btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
19c00ddc
CM
277static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
278 int verify)
279{
6c41761f 280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 281 char *result = NULL;
19c00ddc
CM
282 unsigned long len;
283 unsigned long cur_len;
284 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
285 char *kaddr;
286 unsigned long map_start;
287 unsigned long map_len;
288 int err;
289 u32 crc = ~(u32)0;
607d432d 290 unsigned long inline_result;
19c00ddc
CM
291
292 len = buf->len - offset;
d397712b 293 while (len > 0) {
19c00ddc 294 err = map_private_extent_buffer(buf, offset, 32,
a6591715 295 &kaddr, &map_start, &map_len);
d397712b 296 if (err)
19c00ddc 297 return 1;
19c00ddc 298 cur_len = min(len, map_len - (offset - map_start));
b0496686 299 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
300 crc, cur_len);
301 len -= cur_len;
302 offset += cur_len;
19c00ddc 303 }
607d432d
JB
304 if (csum_size > sizeof(inline_result)) {
305 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
306 if (!result)
307 return 1;
308 } else {
309 result = (char *)&inline_result;
310 }
311
19c00ddc
CM
312 btrfs_csum_final(crc, result);
313
314 if (verify) {
607d432d 315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
316 u32 val;
317 u32 found = 0;
607d432d 318 memcpy(&found, result, csum_size);
e4204ded 319
607d432d 320 read_extent_buffer(buf, &val, 0, csum_size);
f0954c66 321 printk_ratelimited(KERN_WARNING
efe120a0
FH
322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
323 "level %d\n",
324 root->fs_info->sb->s_id, buf->start,
325 val, found, btrfs_header_level(buf));
607d432d
JB
326 if (result != (char *)&inline_result)
327 kfree(result);
19c00ddc
CM
328 return 1;
329 }
330 } else {
607d432d 331 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 332 }
607d432d
JB
333 if (result != (char *)&inline_result)
334 kfree(result);
19c00ddc
CM
335 return 0;
336}
337
d352ac68
CM
338/*
339 * we can't consider a given block up to date unless the transid of the
340 * block matches the transid in the parent node's pointer. This is how we
341 * detect blocks that either didn't get written at all or got written
342 * in the wrong place.
343 */
1259ab75 344static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
345 struct extent_buffer *eb, u64 parent_transid,
346 int atomic)
1259ab75 347{
2ac55d41 348 struct extent_state *cached_state = NULL;
1259ab75 349 int ret;
2755a0de 350 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
351
352 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
353 return 0;
354
b9fab919
CM
355 if (atomic)
356 return -EAGAIN;
357
a26e8c9f
JB
358 if (need_lock) {
359 btrfs_tree_read_lock(eb);
360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
361 }
362
2ac55d41 363 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 364 0, &cached_state);
0b32f4bb 365 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
366 btrfs_header_generation(eb) == parent_transid) {
367 ret = 0;
368 goto out;
369 }
68b663d1
DS
370 printk_ratelimited(KERN_ERR
371 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
29549aec
WS
372 eb->fs_info->sb->s_id, eb->start,
373 parent_transid, btrfs_header_generation(eb));
1259ab75 374 ret = 1;
a26e8c9f
JB
375
376 /*
377 * Things reading via commit roots that don't have normal protection,
378 * like send, can have a really old block in cache that may point at a
379 * block that has been free'd and re-allocated. So don't clear uptodate
380 * if we find an eb that is under IO (dirty/writeback) because we could
381 * end up reading in the stale data and then writing it back out and
382 * making everybody very sad.
383 */
384 if (!extent_buffer_under_io(eb))
385 clear_extent_buffer_uptodate(eb);
33958dc6 386out:
2ac55d41
JB
387 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
388 &cached_state, GFP_NOFS);
472b909f
JB
389 if (need_lock)
390 btrfs_tree_read_unlock_blocking(eb);
1259ab75 391 return ret;
1259ab75
CM
392}
393
1104a885
DS
394/*
395 * Return 0 if the superblock checksum type matches the checksum value of that
396 * algorithm. Pass the raw disk superblock data.
397 */
398static int btrfs_check_super_csum(char *raw_disk_sb)
399{
400 struct btrfs_super_block *disk_sb =
401 (struct btrfs_super_block *)raw_disk_sb;
402 u16 csum_type = btrfs_super_csum_type(disk_sb);
403 int ret = 0;
404
405 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
406 u32 crc = ~(u32)0;
407 const int csum_size = sizeof(crc);
408 char result[csum_size];
409
410 /*
411 * The super_block structure does not span the whole
412 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
413 * is filled with zeros and is included in the checkum.
414 */
415 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
416 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
417 btrfs_csum_final(crc, result);
418
419 if (memcmp(raw_disk_sb, result, csum_size))
420 ret = 1;
667e7d94
CM
421
422 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
423 printk(KERN_WARNING
424 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
425 ret = 0;
426 }
1104a885
DS
427 }
428
429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 430 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
431 csum_type);
432 ret = 1;
433 }
434
435 return ret;
436}
437
d352ac68
CM
438/*
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
441 */
f188591e
CM
442static int btree_read_extent_buffer_pages(struct btrfs_root *root,
443 struct extent_buffer *eb,
ca7a79ad 444 u64 start, u64 parent_transid)
f188591e
CM
445{
446 struct extent_io_tree *io_tree;
ea466794 447 int failed = 0;
f188591e
CM
448 int ret;
449 int num_copies = 0;
450 int mirror_num = 0;
ea466794 451 int failed_mirror = 0;
f188591e 452
a826d6dc 453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
454 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
455 while (1) {
bb82ab88
AJ
456 ret = read_extent_buffer_pages(io_tree, eb, start,
457 WAIT_COMPLETE,
f188591e 458 btree_get_extent, mirror_num);
256dd1bb
SB
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
b9fab919 461 parent_transid, 0))
256dd1bb
SB
462 break;
463 else
464 ret = -EIO;
465 }
d397712b 466
a826d6dc
JB
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
473 break;
474
5d964051 475 num_copies = btrfs_num_copies(root->fs_info,
f188591e 476 eb->start, eb->len);
4235298e 477 if (num_copies == 1)
ea466794 478 break;
4235298e 479
5cf1ab56
JB
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
f188591e 485 mirror_num++;
ea466794
JB
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
4235298e 489 if (mirror_num > num_copies)
ea466794 490 break;
f188591e 491 }
ea466794 492
c0901581 493 if (failed && !ret && failed_mirror)
ea466794
JB
494 repair_eb_io_failure(root, eb, failed_mirror);
495
496 return ret;
f188591e 497}
19c00ddc 498
d352ac68 499/*
d397712b
CM
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 502 */
d397712b 503
b2950863 504static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 505{
4eee4fa4 506 u64 start = page_offset(page);
19c00ddc 507 u64 found_start;
19c00ddc 508 struct extent_buffer *eb;
f188591e 509
4f2de97a
JB
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
19c00ddc 513 found_start = btrfs_header_bytenr(eb);
fae7f21c 514 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 515 return 0;
19c00ddc 516 csum_tree_block(root, eb, 0);
19c00ddc
CM
517 return 0;
518}
519
2b82032c
YZ
520static int check_tree_block_fsid(struct btrfs_root *root,
521 struct extent_buffer *eb)
522{
523 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
524 u8 fsid[BTRFS_UUID_SIZE];
525 int ret = 1;
526
0a4e5586 527 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
528 while (fs_devices) {
529 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
530 ret = 0;
531 break;
532 }
533 fs_devices = fs_devices->seed;
534 }
535 return ret;
536}
537
a826d6dc 538#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
539 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
540 "root=%llu, slot=%d", reason, \
c1c9ff7c 541 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
542
543static noinline int check_leaf(struct btrfs_root *root,
544 struct extent_buffer *leaf)
545{
546 struct btrfs_key key;
547 struct btrfs_key leaf_key;
548 u32 nritems = btrfs_header_nritems(leaf);
549 int slot;
550
551 if (nritems == 0)
552 return 0;
553
554 /* Check the 0 item */
555 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
556 BTRFS_LEAF_DATA_SIZE(root)) {
557 CORRUPT("invalid item offset size pair", leaf, root, 0);
558 return -EIO;
559 }
560
561 /*
562 * Check to make sure each items keys are in the correct order and their
563 * offsets make sense. We only have to loop through nritems-1 because
564 * we check the current slot against the next slot, which verifies the
565 * next slot's offset+size makes sense and that the current's slot
566 * offset is correct.
567 */
568 for (slot = 0; slot < nritems - 1; slot++) {
569 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
570 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
571
572 /* Make sure the keys are in the right order */
573 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
574 CORRUPT("bad key order", leaf, root, slot);
575 return -EIO;
576 }
577
578 /*
579 * Make sure the offset and ends are right, remember that the
580 * item data starts at the end of the leaf and grows towards the
581 * front.
582 */
583 if (btrfs_item_offset_nr(leaf, slot) !=
584 btrfs_item_end_nr(leaf, slot + 1)) {
585 CORRUPT("slot offset bad", leaf, root, slot);
586 return -EIO;
587 }
588
589 /*
590 * Check to make sure that we don't point outside of the leaf,
591 * just incase all the items are consistent to eachother, but
592 * all point outside of the leaf.
593 */
594 if (btrfs_item_end_nr(leaf, slot) >
595 BTRFS_LEAF_DATA_SIZE(root)) {
596 CORRUPT("slot end outside of leaf", leaf, root, slot);
597 return -EIO;
598 }
599 }
600
601 return 0;
602}
603
facc8a22
MX
604static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
605 u64 phy_offset, struct page *page,
606 u64 start, u64 end, int mirror)
ce9adaa5 607{
ce9adaa5
CM
608 u64 found_start;
609 int found_level;
ce9adaa5
CM
610 struct extent_buffer *eb;
611 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 612 int ret = 0;
727011e0 613 int reads_done;
ce9adaa5 614
ce9adaa5
CM
615 if (!page->private)
616 goto out;
d397712b 617
4f2de97a 618 eb = (struct extent_buffer *)page->private;
d397712b 619
0b32f4bb
JB
620 /* the pending IO might have been the only thing that kept this buffer
621 * in memory. Make sure we have a ref for all this other checks
622 */
623 extent_buffer_get(eb);
624
625 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
626 if (!reads_done)
627 goto err;
f188591e 628
5cf1ab56 629 eb->read_mirror = mirror;
656f30db 630 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
631 ret = -EIO;
632 goto err;
633 }
634
ce9adaa5 635 found_start = btrfs_header_bytenr(eb);
727011e0 636 if (found_start != eb->start) {
68b663d1 637 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
193f284d 638 "%llu %llu\n",
29549aec 639 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 640 ret = -EIO;
ce9adaa5
CM
641 goto err;
642 }
2b82032c 643 if (check_tree_block_fsid(root, eb)) {
68b663d1 644 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
29549aec 645 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
646 ret = -EIO;
647 goto err;
648 }
ce9adaa5 649 found_level = btrfs_header_level(eb);
1c24c3ce 650 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 651 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
652 (int)btrfs_header_level(eb));
653 ret = -EIO;
654 goto err;
655 }
ce9adaa5 656
85d4e461
CM
657 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
658 eb, found_level);
4008c04a 659
ce9adaa5 660 ret = csum_tree_block(root, eb, 1);
a826d6dc 661 if (ret) {
f188591e 662 ret = -EIO;
a826d6dc
JB
663 goto err;
664 }
665
666 /*
667 * If this is a leaf block and it is corrupt, set the corrupt bit so
668 * that we don't try and read the other copies of this block, just
669 * return -EIO.
