 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1420 if (!root)
7237f183 1421 return ERR_PTR(-ENOMEM);
e02119d5 1422
707e8a07
DS
1423 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1424 tree_root->stripesize, root, fs_info,
1425 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1426
1427 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1428 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1429 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1430
7237f183 1431 /*
27cdeb70
MX
1432 * DON'T set REF_COWS for log trees
1433 *
7237f183
YZ
1434 * log trees do not get reference counted because they go away
1435 * before a real commit is actually done. They do store pointers
1436 * to file data extents, and those reference counts still get
1437 * updated (along with back refs to the log tree).
1438 */
e02119d5 1439
4d75f8a9
DS
1440 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1441 NULL, 0, 0, 0);
7237f183
YZ
1442 if (IS_ERR(leaf)) {
1443 kfree(root);
1444 return ERR_CAST(leaf);
1445 }
e02119d5 1446
5d4f98a2
YZ
1447 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1448 btrfs_set_header_bytenr(leaf, leaf->start);
1449 btrfs_set_header_generation(leaf, trans->transid);
1450 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1451 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1452 root->node = leaf;
e02119d5
CM
1453
1454 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1455 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1456 btrfs_mark_buffer_dirty(root->node);
1457 btrfs_tree_unlock(root->node);
7237f183
YZ
1458 return root;
1459}
1460
1461int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1462 struct btrfs_fs_info *fs_info)
1463{
1464 struct btrfs_root *log_root;
1465
1466 log_root = alloc_log_tree(trans, fs_info);
1467 if (IS_ERR(log_root))
1468 return PTR_ERR(log_root);
1469 WARN_ON(fs_info->log_root_tree);
1470 fs_info->log_root_tree = log_root;
1471 return 0;
1472}
1473
1474int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1475 struct btrfs_root *root)
1476{
1477 struct btrfs_root *log_root;
1478 struct btrfs_inode_item *inode_item;
1479
1480 log_root = alloc_log_tree(trans, root->fs_info);
1481 if (IS_ERR(log_root))
1482 return PTR_ERR(log_root);
1483
1484 log_root->last_trans = trans->transid;
1485 log_root->root_key.offset = root->root_key.objectid;
1486
1487 inode_item = &log_root->root_item.inode;
3cae210f
QW
1488 btrfs_set_stack_inode_generation(inode_item, 1);
1489 btrfs_set_stack_inode_size(inode_item, 3);
1490 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1491 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1492 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1493
5d4f98a2 1494 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1495
1496 WARN_ON(root->log_root);
1497 root->log_root = log_root;
1498 root->log_transid = 0;
d1433deb 1499 root->log_transid_committed = -1;
257c62e1 1500 root->last_log_commit = 0;
e02119d5
CM
1501 return 0;
1502}
1503
35a3621b
SB
1504static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505 struct btrfs_key *key)
e02119d5
CM
1506{
1507 struct btrfs_root *root;
1508 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1509 struct btrfs_path *path;
84234f3a 1510 u64 generation;
cb517eab 1511 int ret;
0f7d52f4 1512
cb517eab
MX
1513 path = btrfs_alloc_path();
1514 if (!path)
0f7d52f4 1515 return ERR_PTR(-ENOMEM);
cb517eab 1516
74e4d827 1517 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1518 if (!root) {
1519 ret = -ENOMEM;
1520 goto alloc_fail;
0f7d52f4
CM
1521 }
1522
707e8a07
DS
1523 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1524 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1525
cb517eab
MX
1526 ret = btrfs_find_root(tree_root, key, path,
1527 &root->root_item, &root->root_key);
0f7d52f4 1528 if (ret) {
13a8a7c8
YZ
1529 if (ret > 0)
1530 ret = -ENOENT;
cb517eab 1531 goto find_fail;
0f7d52f4 1532 }
13a8a7c8 1533
84234f3a 1534 generation = btrfs_root_generation(&root->root_item);
db94535d 1535 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1536 generation);
64c043de
LB
1537 if (IS_ERR(root->node)) {
1538 ret = PTR_ERR(root->node);
cb517eab
MX
1539 goto find_fail;
1540 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1541 ret = -EIO;
64c043de
LB
1542 free_extent_buffer(root->node);
1543 goto find_fail;
416bc658 1544 }
5d4f98a2 1545 root->commit_root = btrfs_root_node(root);
13a8a7c8 1546out:
cb517eab
MX
1547 btrfs_free_path(path);
1548 return root;
1549
cb517eab
MX
1550find_fail:
1551 kfree(root);
1552alloc_fail:
1553 root = ERR_PTR(ret);
1554 goto out;
1555}
1556
1557struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1558 struct btrfs_key *location)
1559{
1560 struct btrfs_root *root;
1561
1562 root = btrfs_read_tree_root(tree_root, location);
1563 if (IS_ERR(root))
1564 return root;
1565
1566 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1567 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1568 btrfs_check_and_init_root_item(&root->root_item);
1569 }
13a8a7c8 1570
5eda7b5e
CM
1571 return root;
1572}
1573
cb517eab
MX
1574int btrfs_init_fs_root(struct btrfs_root *root)
1575{
1576 int ret;
8257b2dc 1577 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1578
1579 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1580 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1581 GFP_NOFS);
1582 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1583 ret = -ENOMEM;
1584 goto fail;
1585 }
1586
8257b2dc
MX
1587 writers = btrfs_alloc_subvolume_writers();
1588 if (IS_ERR(writers)) {
1589 ret = PTR_ERR(writers);
1590 goto fail;
1591 }
1592 root->subv_writers = writers;
1593
cb517eab 1594 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1595 spin_lock_init(&root->ino_cache_lock);
1596 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1597
1598 ret = get_anon_bdev(&root->anon_dev);
1599 if (ret)
8257b2dc 1600 goto free_writers;
f32e48e9
CR
1601
1602 mutex_lock(&root->objectid_mutex);
1603 ret = btrfs_find_highest_objectid(root,
1604 &root->highest_objectid);
1605 if (ret) {
1606 mutex_unlock(&root->objectid_mutex);
1607 goto free_root_dev;
1608 }
1609
1610 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1611
1612 mutex_unlock(&root->objectid_mutex);
1613
cb517eab 1614 return 0;
8257b2dc 1615
f32e48e9
CR
1616free_root_dev:
1617 free_anon_bdev(root->anon_dev);
8257b2dc
MX
1618free_writers:
1619 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1620fail:
1621 kfree(root->free_ino_ctl);
1622 kfree(root->free_ino_pinned);
1623 return ret;
1624}
1625
171170c1
ST
1626static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1627 u64 root_id)
cb517eab
MX
1628{
1629 struct btrfs_root *root;
1630
1631 spin_lock(&fs_info->fs_roots_radix_lock);
1632 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1633 (unsigned long)root_id);
1634 spin_unlock(&fs_info->fs_roots_radix_lock);
1635 return root;
1636}
1637
1638int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1639 struct btrfs_root *root)
1640{
1641 int ret;
1642
1643 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1644 if (ret)
1645 return ret;
1646
1647 spin_lock(&fs_info->fs_roots_radix_lock);
1648 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1649 (unsigned long)root->root_key.objectid,
1650 root);
1651 if (ret == 0)
27cdeb70 1652 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1653 spin_unlock(&fs_info->fs_roots_radix_lock);
1654 radix_tree_preload_end();
1655
1656 return ret;
1657}
1658
c00869f1
MX
1659struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660 struct btrfs_key *location,
1661 bool check_ref)
5eda7b5e
CM
1662{
1663 struct btrfs_root *root;
381cf658 1664 struct btrfs_path *path;
1d4c08e0 1665 struct btrfs_key key;
5eda7b5e
CM
1666 int ret;
1667
edbd8d4e
CM
1668 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1669 return fs_info->tree_root;
1670 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1671 return fs_info->extent_root;
8f18cf13
CM
1672 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1673 return fs_info->chunk_root;
1674 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1675 return fs_info->dev_root;
0403e47e
YZ
1676 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1677 return fs_info->csum_root;
bcef60f2
AJ
1678 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1679 return fs_info->quota_root ? fs_info->quota_root :
1680 ERR_PTR(-ENOENT);
f7a81ea4
SB
1681 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1682 return fs_info->uuid_root ? fs_info->uuid_root :
1683 ERR_PTR(-ENOENT);
70f6d82e
OS
1684 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1685 return fs_info->free_space_root ? fs_info->free_space_root :
1686 ERR_PTR(-ENOENT);
4df27c4d 1687again:
cb517eab 1688 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1689 if (root) {
c00869f1 1690 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1691 return ERR_PTR(-ENOENT);
5eda7b5e 1692 return root;
48475471 1693 }
5eda7b5e 1694
cb517eab 1695 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1696 if (IS_ERR(root))
1697 return root;
3394e160 1698
c00869f1 1699 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1700 ret = -ENOENT;
581bb050 1701 goto fail;
35a30d7c 1702 }
581bb050 1703
cb517eab 1704 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1705 if (ret)
1706 goto fail;
3394e160 1707
381cf658
DS
1708 path = btrfs_alloc_path();
1709 if (!path) {
1710 ret = -ENOMEM;
1711 goto fail;
1712 }
1d4c08e0
DS
1713 key.objectid = BTRFS_ORPHAN_OBJECTID;
1714 key.type = BTRFS_ORPHAN_ITEM_KEY;
1715 key.offset = location->objectid;
1716
1717 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1718 btrfs_free_path(path);
d68fc57b
YZ
1719 if (ret < 0)
1720 goto fail;
1721 if (ret == 0)
27cdeb70 1722 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1723
cb517eab 1724 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1725 if (ret) {
4df27c4d
YZ
1726 if (ret == -EEXIST) {
1727 free_fs_root(root);
1728 goto again;
1729 }
1730 goto fail;
0f7d52f4 1731 }
edbd8d4e 1732 return root;
4df27c4d
YZ
1733fail:
1734 free_fs_root(root);
1735 return ERR_PTR(ret);
edbd8d4e
CM
1736}
1737
04160088
CM
1738static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1739{
1740 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1741 int ret = 0;
04160088
CM
1742 struct btrfs_device *device;
1743 struct backing_dev_info *bdi;
b7967db7 1744
1f78160c
XG
1745 rcu_read_lock();
1746 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1747 if (!device->bdev)
1748 continue;
04160088 1749 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1750 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1751 ret = 1;
1752 break;
1753 }
1754 }
1f78160c 1755 rcu_read_unlock();
04160088
CM
1756 return ret;
1757}
1758
04160088
CM
1759static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1760{
ad081f14
JA
1761 int err;
1762
b4caecd4 1763 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1764 if (err)
1765 return err;
1766
df0ce26c 1767 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1768 bdi->congested_fn = btrfs_congested_fn;
1769 bdi->congested_data = info;
da2f0f74 1770 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1771 return 0;
1772}
1773
8b712842
CM
1774/*
1775 * called by the kthread helper functions to finally call the bio end_io
1776 * functions. This is where read checksum verification actually happens
1777 */
1778static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1779{
ce9adaa5 1780 struct bio *bio;
97eb6b69 1781 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1782
97eb6b69 1783 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1784 bio = end_io_wq->bio;
ce9adaa5 1785
4246a0b6 1786 bio->bi_error = end_io_wq->error;
8b712842
CM
1787 bio->bi_private = end_io_wq->private;
1788 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1789 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1790 bio_endio(bio);
44b8bd7e
CM
1791}
1792
a74a4b97
CM
1793static int cleaner_kthread(void *arg)
1794{
1795 struct btrfs_root *root = arg;
d0278245 1796 int again;
da288d28 1797 struct btrfs_trans_handle *trans;
a74a4b97
CM
1798
1799 do {
d0278245 1800 again = 0;
a74a4b97 1801
d0278245 1802 /* Make the cleaner go to sleep early. */
babbf170 1803 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1804 goto sleep;
1805
1806 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1807 goto sleep;
1808
dc7f370c
MX
1809 /*
1810 * Avoid the problem that we change the status of the fs
1811 * during the above check and trylock.
