Btrfs: allow metadata blocks larger than the page size
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41
JB
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
2ac55d41 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
727011e0 373 if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 374 return ret;
d397712b 375
a826d6dc
JB
376 /*
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
379 * any less wrong.
380 */
381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382 return ret;
383
f188591e
CM
384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385 eb->start, eb->len);
4235298e 386 if (num_copies == 1)
f188591e 387 return ret;
4235298e 388
f188591e 389 mirror_num++;
4235298e 390 if (mirror_num > num_copies)
f188591e 391 return ret;
f188591e 392 }
f188591e
CM
393 return -EIO;
394}
19c00ddc 395
d352ac68 396/*
d397712b
CM
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 399 */
d397712b 400
b2950863 401static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 402{
d1310b2e 403 struct extent_io_tree *tree;
35ebb934 404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 405 u64 found_start;
19c00ddc
CM
406 unsigned long len;
407 struct extent_buffer *eb;
f188591e 408
d1310b2e 409 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 410
727011e0 411 if (page->private == EXTENT_PAGE_PRIVATE)
19c00ddc 412 goto out;
eb14ab8e
CM
413 if (!page->private) {
414 WARN_ON(1);
19c00ddc 415 goto out;
eb14ab8e 416 }
19c00ddc 417 len = page->private >> 2;
d397712b
CM
418 WARN_ON(len == 0);
419
727011e0 420 eb = find_extent_buffer(tree, start, len);
784b4e29 421
19c00ddc
CM
422 found_start = btrfs_header_bytenr(eb);
423 if (found_start != start) {
55c69072
CM
424 WARN_ON(1);
425 goto err;
426 }
727011e0 427 if (eb->pages[0] != page) {
55c69072
CM
428 WARN_ON(1);
429 goto err;
430 }
431 if (!PageUptodate(page)) {
55c69072
CM
432 WARN_ON(1);
433 goto err;
19c00ddc 434 }
19c00ddc 435 csum_tree_block(root, eb, 0);
55c69072 436err:
19c00ddc
CM
437 free_extent_buffer(eb);
438out:
439 return 0;
440}
441
2b82032c
YZ
442static int check_tree_block_fsid(struct btrfs_root *root,
443 struct extent_buffer *eb)
444{
445 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
446 u8 fsid[BTRFS_UUID_SIZE];
447 int ret = 1;
448
449 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
450 BTRFS_FSID_SIZE);
451 while (fs_devices) {
452 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
453 ret = 0;
454 break;
455 }
456 fs_devices = fs_devices->seed;
457 }
458 return ret;
459}
460
a826d6dc
JB
461#define CORRUPT(reason, eb, root, slot) \
462 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
463 "root=%llu, slot=%d\n", reason, \
464 (unsigned long long)btrfs_header_bytenr(eb), \
465 (unsigned long long)root->objectid, slot)
466
467static noinline int check_leaf(struct btrfs_root *root,
468 struct extent_buffer *leaf)
469{
470 struct btrfs_key key;
471 struct btrfs_key leaf_key;
472 u32 nritems = btrfs_header_nritems(leaf);
473 int slot;
474
475 if (nritems == 0)
476 return 0;
477
478 /* Check the 0 item */
479 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
480 BTRFS_LEAF_DATA_SIZE(root)) {
481 CORRUPT("invalid item offset size pair", leaf, root, 0);
482 return -EIO;
483 }
484
485 /*
486 * Check to make sure each items keys are in the correct order and their
487 * offsets make sense. We only have to loop through nritems-1 because
488 * we check the current slot against the next slot, which verifies the
489 * next slot's offset+size makes sense and that the current's slot
490 * offset is correct.
491 */
492 for (slot = 0; slot < nritems - 1; slot++) {
493 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
494 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
495
496 /* Make sure the keys are in the right order */
497 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
498 CORRUPT("bad key order", leaf, root, slot);
499 return -EIO;
500 }
501
502 /*
503 * Make sure the offset and ends are right, remember that the
504 * item data starts at the end of the leaf and grows towards the
505 * front.
506 */
507 if (btrfs_item_offset_nr(leaf, slot) !=
508 btrfs_item_end_nr(leaf, slot + 1)) {
509 CORRUPT("slot offset bad", leaf, root, slot);
510 return -EIO;
511 }
512
513 /*
514 * Check to make sure that we don't point outside of the leaf,
515 * just incase all the items are consistent to eachother, but
516 * all point outside of the leaf.
517 */
518 if (btrfs_item_end_nr(leaf, slot) >
519 BTRFS_LEAF_DATA_SIZE(root)) {
520 CORRUPT("slot end outside of leaf", leaf, root, slot);
521 return -EIO;
522 }
523 }
524
525 return 0;
526}
527
727011e0
CM
528struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
529 struct page *page, int max_walk)
530{
531 struct extent_buffer *eb;
532 u64 start = page_offset(page);
533 u64 target = start;
534 u64 min_start;
535
536 if (start < max_walk)
537 min_start = 0;
538 else
539 min_start = start - max_walk;
540
541 while (start >= min_start) {
542 eb = find_extent_buffer(tree, start, 0);
543 if (eb) {
544 /*
545 * we found an extent buffer and it contains our page
546 * horray!
547 */
548 if (eb->start <= target &&
549 eb->start + eb->len > target)
550 return eb;
551
552 /* we found an extent buffer that wasn't for us */
553 free_extent_buffer(eb);
554 return NULL;
555 }
556 if (start == 0)
557 break;
558 start -= PAGE_CACHE_SIZE;
559 }
560 return NULL;
561}
562
b2950863 563static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
564 struct extent_state *state)
565{
566 struct extent_io_tree *tree;
567 u64 found_start;
568 int found_level;
569 unsigned long len;
570 struct extent_buffer *eb;
571 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 572 int ret = 0;
727011e0 573 int reads_done;
ce9adaa5 574
ce9adaa5
CM
575 if (!page->private)
576 goto out;
d397712b 577
727011e0 578 tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5 579 len = page->private >> 2;
d397712b 580
727011e0
CM
581 eb = find_eb_for_page(tree, page, max(root->leafsize, root->nodesize));
582 if (!eb) {
91ca338d
TI
583 ret = -EIO;
584 goto out;
585 }
727011e0
CM
586 reads_done = atomic_dec_and_test(&eb->pages_reading);
587 if (!reads_done)
588 goto err;
f188591e 589
ce9adaa5 590 found_start = btrfs_header_bytenr(eb);
727011e0 591 if (found_start != eb->start) {
7a36ddec 592 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
593 "%llu %llu\n",
594 (unsigned long long)found_start,
595 (unsigned long long)eb->start);
f188591e 596 ret = -EIO;
ce9adaa5
CM
597 goto err;
598 }
2b82032c 599 if (check_tree_block_fsid(root, eb)) {
7a36ddec 600 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 601 (unsigned long long)eb->start);
1259ab75
CM
602 ret = -EIO;
603 goto err;
604 }
ce9adaa5
CM
605 found_level = btrfs_header_level(eb);
606
85d4e461
CM
607 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
608 eb, found_level);
4008c04a 609
ce9adaa5 610 ret = csum_tree_block(root, eb, 1);
a826d6dc 611 if (ret) {
f188591e 612 ret = -EIO;
a826d6dc
JB
613 goto err;
614 }
615
616 /*
617 * If this is a leaf block and it is corrupt, set the corrupt bit so
618 * that we don't try and read the other copies of this block, just
619 * return -EIO.