670 */
671 if (found_level == 0 && check_leaf(root, eb)) {
672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673 ret = -EIO;
674 }
ce9adaa5 675
0b32f4bb
JB
676 if (!ret)
677 set_extent_buffer_uptodate(eb);
ce9adaa5 678err:
79fb65a1
JB
679 if (reads_done &&
680 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 681 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 682
53b381b3
DW
683 if (ret) {
684 /*
685 * our io error hook is going to dec the io pages
686 * again, we have to make sure it has something
687 * to decrement
688 */
689 atomic_inc(&eb->io_pages);
0b32f4bb 690 clear_extent_buffer_uptodate(eb);
53b381b3 691 }
0b32f4bb 692 free_extent_buffer(eb);
ce9adaa5 693out:
f188591e 694 return ret;
ce9adaa5
CM
695}
696
ea466794 697static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 698{
4bb31e92
AJ
699 struct extent_buffer *eb;
700 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
701
4f2de97a 702 eb = (struct extent_buffer *)page->private;
656f30db 703 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 704 eb->read_mirror = failed_mirror;
53b381b3 705 atomic_dec(&eb->io_pages);
ea466794 706 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 707 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
708 return -EIO; /* we fixed nothing */
709}
710
ce9adaa5 711static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5 712{
97eb6b69 713 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 714 struct btrfs_fs_info *fs_info;
9e0af237
LB
715 struct btrfs_workqueue *wq;
716 btrfs_work_func_t func;
ce9adaa5 717
ce9adaa5 718 fs_info = end_io_wq->info;
ce9adaa5 719 end_io_wq->error = err;
d20f7043 720
7b6d91da 721 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
722 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
723 wq = fs_info->endio_meta_write_workers;
724 func = btrfs_endio_meta_write_helper;
725 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
726 wq = fs_info->endio_freespace_worker;
727 func = btrfs_freespace_write_helper;
728 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
729 wq = fs_info->endio_raid56_workers;
730 func = btrfs_endio_raid56_helper;
731 } else {
732 wq = fs_info->endio_write_workers;
733 func = btrfs_endio_write_helper;
734 }
d20f7043 735 } else {
8b110e39
MX
736 if (unlikely(end_io_wq->metadata ==
737 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
738 wq = fs_info->endio_repair_workers;
739 func = btrfs_endio_repair_helper;
740 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
741 wq = fs_info->endio_raid56_workers;
742 func = btrfs_endio_raid56_helper;
743 } else if (end_io_wq->metadata) {
744 wq = fs_info->endio_meta_workers;
745 func = btrfs_endio_meta_helper;
746 } else {
747 wq = fs_info->endio_workers;
748 func = btrfs_endio_helper;
749 }
d20f7043 750 }
9e0af237
LB
751
752 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
753 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
754}
755
22c59948 756int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 757 enum btrfs_wq_endio_type metadata)
0b86a832 758{
97eb6b69 759 struct btrfs_end_io_wq *end_io_wq;
8b110e39 760
97eb6b69 761 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
762 if (!end_io_wq)
763 return -ENOMEM;
764
765 end_io_wq->private = bio->bi_private;
766 end_io_wq->end_io = bio->bi_end_io;
22c59948 767 end_io_wq->info = info;
ce9adaa5
CM
768 end_io_wq->error = 0;
769 end_io_wq->bio = bio;
22c59948 770 end_io_wq->metadata = metadata;
ce9adaa5
CM
771
772 bio->bi_private = end_io_wq;
773 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
774 return 0;
775}
776
b64a2851 777unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 778{
4854ddd0 779 unsigned long limit = min_t(unsigned long,
5cdc7ad3 780 info->thread_pool_size,
4854ddd0
CM
781 info->fs_devices->open_devices);
782 return 256 * limit;
783}
0986fe9e 784
4a69a410
CM
785static void run_one_async_start(struct btrfs_work *work)
786{
4a69a410 787 struct async_submit_bio *async;
79787eaa 788 int ret;
4a69a410
CM
789
790 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
791 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
792 async->mirror_num, async->bio_flags,
793 async->bio_offset);
794 if (ret)
795 async->error = ret;
4a69a410
CM
796}
797
798static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
799{
800 struct btrfs_fs_info *fs_info;
801 struct async_submit_bio *async;
4854ddd0 802 int limit;
8b712842
CM
803
804 async = container_of(work, struct async_submit_bio, work);
805 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 806
b64a2851 807 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
808 limit = limit * 2 / 3;
809
66657b31 810 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 811 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
812 wake_up(&fs_info->async_submit_wait);
813
79787eaa
JM
814 /* If an error occured we just want to clean up the bio and move on */
815 if (async->error) {
816 bio_endio(async->bio, async->error);
817 return;
818 }
819
4a69a410 820 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
821 async->mirror_num, async->bio_flags,
822 async->bio_offset);
4a69a410
CM
823}
824
825static void run_one_async_free(struct btrfs_work *work)
826{
827 struct async_submit_bio *async;
828
829 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
830 kfree(async);
831}
832
44b8bd7e
CM
833int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
834 int rw, struct bio *bio, int mirror_num,
c8b97818 835 unsigned long bio_flags,
eaf25d93 836 u64 bio_offset,
4a69a410
CM
837 extent_submit_bio_hook_t *submit_bio_start,
838 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
839{
840 struct async_submit_bio *async;
841
842 async = kmalloc(sizeof(*async), GFP_NOFS);
843 if (!async)
844 return -ENOMEM;
845
846 async->inode = inode;
847 async->rw = rw;
848 async->bio = bio;
849 async->mirror_num = mirror_num;
4a69a410
CM
850 async->submit_bio_start = submit_bio_start;
851 async->submit_bio_done = submit_bio_done;
852
9e0af237 853 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 854 run_one_async_done, run_one_async_free);
4a69a410 855
c8b97818 856 async->bio_flags = bio_flags;
eaf25d93 857 async->bio_offset = bio_offset;
8c8bee1d 858
79787eaa
JM
859 async->error = 0;
860
cb03c743 861 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 862
7b6d91da 863 if (rw & REQ_SYNC)
5cdc7ad3 864 btrfs_set_work_high_priority(&async->work);
d313d7a3 865
5cdc7ad3 866 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 867
d397712b 868 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
869 atomic_read(&fs_info->nr_async_submits)) {
870 wait_event(fs_info->async_submit_wait,
871 (atomic_read(&fs_info->nr_async_submits) == 0));
872 }
873
44b8bd7e
CM
874 return 0;
875}
876
ce3ed71a
CM
877static int btree_csum_one_bio(struct bio *bio)
878{
2c30c71b 879 struct bio_vec *bvec;
ce3ed71a 880 struct btrfs_root *root;
2c30c71b 881 int i, ret = 0;
ce3ed71a 882
2c30c71b 883 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 884 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
885 ret = csum_dirty_buffer(root, bvec->bv_page);
886 if (ret)
887 break;
ce3ed71a 888 }
2c30c71b 889
79787eaa 890 return ret;
ce3ed71a
CM
891}
892
4a69a410
CM
893static int __btree_submit_bio_start(struct inode *inode, int rw,
894 struct bio *bio, int mirror_num,
eaf25d93
CM
895 unsigned long bio_flags,
896 u64 bio_offset)
22c59948 897{
8b712842
CM
898 /*
899 * when we're called for a write, we're already in the async
5443be45 900 * submission context. Just jump into btrfs_map_bio
8b712842 901 */
79787eaa 902 return btree_csum_one_bio(bio);
4a69a410 903}
22c59948 904
4a69a410 905static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
906 int mirror_num, unsigned long bio_flags,
907 u64 bio_offset)
4a69a410 908{
61891923
SB
909 int ret;
910
8b712842 911 /*
4a69a410
CM
912 * when we're called for a write, we're already in the async
913 * submission context. Just jump into btrfs_map_bio
8b712842 914 */
61891923
SB
915 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
916 if (ret)
917 bio_endio(bio, ret);
918 return ret;
0b86a832
CM
919}
920
de0022b9
JB
921static int check_async_write(struct inode *inode, unsigned long bio_flags)
922{
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925#ifdef CONFIG_X86
926 if (cpu_has_xmm4_2)
927 return 0;
928#endif
929 return 1;
930}
931
44b8bd7e 932static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
44b8bd7e 935{
de0022b9 936 int async = check_async_write(inode, bio_flags);
cad321ad
CM
937 int ret;
938
7b6d91da 939 if (!(rw & REQ_WRITE)) {
4a69a410
CM
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
f3f266ab 944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 945 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 946 if (ret)
61891923
SB
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
de0022b9
JB
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
61891923
SB
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
957 /*
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
960 */
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
44b8bd7e 966 }
d313d7a3 967
61891923
SB
968 if (ret) {
969out_w_error:
970 bio_endio(bio, ret);
971 }
972 return ret;
44b8bd7e
CM
973}
974
3dd1462e 975#ifdef CONFIG_MIGRATION
784b4e29 976static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
977 struct page *newpage, struct page *page,
978 enum migrate_mode mode)
784b4e29
CM
979{
980 /*
981 * we can't safely write a btree page from here,
982 * we haven't done the locking hook
983 */
984 if (PageDirty(page))
985 return -EAGAIN;
986 /*
987 * Buffers may be managed in a filesystem specific way.
988 * We must have no buffers or drop them.
989 */
990 if (page_has_private(page) &&
991 !try_to_release_page(page, GFP_KERNEL))
992 return -EAGAIN;
a6bc32b8 993 return migrate_page(mapping, newpage, page, mode);
784b4e29 994}
3dd1462e 995#endif
784b4e29 996
0da5468f
CM
997
998static int btree_writepages(struct address_space *mapping,
999 struct writeback_control *wbc)
1000{
e2d84521
MX
1001 struct btrfs_fs_info *fs_info;
1002 int ret;
1003
d8d5f3e1 1004 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1005
1006 if (wbc->for_kupdate)
1007 return 0;
1008
e2d84521 1009 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1010 /* this is a bit racy, but that's ok */
e2d84521
MX
1011 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1012 BTRFS_DIRTY_METADATA_THRESH);
1013 if (ret < 0)
793955bc 1014 return 0;
793955bc 1015 }
0b32f4bb 1016 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1017}
1018
b2950863 1019static int btree_readpage(struct file *file, struct page *page)
5f39d397 1020{
d1310b2e
CM
1021 struct extent_io_tree *tree;
1022 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1023 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1024}
22b0ebda 1025
70dec807 1026static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1027{
98509cfc 1028 if (PageWriteback(page) || PageDirty(page))
d397712b 1029 return 0;
0c4e538b 1030
f7a52a40 1031 return try_release_extent_buffer(page);
d98237b3
CM
1032}
1033
d47992f8
LC
1034static void btree_invalidatepage(struct page *page, unsigned int offset,
1035 unsigned int length)
d98237b3 1036{
d1310b2e
CM
1037 struct extent_io_tree *tree;
1038 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1039 extent_invalidatepage(tree, page, offset);
1040 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1041 if (PagePrivate(page)) {
efe120a0
FH
1042 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1043 "page private not zero on page %llu",
1044 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1045 ClearPagePrivate(page);
1046 set_page_private(page, 0);
1047 page_cache_release(page);
1048 }
d98237b3
CM
1049}
1050
0b32f4bb
JB
1051static int btree_set_page_dirty(struct page *page)
1052{
bb146eb2 1053#ifdef DEBUG
0b32f4bb
JB
1054 struct extent_buffer *eb;
1055
1056 BUG_ON(!PagePrivate(page));
1057 eb = (struct extent_buffer *)page->private;
1058 BUG_ON(!eb);
1059 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1060 BUG_ON(!atomic_read(&eb->refs));
1061 btrfs_assert_tree_locked(eb);
bb146eb2 1062#endif
0b32f4bb
JB
1063 return __set_page_dirty_nobuffers(page);
1064}
1065
7f09410b 1066static const struct address_space_operations btree_aops = {
d98237b3 1067 .readpage = btree_readpage,
0da5468f 1068 .writepages = btree_writepages,
5f39d397
CM
1069 .releasepage = btree_releasepage,
1070 .invalidatepage = btree_invalidatepage,
5a92bc88 1071#ifdef CONFIG_MIGRATION
784b4e29 1072 .migratepage = btree_migratepage,
5a92bc88 1073#endif
0b32f4bb 1074 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1075};
1076
d3e46fea 1077void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1078{
5f39d397
CM
1079 struct extent_buffer *buf = NULL;
1080 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1081
a83fffb7 1082 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1083 if (!buf)
6197d86e 1084 return;
d1310b2e 1085 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1086 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1087 free_extent_buffer(buf);
090d1875
CM
1088}
1089
c0dcaa4d 1090int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1091 int mirror_num, struct extent_buffer **eb)
1092{
1093 struct extent_buffer *buf = NULL;
1094 struct inode *btree_inode = root->fs_info->btree_inode;
1095 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1096 int ret;
1097
a83fffb7 1098 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1099 if (!buf)
1100 return 0;
1101
1102 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1103
1104 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1105 btree_get_extent, mirror_num);
1106 if (ret) {
1107 free_extent_buffer(buf);
1108 return ret;
1109 }
1110
1111 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1112 free_extent_buffer(buf);
1113 return -EIO;
0b32f4bb 1114 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1115 *eb = buf;
1116 } else {
1117 free_extent_buffer(buf);
1118 }
1119 return 0;
1120}
1121
0999df54 1122struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
0308af44 1123 u64 bytenr)
0999df54 1124{
f28491e0 1125 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1126}
1127
1128struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1129 u64 bytenr)
0999df54 1130{
fccb84c9 1131 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1132 return alloc_test_extent_buffer(root->fs_info, bytenr);
1133 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1134}
1135
1136
e02119d5
CM
1137int btrfs_write_tree_block(struct extent_buffer *buf)
1138{
727011e0 1139 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1140 buf->start + buf->len - 1);
e02119d5
CM
1141}
1142
1143int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1144{
727011e0 1145 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1146 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1147}
1148
0999df54 1149struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1150 u64 parent_transid)
0999df54
CM
1151{
1152 struct extent_buffer *buf = NULL;
0999df54
CM
1153 int ret;
1154
a83fffb7 1155 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54
CM
1156 if (!buf)
1157 return NULL;
0999df54 1158
ca7a79ad 1159 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1160 if (ret) {
1161 free_extent_buffer(buf);
1162 return NULL;
1163 }
5f39d397 1164 return buf;
ce9adaa5 1165
eb60ceac
CM
1166}
1167
d5c13f92
JM
1168void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1169 struct extent_buffer *buf)
ed2ff2cb 1170{
e2d84521
MX
1171 struct btrfs_fs_info *fs_info = root->fs_info;
1172
55c69072 1173 if (btrfs_header_generation(buf) ==
e2d84521 1174 fs_info->running_transaction->transid) {
b9447ef8 1175 btrfs_assert_tree_locked(buf);
b4ce94de 1176
b9473439 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 -buf->len,
1180 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 btrfs_set_lock_blocking(buf);
1183 clear_extent_buffer_dirty(buf);
1184 }
925baedd 1185 }
5f39d397
CM
1186}
1187
8257b2dc
MX
1188static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189{
1190 struct btrfs_subvolume_writers *writers;
1191 int ret;
1192
1193 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 if (!writers)
1195 return ERR_PTR(-ENOMEM);
1196
908c7f19 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1198 if (ret < 0) {
1199 kfree(writers);
1200 return ERR_PTR(ret);
1201 }
1202
1203 init_waitqueue_head(&writers->wait);
1204 return writers;
1205}
1206
1207static void
1208btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209{
1210 percpu_counter_destroy(&writers->counter);
1211 kfree(writers);
1212}
1213
707e8a07
DS
1214static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1216 u64 objectid)
d97e63b6 1217{
cfaa7295 1218 root->node = NULL;
a28ec197 1219 root->commit_root = NULL;
db94535d
CM
1220 root->sectorsize = sectorsize;
1221 root->nodesize = nodesize;
87ee04eb 1222 root->stripesize = stripesize;
27cdeb70 1223 root->state = 0;
d68fc57b 1224 root->orphan_cleanup_state = 0;
0b86a832 1225
0f7d52f4
CM
1226 root->objectid = objectid;
1227 root->last_trans = 0;
13a8a7c8 1228 root->highest_objectid = 0;
eb73c1b7 1229 root->nr_delalloc_inodes = 0;
199c2a9c 1230 root->nr_ordered_extents = 0;
58176a96 1231 root->name = NULL;
6bef4d31 1232 root->inode_tree = RB_ROOT;
16cdcec7 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1234 root->block_rsv = NULL;
d68fc57b 1235 root->orphan_block_rsv = NULL;
0b86a832
CM
1236
1237 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1238 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1239 INIT_LIST_HEAD(&root->delalloc_inodes);
1240 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1241 INIT_LIST_HEAD(&root->ordered_extents);
1242 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1243 INIT_LIST_HEAD(&root->logged_list[0]);
1244 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1245 spin_lock_init(&root->orphan_lock);
5d4f98a2 1246 spin_lock_init(&root->inode_lock);
eb73c1b7 1247 spin_lock_init(&root->delalloc_lock);
199c2a9c 1248 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1249 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1250 spin_lock_init(&root->log_extents_lock[0]);
1251 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1252 mutex_init(&root->objectid_mutex);
e02119d5 1253 mutex_init(&root->log_mutex);
31f3d255 1254 mutex_init(&root->ordered_extent_mutex);
573bfb72 1255 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1256 init_waitqueue_head(&root->log_writer_wait);
1257 init_waitqueue_head(&root->log_commit_wait[0]);
1258 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1259 INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1261 atomic_set(&root->log_commit[0], 0);
1262 atomic_set(&root->log_commit[1], 0);
1263 atomic_set(&root->log_writers, 0);
2ecb7923 1264 atomic_set(&root->log_batch, 0);
8a35d95f 1265 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1266 atomic_set(&root->refs, 1);
8257b2dc 1267 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1268 root->log_transid = 0;
d1433deb 1269 root->log_transid_committed = -1;
257c62e1 1270 root->last_log_commit = 0;
06ea65a3
JB
1271 if (fs_info)
1272 extent_io_tree_init(&root->dirty_log_pages,
1273 fs_info->btree_inode->i_mapping);
017e5369 1274
3768f368
CM
1275 memset(&root->root_key, 0, sizeof(root->root_key));
1276 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1278 if (fs_info)
1279 root->defrag_trans_start = fs_info->generation;
1280 else
1281 root->defrag_trans_start = 0;
4d775673 1282 root->root_key.objectid = objectid;
0ee5dc67 1283 root->anon_dev = 0;
8ea05e3a 1284
5f3ab90a 1285 spin_lock_init(&root->root_item_lock);
3768f368
CM
1286}
1287
f84a8bd6 1288static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1289{
1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291 if (root)
1292 root->fs_info = fs_info;
1293 return root;
1294}
1295
06ea65a3
JB
1296#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297/* Should only be used by the testing infrastructure */
1298struct btrfs_root *btrfs_alloc_dummy_root(void)
1299{
1300 struct btrfs_root *root;
1301
1302 root = btrfs_alloc_root(NULL);
1303 if (!root)
1304 return ERR_PTR(-ENOMEM);
707e8a07 1305 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1307 root->alloc_bytenr = 0;
06ea65a3
JB
1308
1309 return root;
1310}
1311#endif
1312
20897f5c
AJ
1313struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info,
1315 u64 objectid)
1316{
1317 struct extent_buffer *leaf;
1318 struct btrfs_root *tree_root = fs_info->tree_root;
1319 struct btrfs_root *root;
1320 struct btrfs_key key;
1321 int ret = 0;
6463fe58 1322 uuid_le uuid;
20897f5c
AJ
1323
1324 root = btrfs_alloc_root(fs_info);
1325 if (!root)
1326 return ERR_PTR(-ENOMEM);
1327
707e8a07
DS
1328 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1329 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1330 root->root_key.objectid = objectid;
1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332 root->root_key.offset = 0;
1333
4d75f8a9 1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1335 if (IS_ERR(leaf)) {
1336 ret = PTR_ERR(leaf);
1dd05682 1337 leaf = NULL;
20897f5c
AJ
1338 goto fail;
1339 }
1340
20897f5c
AJ
1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342 btrfs_set_header_bytenr(leaf, leaf->start);
1343 btrfs_set_header_generation(leaf, trans->transid);
1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345 btrfs_set_header_owner(leaf, objectid);
1346 root->node = leaf;
1347
0a4e5586 1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1349 BTRFS_FSID_SIZE);
1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1351 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1352 BTRFS_UUID_SIZE);
1353 btrfs_mark_buffer_dirty(leaf);
1354
1355 root->commit_root = btrfs_root_node(root);
27cdeb70 1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1357
1358 root->root_item.flags = 0;
1359 root->root_item.byte_limit = 0;
1360 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361 btrfs_set_root_generation(&root->root_item, trans->transid);
1362 btrfs_set_root_level(&root->root_item, 0);
1363 btrfs_set_root_refs(&root->root_item, 1);
1364 btrfs_set_root_used(&root->root_item, leaf->len);
1365 btrfs_set_root_last_snapshot(&root->root_item, 0);
1366 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1367 uuid_le_gen(&uuid);
1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1369 root->root_item.drop_level = 0;
1370
1371 key.objectid = objectid;
1372 key.type = BTRFS_ROOT_ITEM_KEY;
1373 key.offset = 0;
1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 if (ret)
1376 goto fail;
1377
1378 btrfs_tree_unlock(leaf);
1379
1dd05682
TI
1380 return root;
1381
20897f5c 1382fail:
1dd05682
TI
1383 if (leaf) {
1384 btrfs_tree_unlock(leaf);
59885b39 1385 free_extent_buffer(root->commit_root);
1dd05682
TI
1386 free_extent_buffer(leaf);
1387 }
1388 kfree(root);
20897f5c 1389
1dd05682 1390 return ERR_PTR(ret);
20897f5c
AJ
1391}
1392
7237f183
YZ
1393static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1395{
1396 struct btrfs_root *root;
1397 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1398 struct extent_buffer *leaf;
e02119d5 1399
6f07e42e 1400 root = btrfs_alloc_root(fs_info);
e02119d5 1401 if (!root)
7237f183 1402 return ERR_PTR(-ENOMEM);
e02119d5 1403
707e8a07
DS
1404 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1405 tree_root->stripesize, root, fs_info,
1406 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1407
1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1411
7237f183 1412 /*
27cdeb70
MX
1413 * DON'T set REF_COWS for log trees
1414 *
7237f183
YZ
1415 * log trees do not get reference counted because they go away
1416 * before a real commit is actually done. They do store pointers
1417 * to file data extents, and those reference counts still get
1418 * updated (along with back refs to the log tree).