1812 */
babbf170 1813 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1814 mutex_unlock(&root->fs_info->cleaner_mutex);
1815 goto sleep;
76dda93c 1816 }
a74a4b97 1817
c2d6cb16 1818 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
d0278245 1819 btrfs_run_delayed_iputs(root);
c2d6cb16
FM
1820 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1821
d0278245
MX
1822 again = btrfs_clean_one_deleted_snapshot(root);
1823 mutex_unlock(&root->fs_info->cleaner_mutex);
1824
1825 /*
05323cd1
MX
1826 * The defragger has dealt with the R/O remount and umount,
1827 * needn't do anything special here.
d0278245
MX
1828 */
1829 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1830
1831 /*
1832 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1833 * with relocation (btrfs_relocate_chunk) and relocation
1834 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1836 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837 * unused block groups.
1838 */
1839 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1840sleep:
838fe188 1841 if (!again) {
a74a4b97 1842 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1843 if (!kthread_should_stop())
1844 schedule();
a74a4b97
CM
1845 __set_current_state(TASK_RUNNING);
1846 }
1847 } while (!kthread_should_stop());
da288d28
FM
1848
1849 /*
1850 * Transaction kthread is stopped before us and wakes us up.
1851 * However we might have started a new transaction and COWed some
1852 * tree blocks when deleting unused block groups for example. So
1853 * make sure we commit the transaction we started to have a clean
1854 * shutdown when evicting the btree inode - if it has dirty pages
1855 * when we do the final iput() on it, eviction will trigger a
1856 * writeback for it which will fail with null pointer dereferences
1857 * since work queues and other resources were already released and
1858 * destroyed by the time the iput/eviction/writeback is made.
1859 */
1860 trans = btrfs_attach_transaction(root);
1861 if (IS_ERR(trans)) {
1862 if (PTR_ERR(trans) != -ENOENT)
1863 btrfs_err(root->fs_info,
1864 "cleaner transaction attach returned %ld",
1865 PTR_ERR(trans));
1866 } else {
1867 int ret;
1868
1869 ret = btrfs_commit_transaction(trans, root);
1870 if (ret)
1871 btrfs_err(root->fs_info,
1872 "cleaner open transaction commit returned %d",
1873 ret);
1874 }
1875
a74a4b97
CM
1876 return 0;
1877}
1878
1879static int transaction_kthread(void *arg)
1880{
1881 struct btrfs_root *root = arg;
1882 struct btrfs_trans_handle *trans;
1883 struct btrfs_transaction *cur;
8929ecfa 1884 u64 transid;
a74a4b97
CM
1885 unsigned long now;
1886 unsigned long delay;
914b2007 1887 bool cannot_commit;
a74a4b97
CM
1888
1889 do {
914b2007 1890 cannot_commit = false;
8b87dc17 1891 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1892 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1893
a4abeea4 1894 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1895 cur = root->fs_info->running_transaction;
1896 if (!cur) {
a4abeea4 1897 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1898 goto sleep;
1899 }
31153d81 1900
a74a4b97 1901 now = get_seconds();
4a9d8bde 1902 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1903 (now < cur->start_time ||
1904 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1905 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1906 delay = HZ * 5;
1907 goto sleep;
1908 }
8929ecfa 1909 transid = cur->transid;
a4abeea4 1910 spin_unlock(&root->fs_info->trans_lock);
56bec294 1911
79787eaa 1912 /* If the file system is aborted, this will always fail. */
354aa0fb 1913 trans = btrfs_attach_transaction(root);
914b2007 1914 if (IS_ERR(trans)) {
354aa0fb
MX
1915 if (PTR_ERR(trans) != -ENOENT)
1916 cannot_commit = true;
79787eaa 1917 goto sleep;
914b2007 1918 }
8929ecfa 1919 if (transid == trans->transid) {
79787eaa 1920 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1921 } else {
1922 btrfs_end_transaction(trans, root);
1923 }
a74a4b97
CM
1924sleep:
1925 wake_up_process(root->fs_info->cleaner_kthread);
1926 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1927
4e121c06
JB
1928 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1929 &root->fs_info->fs_state)))
1930 btrfs_cleanup_transaction(root);
a0acae0e 1931 if (!try_to_freeze()) {
a74a4b97 1932 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1933 if (!kthread_should_stop() &&
914b2007
JK
1934 (!btrfs_transaction_blocked(root->fs_info) ||
1935 cannot_commit))
8929ecfa 1936 schedule_timeout(delay);
a74a4b97
CM
1937 __set_current_state(TASK_RUNNING);
1938 }
1939 } while (!kthread_should_stop());
1940 return 0;
1941}
1942
af31f5e5
CM
1943/*
1944 * this will find the highest generation in the array of
1945 * root backups. The index of the highest array is returned,
1946 * or -1 if we can't find anything.
1947 *
1948 * We check to make sure the array is valid by comparing the
1949 * generation of the latest root in the array with the generation
1950 * in the super block. If they don't match we pitch it.
1951 */
1952static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1953{
1954 u64 cur;
1955 int newest_index = -1;
1956 struct btrfs_root_backup *root_backup;
1957 int i;
1958
1959 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1960 root_backup = info->super_copy->super_roots + i;
1961 cur = btrfs_backup_tree_root_gen(root_backup);
1962 if (cur == newest_gen)
1963 newest_index = i;
1964 }
1965
1966 /* check to see if we actually wrapped around */
1967 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1968 root_backup = info->super_copy->super_roots;
1969 cur = btrfs_backup_tree_root_gen(root_backup);
1970 if (cur == newest_gen)
1971 newest_index = 0;
1972 }
1973 return newest_index;
1974}
1975
1976
1977/*
1978 * find the oldest backup so we know where to store new entries
1979 * in the backup array. This will set the backup_root_index
1980 * field in the fs_info struct
1981 */
1982static void find_oldest_super_backup(struct btrfs_fs_info *info,
1983 u64 newest_gen)
1984{
1985 int newest_index = -1;
1986
1987 newest_index = find_newest_super_backup(info, newest_gen);
1988 /* if there was garbage in there, just move along */
1989 if (newest_index == -1) {
1990 info->backup_root_index = 0;
1991 } else {
1992 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1993 }
1994}
1995
1996/*
1997 * copy all the root pointers into the super backup array.
1998 * this will bump the backup pointer by one when it is
1999 * done
2000 */
2001static void backup_super_roots(struct btrfs_fs_info *info)
2002{
2003 int next_backup;
2004 struct btrfs_root_backup *root_backup;
2005 int last_backup;
2006
2007 next_backup = info->backup_root_index;
2008 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2009 BTRFS_NUM_BACKUP_ROOTS;
2010
2011 /*
2012 * just overwrite the last backup if we're at the same generation
2013 * this happens only at umount
2014 */
2015 root_backup = info->super_for_commit->super_roots + last_backup;
2016 if (btrfs_backup_tree_root_gen(root_backup) ==
2017 btrfs_header_generation(info->tree_root->node))
2018 next_backup = last_backup;
2019
2020 root_backup = info->super_for_commit->super_roots + next_backup;
2021
2022 /*
2023 * make sure all of our padding and empty slots get zero filled
2024 * regardless of which ones we use today
2025 */
2026 memset(root_backup, 0, sizeof(*root_backup));
2027
2028 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2029
2030 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2031 btrfs_set_backup_tree_root_gen(root_backup,
2032 btrfs_header_generation(info->tree_root->node));
2033
2034 btrfs_set_backup_tree_root_level(root_backup,
2035 btrfs_header_level(info->tree_root->node));
2036
2037 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2038 btrfs_set_backup_chunk_root_gen(root_backup,
2039 btrfs_header_generation(info->chunk_root->node));
2040 btrfs_set_backup_chunk_root_level(root_backup,
2041 btrfs_header_level(info->chunk_root->node));
2042
2043 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2044 btrfs_set_backup_extent_root_gen(root_backup,
2045 btrfs_header_generation(info->extent_root->node));
2046 btrfs_set_backup_extent_root_level(root_backup,
2047 btrfs_header_level(info->extent_root->node));
2048
7c7e82a7
CM
2049 /*
2050 * we might commit during log recovery, which happens before we set
2051 * the fs_root. Make sure it is valid before we fill it in.
2052 */
2053 if (info->fs_root && info->fs_root->node) {
2054 btrfs_set_backup_fs_root(root_backup,
2055 info->fs_root->node->start);
2056 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2057 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2058 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2059 btrfs_header_level(info->fs_root->node));
7c7e82a7 2060 }
af31f5e5
CM
2061
2062 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2063 btrfs_set_backup_dev_root_gen(root_backup,
2064 btrfs_header_generation(info->dev_root->node));
2065 btrfs_set_backup_dev_root_level(root_backup,
2066 btrfs_header_level(info->dev_root->node));
2067
2068 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2069 btrfs_set_backup_csum_root_gen(root_backup,
2070 btrfs_header_generation(info->csum_root->node));
2071 btrfs_set_backup_csum_root_level(root_backup,
2072 btrfs_header_level(info->csum_root->node));
2073
2074 btrfs_set_backup_total_bytes(root_backup,
2075 btrfs_super_total_bytes(info->super_copy));
2076 btrfs_set_backup_bytes_used(root_backup,
2077 btrfs_super_bytes_used(info->super_copy));
2078 btrfs_set_backup_num_devices(root_backup,
2079 btrfs_super_num_devices(info->super_copy));
2080
2081 /*
2082 * if we don't copy this out to the super_copy, it won't get remembered
2083 * for the next commit
2084 */
2085 memcpy(&info->super_copy->super_roots,
2086 &info->super_for_commit->super_roots,
2087 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2088}
2089
2090/*
2091 * this copies info out of the root backup array and back into
2092 * the in-memory super block. It is meant to help iterate through
2093 * the array, so you send it the number of backups you've already
2094 * tried and the last backup index you used.
