btrfs: replace many BUG_ONs with proper error handling
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
143bede5
JM
53static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
143bede5
JM
57static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
ce9adaa5 64
d352ac68
CM
65/*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
ce9adaa5
CM
70struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
22c59948 76 int metadata;
ce9adaa5 77 struct list_head list;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
d352ac68
CM
81/*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
44b8bd7e
CM
86struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
4a69a410
CM
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
92 int rw;
93 int mirror_num;
c8b97818 94 unsigned long bio_flags;
eaf25d93
CM
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
8b712842 100 struct btrfs_work work;
79787eaa 101 int error;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41 334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 335 0, &cached_state);
2ac55d41 336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
2ac55d41 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
1259ab75
CM
373 if (!ret &&
374 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 375 return ret;
d397712b 376
a826d6dc
JB
377 /*
378 * This buffer's crc is fine, but its contents are corrupted, so
379 * there is no reason to read the other copies, they won't be
380 * any less wrong.
381 */
382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 return ret;
384
f188591e
CM
385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 eb->start, eb->len);
4235298e 387 if (num_copies == 1)
f188591e 388 return ret;
4235298e 389
f188591e 390 mirror_num++;
4235298e 391 if (mirror_num > num_copies)
f188591e 392 return ret;
f188591e 393 }
f188591e
CM
394 return -EIO;
395}
19c00ddc 396
d352ac68 397/*
d397712b
CM
398 * checksum a dirty tree block before IO. This has extra checks to make sure
399 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 400 */
d397712b 401
b2950863 402static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 403{
d1310b2e 404 struct extent_io_tree *tree;
35ebb934 405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 406 u64 found_start;
19c00ddc
CM
407 unsigned long len;
408 struct extent_buffer *eb;
79787eaa 409 int ret = -EIO;
f188591e 410
d1310b2e 411 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 412
eb14ab8e
CM
413 if (page->private == EXTENT_PAGE_PRIVATE) {
414 WARN_ON(1);
19c00ddc 415 goto out;
eb14ab8e
CM
416 }
417 if (!page->private) {
418 WARN_ON(1);
19c00ddc 419 goto out;
eb14ab8e 420 }
19c00ddc 421 len = page->private >> 2;
d397712b
CM
422 WARN_ON(len == 0);
423
ba144192 424 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
425 if (eb == NULL) {
426 WARN_ON(1);
79787eaa 427 ret = -ENOMEM;
91ca338d
TI
428 goto out;
429 }
ca7a79ad
CM
430 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
431 btrfs_header_generation(eb));
79787eaa
JM
432 if (ret) {
433 btrfs_printk(root->fs_info, KERN_WARNING
434 "Failed to checksum dirty buffer @ %llu[%lu]\n",
435 start, len);
436 goto err;
437 }
784b4e29
CM
438 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
439
79787eaa 440 ret = -EIO;
19c00ddc
CM
441 found_start = btrfs_header_bytenr(eb);
442 if (found_start != start) {
55c69072
CM
443 WARN_ON(1);
444 goto err;
445 }
446 if (eb->first_page != page) {
55c69072
CM
447 WARN_ON(1);
448 goto err;
449 }
450 if (!PageUptodate(page)) {
55c69072
CM
451 WARN_ON(1);
452 goto err;
19c00ddc 453 }
19c00ddc 454 csum_tree_block(root, eb, 0);
79787eaa 455 ret = 0;
55c69072 456err:
19c00ddc
CM
457 free_extent_buffer(eb);
458out:
79787eaa 459 return ret;
19c00ddc
CM
460}
461
2b82032c
YZ
462static int check_tree_block_fsid(struct btrfs_root *root,
463 struct extent_buffer *eb)
464{
465 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
466 u8 fsid[BTRFS_UUID_SIZE];
467 int ret = 1;
468
469 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
470 BTRFS_FSID_SIZE);
471 while (fs_devices) {
472 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
473 ret = 0;
474 break;
475 }
476 fs_devices = fs_devices->seed;
477 }
478 return ret;
479}
480
a826d6dc
JB
481#define CORRUPT(reason, eb, root, slot) \
482 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
483 "root=%llu, slot=%d\n", reason, \
484 (unsigned long long)btrfs_header_bytenr(eb), \
485 (unsigned long long)root->objectid, slot)
486
487static noinline int check_leaf(struct btrfs_root *root,
488 struct extent_buffer *leaf)
489{
490 struct btrfs_key key;
491 struct btrfs_key leaf_key;
492 u32 nritems = btrfs_header_nritems(leaf);
493 int slot;
494
495 if (nritems == 0)
496 return 0;
497
498 /* Check the 0 item */
499 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
500 BTRFS_LEAF_DATA_SIZE(root)) {
501 CORRUPT("invalid item offset size pair", leaf, root, 0);
502 return -EIO;
503 }
504
505 /*
506 * Check to make sure each items keys are in the correct order and their
507 * offsets make sense. We only have to loop through nritems-1 because
508 * we check the current slot against the next slot, which verifies the
509 * next slot's offset+size makes sense and that the current's slot
510 * offset is correct.
511 */
512 for (slot = 0; slot < nritems - 1; slot++) {
513 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
514 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
515
516 /* Make sure the keys are in the right order */
517 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
518 CORRUPT("bad key order", leaf, root, slot);
519 return -EIO;
520 }
521
522 /*
523 * Make sure the offset and ends are right, remember that the
524 * item data starts at the end of the leaf and grows towards the
525 * front.
526 */
527 if (btrfs_item_offset_nr(leaf, slot) !=
528 btrfs_item_end_nr(leaf, slot + 1)) {
529 CORRUPT("slot offset bad", leaf, root, slot);
530 return -EIO;
531 }
532
533 /*
534 * Check to make sure that we don't point outside of the leaf,
535 * just incase all the items are consistent to eachother, but
536 * all point outside of the leaf.
537 */
538 if (btrfs_item_end_nr(leaf, slot) >
539 BTRFS_LEAF_DATA_SIZE(root)) {
540 CORRUPT("slot end outside of leaf", leaf, root, slot);
541 return -EIO;
542 }
543 }
544
545 return 0;
546}
547
b2950863 548static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
549 struct extent_state *state)
550{
551 struct extent_io_tree *tree;
552 u64 found_start;
553 int found_level;
554 unsigned long len;
555 struct extent_buffer *eb;
556 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 557 int ret = 0;
ce9adaa5
CM
558
559 tree = &BTRFS_I(page->mapping->host)->io_tree;
560 if (page->private == EXTENT_PAGE_PRIVATE)
561 goto out;
562 if (!page->private)
563 goto out;
d397712b 564
ce9adaa5 565 len = page->private >> 2;
d397712b
CM
566 WARN_ON(len == 0);
567
ba144192 568 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
569 if (eb == NULL) {
570 ret = -EIO;
571 goto out;
572 }
f188591e 573
ce9adaa5 574 found_start = btrfs_header_bytenr(eb);
23a07867 575 if (found_start != start) {
7a36ddec 576 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
577 "%llu %llu\n",
578 (unsigned long long)found_start,
579 (unsigned long long)eb->start);
f188591e 580 ret = -EIO;
ce9adaa5
CM
581 goto err;
582 }
583 if (eb->first_page != page) {
d397712b
CM
584 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
585 eb->first_page->index, page->index);
ce9adaa5 586 WARN_ON(1);
f188591e 587 ret = -EIO;
ce9adaa5
CM
588 goto err;
589 }
2b82032c 590 if (check_tree_block_fsid(root, eb)) {
7a36ddec 591 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 592 (unsigned long long)eb->start);
1259ab75
CM
593 ret = -EIO;
594 goto err;
595 }
ce9adaa5
CM
596 found_level = btrfs_header_level(eb);
597
85d4e461
CM
598 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
599 eb, found_level);
4008c04a 600
ce9adaa5 601 ret = csum_tree_block(root, eb, 1);
a826d6dc 602 if (ret) {
f188591e 603 ret = -EIO;
a826d6dc
JB
604 goto err;
605 }
606
607 /*
608 * If this is a leaf block and it is corrupt, set the corrupt bit so
609 * that we don't try and read the other copies of this block, just
610 * return -EIO.
611 */
612 if (found_level == 0 && check_leaf(root, eb)) {
613 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
614 ret = -EIO;
615 }
ce9adaa5
CM
616
617 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
618 end = eb->start + end - 1;
ce9adaa5 619err:
4bb31e92
AJ
620 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
621 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
622 btree_readahead_hook(root, eb, eb->start, ret);
623 }
624
ce9adaa5
CM
625 free_extent_buffer(eb);
626out:
f188591e 627 return ret;
ce9adaa5
CM
628}
629
4bb31e92
AJ
630static int btree_io_failed_hook(struct bio *failed_bio,
631 struct page *page, u64 start, u64 end,
32240a91 632 int mirror_num, struct extent_state *state)
4bb31e92
AJ
633{
634 struct extent_io_tree *tree;
635 unsigned long len;
636 struct extent_buffer *eb;
637 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
638
639 tree = &BTRFS_I(page->mapping->host)->io_tree;
640 if (page->private == EXTENT_PAGE_PRIVATE)
641 goto out;
642 if (!page->private)
643 goto out;
644
645 len = page->private >> 2;
646 WARN_ON(len == 0);
647
648 eb = alloc_extent_buffer(tree, start, len, page);
649 if (eb == NULL)
650 goto out;
651
652 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
653 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
654 btree_readahead_hook(root, eb, eb->start, -EIO);
655 }
c674e04e 656 free_extent_buffer(eb);
4bb31e92
AJ
657
658out:
659 return -EIO; /* we fixed nothing */
660}
661
ce9adaa5 662static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
663{
664 struct end_io_wq *end_io_wq = bio->bi_private;
665 struct btrfs_fs_info *fs_info;
ce9adaa5 666
ce9adaa5 667 fs_info = end_io_wq->info;
ce9adaa5 668 end_io_wq->error = err;
8b712842
CM
669 end_io_wq->work.func = end_workqueue_fn;
670 end_io_wq->work.flags = 0;
d20f7043 671
7b6d91da 672 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 673 if (end_io_wq->metadata == 1)
cad321ad
CM
674 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 &end_io_wq->work);
0cb59c99
JB
676 else if (end_io_wq->metadata == 2)
677 btrfs_queue_worker(&fs_info->endio_freespace_worker,
678 &end_io_wq->work);
cad321ad
CM
679 else
680 btrfs_queue_worker(&fs_info->endio_write_workers,
681 &end_io_wq->work);
d20f7043
CM
682 } else {
683 if (end_io_wq->metadata)
684 btrfs_queue_worker(&fs_info->endio_meta_workers,
685 &end_io_wq->work);
686 else
687 btrfs_queue_worker(&fs_info->endio_workers,
688 &end_io_wq->work);
689 }
ce9adaa5
CM
690}
691
0cb59c99
JB
692/*
693 * For the metadata arg you want
694 *
695 * 0 - if data
696 * 1 - if normal metadta
697 * 2 - if writing to the free space cache area
698 */
22c59948
CM
699int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700 int metadata)
0b86a832 701{
ce9adaa5 702 struct end_io_wq *end_io_wq;
ce9adaa5
CM
703 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704 if (!end_io_wq)
705 return -ENOMEM;
706
707 end_io_wq->private = bio->bi_private;
708 end_io_wq->end_io = bio->bi_end_io;
22c59948 709 end_io_wq->info = info;
ce9adaa5
CM
710 end_io_wq->error = 0;
711 end_io_wq->bio = bio;
22c59948 712 end_io_wq->metadata = metadata;
ce9adaa5
CM
713
714 bio->bi_private = end_io_wq;
715 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
716 return 0;
717}
718
b64a2851 719unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 720{
4854ddd0
CM
721 unsigned long limit = min_t(unsigned long,
722 info->workers.max_workers,
723 info->fs_devices->open_devices);
724 return 256 * limit;
725}
0986fe9e 726
4a69a410
CM
727static void run_one_async_start(struct btrfs_work *work)
728{
4a69a410 729 struct async_submit_bio *async;
79787eaa 730 int ret;
4a69a410
CM
731
732 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
733 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734 async->mirror_num, async->bio_flags,
735 async->bio_offset);
736 if (ret)
737 async->error = ret;
4a69a410
CM
738}
739
740static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
741{
742 struct btrfs_fs_info *fs_info;
743 struct async_submit_bio *async;
4854ddd0 744 int limit;
8b712842
CM
745
746 async = container_of(work, struct async_submit_bio, work);
747 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 748
b64a2851 749 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
750 limit = limit * 2 / 3;
751
8b712842 752 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 753
b64a2851
CM
754 if (atomic_read(&fs_info->nr_async_submits) < limit &&
755 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
756 wake_up(&fs_info->async_submit_wait);
757
79787eaa
JM
758 /* If an error occured we just want to clean up the bio and move on */
759 if (async->error) {
760 bio_endio(async->bio, async->error);
761 return;
762 }
763
4a69a410 764 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
765 async->mirror_num, async->bio_flags,
766 async->bio_offset);
4a69a410
CM
767}
768
769static void run_one_async_free(struct btrfs_work *work)
770{
771 struct async_submit_bio *async;
772
773 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
774 kfree(async);
775}
776
44b8bd7e
CM
777int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
778 int rw, struct bio *bio, int mirror_num,
c8b97818 779 unsigned long bio_flags,
eaf25d93 780 u64 bio_offset,
4a69a410
CM
781 extent_submit_bio_hook_t *submit_bio_start,
782 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
783{
784 struct async_submit_bio *async;
785
786 async = kmalloc(sizeof(*async), GFP_NOFS);
787 if (!async)
788 return -ENOMEM;
789
790 async->inode = inode;
791 async->rw = rw;
792 async->bio = bio;
793 async->mirror_num = mirror_num;
4a69a410
CM
794 async->submit_bio_start = submit_bio_start;
795 async->submit_bio_done = submit_bio_done;
796
797 async->work.func = run_one_async_start;
798 async->work.ordered_func = run_one_async_done;
799 async->work.ordered_free = run_one_async_free;
800
8b712842 801 async->work.flags = 0;
c8b97818 802 async->bio_flags = bio_flags;
eaf25d93 803 async->bio_offset = bio_offset;
8c8bee1d 804
79787eaa
JM
805 async->error = 0;
806
cb03c743 807 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 808
7b6d91da 809 if (rw & REQ_SYNC)
d313d7a3
CM
810 btrfs_set_work_high_prio(&async->work);
811
8b712842 812 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 813
d397712b 814 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
815 atomic_read(&fs_info->nr_async_submits)) {
816 wait_event(fs_info->async_submit_wait,
817 (atomic_read(&fs_info->nr_async_submits) == 0));
818 }
819
44b8bd7e
CM
820 return 0;
821}
822
ce3ed71a
CM
823static int btree_csum_one_bio(struct bio *bio)
824{
825 struct bio_vec *bvec = bio->bi_io_vec;
826 int bio_index = 0;
827 struct btrfs_root *root;
79787eaa 828 int ret = 0;
ce3ed71a
CM
829
830 WARN_ON(bio->bi_vcnt <= 0);
d397712b 831 while (bio_index < bio->bi_vcnt) {
ce3ed71a 832 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
833 ret = csum_dirty_buffer(root, bvec->bv_page);
834 if (ret)
835 break;
ce3ed71a
CM
836 bio_index++;
837 bvec++;
838 }
79787eaa 839 return ret;
ce3ed71a
CM
840}
841
4a69a410
CM