1419 */
e02119d5 1420
4d75f8a9
DS
1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422 NULL, 0, 0, 0);
7237f183
YZ
1423 if (IS_ERR(leaf)) {
1424 kfree(root);
1425 return ERR_CAST(leaf);
1426 }
e02119d5 1427
5d4f98a2
YZ
1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429 btrfs_set_header_bytenr(leaf, leaf->start);
1430 btrfs_set_header_generation(leaf, trans->transid);
1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1433 root->node = leaf;
e02119d5
CM
1434
1435 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1436 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1437 btrfs_mark_buffer_dirty(root->node);
1438 btrfs_tree_unlock(root->node);
7237f183
YZ
1439 return root;
1440}
1441
1442int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_fs_info *fs_info)
1444{
1445 struct btrfs_root *log_root;
1446
1447 log_root = alloc_log_tree(trans, fs_info);
1448 if (IS_ERR(log_root))
1449 return PTR_ERR(log_root);
1450 WARN_ON(fs_info->log_root_tree);
1451 fs_info->log_root_tree = log_root;
1452 return 0;
1453}
1454
1455int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root)
1457{
1458 struct btrfs_root *log_root;
1459 struct btrfs_inode_item *inode_item;
1460
1461 log_root = alloc_log_tree(trans, root->fs_info);
1462 if (IS_ERR(log_root))
1463 return PTR_ERR(log_root);
1464
1465 log_root->last_trans = trans->transid;
1466 log_root->root_key.offset = root->root_key.objectid;
1467
1468 inode_item = &log_root->root_item.inode;
3cae210f
QW
1469 btrfs_set_stack_inode_generation(inode_item, 1);
1470 btrfs_set_stack_inode_size(inode_item, 3);
1471 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1474
5d4f98a2 1475 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1476
1477 WARN_ON(root->log_root);
1478 root->log_root = log_root;
1479 root->log_transid = 0;
d1433deb 1480 root->log_transid_committed = -1;
257c62e1 1481 root->last_log_commit = 0;
e02119d5
CM
1482 return 0;
1483}
1484
35a3621b
SB
1485static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486 struct btrfs_key *key)
e02119d5
CM
1487{
1488 struct btrfs_root *root;
1489 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1490 struct btrfs_path *path;
84234f3a 1491 u64 generation;
cb517eab 1492 int ret;
0f7d52f4 1493
cb517eab
MX
1494 path = btrfs_alloc_path();
1495 if (!path)
0f7d52f4 1496 return ERR_PTR(-ENOMEM);
cb517eab
MX
1497
1498 root = btrfs_alloc_root(fs_info);
1499 if (!root) {
1500 ret = -ENOMEM;
1501 goto alloc_fail;
0f7d52f4
CM
1502 }
1503
707e8a07
DS
1504 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1505 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1506
cb517eab
MX
1507 ret = btrfs_find_root(tree_root, key, path,
1508 &root->root_item, &root->root_key);
0f7d52f4 1509 if (ret) {
13a8a7c8
YZ
1510 if (ret > 0)
1511 ret = -ENOENT;
cb517eab 1512 goto find_fail;
0f7d52f4 1513 }
13a8a7c8 1514
84234f3a 1515 generation = btrfs_root_generation(&root->root_item);
db94535d 1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1517 generation);
cb517eab
MX
1518 if (!root->node) {
1519 ret = -ENOMEM;
1520 goto find_fail;
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 ret = -EIO;
1523 goto read_fail;
416bc658 1524 }
5d4f98a2 1525 root->commit_root = btrfs_root_node(root);
13a8a7c8 1526out:
cb517eab
MX
1527 btrfs_free_path(path);
1528 return root;
1529
1530read_fail:
1531 free_extent_buffer(root->node);
1532find_fail:
1533 kfree(root);
1534alloc_fail:
1535 root = ERR_PTR(ret);
1536 goto out;
1537}
1538
1539struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1540 struct btrfs_key *location)
1541{
1542 struct btrfs_root *root;
1543
1544 root = btrfs_read_tree_root(tree_root, location);
1545 if (IS_ERR(root))
1546 return root;
1547
1548 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1549 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1550 btrfs_check_and_init_root_item(&root->root_item);
1551 }
13a8a7c8 1552
5eda7b5e
CM
1553 return root;
1554}
1555
cb517eab
MX
1556int btrfs_init_fs_root(struct btrfs_root *root)
1557{
1558 int ret;
8257b2dc 1559 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1560
1561 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1562 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1563 GFP_NOFS);
1564 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1565 ret = -ENOMEM;
1566 goto fail;
1567 }
1568
8257b2dc
MX
1569 writers = btrfs_alloc_subvolume_writers();
1570 if (IS_ERR(writers)) {
1571 ret = PTR_ERR(writers);
1572 goto fail;
1573 }
1574 root->subv_writers = writers;
1575
cb517eab 1576 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1577 spin_lock_init(&root->ino_cache_lock);
1578 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1579
1580 ret = get_anon_bdev(&root->anon_dev);
1581 if (ret)
8257b2dc 1582 goto free_writers;
cb517eab 1583 return 0;
8257b2dc
MX
1584
1585free_writers:
1586 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1587fail:
1588 kfree(root->free_ino_ctl);
1589 kfree(root->free_ino_pinned);
1590 return ret;
1591}
1592
171170c1
ST
1593static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1594 u64 root_id)
cb517eab
MX
1595{
1596 struct btrfs_root *root;
1597
1598 spin_lock(&fs_info->fs_roots_radix_lock);
1599 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1600 (unsigned long)root_id);
1601 spin_unlock(&fs_info->fs_roots_radix_lock);
1602 return root;
1603}
1604
1605int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1606 struct btrfs_root *root)
1607{
1608 int ret;
1609
1610 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1611 if (ret)
1612 return ret;
1613
1614 spin_lock(&fs_info->fs_roots_radix_lock);
1615 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1616 (unsigned long)root->root_key.objectid,
1617 root);
1618 if (ret == 0)
27cdeb70 1619 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1620 spin_unlock(&fs_info->fs_roots_radix_lock);
1621 radix_tree_preload_end();
1622
1623 return ret;
1624}
1625
c00869f1
MX
1626struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627 struct btrfs_key *location,
1628 bool check_ref)
5eda7b5e
CM
1629{
1630 struct btrfs_root *root;
381cf658 1631 struct btrfs_path *path;
1d4c08e0 1632 struct btrfs_key key;
5eda7b5e
CM
1633 int ret;
1634
edbd8d4e
CM
1635 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1636 return fs_info->tree_root;
1637 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1638 return fs_info->extent_root;
8f18cf13
CM
1639 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1640 return fs_info->chunk_root;
1641 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1642 return fs_info->dev_root;
0403e47e
YZ
1643 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1644 return fs_info->csum_root;
bcef60f2
AJ
1645 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1646 return fs_info->quota_root ? fs_info->quota_root :
1647 ERR_PTR(-ENOENT);
f7a81ea4
SB
1648 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1649 return fs_info->uuid_root ? fs_info->uuid_root :
1650 ERR_PTR(-ENOENT);
4df27c4d 1651again:
cb517eab 1652 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1653 if (root) {
c00869f1 1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1655 return ERR_PTR(-ENOENT);
5eda7b5e 1656 return root;
48475471 1657 }
5eda7b5e 1658
cb517eab 1659 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1660 if (IS_ERR(root))
1661 return root;
3394e160 1662
c00869f1 1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1664 ret = -ENOENT;
581bb050 1665 goto fail;
35a30d7c 1666 }
581bb050 1667
cb517eab 1668 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1669 if (ret)
1670 goto fail;
3394e160 1671
381cf658
DS
1672 path = btrfs_alloc_path();
1673 if (!path) {
1674 ret = -ENOMEM;
1675 goto fail;
1676 }
1d4c08e0
DS
1677 key.objectid = BTRFS_ORPHAN_OBJECTID;
1678 key.type = BTRFS_ORPHAN_ITEM_KEY;
1679 key.offset = location->objectid;
1680
1681 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1682 btrfs_free_path(path);
d68fc57b
YZ
1683 if (ret < 0)
1684 goto fail;
1685 if (ret == 0)
27cdeb70 1686 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1687
cb517eab 1688 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1689 if (ret) {
4df27c4d
YZ
1690 if (ret == -EEXIST) {
1691 free_fs_root(root);
1692 goto again;
1693 }
1694 goto fail;
0f7d52f4 1695 }
edbd8d4e 1696 return root;
4df27c4d
YZ
1697fail:
1698 free_fs_root(root);
1699 return ERR_PTR(ret);
edbd8d4e
CM
1700}
1701
04160088
CM
1702static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1703{
1704 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1705 int ret = 0;
04160088
CM
1706 struct btrfs_device *device;
1707 struct backing_dev_info *bdi;
b7967db7 1708
1f78160c
XG
1709 rcu_read_lock();
1710 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1711 if (!device->bdev)
1712 continue;
04160088 1713 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1714 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1715 ret = 1;
1716 break;
1717 }
1718 }
1f78160c 1719 rcu_read_unlock();
04160088
CM
1720 return ret;
1721}
1722
04160088
CM
1723static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1724{
ad081f14
JA
1725 int err;
1726
1727 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1728 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1729 if (err)
1730 return err;
1731
4575c9cc 1732 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1733 bdi->congested_fn = btrfs_congested_fn;
1734 bdi->congested_data = info;
1735 return 0;
1736}
1737
8b712842
CM
1738/*
1739 * called by the kthread helper functions to finally call the bio end_io
1740 * functions. This is where read checksum verification actually happens
1741 */
1742static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1743{
ce9adaa5 1744 struct bio *bio;
97eb6b69 1745 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1746 int error;
ce9adaa5 1747
97eb6b69 1748 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1749 bio = end_io_wq->bio;
ce9adaa5 1750
8b712842
CM
1751 error = end_io_wq->error;
1752 bio->bi_private = end_io_wq->private;
1753 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1754 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
bc1e79ac 1755 bio_endio_nodec(bio, error);
44b8bd7e
CM
1756}
1757
a74a4b97
CM
1758static int cleaner_kthread(void *arg)
1759{
1760 struct btrfs_root *root = arg;
d0278245 1761 int again;
a74a4b97
CM
1762
1763 do {
d0278245 1764 again = 0;
a74a4b97 1765
d0278245 1766 /* Make the cleaner go to sleep early. */
babbf170 1767 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1768 goto sleep;
1769
1770 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1771 goto sleep;
1772
dc7f370c
MX
1773 /*
1774 * Avoid the problem that we change the status of the fs
1775 * during the above check and trylock.