2095 *
2096 * this returns -1 when it has tried all the backups
2097 */
2098static noinline int next_root_backup(struct btrfs_fs_info *info,
2099 struct btrfs_super_block *super,
2100 int *num_backups_tried, int *backup_index)
2101{
2102 struct btrfs_root_backup *root_backup;
2103 int newest = *backup_index;
2104
2105 if (*num_backups_tried == 0) {
2106 u64 gen = btrfs_super_generation(super);
2107
2108 newest = find_newest_super_backup(info, gen);
2109 if (newest == -1)
2110 return -1;
2111
2112 *backup_index = newest;
2113 *num_backups_tried = 1;
2114 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2115 /* we've tried all the backups, all done */
2116 return -1;
2117 } else {
2118 /* jump to the next oldest backup */
2119 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2120 BTRFS_NUM_BACKUP_ROOTS;
2121 *backup_index = newest;
2122 *num_backups_tried += 1;
2123 }
2124 root_backup = super->super_roots + newest;
2125
2126 btrfs_set_super_generation(super,
2127 btrfs_backup_tree_root_gen(root_backup));
2128 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2129 btrfs_set_super_root_level(super,
2130 btrfs_backup_tree_root_level(root_backup));
2131 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2132
2133 /*
2134 * fixme: the total bytes and num_devices need to match or we should
2135 * need a fsck
2136 */
2137 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2138 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2139 return 0;
2140}
2141
7abadb64
LB
2142/* helper to cleanup workers */
2143static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2144{
dc6e3209 2145 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2146 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2147 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2148 btrfs_destroy_workqueue(fs_info->endio_workers);
2149 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2150 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2151 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2152 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2153 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2154 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2155 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2156 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2157 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2158 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2159 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2160 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2161 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2162 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2163}
2164
2e9f5954
R
2165static void free_root_extent_buffers(struct btrfs_root *root)
2166{
2167 if (root) {
2168 free_extent_buffer(root->node);
2169 free_extent_buffer(root->commit_root);
2170 root->node = NULL;
2171 root->commit_root = NULL;
2172 }
2173}
2174
af31f5e5
CM
2175/* helper to cleanup tree roots */
2176static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2177{
2e9f5954 2178 free_root_extent_buffers(info->tree_root);
655b09fe 2179
2e9f5954
R
2180 free_root_extent_buffers(info->dev_root);
2181 free_root_extent_buffers(info->extent_root);
2182 free_root_extent_buffers(info->csum_root);
2183 free_root_extent_buffers(info->quota_root);
2184 free_root_extent_buffers(info->uuid_root);
2185 if (chunk_root)
2186 free_root_extent_buffers(info->chunk_root);
70f6d82e 2187 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2188}
2189
faa2dbf0 2190void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2191{
2192 int ret;
2193 struct btrfs_root *gang[8];
2194 int i;
2195
2196 while (!list_empty(&fs_info->dead_roots)) {
2197 gang[0] = list_entry(fs_info->dead_roots.next,
2198 struct btrfs_root, root_list);
2199 list_del(&gang[0]->root_list);
2200
27cdeb70 2201 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2202 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2203 } else {
2204 free_extent_buffer(gang[0]->node);
2205 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2206 btrfs_put_fs_root(gang[0]);
171f6537
JB
2207 }
2208 }
2209
2210 while (1) {
2211 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2212 (void **)gang, 0,
2213 ARRAY_SIZE(gang));
2214 if (!ret)
2215 break;
2216 for (i = 0; i < ret; i++)
cb517eab 2217 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2218 }
1a4319cc
LB
2219
2220 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2221 btrfs_free_log_root_tree(NULL, fs_info);
2222 btrfs_destroy_pinned_extent(fs_info->tree_root,
2223 fs_info->pinned_extents);
2224 }
171f6537 2225}
af31f5e5 2226
638aa7ed
ES
2227static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2228{
2229 mutex_init(&fs_info->scrub_lock);
2230 atomic_set(&fs_info->scrubs_running, 0);
2231 atomic_set(&fs_info->scrub_pause_req, 0);
2232 atomic_set(&fs_info->scrubs_paused, 0);
2233 atomic_set(&fs_info->scrub_cancel_req, 0);
2234 init_waitqueue_head(&fs_info->scrub_pause_wait);
2235 fs_info->scrub_workers_refcnt = 0;
2236}
2237
779a65a4
ES
2238static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2239{
2240 spin_lock_init(&fs_info->balance_lock);
2241 mutex_init(&fs_info->balance_mutex);
2242 atomic_set(&fs_info->balance_running, 0);
2243 atomic_set(&fs_info->balance_pause_req, 0);
2244 atomic_set(&fs_info->balance_cancel_req, 0);
2245 fs_info->balance_ctl = NULL;
2246 init_waitqueue_head(&fs_info->balance_wait_q);
2247}
2248
f37938e0
ES
2249static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2250 struct btrfs_root *tree_root)
2251{
2252 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2253 set_nlink(fs_info->btree_inode, 1);
2254 /*
2255 * we set the i_size on the btree inode to the max possible int.
2256 * the real end of the address space is determined by all of
2257 * the devices in the system
2258 */
2259 fs_info->btree_inode->i_size = OFFSET_MAX;
2260 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2261
2262 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2263 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2264 fs_info->btree_inode->i_mapping);
2265 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2266 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2267
2268 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2269
2270 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2271 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2272 sizeof(struct btrfs_key));
2273 set_bit(BTRFS_INODE_DUMMY,
2274 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2275 btrfs_insert_inode_hash(fs_info->btree_inode);
2276}
2277
ad618368
ES
2278static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2279{
2280 fs_info->dev_replace.lock_owner = 0;
2281 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2282 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2283 rwlock_init(&fs_info->dev_replace.lock);
2284 atomic_set(&fs_info->dev_replace.read_locks, 0);
2285 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2286 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2287 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2288}
2289
f9e92e40
ES
2290static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2291{
2292 spin_lock_init(&fs_info->qgroup_lock);
2293 mutex_init(&fs_info->qgroup_ioctl_lock);
2294 fs_info->qgroup_tree = RB_ROOT;
2295 fs_info->qgroup_op_tree = RB_ROOT;
2296 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2297 fs_info->qgroup_seq = 1;
2298 fs_info->quota_enabled = 0;
2299 fs_info->pending_quota_state = 0;
2300 fs_info->qgroup_ulist = NULL;
2301 mutex_init(&fs_info->qgroup_rescan_lock);
2302}
2303
2a458198
ES
2304static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2305 struct btrfs_fs_devices *fs_devices)
2306{
2307 int max_active = fs_info->thread_pool_size;
6f011058 2308 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2309
2310 fs_info->workers =
2311 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2312 max_active, 16);
2313
2314 fs_info->delalloc_workers =
2315 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2316
2317 fs_info->flush_workers =
2318 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2319
2320 fs_info->caching_workers =
2321 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2322
2323 /*
2324 * a higher idle thresh on the submit workers makes it much more
2325 * likely that bios will be send down in a sane order to the
2326 * devices
2327 */
2328 fs_info->submit_workers =
2329 btrfs_alloc_workqueue("submit", flags,
2330 min_t(u64, fs_devices->num_devices,
2331 max_active), 64);
2332
2333 fs_info->fixup_workers =
2334 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2335
2336 /*
2337 * endios are largely parallel and should have a very
2338 * low idle thresh
2339 */
2340 fs_info->endio_workers =
2341 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2342 fs_info->endio_meta_workers =
2343 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2344 fs_info->endio_meta_write_workers =
2345 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2346 fs_info->endio_raid56_workers =
2347 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2348 fs_info->endio_repair_workers =
2349 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2350 fs_info->rmw_workers =
2351 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2352 fs_info->endio_write_workers =
2353 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2354 fs_info->endio_freespace_worker =
2355 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2356 fs_info->delayed_workers =
2357 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2358 fs_info->readahead_workers =
2359 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2360 fs_info->qgroup_rescan_workers =
2361 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2362 fs_info->extent_workers =
2363 btrfs_alloc_workqueue("extent-refs", flags,
2364 min_t(u64, fs_devices->num_devices,
2365 max_active), 8);
2366
2367 if (!(fs_info->workers && fs_info->delalloc_workers &&
2368 fs_info->submit_workers && fs_info->flush_workers &&
2369 fs_info->endio_workers && fs_info->endio_meta_workers &&
2370 fs_info->endio_meta_write_workers &&
2371 fs_info->endio_repair_workers &&
2372 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2373 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2374 fs_info->caching_workers && fs_info->readahead_workers &&
2375 fs_info->fixup_workers && fs_info->delayed_workers &&
2376 fs_info->extent_workers &&
2377 fs_info->qgroup_rescan_workers)) {
2378 return -ENOMEM;
2379 }
2380
2381 return 0;
2382}
2383
63443bf5
ES
2384static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2385 struct btrfs_fs_devices *fs_devices)
2386{
2387 int ret;
2388 struct btrfs_root *tree_root = fs_info->tree_root;
2389 struct btrfs_root *log_tree_root;
2390 struct btrfs_super_block *disk_super = fs_info->super_copy;
2391 u64 bytenr = btrfs_super_log_root(disk_super);
2392
2393 if (fs_devices->rw_devices == 0) {
f14d104d 2394 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2395 return -EIO;
2396 }
2397
74e4d827 2398 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2399 if (!log_tree_root)
2400 return -ENOMEM;
2401
2402 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2403 tree_root->stripesize, log_tree_root, fs_info,
2404 BTRFS_TREE_LOG_OBJECTID);
2405
2406 log_tree_root->node = read_tree_block(tree_root, bytenr,
2407 fs_info->generation + 1);
64c043de 2408 if (IS_ERR(log_tree_root->node)) {
f14d104d 2409 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2410 ret = PTR_ERR(log_tree_root->node);
64c043de 2411 kfree(log_tree_root);
0eeff236 2412 return ret;
64c043de 2413 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2414 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2415 free_extent_buffer(log_tree_root->node);
2416 kfree(log_tree_root);
2417 return -EIO;
2418 }
2419 /* returns with log_tree_root freed on success */
2420 ret = btrfs_recover_log_trees(log_tree_root);
2421 if (ret) {
a4553fef 2422 btrfs_std_error(tree_root->fs_info, ret,
63443bf5
ES
2423 "Failed to recover log tree");
2424 free_extent_buffer(log_tree_root->node);
2425 kfree(log_tree_root);
2426 return ret;
2427 }
2428
2429 if (fs_info->sb->s_flags & MS_RDONLY) {
2430 ret = btrfs_commit_super(tree_root);
2431 if (ret)
2432 return ret;
2433 }
2434
2435 return 0;
2436}
2437
4bbcaa64
ES
2438static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2439 struct btrfs_root *tree_root)
2440{
a4f3d2c4 2441 struct btrfs_root *root;
4bbcaa64
ES
2442 struct btrfs_key location;
2443 int ret;
2444
2445 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2446 location.type = BTRFS_ROOT_ITEM_KEY;
2447 location.offset = 0;
2448
a4f3d2c4
DS
2449 root = btrfs_read_tree_root(tree_root, &location);
2450 if (IS_ERR(root))
2451 return PTR_ERR(root);
2452 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2453 fs_info->extent_root = root;
4bbcaa64
ES
2454
2455 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2456 root = btrfs_read_tree_root(tree_root, &location);
2457 if (IS_ERR(root))
2458 return PTR_ERR(root);
2459 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2460 fs_info->dev_root = root;
4bbcaa64
ES
2461 btrfs_init_devices_late(fs_info);
2462
2463 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2464 root = btrfs_read_tree_root(tree_root, &location);
2465 if (IS_ERR(root))
2466 return PTR_ERR(root);
2467 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2468 fs_info->csum_root = root;
4bbcaa64
ES
2469
2470 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2471 root = btrfs_read_tree_root(tree_root, &location);
2472 if (!IS_ERR(root)) {
2473 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2474 fs_info->quota_enabled = 1;
2475 fs_info->pending_quota_state = 1;
a4f3d2c4 2476 fs_info->quota_root = root;
4bbcaa64
ES
2477 }
2478
2479 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2480 root = btrfs_read_tree_root(tree_root, &location);
2481 if (IS_ERR(root)) {
2482 ret = PTR_ERR(root);
4bbcaa64
ES
2483 if (ret != -ENOENT)
2484 return ret;
2485 } else {
a4f3d2c4
DS
2486 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2487 fs_info->uuid_root = root;
4bbcaa64
ES
2488 }
2489
70f6d82e
OS
2490 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2491 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2492 root = btrfs_read_tree_root(tree_root, &location);
2493 if (IS_ERR(root))
2494 return PTR_ERR(root);
2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496 fs_info->free_space_root = root;
2497 }
2498
4bbcaa64
ES
2499 return 0;
2500}
2501
ad2b2c80
AV
2502int open_ctree(struct super_block *sb,
2503 struct btrfs_fs_devices *fs_devices,
2504 char *options)
2e635a27 2505{
db94535d
CM
2506 u32 sectorsize;
2507 u32 nodesize;
87ee04eb 2508 u32 stripesize;
84234f3a 2509 u64 generation;
f2b636e8 2510 u64 features;