620 */
621 if (found_level == 0 && check_leaf(root, eb)) {
622 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
623 ret = -EIO;
624 }
ce9adaa5 625
ce9adaa5 626err:
4bb31e92
AJ
627 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
628 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
629 btree_readahead_hook(root, eb, eb->start, ret);
630 }
631
727011e0
CM
632 if (ret && eb)
633 clear_extent_buffer_uptodate(tree, eb, NULL);
ce9adaa5
CM
634 free_extent_buffer(eb);
635out:
f188591e 636 return ret;
ce9adaa5
CM
637}
638
4bb31e92
AJ
639static int btree_io_failed_hook(struct bio *failed_bio,
640 struct page *page, u64 start, u64 end,
32240a91 641 int mirror_num, struct extent_state *state)
4bb31e92
AJ
642{
643 struct extent_io_tree *tree;
644 unsigned long len;
645 struct extent_buffer *eb;
646 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
647
648 tree = &BTRFS_I(page->mapping->host)->io_tree;
649 if (page->private == EXTENT_PAGE_PRIVATE)
650 goto out;
651 if (!page->private)
652 goto out;
653
654 len = page->private >> 2;
655 WARN_ON(len == 0);
656
727011e0 657 eb = alloc_extent_buffer(tree, start, len);
4bb31e92
AJ
658 if (eb == NULL)
659 goto out;
660
661 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
662 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
663 btree_readahead_hook(root, eb, eb->start, -EIO);
664 }
c674e04e 665 free_extent_buffer(eb);
4bb31e92
AJ
666
667out:
668 return -EIO; /* we fixed nothing */
669}
670
ce9adaa5 671static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
672{
673 struct end_io_wq *end_io_wq = bio->bi_private;
674 struct btrfs_fs_info *fs_info;
ce9adaa5 675
ce9adaa5 676 fs_info = end_io_wq->info;
ce9adaa5 677 end_io_wq->error = err;
8b712842
CM
678 end_io_wq->work.func = end_workqueue_fn;
679 end_io_wq->work.flags = 0;
d20f7043 680
7b6d91da 681 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 682 if (end_io_wq->metadata == 1)
cad321ad
CM
683 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
684 &end_io_wq->work);
0cb59c99
JB
685 else if (end_io_wq->metadata == 2)
686 btrfs_queue_worker(&fs_info->endio_freespace_worker,
687 &end_io_wq->work);
cad321ad
CM
688 else
689 btrfs_queue_worker(&fs_info->endio_write_workers,
690 &end_io_wq->work);
d20f7043
CM
691 } else {
692 if (end_io_wq->metadata)
693 btrfs_queue_worker(&fs_info->endio_meta_workers,
694 &end_io_wq->work);
695 else
696 btrfs_queue_worker(&fs_info->endio_workers,
697 &end_io_wq->work);
698 }
ce9adaa5
CM
699}
700
0cb59c99
JB
701/*
702 * For the metadata arg you want
703 *
704 * 0 - if data
705 * 1 - if normal metadta
706 * 2 - if writing to the free space cache area
707 */
22c59948
CM
708int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
709 int metadata)
0b86a832 710{
ce9adaa5 711 struct end_io_wq *end_io_wq;
ce9adaa5
CM
712 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
713 if (!end_io_wq)
714 return -ENOMEM;
715
716 end_io_wq->private = bio->bi_private;
717 end_io_wq->end_io = bio->bi_end_io;
22c59948 718 end_io_wq->info = info;
ce9adaa5
CM
719 end_io_wq->error = 0;
720 end_io_wq->bio = bio;
22c59948 721 end_io_wq->metadata = metadata;
ce9adaa5
CM
722
723 bio->bi_private = end_io_wq;
724 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
725 return 0;
726}
727
b64a2851 728unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 729{
4854ddd0
CM
730 unsigned long limit = min_t(unsigned long,
731 info->workers.max_workers,
732 info->fs_devices->open_devices);
733 return 256 * limit;
734}
0986fe9e 735
4a69a410
CM
736static void run_one_async_start(struct btrfs_work *work)
737{
4a69a410
CM
738 struct async_submit_bio *async;
739
740 async = container_of(work, struct async_submit_bio, work);
4a69a410 741 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
742 async->mirror_num, async->bio_flags,
743 async->bio_offset);
4a69a410
CM
744}
745
746static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
747{
748 struct btrfs_fs_info *fs_info;
749 struct async_submit_bio *async;
4854ddd0 750 int limit;
8b712842
CM
751
752 async = container_of(work, struct async_submit_bio, work);
753 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 754
b64a2851 755 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
756 limit = limit * 2 / 3;
757
8b712842 758 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 759
b64a2851
CM
760 if (atomic_read(&fs_info->nr_async_submits) < limit &&
761 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
762 wake_up(&fs_info->async_submit_wait);
763
4a69a410 764 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
765 async->mirror_num, async->bio_flags,
766 async->bio_offset);
4a69a410
CM
767}
768
769static void run_one_async_free(struct btrfs_work *work)
770{
771 struct async_submit_bio *async;
772
773 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
774 kfree(async);
775}
776
44b8bd7e
CM
777int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
778 int rw, struct bio *bio, int mirror_num,
c8b97818 779 unsigned long bio_flags,
eaf25d93 780 u64 bio_offset,
4a69a410
CM
781 extent_submit_bio_hook_t *submit_bio_start,
782 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
783{
784 struct async_submit_bio *async;
785
786 async = kmalloc(sizeof(*async), GFP_NOFS);
787 if (!async)
788 return -ENOMEM;
789
790 async->inode = inode;
791 async->rw = rw;
792 async->bio = bio;
793 async->mirror_num = mirror_num;
4a69a410
CM
794 async->submit_bio_start = submit_bio_start;
795 async->submit_bio_done = submit_bio_done;
796
797 async->work.func = run_one_async_start;
798 async->work.ordered_func = run_one_async_done;
799 async->work.ordered_free = run_one_async_free;
800
8b712842 801 async->work.flags = 0;
c8b97818 802 async->bio_flags = bio_flags;
eaf25d93 803 async->bio_offset = bio_offset;
8c8bee1d 804
cb03c743 805 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 806
7b6d91da 807 if (rw & REQ_SYNC)
d313d7a3
CM
808 btrfs_set_work_high_prio(&async->work);
809
8b712842 810 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 811
d397712b 812 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
813 atomic_read(&fs_info->nr_async_submits)) {
814 wait_event(fs_info->async_submit_wait,
815 (atomic_read(&fs_info->nr_async_submits) == 0));
816 }
817
44b8bd7e
CM
818 return 0;
819}
820
ce3ed71a
CM
821static int btree_csum_one_bio(struct bio *bio)
822{
823 struct bio_vec *bvec = bio->bi_io_vec;
824 int bio_index = 0;
825 struct btrfs_root *root;
826
827 WARN_ON(bio->bi_vcnt <= 0);
d397712b 828 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
829 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830 csum_dirty_buffer(root, bvec->bv_page);
831 bio_index++;
832 bvec++;
833 }
834 return 0;
835}
836
4a69a410
CM
837static int __btree_submit_bio_start(struct inode *inode, int rw,
838 struct bio *bio, int mirror_num,
eaf25d93
CM
839 unsigned long bio_flags,
840 u64 bio_offset)
22c59948 841{
8b712842
CM
842 /*
843 * when we're called for a write, we're already in the async
5443be45 844 * submission context. Just jump into btrfs_map_bio
8b712842 845 */
4a69a410
CM
846 btree_csum_one_bio(bio);
847 return 0;
848}
22c59948 849
4a69a410 850static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
851 int mirror_num, unsigned long bio_flags,
852 u64 bio_offset)
4a69a410 853{
8b712842 854 /*
4a69a410
CM
855 * when we're called for a write, we're already in the async
856 * submission context. Just jump into btrfs_map_bio
8b712842 857 */
8b712842 858 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
859}
860
44b8bd7e 861static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
862 int mirror_num, unsigned long bio_flags,
863 u64 bio_offset)
44b8bd7e 864{
cad321ad
CM
865 int ret;
866
867 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
868 bio, 1);
869 BUG_ON(ret);
870
7b6d91da 871 if (!(rw & REQ_WRITE)) {
4a69a410
CM
872 /*
873 * called for a read, do the setup so that checksum validation
874 * can happen in the async kernel threads
875 */
4a69a410 876 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 877 mirror_num, 0);
44b8bd7e 878 }
d313d7a3 879
cad321ad
CM
880 /*
881 * kthread helpers are used to submit writes so that checksumming
882 * can happen in parallel across all CPUs
883 */
44b8bd7e 884 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 885 inode, rw, bio, mirror_num, 0,
eaf25d93 886 bio_offset,
4a69a410
CM
887 __btree_submit_bio_start,
888 __btree_submit_bio_done);
44b8bd7e
CM
889}
890
3dd1462e 891#ifdef CONFIG_MIGRATION
784b4e29 892static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
893 struct page *newpage, struct page *page,
894 enum migrate_mode mode)
784b4e29
CM
895{
896 /*
897 * we can't safely write a btree page from here,
898 * we haven't done the locking hook
899 */
900 if (PageDirty(page))
901 return -EAGAIN;
902 /*
903 * Buffers may be managed in a filesystem specific way.