1776 */
babbf170 1777 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1778 mutex_unlock(&root->fs_info->cleaner_mutex);
1779 goto sleep;
76dda93c 1780 }
a74a4b97 1781
d0278245 1782 btrfs_run_delayed_iputs(root);
47ab2a6c 1783 btrfs_delete_unused_bgs(root->fs_info);
d0278245
MX
1784 again = btrfs_clean_one_deleted_snapshot(root);
1785 mutex_unlock(&root->fs_info->cleaner_mutex);
1786
1787 /*
05323cd1
MX
1788 * The defragger has dealt with the R/O remount and umount,
1789 * needn't do anything special here.
d0278245
MX
1790 */
1791 btrfs_run_defrag_inodes(root->fs_info);
1792sleep:
9d1a2a3a 1793 if (!try_to_freeze() && !again) {
a74a4b97 1794 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1795 if (!kthread_should_stop())
1796 schedule();
a74a4b97
CM
1797 __set_current_state(TASK_RUNNING);
1798 }
1799 } while (!kthread_should_stop());
1800 return 0;
1801}
1802
1803static int transaction_kthread(void *arg)
1804{
1805 struct btrfs_root *root = arg;
1806 struct btrfs_trans_handle *trans;
1807 struct btrfs_transaction *cur;
8929ecfa 1808 u64 transid;
a74a4b97
CM
1809 unsigned long now;
1810 unsigned long delay;
914b2007 1811 bool cannot_commit;
a74a4b97
CM
1812
1813 do {
914b2007 1814 cannot_commit = false;
8b87dc17 1815 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1816 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1817
a4abeea4 1818 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1819 cur = root->fs_info->running_transaction;
1820 if (!cur) {
a4abeea4 1821 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1822 goto sleep;
1823 }
31153d81 1824
a74a4b97 1825 now = get_seconds();
4a9d8bde 1826 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1827 (now < cur->start_time ||
1828 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1829 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1830 delay = HZ * 5;
1831 goto sleep;
1832 }
8929ecfa 1833 transid = cur->transid;
a4abeea4 1834 spin_unlock(&root->fs_info->trans_lock);
56bec294 1835
79787eaa 1836 /* If the file system is aborted, this will always fail. */
354aa0fb 1837 trans = btrfs_attach_transaction(root);
914b2007 1838 if (IS_ERR(trans)) {
354aa0fb
MX
1839 if (PTR_ERR(trans) != -ENOENT)
1840 cannot_commit = true;
79787eaa 1841 goto sleep;
914b2007 1842 }
8929ecfa 1843 if (transid == trans->transid) {
79787eaa 1844 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1845 } else {
1846 btrfs_end_transaction(trans, root);
1847 }
a74a4b97
CM
1848sleep:
1849 wake_up_process(root->fs_info->cleaner_kthread);
1850 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1851
4e121c06
JB
1852 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1853 &root->fs_info->fs_state)))
1854 btrfs_cleanup_transaction(root);
a0acae0e 1855 if (!try_to_freeze()) {
a74a4b97 1856 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1857 if (!kthread_should_stop() &&
914b2007
JK
1858 (!btrfs_transaction_blocked(root->fs_info) ||
1859 cannot_commit))
8929ecfa 1860 schedule_timeout(delay);
a74a4b97
CM
1861 __set_current_state(TASK_RUNNING);
1862 }
1863 } while (!kthread_should_stop());
1864 return 0;
1865}
1866
af31f5e5
CM
1867/*
1868 * this will find the highest generation in the array of
1869 * root backups. The index of the highest array is returned,
1870 * or -1 if we can't find anything.
1871 *
1872 * We check to make sure the array is valid by comparing the
1873 * generation of the latest root in the array with the generation
1874 * in the super block. If they don't match we pitch it.
1875 */
1876static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1877{
1878 u64 cur;
1879 int newest_index = -1;
1880 struct btrfs_root_backup *root_backup;
1881 int i;
1882
1883 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1884 root_backup = info->super_copy->super_roots + i;
1885 cur = btrfs_backup_tree_root_gen(root_backup);
1886 if (cur == newest_gen)
1887 newest_index = i;
1888 }
1889
1890 /* check to see if we actually wrapped around */
1891 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1892 root_backup = info->super_copy->super_roots;
1893 cur = btrfs_backup_tree_root_gen(root_backup);
1894 if (cur == newest_gen)
1895 newest_index = 0;
1896 }
1897 return newest_index;
1898}
1899
1900
1901/*
1902 * find the oldest backup so we know where to store new entries
1903 * in the backup array. This will set the backup_root_index
1904 * field in the fs_info struct
1905 */
1906static void find_oldest_super_backup(struct btrfs_fs_info *info,
1907 u64 newest_gen)
1908{
1909 int newest_index = -1;
1910
1911 newest_index = find_newest_super_backup(info, newest_gen);
1912 /* if there was garbage in there, just move along */
1913 if (newest_index == -1) {
1914 info->backup_root_index = 0;
1915 } else {
1916 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1917 }
1918}
1919
1920/*
1921 * copy all the root pointers into the super backup array.
1922 * this will bump the backup pointer by one when it is
1923 * done
1924 */
1925static void backup_super_roots(struct btrfs_fs_info *info)
1926{
1927 int next_backup;
1928 struct btrfs_root_backup *root_backup;
1929 int last_backup;
1930
1931 next_backup = info->backup_root_index;
1932 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1933 BTRFS_NUM_BACKUP_ROOTS;
1934
1935 /*
1936 * just overwrite the last backup if we're at the same generation
1937 * this happens only at umount
1938 */
1939 root_backup = info->super_for_commit->super_roots + last_backup;
1940 if (btrfs_backup_tree_root_gen(root_backup) ==
1941 btrfs_header_generation(info->tree_root->node))
1942 next_backup = last_backup;
1943
1944 root_backup = info->super_for_commit->super_roots + next_backup;
1945
1946 /*
1947 * make sure all of our padding and empty slots get zero filled
1948 * regardless of which ones we use today
1949 */
1950 memset(root_backup, 0, sizeof(*root_backup));
1951
1952 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1953
1954 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1955 btrfs_set_backup_tree_root_gen(root_backup,
1956 btrfs_header_generation(info->tree_root->node));
1957
1958 btrfs_set_backup_tree_root_level(root_backup,
1959 btrfs_header_level(info->tree_root->node));
1960
1961 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1962 btrfs_set_backup_chunk_root_gen(root_backup,
1963 btrfs_header_generation(info->chunk_root->node));
1964 btrfs_set_backup_chunk_root_level(root_backup,
1965 btrfs_header_level(info->chunk_root->node));
1966
1967 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1968 btrfs_set_backup_extent_root_gen(root_backup,
1969 btrfs_header_generation(info->extent_root->node));
1970 btrfs_set_backup_extent_root_level(root_backup,
1971 btrfs_header_level(info->extent_root->node));
1972
7c7e82a7
CM
1973 /*
1974 * we might commit during log recovery, which happens before we set
1975 * the fs_root. Make sure it is valid before we fill it in.
1976 */
1977 if (info->fs_root && info->fs_root->node) {
1978 btrfs_set_backup_fs_root(root_backup,
1979 info->fs_root->node->start);
1980 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1981 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1982 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1983 btrfs_header_level(info->fs_root->node));
7c7e82a7 1984 }
af31f5e5
CM
1985
1986 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1987 btrfs_set_backup_dev_root_gen(root_backup,
1988 btrfs_header_generation(info->dev_root->node));
1989 btrfs_set_backup_dev_root_level(root_backup,
1990 btrfs_header_level(info->dev_root->node));
1991
1992 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1993 btrfs_set_backup_csum_root_gen(root_backup,
1994 btrfs_header_generation(info->csum_root->node));
1995 btrfs_set_backup_csum_root_level(root_backup,
1996 btrfs_header_level(info->csum_root->node));
1997
1998 btrfs_set_backup_total_bytes(root_backup,
1999 btrfs_super_total_bytes(info->super_copy));
2000 btrfs_set_backup_bytes_used(root_backup,
2001 btrfs_super_bytes_used(info->super_copy));
2002 btrfs_set_backup_num_devices(root_backup,
2003 btrfs_super_num_devices(info->super_copy));
2004
2005 /*
2006 * if we don't copy this out to the super_copy, it won't get remembered
2007 * for the next commit
2008 */
2009 memcpy(&info->super_copy->super_roots,
2010 &info->super_for_commit->super_roots,
2011 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2012}
2013
2014/*
2015 * this copies info out of the root backup array and back into
2016 * the in-memory super block. It is meant to help iterate through
2017 * the array, so you send it the number of backups you've already
2018 * tried and the last backup index you used.
2019 *
2020 * this returns -1 when it has tried all the backups
2021 */
2022static noinline int next_root_backup(struct btrfs_fs_info *info,
2023 struct btrfs_super_block *super,
2024 int *num_backups_tried, int *backup_index)
2025{
2026 struct btrfs_root_backup *root_backup;
2027 int newest = *backup_index;
2028
2029 if (*num_backups_tried == 0) {
2030 u64 gen = btrfs_super_generation(super);
2031
2032 newest = find_newest_super_backup(info, gen);
2033 if (newest == -1)
2034 return -1;
2035
2036 *backup_index = newest;
2037 *num_backups_tried = 1;
2038 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2039 /* we've tried all the backups, all done */
2040 return -1;
2041 } else {
2042 /* jump to the next oldest backup */
2043 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2044 BTRFS_NUM_BACKUP_ROOTS;
2045 *backup_index = newest;
2046 *num_backups_tried += 1;
2047 }
2048 root_backup = super->super_roots + newest;
2049
2050 btrfs_set_super_generation(super,
2051 btrfs_backup_tree_root_gen(root_backup));
2052 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2053 btrfs_set_super_root_level(super,
2054 btrfs_backup_tree_root_level(root_backup));
2055 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2056
2057 /*
2058 * fixme: the total bytes and num_devices need to match or we should
2059 * need a fsck
2060 */
2061 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2062 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2063 return 0;
2064}
2065
7abadb64
LB
2066/* helper to cleanup workers */
2067static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2068{
dc6e3209 2069 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2070 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2071 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2072 btrfs_destroy_workqueue(fs_info->endio_workers);
2073 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2074 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2075 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2076 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2077 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2078 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2079 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2080 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2081 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2082 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2083 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2084 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2085 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2086 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2087}
2088
2e9f5954
R
2089static void free_root_extent_buffers(struct btrfs_root *root)
2090{
2091 if (root) {
2092 free_extent_buffer(root->node);
2093 free_extent_buffer(root->commit_root);
2094 root->node = NULL;
2095 root->commit_root = NULL;
2096 }
2097}
2098
af31f5e5
CM
2099/* helper to cleanup tree roots */
2100static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2101{
2e9f5954 2102 free_root_extent_buffers(info->tree_root);
655b09fe 2103
2e9f5954
R
2104 free_root_extent_buffers(info->dev_root);
2105 free_root_extent_buffers(info->extent_root);
2106 free_root_extent_buffers(info->csum_root);
2107 free_root_extent_buffers(info->quota_root);
2108 free_root_extent_buffers(info->uuid_root);
2109 if (chunk_root)
2110 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2111}
2112
faa2dbf0 2113void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2114{
2115 int ret;
2116 struct btrfs_root *gang[8];
2117 int i;
2118
2119 while (!list_empty(&fs_info->dead_roots)) {
2120 gang[0] = list_entry(fs_info->dead_roots.next,
2121 struct btrfs_root, root_list);
2122 list_del(&gang[0]->root_list);
2123
27cdeb70 2124 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2125 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2126 } else {
2127 free_extent_buffer(gang[0]->node);
2128 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2129 btrfs_put_fs_root(gang[0]);
171f6537
JB
2130 }
2131 }
2132
2133 while (1) {
2134 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2135 (void **)gang, 0,
2136 ARRAY_SIZE(gang));
2137 if (!ret)
2138 break;
2139 for (i = 0; i < ret; i++)
cb517eab 2140 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2141 }
1a4319cc
LB
2142
2143 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2144 btrfs_free_log_root_tree(NULL, fs_info);
2145 btrfs_destroy_pinned_extent(fs_info->tree_root,
2146 fs_info->pinned_extents);
2147 }
171f6537 2148}
af31f5e5 2149
ad2b2c80
AV
2150int open_ctree(struct super_block *sb,
2151 struct btrfs_fs_devices *fs_devices,
2152 char *options)
2e635a27 2153{
db94535d
CM
2154 u32 sectorsize;
2155 u32 nodesize;
87ee04eb 2156 u32 stripesize;
84234f3a 2157 u64 generation;
f2b636e8 2158 u64 features;
3de4586c 2159 struct btrfs_key location;
a061fc8d 2160 struct buffer_head *bh;
4d34b278 2161 struct btrfs_super_block *disk_super;
815745cf 2162 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2163 struct btrfs_root *tree_root;
4d34b278
ID
2164 struct btrfs_root *extent_root;
2165 struct btrfs_root *csum_root;
2166 struct btrfs_root *chunk_root;
2167 struct btrfs_root *dev_root;
bcef60f2 2168 struct btrfs_root *quota_root;
f7a81ea4 2169 struct btrfs_root *uuid_root;
e02119d5 2170 struct btrfs_root *log_tree_root;
eb60ceac 2171 int ret;
e58ca020 2172 int err = -EINVAL;
af31f5e5
CM
2173 int num_backups_tried = 0;
2174 int backup_index = 0;
5cdc7ad3
QW
2175 int max_active;
2176 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2177 bool create_uuid_tree;
2178 bool check_uuid_tree;
4543df7e 2179
f84a8bd6 2180 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2181 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2182 if (!tree_root || !chunk_root) {
39279cc3
CM
2183 err = -ENOMEM;
2184 goto fail;
2185 }
76dda93c
YZ
2186
2187 ret = init_srcu_struct(&fs_info->subvol_srcu);
2188 if (ret) {
2189 err = ret;
2190 goto fail;
2191 }
2192
2193 ret = setup_bdi(fs_info, &fs_info->bdi);
2194 if (ret) {
2195 err = ret;
2196 goto fail_srcu;
2197 }
2198
908c7f19 2199 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2200 if (ret) {
2201 err = ret;
2202 goto fail_bdi;
2203 }
2204 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2205 (1 + ilog2(nr_cpu_ids));
2206
908c7f19 2207 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2208 if (ret) {
2209 err = ret;
2210 goto fail_dirty_metadata_bytes;
2211 }
2212
908c7f19 2213 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2214 if (ret) {
2215 err = ret;
2216 goto fail_delalloc_bytes;
2217 }
2218
76dda93c
YZ
2219 fs_info->btree_inode = new_inode(sb);
2220 if (!fs_info->btree_inode) {
2221 err = -ENOMEM;
c404e0dc 2222 goto fail_bio_counter;
76dda93c
YZ
2223 }
2224
a6591715 2225 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2226
76dda93c 2227 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2228 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2229 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2230 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2231 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2232 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2233 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2234 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2235 spin_lock_init(&fs_info->trans_lock);
76dda93c 2236 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2237 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2238 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2239 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2240 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2241 spin_lock_init(&fs_info->super_lock);
fcebe456 2242 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2243 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2244 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2245 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2246 mutex_init(&fs_info->reloc_mutex);
573bfb72 2247 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2248 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2249
58176a96 2250 init_completion(&fs_info->kobj_unregister);
0b86a832 2251 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2252 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2253 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2254 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2255 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2256 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2257 BTRFS_BLOCK_RSV_GLOBAL);
2258 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2259 BTRFS_BLOCK_RSV_DELALLOC);
2260 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2261 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2262 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2263 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2264 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2265 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2266 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2267 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2268 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2269 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2270 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2271 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2272 fs_info->sb = sb;
95ac567a 2273 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2274 fs_info->metadata_ratio = 0;
4cb5300b 2275 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2276 fs_info->free_chunk_space = 0;
f29021b2 2277 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2278 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2279 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2280 /* readahead state */
2281 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2282 spin_lock_init(&fs_info->reada_lock);
c8b97818 2283
b34b086c
CM
2284 fs_info->thread_pool_size = min_t(unsigned long,
2285 num_online_cpus() + 2, 8);
0afbaf8c 2286
199c2a9c
MX
2287 INIT_LIST_HEAD(&fs_info->ordered_roots);
2288 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2289 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2290 GFP_NOFS);
2291 if (!fs_info->delayed_root) {
2292 err = -ENOMEM;
2293 goto fail_iput;
2294 }
2295 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2296
a2de733c
AJ
2297 mutex_init(&fs_info->scrub_lock);
2298 atomic_set(&fs_info->scrubs_running, 0);
2299 atomic_set(&fs_info->scrub_pause_req, 0);
2300 atomic_set(&fs_info->scrubs_paused, 0);
2301 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2302 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2303 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2304 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2305#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2306 fs_info->check_integrity_print_mask = 0;
2307#endif
a2de733c 2308
c9e9f97b
ID
2309 spin_lock_init(&fs_info->balance_lock);
2310 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2311 atomic_set(&fs_info->balance_running, 0);
2312 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2313 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2314 fs_info->balance_ctl = NULL;
837d5b6e 2315 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2316 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2317
a061fc8d
CM
2318 sb->s_blocksize = 4096;
2319 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2320 sb->s_bdi = &fs_info->bdi;
a061fc8d 2321
76dda93c 2322 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2323 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2324 /*
2325 * we set the i_size on the btree inode to the max possible int.