3de4586c 2511 struct btrfs_key location;
a061fc8d 2512 struct buffer_head *bh;
4d34b278 2513 struct btrfs_super_block *disk_super;
815745cf 2514 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2515 struct btrfs_root *tree_root;
4d34b278 2516 struct btrfs_root *chunk_root;
eb60ceac 2517 int ret;
e58ca020 2518 int err = -EINVAL;
af31f5e5
CM
2519 int num_backups_tried = 0;
2520 int backup_index = 0;
5cdc7ad3 2521 int max_active;
4543df7e 2522
74e4d827
DS
2523 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2524 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2525 if (!tree_root || !chunk_root) {
39279cc3
CM
2526 err = -ENOMEM;
2527 goto fail;
2528 }
76dda93c
YZ
2529
2530 ret = init_srcu_struct(&fs_info->subvol_srcu);
2531 if (ret) {
2532 err = ret;
2533 goto fail;
2534 }
2535
2536 ret = setup_bdi(fs_info, &fs_info->bdi);
2537 if (ret) {
2538 err = ret;
2539 goto fail_srcu;
2540 }
2541
908c7f19 2542 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2543 if (ret) {
2544 err = ret;
2545 goto fail_bdi;
2546 }
2547 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2548 (1 + ilog2(nr_cpu_ids));
2549
908c7f19 2550 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2551 if (ret) {
2552 err = ret;
2553 goto fail_dirty_metadata_bytes;
2554 }
2555
908c7f19 2556 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2557 if (ret) {
2558 err = ret;
2559 goto fail_delalloc_bytes;
2560 }
2561
76dda93c
YZ
2562 fs_info->btree_inode = new_inode(sb);
2563 if (!fs_info->btree_inode) {
2564 err = -ENOMEM;
c404e0dc 2565 goto fail_bio_counter;
76dda93c
YZ
2566 }
2567
a6591715 2568 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2569
76dda93c 2570 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2571 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2572 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2573 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2574 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2575 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2576 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2577 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2578 spin_lock_init(&fs_info->trans_lock);
76dda93c 2579 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2580 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2581 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2582 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2583 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2584 spin_lock_init(&fs_info->super_lock);
fcebe456 2585 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2586 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2587 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2588 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2589 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2590 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2591 mutex_init(&fs_info->reloc_mutex);
573bfb72 2592 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2593 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2594 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2595
0b86a832 2596 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2597 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2598 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2599 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2600 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2601 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2602 BTRFS_BLOCK_RSV_GLOBAL);
2603 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2604 BTRFS_BLOCK_RSV_DELALLOC);
2605 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2606 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2607 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2608 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2609 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2610 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2611 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2612 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2613 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2614 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2615 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2616 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2617 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2618 fs_info->sb = sb;
95ac567a 2619 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2620 fs_info->metadata_ratio = 0;
4cb5300b 2621 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2622 fs_info->free_chunk_space = 0;
f29021b2 2623 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2624 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2625 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2626 /* readahead state */
d0164adc 2627 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2628 spin_lock_init(&fs_info->reada_lock);
c8b97818 2629
b34b086c
CM
2630 fs_info->thread_pool_size = min_t(unsigned long,
2631 num_online_cpus() + 2, 8);
0afbaf8c 2632
199c2a9c
MX
2633 INIT_LIST_HEAD(&fs_info->ordered_roots);
2634 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2635 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2636 GFP_KERNEL);
16cdcec7
MX
2637 if (!fs_info->delayed_root) {
2638 err = -ENOMEM;
2639 goto fail_iput;
2640 }
2641 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2642
638aa7ed 2643 btrfs_init_scrub(fs_info);
21adbd5c
SB
2644#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2645 fs_info->check_integrity_print_mask = 0;
2646#endif
779a65a4 2647 btrfs_init_balance(fs_info);
21c7e756 2648 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2649
a061fc8d
CM
2650 sb->s_blocksize = 4096;
2651 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2652 sb->s_bdi = &fs_info->bdi;
a061fc8d 2653
f37938e0 2654 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2655
0f9dd46c 2656 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2657 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2658 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2659
11833d66 2660 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2661 fs_info->btree_inode->i_mapping);
11833d66 2662 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2663 fs_info->btree_inode->i_mapping);
11833d66 2664 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2665 fs_info->do_barriers = 1;
e18e4809 2666
39279cc3 2667
5a3f23d5 2668 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2669 mutex_init(&fs_info->tree_log_mutex);
925baedd 2670 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2671 mutex_init(&fs_info->transaction_kthread_mutex);
2672 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2673 mutex_init(&fs_info->volume_mutex);
1bbc621e 2674 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2675 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2676 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2677 init_rwsem(&fs_info->subvol_sem);
803b2f54 2678 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2679
ad618368 2680 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2681 btrfs_init_qgroup(fs_info);
416ac51d 2682
fa9c0d79
CM
2683 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2684 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2685
e6dcd2dc 2686 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2687 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2688 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2689 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2690
04216820
FM
2691 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2692
53b381b3
DW
2693 ret = btrfs_alloc_stripe_hash_table(fs_info);
2694 if (ret) {
83c8266a 2695 err = ret;
53b381b3
DW
2696 goto fail_alloc;
2697 }
2698
707e8a07 2699 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2700 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2701
3c4bb26b 2702 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2703
2704 /*
2705 * Read super block and check the signature bytes only
2706 */
a512bbf8 2707 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2708 if (IS_ERR(bh)) {
2709 err = PTR_ERR(bh);
16cdcec7 2710 goto fail_alloc;
20b45077 2711 }
39279cc3 2712
1104a885
DS
2713 /*
2714 * We want to check superblock checksum, the type is stored inside.
2715 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2716 */
2717 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2718 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885 2719 err = -EINVAL;
b2acdddf 2720 brelse(bh);
1104a885
DS
2721 goto fail_alloc;
2722 }
2723
2724 /*
2725 * super_copy is zeroed at allocation time and we never touch the
2726 * following bytes up to INFO_SIZE, the checksum is calculated from
2727 * the whole block of INFO_SIZE
2728 */
6c41761f
DS
2729 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2730 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2731 sizeof(*fs_info->super_for_commit));
a061fc8d 2732 brelse(bh);
5f39d397 2733
6c41761f 2734 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2735
1104a885
DS
2736 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2737 if (ret) {
efe120a0 2738 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2739 err = -EINVAL;
2740 goto fail_alloc;
2741 }
2742
6c41761f 2743 disk_super = fs_info->super_copy;
0f7d52f4 2744 if (!btrfs_super_root(disk_super))
16cdcec7 2745 goto fail_alloc;
0f7d52f4 2746
acce952b 2747 /* check FS state, whether FS is broken. */
87533c47
MX
2748 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2749 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2750
af31f5e5
CM
2751 /*
2752 * run through our array of backup supers and setup
2753 * our ring pointer to the oldest one
2754 */
2755 generation = btrfs_super_generation(disk_super);
2756 find_oldest_super_backup(fs_info, generation);
2757
75e7cb7f
LB
2758 /*
2759 * In the long term, we'll store the compression type in the super
2760 * block, and it'll be used for per file compression control.
2761 */
2762 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2763
96da0919 2764 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2b82032c
YZ
2765 if (ret) {
2766 err = ret;
16cdcec7 2767 goto fail_alloc;
2b82032c 2768 }
dfe25020 2769
f2b636e8
JB
2770 features = btrfs_super_incompat_flags(disk_super) &
2771 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2772 if (features) {
2773 printk(KERN_ERR "BTRFS: couldn't mount because of "
2774 "unsupported optional features (%Lx).\n",
c1c9ff7c 2775 features);
f2b636e8 2776 err = -EINVAL;
16cdcec7 2777 goto fail_alloc;
f2b636e8
JB
2778 }
2779
5d4f98a2 2780 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2781 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2782 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2783 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2784
3173a18f 2785 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2786 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2787
727011e0
CM
2788 /*
2789 * flag our filesystem as having big metadata blocks if
2790 * they are bigger than the page size
2791 */
707e8a07 2792 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2793 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2794 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2795 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2796 }
2797
bc3f116f 2798 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2799 sectorsize = btrfs_super_sectorsize(disk_super);
2800 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2801 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2802 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2803
2804 /*
2805 * mixed block groups end up with duplicate but slightly offset
2806 * extent buffers for the same range. It leads to corruptions
2807 */
2808 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2809 (sectorsize != nodesize)) {
aa8ee312 2810 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2811 "are not allowed for mixed block groups on %s\n",
2812 sb->s_id);
2813 goto fail_alloc;
2814 }
2815
ceda0864
MX
2816 /*
2817 * Needn't use the lock because there is no other task which will
2818 * update the flag.
2819 */
a6fa6fae 2820 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2821
f2b636e8
JB
2822 features = btrfs_super_compat_ro_flags(disk_super) &
2823 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2824 if (!(sb->s_flags & MS_RDONLY) && features) {
2825 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2826 "unsupported option features (%Lx).\n",
c1c9ff7c 2827 features);
f2b636e8 2828 err = -EINVAL;
16cdcec7 2829 goto fail_alloc;
f2b636e8 2830 }
61d92c32 2831
5cdc7ad3 2832 max_active = fs_info->thread_pool_size;
61d92c32 2833
2a458198
ES
2834 ret = btrfs_init_workqueues(fs_info, fs_devices);
2835 if (ret) {
2836 err = ret;
0dc3b84a
JB
2837 goto fail_sb_buffer;
2838 }
4543df7e 2839
4575c9cc 2840 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2841 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
ee22184b 2842 SZ_4M / PAGE_CACHE_SIZE);
4575c9cc 2843
db94535d 2844 tree_root->nodesize = nodesize;
db94535d 2845 tree_root->sectorsize = sectorsize;
87ee04eb 2846 tree_root->stripesize = stripesize;
a061fc8d
CM
2847
2848 sb->s_blocksize = sectorsize;
2849 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2850
925baedd 2851 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2852 ret = btrfs_read_sys_array(tree_root);
925baedd 2853 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2854 if (ret) {
aa8ee312 2855 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2856 "array on %s\n", sb->s_id);
5d4f98a2 2857 goto fail_sb_buffer;
84eed90f 2858 }
0b86a832 2859
84234f3a 2860 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2861
707e8a07
DS
2862 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2863 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2864
2865 chunk_root->node = read_tree_block(chunk_root,
2866 btrfs_super_chunk_root(disk_super),
ce86cd59 2867 generation);
64c043de
LB
2868 if (IS_ERR(chunk_root->node) ||
2869 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2870 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2871 sb->s_id);
e5fffbac 2872 if (!IS_ERR(chunk_root->node))
2873 free_extent_buffer(chunk_root->node);
95ab1f64 2874 chunk_root->node = NULL;
af31f5e5 2875 goto fail_tree_roots;
83121942 2876 }
5d4f98a2
YZ
2877 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2878 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2879
e17cade2 2880 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2881 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2882
0b86a832 2883 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2884 if (ret) {
aa8ee312 2885 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2886 sb->s_id);
af31f5e5 2887 goto fail_tree_roots;
2b82032c 2888 }
0b86a832 2889
8dabb742
SB
2890 /*