842static int __btree_submit_bio_start(struct inode *inode, int rw,
843 struct bio *bio, int mirror_num,
eaf25d93
CM
844 unsigned long bio_flags,
845 u64 bio_offset)
22c59948 846{
8b712842
CM
847 /*
848 * when we're called for a write, we're already in the async
5443be45 849 * submission context. Just jump into btrfs_map_bio
8b712842 850 */
79787eaa 851 return btree_csum_one_bio(bio);
4a69a410 852}
22c59948 853
4a69a410 854static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
855 int mirror_num, unsigned long bio_flags,
856 u64 bio_offset)
4a69a410 857{
8b712842 858 /*
4a69a410
CM
859 * when we're called for a write, we're already in the async
860 * submission context. Just jump into btrfs_map_bio
8b712842 861 */
8b712842 862 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
863}
864
44b8bd7e 865static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
866 int mirror_num, unsigned long bio_flags,
867 u64 bio_offset)
44b8bd7e 868{
cad321ad
CM
869 int ret;
870
355808c2
JM
871 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, bio, 1);
872 if (ret)
873 return ret;
cad321ad 874
7b6d91da 875 if (!(rw & REQ_WRITE)) {
4a69a410
CM
876 /*
877 * called for a read, do the setup so that checksum validation
878 * can happen in the async kernel threads
879 */
4a69a410 880 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 881 mirror_num, 0);
44b8bd7e 882 }
d313d7a3 883
cad321ad
CM
884 /*
885 * kthread helpers are used to submit writes so that checksumming
886 * can happen in parallel across all CPUs
887 */
44b8bd7e 888 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 889 inode, rw, bio, mirror_num, 0,
eaf25d93 890 bio_offset,
4a69a410
CM
891 __btree_submit_bio_start,
892 __btree_submit_bio_done);
44b8bd7e
CM
893}
894
3dd1462e 895#ifdef CONFIG_MIGRATION
784b4e29 896static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
897 struct page *newpage, struct page *page,
898 enum migrate_mode mode)
784b4e29
CM
899{
900 /*
901 * we can't safely write a btree page from here,
902 * we haven't done the locking hook
903 */
904 if (PageDirty(page))
905 return -EAGAIN;
906 /*
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
909 */
910 if (page_has_private(page) &&
911 !try_to_release_page(page, GFP_KERNEL))
912 return -EAGAIN;
a6bc32b8 913 return migrate_page(mapping, newpage, page, mode);
784b4e29 914}
3dd1462e 915#endif
784b4e29 916
0da5468f
CM
917static int btree_writepage(struct page *page, struct writeback_control *wbc)
918{
d1310b2e 919 struct extent_io_tree *tree;
b9473439
CM
920 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
921 struct extent_buffer *eb;
922 int was_dirty;
923
d1310b2e 924 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
925 if (!(current->flags & PF_MEMALLOC)) {
926 return extent_write_full_page(tree, page,
927 btree_get_extent, wbc);
928 }
5443be45 929
b9473439 930 redirty_page_for_writepage(wbc, page);
784b4e29 931 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
932 WARN_ON(!eb);
933
934 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
935 if (!was_dirty) {
936 spin_lock(&root->fs_info->delalloc_lock);
937 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
938 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 939 }
b9473439
CM
940 free_extent_buffer(eb);
941
942 unlock_page(page);
943 return 0;
5f39d397 944}
0da5468f
CM
945
946static int btree_writepages(struct address_space *mapping,
947 struct writeback_control *wbc)
948{
d1310b2e
CM
949 struct extent_io_tree *tree;
950 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 951 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 952 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 953 u64 num_dirty;
24ab9cd8 954 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
955
956 if (wbc->for_kupdate)
957 return 0;
958
b9473439
CM
959 /* this is a bit racy, but that's ok */
960 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 961 if (num_dirty < thresh)
793955bc 962 return 0;
793955bc 963 }
0da5468f
CM
964 return extent_writepages(tree, mapping, btree_get_extent, wbc);
965}
966
b2950863 967static int btree_readpage(struct file *file, struct page *page)
5f39d397 968{
d1310b2e
CM
969 struct extent_io_tree *tree;
970 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 971 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 972}
22b0ebda 973
70dec807 974static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 975{
d1310b2e
CM
976 struct extent_io_tree *tree;
977 struct extent_map_tree *map;
5f39d397 978 int ret;
d98237b3 979
98509cfc 980 if (PageWriteback(page) || PageDirty(page))
d397712b 981 return 0;
98509cfc 982
d1310b2e
CM
983 tree = &BTRFS_I(page->mapping->host)->io_tree;
984 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 985
0c4e538b
DS
986 /*
987 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
988 * slab allocation from alloc_extent_state down the callchain where
989 * it'd hit a BUG_ON as those flags are not allowed.
990 */
991 gfp_flags &= ~GFP_SLAB_BUG_MASK;
992
7b13b7b1 993 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 994 if (!ret)
6af118ce 995 return 0;
6af118ce
CM
996
997 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
998 if (ret == 1) {
999 ClearPagePrivate(page);
1000 set_page_private(page, 0);
1001 page_cache_release(page);
1002 }
6af118ce 1003
d98237b3
CM
1004 return ret;
1005}
1006
5f39d397 1007static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 1008{
d1310b2e
CM
1009 struct extent_io_tree *tree;
1010 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1011 extent_invalidatepage(tree, page, offset);
1012 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1013 if (PagePrivate(page)) {
d397712b
CM
1014 printk(KERN_WARNING "btrfs warning page private not zero "
1015 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1016 ClearPagePrivate(page);
1017 set_page_private(page, 0);
1018 page_cache_release(page);
1019 }
d98237b3
CM
1020}
1021
7f09410b 1022static const struct address_space_operations btree_aops = {
d98237b3
CM
1023 .readpage = btree_readpage,
1024 .writepage = btree_writepage,
0da5468f 1025 .writepages = btree_writepages,
5f39d397
CM
1026 .releasepage = btree_releasepage,
1027 .invalidatepage = btree_invalidatepage,
5a92bc88 1028#ifdef CONFIG_MIGRATION
784b4e29 1029 .migratepage = btree_migratepage,
5a92bc88 1030#endif
d98237b3
CM
1031};
1032
ca7a79ad
CM
1033int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1034 u64 parent_transid)
090d1875 1035{
5f39d397
CM
1036 struct extent_buffer *buf = NULL;
1037 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1038 int ret = 0;
090d1875 1039
db94535d 1040 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1041 if (!buf)
090d1875 1042 return 0;
d1310b2e 1043 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1044 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1045 free_extent_buffer(buf);
de428b63 1046 return ret;
090d1875
CM
1047}
1048
ab0fff03
AJ
1049int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1050 int mirror_num, struct extent_buffer **eb)
1051{
1052 struct extent_buffer *buf = NULL;
1053 struct inode *btree_inode = root->fs_info->btree_inode;
1054 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1055 int ret;
1056
1057 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1058 if (!buf)
1059 return 0;
1060
1061 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1062
1063 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1064 btree_get_extent, mirror_num);
1065 if (ret) {
1066 free_extent_buffer(buf);
1067 return ret;
1068 }
1069
1070 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1071 free_extent_buffer(buf);
1072 return -EIO;
1073 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1074 *eb = buf;
1075 } else {
1076 free_extent_buffer(buf);
1077 }
1078 return 0;
1079}
1080
0999df54
CM
1081struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1082 u64 bytenr, u32 blocksize)
1083{
1084 struct inode *btree_inode = root->fs_info->btree_inode;
1085 struct extent_buffer *eb;
1086 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1087 bytenr, blocksize);
0999df54
CM
1088 return eb;
1089}
1090
1091struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1092 u64 bytenr, u32 blocksize)
1093{
1094 struct inode *btree_inode = root->fs_info->btree_inode;
1095 struct extent_buffer *eb;
1096
1097 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 1098 bytenr, blocksize, NULL);
0999df54
CM
1099 return eb;
1100}
1101
1102
e02119d5
CM
1103int btrfs_write_tree_block(struct extent_buffer *buf)
1104{
8aa38c31
CH
1105 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1106 buf->start + buf->len - 1);
e02119d5
CM
1107}
1108
1109int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1110{
8aa38c31
CH
1111 return filemap_fdatawait_range(buf->first_page->mapping,
1112 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1113}
1114
0999df54 1115struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1116 u32 blocksize, u64 parent_transid)
0999df54
CM
1117{
1118 struct extent_buffer *buf = NULL;
0999df54
CM
1119 int ret;
1120
0999df54
CM
1121 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1122 if (!buf)
1123 return NULL;
0999df54 1124
ca7a79ad 1125 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1126
d397712b 1127 if (ret == 0)
b4ce94de 1128 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1129 return buf;
ce9adaa5 1130
eb60ceac
CM
1131}
1132
d5c13f92
JM
1133void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1134 struct extent_buffer *buf)
ed2ff2cb 1135{
5f39d397 1136 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1137 if (btrfs_header_generation(buf) ==
925baedd 1138 root->fs_info->running_transaction->transid) {
b9447ef8 1139 btrfs_assert_tree_locked(buf);
b4ce94de 1140
b9473439
CM
1141 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1142 spin_lock(&root->fs_info->delalloc_lock);
1143 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1144 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1145 else {
1146 spin_unlock(&root->fs_info->delalloc_lock);
1147 btrfs_panic(root->fs_info, -EOVERFLOW,
1148 "Can't clear %lu bytes from "
1149 " dirty_mdatadata_bytes (%lu)",
1150 buf->len,
1151 root->fs_info->dirty_metadata_bytes);
1152 }
b9473439
CM
1153 spin_unlock(&root->fs_info->delalloc_lock);
1154 }
b4ce94de 1155
b9473439
CM
1156 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1157 btrfs_set_lock_blocking(buf);
d1310b2e 1158 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1159 buf);
925baedd 1160 }
5f39d397
CM
1161}
1162
143bede5
JM
1163static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1164 u32 stripesize, struct btrfs_root *root,
1165 struct btrfs_fs_info *fs_info,
1166 u64 objectid)
d97e63b6 1167{
cfaa7295 1168 root->node = NULL;
a28ec197 1169 root->commit_root = NULL;
db94535d
CM
1170 root->sectorsize = sectorsize;
1171 root->nodesize = nodesize;
1172 root->leafsize = leafsize;
87ee04eb 1173 root->stripesize = stripesize;
123abc88 1174 root->ref_cows = 0;
0b86a832 1175 root->track_dirty = 0;
c71bf099 1176 root->in_radix = 0;
d68fc57b
YZ
1177 root->orphan_item_inserted = 0;
1178 root->orphan_cleanup_state = 0;
0b86a832 1179
0f7d52f4
CM
1180 root->objectid = objectid;
1181 root->last_trans = 0;
13a8a7c8 1182 root->highest_objectid = 0;
58176a96 1183 root->name = NULL;
6bef4d31 1184 root->inode_tree = RB_ROOT;
16cdcec7 1185 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1186 root->block_rsv = NULL;
d68fc57b 1187 root->orphan_block_rsv = NULL;
0b86a832
CM
1188
1189 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1190 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1191 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1192 spin_lock_init(&root->orphan_lock);
5d4f98a2 1193 spin_lock_init(&root->inode_lock);
f0486c68 1194 spin_lock_init(&root->accounting_lock);
a2135011 1195 mutex_init(&root->objectid_mutex);
e02119d5 1196 mutex_init(&root->log_mutex);
7237f183
YZ
1197 init_waitqueue_head(&root->log_writer_wait);
1198 init_waitqueue_head(&root->log_commit_wait[0]);
1199 init_waitqueue_head(&root->log_commit_wait[1]);
1200 atomic_set(&root->log_commit[0], 0);
1201 atomic_set(&root->log_commit[1], 0);
1202 atomic_set(&root->log_writers, 0);
1203 root->log_batch = 0;
1204 root->log_transid = 0;
257c62e1 1205 root->last_log_commit = 0;
d0c803c4 1206 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1207 fs_info->btree_inode->i_mapping);
017e5369 1208
3768f368
CM
1209 memset(&root->root_key, 0, sizeof(root->root_key));
1210 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1211 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1212 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1213 root->defrag_trans_start = fs_info->generation;
58176a96 1214 init_completion(&root->kobj_unregister);
6702ed49 1215 root->defrag_running = 0;
4d775673 1216 root->root_key.objectid = objectid;
0ee5dc67 1217 root->anon_dev = 0;
3768f368
CM
1218}
1219
200a5c17
JM
1220static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1221 struct btrfs_fs_info *fs_info,
1222 u64 objectid,
1223 struct btrfs_root *root)
3768f368
CM
1224{
1225 int ret;
db94535d 1226 u32 blocksize;
84234f3a 1227 u64 generation;
3768f368 1228
db94535d 1229 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1230 tree_root->sectorsize, tree_root->stripesize,
1231 root, fs_info, objectid);
3768f368
CM
1232 ret = btrfs_find_last_root(tree_root, objectid,
1233 &root->root_item, &root->root_key);
4df27c4d
YZ
1234 if (ret > 0)
1235 return -ENOENT;
200a5c17
JM
1236 else if (ret < 0)
1237 return ret;
3768f368 1238
84234f3a 1239 generation = btrfs_root_generation(&root->root_item);
db94535d 1240 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1241 root->commit_root = NULL;
db94535d 1242 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1243 blocksize, generation);
68433b73
CM
1244 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1245 free_extent_buffer(root->node);
af31f5e5 1246 root->node = NULL;
68433b73
CM
1247 return -EIO;
1248 }
4df27c4d 1249 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1250 return 0;
1251}
1252
f84a8bd6 1253static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1254{
1255 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1256 if (root)
1257 root->fs_info = fs_info;
1258 return root;
1259}
1260
7237f183
YZ
1261static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1262 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1263{
1264 struct btrfs_root *root;
1265 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1266 struct extent_buffer *leaf;
e02119d5 1267
6f07e42e 1268 root = btrfs_alloc_root(fs_info);
e02119d5 1269 if (!root)
7237f183 1270 return ERR_PTR(-ENOMEM);
e02119d5
CM
1271
1272 __setup_root(tree_root->nodesize, tree_root->leafsize,
1273 tree_root->sectorsize, tree_root->stripesize,
1274 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1275
1276 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1277 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1278 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1279 /*
1280 * log trees do not get reference counted because they go away
1281 * before a real commit is actually done. They do store pointers
1282 * to file data extents, and those reference counts still get
1283 * updated (along with back refs to the log tree).