2326 * the real end of the address space is determined by all of
2327 * the devices in the system
2328 */
2329 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2330 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2331 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2332
5d4f98a2 2333 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2334 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2335 fs_info->btree_inode->i_mapping);
0b32f4bb 2336 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2337 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2338
2339 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2340
76dda93c
YZ
2341 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2342 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2343 sizeof(struct btrfs_key));
72ac3c0d
JB
2344 set_bit(BTRFS_INODE_DUMMY,
2345 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2346 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2347
0f9dd46c 2348 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2349 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2350 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2351
11833d66 2352 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2353 fs_info->btree_inode->i_mapping);
11833d66 2354 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2355 fs_info->btree_inode->i_mapping);
11833d66 2356 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2357 fs_info->do_barriers = 1;
e18e4809 2358
39279cc3 2359
5a3f23d5 2360 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2361 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2362 mutex_init(&fs_info->tree_log_mutex);
925baedd 2363 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2364 mutex_init(&fs_info->transaction_kthread_mutex);
2365 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2366 mutex_init(&fs_info->volume_mutex);
9e351cc8 2367 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2368 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2369 init_rwsem(&fs_info->subvol_sem);
803b2f54 2370 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2371 fs_info->dev_replace.lock_owner = 0;
2372 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2373 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2374 mutex_init(&fs_info->dev_replace.lock_management_lock);
2375 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2376
416ac51d 2377 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2378 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2379 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2380 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2381 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2382 fs_info->qgroup_seq = 1;
2383 fs_info->quota_enabled = 0;
2384 fs_info->pending_quota_state = 0;
1e8f9158 2385 fs_info->qgroup_ulist = NULL;
2f232036 2386 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2387
fa9c0d79
CM
2388 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2389 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2390
e6dcd2dc 2391 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2392 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2393 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2394 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2395
04216820
FM
2396 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2397
53b381b3
DW
2398 ret = btrfs_alloc_stripe_hash_table(fs_info);
2399 if (ret) {
83c8266a 2400 err = ret;
53b381b3
DW
2401 goto fail_alloc;
2402 }
2403
707e8a07 2404 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2405 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2406
3c4bb26b 2407 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2408
2409 /*
2410 * Read super block and check the signature bytes only
2411 */
a512bbf8 2412 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2413 if (!bh) {
2414 err = -EINVAL;
16cdcec7 2415 goto fail_alloc;
20b45077 2416 }
39279cc3 2417
1104a885
DS
2418 /*
2419 * We want to check superblock checksum, the type is stored inside.
2420 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2421 */
2422 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2423 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2424 err = -EINVAL;
2425 goto fail_alloc;
2426 }
2427
2428 /*
2429 * super_copy is zeroed at allocation time and we never touch the
2430 * following bytes up to INFO_SIZE, the checksum is calculated from
2431 * the whole block of INFO_SIZE
2432 */
6c41761f
DS
2433 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2434 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2435 sizeof(*fs_info->super_for_commit));
a061fc8d 2436 brelse(bh);
5f39d397 2437
6c41761f 2438 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2439
1104a885
DS
2440 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2441 if (ret) {
efe120a0 2442 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2443 err = -EINVAL;
2444 goto fail_alloc;
2445 }
2446
6c41761f 2447 disk_super = fs_info->super_copy;
0f7d52f4 2448 if (!btrfs_super_root(disk_super))
16cdcec7 2449 goto fail_alloc;
0f7d52f4 2450
acce952b 2451 /* check FS state, whether FS is broken. */
87533c47
MX
2452 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2453 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2454
af31f5e5
CM
2455 /*
2456 * run through our array of backup supers and setup
2457 * our ring pointer to the oldest one
2458 */
2459 generation = btrfs_super_generation(disk_super);
2460 find_oldest_super_backup(fs_info, generation);
2461
75e7cb7f
LB
2462 /*
2463 * In the long term, we'll store the compression type in the super
2464 * block, and it'll be used for per file compression control.
2465 */
2466 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2467
2b82032c
YZ
2468 ret = btrfs_parse_options(tree_root, options);
2469 if (ret) {
2470 err = ret;
16cdcec7 2471 goto fail_alloc;
2b82032c 2472 }
dfe25020 2473
f2b636e8
JB
2474 features = btrfs_super_incompat_flags(disk_super) &
2475 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2476 if (features) {
2477 printk(KERN_ERR "BTRFS: couldn't mount because of "
2478 "unsupported optional features (%Lx).\n",
c1c9ff7c 2479 features);
f2b636e8 2480 err = -EINVAL;
16cdcec7 2481 goto fail_alloc;
f2b636e8
JB
2482 }
2483
707e8a07
DS
2484 /*
2485 * Leafsize and nodesize were always equal, this is only a sanity check.
2486 */
2487 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2488 btrfs_super_nodesize(disk_super)) {
2489 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2490 "blocksizes don't match. node %d leaf %d\n",
2491 btrfs_super_nodesize(disk_super),
707e8a07 2492 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2493 err = -EINVAL;
2494 goto fail_alloc;
2495 }
707e8a07 2496 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2497 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2498 "blocksize (%d) was too large\n",
707e8a07 2499 btrfs_super_nodesize(disk_super));
727011e0
CM
2500 err = -EINVAL;
2501 goto fail_alloc;
2502 }
2503
5d4f98a2 2504 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2505 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2506 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2507 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2508
3173a18f 2509 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2510 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2511
727011e0
CM
2512 /*
2513 * flag our filesystem as having big metadata blocks if
2514 * they are bigger than the page size
2515 */
707e8a07 2516 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2517 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2518 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2519 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2520 }
2521
bc3f116f 2522 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2523 sectorsize = btrfs_super_sectorsize(disk_super);
2524 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2525 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2526 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2527
2528 /*
2529 * mixed block groups end up with duplicate but slightly offset
2530 * extent buffers for the same range. It leads to corruptions
2531 */
2532 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2533 (sectorsize != nodesize)) {
aa8ee312 2534 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2535 "are not allowed for mixed block groups on %s\n",
2536 sb->s_id);
2537 goto fail_alloc;
2538 }
2539
ceda0864
MX
2540 /*
2541 * Needn't use the lock because there is no other task which will
2542 * update the flag.
2543 */
a6fa6fae 2544 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2545
f2b636e8
JB
2546 features = btrfs_super_compat_ro_flags(disk_super) &
2547 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2548 if (!(sb->s_flags & MS_RDONLY) && features) {
2549 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2550 "unsupported option features (%Lx).\n",
c1c9ff7c 2551 features);
f2b636e8 2552 err = -EINVAL;
16cdcec7 2553 goto fail_alloc;
f2b636e8 2554 }
61d92c32 2555
5cdc7ad3 2556 max_active = fs_info->thread_pool_size;
61d92c32 2557
5cdc7ad3
QW
2558 fs_info->workers =
2559 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2560 max_active, 16);
c8b97818 2561
afe3d242
QW
2562 fs_info->delalloc_workers =
2563 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2564
a44903ab
QW
2565 fs_info->flush_workers =
2566 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2567
e66f0bb1
QW
2568 fs_info->caching_workers =
2569 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2570
a8c93d4e
QW
2571 /*
2572 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2573 * likely that bios will be send down in a sane order to the
2574 * devices
2575 */
a8c93d4e
QW
2576 fs_info->submit_workers =
2577 btrfs_alloc_workqueue("submit", flags,
2578 min_t(u64, fs_devices->num_devices,
2579 max_active), 64);
53863232 2580
dc6e3209
QW
2581 fs_info->fixup_workers =
2582 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2583
2584 /*
2585 * endios are largely parallel and should have a very
2586 * low idle thresh
2587 */
fccb5d86
QW
2588 fs_info->endio_workers =
2589 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2590 fs_info->endio_meta_workers =
2591 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2592 fs_info->endio_meta_write_workers =
2593 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2594 fs_info->endio_raid56_workers =
2595 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
8b110e39
MX
2596 fs_info->endio_repair_workers =
2597 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
d05a33ac
QW
2598 fs_info->rmw_workers =
2599 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2600 fs_info->endio_write_workers =
2601 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2602 fs_info->endio_freespace_worker =
2603 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2604 fs_info->delayed_workers =
2605 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2606 fs_info->readahead_workers =
2607 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2608 fs_info->qgroup_rescan_workers =
2609 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2610 fs_info->extent_workers =
2611 btrfs_alloc_workqueue("extent-refs", flags,
2612 min_t(u64, fs_devices->num_devices,
2613 max_active), 8);
61b49440 2614
a8c93d4e 2615 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2616 fs_info->submit_workers && fs_info->flush_workers &&
2617 fs_info->endio_workers && fs_info->endio_meta_workers &&
2618 fs_info->endio_meta_write_workers &&
8b110e39 2619 fs_info->endio_repair_workers &&
fccb5d86 2620 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2621 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2622 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2623 fs_info->fixup_workers && fs_info->delayed_workers &&
56094eec 2624 fs_info->extent_workers &&
fc97fab0 2625 fs_info->qgroup_rescan_workers)) {
fed425c7 2626 err = -ENOMEM;
0dc3b84a
JB
2627 goto fail_sb_buffer;
2628 }
4543df7e 2629
4575c9cc 2630 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2631 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2632 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2633
db94535d 2634 tree_root->nodesize = nodesize;
db94535d 2635 tree_root->sectorsize = sectorsize;
87ee04eb 2636 tree_root->stripesize = stripesize;
a061fc8d
CM
2637
2638 sb->s_blocksize = sectorsize;
2639 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2640
3cae210f 2641 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2642 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2643 goto fail_sb_buffer;
2644 }
19c00ddc 2645
8d082fb7 2646 if (sectorsize != PAGE_SIZE) {
aa8ee312 2647 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2648 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2649 goto fail_sb_buffer;
2650 }
2651
925baedd 2652 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2653 ret = btrfs_read_sys_array(tree_root);
925baedd 2654 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2655 if (ret) {
aa8ee312 2656 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2657 "array on %s\n", sb->s_id);
5d4f98a2 2658 goto fail_sb_buffer;
84eed90f 2659 }
0b86a832 2660
84234f3a 2661 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2662
707e8a07
DS
2663 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2664 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2665
2666 chunk_root->node = read_tree_block(chunk_root,
2667 btrfs_super_chunk_root(disk_super),
ce86cd59 2668 generation);
416bc658
JB
2669 if (!chunk_root->node ||
2670 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
aa8ee312 2671 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2672 sb->s_id);
af31f5e5 2673 goto fail_tree_roots;
83121942 2674 }
5d4f98a2
YZ
2675 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2676 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2677
e17cade2 2678 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2679 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2680
0b86a832 2681 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2682 if (ret) {
aa8ee312 2683 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2684 sb->s_id);
af31f5e5 2685 goto fail_tree_roots;
2b82032c 2686 }
0b86a832 2687
8dabb742
SB
2688 /*
2689 * keep the device that is marked to be the target device for the
2690 * dev_replace procedure
2691 */
2692 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2693
a6b0d5c8 2694 if (!fs_devices->latest_bdev) {
aa8ee312 2695 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2696 sb->s_id);
2697 goto fail_tree_roots;
2698 }
2699
af31f5e5 2700retry_root_backup:
84234f3a 2701 generation = btrfs_super_generation(disk_super);
0b86a832 2702
e20d96d6 2703 tree_root->node = read_tree_block(tree_root,
db94535d 2704 btrfs_super_root(disk_super),
ce86cd59 2705 generation);
af31f5e5
CM
2706 if (!tree_root->node ||
2707 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2708 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2709 sb->s_id);
af31f5e5
CM
2710
2711 goto recovery_tree_root;
83121942 2712 }
af31f5e5 2713
5d4f98a2
YZ
2714 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2715 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2716 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2717
cb517eab
MX
2718 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2719 location.type = BTRFS_ROOT_ITEM_KEY;
2720 location.offset = 0;
2721
2722 extent_root = btrfs_read_tree_root(tree_root, &location);
2723 if (IS_ERR(extent_root)) {
2724 ret = PTR_ERR(extent_root);
af31f5e5 2725 goto recovery_tree_root;
cb517eab 2726 }
27cdeb70 2727 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2728 fs_info->extent_root = extent_root;
0b86a832 2729
cb517eab
MX
2730 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2731 dev_root = btrfs_read_tree_root(tree_root, &location);
2732 if (IS_ERR(dev_root)) {
2733 ret = PTR_ERR(dev_root);
af31f5e5 2734 goto recovery_tree_root;
cb517eab 2735 }
27cdeb70 2736 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2737 fs_info->dev_root = dev_root;
2738 btrfs_init_devices_late(fs_info);
3768f368 2739
cb517eab
MX
2740 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2741 csum_root = btrfs_read_tree_root(tree_root, &location);
2742 if (IS_ERR(csum_root)) {
2743 ret = PTR_ERR(csum_root);