2891 * keep the device that is marked to be the target device for the
2892 * dev_replace procedure
2893 */
9eaed21e 2894 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2895
a6b0d5c8 2896 if (!fs_devices->latest_bdev) {
aa8ee312 2897 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2898 sb->s_id);
2899 goto fail_tree_roots;
2900 }
2901
af31f5e5 2902retry_root_backup:
84234f3a 2903 generation = btrfs_super_generation(disk_super);
0b86a832 2904
e20d96d6 2905 tree_root->node = read_tree_block(tree_root,
db94535d 2906 btrfs_super_root(disk_super),
ce86cd59 2907 generation);
64c043de
LB
2908 if (IS_ERR(tree_root->node) ||
2909 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2910 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2911 sb->s_id);
e5fffbac 2912 if (!IS_ERR(tree_root->node))
2913 free_extent_buffer(tree_root->node);
95ab1f64 2914 tree_root->node = NULL;
af31f5e5 2915 goto recovery_tree_root;
83121942 2916 }
af31f5e5 2917
5d4f98a2
YZ
2918 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2919 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2920 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2921
f32e48e9
CR
2922 mutex_lock(&tree_root->objectid_mutex);
2923 ret = btrfs_find_highest_objectid(tree_root,
2924 &tree_root->highest_objectid);
2925 if (ret) {
2926 mutex_unlock(&tree_root->objectid_mutex);
2927 goto recovery_tree_root;
2928 }
2929
2930 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2931
2932 mutex_unlock(&tree_root->objectid_mutex);
2933
4bbcaa64
ES
2934 ret = btrfs_read_roots(fs_info, tree_root);
2935 if (ret)
af31f5e5 2936 goto recovery_tree_root;
f7a81ea4 2937
8929ecfa
YZ
2938 fs_info->generation = generation;
2939 fs_info->last_trans_committed = generation;
8929ecfa 2940
68310a5e
ID
2941 ret = btrfs_recover_balance(fs_info);
2942 if (ret) {
aa8ee312 2943 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2944 goto fail_block_groups;
2945 }
2946
733f4fbb
SB
2947 ret = btrfs_init_dev_stats(fs_info);
2948 if (ret) {
efe120a0 2949 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2950 ret);
2951 goto fail_block_groups;
2952 }
2953
8dabb742
SB
2954 ret = btrfs_init_dev_replace(fs_info);
2955 if (ret) {
efe120a0 2956 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2957 goto fail_block_groups;
2958 }
2959
9eaed21e 2960 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2961
b7c35e81
AJ
2962 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2963 if (ret) {
2964 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2965 goto fail_block_groups;
2966 }
2967
2968 ret = btrfs_sysfs_add_device(fs_devices);
2969 if (ret) {
2970 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2971 goto fail_fsdev_sysfs;
2972 }
2973
96f3136e 2974 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2975 if (ret) {
efe120a0 2976 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2977 goto fail_fsdev_sysfs;
c59021f8 2978 }
2979
c59021f8 2980 ret = btrfs_init_space_info(fs_info);
2981 if (ret) {
efe120a0 2982 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2983 goto fail_sysfs;
c59021f8 2984 }
2985
4bbcaa64 2986 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2987 if (ret) {
efe120a0 2988 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2989 goto fail_sysfs;
1b1d1f66 2990 }
5af3e8cc
SB
2991 fs_info->num_tolerated_disk_barrier_failures =
2992 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2993 if (fs_info->fs_devices->missing_devices >
2994 fs_info->num_tolerated_disk_barrier_failures &&
2995 !(sb->s_flags & MS_RDONLY)) {
78fa1770
ZL
2996 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2997 fs_info->fs_devices->missing_devices,
2998 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 2999 goto fail_sysfs;
292fd7fc 3000 }
9078a3e1 3001
a74a4b97
CM
3002 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3003 "btrfs-cleaner");
57506d50 3004 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3005 goto fail_sysfs;
a74a4b97
CM
3006
3007 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3008 tree_root,
3009 "btrfs-transaction");
57506d50 3010 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3011 goto fail_cleaner;
a74a4b97 3012
c289811c
CM
3013 if (!btrfs_test_opt(tree_root, SSD) &&
3014 !btrfs_test_opt(tree_root, NOSSD) &&
3015 !fs_info->fs_devices->rotating) {
efe120a0 3016 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
3017 "mode\n");
3018 btrfs_set_opt(fs_info->mount_opt, SSD);
3019 }
3020
572d9ab7
DS
3021 /*
3022 * Mount does not set all options immediatelly, we can do it now and do
3023 * not have to wait for transaction commit
3024 */
3025 btrfs_apply_pending_changes(fs_info);
3818aea2 3026
21adbd5c
SB
3027#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3028 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3029 ret = btrfsic_mount(tree_root, fs_devices,
3030 btrfs_test_opt(tree_root,
3031 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3032 1 : 0,
3033 fs_info->check_integrity_print_mask);
3034 if (ret)
efe120a0 3035 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
3036 " integrity check module %s\n", sb->s_id);
3037 }
3038#endif
bcef60f2
AJ
3039 ret = btrfs_read_qgroup_config(fs_info);
3040 if (ret)
3041 goto fail_trans_kthread;
21adbd5c 3042
96da0919
QW
3043 /* do not make disk changes in broken FS or nologreplay is given */
3044 if (btrfs_super_log_root(disk_super) != 0 &&
3045 !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
63443bf5 3046 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3047 if (ret) {
63443bf5 3048 err = ret;
28c16cbb 3049 goto fail_qgroup;
79787eaa 3050 }
e02119d5 3051 }
1a40e23b 3052
76dda93c 3053 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3054 if (ret)
28c16cbb 3055 goto fail_qgroup;
76dda93c 3056
7c2ca468 3057 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3058 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3059 if (ret)
28c16cbb 3060 goto fail_qgroup;
d68fc57b 3061
5f316481 3062 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3063 ret = btrfs_recover_relocation(tree_root);
5f316481 3064 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
3065 if (ret < 0) {
3066 printk(KERN_WARNING
efe120a0 3067 "BTRFS: failed to recover relocation\n");
d7ce5843 3068 err = -EINVAL;
bcef60f2 3069 goto fail_qgroup;
d7ce5843 3070 }
7c2ca468 3071 }
1a40e23b 3072
3de4586c
CM
3073 location.objectid = BTRFS_FS_TREE_OBJECTID;
3074 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3075 location.offset = 0;
3de4586c 3076
3de4586c 3077 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3078 if (IS_ERR(fs_info->fs_root)) {
3079 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3080 goto fail_qgroup;
3140c9a3 3081 }
c289811c 3082
2b6ba629
ID
3083 if (sb->s_flags & MS_RDONLY)
3084 return 0;
59641015 3085
511711af
CM
3086 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3087 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3088 pr_info("BTRFS: creating free space tree\n");
3089 ret = btrfs_create_free_space_tree(fs_info);
3090 if (ret) {
3091 pr_warn("BTRFS: failed to create free space tree %d\n",
3092 ret);
3093 close_ctree(tree_root);
3094 return ret;
3095 }
3096 }
3097
2b6ba629
ID
3098 down_read(&fs_info->cleanup_work_sem);
3099 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3100 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3101 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3102 close_ctree(tree_root);
3103 return ret;
3104 }
3105 up_read(&fs_info->cleanup_work_sem);
59641015 3106
2b6ba629
ID
3107 ret = btrfs_resume_balance_async(fs_info);
3108 if (ret) {
efe120a0 3109 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3110 close_ctree(tree_root);
3111 return ret;
e3acc2a6
JB
3112 }
3113
8dabb742
SB
3114 ret = btrfs_resume_dev_replace_async(fs_info);
3115 if (ret) {
efe120a0 3116 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3117 close_ctree(tree_root);
3118 return ret;
3119 }
3120
b382a324
JS
3121 btrfs_qgroup_rescan_resume(fs_info);
3122
70f6d82e
OS
3123 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3124 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3125 pr_info("BTRFS: clearing free space tree\n");
3126 ret = btrfs_clear_free_space_tree(fs_info);
3127 if (ret) {
3128 pr_warn("BTRFS: failed to clear free space tree %d\n",
3129 ret);
3130 close_ctree(tree_root);
3131 return ret;
3132 }
3133 }
3134
4bbcaa64 3135 if (!fs_info->uuid_root) {
efe120a0 3136 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3137 ret = btrfs_create_uuid_tree(fs_info);
3138 if (ret) {
efe120a0 3139 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3140 ret);
3141 close_ctree(tree_root);
3142 return ret;
3143 }
4bbcaa64
ES
3144 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3145 fs_info->generation !=
3146 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3147 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3148 ret = btrfs_check_uuid_tree(fs_info);
3149 if (ret) {
efe120a0 3150 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3151 ret);
3152 close_ctree(tree_root);
3153 return ret;
3154 }
3155 } else {
3156 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3157 }
3158
47ab2a6c
JB
3159 fs_info->open = 1;
3160
8dcddfa0
QW
3161 /*
3162 * backuproot only affect mount behavior, and if open_ctree succeeded,
3163 * no need to keep the flag
3164 */
3165 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3166
ad2b2c80 3167 return 0;
39279cc3 3168
bcef60f2
AJ
3169fail_qgroup:
3170 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3171fail_trans_kthread:
3172 kthread_stop(fs_info->transaction_kthread);
54067ae9 3173 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3174 btrfs_free_fs_roots(fs_info);
3f157a2f 3175fail_cleaner:
a74a4b97 3176 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3177
3178 /*
3179 * make sure we're done with the btree inode before we stop our
3180 * kthreads
3181 */
3182 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3183
2365dd3c 3184fail_sysfs:
6618a59b 3185 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3186
b7c35e81
AJ
3187fail_fsdev_sysfs:
3188 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3189
1b1d1f66 3190fail_block_groups:
54067ae9 3191 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3192 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3193
3194fail_tree_roots:
3195 free_root_pointers(fs_info, 1);
2b8195bb 3196 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3197
39279cc3 3198fail_sb_buffer:
7abadb64 3199 btrfs_stop_all_workers(fs_info);
16cdcec7 3200fail_alloc:
4543df7e 3201fail_iput:
586e46e2
ID
3202 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3203
4543df7e 3204 iput(fs_info->btree_inode);
c404e0dc
MX
3205fail_bio_counter:
3206 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3207fail_delalloc_bytes:
3208 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3209fail_dirty_metadata_bytes:
3210 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3211fail_bdi:
7e662854 3212 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3213fail_srcu:
3214 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3215fail:
53b381b3 3216 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3217 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3218 return err;
af31f5e5
CM
3219
3220recovery_tree_root:
8dcddfa0 3221 if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
af31f5e5
CM
3222 goto fail_tree_roots;
3223
3224 free_root_pointers(fs_info, 0);
3225
3226 /* don't use the log in recovery mode, it won't be valid */
3227 btrfs_set_super_log_root(disk_super, 0);
3228
3229 /* we can't trust the free space cache either */
3230 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3231
3232 ret = next_root_backup(fs_info, fs_info->super_copy,
3233 &num_backups_tried, &backup_index);
3234 if (ret == -1)
3235 goto fail_block_groups;
3236 goto retry_root_backup;
eb60ceac
CM
3237}
3238
f2984462
CM
3239static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3240{
f2984462
CM
3241 if (uptodate) {
3242 set_buffer_uptodate(bh);
3243 } else {
442a4f63
SB
3244 struct btrfs_device *device = (struct btrfs_device *)
3245 bh->b_private;
3246
b14af3b4
DS
3247 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3248 "lost page write due to IO error on %s",
606686ee 3249 rcu_str_deref(device->name));
1259ab75
CM
3250 /* note, we dont' set_buffer_write_io_error because we have
3251 * our own ways of dealing with the IO errors
3252 */
f2984462 3253 clear_buffer_uptodate(bh);
442a4f63 3254 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3255 }
3256 unlock_buffer(bh);
3257 put_bh(bh);
3258}
3259
29c36d72
AJ
3260int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3261 struct buffer_head **bh_ret)
3262{
3263 struct buffer_head *bh;
3264 struct btrfs_super_block *super;
3265 u64 bytenr;
3266
3267 bytenr = btrfs_sb_offset(copy_num);
3268 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3269 return -EINVAL;
3270
3271 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3272 /*
3273 * If we fail to read from the underlying devices, as of now
3274 * the best option we have is to mark it EIO.
3275 */
3276 if (!bh)
3277 return -EIO;
3278
3279 super = (struct btrfs_super_block *)bh->b_data;
3280 if (btrfs_super_bytenr(super) != bytenr ||
3281 btrfs_super_magic(super) != BTRFS_MAGIC) {
3282 brelse(bh);
3283 return -EINVAL;
3284 }
3285
3286 *bh_ret = bh;
3287 return 0;
3288}
3289
3290
a512bbf8
YZ
3291struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3292{
3293 struct buffer_head *bh;
3294 struct buffer_head *latest = NULL;
3295 struct btrfs_super_block *super;
3296 int i;
3297 u64 transid = 0;
92fc03fb 3298 int ret = -EINVAL;
a512bbf8
YZ
3299
3300 /* we would like to check all the supers, but that would make
3301 * a btrfs mount succeed after a mkfs from a different FS.
3302 * So, we need to add a special mount option to scan for
3303 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3304 */
3305 for (i = 0; i < 1; i++) {
29c36d72
AJ
3306 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3307 if (ret)
a512bbf8
YZ
3308 continue;
3309
3310 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3311
3312 if (!latest || btrfs_super_generation(super) > transid) {
3313 brelse(latest);
3314 latest = bh;
3315 transid = btrfs_super_generation(super);
3316 } else {
3317 brelse(bh);
3318 }
3319 }
92fc03fb
AJ
3320
3321 if (!latest)
3322 return ERR_PTR(ret);
3323
a512bbf8
YZ
3324 return latest;
3325}
3326
4eedeb75
HH
3327/*
3328 * this should be called twice, once with wait == 0 and
3329 * once with wait == 1. When wait == 0 is done, all the buffer heads
3330 * we write are pinned.
3331 *
3332 * They are released when wait == 1 is done.
3333 * max_mirrors must be the same for both runs, and it indicates how
3334 * many supers on this one device should be written.
3335 *
3336 * max_mirrors == 0 means to write them all.