1284 */
e02119d5
CM
1285 root->ref_cows = 0;
1286
5d4f98a2 1287 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1288 BTRFS_TREE_LOG_OBJECTID, NULL,
1289 0, 0, 0, 0);
7237f183
YZ
1290 if (IS_ERR(leaf)) {
1291 kfree(root);
1292 return ERR_CAST(leaf);
1293 }
e02119d5 1294
5d4f98a2
YZ
1295 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1296 btrfs_set_header_bytenr(leaf, leaf->start);
1297 btrfs_set_header_generation(leaf, trans->transid);
1298 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1299 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1300 root->node = leaf;
e02119d5
CM
1301
1302 write_extent_buffer(root->node, root->fs_info->fsid,
1303 (unsigned long)btrfs_header_fsid(root->node),
1304 BTRFS_FSID_SIZE);
1305 btrfs_mark_buffer_dirty(root->node);
1306 btrfs_tree_unlock(root->node);
7237f183
YZ
1307 return root;
1308}
1309
1310int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1311 struct btrfs_fs_info *fs_info)
1312{
1313 struct btrfs_root *log_root;
1314
1315 log_root = alloc_log_tree(trans, fs_info);
1316 if (IS_ERR(log_root))
1317 return PTR_ERR(log_root);
1318 WARN_ON(fs_info->log_root_tree);
1319 fs_info->log_root_tree = log_root;
1320 return 0;
1321}
1322
1323int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *root)
1325{
1326 struct btrfs_root *log_root;
1327 struct btrfs_inode_item *inode_item;
1328
1329 log_root = alloc_log_tree(trans, root->fs_info);
1330 if (IS_ERR(log_root))
1331 return PTR_ERR(log_root);
1332
1333 log_root->last_trans = trans->transid;
1334 log_root->root_key.offset = root->root_key.objectid;
1335
1336 inode_item = &log_root->root_item.inode;
1337 inode_item->generation = cpu_to_le64(1);
1338 inode_item->size = cpu_to_le64(3);
1339 inode_item->nlink = cpu_to_le32(1);
1340 inode_item->nbytes = cpu_to_le64(root->leafsize);
1341 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1342
5d4f98a2 1343 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1344
1345 WARN_ON(root->log_root);
1346 root->log_root = log_root;
1347 root->log_transid = 0;
257c62e1 1348 root->last_log_commit = 0;
e02119d5
CM
1349 return 0;
1350}
1351
1352struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1353 struct btrfs_key *location)
1354{
1355 struct btrfs_root *root;
1356 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1357 struct btrfs_path *path;
5f39d397 1358 struct extent_buffer *l;
84234f3a 1359 u64 generation;
db94535d 1360 u32 blocksize;
0f7d52f4
CM
1361 int ret = 0;
1362
6f07e42e 1363 root = btrfs_alloc_root(fs_info);
0cf6c620 1364 if (!root)
0f7d52f4 1365 return ERR_PTR(-ENOMEM);
0f7d52f4 1366 if (location->offset == (u64)-1) {
db94535d 1367 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1368 location->objectid, root);
1369 if (ret) {
0f7d52f4
CM
1370 kfree(root);
1371 return ERR_PTR(ret);
1372 }
13a8a7c8 1373 goto out;
0f7d52f4
CM
1374 }
1375
db94535d 1376 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1377 tree_root->sectorsize, tree_root->stripesize,
1378 root, fs_info, location->objectid);
0f7d52f4
CM
1379
1380 path = btrfs_alloc_path();
db5b493a
TI
1381 if (!path) {
1382 kfree(root);
1383 return ERR_PTR(-ENOMEM);
1384 }
0f7d52f4 1385 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1386 if (ret == 0) {
1387 l = path->nodes[0];
1388 read_extent_buffer(l, &root->root_item,
1389 btrfs_item_ptr_offset(l, path->slots[0]),
1390 sizeof(root->root_item));
1391 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1392 }
0f7d52f4
CM
1393 btrfs_free_path(path);
1394 if (ret) {
5e540f77 1395 kfree(root);
13a8a7c8
YZ
1396 if (ret > 0)
1397 ret = -ENOENT;
0f7d52f4
CM
1398 return ERR_PTR(ret);
1399 }
13a8a7c8 1400
84234f3a 1401 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1402 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1403 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1404 blocksize, generation);
5d4f98a2 1405 root->commit_root = btrfs_root_node(root);
79787eaa 1406 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1407out:
08fe4db1 1408 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1409 root->ref_cows = 1;
08fe4db1
LZ
1410 btrfs_check_and_init_root_item(&root->root_item);
1411 }
13a8a7c8 1412
5eda7b5e
CM
1413 return root;
1414}
1415
edbd8d4e
CM
1416struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1417 struct btrfs_key *location)
5eda7b5e
CM
1418{
1419 struct btrfs_root *root;
1420 int ret;
1421
edbd8d4e
CM
1422 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1423 return fs_info->tree_root;
1424 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1425 return fs_info->extent_root;
8f18cf13
CM
1426 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1427 return fs_info->chunk_root;
1428 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1429 return fs_info->dev_root;
0403e47e
YZ
1430 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1431 return fs_info->csum_root;
4df27c4d
YZ
1432again:
1433 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1434 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1435 (unsigned long)location->objectid);
4df27c4d 1436 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1437 if (root)
1438 return root;
1439
e02119d5 1440 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1441 if (IS_ERR(root))
1442 return root;
3394e160 1443
581bb050 1444 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1445 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1446 GFP_NOFS);
35a30d7c
DS
1447 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1448 ret = -ENOMEM;
581bb050 1449 goto fail;
35a30d7c 1450 }
581bb050
LZ
1451
1452 btrfs_init_free_ino_ctl(root);
1453 mutex_init(&root->fs_commit_mutex);
1454 spin_lock_init(&root->cache_lock);
1455 init_waitqueue_head(&root->cache_wait);
1456
0ee5dc67 1457 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1458 if (ret)
1459 goto fail;
3394e160 1460
d68fc57b
YZ
1461 if (btrfs_root_refs(&root->root_item) == 0) {
1462 ret = -ENOENT;
1463 goto fail;
1464 }
1465
1466 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1467 if (ret < 0)
1468 goto fail;
1469 if (ret == 0)
1470 root->orphan_item_inserted = 1;
1471
4df27c4d
YZ
1472 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1473 if (ret)
1474 goto fail;
1475
1476 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1477 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1478 (unsigned long)root->root_key.objectid,
0f7d52f4 1479 root);
d68fc57b 1480 if (ret == 0)
4df27c4d 1481 root->in_radix = 1;
d68fc57b 1482
4df27c4d
YZ
1483 spin_unlock(&fs_info->fs_roots_radix_lock);
1484 radix_tree_preload_end();
0f7d52f4 1485 if (ret) {
4df27c4d
YZ
1486 if (ret == -EEXIST) {
1487 free_fs_root(root);
1488 goto again;
1489 }
1490 goto fail;
0f7d52f4 1491 }
4df27c4d
YZ
1492
1493 ret = btrfs_find_dead_roots(fs_info->tree_root,
1494 root->root_key.objectid);
1495 WARN_ON(ret);
edbd8d4e 1496 return root;
4df27c4d
YZ
1497fail:
1498 free_fs_root(root);
1499 return ERR_PTR(ret);
edbd8d4e
CM
1500}
1501
04160088
CM
1502static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1503{
1504 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1505 int ret = 0;
04160088
CM
1506 struct btrfs_device *device;
1507 struct backing_dev_info *bdi;
b7967db7 1508
1f78160c
XG
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1511 if (!device->bdev)
1512 continue;
04160088
CM
1513 bdi = blk_get_backing_dev_info(device->bdev);
1514 if (bdi && bdi_congested(bdi, bdi_bits)) {
1515 ret = 1;
1516 break;
1517 }
1518 }
1f78160c 1519 rcu_read_unlock();
04160088
CM
1520 return ret;
1521}
1522
ad081f14
JA
1523/*
1524 * If this fails, caller must call bdi_destroy() to get rid of the
1525 * bdi again.