af31f5e5 2744 goto recovery_tree_root;
cb517eab 2745 }
27cdeb70 2746 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2747 fs_info->csum_root = csum_root;
d20f7043 2748
cb517eab
MX
2749 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2750 quota_root = btrfs_read_tree_root(tree_root, &location);
2751 if (!IS_ERR(quota_root)) {
27cdeb70 2752 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2753 fs_info->quota_enabled = 1;
2754 fs_info->pending_quota_state = 1;
cb517eab 2755 fs_info->quota_root = quota_root;
bcef60f2
AJ
2756 }
2757
f7a81ea4
SB
2758 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2759 uuid_root = btrfs_read_tree_root(tree_root, &location);
2760 if (IS_ERR(uuid_root)) {
2761 ret = PTR_ERR(uuid_root);
2762 if (ret != -ENOENT)
2763 goto recovery_tree_root;
2764 create_uuid_tree = true;
70f80175 2765 check_uuid_tree = false;
f7a81ea4 2766 } else {
27cdeb70 2767 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2768 fs_info->uuid_root = uuid_root;
70f80175
SB
2769 create_uuid_tree = false;
2770 check_uuid_tree =
2771 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2772 }
2773
8929ecfa
YZ
2774 fs_info->generation = generation;
2775 fs_info->last_trans_committed = generation;
8929ecfa 2776
68310a5e
ID
2777 ret = btrfs_recover_balance(fs_info);
2778 if (ret) {
aa8ee312 2779 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2780 goto fail_block_groups;
2781 }
2782
733f4fbb
SB
2783 ret = btrfs_init_dev_stats(fs_info);
2784 if (ret) {
efe120a0 2785 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2786 ret);
2787 goto fail_block_groups;
2788 }
2789
8dabb742
SB
2790 ret = btrfs_init_dev_replace(fs_info);
2791 if (ret) {
efe120a0 2792 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2793 goto fail_block_groups;
2794 }
2795
2796 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2797
5ac1d209 2798 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2799 if (ret) {
efe120a0 2800 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2801 goto fail_block_groups;
2802 }
2803
c59021f8 2804 ret = btrfs_init_space_info(fs_info);
2805 if (ret) {
efe120a0 2806 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2807 goto fail_sysfs;
c59021f8 2808 }
2809
1b1d1f66
JB
2810 ret = btrfs_read_block_groups(extent_root);
2811 if (ret) {
efe120a0 2812 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2813 goto fail_sysfs;
1b1d1f66 2814 }
5af3e8cc
SB
2815 fs_info->num_tolerated_disk_barrier_failures =
2816 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2817 if (fs_info->fs_devices->missing_devices >
2818 fs_info->num_tolerated_disk_barrier_failures &&
2819 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2820 printk(KERN_WARNING "BTRFS: "
2821 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2822 goto fail_sysfs;
292fd7fc 2823 }
9078a3e1 2824
a74a4b97
CM
2825 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2826 "btrfs-cleaner");
57506d50 2827 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2828 goto fail_sysfs;
a74a4b97
CM
2829
2830 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2831 tree_root,
2832 "btrfs-transaction");
57506d50 2833 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2834 goto fail_cleaner;
a74a4b97 2835
c289811c
CM
2836 if (!btrfs_test_opt(tree_root, SSD) &&
2837 !btrfs_test_opt(tree_root, NOSSD) &&
2838 !fs_info->fs_devices->rotating) {
efe120a0 2839 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2840 "mode\n");
2841 btrfs_set_opt(fs_info->mount_opt, SSD);
2842 }
2843
572d9ab7
DS
2844 /*
2845 * Mount does not set all options immediatelly, we can do it now and do
2846 * not have to wait for transaction commit
2847 */
2848 btrfs_apply_pending_changes(fs_info);
3818aea2 2849
21adbd5c
SB
2850#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2851 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2852 ret = btrfsic_mount(tree_root, fs_devices,
2853 btrfs_test_opt(tree_root,
2854 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2855 1 : 0,
2856 fs_info->check_integrity_print_mask);
2857 if (ret)
efe120a0 2858 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2859 " integrity check module %s\n", sb->s_id);
2860 }
2861#endif
bcef60f2
AJ
2862 ret = btrfs_read_qgroup_config(fs_info);
2863 if (ret)
2864 goto fail_trans_kthread;
21adbd5c 2865
acce952b 2866 /* do not make disk changes in broken FS */
68ce9682 2867 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2868 u64 bytenr = btrfs_super_log_root(disk_super);
2869
7c2ca468 2870 if (fs_devices->rw_devices == 0) {
efe120a0 2871 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2872 "on RO media\n");
7c2ca468 2873 err = -EIO;
bcef60f2 2874 goto fail_qgroup;
7c2ca468 2875 }
d18a2c44 2876
6f07e42e 2877 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2878 if (!log_tree_root) {
2879 err = -ENOMEM;
bcef60f2 2880 goto fail_qgroup;
676e4c86 2881 }
e02119d5 2882
707e8a07 2883 __setup_root(nodesize, sectorsize, stripesize,
e02119d5
CM
2884 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2885
2886 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a 2887 generation + 1);
416bc658
JB
2888 if (!log_tree_root->node ||
2889 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2890 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2891 free_extent_buffer(log_tree_root->node);
2892 kfree(log_tree_root);
28c16cbb 2893 goto fail_qgroup;
416bc658 2894 }
79787eaa 2895 /* returns with log_tree_root freed on success */
e02119d5 2896 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2897 if (ret) {
2898 btrfs_error(tree_root->fs_info, ret,
2899 "Failed to recover log tree");
2900 free_extent_buffer(log_tree_root->node);
2901 kfree(log_tree_root);
28c16cbb 2902 goto fail_qgroup;
79787eaa 2903 }
e556ce2c
YZ
2904
2905 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2906 ret = btrfs_commit_super(tree_root);
2907 if (ret)
28c16cbb 2908 goto fail_qgroup;
e556ce2c 2909 }
e02119d5 2910 }
1a40e23b 2911
76dda93c 2912 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2913 if (ret)
28c16cbb 2914 goto fail_qgroup;
76dda93c 2915
7c2ca468 2916 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2917 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2918 if (ret)
28c16cbb 2919 goto fail_qgroup;
d68fc57b 2920
5f316481 2921 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2922 ret = btrfs_recover_relocation(tree_root);
5f316481 2923 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2924 if (ret < 0) {
2925 printk(KERN_WARNING
efe120a0 2926 "BTRFS: failed to recover relocation\n");
d7ce5843 2927 err = -EINVAL;
bcef60f2 2928 goto fail_qgroup;
d7ce5843 2929 }
7c2ca468 2930 }
1a40e23b 2931
3de4586c
CM
2932 location.objectid = BTRFS_FS_TREE_OBJECTID;
2933 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2934 location.offset = 0;
3de4586c 2935
3de4586c 2936 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2937 if (IS_ERR(fs_info->fs_root)) {
2938 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2939 goto fail_qgroup;
3140c9a3 2940 }
c289811c 2941
2b6ba629
ID
2942 if (sb->s_flags & MS_RDONLY)
2943 return 0;
59641015 2944
2b6ba629
ID
2945 down_read(&fs_info->cleanup_work_sem);
2946 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2947 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2948 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2949 close_ctree(tree_root);
2950 return ret;
2951 }
2952 up_read(&fs_info->cleanup_work_sem);
59641015 2953
2b6ba629
ID
2954 ret = btrfs_resume_balance_async(fs_info);
2955 if (ret) {
efe120a0 2956 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2957 close_ctree(tree_root);
2958 return ret;
e3acc2a6
JB
2959 }
2960
8dabb742
SB
2961 ret = btrfs_resume_dev_replace_async(fs_info);
2962 if (ret) {
efe120a0 2963 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2964 close_ctree(tree_root);
2965 return ret;
2966 }
2967
b382a324
JS
2968 btrfs_qgroup_rescan_resume(fs_info);
2969
f7a81ea4 2970 if (create_uuid_tree) {
efe120a0 2971 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2972 ret = btrfs_create_uuid_tree(fs_info);
2973 if (ret) {
efe120a0 2974 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2975 ret);
2976 close_ctree(tree_root);
2977 return ret;
2978 }
f420ee1e
SB
2979 } else if (check_uuid_tree ||
2980 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2981 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2982 ret = btrfs_check_uuid_tree(fs_info);
2983 if (ret) {
efe120a0 2984 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2985 ret);
2986 close_ctree(tree_root);
2987 return ret;
2988 }
2989 } else {
2990 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2991 }
2992
47ab2a6c
JB
2993 fs_info->open = 1;
2994
ad2b2c80 2995 return 0;
39279cc3 2996
bcef60f2
AJ
2997fail_qgroup:
2998 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2999fail_trans_kthread:
3000 kthread_stop(fs_info->transaction_kthread);
54067ae9 3001 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3002 btrfs_free_fs_roots(fs_info);
3f157a2f 3003fail_cleaner:
a74a4b97 3004 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3005
3006 /*
3007 * make sure we're done with the btree inode before we stop our
3008 * kthreads
3009 */
3010 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3011
2365dd3c
AJ
3012fail_sysfs:
3013 btrfs_sysfs_remove_one(fs_info);
3014
1b1d1f66 3015fail_block_groups:
54067ae9 3016 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3017 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3018
3019fail_tree_roots:
3020 free_root_pointers(fs_info, 1);
2b8195bb 3021 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3022
39279cc3 3023fail_sb_buffer:
7abadb64 3024 btrfs_stop_all_workers(fs_info);
16cdcec7 3025fail_alloc:
4543df7e 3026fail_iput:
586e46e2
ID
3027 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3028
4543df7e 3029 iput(fs_info->btree_inode);
c404e0dc
MX
3030fail_bio_counter:
3031 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3032fail_delalloc_bytes:
3033 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3034fail_dirty_metadata_bytes:
3035 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3036fail_bdi:
7e662854 3037 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3038fail_srcu:
3039 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3040fail:
53b381b3 3041 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3042 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3043 return err;
af31f5e5
CM
3044
3045recovery_tree_root:
af31f5e5
CM
3046 if (!btrfs_test_opt(tree_root, RECOVERY))
3047 goto fail_tree_roots;
3048
3049 free_root_pointers(fs_info, 0);
3050
3051 /* don't use the log in recovery mode, it won't be valid */
3052 btrfs_set_super_log_root(disk_super, 0);
3053
3054 /* we can't trust the free space cache either */
3055 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3056
3057 ret = next_root_backup(fs_info, fs_info->super_copy,
3058 &num_backups_tried, &backup_index);
3059 if (ret == -1)
3060 goto fail_block_groups;
3061 goto retry_root_backup;
eb60ceac
CM
3062}
3063
f2984462
CM
3064static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3065{
f2984462
CM
3066 if (uptodate) {
3067 set_buffer_uptodate(bh);
3068 } else {
442a4f63
SB
3069 struct btrfs_device *device = (struct btrfs_device *)
3070 bh->b_private;
3071
efe120a0 3072 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3073 "I/O error on %s\n",
3074 rcu_str_deref(device->name));
1259ab75
CM
3075 /* note, we dont' set_buffer_write_io_error because we have
3076 * our own ways of dealing with the IO errors
3077 */
f2984462 3078 clear_buffer_uptodate(bh);
442a4f63 3079 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3080 }
3081 unlock_buffer(bh);
3082 put_bh(bh);
3083}
3084
a512bbf8
YZ
3085struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3086{
3087 struct buffer_head *bh;
3088 struct buffer_head *latest = NULL;
3089 struct btrfs_super_block *super;
3090 int i;
3091 u64 transid = 0;
3092 u64 bytenr;
3093
3094 /* we would like to check all the supers, but that would make
3095 * a btrfs mount succeed after a mkfs from a different FS.
3096 * So, we need to add a special mount option to scan for
3097 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3098 */
3099 for (i = 0; i < 1; i++) {
3100 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3101 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3102 i_size_read(bdev->bd_inode))
a512bbf8 3103 break;
8068a47e
AJ
3104 bh = __bread(bdev, bytenr / 4096,
3105 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3106 if (!bh)
3107 continue;
3108
3109 super = (struct btrfs_super_block *)bh->b_data;
3110 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3111 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3112 brelse(bh);
3113 continue;
3114 }
3115
3116 if (!latest || btrfs_super_generation(super) > transid) {
3117 brelse(latest);
3118 latest = bh;
3119 transid = btrfs_super_generation(super);
3120 } else {
3121 brelse(bh);
3122 }
3123 }
3124 return latest;
3125}
3126
4eedeb75
HH
3127/*
3128 * this should be called twice, once with wait == 0 and
3129 * once with wait == 1. When wait == 0 is done, all the buffer heads
3130 * we write are pinned.
3131 *
3132 * They are released when wait == 1 is done.
3133 * max_mirrors must be the same for both runs, and it indicates how
3134 * many supers on this one device should be written.
3135 *
3136 * max_mirrors == 0 means to write them all.
3137 */
a512bbf8
YZ
3138static int write_dev_supers(struct btrfs_device *device,
3139 struct btrfs_super_block *sb,
3140 int do_barriers, int wait, int max_mirrors)
3141{
3142 struct buffer_head *bh;
3143 int i;
3144 int ret;
3145 int errors = 0;
3146 u32 crc;
3147 u64 bytenr;
a512bbf8
YZ
3148
3149 if (max_mirrors == 0)
3150 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3151
a512bbf8
YZ
3152 for (i = 0; i < max_mirrors; i++) {
3153 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3154 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3155 device->commit_total_bytes)
a512bbf8
YZ
3156 break;
3157
3158 if (wait) {
3159 bh = __find_get_block(device->bdev, bytenr / 4096,
3160 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3161 if (!bh) {
3162 errors++;
3163 continue;
3164 }
a512bbf8 3165 wait_on_buffer(bh);
4eedeb75
HH
3166 if (!buffer_uptodate(bh))
3167 errors++;
3168
3169 /* drop our reference */
3170 brelse(bh);
3171
3172 /* drop the reference from the wait == 0 run */
3173 brelse(bh);
3174 continue;
a512bbf8
YZ
3175 } else {
3176 btrfs_set_super_bytenr(sb, bytenr);
3177
3178 crc = ~(u32)0;
b0496686 3179 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3180 BTRFS_CSUM_SIZE, crc,
3181 BTRFS_SUPER_INFO_SIZE -
3182 BTRFS_CSUM_SIZE);
3183 btrfs_csum_final(crc, sb->csum);
3184
4eedeb75
HH
3185 /*
3186 * one reference for us, and we leave it for the
3187 * caller
3188 */
a512bbf8
YZ
3189 bh = __getblk(device->bdev, bytenr / 4096,
3190 BTRFS_SUPER_INFO_SIZE);
634554dc 3191 if (!bh) {
efe120a0 3192 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3193 "buffer head for bytenr %Lu\n", bytenr);
3194 errors++;
3195 continue;
3196 }
3197
a512bbf8
YZ
3198 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3199
4eedeb75 3200 /* one reference for submit_bh */
a512bbf8 3201 get_bh(bh);
4eedeb75
HH
3202
3203 set_buffer_uptodate(bh);
a512bbf8
YZ
3204 lock_buffer(bh);
3205 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3206 bh->b_private = device;
a512bbf8
YZ
3207 }
3208
387125fc
CM
3209 /*
3210 * we fua the first super. The others we allow
3211 * to go down lazy.
3212 */
e8117c26
WS
3213 if (i == 0)
3214 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3215 else
3216 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3217 if (ret)
a512bbf8 3218 errors++;
a512bbf8
YZ
3219 }
3220 return errors < i ? 0 : -1;
3221}
3222
387125fc
CM
3223/*
3224 * endio for the write_dev_flush, this will wake anyone waiting
3225 * for the barrier when it is done
3226 */
3227static void btrfs_end_empty_barrier(struct bio *bio, int err)
3228{
3229 if (err) {
3230 if (err == -EOPNOTSUPP)
3231 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3232 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3233 }
3234 if (bio->bi_private)
3235 complete(bio->bi_private);
3236 bio_put(bio);
3237}
3238
3239/*
3240 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3241 * sent down. With wait == 1, it waits for the previous flush.