3337 */
a512bbf8
YZ
3338static int write_dev_supers(struct btrfs_device *device,
3339 struct btrfs_super_block *sb,
3340 int do_barriers, int wait, int max_mirrors)
3341{
3342 struct buffer_head *bh;
3343 int i;
3344 int ret;
3345 int errors = 0;
3346 u32 crc;
3347 u64 bytenr;
a512bbf8
YZ
3348
3349 if (max_mirrors == 0)
3350 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3351
a512bbf8
YZ
3352 for (i = 0; i < max_mirrors; i++) {
3353 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3354 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3355 device->commit_total_bytes)
a512bbf8
YZ
3356 break;
3357
3358 if (wait) {
3359 bh = __find_get_block(device->bdev, bytenr / 4096,
3360 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3361 if (!bh) {
3362 errors++;
3363 continue;
3364 }
a512bbf8 3365 wait_on_buffer(bh);
4eedeb75
HH
3366 if (!buffer_uptodate(bh))
3367 errors++;
3368
3369 /* drop our reference */
3370 brelse(bh);
3371
3372 /* drop the reference from the wait == 0 run */
3373 brelse(bh);
3374 continue;
a512bbf8
YZ
3375 } else {
3376 btrfs_set_super_bytenr(sb, bytenr);
3377
3378 crc = ~(u32)0;
b0496686 3379 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3380 BTRFS_CSUM_SIZE, crc,
3381 BTRFS_SUPER_INFO_SIZE -
3382 BTRFS_CSUM_SIZE);
3383 btrfs_csum_final(crc, sb->csum);
3384
4eedeb75
HH
3385 /*
3386 * one reference for us, and we leave it for the
3387 * caller
3388 */
a512bbf8
YZ
3389 bh = __getblk(device->bdev, bytenr / 4096,
3390 BTRFS_SUPER_INFO_SIZE);
634554dc 3391 if (!bh) {
f14d104d
DS
3392 btrfs_err(device->dev_root->fs_info,
3393 "couldn't get super buffer head for bytenr %llu",
3394 bytenr);
634554dc
JB
3395 errors++;
3396 continue;
3397 }
3398
a512bbf8
YZ
3399 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3400
4eedeb75 3401 /* one reference for submit_bh */
a512bbf8 3402 get_bh(bh);
4eedeb75
HH
3403
3404 set_buffer_uptodate(bh);
a512bbf8
YZ
3405 lock_buffer(bh);
3406 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3407 bh->b_private = device;
a512bbf8
YZ
3408 }
3409
387125fc
CM
3410 /*
3411 * we fua the first super. The others we allow
3412 * to go down lazy.
3413 */
e8117c26
WS
3414 if (i == 0)
3415 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3416 else
3417 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3418 if (ret)
a512bbf8 3419 errors++;
a512bbf8
YZ
3420 }
3421 return errors < i ? 0 : -1;
3422}
3423
387125fc
CM
3424/*
3425 * endio for the write_dev_flush, this will wake anyone waiting
3426 * for the barrier when it is done
3427 */
4246a0b6 3428static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3429{
387125fc
CM
3430 if (bio->bi_private)
3431 complete(bio->bi_private);
3432 bio_put(bio);
3433}
3434
3435/*
3436 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3437 * sent down. With wait == 1, it waits for the previous flush.
3438 *
3439 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3440 * capable
3441 */
3442static int write_dev_flush(struct btrfs_device *device, int wait)
3443{
3444 struct bio *bio;
3445 int ret = 0;
3446
3447 if (device->nobarriers)
3448 return 0;
3449
3450 if (wait) {
3451 bio = device->flush_bio;
3452 if (!bio)
3453 return 0;
3454
3455 wait_for_completion(&device->flush_wait);
3456
4246a0b6
CH
3457 if (bio->bi_error) {
3458 ret = bio->bi_error;
5af3e8cc
SB
3459 btrfs_dev_stat_inc_and_print(device,
3460 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3461 }
3462
3463 /* drop the reference from the wait == 0 run */
3464 bio_put(bio);
3465 device->flush_bio = NULL;
3466
3467 return ret;
3468 }
3469
3470 /*
3471 * one reference for us, and we leave it for the
3472 * caller
3473 */
9c017abc 3474 device->flush_bio = NULL;
9be3395b 3475 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3476 if (!bio)
3477 return -ENOMEM;
3478
3479 bio->bi_end_io = btrfs_end_empty_barrier;
3480 bio->bi_bdev = device->bdev;
3481 init_completion(&device->flush_wait);
3482 bio->bi_private = &device->flush_wait;
3483 device->flush_bio = bio;
3484
3485 bio_get(bio);
21adbd5c 3486 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3487
3488 return 0;
3489}
3490
3491/*
3492 * send an empty flush down to each device in parallel,
3493 * then wait for them
3494 */
3495static int barrier_all_devices(struct btrfs_fs_info *info)
3496{
3497 struct list_head *head;
3498 struct btrfs_device *dev;
5af3e8cc
SB
3499 int errors_send = 0;
3500 int errors_wait = 0;
387125fc
CM
3501 int ret;
3502
3503 /* send down all the barriers */
3504 head = &info->fs_devices->devices;
3505 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3506 if (dev->missing)
3507 continue;
387125fc 3508 if (!dev->bdev) {
5af3e8cc 3509 errors_send++;
387125fc
CM
3510 continue;
3511 }
3512 if (!dev->in_fs_metadata || !dev->writeable)
3513 continue;
3514
3515 ret = write_dev_flush(dev, 0);
3516 if (ret)
5af3e8cc 3517 errors_send++;
387125fc
CM
3518 }
3519
3520 /* wait for all the barriers */
3521 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3522 if (dev->missing)
3523 continue;
387125fc 3524 if (!dev->bdev) {
5af3e8cc 3525 errors_wait++;
387125fc
CM
3526 continue;
3527 }
3528 if (!dev->in_fs_metadata || !dev->writeable)
3529 continue;
3530
3531 ret = write_dev_flush(dev, 1);
3532 if (ret)
5af3e8cc 3533 errors_wait++;
387125fc 3534 }
5af3e8cc
SB
3535 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3536 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3537 return -EIO;
3538 return 0;
3539}
3540
943c6e99
ZL
3541int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3542{
8789f4fe
ZL
3543 int raid_type;
3544 int min_tolerated = INT_MAX;
943c6e99 3545
8789f4fe
ZL
3546 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3547 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3548 min_tolerated = min(min_tolerated,
3549 btrfs_raid_array[BTRFS_RAID_SINGLE].
3550 tolerated_failures);
943c6e99 3551
8789f4fe
ZL
3552 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3553 if (raid_type == BTRFS_RAID_SINGLE)
3554 continue;
3555 if (!(flags & btrfs_raid_group[raid_type]))
3556 continue;
3557 min_tolerated = min(min_tolerated,
3558 btrfs_raid_array[raid_type].
3559 tolerated_failures);
3560 }
943c6e99 3561
8789f4fe
ZL
3562 if (min_tolerated == INT_MAX) {
3563 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3564 min_tolerated = 0;
3565 }
3566
3567 return min_tolerated;
943c6e99
ZL
3568}
3569
5af3e8cc
SB
3570int btrfs_calc_num_tolerated_disk_barrier_failures(
3571 struct btrfs_fs_info *fs_info)
3572{
3573 struct btrfs_ioctl_space_info space;
3574 struct btrfs_space_info *sinfo;
3575 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3576 BTRFS_BLOCK_GROUP_SYSTEM,
3577 BTRFS_BLOCK_GROUP_METADATA,
3578 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3579 int i;
3580 int c;
3581 int num_tolerated_disk_barrier_failures =
3582 (int)fs_info->fs_devices->num_devices;
3583
2c458045 3584 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3585 struct btrfs_space_info *tmp;
3586
3587 sinfo = NULL;
3588 rcu_read_lock();
3589 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3590 if (tmp->flags == types[i]) {
3591 sinfo = tmp;
3592 break;
3593 }
3594 }
3595 rcu_read_unlock();
3596
3597 if (!sinfo)
3598 continue;
3599
3600 down_read(&sinfo->groups_sem);
3601 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3602 u64 flags;
3603
3604 if (list_empty(&sinfo->block_groups[c]))
3605 continue;
3606
3607 btrfs_get_block_group_info(&sinfo->block_groups[c],
3608 &space);
3609 if (space.total_bytes == 0 || space.used_bytes == 0)
3610 continue;
3611 flags = space.flags;
943c6e99
ZL
3612
3613 num_tolerated_disk_barrier_failures = min(
3614 num_tolerated_disk_barrier_failures,
3615 btrfs_get_num_tolerated_disk_barrier_failures(
3616 flags));
5af3e8cc
SB
3617 }
3618 up_read(&sinfo->groups_sem);
3619 }
3620
3621 return num_tolerated_disk_barrier_failures;
3622}
3623
48a3b636 3624static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3625{
e5e9a520 3626 struct list_head *head;
f2984462 3627 struct btrfs_device *dev;
a061fc8d 3628 struct btrfs_super_block *sb;
f2984462 3629 struct btrfs_dev_item *dev_item;
f2984462
CM
3630 int ret;
3631 int do_barriers;
a236aed1
CM
3632 int max_errors;
3633 int total_errors = 0;
a061fc8d 3634 u64 flags;
f2984462
CM
3635
3636 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3637 backup_super_roots(root->fs_info);
f2984462 3638
6c41761f 3639 sb = root->fs_info->super_for_commit;
a061fc8d 3640 dev_item = &sb->dev_item;
e5e9a520 3641
174ba509 3642 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3643 head = &root->fs_info->fs_devices->devices;
d7306801 3644 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3645
5af3e8cc
SB
3646 if (do_barriers) {
3647 ret = barrier_all_devices(root->fs_info);
3648 if (ret) {
3649 mutex_unlock(
3650 &root->fs_info->fs_devices->device_list_mutex);
a4553fef 3651 btrfs_std_error(root->fs_info, ret,
5af3e8cc
SB
3652 "errors while submitting device barriers.");
3653 return ret;
3654 }
3655 }
387125fc 3656
1f78160c 3657 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3658 if (!dev->bdev) {
3659 total_errors++;
3660 continue;
3661 }
2b82032c 3662 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3663 continue;
3664
2b82032c 3665 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3666 btrfs_set_stack_device_type(dev_item, dev->type);
3667 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3668 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3669 dev->commit_total_bytes);
ce7213c7
MX
3670 btrfs_set_stack_device_bytes_used(dev_item,
3671 dev->commit_bytes_used);
a061fc8d
CM
3672 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3673 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3674 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3675 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3676 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3677
a061fc8d
CM
3678 flags = btrfs_super_flags(sb);
3679 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3680
a512bbf8 3681 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3682 if (ret)
3683 total_errors++;
f2984462 3684 }
a236aed1 3685 if (total_errors > max_errors) {
efe120a0 3686 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3687 total_errors);
a724b436 3688 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3689
9d565ba4 3690 /* FUA is masked off if unsupported and can't be the reason */
a4553fef 3691 btrfs_std_error(root->fs_info, -EIO,
9d565ba4
SB
3692 "%d errors while writing supers", total_errors);
3693 return -EIO;
a236aed1 3694 }
f2984462 3695
a512bbf8 3696 total_errors = 0;
1f78160c 3697 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3698 if (!dev->bdev)
3699 continue;
2b82032c 3700 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3701 continue;
3702
a512bbf8
YZ
3703 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3704 if (ret)
3705 total_errors++;
f2984462 3706 }
174ba509 3707 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3708 if (total_errors > max_errors) {
a4553fef 3709 btrfs_std_error(root->fs_info, -EIO,
79787eaa
JM
3710 "%d errors while writing supers", total_errors);
3711 return -EIO;
a236aed1 3712 }
f2984462
CM
3713 return 0;
3714}
3715
a512bbf8
YZ
3716int write_ctree_super(struct btrfs_trans_handle *trans,
3717 struct btrfs_root *root, int max_mirrors)
eb60ceac 3718{
f570e757 3719 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3720}
3721
cb517eab
MX
3722/* Drop a fs root from the radix tree and free it. */
3723void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3724 struct btrfs_root *root)
2619ba1f 3725{
4df27c4d 3726 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3727 radix_tree_delete(&fs_info->fs_roots_radix,
3728 (unsigned long)root->root_key.objectid);
4df27c4d 3729 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3730
3731 if (btrfs_root_refs(&root->root_item) == 0)
3732 synchronize_srcu(&fs_info->subvol_srcu);
3733
1a4319cc 3734 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3735 btrfs_free_log(NULL, root);
3321719e 3736
faa2dbf0
JB
3737 if (root->free_ino_pinned)
3738 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3739 if (root->free_ino_ctl)
3740 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3741 free_fs_root(root);
4df27c4d
YZ
3742}
3743
3744static void free_fs_root(struct btrfs_root *root)
3745{
57cdc8db 3746 iput(root->ino_cache_inode);
4df27c4d 3747 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3748 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3749 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3750 if (root->anon_dev)
3751 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3752 if (root->subv_writers)
3753 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3754 free_extent_buffer(root->node);
3755 free_extent_buffer(root->commit_root);
581bb050
LZ
3756 kfree(root->free_ino_ctl);
3757 kfree(root->free_ino_pinned);
d397712b 3758 kfree(root->name);
b0feb9d9 3759 btrfs_put_fs_root(root);
2619ba1f
CM
3760}
3761
cb517eab
MX
3762void btrfs_free_fs_root(struct btrfs_root *root)
3763{
3764 free_fs_root(root);
2619ba1f
CM
3765}
3766
c146afad 3767int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3768{
c146afad
YZ
3769 u64 root_objectid = 0;
3770 struct btrfs_root *gang[8];
65d33fd7
QW
3771 int i = 0;
3772 int err = 0;
3773 unsigned int ret = 0;
3774 int index;
e089f05c 3775
c146afad 3776 while (1) {