904 * We must have no buffers or drop them.
905 */
906 if (page_has_private(page) &&
907 !try_to_release_page(page, GFP_KERNEL))
908 return -EAGAIN;
a6bc32b8 909 return migrate_page(mapping, newpage, page, mode);
784b4e29 910}
3dd1462e 911#endif
784b4e29 912
0da5468f
CM
913static int btree_writepage(struct page *page, struct writeback_control *wbc)
914{
d1310b2e
CM
915 struct extent_io_tree *tree;
916 tree = &BTRFS_I(page->mapping->host)->io_tree;
727011e0 917
b9473439
CM
918 if (!(current->flags & PF_MEMALLOC)) {
919 return extent_write_full_page(tree, page,
920 btree_get_extent, wbc);
921 }
5443be45 922
b9473439 923 redirty_page_for_writepage(wbc, page);
b9473439
CM
924 unlock_page(page);
925 return 0;
5f39d397 926}
0da5468f
CM
927
928static int btree_writepages(struct address_space *mapping,
929 struct writeback_control *wbc)
930{
d1310b2e
CM
931 struct extent_io_tree *tree;
932 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 933 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 934 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 935 u64 num_dirty;
24ab9cd8 936 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
937
938 if (wbc->for_kupdate)
939 return 0;
940
b9473439
CM
941 /* this is a bit racy, but that's ok */
942 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 943 if (num_dirty < thresh)
793955bc 944 return 0;
793955bc 945 }
0da5468f
CM
946 return extent_writepages(tree, mapping, btree_get_extent, wbc);
947}
948
b2950863 949static int btree_readpage(struct file *file, struct page *page)
5f39d397 950{
d1310b2e
CM
951 struct extent_io_tree *tree;
952 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 953 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 954}
22b0ebda 955
70dec807 956static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 957{
d1310b2e
CM
958 struct extent_io_tree *tree;
959 struct extent_map_tree *map;
727011e0
CM
960 struct extent_buffer *eb;
961 struct btrfs_root *root;
5f39d397 962 int ret;
d98237b3 963
98509cfc 964 if (PageWriteback(page) || PageDirty(page))
d397712b 965 return 0;
98509cfc 966
d1310b2e
CM
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
968 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 969
727011e0
CM
970 root = BTRFS_I(page->mapping->host)->root;
971 if (page->private == EXTENT_PAGE_PRIVATE) {
972 eb = find_eb_for_page(tree, page, max(root->leafsize, root->nodesize));
973 free_extent_buffer(eb);
974 if (eb)
975 return 0;
976 }
0c4e538b
DS
977 /*
978 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979 * slab allocation from alloc_extent_state down the callchain where
980 * it'd hit a BUG_ON as those flags are not allowed.
981 */
982 gfp_flags &= ~GFP_SLAB_BUG_MASK;
983
7b13b7b1 984 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 985 if (!ret)
6af118ce 986 return 0;
6af118ce
CM
987
988 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
989 if (ret == 1) {
990 ClearPagePrivate(page);
991 set_page_private(page, 0);
992 page_cache_release(page);
993 }
6af118ce 994
d98237b3
CM
995 return ret;
996}
997
5f39d397 998static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 999{
d1310b2e
CM
1000 struct extent_io_tree *tree;
1001 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1002 extent_invalidatepage(tree, page, offset);
1003 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1004 if (PagePrivate(page)) {
d397712b
CM
1005 printk(KERN_WARNING "btrfs warning page private not zero "
1006 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1007 ClearPagePrivate(page);
1008 set_page_private(page, 0);
1009 page_cache_release(page);
1010 }
d98237b3
CM
1011}
1012
7f09410b 1013static const struct address_space_operations btree_aops = {
d98237b3
CM
1014 .readpage = btree_readpage,
1015 .writepage = btree_writepage,
0da5468f 1016 .writepages = btree_writepages,
5f39d397
CM
1017 .releasepage = btree_releasepage,
1018 .invalidatepage = btree_invalidatepage,
5a92bc88 1019#ifdef CONFIG_MIGRATION
784b4e29 1020 .migratepage = btree_migratepage,
5a92bc88 1021#endif
d98237b3
CM
1022};
1023
ca7a79ad
CM
1024int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1025 u64 parent_transid)
090d1875 1026{
5f39d397
CM
1027 struct extent_buffer *buf = NULL;
1028 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1029 int ret = 0;
090d1875 1030
db94535d 1031 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1032 if (!buf)
090d1875 1033 return 0;
d1310b2e 1034 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1035 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1036 free_extent_buffer(buf);
de428b63 1037 return ret;
090d1875
CM
1038}
1039
ab0fff03
AJ
1040int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041 int mirror_num, struct extent_buffer **eb)
1042{
1043 struct extent_buffer *buf = NULL;
1044 struct inode *btree_inode = root->fs_info->btree_inode;
1045 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1046 int ret;
1047
1048 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1049 if (!buf)
1050 return 0;
1051
1052 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1053
1054 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1055 btree_get_extent, mirror_num);
1056 if (ret) {
1057 free_extent_buffer(buf);
1058 return ret;
1059 }
1060
1061 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1062 free_extent_buffer(buf);
1063 return -EIO;
1064 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1065 *eb = buf;
1066 } else {
1067 free_extent_buffer(buf);
1068 }
1069 return 0;
1070}
1071
0999df54
CM
1072struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1073 u64 bytenr, u32 blocksize)
1074{
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_buffer *eb;
1077 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1078 bytenr, blocksize);
0999df54
CM
1079 return eb;
1080}
1081
1082struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1083 u64 bytenr, u32 blocksize)
1084{
1085 struct inode *btree_inode = root->fs_info->btree_inode;
1086 struct extent_buffer *eb;
1087
1088 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1089 bytenr, blocksize);
0999df54
CM
1090 return eb;
1091}
1092
1093
e02119d5
CM
1094int btrfs_write_tree_block(struct extent_buffer *buf)
1095{
727011e0 1096 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1097 buf->start + buf->len - 1);
e02119d5
CM
1098}
1099
1100int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1101{