3242 *
3243 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3244 * capable
3245 */
3246static int write_dev_flush(struct btrfs_device *device, int wait)
3247{
3248 struct bio *bio;
3249 int ret = 0;
3250
3251 if (device->nobarriers)
3252 return 0;
3253
3254 if (wait) {
3255 bio = device->flush_bio;
3256 if (!bio)
3257 return 0;
3258
3259 wait_for_completion(&device->flush_wait);
3260
3261 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3262 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3263 rcu_str_deref(device->name));
387125fc 3264 device->nobarriers = 1;
5af3e8cc 3265 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3266 ret = -EIO;
5af3e8cc
SB
3267 btrfs_dev_stat_inc_and_print(device,
3268 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3269 }
3270
3271 /* drop the reference from the wait == 0 run */
3272 bio_put(bio);
3273 device->flush_bio = NULL;
3274
3275 return ret;
3276 }
3277
3278 /*
3279 * one reference for us, and we leave it for the
3280 * caller
3281 */
9c017abc 3282 device->flush_bio = NULL;
9be3395b 3283 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3284 if (!bio)
3285 return -ENOMEM;
3286
3287 bio->bi_end_io = btrfs_end_empty_barrier;
3288 bio->bi_bdev = device->bdev;
3289 init_completion(&device->flush_wait);
3290 bio->bi_private = &device->flush_wait;
3291 device->flush_bio = bio;
3292
3293 bio_get(bio);
21adbd5c 3294 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3295
3296 return 0;
3297}
3298
3299/*
3300 * send an empty flush down to each device in parallel,
3301 * then wait for them
3302 */
3303static int barrier_all_devices(struct btrfs_fs_info *info)
3304{
3305 struct list_head *head;
3306 struct btrfs_device *dev;
5af3e8cc
SB
3307 int errors_send = 0;
3308 int errors_wait = 0;
387125fc
CM
3309 int ret;
3310
3311 /* send down all the barriers */
3312 head = &info->fs_devices->devices;
3313 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3314 if (dev->missing)
3315 continue;
387125fc 3316 if (!dev->bdev) {
5af3e8cc 3317 errors_send++;
387125fc
CM
3318 continue;
3319 }
3320 if (!dev->in_fs_metadata || !dev->writeable)
3321 continue;
3322
3323 ret = write_dev_flush(dev, 0);
3324 if (ret)
5af3e8cc 3325 errors_send++;
387125fc
CM
3326 }
3327
3328 /* wait for all the barriers */
3329 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3330 if (dev->missing)
3331 continue;
387125fc 3332 if (!dev->bdev) {
5af3e8cc 3333 errors_wait++;
387125fc
CM
3334 continue;
3335 }
3336 if (!dev->in_fs_metadata || !dev->writeable)
3337 continue;
3338
3339 ret = write_dev_flush(dev, 1);
3340 if (ret)
5af3e8cc 3341 errors_wait++;
387125fc 3342 }
5af3e8cc
SB
3343 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3344 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3345 return -EIO;
3346 return 0;
3347}
3348
5af3e8cc
SB
3349int btrfs_calc_num_tolerated_disk_barrier_failures(
3350 struct btrfs_fs_info *fs_info)
3351{
3352 struct btrfs_ioctl_space_info space;
3353 struct btrfs_space_info *sinfo;
3354 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3355 BTRFS_BLOCK_GROUP_SYSTEM,
3356 BTRFS_BLOCK_GROUP_METADATA,
3357 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3358 int num_types = 4;
3359 int i;
3360 int c;
3361 int num_tolerated_disk_barrier_failures =
3362 (int)fs_info->fs_devices->num_devices;
3363
3364 for (i = 0; i < num_types; i++) {
3365 struct btrfs_space_info *tmp;
3366
3367 sinfo = NULL;
3368 rcu_read_lock();
3369 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3370 if (tmp->flags == types[i]) {
3371 sinfo = tmp;
3372 break;
3373 }
3374 }
3375 rcu_read_unlock();
3376
3377 if (!sinfo)
3378 continue;
3379
3380 down_read(&sinfo->groups_sem);
3381 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3382 if (!list_empty(&sinfo->block_groups[c])) {
3383 u64 flags;
3384
3385 btrfs_get_block_group_info(
3386 &sinfo->block_groups[c], &space);
3387 if (space.total_bytes == 0 ||
3388 space.used_bytes == 0)
3389 continue;
3390 flags = space.flags;
3391 /*
3392 * return
3393 * 0: if dup, single or RAID0 is configured for
3394 * any of metadata, system or data, else
3395 * 1: if RAID5 is configured, or if RAID1 or
3396 * RAID10 is configured and only two mirrors
3397 * are used, else
3398 * 2: if RAID6 is configured, else
3399 * num_mirrors - 1: if RAID1 or RAID10 is
3400 * configured and more than
3401 * 2 mirrors are used.
3402 */
3403 if (num_tolerated_disk_barrier_failures > 0 &&
3404 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3405 BTRFS_BLOCK_GROUP_RAID0)) ||
3406 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3407 == 0)))
3408 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3409 else if (num_tolerated_disk_barrier_failures > 1) {
3410 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3411 BTRFS_BLOCK_GROUP_RAID5 |
3412 BTRFS_BLOCK_GROUP_RAID10)) {
3413 num_tolerated_disk_barrier_failures = 1;
3414 } else if (flags &
15b0a89d 3415 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3416 num_tolerated_disk_barrier_failures = 2;
3417 }
3418 }
5af3e8cc
SB
3419 }
3420 }
3421 up_read(&sinfo->groups_sem);
3422 }
3423
3424 return num_tolerated_disk_barrier_failures;
3425}
3426
48a3b636 3427static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3428{
e5e9a520 3429 struct list_head *head;
f2984462 3430 struct btrfs_device *dev;
a061fc8d 3431 struct btrfs_super_block *sb;
f2984462 3432 struct btrfs_dev_item *dev_item;
f2984462
CM
3433 int ret;
3434 int do_barriers;
a236aed1
CM
3435 int max_errors;
3436 int total_errors = 0;
a061fc8d 3437 u64 flags;
f2984462
CM
3438
3439 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3440 backup_super_roots(root->fs_info);
f2984462 3441
6c41761f 3442 sb = root->fs_info->super_for_commit;
a061fc8d 3443 dev_item = &sb->dev_item;
e5e9a520 3444
174ba509 3445 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3446 head = &root->fs_info->fs_devices->devices;
d7306801 3447 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3448
5af3e8cc
SB
3449 if (do_barriers) {
3450 ret = barrier_all_devices(root->fs_info);
3451 if (ret) {
3452 mutex_unlock(
3453 &root->fs_info->fs_devices->device_list_mutex);
3454 btrfs_error(root->fs_info, ret,
3455 "errors while submitting device barriers.");
3456 return ret;
3457 }
3458 }
387125fc 3459
1f78160c 3460 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3461 if (!dev->bdev) {
3462 total_errors++;
3463 continue;
3464 }
2b82032c 3465 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3466 continue;
3467
2b82032c 3468 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3469 btrfs_set_stack_device_type(dev_item, dev->type);
3470 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3471 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3472 dev->commit_total_bytes);
ce7213c7
MX
3473 btrfs_set_stack_device_bytes_used(dev_item,
3474 dev->commit_bytes_used);
a061fc8d
CM
3475 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3476 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3477 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3478 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3479 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3480
a061fc8d
CM
3481 flags = btrfs_super_flags(sb);
3482 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3483
a512bbf8 3484 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3485 if (ret)
3486 total_errors++;
f2984462 3487 }
a236aed1 3488 if (total_errors > max_errors) {
efe120a0 3489 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3490 total_errors);
a724b436 3491 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3492
9d565ba4
SB
3493 /* FUA is masked off if unsupported and can't be the reason */
3494 btrfs_error(root->fs_info, -EIO,
3495 "%d errors while writing supers", total_errors);
3496 return -EIO;
a236aed1 3497 }
f2984462 3498
a512bbf8 3499 total_errors = 0;
1f78160c 3500 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3501 if (!dev->bdev)
3502 continue;
2b82032c 3503 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3504 continue;
3505
a512bbf8
YZ
3506 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3507 if (ret)
3508 total_errors++;
f2984462 3509 }
174ba509 3510 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3511 if (total_errors > max_errors) {
79787eaa
JM
3512 btrfs_error(root->fs_info, -EIO,
3513 "%d errors while writing supers", total_errors);
3514 return -EIO;
a236aed1 3515 }
f2984462
CM
3516 return 0;
3517}
3518
a512bbf8
YZ
3519int write_ctree_super(struct btrfs_trans_handle *trans,
3520 struct btrfs_root *root, int max_mirrors)
eb60ceac 3521{
f570e757 3522 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3523}
3524
cb517eab
MX
3525/* Drop a fs root from the radix tree and free it. */
3526void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3527 struct btrfs_root *root)
2619ba1f 3528{
4df27c4d 3529 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3530 radix_tree_delete(&fs_info->fs_roots_radix,
3531 (unsigned long)root->root_key.objectid);
4df27c4d 3532 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3533
3534 if (btrfs_root_refs(&root->root_item) == 0)
3535 synchronize_srcu(&fs_info->subvol_srcu);
3536
1a4319cc 3537 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3538 btrfs_free_log(NULL, root);
3321719e 3539
faa2dbf0
JB
3540 if (root->free_ino_pinned)
3541 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3542 if (root->free_ino_ctl)
3543 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3544 free_fs_root(root);
4df27c4d
YZ
3545}
3546
3547static void free_fs_root(struct btrfs_root *root)
3548{
57cdc8db 3549 iput(root->ino_cache_inode);
4df27c4d 3550 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3551 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3552 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3553 if (root->anon_dev)
3554 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3555 if (root->subv_writers)
3556 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3557 free_extent_buffer(root->node);
3558 free_extent_buffer(root->commit_root);
581bb050
LZ
3559 kfree(root->free_ino_ctl);
3560 kfree(root->free_ino_pinned);
d397712b 3561 kfree(root->name);
b0feb9d9 3562 btrfs_put_fs_root(root);
2619ba1f
CM
3563}
3564
cb517eab
MX
3565void btrfs_free_fs_root(struct btrfs_root *root)
3566{
3567 free_fs_root(root);
2619ba1f
CM
3568}
3569
c146afad 3570int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3571{
c146afad
YZ
3572 u64 root_objectid = 0;
3573 struct btrfs_root *gang[8];
65d33fd7
QW
3574 int i = 0;
3575 int err = 0;
3576 unsigned int ret = 0;
3577 int index;
e089f05c 3578
c146afad 3579 while (1) {
65d33fd7 3580 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3581 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3582 (void **)gang, root_objectid,
3583 ARRAY_SIZE(gang));
65d33fd7
QW
3584 if (!ret) {
3585 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3586 break;
65d33fd7 3587 }
5d4f98a2 3588 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3589
c146afad 3590 for (i = 0; i < ret; i++) {
65d33fd7
QW
3591 /* Avoid to grab roots in dead_roots */
3592 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3593 gang[i] = NULL;
3594 continue;
3595 }
3596 /* grab all the search result for later use */
3597 gang[i] = btrfs_grab_fs_root(gang[i]);
3598 }
3599 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3600
65d33fd7
QW
3601 for (i = 0; i < ret; i++) {
3602 if (!gang[i])
3603 continue;
c146afad 3604 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3605 err = btrfs_orphan_cleanup(gang[i]);
3606 if (err)
65d33fd7
QW
3607 break;
3608 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3609 }
3610 root_objectid++;
3611 }
65d33fd7
QW
3612
3613 /* release the uncleaned roots due to error */
3614 for (; i < ret; i++) {
3615 if (gang[i])
3616 btrfs_put_fs_root(gang[i]);
3617 }
3618 return err;
c146afad 3619}
a2135011 3620
c146afad
YZ
3621int btrfs_commit_super(struct btrfs_root *root)
3622{
3623 struct btrfs_trans_handle *trans;
a74a4b97 3624
c146afad 3625 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3626 btrfs_run_delayed_iputs(root);
c146afad 3627 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3628 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3629
3630 /* wait until ongoing cleanup work done */
3631 down_write(&root->fs_info->cleanup_work_sem);
3632 up_write(&root->fs_info->cleanup_work_sem);
3633
7a7eaa40 3634 trans = btrfs_join_transaction(root);
3612b495
TI
3635 if (IS_ERR(trans))
3636 return PTR_ERR(trans);
d52c1bcc 3637 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3638}
3639
3abdbd78 3640void close_ctree(struct btrfs_root *root)
c146afad
YZ
3641{
3642 struct btrfs_fs_info *fs_info = root->fs_info;
3643 int ret;
3644
3645 fs_info->closing = 1;
3646 smp_mb();
3647
803b2f54
SB
3648 /* wait for the uuid_scan task to finish */
3649 down(&fs_info->uuid_tree_rescan_sem);
3650 /* avoid complains from lockdep et al., set sem back to initial state */
3651 up(&fs_info->uuid_tree_rescan_sem);
3652
837d5b6e 3653 /* pause restriper - we want to resume on mount */
aa1b8cd4 3654 btrfs_pause_balance(fs_info);
837d5b6e 3655
8dabb742
SB
3656 btrfs_dev_replace_suspend_for_unmount(fs_info);
3657
aa1b8cd4 3658 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3659
3660 /* wait for any defraggers to finish */
3661 wait_event(fs_info->transaction_wait,
3662 (atomic_read(&fs_info->defrag_running) == 0));
3663
3664 /* clear out the rbtree of defraggable inodes */
26176e7c 3665 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3666
21c7e756
MX
3667 cancel_work_sync(&fs_info->async_reclaim_work);
3668
c146afad 3669 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3670 ret = btrfs_commit_super(root);
3671 if (ret)
efe120a0 3672 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3673 }
3674
87533c47 3675 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3676 btrfs_error_commit_super(root);
0f7d52f4 3677
e3029d9f
AV
3678 kthread_stop(fs_info->transaction_kthread);
3679 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3680
f25784b3
YZ
3681 fs_info->closing = 2;
3682 smp_mb();
3683
bcef60f2
AJ
3684 btrfs_free_qgroup_config(root->fs_info);
3685
963d678b 3686 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3687 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3688 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3689 }
bcc63abb 3690
5ac1d209
JM
3691 btrfs_sysfs_remove_one(fs_info);
3692
faa2dbf0 3693 btrfs_free_fs_roots(fs_info);
d10c5f31 3694
1a4319cc
LB
3695 btrfs_put_block_group_cache(fs_info);
3696
2b1360da
JB
3697 btrfs_free_block_groups(fs_info);
3698
de348ee0
WS
3699 /*
3700 * we must make sure there is not any read request to
3701 * submit after we stopping all workers.
3702 */
3703 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3704 btrfs_stop_all_workers(fs_info);
3705
47ab2a6c 3706 fs_info->open = 0;
13e6c37b 3707 free_root_pointers(fs_info, 1);
9ad6b7bc 3708
13e6c37b 3709 iput(fs_info->btree_inode);
d6bfde87 3710
21adbd5c
SB
3711#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3712 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3713 btrfsic_unmount(root, fs_info->fs_devices);
3714#endif
3715
dfe25020 3716 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3717 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3718
e2d84521 3719 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3720 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3721 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3722 bdi_destroy(&fs_info->bdi);
76dda93c 3723 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3724
53b381b3
DW
3725 btrfs_free_stripe_hash_table(fs_info);
3726
1cb048f5
FDBM
3727 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3728 root->orphan_block_rsv = NULL;
04216820
FM
3729
3730 lock_chunks(root);
3731 while (!list_empty(&fs_info->pinned_chunks)) {
3732 struct extent_map *em;
3733
3734 em = list_first_entry(&fs_info->pinned_chunks,
3735 struct extent_map, list);
3736 list_del_init(&em->list);
3737 free_extent_map(em);
3738 }
3739 unlock_chunks(root);
eb60ceac
CM
3740}
3741
b9fab919
CM
3742int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3743 int atomic)
5f39d397 3744{
1259ab75 3745 int ret;
727011e0 3746 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3747
0b32f4bb 3748 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3749 if (!ret)
3750 return ret;
3751
3752 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3753 parent_transid, atomic);
3754 if (ret == -EAGAIN)
3755 return ret;
1259ab75 3756 return !ret;
5f39d397
CM
3757}
3758
3759int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3760{
0b32f4bb 3761 return set_extent_buffer_uptodate(buf);
5f39d397 3762}
6702ed49 3763
5f39d397
CM
3764void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3765{
06ea65a3 3766 struct btrfs_root *root;
5f39d397 3767 u64 transid = btrfs_header_generation(buf);
b9473439 3768 int was_dirty;
b4ce94de 3769
06ea65a3
JB
3770#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3771 /*
3772 * This is a fast path so only do this check if we have sanity tests
3773 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3774 * outside of the sanity tests.