1526 */
04160088
CM
1527static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1528{
ad081f14
JA
1529 int err;
1530
1531 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1532 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1533 if (err)
1534 return err;
1535
4575c9cc 1536 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1537 bdi->congested_fn = btrfs_congested_fn;
1538 bdi->congested_data = info;
1539 return 0;
1540}
1541
ce9adaa5
CM
1542static int bio_ready_for_csum(struct bio *bio)
1543{
1544 u64 length = 0;
1545 u64 buf_len = 0;
1546 u64 start = 0;
1547 struct page *page;
1548 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1549 struct bio_vec *bvec;
1550 int i;
1551 int ret;
1552
1553 bio_for_each_segment(bvec, bio, i) {
1554 page = bvec->bv_page;
1555 if (page->private == EXTENT_PAGE_PRIVATE) {
1556 length += bvec->bv_len;
1557 continue;
1558 }
1559 if (!page->private) {
1560 length += bvec->bv_len;
1561 continue;
1562 }
1563 length = bvec->bv_len;
1564 buf_len = page->private >> 2;
1565 start = page_offset(page) + bvec->bv_offset;
1566 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1567 }
1568 /* are we fully contained in this bio? */
1569 if (buf_len <= length)
1570 return 1;
1571
1572 ret = extent_range_uptodate(io_tree, start + length,
1573 start + buf_len - 1);
ce9adaa5
CM
1574 return ret;
1575}
1576
8b712842
CM
1577/*
1578 * called by the kthread helper functions to finally call the bio end_io
1579 * functions. This is where read checksum verification actually happens
1580 */
1581static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1582{
ce9adaa5 1583 struct bio *bio;
8b712842
CM
1584 struct end_io_wq *end_io_wq;
1585 struct btrfs_fs_info *fs_info;
ce9adaa5 1586 int error;
ce9adaa5 1587
8b712842
CM
1588 end_io_wq = container_of(work, struct end_io_wq, work);
1589 bio = end_io_wq->bio;
1590 fs_info = end_io_wq->info;
ce9adaa5 1591
cad321ad 1592 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1593 * be checksummed at once. This makes sure the entire block is in
1594 * ram and up to date before trying to verify things. For
1595 * blocksize <= pagesize, it is basically a noop
1596 */
7b6d91da 1597 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1598 !bio_ready_for_csum(bio)) {
d20f7043 1599 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1600 &end_io_wq->work);
1601 return;
1602 }
1603 error = end_io_wq->error;
1604 bio->bi_private = end_io_wq->private;
1605 bio->bi_end_io = end_io_wq->end_io;
1606 kfree(end_io_wq);
8b712842 1607 bio_endio(bio, error);
44b8bd7e
CM
1608}
1609
a74a4b97
CM
1610static int cleaner_kthread(void *arg)
1611{
1612 struct btrfs_root *root = arg;
1613
1614 do {
a74a4b97 1615 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1616
1617 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1618 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1619 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1620 btrfs_clean_old_snapshots(root);
1621 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1622 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1623 }
a74a4b97 1624
a0acae0e 1625 if (!try_to_freeze()) {
a74a4b97 1626 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1627 if (!kthread_should_stop())
1628 schedule();
a74a4b97
CM
1629 __set_current_state(TASK_RUNNING);
1630 }
1631 } while (!kthread_should_stop());
1632 return 0;
1633}
1634
1635static int transaction_kthread(void *arg)
1636{
1637 struct btrfs_root *root = arg;
1638 struct btrfs_trans_handle *trans;
1639 struct btrfs_transaction *cur;
8929ecfa 1640 u64 transid;
a74a4b97
CM
1641 unsigned long now;
1642 unsigned long delay;
a74a4b97
CM
1643
1644 do {
a74a4b97
CM
1645 delay = HZ * 30;
1646 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1647 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1648
a4abeea4 1649 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1650 cur = root->fs_info->running_transaction;
1651 if (!cur) {
a4abeea4 1652 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1653 goto sleep;
1654 }
31153d81 1655
a74a4b97 1656 now = get_seconds();
8929ecfa
YZ
1657 if (!cur->blocked &&
1658 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1659 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1660 delay = HZ * 5;
1661 goto sleep;
1662 }
8929ecfa 1663 transid = cur->transid;
a4abeea4 1664 spin_unlock(&root->fs_info->trans_lock);
56bec294 1665
79787eaa 1666 /* If the file system is aborted, this will always fail. */
7a7eaa40 1667 trans = btrfs_join_transaction(root);
79787eaa
JM
1668 if (IS_ERR(trans))
1669 goto sleep;
8929ecfa 1670 if (transid == trans->transid) {
79787eaa 1671 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1672 } else {
1673 btrfs_end_transaction(trans, root);
1674 }
a74a4b97
CM
1675sleep:
1676 wake_up_process(root->fs_info->cleaner_kthread);
1677 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1678
a0acae0e 1679 if (!try_to_freeze()) {
a74a4b97 1680 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1681 if (!kthread_should_stop() &&
1682 !btrfs_transaction_blocked(root->fs_info))
1683 schedule_timeout(delay);
a74a4b97
CM
1684 __set_current_state(TASK_RUNNING);
1685 }
1686 } while (!kthread_should_stop());
1687 return 0;
1688}
1689
af31f5e5
CM
1690/*
1691 * this will find the highest generation in the array of
1692 * root backups. The index of the highest array is returned,
1693 * or -1 if we can't find anything.
1694 *
1695 * We check to make sure the array is valid by comparing the
1696 * generation of the latest root in the array with the generation
1697 * in the super block. If they don't match we pitch it.
1698 */
1699static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1700{
1701 u64 cur;
1702 int newest_index = -1;
1703 struct btrfs_root_backup *root_backup;
1704 int i;
1705
1706 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1707 root_backup = info->super_copy->super_roots + i;
1708 cur = btrfs_backup_tree_root_gen(root_backup);
1709 if (cur == newest_gen)
1710 newest_index = i;
1711 }
1712
1713 /* check to see if we actually wrapped around */
1714 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1715 root_backup = info->super_copy->super_roots;
1716 cur = btrfs_backup_tree_root_gen(root_backup);
1717 if (cur == newest_gen)
1718 newest_index = 0;
1719 }
1720 return newest_index;
1721}
1722
1723
1724/*
1725 * find the oldest backup so we know where to store new entries
1726 * in the backup array. This will set the backup_root_index
1727 * field in the fs_info struct
1728 */
1729static void find_oldest_super_backup(struct btrfs_fs_info *info,
1730 u64 newest_gen)
1731{
1732 int newest_index = -1;
1733
1734 newest_index = find_newest_super_backup(info, newest_gen);
1735 /* if there was garbage in there, just move along */
1736 if (newest_index == -1) {
1737 info->backup_root_index = 0;
1738 } else {
1739 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1740 }
1741}
1742
1743/*
1744 * copy all the root pointers into the super backup array.
1745 * this will bump the backup pointer by one when it is
1746 * done
1747 */
1748static void backup_super_roots(struct btrfs_fs_info *info)
1749{
1750 int next_backup;
1751 struct btrfs_root_backup *root_backup;
1752 int last_backup;
1753
1754 next_backup = info->backup_root_index;
1755 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1756 BTRFS_NUM_BACKUP_ROOTS;
1757
1758 /*
1759 * just overwrite the last backup if we're at the same generation
1760 * this happens only at umount
1761 */
1762 root_backup = info->super_for_commit->super_roots + last_backup;
1763 if (btrfs_backup_tree_root_gen(root_backup) ==
1764 btrfs_header_generation(info->tree_root->node))
1765 next_backup = last_backup;
1766
1767 root_backup = info->super_for_commit->super_roots + next_backup;
1768
1769 /*
1770 * make sure all of our padding and empty slots get zero filled
1771 * regardless of which ones we use today
1772 */
1773 memset(root_backup, 0, sizeof(*root_backup));
1774
1775 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1776
1777 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1778 btrfs_set_backup_tree_root_gen(root_backup,
1779 btrfs_header_generation(info->tree_root->node));
1780
1781 btrfs_set_backup_tree_root_level(root_backup,
1782 btrfs_header_level(info->tree_root->node));
1783
1784 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1785 btrfs_set_backup_chunk_root_gen(root_backup,
1786 btrfs_header_generation(info->chunk_root->node));
1787 btrfs_set_backup_chunk_root_level(root_backup,
1788 btrfs_header_level(info->chunk_root->node));
1789
1790 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1791 btrfs_set_backup_extent_root_gen(root_backup,
1792 btrfs_header_generation(info->extent_root->node));
1793 btrfs_set_backup_extent_root_level(root_backup,
1794 btrfs_header_level(info->extent_root->node));
1795
7c7e82a7
CM
1796 /*
1797 * we might commit during log recovery, which happens before we set
1798 * the fs_root. Make sure it is valid before we fill it in.
1799 */
1800 if (info->fs_root && info->fs_root->node) {
1801 btrfs_set_backup_fs_root(root_backup,
1802 info->fs_root->node->start);
1803 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1804 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1805 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1806 btrfs_header_level(info->fs_root->node));
7c7e82a7 1807 }
af31f5e5
CM
1808
1809 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1810 btrfs_set_backup_dev_root_gen(root_backup,
1811 btrfs_header_generation(info->dev_root->node));
1812 btrfs_set_backup_dev_root_level(root_backup,
1813 btrfs_header_level(info->dev_root->node));
1814
1815 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1816 btrfs_set_backup_csum_root_gen(root_backup,
1817 btrfs_header_generation(info->csum_root->node));
1818 btrfs_set_backup_csum_root_level(root_backup,
1819 btrfs_header_level(info->csum_root->node));
1820
1821 btrfs_set_backup_total_bytes(root_backup,
1822 btrfs_super_total_bytes(info->super_copy));
1823 btrfs_set_backup_bytes_used(root_backup,
1824 btrfs_super_bytes_used(info->super_copy));
1825 btrfs_set_backup_num_devices(root_backup,
1826 btrfs_super_num_devices(info->super_copy));
1827
1828 /*
1829 * if we don't copy this out to the super_copy, it won't get remembered
1830 * for the next commit
1831 */
1832 memcpy(&info->super_copy->super_roots,
1833 &info->super_for_commit->super_roots,
1834 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1835}
1836
1837/*
1838 * this copies info out of the root backup array and back into
1839 * the in-memory super block. It is meant to help iterate through
1840 * the array, so you send it the number of backups you've already
1841 * tried and the last backup index you used.
1842 *
1843 * this returns -1 when it has tried all the backups
1844 */
1845static noinline int next_root_backup(struct btrfs_fs_info *info,
1846 struct btrfs_super_block *super,
1847 int *num_backups_tried, int *backup_index)
1848{
1849 struct btrfs_root_backup *root_backup;
1850 int newest = *backup_index;
1851
1852 if (*num_backups_tried == 0) {
1853 u64 gen = btrfs_super_generation(super);
1854
1855 newest = find_newest_super_backup(info, gen);
1856 if (newest == -1)
1857 return -1;
1858
1859 *backup_index = newest;
1860 *num_backups_tried = 1;
1861 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1862 /* we've tried all the backups, all done */
1863 return -1;
1864 } else {
1865 /* jump to the next oldest backup */
1866 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1867 BTRFS_NUM_BACKUP_ROOTS;
1868 *backup_index = newest;
1869 *num_backups_tried += 1;
1870 }
1871 root_backup = super->super_roots + newest;
1872
1873 btrfs_set_super_generation(super,
1874 btrfs_backup_tree_root_gen(root_backup));
1875 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1876 btrfs_set_super_root_level(super,
1877 btrfs_backup_tree_root_level(root_backup));
1878 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1879
1880 /*
1881 * fixme: the total bytes and num_devices need to match or we should
1882 * need a fsck
1883 */
1884 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1885 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1886 return 0;
1887}
1888
1889/* helper to cleanup tree roots */
1890static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1891{
1892 free_extent_buffer(info->tree_root->node);
1893 free_extent_buffer(info->tree_root->commit_root);
1894 free_extent_buffer(info->dev_root->node);
1895 free_extent_buffer(info->dev_root->commit_root);
1896 free_extent_buffer(info->extent_root->node);
1897 free_extent_buffer(info->extent_root->commit_root);
1898 free_extent_buffer(info->csum_root->node);
1899 free_extent_buffer(info->csum_root->commit_root);
1900
1901 info->tree_root->node = NULL;
1902 info->tree_root->commit_root = NULL;
1903 info->dev_root->node = NULL;
1904 info->dev_root->commit_root = NULL;
1905 info->extent_root->node = NULL;
1906 info->extent_root->commit_root = NULL;
1907 info->csum_root->node = NULL;
1908 info->csum_root->commit_root = NULL;
1909
1910 if (chunk_root) {
1911 free_extent_buffer(info->chunk_root->node);
1912 free_extent_buffer(info->chunk_root->commit_root);
1913 info->chunk_root->node = NULL;
1914 info->chunk_root->commit_root = NULL;
1915 }
1916}
1917
1918
ad2b2c80
AV
1919int open_ctree(struct super_block *sb,
1920 struct btrfs_fs_devices *fs_devices,
1921 char *options)
2e635a27 1922{
db94535d
CM
1923 u32 sectorsize;
1924 u32 nodesize;
1925 u32 leafsize;
1926 u32 blocksize;
87ee04eb 1927 u32 stripesize;
84234f3a 1928 u64 generation;
f2b636e8 1929 u64 features;
3de4586c 1930 struct btrfs_key location;
a061fc8d 1931 struct buffer_head *bh;
4d34b278 1932 struct btrfs_super_block *disk_super;
815745cf 1933 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1934 struct btrfs_root *tree_root;
4d34b278
ID
1935 struct btrfs_root *extent_root;
1936 struct btrfs_root *csum_root;
1937 struct btrfs_root *chunk_root;
1938 struct btrfs_root *dev_root;
e02119d5 1939 struct btrfs_root *log_tree_root;
eb60ceac 1940 int ret;
e58ca020 1941 int err = -EINVAL;
af31f5e5
CM
1942 int num_backups_tried = 0;
1943 int backup_index = 0;
4543df7e 1944
f84a8bd6 1945 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1946 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1947 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1948 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1949 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1950
f84a8bd6
AV
1951 if (!tree_root || !extent_root || !csum_root ||
1952 !chunk_root || !dev_root) {
39279cc3
CM
1953 err = -ENOMEM;
1954 goto fail;
1955 }
76dda93c
YZ
1956
1957 ret = init_srcu_struct(&fs_info->subvol_srcu);
1958 if (ret) {
1959 err = ret;
1960 goto fail;
1961 }
1962
1963 ret = setup_bdi(fs_info, &fs_info->bdi);
1964 if (ret) {
1965 err = ret;
1966 goto fail_srcu;
1967 }
1968
1969 fs_info->btree_inode = new_inode(sb);
1970 if (!fs_info->btree_inode) {
1971 err = -ENOMEM;
1972 goto fail_bdi;
1973 }
1974
a6591715 1975 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1976
76dda93c 1977 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1978 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1979 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1980 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1981 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1982 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1983 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1984 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1985 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1986 spin_lock_init(&fs_info->trans_lock);
31153d81 1987 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1988 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1989 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1990 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1991 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1992 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1993
58176a96 1994 init_completion(&fs_info->kobj_unregister);
0b86a832 1995 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1996 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1997 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1998 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1999 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2000 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2001 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2002 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 2003 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 2004 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2005 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2006 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2007 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2008 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 2009 fs_info->sb = sb;
6f568d35 2010 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2011 fs_info->metadata_ratio = 0;
4cb5300b 2012 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2013 fs_info->trans_no_join = 0;
2bf64758 2014 fs_info->free_chunk_space = 0;
c8b97818 2015
90519d66
AJ
2016 /* readahead state */
2017 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2018 spin_lock_init(&fs_info->reada_lock);
c8b97818 2019
b34b086c
CM
2020 fs_info->thread_pool_size = min_t(unsigned long,
2021 num_online_cpus() + 2, 8);
0afbaf8c 2022
3eaa2885
CM
2023 INIT_LIST_HEAD(&fs_info->ordered_extents);
2024 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2025 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2026 GFP_NOFS);
2027 if (!fs_info->delayed_root) {
2028 err = -ENOMEM;
2029 goto fail_iput;
2030 }
2031 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2032
a2de733c
AJ
2033 mutex_init(&fs_info->scrub_lock);
2034 atomic_set(&fs_info->scrubs_running, 0);
2035 atomic_set(&fs_info->scrub_pause_req, 0);
2036 atomic_set(&fs_info->scrubs_paused, 0);
2037 atomic_set(&fs_info->scrub_cancel_req, 0);
2038 init_waitqueue_head(&fs_info->scrub_pause_wait);
2039 init_rwsem(&fs_info->scrub_super_lock);
2040 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2041#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2042 fs_info->check_integrity_print_mask = 0;
2043#endif
a2de733c 2044
c9e9f97b
ID
2045 spin_lock_init(&fs_info->balance_lock);
2046 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2047 atomic_set(&fs_info->balance_running, 0);
2048 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2049 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2050 fs_info->balance_ctl = NULL;
837d5b6e 2051 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2052
a061fc8d
CM
2053 sb->s_blocksize = 4096;
2054 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2055 sb->s_bdi = &fs_info->bdi;
a061fc8d 2056
76dda93c 2057 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2058 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2059 /*
2060 * we set the i_size on the btree inode to the max possible int.