727011e0 1102 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1103 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1104}
1105
0999df54 1106struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1107 u32 blocksize, u64 parent_transid)
0999df54
CM
1108{
1109 struct extent_buffer *buf = NULL;
0999df54
CM
1110 int ret;
1111
0999df54
CM
1112 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1113 if (!buf)
1114 return NULL;
0999df54 1115
ca7a79ad 1116 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1117
d397712b 1118 if (ret == 0)
b4ce94de 1119 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1120 return buf;
ce9adaa5 1121
eb60ceac
CM
1122}
1123
e089f05c 1124int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1125 struct extent_buffer *buf)
ed2ff2cb 1126{
5f39d397 1127 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1128 if (btrfs_header_generation(buf) ==
925baedd 1129 root->fs_info->running_transaction->transid) {
b9447ef8 1130 btrfs_assert_tree_locked(buf);
b4ce94de 1131
b9473439
CM
1132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1133 spin_lock(&root->fs_info->delalloc_lock);
1134 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1135 root->fs_info->dirty_metadata_bytes -= buf->len;
1136 else
1137 WARN_ON(1);
1138 spin_unlock(&root->fs_info->delalloc_lock);
1139 }
b4ce94de 1140
b9473439
CM
1141 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1142 btrfs_set_lock_blocking(buf);
d1310b2e 1143 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1144 buf);
925baedd 1145 }
5f39d397
CM
1146 return 0;
1147}
1148
db94535d 1149static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1150 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1151 struct btrfs_fs_info *fs_info,
e20d96d6 1152 u64 objectid)
d97e63b6 1153{
cfaa7295 1154 root->node = NULL;
a28ec197 1155 root->commit_root = NULL;
db94535d
CM
1156 root->sectorsize = sectorsize;
1157 root->nodesize = nodesize;
1158 root->leafsize = leafsize;
87ee04eb 1159 root->stripesize = stripesize;
123abc88 1160 root->ref_cows = 0;
0b86a832 1161 root->track_dirty = 0;
c71bf099 1162 root->in_radix = 0;
d68fc57b
YZ
1163 root->orphan_item_inserted = 0;
1164 root->orphan_cleanup_state = 0;
0b86a832 1165
0f7d52f4
CM
1166 root->objectid = objectid;
1167 root->last_trans = 0;
13a8a7c8 1168 root->highest_objectid = 0;
58176a96 1169 root->name = NULL;
6bef4d31 1170 root->inode_tree = RB_ROOT;
16cdcec7 1171 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1172 root->block_rsv = NULL;
d68fc57b 1173 root->orphan_block_rsv = NULL;
0b86a832
CM
1174
1175 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1176 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1177 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1178 spin_lock_init(&root->orphan_lock);
5d4f98a2 1179 spin_lock_init(&root->inode_lock);
f0486c68 1180 spin_lock_init(&root->accounting_lock);
a2135011 1181 mutex_init(&root->objectid_mutex);
e02119d5 1182 mutex_init(&root->log_mutex);
7237f183
YZ
1183 init_waitqueue_head(&root->log_writer_wait);
1184 init_waitqueue_head(&root->log_commit_wait[0]);
1185 init_waitqueue_head(&root->log_commit_wait[1]);
1186 atomic_set(&root->log_commit[0], 0);
1187 atomic_set(&root->log_commit[1], 0);
1188 atomic_set(&root->log_writers, 0);
1189 root->log_batch = 0;
1190 root->log_transid = 0;
257c62e1 1191 root->last_log_commit = 0;
d0c803c4 1192 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1193 fs_info->btree_inode->i_mapping);
017e5369 1194
3768f368
CM
1195 memset(&root->root_key, 0, sizeof(root->root_key));
1196 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1197 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1198 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1199 root->defrag_trans_start = fs_info->generation;
58176a96 1200 init_completion(&root->kobj_unregister);
6702ed49 1201 root->defrag_running = 0;
4d775673 1202 root->root_key.objectid = objectid;
0ee5dc67 1203 root->anon_dev = 0;
3768f368
CM
1204 return 0;
1205}
1206
db94535d 1207static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1208 struct btrfs_fs_info *fs_info,
1209 u64 objectid,
e20d96d6 1210 struct btrfs_root *root)
3768f368
CM
1211{
1212 int ret;
db94535d 1213 u32 blocksize;
84234f3a 1214 u64 generation;
3768f368 1215
db94535d 1216 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1217 tree_root->sectorsize, tree_root->stripesize,
1218 root, fs_info, objectid);
3768f368
CM
1219 ret = btrfs_find_last_root(tree_root, objectid,
1220 &root->root_item, &root->root_key);
4df27c4d
YZ
1221 if (ret > 0)
1222 return -ENOENT;
3768f368
CM
1223 BUG_ON(ret);
1224
84234f3a 1225 generation = btrfs_root_generation(&root->root_item);
db94535d 1226 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1227 root->commit_root = NULL;
db94535d 1228 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1229 blocksize, generation);
68433b73
CM
1230 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1231 free_extent_buffer(root->node);
af31f5e5 1232 root->node = NULL;
68433b73
CM
1233 return -EIO;
1234 }
4df27c4d 1235 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1236 return 0;
1237}
1238
f84a8bd6 1239static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1240{
1241 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1242 if (root)
1243 root->fs_info = fs_info;
1244 return root;
1245}
1246
7237f183
YZ
1247static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1248 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1249{
1250 struct btrfs_root *root;
1251 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1252 struct extent_buffer *leaf;
e02119d5 1253
6f07e42e 1254 root = btrfs_alloc_root(fs_info);
e02119d5 1255 if (!root)
7237f183 1256 return ERR_PTR(-ENOMEM);
e02119d5
CM
1257
1258 __setup_root(tree_root->nodesize, tree_root->leafsize,
1259 tree_root->sectorsize, tree_root->stripesize,
1260 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1261
1262 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1263 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1264 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1265 /*
1266 * log trees do not get reference counted because they go away
1267 * before a real commit is actually done. They do store pointers
1268 * to file data extents, and those reference counts still get
1269 * updated (along with back refs to the log tree).