65d33fd7 3777 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3778 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3779 (void **)gang, root_objectid,
3780 ARRAY_SIZE(gang));
65d33fd7
QW
3781 if (!ret) {
3782 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3783 break;
65d33fd7 3784 }
5d4f98a2 3785 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3786
c146afad 3787 for (i = 0; i < ret; i++) {
65d33fd7
QW
3788 /* Avoid to grab roots in dead_roots */
3789 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3790 gang[i] = NULL;
3791 continue;
3792 }
3793 /* grab all the search result for later use */
3794 gang[i] = btrfs_grab_fs_root(gang[i]);
3795 }
3796 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3797
65d33fd7
QW
3798 for (i = 0; i < ret; i++) {
3799 if (!gang[i])
3800 continue;
c146afad 3801 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3802 err = btrfs_orphan_cleanup(gang[i]);
3803 if (err)
65d33fd7
QW
3804 break;
3805 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3806 }
3807 root_objectid++;
3808 }
65d33fd7
QW
3809
3810 /* release the uncleaned roots due to error */
3811 for (; i < ret; i++) {
3812 if (gang[i])
3813 btrfs_put_fs_root(gang[i]);
3814 }
3815 return err;
c146afad 3816}
a2135011 3817
c146afad
YZ
3818int btrfs_commit_super(struct btrfs_root *root)
3819{
3820 struct btrfs_trans_handle *trans;
a74a4b97 3821
c146afad 3822 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3823 btrfs_run_delayed_iputs(root);
c146afad 3824 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3825 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3826
3827 /* wait until ongoing cleanup work done */
3828 down_write(&root->fs_info->cleanup_work_sem);
3829 up_write(&root->fs_info->cleanup_work_sem);
3830
7a7eaa40 3831 trans = btrfs_join_transaction(root);
3612b495
TI
3832 if (IS_ERR(trans))
3833 return PTR_ERR(trans);
d52c1bcc 3834 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3835}
3836
3abdbd78 3837void close_ctree(struct btrfs_root *root)
c146afad
YZ
3838{
3839 struct btrfs_fs_info *fs_info = root->fs_info;
3840 int ret;
3841
3842 fs_info->closing = 1;
3843 smp_mb();
3844
7343dd61
JM
3845 /* wait for the qgroup rescan worker to stop */
3846 btrfs_qgroup_wait_for_completion(fs_info);
3847
803b2f54
SB
3848 /* wait for the uuid_scan task to finish */
3849 down(&fs_info->uuid_tree_rescan_sem);
3850 /* avoid complains from lockdep et al., set sem back to initial state */
3851 up(&fs_info->uuid_tree_rescan_sem);
3852
837d5b6e 3853 /* pause restriper - we want to resume on mount */
aa1b8cd4 3854 btrfs_pause_balance(fs_info);
837d5b6e 3855
8dabb742
SB
3856 btrfs_dev_replace_suspend_for_unmount(fs_info);
3857
aa1b8cd4 3858 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3859
3860 /* wait for any defraggers to finish */
3861 wait_event(fs_info->transaction_wait,
3862 (atomic_read(&fs_info->defrag_running) == 0));
3863
3864 /* clear out the rbtree of defraggable inodes */
26176e7c 3865 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3866
21c7e756
MX
3867 cancel_work_sync(&fs_info->async_reclaim_work);
3868
c146afad 3869 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3870 /*
3871 * If the cleaner thread is stopped and there are
3872 * block groups queued for removal, the deletion will be
3873 * skipped when we quit the cleaner thread.
3874 */
e44163e1 3875 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3876
acce952b 3877 ret = btrfs_commit_super(root);
3878 if (ret)
04892340 3879 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3880 }
3881
87533c47 3882 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3883 btrfs_error_commit_super(root);
0f7d52f4 3884
e3029d9f
AV
3885 kthread_stop(fs_info->transaction_kthread);
3886 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3887
f25784b3
YZ
3888 fs_info->closing = 2;
3889 smp_mb();
3890
04892340 3891 btrfs_free_qgroup_config(fs_info);
bcef60f2 3892
963d678b 3893 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3894 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3895 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3896 }
bcc63abb 3897
6618a59b 3898 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3899 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3900
faa2dbf0 3901 btrfs_free_fs_roots(fs_info);
d10c5f31 3902
1a4319cc
LB
3903 btrfs_put_block_group_cache(fs_info);
3904
2b1360da
JB
3905 btrfs_free_block_groups(fs_info);
3906
de348ee0
WS
3907 /*
3908 * we must make sure there is not any read request to
3909 * submit after we stopping all workers.
3910 */
3911 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3912 btrfs_stop_all_workers(fs_info);
3913
47ab2a6c 3914 fs_info->open = 0;
13e6c37b 3915 free_root_pointers(fs_info, 1);
9ad6b7bc 3916
13e6c37b 3917 iput(fs_info->btree_inode);
d6bfde87 3918
21adbd5c
SB
3919#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3920 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3921 btrfsic_unmount(root, fs_info->fs_devices);
3922#endif
3923
dfe25020 3924 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3925 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3926
e2d84521 3927 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3928 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3929 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3930 bdi_destroy(&fs_info->bdi);
76dda93c 3931 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3932
53b381b3
DW
3933 btrfs_free_stripe_hash_table(fs_info);
3934
cdfb080e 3935 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3936 root->orphan_block_rsv = NULL;
04216820
FM
3937
3938 lock_chunks(root);
3939 while (!list_empty(&fs_info->pinned_chunks)) {
3940 struct extent_map *em;
3941
3942 em = list_first_entry(&fs_info->pinned_chunks,
3943 struct extent_map, list);
3944 list_del_init(&em->list);
3945 free_extent_map(em);
3946 }
3947 unlock_chunks(root);
eb60ceac
CM
3948}
3949
b9fab919
CM
3950int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3951 int atomic)
5f39d397 3952{
1259ab75 3953 int ret;
727011e0 3954 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3955
0b32f4bb 3956 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3957 if (!ret)
3958 return ret;
3959
3960 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3961 parent_transid, atomic);
3962 if (ret == -EAGAIN)
3963 return ret;
1259ab75 3964 return !ret;
5f39d397
CM
3965}
3966
5f39d397
CM
3967void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3968{
06ea65a3 3969 struct btrfs_root *root;
5f39d397 3970 u64 transid = btrfs_header_generation(buf);
b9473439 3971 int was_dirty;
b4ce94de 3972
06ea65a3
JB
3973#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3974 /*
3975 * This is a fast path so only do this check if we have sanity tests
3976 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3977 * outside of the sanity tests.
3978 */
3979 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3980 return;
3981#endif
3982 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3983 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3984 if (transid != root->fs_info->generation)
3985 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3986 "found %llu running %llu\n",
c1c9ff7c 3987 buf->start, transid, root->fs_info->generation);
0b32f4bb 3988 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3989 if (!was_dirty)
3990 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3991 buf->len,
3992 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3993#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3994 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3995 btrfs_print_leaf(root, buf);
3996 ASSERT(0);
3997 }
3998#endif
eb60ceac
CM
3999}
4000
b53d3f5d
LB
4001static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4002 int flush_delayed)
16cdcec7
MX
4003{
4004 /*
4005 * looks as though older kernels can get into trouble with
4006 * this code, they end up stuck in balance_dirty_pages forever
4007 */
e2d84521 4008 int ret;
16cdcec7
MX
4009
4010 if (current->flags & PF_MEMALLOC)
4011 return;
4012
b53d3f5d
LB
4013 if (flush_delayed)
4014 btrfs_balance_delayed_items(root);
16cdcec7 4015
e2d84521
MX
4016 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4017 BTRFS_DIRTY_METADATA_THRESH);
4018 if (ret > 0) {
d0e1d66b
NJ
4019 balance_dirty_pages_ratelimited(
4020 root->fs_info->btree_inode->i_mapping);
16cdcec7 4021 }
16cdcec7
MX
4022}
4023
b53d3f5d 4024void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4025{
b53d3f5d
LB
4026 __btrfs_btree_balance_dirty(root, 1);
4027}
585ad2c3 4028
b53d3f5d
LB
4029void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4030{
4031 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4032}
6b80053d 4033
ca7a79ad 4034int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4035{
727011e0 4036 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 4037 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 4038}
0da5468f 4039
fcd1f065 4040static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4041 int read_only)
4042{
c926093e 4043 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4044 u64 nodesize = btrfs_super_nodesize(sb);
4045 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4046 int ret = 0;
4047
319e4d06
QW
4048 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4049 printk(KERN_ERR "BTRFS: no valid FS found\n");
4050 ret = -EINVAL;
4051 }
4052 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4053 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4054 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b
DS
4055 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4056 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4057 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4058 ret = -EINVAL;
4059 }
21e7626b
DS
4060 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4061 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4062 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4063 ret = -EINVAL;
4064 }
21e7626b
DS
4065 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4066 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4067 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4068 ret = -EINVAL;
4069 }
4070
1104a885 4071 /*
319e4d06
QW
4072 * Check sectorsize and nodesize first, other check will need it.
4073 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4074 */
319e4d06
QW
4075 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4076 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4077 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4078 ret = -EINVAL;
4079 }
4080 /* Only PAGE SIZE is supported yet */
4081 if (sectorsize != PAGE_CACHE_SIZE) {
4082 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4083 sectorsize, PAGE_CACHE_SIZE);
4084 ret = -EINVAL;
4085 }
4086 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4087 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4088 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4089 ret = -EINVAL;
4090 }
4091 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4092 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4093 le32_to_cpu(sb->__unused_leafsize),
4094 nodesize);
4095 ret = -EINVAL;
4096 }
4097
4098 /* Root alignment check */
4099 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
c926093e 4100 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4101 btrfs_super_root(sb));
319e4d06
QW
4102 ret = -EINVAL;
4103 }
4104 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
cd743fac
DS
4105 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4106 btrfs_super_chunk_root(sb));
75d6ad38
DS
4107 ret = -EINVAL;
4108 }
319e4d06
QW
4109 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4110 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4111 btrfs_super_log_root(sb));
75d6ad38
DS
4112 ret = -EINVAL;
4113 }
4114
c926093e
DS
4115 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4116 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4117 fs_info->fsid, sb->dev_item.fsid);
4118 ret = -EINVAL;
4119 }
4120
4121 /*
4122 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4123 * done later
4124 */
21e7626b 4125 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4126 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4127 btrfs_super_num_devices(sb));
75d6ad38
DS
4128 if (btrfs_super_num_devices(sb) == 0) {
4129 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4130 ret = -EINVAL;
4131 }
c926093e 4132
21e7626b 4133 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4134 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4135 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4136 ret = -EINVAL;
4137 }
4138
ce7fca5f
DS
4139 /*
4140 * Obvious sys_chunk_array corruptions, it must hold at least one key
4141 * and one chunk
4142 */
4143 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4144 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4145 btrfs_super_sys_array_size(sb),
4146 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4147 ret = -EINVAL;
4148 }
4149 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4150 + sizeof(struct btrfs_chunk)) {
d2207129 4151 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4152 btrfs_super_sys_array_size(sb),
4153 sizeof(struct btrfs_disk_key)
4154 + sizeof(struct btrfs_chunk));
4155 ret = -EINVAL;
4156 }
4157
c926093e
DS
4158 /*
4159 * The generation is a global counter, we'll trust it more than the others
4160 * but it's still possible that it's the one that's wrong.