2061 * the real end of the address space is determined by all of
2062 * the devices in the system
2063 */
2064 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2065 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2066 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2067
5d4f98a2 2068 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2069 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2070 fs_info->btree_inode->i_mapping);
a8067e02 2071 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2072
2073 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2074
76dda93c
YZ
2075 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2076 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2077 sizeof(struct btrfs_key));
2078 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 2079 insert_inode_hash(fs_info->btree_inode);
76dda93c 2080
0f9dd46c 2081 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2082 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2083
11833d66 2084 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2085 fs_info->btree_inode->i_mapping);
11833d66 2086 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2087 fs_info->btree_inode->i_mapping);
11833d66 2088 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2089 fs_info->do_barriers = 1;
e18e4809 2090
39279cc3 2091
5a3f23d5 2092 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2093 mutex_init(&fs_info->tree_log_mutex);
925baedd 2094 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2095 mutex_init(&fs_info->transaction_kthread_mutex);
2096 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2097 mutex_init(&fs_info->volume_mutex);
276e680d 2098 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2099 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2100 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2101
2102 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2103 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2104
e6dcd2dc 2105 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2106 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2107 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2108 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2109
0b86a832 2110 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2111 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2112
a512bbf8 2113 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2114 if (!bh) {
2115 err = -EINVAL;
16cdcec7 2116 goto fail_alloc;
20b45077 2117 }
39279cc3 2118
6c41761f
DS
2119 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2120 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2121 sizeof(*fs_info->super_for_commit));
a061fc8d 2122 brelse(bh);
5f39d397 2123
6c41761f 2124 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2125
6c41761f 2126 disk_super = fs_info->super_copy;
0f7d52f4 2127 if (!btrfs_super_root(disk_super))
16cdcec7 2128 goto fail_alloc;
0f7d52f4 2129
acce952b 2130 /* check FS state, whether FS is broken. */
2131 fs_info->fs_state |= btrfs_super_flags(disk_super);
2132
2133 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2134
af31f5e5
CM
2135 /*
2136 * run through our array of backup supers and setup
2137 * our ring pointer to the oldest one
2138 */
2139 generation = btrfs_super_generation(disk_super);
2140 find_oldest_super_backup(fs_info, generation);
2141
75e7cb7f
LB
2142 /*
2143 * In the long term, we'll store the compression type in the super
2144 * block, and it'll be used for per file compression control.
2145 */
2146 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2147
2b82032c
YZ
2148 ret = btrfs_parse_options(tree_root, options);
2149 if (ret) {
2150 err = ret;
16cdcec7 2151 goto fail_alloc;
2b82032c 2152 }
dfe25020 2153
f2b636e8
JB
2154 features = btrfs_super_incompat_flags(disk_super) &
2155 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2156 if (features) {
2157 printk(KERN_ERR "BTRFS: couldn't mount because of "
2158 "unsupported optional features (%Lx).\n",
21380931 2159 (unsigned long long)features);
f2b636e8 2160 err = -EINVAL;
16cdcec7 2161 goto fail_alloc;
f2b636e8
JB
2162 }
2163
5d4f98a2 2164 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2165 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2166 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2167 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2168 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2169
f2b636e8
JB
2170 features = btrfs_super_compat_ro_flags(disk_super) &
2171 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2172 if (!(sb->s_flags & MS_RDONLY) && features) {
2173 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2174 "unsupported option features (%Lx).\n",
21380931 2175 (unsigned long long)features);
f2b636e8 2176 err = -EINVAL;
16cdcec7 2177 goto fail_alloc;
f2b636e8 2178 }
61d92c32
CM
2179
2180 btrfs_init_workers(&fs_info->generic_worker,
2181 "genwork", 1, NULL);
2182
5443be45 2183 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2184 fs_info->thread_pool_size,
2185 &fs_info->generic_worker);
c8b97818 2186
771ed689 2187 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2188 fs_info->thread_pool_size,
2189 &fs_info->generic_worker);
771ed689 2190
5443be45 2191 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2192 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2193 fs_info->thread_pool_size),
2194 &fs_info->generic_worker);
61b49440 2195
bab39bf9
JB
2196 btrfs_init_workers(&fs_info->caching_workers, "cache",
2197 2, &fs_info->generic_worker);
2198
61b49440
CM
2199 /* a higher idle thresh on the submit workers makes it much more
2200 * likely that bios will be send down in a sane order to the
2201 * devices
2202 */
2203 fs_info->submit_workers.idle_thresh = 64;
53863232 2204
771ed689 2205 fs_info->workers.idle_thresh = 16;
4a69a410 2206 fs_info->workers.ordered = 1;
61b49440 2207
771ed689
CM
2208 fs_info->delalloc_workers.idle_thresh = 2;
2209 fs_info->delalloc_workers.ordered = 1;
2210
61d92c32
CM
2211 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2212 &fs_info->generic_worker);
5443be45 2213 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2214 fs_info->thread_pool_size,
2215 &fs_info->generic_worker);
d20f7043 2216 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2217 fs_info->thread_pool_size,
2218 &fs_info->generic_worker);
cad321ad 2219 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2220 "endio-meta-write", fs_info->thread_pool_size,
2221 &fs_info->generic_worker);
5443be45 2222 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2223 fs_info->thread_pool_size,
2224 &fs_info->generic_worker);
0cb59c99
JB
2225 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2226 1, &fs_info->generic_worker);
16cdcec7
MX
2227 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2228 fs_info->thread_pool_size,
2229 &fs_info->generic_worker);
90519d66
AJ
2230 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2231 fs_info->thread_pool_size,
2232 &fs_info->generic_worker);
61b49440
CM
2233
2234 /*
2235 * endios are largely parallel and should have a very
2236 * low idle thresh
2237 */
2238 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2239 fs_info->endio_meta_workers.idle_thresh = 4;
2240
9042846b
CM
2241 fs_info->endio_write_workers.idle_thresh = 2;
2242 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2243 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2244
0dc3b84a
JB
2245 /*
2246 * btrfs_start_workers can really only fail because of ENOMEM so just
2247 * return -ENOMEM if any of these fail.
2248 */
2249 ret = btrfs_start_workers(&fs_info->workers);
2250 ret |= btrfs_start_workers(&fs_info->generic_worker);
2251 ret |= btrfs_start_workers(&fs_info->submit_workers);
2252 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2253 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2254 ret |= btrfs_start_workers(&fs_info->endio_workers);
2255 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2256 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2257 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2258 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2259 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2260 ret |= btrfs_start_workers(&fs_info->caching_workers);
2261 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2262 if (ret) {
2263 ret = -ENOMEM;
2264 goto fail_sb_buffer;
2265 }
4543df7e 2266
4575c9cc 2267 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2268 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2269 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2270
db94535d
CM
2271 nodesize = btrfs_super_nodesize(disk_super);
2272 leafsize = btrfs_super_leafsize(disk_super);
2273 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2274 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2275 tree_root->nodesize = nodesize;
2276 tree_root->leafsize = leafsize;
2277 tree_root->sectorsize = sectorsize;
87ee04eb 2278 tree_root->stripesize = stripesize;
a061fc8d
CM
2279
2280 sb->s_blocksize = sectorsize;
2281 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2282
39279cc3
CM
2283 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2284 sizeof(disk_super->magic))) {
d397712b 2285 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2286 goto fail_sb_buffer;
2287 }
19c00ddc 2288
941b2ddf
KM
2289 if (sectorsize < PAGE_SIZE) {
2290 printk(KERN_WARNING "btrfs: Incompatible sector size "
2291 "found on %s\n", sb->s_id);
2292 goto fail_sb_buffer;
2293 }
2294
925baedd 2295 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2296 ret = btrfs_read_sys_array(tree_root);
925baedd 2297 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2298 if (ret) {
d397712b
CM
2299 printk(KERN_WARNING "btrfs: failed to read the system "
2300 "array on %s\n", sb->s_id);
5d4f98a2 2301 goto fail_sb_buffer;
84eed90f 2302 }
0b86a832
CM
2303
2304 blocksize = btrfs_level_size(tree_root,
2305 btrfs_super_chunk_root_level(disk_super));
84234f3a 2306 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2307
2308 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2309 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2310
2311 chunk_root->node = read_tree_block(chunk_root,
2312 btrfs_super_chunk_root(disk_super),
84234f3a 2313 blocksize, generation);
79787eaa 2314 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2315 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2316 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2317 sb->s_id);
af31f5e5 2318 goto fail_tree_roots;
83121942 2319 }
5d4f98a2
YZ
2320 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2321 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2322
e17cade2 2323 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2324 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2325 BTRFS_UUID_SIZE);
e17cade2 2326
0b86a832 2327 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2328 if (ret) {
d397712b
CM
2329 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2330 sb->s_id);
af31f5e5 2331 goto fail_tree_roots;
2b82032c 2332 }
0b86a832 2333
dfe25020
CM
2334 btrfs_close_extra_devices(fs_devices);
2335
a6b0d5c8
CM
2336 if (!fs_devices->latest_bdev) {
2337 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2338 sb->s_id);
2339 goto fail_tree_roots;
2340 }
2341
af31f5e5 2342retry_root_backup:
db94535d
CM
2343 blocksize = btrfs_level_size(tree_root,
2344 btrfs_super_root_level(disk_super));
84234f3a 2345 generation = btrfs_super_generation(disk_super);
0b86a832 2346
e20d96d6 2347 tree_root->node = read_tree_block(tree_root,
db94535d 2348 btrfs_super_root(disk_super),
84234f3a 2349 blocksize, generation);
af31f5e5
CM
2350 if (!tree_root->node ||
2351 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2352 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2353 sb->s_id);
af31f5e5
CM
2354
2355 goto recovery_tree_root;
83121942 2356 }
af31f5e5 2357
5d4f98a2
YZ
2358 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2359 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2360
2361 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2362 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2363 if (ret)