1270 */
e02119d5
CM
1271 root->ref_cows = 0;
1272
5d4f98a2 1273 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1274 BTRFS_TREE_LOG_OBJECTID, NULL,
1275 0, 0, 0, 0);
7237f183
YZ
1276 if (IS_ERR(leaf)) {
1277 kfree(root);
1278 return ERR_CAST(leaf);
1279 }
e02119d5 1280
5d4f98a2
YZ
1281 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1282 btrfs_set_header_bytenr(leaf, leaf->start);
1283 btrfs_set_header_generation(leaf, trans->transid);
1284 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1285 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1286 root->node = leaf;
e02119d5
CM
1287
1288 write_extent_buffer(root->node, root->fs_info->fsid,
1289 (unsigned long)btrfs_header_fsid(root->node),
1290 BTRFS_FSID_SIZE);
1291 btrfs_mark_buffer_dirty(root->node);
1292 btrfs_tree_unlock(root->node);
7237f183
YZ
1293 return root;
1294}
1295
1296int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297 struct btrfs_fs_info *fs_info)
1298{
1299 struct btrfs_root *log_root;
1300
1301 log_root = alloc_log_tree(trans, fs_info);
1302 if (IS_ERR(log_root))
1303 return PTR_ERR(log_root);
1304 WARN_ON(fs_info->log_root_tree);
1305 fs_info->log_root_tree = log_root;
1306 return 0;
1307}
1308
1309int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_root *root)
1311{
1312 struct btrfs_root *log_root;
1313 struct btrfs_inode_item *inode_item;
1314
1315 log_root = alloc_log_tree(trans, root->fs_info);
1316 if (IS_ERR(log_root))
1317 return PTR_ERR(log_root);
1318
1319 log_root->last_trans = trans->transid;
1320 log_root->root_key.offset = root->root_key.objectid;
1321
1322 inode_item = &log_root->root_item.inode;
1323 inode_item->generation = cpu_to_le64(1);
1324 inode_item->size = cpu_to_le64(3);
1325 inode_item->nlink = cpu_to_le32(1);
1326 inode_item->nbytes = cpu_to_le64(root->leafsize);
1327 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1328
5d4f98a2 1329 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1330
1331 WARN_ON(root->log_root);
1332 root->log_root = log_root;
1333 root->log_transid = 0;
257c62e1 1334 root->last_log_commit = 0;
e02119d5
CM
1335 return 0;
1336}
1337
1338struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1339 struct btrfs_key *location)
1340{
1341 struct btrfs_root *root;
1342 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1343 struct btrfs_path *path;
5f39d397 1344 struct extent_buffer *l;
84234f3a 1345 u64 generation;
db94535d 1346 u32 blocksize;
0f7d52f4
CM
1347 int ret = 0;
1348
6f07e42e 1349 root = btrfs_alloc_root(fs_info);
0cf6c620 1350 if (!root)
0f7d52f4 1351 return ERR_PTR(-ENOMEM);
0f7d52f4 1352 if (location->offset == (u64)-1) {
db94535d 1353 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1354 location->objectid, root);
1355 if (ret) {
0f7d52f4
CM
1356 kfree(root);
1357 return ERR_PTR(ret);
1358 }
13a8a7c8 1359 goto out;
0f7d52f4
CM
1360 }
1361
db94535d 1362 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1363 tree_root->sectorsize, tree_root->stripesize,
1364 root, fs_info, location->objectid);
0f7d52f4
CM
1365
1366 path = btrfs_alloc_path();
db5b493a
TI
1367 if (!path) {
1368 kfree(root);
1369 return ERR_PTR(-ENOMEM);
1370 }
0f7d52f4 1371 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1372 if (ret == 0) {
1373 l = path->nodes[0];
1374 read_extent_buffer(l, &root->root_item,
1375 btrfs_item_ptr_offset(l, path->slots[0]),
1376 sizeof(root->root_item));
1377 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1378 }
0f7d52f4
CM
1379 btrfs_free_path(path);
1380 if (ret) {
5e540f77 1381 kfree(root);
13a8a7c8
YZ
1382 if (ret > 0)
1383 ret = -ENOENT;
0f7d52f4
CM
1384 return ERR_PTR(ret);
1385 }
13a8a7c8 1386
84234f3a 1387 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1388 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1389 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1390 blocksize, generation);
5d4f98a2 1391 root->commit_root = btrfs_root_node(root);
0f7d52f4 1392 BUG_ON(!root->node);
13a8a7c8 1393out:
08fe4db1 1394 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1395 root->ref_cows = 1;
08fe4db1
LZ
1396 btrfs_check_and_init_root_item(&root->root_item);
1397 }
13a8a7c8 1398
5eda7b5e
CM
1399 return root;
1400}
1401
edbd8d4e
CM
1402struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1403 struct btrfs_key *location)
5eda7b5e
CM
1404{
1405 struct btrfs_root *root;
1406 int ret;
1407
edbd8d4e
CM
1408 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1409 return fs_info->tree_root;
1410 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1411 return fs_info->extent_root;
8f18cf13
CM
1412 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1413 return fs_info->chunk_root;
1414 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1415 return fs_info->dev_root;
0403e47e
YZ
1416 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1417 return fs_info->csum_root;
4df27c4d
YZ
1418again:
1419 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1420 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1421 (unsigned long)location->objectid);
4df27c4d 1422 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1423 if (root)
1424 return root;
1425
e02119d5 1426 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1427 if (IS_ERR(root))
1428 return root;
3394e160 1429
581bb050 1430 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1431 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1432 GFP_NOFS);
35a30d7c
DS
1433 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1434 ret = -ENOMEM;
581bb050 1435 goto fail;
35a30d7c 1436 }
581bb050
LZ
1437
1438 btrfs_init_free_ino_ctl(root);
1439 mutex_init(&root->fs_commit_mutex);
1440 spin_lock_init(&root->cache_lock);
1441 init_waitqueue_head(&root->cache_wait);
1442
0ee5dc67 1443 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1444 if (ret)
1445 goto fail;
3394e160 1446
d68fc57b
YZ
1447 if (btrfs_root_refs(&root->root_item) == 0) {
1448 ret = -ENOENT;
1449 goto fail;
1450 }
1451
1452 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1453 if (ret < 0)
1454 goto fail;
1455 if (ret == 0)
1456 root->orphan_item_inserted = 1;
1457
4df27c4d
YZ
1458 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1459 if (ret)
1460 goto fail;
1461
1462 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1463 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1464 (unsigned long)root->root_key.objectid,
0f7d52f4 1465 root);
d68fc57b 1466 if (ret == 0)
4df27c4d 1467 root->in_radix = 1;
d68fc57b 1468
4df27c4d
YZ
1469 spin_unlock(&fs_info->fs_roots_radix_lock);
1470 radix_tree_preload_end();
0f7d52f4 1471 if (ret) {
4df27c4d
YZ
1472 if (ret == -EEXIST) {
1473 free_fs_root(root);
1474 goto again;
1475 }
1476 goto fail;
0f7d52f4 1477 }
4df27c4d
YZ
1478
1479 ret = btrfs_find_dead_roots(fs_info->tree_root,
1480 root->root_key.objectid);
1481 WARN_ON(ret);
edbd8d4e 1482 return root;
4df27c4d
YZ
1483fail:
1484 free_fs_root(root);
1485 return ERR_PTR(ret);
edbd8d4e
CM
1486}
1487
04160088
CM
1488static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1489{
1490 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1491 int ret = 0;
04160088
CM
1492 struct btrfs_device *device;
1493 struct backing_dev_info *bdi;
b7967db7 1494
1f78160c
XG
1495 rcu_read_lock();
1496 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1497 if (!device->bdev)
1498 continue;
04160088
CM
1499 bdi = blk_get_backing_dev_info(device->bdev);
1500 if (bdi && bdi_congested(bdi, bdi_bits)) {
1501 ret = 1;
1502 break;
1503 }
1504 }
1f78160c 1505 rcu_read_unlock();
04160088
CM
1506 return ret;
1507}
1508
ad081f14
JA
1509/*
1510 * If this fails, caller must call bdi_destroy() to get rid of the
1511 * bdi again.