3775 */
3776 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3777 return;
3778#endif
3779 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3780 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3781 if (transid != root->fs_info->generation)
3782 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3783 "found %llu running %llu\n",
c1c9ff7c 3784 buf->start, transid, root->fs_info->generation);
0b32f4bb 3785 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3786 if (!was_dirty)
3787 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3788 buf->len,
3789 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3790#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3791 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3792 btrfs_print_leaf(root, buf);
3793 ASSERT(0);
3794 }
3795#endif
eb60ceac
CM
3796}
3797
b53d3f5d
LB
3798static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3799 int flush_delayed)
16cdcec7
MX
3800{
3801 /*
3802 * looks as though older kernels can get into trouble with
3803 * this code, they end up stuck in balance_dirty_pages forever
3804 */
e2d84521 3805 int ret;
16cdcec7
MX
3806
3807 if (current->flags & PF_MEMALLOC)
3808 return;
3809
b53d3f5d
LB
3810 if (flush_delayed)
3811 btrfs_balance_delayed_items(root);
16cdcec7 3812
e2d84521
MX
3813 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3814 BTRFS_DIRTY_METADATA_THRESH);
3815 if (ret > 0) {
d0e1d66b
NJ
3816 balance_dirty_pages_ratelimited(
3817 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3818 }
3819 return;
3820}
3821
b53d3f5d 3822void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3823{
b53d3f5d
LB
3824 __btrfs_btree_balance_dirty(root, 1);
3825}
585ad2c3 3826
b53d3f5d
LB
3827void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3828{
3829 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3830}
6b80053d 3831
ca7a79ad 3832int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3833{
727011e0 3834 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3835 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3836}
0da5468f 3837
fcd1f065 3838static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3839 int read_only)
3840{
c926093e
DS
3841 struct btrfs_super_block *sb = fs_info->super_copy;
3842 int ret = 0;
3843
21e7626b
DS
3844 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3845 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3846 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3847 ret = -EINVAL;
3848 }
21e7626b
DS
3849 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3850 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3851 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3852 ret = -EINVAL;
3853 }
21e7626b
DS
3854 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3855 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3856 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3857 ret = -EINVAL;
3858 }
3859
1104a885 3860 /*
c926093e
DS
3861 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3862 * items yet, they'll be verified later. Issue just a warning.
1104a885 3863 */
21e7626b 3864 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 3865 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 3866 btrfs_super_root(sb));
21e7626b 3867 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
3868 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3869 btrfs_super_chunk_root(sb));
21e7626b 3870 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 3871 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 3872 btrfs_super_log_root(sb));
c926093e 3873
75d6ad38
DS
3874 /*
3875 * Check the lower bound, the alignment and other constraints are
3876 * checked later.
3877 */
3878 if (btrfs_super_nodesize(sb) < 4096) {
3879 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3880 btrfs_super_nodesize(sb));
3881 ret = -EINVAL;
3882 }
3883 if (btrfs_super_sectorsize(sb) < 4096) {
3884 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3885 btrfs_super_sectorsize(sb));
3886 ret = -EINVAL;
3887 }
3888
c926093e
DS
3889 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3890 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3891 fs_info->fsid, sb->dev_item.fsid);
3892 ret = -EINVAL;
3893 }
3894
3895 /*
3896 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3897 * done later
3898 */
21e7626b 3899 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 3900 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 3901 btrfs_super_num_devices(sb));
75d6ad38
DS
3902 if (btrfs_super_num_devices(sb) == 0) {
3903 printk(KERN_ERR "BTRFS: number of devices is 0\n");
3904 ret = -EINVAL;
3905 }
c926093e 3906
21e7626b 3907 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 3908 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 3909 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
3910 ret = -EINVAL;
3911 }
3912
3913 /*
3914 * The generation is a global counter, we'll trust it more than the others
3915 * but it's still possible that it's the one that's wrong.
3916 */
21e7626b 3917 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
3918 printk(KERN_WARNING
3919 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
3920 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3921 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3922 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
3923 printk(KERN_WARNING
3924 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 3925 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
3926
3927 return ret;
acce952b 3928}
3929
48a3b636 3930static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3931{
acce952b 3932 mutex_lock(&root->fs_info->cleaner_mutex);
3933 btrfs_run_delayed_iputs(root);
3934 mutex_unlock(&root->fs_info->cleaner_mutex);
3935
3936 down_write(&root->fs_info->cleanup_work_sem);
3937 up_write(&root->fs_info->cleanup_work_sem);
3938
3939 /* cleanup FS via transaction */
3940 btrfs_cleanup_transaction(root);
acce952b 3941}
3942
143bede5 3943static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3944{
acce952b 3945 struct btrfs_ordered_extent *ordered;
acce952b 3946
199c2a9c 3947 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3948 /*
3949 * This will just short circuit the ordered completion stuff which will
3950 * make sure the ordered extent gets properly cleaned up.
3951 */
199c2a9c 3952 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3953 root_extent_list)
3954 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3955 spin_unlock(&root->ordered_extent_lock);
3956}
3957
3958static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3959{
3960 struct btrfs_root *root;
3961 struct list_head splice;
3962
3963 INIT_LIST_HEAD(&splice);
3964
3965 spin_lock(&fs_info->ordered_root_lock);
3966 list_splice_init(&fs_info->ordered_roots, &splice);
3967 while (!list_empty(&splice)) {
3968 root = list_first_entry(&splice, struct btrfs_root,
3969 ordered_root);
1de2cfde
JB
3970 list_move_tail(&root->ordered_root,
3971 &fs_info->ordered_roots);
199c2a9c 3972
2a85d9ca 3973 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3974 btrfs_destroy_ordered_extents(root);
3975
2a85d9ca
LB
3976 cond_resched();
3977 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3978 }
3979 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3980}
3981
35a3621b
SB
3982static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3983 struct btrfs_root *root)
acce952b 3984{
3985 struct rb_node *node;
3986 struct btrfs_delayed_ref_root *delayed_refs;
3987 struct btrfs_delayed_ref_node *ref;
3988 int ret = 0;
3989
3990 delayed_refs = &trans->delayed_refs;
3991
3992 spin_lock(&delayed_refs->lock);
d7df2c79 3993 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3994 spin_unlock(&delayed_refs->lock);
efe120a0 3995 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3996 return ret;
3997 }
3998
d7df2c79
JB
3999 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4000 struct btrfs_delayed_ref_head *head;
e78417d1 4001 bool pin_bytes = false;
acce952b 4002
d7df2c79
JB
4003 head = rb_entry(node, struct btrfs_delayed_ref_head,
4004 href_node);
4005 if (!mutex_trylock(&head->mutex)) {
4006 atomic_inc(&head->node.refs);
4007 spin_unlock(&delayed_refs->lock);
eb12db69 4008
d7df2c79 4009 mutex_lock(&head->mutex);
e78417d1 4010 mutex_unlock(&head->mutex);
d7df2c79
JB
4011 btrfs_put_delayed_ref(&head->node);
4012 spin_lock(&delayed_refs->lock);
4013 continue;
4014 }
4015 spin_lock(&head->lock);
4016 while ((node = rb_first(&head->ref_root)) != NULL) {
4017 ref = rb_entry(node, struct btrfs_delayed_ref_node,
4018 rb_node);
4019 ref->in_tree = 0;
4020 rb_erase(&ref->rb_node, &head->ref_root);
4021 atomic_dec(&delayed_refs->num_entries);
4022 btrfs_put_delayed_ref(ref);
e78417d1 4023 }
d7df2c79
JB
4024 if (head->must_insert_reserved)
4025 pin_bytes = true;
4026 btrfs_free_delayed_extent_op(head->extent_op);
4027 delayed_refs->num_heads--;
4028 if (head->processing == 0)
4029 delayed_refs->num_heads_ready--;
4030 atomic_dec(&delayed_refs->num_entries);
4031 head->node.in_tree = 0;
4032 rb_erase(&head->href_node, &delayed_refs->href_root);
4033 spin_unlock(&head->lock);
4034 spin_unlock(&delayed_refs->lock);
4035 mutex_unlock(&head->mutex);
acce952b 4036
d7df2c79
JB
4037 if (pin_bytes)
4038 btrfs_pin_extent(root, head->node.bytenr,
4039 head->node.num_bytes, 1);
4040 btrfs_put_delayed_ref(&head->node);
acce952b 4041 cond_resched();
4042 spin_lock(&delayed_refs->lock);
4043 }
4044
4045 spin_unlock(&delayed_refs->lock);
4046
4047 return ret;
4048}
4049
143bede5 4050static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4051{
4052 struct btrfs_inode *btrfs_inode;
4053 struct list_head splice;
4054
4055 INIT_LIST_HEAD(&splice);
4056
eb73c1b7
MX
4057 spin_lock(&root->delalloc_lock);
4058 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4059
4060 while (!list_empty(&splice)) {
eb73c1b7
MX
4061 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4062 delalloc_inodes);
acce952b 4063
4064 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4065 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4066 &btrfs_inode->runtime_flags);
eb73c1b7 4067 spin_unlock(&root->delalloc_lock);
acce952b 4068
4069 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4070
eb73c1b7 4071 spin_lock(&root->delalloc_lock);
acce952b 4072 }
4073
eb73c1b7
MX
4074 spin_unlock(&root->delalloc_lock);
4075}
4076
4077static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4078{
4079 struct btrfs_root *root;
4080 struct list_head splice;
4081
4082 INIT_LIST_HEAD(&splice);
4083
4084 spin_lock(&fs_info->delalloc_root_lock);
4085 list_splice_init(&fs_info->delalloc_roots, &splice);
4086 while (!list_empty(&splice)) {
4087 root = list_first_entry(&splice, struct btrfs_root,
4088 delalloc_root);
4089 list_del_init(&root->delalloc_root);
4090 root = btrfs_grab_fs_root(root);
4091 BUG_ON(!root);
4092 spin_unlock(&fs_info->delalloc_root_lock);
4093
4094 btrfs_destroy_delalloc_inodes(root);
4095 btrfs_put_fs_root(root);
4096
4097 spin_lock(&fs_info->delalloc_root_lock);
4098 }
4099 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4100}
4101
4102static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4103 struct extent_io_tree *dirty_pages,
4104 int mark)
4105{
4106 int ret;
acce952b 4107 struct extent_buffer *eb;
4108 u64 start = 0;
4109 u64 end;
acce952b 4110
4111 while (1) {
4112 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4113 mark, NULL);
acce952b 4114 if (ret)
4115 break;
4116
4117 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4118 while (start <= end) {
0308af44 4119 eb = btrfs_find_tree_block(root, start);
707e8a07 4120 start += root->nodesize;
fd8b2b61 4121 if (!eb)
acce952b 4122 continue;
fd8b2b61 4123 wait_on_extent_buffer_writeback(eb);
acce952b 4124
fd8b2b61
JB
4125 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4126 &eb->bflags))
4127 clear_extent_buffer_dirty(eb);
4128 free_extent_buffer_stale(eb);
acce952b 4129 }
4130 }
4131
4132 return ret;
4133}
4134
4135static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4136 struct extent_io_tree *pinned_extents)
4137{
4138 struct extent_io_tree *unpin;
4139 u64 start;
4140 u64 end;
4141 int ret;
ed0eaa14 4142 bool loop = true;
acce952b 4143
4144 unpin = pinned_extents;
ed0eaa14 4145again:
acce952b 4146 while (1) {
4147 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4148 EXTENT_DIRTY, NULL);
acce952b 4149 if (ret)
4150 break;
4151
acce952b 4152 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4153 btrfs_error_unpin_extent_range(root, start, end);
4154 cond_resched();
4155 }
4156
ed0eaa14
LB
4157 if (loop) {
4158 if (unpin == &root->fs_info->freed_extents[0])
4159 unpin = &root->fs_info->freed_extents[1];
4160 else
4161 unpin = &root->fs_info->freed_extents[0];
4162 loop = false;
4163 goto again;
4164 }
4165
acce952b 4166 return 0;
4167}
4168
50d9aa99
JB
4169static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4170 struct btrfs_fs_info *fs_info)
4171{
4172 struct btrfs_ordered_extent *ordered;
4173
4174 spin_lock(&fs_info->trans_lock);
4175 while (!list_empty(&cur_trans->pending_ordered)) {
4176 ordered = list_first_entry(&cur_trans->pending_ordered,
4177 struct btrfs_ordered_extent,
4178 trans_list);
4179 list_del_init(&ordered->trans_list);
4180 spin_unlock(&fs_info->trans_lock);
4181
4182 btrfs_put_ordered_extent(ordered);
4183 spin_lock(&fs_info->trans_lock);
4184 }
4185 spin_unlock(&fs_info->trans_lock);
4186}
4187
49b25e05
JM
4188void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4189 struct btrfs_root *root)
4190{
4191 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4192
4a9d8bde 4193 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4194 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4195
4a9d8bde 4196 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4197 wake_up(&root->fs_info->transaction_wait);
49b25e05 4198
50d9aa99 4199 btrfs_free_pending_ordered(cur_trans, root->fs_info);
67cde344
MX
4200 btrfs_destroy_delayed_inodes(root);
4201 btrfs_assert_delayed_root_empty(root);
49b25e05 4202
49b25e05
JM
4203 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4204 EXTENT_DIRTY);
6e841e32
LB
4205 btrfs_destroy_pinned_extent(root,
4206 root->fs_info->pinned_extents);
49b25e05 4207
4a9d8bde
MX
4208 cur_trans->state =TRANS_STATE_COMPLETED;
4209 wake_up(&cur_trans->commit_wait);
4210
49b25e05
JM
4211 /*
4212 memset(cur_trans, 0, sizeof(*cur_trans));
4213 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4214 */
4215}
4216
48a3b636 4217static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4218{
4219 struct btrfs_transaction *t;
acce952b 4220
acce952b 4221 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4222
a4abeea4 4223 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4224 while (!list_empty(&root->fs_info->trans_list)) {
4225 t = list_first_entry(&root->fs_info->trans_list,
4226 struct btrfs_transaction, list);
4227 if (t->state >= TRANS_STATE_COMMIT_START) {
4228 atomic_inc(&t->use_count);
4229 spin_unlock(&root->fs_info->trans_lock);
4230 btrfs_wait_for_commit(root, t->transid);
4231 btrfs_put_transaction(t);
4232 spin_lock(&root->fs_info->trans_lock);
4233 continue;
4234 }
4235 if (t == root->fs_info->running_transaction) {
4236 t->state = TRANS_STATE_COMMIT_DOING;
4237 spin_unlock(&root->fs_info->trans_lock);
4238 /*
4239 * We wait for 0 num_writers since we don't hold a trans
4240 * handle open currently for this transaction.
4241 */
4242 wait_event(t->writer_wait,
4243 atomic_read(&t->num_writers) == 0);
4244 } else {
4245 spin_unlock(&root->fs_info->trans_lock);
4246 }
4247 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4248
724e2315
JB
4249 spin_lock(&root->fs_info->trans_lock);
4250 if (t == root->fs_info->running_transaction)
4251 root->fs_info->running_transaction = NULL;
acce952b 4252 list_del_init(&t->list);
724e2315 4253 spin_unlock(&root->fs_info->trans_lock);
acce952b 4254
724e2315
JB
4255 btrfs_put_transaction(t);
4256 trace_btrfs_transaction_commit(root);
4257 spin_lock(&root->fs_info->trans_lock);
4258 }
4259 spin_unlock(&root->fs_info->trans_lock);
4260 btrfs_destroy_all_ordered_extents(root->fs_info);
4261 btrfs_destroy_delayed_inodes(root);
4262 btrfs_assert_delayed_root_empty(root);
4263 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4264 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4265 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4266
4267 return 0;
4268}
4269
d1310b2e 4270static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4271 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4272 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4273 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4274 /* note we're sharing with inode.c for the merge bio hook */
4275 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4276};