af31f5e5 2364 goto recovery_tree_root;
0b86a832
CM
2365 extent_root->track_dirty = 1;
2366
2367 ret = find_and_setup_root(tree_root, fs_info,
2368 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2369 if (ret)
af31f5e5 2370 goto recovery_tree_root;
5d4f98a2 2371 dev_root->track_dirty = 1;
3768f368 2372
d20f7043
CM
2373 ret = find_and_setup_root(tree_root, fs_info,
2374 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2375 if (ret)
af31f5e5 2376 goto recovery_tree_root;
d20f7043
CM
2377
2378 csum_root->track_dirty = 1;
2379
8929ecfa
YZ
2380 fs_info->generation = generation;
2381 fs_info->last_trans_committed = generation;
8929ecfa 2382
c59021f8 2383 ret = btrfs_init_space_info(fs_info);
2384 if (ret) {
2385 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2386 goto fail_block_groups;
2387 }
2388
1b1d1f66
JB
2389 ret = btrfs_read_block_groups(extent_root);
2390 if (ret) {
2391 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2392 goto fail_block_groups;
2393 }
9078a3e1 2394
a74a4b97
CM
2395 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2396 "btrfs-cleaner");
57506d50 2397 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2398 goto fail_block_groups;
a74a4b97
CM
2399
2400 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2401 tree_root,
2402 "btrfs-transaction");
57506d50 2403 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2404 goto fail_cleaner;
a74a4b97 2405
c289811c
CM
2406 if (!btrfs_test_opt(tree_root, SSD) &&
2407 !btrfs_test_opt(tree_root, NOSSD) &&
2408 !fs_info->fs_devices->rotating) {
2409 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2410 "mode\n");
2411 btrfs_set_opt(fs_info->mount_opt, SSD);
2412 }
2413
21adbd5c
SB
2414#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2415 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2416 ret = btrfsic_mount(tree_root, fs_devices,
2417 btrfs_test_opt(tree_root,
2418 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2419 1 : 0,
2420 fs_info->check_integrity_print_mask);
2421 if (ret)
2422 printk(KERN_WARNING "btrfs: failed to initialize"
2423 " integrity check module %s\n", sb->s_id);
2424 }
2425#endif
2426
acce952b 2427 /* do not make disk changes in broken FS */
2428 if (btrfs_super_log_root(disk_super) != 0 &&
2429 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2430 u64 bytenr = btrfs_super_log_root(disk_super);
2431
7c2ca468 2432 if (fs_devices->rw_devices == 0) {
d397712b
CM
2433 printk(KERN_WARNING "Btrfs log replay required "
2434 "on RO media\n");
7c2ca468
CM
2435 err = -EIO;
2436 goto fail_trans_kthread;
2437 }
e02119d5
CM
2438 blocksize =
2439 btrfs_level_size(tree_root,
2440 btrfs_super_log_root_level(disk_super));
d18a2c44 2441
6f07e42e 2442 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2443 if (!log_tree_root) {
2444 err = -ENOMEM;
2445 goto fail_trans_kthread;
2446 }
e02119d5
CM
2447
2448 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2449 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2450
2451 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2452 blocksize,
2453 generation + 1);
79787eaa 2454 /* returns with log_tree_root freed on success */
e02119d5 2455 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2456 if (ret) {
2457 btrfs_error(tree_root->fs_info, ret,
2458 "Failed to recover log tree");
2459 free_extent_buffer(log_tree_root->node);
2460 kfree(log_tree_root);
2461 goto fail_trans_kthread;
2462 }
e556ce2c
YZ
2463
2464 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2465 ret = btrfs_commit_super(tree_root);
2466 if (ret)
2467 goto fail_trans_kthread;
e556ce2c 2468 }
e02119d5 2469 }
1a40e23b 2470
76dda93c 2471 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2472 if (ret)
2473 goto fail_trans_kthread;
76dda93c 2474
7c2ca468 2475 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2476 ret = btrfs_cleanup_fs_roots(fs_info);
79787eaa
JM
2477 if (ret) {
2478 }
d68fc57b 2479
5d4f98a2 2480 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2481 if (ret < 0) {
2482 printk(KERN_WARNING
2483 "btrfs: failed to recover relocation\n");
2484 err = -EINVAL;
2485 goto fail_trans_kthread;
2486 }
7c2ca468 2487 }
1a40e23b 2488
3de4586c
CM
2489 location.objectid = BTRFS_FS_TREE_OBJECTID;
2490 location.type = BTRFS_ROOT_ITEM_KEY;
2491 location.offset = (u64)-1;
2492
3de4586c
CM
2493 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2494 if (!fs_info->fs_root)
7c2ca468 2495 goto fail_trans_kthread;
3140c9a3
DC
2496 if (IS_ERR(fs_info->fs_root)) {
2497 err = PTR_ERR(fs_info->fs_root);
2498 goto fail_trans_kthread;
2499 }
c289811c 2500
e3acc2a6
JB
2501 if (!(sb->s_flags & MS_RDONLY)) {
2502 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2503 err = btrfs_orphan_cleanup(fs_info->fs_root);
2504 if (!err)
2505 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2506 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2507
2508 if (!err)
2509 err = btrfs_recover_balance(fs_info->tree_root);
2510
66b4ffd1
JB
2511 if (err) {
2512 close_ctree(tree_root);
ad2b2c80 2513 return err;
66b4ffd1 2514 }
e3acc2a6
JB
2515 }
2516
ad2b2c80 2517 return 0;
39279cc3 2518
7c2ca468
CM
2519fail_trans_kthread:
2520 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2521fail_cleaner:
a74a4b97 2522 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2523
2524 /*
2525 * make sure we're done with the btree inode before we stop our
2526 * kthreads
2527 */
2528 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2529 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2530
1b1d1f66
JB
2531fail_block_groups:
2532 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2533
2534fail_tree_roots:
2535 free_root_pointers(fs_info, 1);
2536
39279cc3 2537fail_sb_buffer:
61d92c32 2538 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2539 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2540 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2541 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2542 btrfs_stop_workers(&fs_info->workers);
2543 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2544 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2545 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2546 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2547 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2548 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2549 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2550 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2551fail_alloc:
4543df7e 2552fail_iput:
586e46e2
ID
2553 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2554
7c2ca468 2555 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2556 iput(fs_info->btree_inode);
ad081f14 2557fail_bdi:
7e662854 2558 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2559fail_srcu:
2560 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2561fail:
586e46e2 2562 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2563 return err;
af31f5e5
CM
2564
2565recovery_tree_root:
af31f5e5
CM
2566 if (!btrfs_test_opt(tree_root, RECOVERY))
2567 goto fail_tree_roots;
2568
2569 free_root_pointers(fs_info, 0);
2570
2571 /* don't use the log in recovery mode, it won't be valid */
2572 btrfs_set_super_log_root(disk_super, 0);
2573
2574 /* we can't trust the free space cache either */
2575 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2576
2577 ret = next_root_backup(fs_info, fs_info->super_copy,
2578 &num_backups_tried, &backup_index);
2579 if (ret == -1)
2580 goto fail_block_groups;
2581 goto retry_root_backup;
eb60ceac
CM
2582}
2583
f2984462
CM
2584static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2585{
2586 char b[BDEVNAME_SIZE];
2587
2588 if (uptodate) {
2589 set_buffer_uptodate(bh);
2590 } else {
7a36ddec 2591 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2592 "I/O error on %s\n",
2593 bdevname(bh->b_bdev, b));
1259ab75
CM
2594 /* note, we dont' set_buffer_write_io_error because we have
2595 * our own ways of dealing with the IO errors
2596 */
f2984462
CM
2597 clear_buffer_uptodate(bh);
2598 }
2599 unlock_buffer(bh);
2600 put_bh(bh);
2601}
2602
a512bbf8
YZ
2603struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2604{
2605 struct buffer_head *bh;
2606 struct buffer_head *latest = NULL;
2607 struct btrfs_super_block *super;
2608 int i;
2609 u64 transid = 0;
2610 u64 bytenr;
2611
2612 /* we would like to check all the supers, but that would make
2613 * a btrfs mount succeed after a mkfs from a different FS.
2614 * So, we need to add a special mount option to scan for
2615 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2616 */
2617 for (i = 0; i < 1; i++) {
2618 bytenr = btrfs_sb_offset(i);
2619 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2620 break;
2621 bh = __bread(bdev, bytenr / 4096, 4096);
2622 if (!bh)
2623 continue;
2624
2625 super = (struct btrfs_super_block *)bh->b_data;
2626 if (btrfs_super_bytenr(super) != bytenr ||
2627 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2628 sizeof(super->magic))) {
2629 brelse(bh);
2630 continue;
2631 }
2632
2633 if (!latest || btrfs_super_generation(super) > transid) {
2634 brelse(latest);
2635 latest = bh;
2636 transid = btrfs_super_generation(super);
2637 } else {
2638 brelse(bh);
2639 }
2640 }
2641 return latest;
2642}
2643
4eedeb75
HH
2644/*
2645 * this should be called twice, once with wait == 0 and
2646 * once with wait == 1. When wait == 0 is done, all the buffer heads
2647 * we write are pinned.
2648 *
2649 * They are released when wait == 1 is done.
2650 * max_mirrors must be the same for both runs, and it indicates how
2651 * many supers on this one device should be written.
2652 *
2653 * max_mirrors == 0 means to write them all.
2654 */
a512bbf8
YZ
2655static int write_dev_supers(struct btrfs_device *device,
2656 struct btrfs_super_block *sb,
2657 int do_barriers, int wait, int max_mirrors)
2658{
2659 struct buffer_head *bh;
2660 int i;
2661 int ret;
2662 int errors = 0;
2663 u32 crc;
2664 u64 bytenr;
a512bbf8
YZ
2665
2666 if (max_mirrors == 0)
2667 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2668
a512bbf8
YZ
2669 for (i = 0; i < max_mirrors; i++) {
2670 bytenr = btrfs_sb_offset(i);
2671 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2672 break;
2673
2674 if (wait) {
2675 bh = __find_get_block(device->bdev, bytenr / 4096,
2676 BTRFS_SUPER_INFO_SIZE);
2677 BUG_ON(!bh);
a512bbf8 2678 wait_on_buffer(bh);
4eedeb75
HH
2679 if (!buffer_uptodate(bh))
2680 errors++;
2681
2682 /* drop our reference */
2683 brelse(bh);
2684
2685 /* drop the reference from the wait == 0 run */
2686 brelse(bh);
2687 continue;
a512bbf8
YZ
2688 } else {
2689 btrfs_set_super_bytenr(sb, bytenr);
2690
2691 crc = ~(u32)0;
2692 crc = btrfs_csum_data(NULL, (char *)sb +
2693 BTRFS_CSUM_SIZE, crc,
2694 BTRFS_SUPER_INFO_SIZE -
2695 BTRFS_CSUM_SIZE);
2696 btrfs_csum_final(crc, sb->csum);
2697
4eedeb75
HH
2698 /*
2699 * one reference for us, and we leave it for the
2700 * caller
2701 */
a512bbf8
YZ
2702 bh = __getblk(device->bdev, bytenr / 4096,
2703 BTRFS_SUPER_INFO_SIZE);
2704 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2705
4eedeb75 2706 /* one reference for submit_bh */
a512bbf8 2707 get_bh(bh);
4eedeb75
HH
2708
2709 set_buffer_uptodate(bh);
a512bbf8
YZ
2710 lock_buffer(bh);
2711 bh->b_end_io = btrfs_end_buffer_write_sync;
2712 }
2713
387125fc
CM
2714 /*
2715 * we fua the first super. The others we allow
2716 * to go down lazy.
2717 */
21adbd5c 2718 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2719 if (ret)
a512bbf8 2720 errors++;
a512bbf8
YZ
2721 }
2722 return errors < i ? 0 : -1;
2723}
2724
387125fc
CM
2725/*
2726 * endio for the write_dev_flush, this will wake anyone waiting
2727 * for the barrier when it is done
2728 */
2729static void btrfs_end_empty_barrier(struct bio *bio, int err)
2730{
2731 if (err) {
2732 if (err == -EOPNOTSUPP)
2733 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2734 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2735 }
2736 if (bio->bi_private)
2737 complete(bio->bi_private);
2738 bio_put(bio);
2739}
2740
2741/*
2742 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2743 * sent down. With wait == 1, it waits for the previous flush.