1512 */
04160088
CM
1513static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1514{
ad081f14
JA
1515 int err;
1516
1517 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1518 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1519 if (err)
1520 return err;
1521
4575c9cc 1522 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1523 bdi->congested_fn = btrfs_congested_fn;
1524 bdi->congested_data = info;
1525 return 0;
1526}
1527
8b712842
CM
1528/*
1529 * called by the kthread helper functions to finally call the bio end_io
1530 * functions. This is where read checksum verification actually happens
1531 */
1532static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1533{
ce9adaa5 1534 struct bio *bio;
8b712842
CM
1535 struct end_io_wq *end_io_wq;
1536 struct btrfs_fs_info *fs_info;
ce9adaa5 1537 int error;
ce9adaa5 1538
8b712842
CM
1539 end_io_wq = container_of(work, struct end_io_wq, work);
1540 bio = end_io_wq->bio;
1541 fs_info = end_io_wq->info;
ce9adaa5 1542
8b712842
CM
1543 error = end_io_wq->error;
1544 bio->bi_private = end_io_wq->private;
1545 bio->bi_end_io = end_io_wq->end_io;
1546 kfree(end_io_wq);
8b712842 1547 bio_endio(bio, error);
44b8bd7e
CM
1548}
1549
a74a4b97
CM
1550static int cleaner_kthread(void *arg)
1551{
1552 struct btrfs_root *root = arg;
1553
1554 do {
a74a4b97 1555 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1556
1557 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1558 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1559 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1560 btrfs_clean_old_snapshots(root);
1561 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1562 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1563 }
a74a4b97 1564
a0acae0e 1565 if (!try_to_freeze()) {
a74a4b97 1566 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1567 if (!kthread_should_stop())
1568 schedule();
a74a4b97
CM
1569 __set_current_state(TASK_RUNNING);
1570 }
1571 } while (!kthread_should_stop());
1572 return 0;
1573}
1574
1575static int transaction_kthread(void *arg)
1576{
1577 struct btrfs_root *root = arg;
1578 struct btrfs_trans_handle *trans;
1579 struct btrfs_transaction *cur;
8929ecfa 1580 u64 transid;
a74a4b97
CM
1581 unsigned long now;
1582 unsigned long delay;
1583 int ret;
1584
1585 do {
a74a4b97
CM
1586 delay = HZ * 30;
1587 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1588 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1589
a4abeea4 1590 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1591 cur = root->fs_info->running_transaction;
1592 if (!cur) {
a4abeea4 1593 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1594 goto sleep;
1595 }
31153d81 1596
a74a4b97 1597 now = get_seconds();
8929ecfa
YZ
1598 if (!cur->blocked &&
1599 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1600 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1601 delay = HZ * 5;
1602 goto sleep;
1603 }
8929ecfa 1604 transid = cur->transid;
a4abeea4 1605 spin_unlock(&root->fs_info->trans_lock);
56bec294 1606
7a7eaa40 1607 trans = btrfs_join_transaction(root);
3612b495 1608 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1609 if (transid == trans->transid) {
1610 ret = btrfs_commit_transaction(trans, root);
1611 BUG_ON(ret);
1612 } else {
1613 btrfs_end_transaction(trans, root);
1614 }
a74a4b97
CM
1615sleep:
1616 wake_up_process(root->fs_info->cleaner_kthread);
1617 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1618
a0acae0e 1619 if (!try_to_freeze()) {
a74a4b97 1620 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1621 if (!kthread_should_stop() &&
1622 !btrfs_transaction_blocked(root->fs_info))
1623 schedule_timeout(delay);
a74a4b97
CM
1624 __set_current_state(TASK_RUNNING);
1625 }
1626 } while (!kthread_should_stop());
1627 return 0;
1628}
1629
af31f5e5
CM
1630/*
1631 * this will find the highest generation in the array of
1632 * root backups. The index of the highest array is returned,
1633 * or -1 if we can't find anything.
1634 *
1635 * We check to make sure the array is valid by comparing the
1636 * generation of the latest root in the array with the generation
1637 * in the super block. If they don't match we pitch it.
1638 */
1639static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1640{
1641 u64 cur;
1642 int newest_index = -1;
1643 struct btrfs_root_backup *root_backup;
1644 int i;
1645
1646 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1647 root_backup = info->super_copy->super_roots + i;
1648 cur = btrfs_backup_tree_root_gen(root_backup);
1649 if (cur == newest_gen)
1650 newest_index = i;
1651 }
1652
1653 /* check to see if we actually wrapped around */
1654 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1655 root_backup = info->super_copy->super_roots;
1656 cur = btrfs_backup_tree_root_gen(root_backup);
1657 if (cur == newest_gen)
1658 newest_index = 0;
1659 }
1660 return newest_index;
1661}
1662
1663
1664/*
1665 * find the oldest backup so we know where to store new entries
1666 * in the backup array. This will set the backup_root_index
1667 * field in the fs_info struct
1668 */
1669static void find_oldest_super_backup(struct btrfs_fs_info *info,
1670 u64 newest_gen)
1671{
1672 int newest_index = -1;
1673
1674 newest_index = find_newest_super_backup(info, newest_gen);
1675 /* if there was garbage in there, just move along */
1676 if (newest_index == -1) {
1677 info->backup_root_index = 0;
1678 } else {
1679 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1680 }
1681}
1682
1683/*
1684 * copy all the root pointers into the super backup array.
1685 * this will bump the backup pointer by one when it is
1686 * done
1687 */
1688static void backup_super_roots(struct btrfs_fs_info *info)
1689{
1690 int next_backup;
1691 struct btrfs_root_backup *root_backup;
1692 int last_backup;
1693
1694 next_backup = info->backup_root_index;
1695 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1696 BTRFS_NUM_BACKUP_ROOTS;
1697
1698 /*
1699 * just overwrite the last backup if we're at the same generation
1700 * this happens only at umount
1701 */
1702 root_backup = info->super_for_commit->super_roots + last_backup;
1703 if (btrfs_backup_tree_root_gen(root_backup) ==
1704 btrfs_header_generation(info->tree_root->node))
1705 next_backup = last_backup;
1706
1707 root_backup = info->super_for_commit->super_roots + next_backup;
1708
1709 /*
1710 * make sure all of our padding and empty slots get zero filled
1711 * regardless of which ones we use today
1712 */
1713 memset(root_backup, 0, sizeof(*root_backup));
1714
1715 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1716
1717 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1718 btrfs_set_backup_tree_root_gen(root_backup,
1719 btrfs_header_generation(info->tree_root->node));
1720
1721 btrfs_set_backup_tree_root_level(root_backup,
1722 btrfs_header_level(info->tree_root->node));
1723
1724 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1725 btrfs_set_backup_chunk_root_gen(root_backup,
1726 btrfs_header_generation(info->chunk_root->node));
1727 btrfs_set_backup_chunk_root_level(root_backup,
1728 btrfs_header_level(info->chunk_root->node));
1729
1730 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1731 btrfs_set_backup_extent_root_gen(root_backup,
1732 btrfs_header_generation(info->extent_root->node));
1733 btrfs_set_backup_extent_root_level(root_backup,
1734 btrfs_header_level(info->extent_root->node));
1735
7c7e82a7
CM
1736 /*
1737 * we might commit during log recovery, which happens before we set
1738 * the fs_root. Make sure it is valid before we fill it in.
1739 */
1740 if (info->fs_root && info->fs_root->node) {
1741 btrfs_set_backup_fs_root(root_backup,
1742 info->fs_root->node->start);
1743 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1744 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1745 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1746 btrfs_header_level(info->fs_root->node));
7c7e82a7 1747 }
af31f5e5
CM
1748
1749 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1750 btrfs_set_backup_dev_root_gen(root_backup,
1751 btrfs_header_generation(info->dev_root->node));
1752 btrfs_set_backup_dev_root_level(root_backup,
1753 btrfs_header_level(info->dev_root->node));
1754
1755 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1756 btrfs_set_backup_csum_root_gen(root_backup,
1757 btrfs_header_generation(info->csum_root->node));
1758 btrfs_set_backup_csum_root_level(root_backup,
1759 btrfs_header_level(info->csum_root->node));
1760
1761 btrfs_set_backup_total_bytes(root_backup,
1762 btrfs_super_total_bytes(info->super_copy));
1763 btrfs_set_backup_bytes_used(root_backup,
1764 btrfs_super_bytes_used(info->super_copy));
1765 btrfs_set_backup_num_devices(root_backup,
1766 btrfs_super_num_devices(info->super_copy));
1767
1768 /*
1769 * if we don't copy this out to the super_copy, it won't get remembered
1770 * for the next commit
1771 */
1772 memcpy(&info->super_copy->super_roots,
1773 &info->super_for_commit->super_roots,
1774 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1775}
1776
1777/*
1778 * this copies info out of the root backup array and back into
1779 * the in-memory super block. It is meant to help iterate through
1780 * the array, so you send it the number of backups you've already
1781 * tried and the last backup index you used.