4161 */
21e7626b 4162 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4163 printk(KERN_WARNING
4164 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4165 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4166 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4167 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4168 printk(KERN_WARNING
4169 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4170 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4171
4172 return ret;
acce952b 4173}
4174
48a3b636 4175static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4176{
acce952b 4177 mutex_lock(&root->fs_info->cleaner_mutex);
4178 btrfs_run_delayed_iputs(root);
4179 mutex_unlock(&root->fs_info->cleaner_mutex);
4180
4181 down_write(&root->fs_info->cleanup_work_sem);
4182 up_write(&root->fs_info->cleanup_work_sem);
4183
4184 /* cleanup FS via transaction */
4185 btrfs_cleanup_transaction(root);
acce952b 4186}
4187
143bede5 4188static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4189{
acce952b 4190 struct btrfs_ordered_extent *ordered;
acce952b 4191
199c2a9c 4192 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4193 /*
4194 * This will just short circuit the ordered completion stuff which will
4195 * make sure the ordered extent gets properly cleaned up.
4196 */
199c2a9c 4197 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4198 root_extent_list)
4199 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4200 spin_unlock(&root->ordered_extent_lock);
4201}
4202
4203static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4204{
4205 struct btrfs_root *root;
4206 struct list_head splice;
4207
4208 INIT_LIST_HEAD(&splice);
4209
4210 spin_lock(&fs_info->ordered_root_lock);
4211 list_splice_init(&fs_info->ordered_roots, &splice);
4212 while (!list_empty(&splice)) {
4213 root = list_first_entry(&splice, struct btrfs_root,
4214 ordered_root);
1de2cfde
JB
4215 list_move_tail(&root->ordered_root,
4216 &fs_info->ordered_roots);
199c2a9c 4217
2a85d9ca 4218 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4219 btrfs_destroy_ordered_extents(root);
4220
2a85d9ca
LB
4221 cond_resched();
4222 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4223 }
4224 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4225}
4226
35a3621b
SB
4227static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4228 struct btrfs_root *root)
acce952b 4229{
4230 struct rb_node *node;
4231 struct btrfs_delayed_ref_root *delayed_refs;
4232 struct btrfs_delayed_ref_node *ref;
4233 int ret = 0;
4234
4235 delayed_refs = &trans->delayed_refs;
4236
4237 spin_lock(&delayed_refs->lock);
d7df2c79 4238 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4239 spin_unlock(&delayed_refs->lock);
efe120a0 4240 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4241 return ret;
4242 }
4243
d7df2c79
JB
4244 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4245 struct btrfs_delayed_ref_head *head;
c6fc2454 4246 struct btrfs_delayed_ref_node *tmp;
e78417d1 4247 bool pin_bytes = false;
acce952b 4248
d7df2c79
JB
4249 head = rb_entry(node, struct btrfs_delayed_ref_head,
4250 href_node);
4251 if (!mutex_trylock(&head->mutex)) {
4252 atomic_inc(&head->node.refs);
4253 spin_unlock(&delayed_refs->lock);
eb12db69 4254
d7df2c79 4255 mutex_lock(&head->mutex);
e78417d1 4256 mutex_unlock(&head->mutex);
d7df2c79
JB
4257 btrfs_put_delayed_ref(&head->node);
4258 spin_lock(&delayed_refs->lock);
4259 continue;
4260 }
4261 spin_lock(&head->lock);
c6fc2454
QW
4262 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4263 list) {
d7df2c79 4264 ref->in_tree = 0;
c6fc2454 4265 list_del(&ref->list);
d7df2c79
JB
4266 atomic_dec(&delayed_refs->num_entries);
4267 btrfs_put_delayed_ref(ref);
e78417d1 4268 }
d7df2c79
JB
4269 if (head->must_insert_reserved)
4270 pin_bytes = true;
4271 btrfs_free_delayed_extent_op(head->extent_op);
4272 delayed_refs->num_heads--;
4273 if (head->processing == 0)
4274 delayed_refs->num_heads_ready--;
4275 atomic_dec(&delayed_refs->num_entries);
4276 head->node.in_tree = 0;
4277 rb_erase(&head->href_node, &delayed_refs->href_root);
4278 spin_unlock(&head->lock);
4279 spin_unlock(&delayed_refs->lock);
4280 mutex_unlock(&head->mutex);
acce952b 4281
d7df2c79
JB
4282 if (pin_bytes)
4283 btrfs_pin_extent(root, head->node.bytenr,
4284 head->node.num_bytes, 1);
4285 btrfs_put_delayed_ref(&head->node);
acce952b 4286 cond_resched();
4287 spin_lock(&delayed_refs->lock);
4288 }
4289
4290 spin_unlock(&delayed_refs->lock);
4291
4292 return ret;
4293}
4294
143bede5 4295static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4296{
4297 struct btrfs_inode *btrfs_inode;
4298 struct list_head splice;
4299
4300 INIT_LIST_HEAD(&splice);
4301
eb73c1b7
MX
4302 spin_lock(&root->delalloc_lock);
4303 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4304
4305 while (!list_empty(&splice)) {
eb73c1b7
MX
4306 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4307 delalloc_inodes);
acce952b 4308
4309 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4310 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4311 &btrfs_inode->runtime_flags);
eb73c1b7 4312 spin_unlock(&root->delalloc_lock);
acce952b 4313
4314 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4315
eb73c1b7 4316 spin_lock(&root->delalloc_lock);
acce952b 4317 }
4318
eb73c1b7
MX
4319 spin_unlock(&root->delalloc_lock);
4320}
4321
4322static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4323{
4324 struct btrfs_root *root;
4325 struct list_head splice;
4326
4327 INIT_LIST_HEAD(&splice);
4328
4329 spin_lock(&fs_info->delalloc_root_lock);
4330 list_splice_init(&fs_info->delalloc_roots, &splice);
4331 while (!list_empty(&splice)) {
4332 root = list_first_entry(&splice, struct btrfs_root,
4333 delalloc_root);
4334 list_del_init(&root->delalloc_root);
4335 root = btrfs_grab_fs_root(root);
4336 BUG_ON(!root);
4337 spin_unlock(&fs_info->delalloc_root_lock);
4338
4339 btrfs_destroy_delalloc_inodes(root);
4340 btrfs_put_fs_root(root);
4341
4342 spin_lock(&fs_info->delalloc_root_lock);
4343 }
4344 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4345}
4346
4347static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4348 struct extent_io_tree *dirty_pages,
4349 int mark)
4350{
4351 int ret;
acce952b 4352 struct extent_buffer *eb;
4353 u64 start = 0;
4354 u64 end;
acce952b 4355
4356 while (1) {
4357 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4358 mark, NULL);
acce952b 4359 if (ret)
4360 break;
4361
4362 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4363 while (start <= end) {
01d58472 4364 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4365 start += root->nodesize;
fd8b2b61 4366 if (!eb)
acce952b 4367 continue;
fd8b2b61 4368 wait_on_extent_buffer_writeback(eb);
acce952b 4369
fd8b2b61
JB
4370 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4371 &eb->bflags))
4372 clear_extent_buffer_dirty(eb);
4373 free_extent_buffer_stale(eb);
acce952b 4374 }
4375 }
4376
4377 return ret;
4378}
4379
4380static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4381 struct extent_io_tree *pinned_extents)
4382{
4383 struct extent_io_tree *unpin;
4384 u64 start;
4385 u64 end;
4386 int ret;
ed0eaa14 4387 bool loop = true;
acce952b 4388
4389 unpin = pinned_extents;
ed0eaa14 4390again:
acce952b 4391 while (1) {
4392 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4393 EXTENT_DIRTY, NULL);
acce952b 4394 if (ret)
4395 break;
4396
acce952b 4397 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4398 btrfs_error_unpin_extent_range(root, start, end);
4399 cond_resched();
4400 }
4401
ed0eaa14
LB
4402 if (loop) {
4403 if (unpin == &root->fs_info->freed_extents[0])
4404 unpin = &root->fs_info->freed_extents[1];
4405 else
4406 unpin = &root->fs_info->freed_extents[0];
4407 loop = false;
4408 goto again;
4409 }
4410
acce952b 4411 return 0;
4412}
4413
49b25e05
JM
4414void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4415 struct btrfs_root *root)
4416{
4417 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4418
4a9d8bde 4419 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4420 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4421
4a9d8bde 4422 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4423 wake_up(&root->fs_info->transaction_wait);
49b25e05 4424
67cde344
MX
4425 btrfs_destroy_delayed_inodes(root);
4426 btrfs_assert_delayed_root_empty(root);
49b25e05 4427
49b25e05
JM
4428 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4429 EXTENT_DIRTY);
6e841e32
LB
4430 btrfs_destroy_pinned_extent(root,
4431 root->fs_info->pinned_extents);
49b25e05 4432
4a9d8bde
MX
4433 cur_trans->state =TRANS_STATE_COMPLETED;
4434 wake_up(&cur_trans->commit_wait);
4435
49b25e05
JM
4436 /*
4437 memset(cur_trans, 0, sizeof(*cur_trans));
4438 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4439 */
4440}
4441
48a3b636 4442static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4443{
4444 struct btrfs_transaction *t;
acce952b 4445
acce952b 4446 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4447
a4abeea4 4448 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4449 while (!list_empty(&root->fs_info->trans_list)) {
4450 t = list_first_entry(&root->fs_info->trans_list,
4451 struct btrfs_transaction, list);
4452 if (t->state >= TRANS_STATE_COMMIT_START) {
4453 atomic_inc(&t->use_count);
4454 spin_unlock(&root->fs_info->trans_lock);
4455 btrfs_wait_for_commit(root, t->transid);
4456 btrfs_put_transaction(t);
4457 spin_lock(&root->fs_info->trans_lock);
4458 continue;
4459 }
4460 if (t == root->fs_info->running_transaction) {
4461 t->state = TRANS_STATE_COMMIT_DOING;
4462 spin_unlock(&root->fs_info->trans_lock);
4463 /*
4464 * We wait for 0 num_writers since we don't hold a trans
4465 * handle open currently for this transaction.
4466 */
4467 wait_event(t->writer_wait,
4468 atomic_read(&t->num_writers) == 0);
4469 } else {
4470 spin_unlock(&root->fs_info->trans_lock);
4471 }
4472 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4473
724e2315
JB
4474 spin_lock(&root->fs_info->trans_lock);
4475 if (t == root->fs_info->running_transaction)
4476 root->fs_info->running_transaction = NULL;
acce952b 4477 list_del_init(&t->list);
724e2315 4478 spin_unlock(&root->fs_info->trans_lock);
acce952b 4479
724e2315
JB
4480 btrfs_put_transaction(t);
4481 trace_btrfs_transaction_commit(root);
4482 spin_lock(&root->fs_info->trans_lock);
4483 }
4484 spin_unlock(&root->fs_info->trans_lock);
4485 btrfs_destroy_all_ordered_extents(root->fs_info);
4486 btrfs_destroy_delayed_inodes(root);
4487 btrfs_assert_delayed_root_empty(root);
4488 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4489 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4490 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4491
4492 return 0;
4493}
4494
e8c9f186 4495static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4496 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4497 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4498 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4499 /* note we're sharing with inode.c for the merge bio hook */
4500 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4501};