2744 *
2745 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2746 * capable
2747 */
2748static int write_dev_flush(struct btrfs_device *device, int wait)
2749{
2750 struct bio *bio;
2751 int ret = 0;
2752
2753 if (device->nobarriers)
2754 return 0;
2755
2756 if (wait) {
2757 bio = device->flush_bio;
2758 if (!bio)
2759 return 0;
2760
2761 wait_for_completion(&device->flush_wait);
2762
2763 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2764 printk("btrfs: disabling barriers on dev %s\n",
2765 device->name);
2766 device->nobarriers = 1;
2767 }
2768 if (!bio_flagged(bio, BIO_UPTODATE)) {
2769 ret = -EIO;
2770 }
2771
2772 /* drop the reference from the wait == 0 run */
2773 bio_put(bio);
2774 device->flush_bio = NULL;
2775
2776 return ret;
2777 }
2778
2779 /*
2780 * one reference for us, and we leave it for the
2781 * caller
2782 */
2783 device->flush_bio = NULL;;
2784 bio = bio_alloc(GFP_NOFS, 0);
2785 if (!bio)
2786 return -ENOMEM;
2787
2788 bio->bi_end_io = btrfs_end_empty_barrier;
2789 bio->bi_bdev = device->bdev;
2790 init_completion(&device->flush_wait);
2791 bio->bi_private = &device->flush_wait;
2792 device->flush_bio = bio;
2793
2794 bio_get(bio);
21adbd5c 2795 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2796
2797 return 0;
2798}
2799
2800/*
2801 * send an empty flush down to each device in parallel,
2802 * then wait for them
2803 */
2804static int barrier_all_devices(struct btrfs_fs_info *info)
2805{
2806 struct list_head *head;
2807 struct btrfs_device *dev;
2808 int errors = 0;
2809 int ret;
2810
2811 /* send down all the barriers */
2812 head = &info->fs_devices->devices;
2813 list_for_each_entry_rcu(dev, head, dev_list) {
2814 if (!dev->bdev) {
2815 errors++;
2816 continue;
2817 }
2818 if (!dev->in_fs_metadata || !dev->writeable)
2819 continue;
2820
2821 ret = write_dev_flush(dev, 0);
2822 if (ret)
2823 errors++;
2824 }
2825
2826 /* wait for all the barriers */
2827 list_for_each_entry_rcu(dev, head, dev_list) {
2828 if (!dev->bdev) {
2829 errors++;
2830 continue;
2831 }
2832 if (!dev->in_fs_metadata || !dev->writeable)
2833 continue;
2834
2835 ret = write_dev_flush(dev, 1);
2836 if (ret)
2837 errors++;
2838 }
2839 if (errors)
2840 return -EIO;
2841 return 0;
2842}
2843
a512bbf8 2844int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2845{
e5e9a520 2846 struct list_head *head;
f2984462 2847 struct btrfs_device *dev;
a061fc8d 2848 struct btrfs_super_block *sb;
f2984462 2849 struct btrfs_dev_item *dev_item;
f2984462
CM
2850 int ret;
2851 int do_barriers;
a236aed1
CM
2852 int max_errors;
2853 int total_errors = 0;
a061fc8d 2854 u64 flags;
f2984462 2855
6c41761f 2856 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2857 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2858 backup_super_roots(root->fs_info);
f2984462 2859
6c41761f 2860 sb = root->fs_info->super_for_commit;
a061fc8d 2861 dev_item = &sb->dev_item;
e5e9a520 2862
174ba509 2863 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2864 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2865
2866 if (do_barriers)
2867 barrier_all_devices(root->fs_info);
2868
1f78160c 2869 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2870 if (!dev->bdev) {
2871 total_errors++;
2872 continue;
2873 }
2b82032c 2874 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2875 continue;
2876
2b82032c 2877 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2878 btrfs_set_stack_device_type(dev_item, dev->type);
2879 btrfs_set_stack_device_id(dev_item, dev->devid);
2880 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2881 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2882 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2883 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2884 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2885 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2886 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2887
a061fc8d
CM
2888 flags = btrfs_super_flags(sb);
2889 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2890
a512bbf8 2891 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2892 if (ret)
2893 total_errors++;
f2984462 2894 }
a236aed1 2895 if (total_errors > max_errors) {
d397712b
CM
2896 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2897 total_errors);
79787eaa
JM
2898
2899 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
2900 BUG();
2901 }
f2984462 2902
a512bbf8 2903 total_errors = 0;
1f78160c 2904 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2905 if (!dev->bdev)
2906 continue;
2b82032c 2907 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2908 continue;
2909
a512bbf8
YZ
2910 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2911 if (ret)
2912 total_errors++;
f2984462 2913 }
174ba509 2914 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2915 if (total_errors > max_errors) {
79787eaa
JM
2916 btrfs_error(root->fs_info, -EIO,
2917 "%d errors while writing supers", total_errors);
2918 return -EIO;
a236aed1 2919 }
f2984462
CM
2920 return 0;
2921}
2922
a512bbf8
YZ
2923int write_ctree_super(struct btrfs_trans_handle *trans,
2924 struct btrfs_root *root, int max_mirrors)
eb60ceac 2925{
e66f709b 2926 int ret;
5f39d397 2927
a512bbf8 2928 ret = write_all_supers(root, max_mirrors);
5f39d397 2929 return ret;
cfaa7295
CM
2930}
2931
49b25e05
JM
2932/* Kill all outstanding I/O */
2933void btrfs_abort_devices(struct btrfs_root *root)
2934{
2935 struct list_head *head;
2936 struct btrfs_device *dev;
2937 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2938 head = &root->fs_info->fs_devices->devices;
2939 list_for_each_entry_rcu(dev, head, dev_list) {
2940 blk_abort_queue(dev->bdev->bd_disk->queue);
2941 }
2942 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2943}
2944
143bede5 2945void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2946{
4df27c4d 2947 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2948 radix_tree_delete(&fs_info->fs_roots_radix,
2949 (unsigned long)root->root_key.objectid);
4df27c4d 2950 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2951
2952 if (btrfs_root_refs(&root->root_item) == 0)
2953 synchronize_srcu(&fs_info->subvol_srcu);
2954
581bb050
LZ
2955 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2956 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 2957 free_fs_root(root);
4df27c4d
YZ
2958}
2959
2960static void free_fs_root(struct btrfs_root *root)
2961{
82d5902d 2962 iput(root->cache_inode);
4df27c4d 2963 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2964 if (root->anon_dev)
2965 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2966 free_extent_buffer(root->node);
2967 free_extent_buffer(root->commit_root);
581bb050
LZ
2968 kfree(root->free_ino_ctl);
2969 kfree(root->free_ino_pinned);
d397712b 2970 kfree(root->name);
2619ba1f 2971 kfree(root);
2619ba1f
CM
2972}
2973
143bede5 2974static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2975{
2976 int ret;
2977 struct btrfs_root *gang[8];
2978 int i;
2979
76dda93c
YZ
2980 while (!list_empty(&fs_info->dead_roots)) {
2981 gang[0] = list_entry(fs_info->dead_roots.next,
2982 struct btrfs_root, root_list);
2983 list_del(&gang[0]->root_list);
2984
2985 if (gang[0]->in_radix) {
2986 btrfs_free_fs_root(fs_info, gang[0]);
2987 } else {
2988 free_extent_buffer(gang[0]->node);
2989 free_extent_buffer(gang[0]->commit_root);
2990 kfree(gang[0]);
2991 }
2992 }
2993
d397712b 2994 while (1) {
0f7d52f4
CM
2995 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2996 (void **)gang, 0,
2997 ARRAY_SIZE(gang));
2998 if (!ret)
2999 break;
2619ba1f 3000 for (i = 0; i < ret; i++)
5eda7b5e 3001 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3002 }
0f7d52f4 3003}
b4100d64 3004
c146afad 3005int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3006{
c146afad
YZ
3007 u64 root_objectid = 0;
3008 struct btrfs_root *gang[8];
3009 int i;
3768f368 3010 int ret;
e089f05c 3011
c146afad
YZ
3012 while (1) {
3013 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3014 (void **)gang, root_objectid,
3015 ARRAY_SIZE(gang));
3016 if (!ret)
3017 break;
5d4f98a2
YZ
3018
3019 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3020 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3021 int err;
3022
c146afad 3023 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3024 err = btrfs_orphan_cleanup(gang[i]);
3025 if (err)
3026 return err;
c146afad
YZ
3027 }
3028 root_objectid++;
3029 }
3030 return 0;
3031}
a2135011 3032
c146afad
YZ
3033int btrfs_commit_super(struct btrfs_root *root)
3034{
3035 struct btrfs_trans_handle *trans;
3036 int ret;
a74a4b97 3037
c146afad 3038 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3039 btrfs_run_delayed_iputs(root);
a74a4b97 3040 btrfs_clean_old_snapshots(root);
c146afad 3041 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3042
3043 /* wait until ongoing cleanup work done */
3044 down_write(&root->fs_info->cleanup_work_sem);
3045 up_write(&root->fs_info->cleanup_work_sem);
3046
7a7eaa40 3047 trans = btrfs_join_transaction(root);
3612b495
TI
3048 if (IS_ERR(trans))
3049 return PTR_ERR(trans);
54aa1f4d 3050 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3051 if (ret)
3052 return ret;
c146afad 3053 /* run commit again to drop the original snapshot */
7a7eaa40 3054 trans = btrfs_join_transaction(root);
3612b495
TI
3055 if (IS_ERR(trans))
3056 return PTR_ERR(trans);
79787eaa
JM
3057 ret = btrfs_commit_transaction(trans, root);
3058 if (ret)
3059 return ret;
79154b1b 3060 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3061 if (ret) {
3062 btrfs_error(root->fs_info, ret,
3063 "Failed to sync btree inode to disk.");
3064 return ret;
3065 }
d6bfde87 3066
a512bbf8 3067 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3068 return ret;
3069}
3070
3071int close_ctree(struct btrfs_root *root)
3072{
3073 struct btrfs_fs_info *fs_info = root->fs_info;
3074 int ret;
3075
3076 fs_info->closing = 1;
3077 smp_mb();
3078
837d5b6e
ID
3079 /* pause restriper - we want to resume on mount */
3080 btrfs_pause_balance(root->fs_info);
3081
a2de733c 3082 btrfs_scrub_cancel(root);
4cb5300b
CM
3083
3084 /* wait for any defraggers to finish */
3085 wait_event(fs_info->transaction_wait,
3086 (atomic_read(&fs_info->defrag_running) == 0));
3087
3088 /* clear out the rbtree of defraggable inodes */
e3029d9f 3089 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3090
acce952b 3091 /*
3092 * Here come 2 situations when btrfs is broken to flip readonly:
3093 *
3094 * 1. when btrfs flips readonly somewhere else before
3095 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3096 * and btrfs will skip to write sb directly to keep
3097 * ERROR state on disk.
3098 *
3099 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3100 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3101 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3102 * btrfs will cleanup all FS resources first and write sb then.
3103 */
c146afad 3104 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3105 ret = btrfs_commit_super(root);
3106 if (ret)
3107 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3108 }
3109
3110 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3111 ret = btrfs_error_commit_super(root);
d397712b
CM
3112 if (ret)
3113 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3114 }
0f7d52f4 3115
300e4f8a
JB
3116 btrfs_put_block_group_cache(fs_info);
3117
e3029d9f
AV
3118 kthread_stop(fs_info->transaction_kthread);
3119 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3120
f25784b3
YZ
3121 fs_info->closing = 2;
3122 smp_mb();
3123
b0c68f8b 3124 if (fs_info->delalloc_bytes) {
d397712b 3125 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3126 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3127 }
31153d81 3128 if (fs_info->total_ref_cache_size) {
d397712b
CM
3129 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3130 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3131 }
bcc63abb 3132
5d4f98a2
YZ
3133 free_extent_buffer(fs_info->extent_root->node);
3134 free_extent_buffer(fs_info->extent_root->commit_root);
3135 free_extent_buffer(fs_info->tree_root->node);
3136 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3137 free_extent_buffer(fs_info->chunk_root->node);
3138 free_extent_buffer(fs_info->chunk_root->commit_root);
3139 free_extent_buffer(fs_info->dev_root->node);
3140 free_extent_buffer(fs_info->dev_root->commit_root);
3141 free_extent_buffer(fs_info->csum_root->node);
3142 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3143
e3029d9f 3144 btrfs_free_block_groups(fs_info);
d10c5f31 3145
c146afad 3146 del_fs_roots(fs_info);
d10c5f31 3147
c146afad 3148 iput(fs_info->btree_inode);
9ad6b7bc 3149
61d92c32 3150 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3151 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3152 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3153 btrfs_stop_workers(&fs_info->workers);
3154 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3155 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3156 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3157 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3158 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3159 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3160 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3161 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3162 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3163
21adbd5c
SB
3164#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3165 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3166 btrfsic_unmount(root, fs_info->fs_devices);
3167#endif
3168
dfe25020 3169 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3170 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3171
04160088 3172 bdi_destroy(&fs_info->bdi);
76dda93c 3173 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3174
eb60ceac
CM
3175 return 0;
3176}
3177
1259ab75 3178int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3179{
1259ab75 3180 int ret;
810191ff 3181 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 3182
2ac55d41
JB
3183 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3184 NULL);
1259ab75
CM
3185 if (!ret)
3186 return ret;
3187
3188 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3189 parent_transid);
3190 return !ret;
5f39d397
CM
3191}
3192
3193int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3194{
810191ff 3195 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 3196 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3197 buf);
3198}
6702ed49 3199
5f39d397
CM
3200void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3201{
810191ff 3202 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
3203 u64 transid = btrfs_header_generation(buf);
3204 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3205 int was_dirty;
b4ce94de 3206
b9447ef8 3207 btrfs_assert_tree_locked(buf);
ccd467d6 3208 if (transid != root->fs_info->generation) {
d397712b
CM