1782 *
1783 * this returns -1 when it has tried all the backups
1784 */
1785static noinline int next_root_backup(struct btrfs_fs_info *info,
1786 struct btrfs_super_block *super,
1787 int *num_backups_tried, int *backup_index)
1788{
1789 struct btrfs_root_backup *root_backup;
1790 int newest = *backup_index;
1791
1792 if (*num_backups_tried == 0) {
1793 u64 gen = btrfs_super_generation(super);
1794
1795 newest = find_newest_super_backup(info, gen);
1796 if (newest == -1)
1797 return -1;
1798
1799 *backup_index = newest;
1800 *num_backups_tried = 1;
1801 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1802 /* we've tried all the backups, all done */
1803 return -1;
1804 } else {
1805 /* jump to the next oldest backup */
1806 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1807 BTRFS_NUM_BACKUP_ROOTS;
1808 *backup_index = newest;
1809 *num_backups_tried += 1;
1810 }
1811 root_backup = super->super_roots + newest;
1812
1813 btrfs_set_super_generation(super,
1814 btrfs_backup_tree_root_gen(root_backup));
1815 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1816 btrfs_set_super_root_level(super,
1817 btrfs_backup_tree_root_level(root_backup));
1818 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1819
1820 /*
1821 * fixme: the total bytes and num_devices need to match or we should
1822 * need a fsck
1823 */
1824 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1825 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1826 return 0;
1827}
1828
1829/* helper to cleanup tree roots */
1830static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1831{
1832 free_extent_buffer(info->tree_root->node);
1833 free_extent_buffer(info->tree_root->commit_root);
1834 free_extent_buffer(info->dev_root->node);
1835 free_extent_buffer(info->dev_root->commit_root);
1836 free_extent_buffer(info->extent_root->node);
1837 free_extent_buffer(info->extent_root->commit_root);
1838 free_extent_buffer(info->csum_root->node);
1839 free_extent_buffer(info->csum_root->commit_root);
1840
1841 info->tree_root->node = NULL;
1842 info->tree_root->commit_root = NULL;
1843 info->dev_root->node = NULL;
1844 info->dev_root->commit_root = NULL;
1845 info->extent_root->node = NULL;
1846 info->extent_root->commit_root = NULL;
1847 info->csum_root->node = NULL;
1848 info->csum_root->commit_root = NULL;
1849
1850 if (chunk_root) {
1851 free_extent_buffer(info->chunk_root->node);
1852 free_extent_buffer(info->chunk_root->commit_root);
1853 info->chunk_root->node = NULL;
1854 info->chunk_root->commit_root = NULL;
1855 }
1856}
1857
1858
ad2b2c80
AV
1859int open_ctree(struct super_block *sb,
1860 struct btrfs_fs_devices *fs_devices,
1861 char *options)
2e635a27 1862{
db94535d
CM
1863 u32 sectorsize;
1864 u32 nodesize;
1865 u32 leafsize;
1866 u32 blocksize;
87ee04eb 1867 u32 stripesize;
84234f3a 1868 u64 generation;
f2b636e8 1869 u64 features;
3de4586c 1870 struct btrfs_key location;
a061fc8d 1871 struct buffer_head *bh;
4d34b278 1872 struct btrfs_super_block *disk_super;
815745cf 1873 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1874 struct btrfs_root *tree_root;
4d34b278
ID
1875 struct btrfs_root *extent_root;
1876 struct btrfs_root *csum_root;
1877 struct btrfs_root *chunk_root;
1878 struct btrfs_root *dev_root;
e02119d5 1879 struct btrfs_root *log_tree_root;
eb60ceac 1880 int ret;
e58ca020 1881 int err = -EINVAL;
af31f5e5
CM
1882 int num_backups_tried = 0;
1883 int backup_index = 0;
4543df7e 1884
f84a8bd6 1885 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1886 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1887 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1888 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1889 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1890
f84a8bd6
AV
1891 if (!tree_root || !extent_root || !csum_root ||
1892 !chunk_root || !dev_root) {
39279cc3
CM
1893 err = -ENOMEM;
1894 goto fail;
1895 }
76dda93c
YZ
1896
1897 ret = init_srcu_struct(&fs_info->subvol_srcu);
1898 if (ret) {
1899 err = ret;
1900 goto fail;
1901 }
1902
1903 ret = setup_bdi(fs_info, &fs_info->bdi);
1904 if (ret) {
1905 err = ret;
1906 goto fail_srcu;
1907 }
1908
1909 fs_info->btree_inode = new_inode(sb);
1910 if (!fs_info->btree_inode) {
1911 err = -ENOMEM;
1912 goto fail_bdi;
1913 }
1914
a6591715 1915 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1916
76dda93c 1917 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1918 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1919 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1920 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1921 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1922 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1923 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1924 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1925 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1926 spin_lock_init(&fs_info->trans_lock);
31153d81 1927 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1928 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1929 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1930 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1931 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1932 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1933
58176a96 1934 init_completion(&fs_info->kobj_unregister);
0b86a832 1935 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1936 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1937 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1938 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1939 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1940 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1941 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1942 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1943 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1944 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1945 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1946 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1947 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1948 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1949 fs_info->sb = sb;
6f568d35 1950 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1951 fs_info->metadata_ratio = 0;
4cb5300b 1952 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1953 fs_info->trans_no_join = 0;
2bf64758 1954 fs_info->free_chunk_space = 0;
c8b97818 1955
90519d66
AJ
1956 /* readahead state */
1957 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1958 spin_lock_init(&fs_info->reada_lock);
c8b97818 1959
b34b086c
CM
1960 fs_info->thread_pool_size = min_t(unsigned long,
1961 num_online_cpus() + 2, 8);
0afbaf8c 1962
3eaa2885
CM
1963 INIT_LIST_HEAD(&fs_info->ordered_extents);
1964 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1965 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1966 GFP_NOFS);
1967 if (!fs_info->delayed_root) {
1968 err = -ENOMEM;
1969 goto fail_iput;
1970 }
1971 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1972
a2de733c
AJ
1973 mutex_init(&fs_info->scrub_lock);
1974 atomic_set(&fs_info->scrubs_running, 0);
1975 atomic_set(&fs_info->scrub_pause_req, 0);
1976 atomic_set(&fs_info->scrubs_paused, 0);
1977 atomic_set(&fs_info->scrub_cancel_req, 0);
1978 init_waitqueue_head(&fs_info->scrub_pause_wait);
1979 init_rwsem(&fs_info->scrub_super_lock);
1980 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
1981#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1982 fs_info->check_integrity_print_mask = 0;
1983#endif
a2de733c 1984
c9e9f97b
ID
1985 spin_lock_init(&fs_info->balance_lock);
1986 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
1987 atomic_set(&fs_info->balance_running, 0);
1988 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 1989 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 1990 fs_info->balance_ctl = NULL;
837d5b6e 1991 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 1992
a061fc8d
CM
1993 sb->s_blocksize = 4096;
1994 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 1995 sb->s_bdi = &fs_info->bdi;
a061fc8d 1996
76dda93c 1997 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 1998 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
1999 /*
2000 * we set the i_size on the btree inode to the max possible int.