3209 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3210 "found %llu running %llu\n",
db94535d 3211 (unsigned long long)buf->start,
d397712b
CM
3212 (unsigned long long)transid,
3213 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3214 WARN_ON(1);
3215 }
b9473439
CM
3216 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3217 buf);
3218 if (!was_dirty) {
3219 spin_lock(&root->fs_info->delalloc_lock);
3220 root->fs_info->dirty_metadata_bytes += buf->len;
3221 spin_unlock(&root->fs_info->delalloc_lock);
3222 }
eb60ceac
CM
3223}
3224
d3c2fdcf 3225void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3226{
3227 /*
3228 * looks as though older kernels can get into trouble with
3229 * this code, they end up stuck in balance_dirty_pages forever
3230 */
3231 u64 num_dirty;
3232 unsigned long thresh = 32 * 1024 * 1024;
3233
3234 if (current->flags & PF_MEMALLOC)
3235 return;
3236
3237 btrfs_balance_delayed_items(root);
3238
3239 num_dirty = root->fs_info->dirty_metadata_bytes;
3240
3241 if (num_dirty > thresh) {
3242 balance_dirty_pages_ratelimited_nr(
3243 root->fs_info->btree_inode->i_mapping, 1);
3244 }
3245 return;
3246}
3247
3248void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3249{
188de649
CM
3250 /*
3251 * looks as though older kernels can get into trouble with
3252 * this code, they end up stuck in balance_dirty_pages forever
3253 */
d6bfde87 3254 u64 num_dirty;
771ed689 3255 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3256
6933c02e 3257 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3258 return;
3259
585ad2c3
CM
3260 num_dirty = root->fs_info->dirty_metadata_bytes;
3261
d6bfde87
CM
3262 if (num_dirty > thresh) {
3263 balance_dirty_pages_ratelimited_nr(
d7fc640e 3264 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3265 }
188de649 3266 return;
35b7e476 3267}
6b80053d 3268
ca7a79ad 3269int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3270{
810191ff 3271 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 3272 int ret;
ca7a79ad 3273 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3274 if (ret == 0)
b4ce94de 3275 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3276 return ret;
6b80053d 3277}
0da5468f 3278
01d658f2
CM
3279static int btree_lock_page_hook(struct page *page, void *data,
3280 void (*flush_fn)(void *))
4bef0848
CM
3281{
3282 struct inode *inode = page->mapping->host;
b9473439 3283 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
3284 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3285 struct extent_buffer *eb;
3286 unsigned long len;
3287 u64 bytenr = page_offset(page);
3288
3289 if (page->private == EXTENT_PAGE_PRIVATE)
3290 goto out;
3291
3292 len = page->private >> 2;
f09d1f60 3293 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
3294 if (!eb)
3295 goto out;
3296
01d658f2
CM
3297 if (!btrfs_try_tree_write_lock(eb)) {
3298 flush_fn(data);
3299 btrfs_tree_lock(eb);
3300 }
4bef0848 3301 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3302
3303 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3304 spin_lock(&root->fs_info->delalloc_lock);
3305 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3306 root->fs_info->dirty_metadata_bytes -= eb->len;
3307 else
3308 WARN_ON(1);
3309 spin_unlock(&root->fs_info->delalloc_lock);
3310 }
3311
4bef0848
CM
3312 btrfs_tree_unlock(eb);
3313 free_extent_buffer(eb);
3314out:
01d658f2
CM
3315 if (!trylock_page(page)) {
3316 flush_fn(data);
3317 lock_page(page);
3318 }
4bef0848
CM
3319 return 0;
3320}
3321
acce952b 3322static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3323 int read_only)
3324{
3325 if (read_only)
3326 return;
3327
3328 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3329 printk(KERN_WARNING "warning: mount fs with errors, "
3330 "running btrfsck is recommended\n");
3331}
3332
3333int btrfs_error_commit_super(struct btrfs_root *root)
3334{
3335 int ret;
3336
3337 mutex_lock(&root->fs_info->cleaner_mutex);
3338 btrfs_run_delayed_iputs(root);
3339 mutex_unlock(&root->fs_info->cleaner_mutex);
3340
3341 down_write(&root->fs_info->cleanup_work_sem);
3342 up_write(&root->fs_info->cleanup_work_sem);
3343
3344 /* cleanup FS via transaction */
3345 btrfs_cleanup_transaction(root);
3346
3347 ret = write_ctree_super(NULL, root, 0);
3348
3349 return ret;
3350}
3351
143bede5 3352static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3353{
3354 struct btrfs_inode *btrfs_inode;
3355 struct list_head splice;
3356
3357 INIT_LIST_HEAD(&splice);
3358
3359 mutex_lock(&root->fs_info->ordered_operations_mutex);
3360 spin_lock(&root->fs_info->ordered_extent_lock);
3361
3362 list_splice_init(&root->fs_info->ordered_operations, &splice);
3363 while (!list_empty(&splice)) {
3364 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3365 ordered_operations);
3366
3367 list_del_init(&btrfs_inode->ordered_operations);
3368
3369 btrfs_invalidate_inodes(btrfs_inode->root);
3370 }
3371
3372 spin_unlock(&root->fs_info->ordered_extent_lock);
3373 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3374}
3375
143bede5 3376static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3377{
3378 struct list_head splice;
3379 struct btrfs_ordered_extent *ordered;
3380 struct inode *inode;
3381
3382 INIT_LIST_HEAD(&splice);
3383
3384 spin_lock(&root->fs_info->ordered_extent_lock);
3385
3386 list_splice_init(&root->fs_info->ordered_extents, &splice);
3387 while (!list_empty(&splice)) {
3388 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3389 root_extent_list);
3390
3391 list_del_init(&ordered->root_extent_list);
3392 atomic_inc(&ordered->refs);
3393
3394 /* the inode may be getting freed (in sys_unlink path). */
3395 inode = igrab(ordered->inode);
3396
3397 spin_unlock(&root->fs_info->ordered_extent_lock);
3398 if (inode)
3399 iput(inode);
3400
3401 atomic_set(&ordered->refs, 1);
3402 btrfs_put_ordered_extent(ordered);
3403
3404 spin_lock(&root->fs_info->ordered_extent_lock);
3405 }
3406
3407 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3408}
3409
79787eaa
JM
3410int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3411 struct btrfs_root *root)
acce952b 3412{
3413 struct rb_node *node;
3414 struct btrfs_delayed_ref_root *delayed_refs;
3415 struct btrfs_delayed_ref_node *ref;
3416 int ret = 0;
3417
3418 delayed_refs = &trans->delayed_refs;
3419
79787eaa 3420again:
acce952b 3421 spin_lock(&delayed_refs->lock);
3422 if (delayed_refs->num_entries == 0) {
cfece4db 3423 spin_unlock(&delayed_refs->lock);
acce952b 3424 printk(KERN_INFO "delayed_refs has NO entry\n");
3425 return ret;
3426 }
3427
3428 node = rb_first(&delayed_refs->root);
3429 while (node) {
3430 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3431 node = rb_next(node);
3432
3433 ref->in_tree = 0;
3434 rb_erase(&ref->rb_node, &delayed_refs->root);
3435 delayed_refs->num_entries--;
3436
3437 atomic_set(&ref->refs, 1);
3438 if (btrfs_delayed_ref_is_head(ref)) {
3439 struct btrfs_delayed_ref_head *head;
3440
3441 head = btrfs_delayed_node_to_head(ref);
79787eaa 3442 spin_unlock(&delayed_refs->lock);
acce952b 3443 mutex_lock(&head->mutex);
3444 kfree(head->extent_op);
3445 delayed_refs->num_heads--;
3446 if (list_empty(&head->cluster))
3447 delayed_refs->num_heads_ready--;
3448 list_del_init(&head->cluster);
3449 mutex_unlock(&head->mutex);
79787eaa
JM
3450 btrfs_put_delayed_ref(ref);
3451 goto again;
acce952b 3452 }
acce952b 3453 spin_unlock(&delayed_refs->lock);
3454 btrfs_put_delayed_ref(ref);
3455
3456 cond_resched();
3457 spin_lock(&delayed_refs->lock);
3458 }
3459
3460 spin_unlock(&delayed_refs->lock);
3461
3462 return ret;
3463}
3464
143bede5 3465static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3466{
3467 struct btrfs_pending_snapshot *snapshot;
3468 struct list_head splice;
3469
3470 INIT_LIST_HEAD(&splice);
3471
3472 list_splice_init(&t->pending_snapshots, &splice);
3473
3474 while (!list_empty(&splice)) {
3475 snapshot = list_entry(splice.next,
3476 struct btrfs_pending_snapshot,
3477 list);
3478
3479 list_del_init(&snapshot->list);
3480
3481 kfree(snapshot);
3482 }
acce952b 3483}
3484
143bede5 3485static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3486{
3487 struct btrfs_inode *btrfs_inode;
3488 struct list_head splice;
3489
3490 INIT_LIST_HEAD(&splice);
3491
acce952b 3492 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3493 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3494
3495 while (!list_empty(&splice)) {
3496 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3497 delalloc_inodes);
3498
3499 list_del_init(&btrfs_inode->delalloc_inodes);
3500
3501 btrfs_invalidate_inodes(btrfs_inode->root);
3502 }
3503
3504 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3505}
3506
3507static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3508 struct extent_io_tree *dirty_pages,
3509 int mark)
3510{
3511 int ret;
3512 struct page *page;
3513 struct inode *btree_inode = root->fs_info->btree_inode;
3514 struct extent_buffer *eb;
3515 u64 start = 0;
3516 u64 end;
3517 u64 offset;
3518 unsigned long index;
3519
3520 while (1) {
3521 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3522 mark);
3523 if (ret)
3524 break;
3525
3526 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3527 while (start <= end) {
3528 index = start >> PAGE_CACHE_SHIFT;
3529 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3530 page = find_get_page(btree_inode->i_mapping, index);
3531 if (!page)
3532 continue;
3533 offset = page_offset(page);
3534
3535 spin_lock(&dirty_pages->buffer_lock);
3536 eb = radix_tree_lookup(
3537 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3538 offset >> PAGE_CACHE_SHIFT);
3539 spin_unlock(&dirty_pages->buffer_lock);
3540 if (eb) {
3541 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3542 &eb->bflags);
3543 atomic_set(&eb->refs, 1);
3544 }
3545 if (PageWriteback(page))
3546 end_page_writeback(page);
3547
3548 lock_page(page);
3549 if (PageDirty(page)) {
3550 clear_page_dirty_for_io(page);
3551 spin_lock_irq(&page->mapping->tree_lock);
3552 radix_tree_tag_clear(&page->mapping->page_tree,
3553 page_index(page),
3554 PAGECACHE_TAG_DIRTY);
3555 spin_unlock_irq(&page->mapping->tree_lock);
3556 }
3557
3558 page->mapping->a_ops->invalidatepage(page, 0);
3559 unlock_page(page);
3560 }
3561 }
3562
3563 return ret;
3564}
3565
3566static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3567 struct extent_io_tree *pinned_extents)
3568{
3569 struct extent_io_tree *unpin;
3570 u64 start;
3571 u64 end;
3572 int ret;
3573
3574 unpin = pinned_extents;
3575 while (1) {
3576 ret = find_first_extent_bit(unpin, 0, &start, &end,
3577 EXTENT_DIRTY);
3578 if (ret)
3579 break;
3580
3581 /* opt_discard */
5378e607
LD
3582 if (btrfs_test_opt(root, DISCARD))
3583 ret = btrfs_error_discard_extent(root, start,
3584 end + 1 - start,
3585 NULL);
acce952b 3586
3587 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3588 btrfs_error_unpin_extent_range(root, start, end);
3589 cond_resched();
3590 }
3591
3592 return 0;
3593}
3594
49b25e05
JM
3595void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3596 struct btrfs_root *root)
3597{
3598 btrfs_destroy_delayed_refs(cur_trans, root);
3599 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3600 cur_trans->dirty_pages.dirty_bytes);
3601
3602 /* FIXME: cleanup wait for commit */
3603 cur_trans->in_commit = 1;
3604 cur_trans->blocked = 1;
3605 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3606 wake_up(&root->fs_info->transaction_blocked_wait);
3607
3608 cur_trans->blocked = 0;
3609 if (waitqueue_active(&root->fs_info->transaction_wait))
3610 wake_up(&root->fs_info->transaction_wait);
3611
3612 cur_trans->commit_done = 1;
3613 if (waitqueue_active(&cur_trans->commit_wait))
3614 wake_up(&cur_trans->commit_wait);
3615
3616 btrfs_destroy_pending_snapshots(cur_trans);
3617
3618 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3619 EXTENT_DIRTY);
3620
3621 /*
3622 memset(cur_trans, 0, sizeof(*cur_trans));
3623 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3624 */
3625}
3626
3627int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3628{
3629 struct btrfs_transaction *t;
3630 LIST_HEAD(list);
3631
acce952b 3632 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3633
a4abeea4 3634 spin_lock(&root->fs_info->trans_lock);
acce952b 3635 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3636 root->fs_info->trans_no_join = 1;
3637 spin_unlock(&root->fs_info->trans_lock);
3638
acce952b 3639 while (!list_empty(&list)) {
3640 t = list_entry(list.next, struct btrfs_transaction, list);
3641 if (!t)
3642 break;
3643
3644 btrfs_destroy_ordered_operations(root);
3645
3646 btrfs_destroy_ordered_extents(root);
3647
3648 btrfs_destroy_delayed_refs(t, root);
3649
3650 btrfs_block_rsv_release(root,
3651 &root->fs_info->trans_block_rsv,
3652 t->dirty_pages.dirty_bytes);
3653
3654 /* FIXME: cleanup wait for commit */
3655 t->in_commit = 1;
3656 t->blocked = 1;
3657 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3658 wake_up(&root->fs_info->transaction_blocked_wait);
3659
3660 t->blocked = 0;
3661 if (waitqueue_active(&root->fs_info->transaction_wait))
3662 wake_up(&root->fs_info->transaction_wait);
acce952b 3663
acce952b 3664 t->commit_done = 1;
3665 if (waitqueue_active(&t->commit_wait))
3666 wake_up(&t->commit_wait);
acce952b 3667
3668 btrfs_destroy_pending_snapshots(t);
3669
3670 btrfs_destroy_delalloc_inodes(root);
3671
a4abeea4 3672 spin_lock(&root->fs_info->trans_lock);
acce952b 3673 root->fs_info->running_transaction = NULL;
a4abeea4 3674 spin_unlock(&root->fs_info->trans_lock);
acce952b 3675
3676 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3677 EXTENT_DIRTY);
3678
3679 btrfs_destroy_pinned_extent(root,
3680 root->fs_info->pinned_extents);
3681
13c5a93e 3682 atomic_set(&t->use_count, 0);
acce952b 3683 list_del_init(&t->list);
3684 memset(t, 0, sizeof(*t));
3685 kmem_cache_free(btrfs_transaction_cachep, t);
3686 }
3687
a4abeea4
JB
3688 spin_lock(&root->fs_info->trans_lock);
3689 root->fs_info->trans_no_join = 0;
3690 spin_unlock(&root->fs_info->trans_lock);
acce952b 3691 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3692
3693 return 0;
3694}
3695
79787eaa
JM
3696static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
3697 u64 start, u64 end,
3698 struct extent_state *state)
3699{
3700 struct super_block *sb = page->mapping->host->i_sb;
3701 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3702 btrfs_error(fs_info, -EIO,
3703 "Error occured while writing out btree at %llu", start);
3704 return -EIO;
3705}
3706
d1310b2e 3707static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3708 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3709 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3710 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3711 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3712 /* note we're sharing with inode.c for the merge bio hook */
3713 .merge_bio_hook = btrfs_merge_bio_hook,
79787eaa 3714 .writepage_io_failed_hook = btree_writepage_io_failed_hook,
0da5468f 3715};