2001 * the real end of the address space is determined by all of
2002 * the devices in the system
2003 */
2004 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2005 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2006 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2007
5d4f98a2 2008 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2009 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2010 fs_info->btree_inode->i_mapping);
a8067e02 2011 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2012
2013 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2014
76dda93c
YZ
2015 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2016 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2017 sizeof(struct btrfs_key));
2018 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 2019 insert_inode_hash(fs_info->btree_inode);
76dda93c 2020
0f9dd46c 2021 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2022 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2023
11833d66 2024 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2025 fs_info->btree_inode->i_mapping);
11833d66 2026 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2027 fs_info->btree_inode->i_mapping);
11833d66 2028 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2029 fs_info->do_barriers = 1;
e18e4809 2030
39279cc3 2031
5a3f23d5 2032 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2033 mutex_init(&fs_info->tree_log_mutex);
925baedd 2034 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2035 mutex_init(&fs_info->transaction_kthread_mutex);
2036 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2037 mutex_init(&fs_info->volume_mutex);
276e680d 2038 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2039 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2040 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2041
2042 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2043 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2044
e6dcd2dc 2045 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2046 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2047 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2048 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2049
0b86a832 2050 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2051 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2052
a512bbf8 2053 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2054 if (!bh) {
2055 err = -EINVAL;
16cdcec7 2056 goto fail_alloc;
20b45077 2057 }
39279cc3 2058
6c41761f
DS
2059 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2060 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2061 sizeof(*fs_info->super_for_commit));
a061fc8d 2062 brelse(bh);
5f39d397 2063
6c41761f 2064 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2065
6c41761f 2066 disk_super = fs_info->super_copy;
0f7d52f4 2067 if (!btrfs_super_root(disk_super))
16cdcec7 2068 goto fail_alloc;
0f7d52f4 2069
acce952b 2070 /* check FS state, whether FS is broken. */
2071 fs_info->fs_state |= btrfs_super_flags(disk_super);
2072
2073 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2074
af31f5e5
CM
2075 /*
2076 * run through our array of backup supers and setup
2077 * our ring pointer to the oldest one
2078 */
2079 generation = btrfs_super_generation(disk_super);
2080 find_oldest_super_backup(fs_info, generation);
2081
75e7cb7f
LB
2082 /*
2083 * In the long term, we'll store the compression type in the super
2084 * block, and it'll be used for per file compression control.
2085 */
2086 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2087
2b82032c
YZ
2088 ret = btrfs_parse_options(tree_root, options);
2089 if (ret) {
2090 err = ret;
16cdcec7 2091 goto fail_alloc;
2b82032c 2092 }
dfe25020 2093
f2b636e8
JB
2094 features = btrfs_super_incompat_flags(disk_super) &
2095 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2096 if (features) {
2097 printk(KERN_ERR "BTRFS: couldn't mount because of "
2098 "unsupported optional features (%Lx).\n",
21380931 2099 (unsigned long long)features);
f2b636e8 2100 err = -EINVAL;
16cdcec7 2101 goto fail_alloc;
f2b636e8
JB
2102 }
2103
727011e0
CM
2104 if (btrfs_super_leafsize(disk_super) !=
2105 btrfs_super_nodesize(disk_super)) {
2106 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2107 "blocksizes don't match. node %d leaf %d\n",
2108 btrfs_super_nodesize(disk_super),
2109 btrfs_super_leafsize(disk_super));
2110 err = -EINVAL;
2111 goto fail_alloc;
2112 }
2113 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2114 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2115 "blocksize (%d) was too large\n",
2116 btrfs_super_leafsize(disk_super));
2117 err = -EINVAL;
2118 goto fail_alloc;
2119 }
2120
5d4f98a2 2121 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2122 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2123 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2124 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2125
2126 /*
2127 * flag our filesystem as having big metadata blocks if
2128 * they are bigger than the page size
2129 */
2130 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2131 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2132 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2133 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2134 }
2135
a6fa6fae 2136 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2137
f2b636e8
JB
2138 features = btrfs_super_compat_ro_flags(disk_super) &
2139 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2140 if (!(sb->s_flags & MS_RDONLY) && features) {
2141 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2142 "unsupported option features (%Lx).\n",
21380931 2143 (unsigned long long)features);
f2b636e8 2144 err = -EINVAL;
16cdcec7 2145 goto fail_alloc;
f2b636e8 2146 }
61d92c32
CM
2147
2148 btrfs_init_workers(&fs_info->generic_worker,
2149 "genwork", 1, NULL);
2150
5443be45 2151 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2152 fs_info->thread_pool_size,
2153 &fs_info->generic_worker);
c8b97818 2154
771ed689 2155 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2156 fs_info->thread_pool_size,
2157 &fs_info->generic_worker);
771ed689 2158
5443be45 2159 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2160 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2161 fs_info->thread_pool_size),
2162 &fs_info->generic_worker);
61b49440 2163
bab39bf9
JB
2164 btrfs_init_workers(&fs_info->caching_workers, "cache",
2165 2, &fs_info->generic_worker);
2166
61b49440
CM
2167 /* a higher idle thresh on the submit workers makes it much more
2168 * likely that bios will be send down in a sane order to the
2169 * devices
2170 */
2171 fs_info->submit_workers.idle_thresh = 64;
53863232 2172
771ed689 2173 fs_info->workers.idle_thresh = 16;
4a69a410 2174 fs_info->workers.ordered = 1;
61b49440 2175
771ed689
CM
2176 fs_info->delalloc_workers.idle_thresh = 2;
2177 fs_info->delalloc_workers.ordered = 1;
2178
61d92c32
CM
2179 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2180 &fs_info->generic_worker);
5443be45 2181 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2182 fs_info->thread_pool_size,
2183 &fs_info->generic_worker);
d20f7043 2184 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2185 fs_info->thread_pool_size,
2186 &fs_info->generic_worker);
cad321ad 2187 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2188 "endio-meta-write", fs_info->thread_pool_size,
2189 &fs_info->generic_worker);
5443be45 2190 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2191 fs_info->thread_pool_size,
2192 &fs_info->generic_worker);
0cb59c99
JB
2193 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2194 1, &fs_info->generic_worker);
16cdcec7
MX
2195 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2196 fs_info->thread_pool_size,
2197 &fs_info->generic_worker);
90519d66
AJ
2198 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2199 fs_info->thread_pool_size,
2200 &fs_info->generic_worker);
61b49440
CM
2201
2202 /*
2203 * endios are largely parallel and should have a very
2204 * low idle thresh
2205 */
2206 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2207 fs_info->endio_meta_workers.idle_thresh = 4;
2208
9042846b
CM
2209 fs_info->endio_write_workers.idle_thresh = 2;
2210 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2211 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2212
0dc3b84a
JB
2213 /*
2214 * btrfs_start_workers can really only fail because of ENOMEM so just
2215 * return -ENOMEM if any of these fail.
2216 */
2217 ret = btrfs_start_workers(&fs_info->workers);
2218 ret |= btrfs_start_workers(&fs_info->generic_worker);
2219 ret |= btrfs_start_workers(&fs_info->submit_workers);
2220 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2221 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2222 ret |= btrfs_start_workers(&fs_info->endio_workers);
2223 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2224 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2225 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2226 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2227 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2228 ret |= btrfs_start_workers(&fs_info->caching_workers);
2229 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2230 if (ret) {
2231 ret = -ENOMEM;
2232 goto fail_sb_buffer;
2233 }
4543df7e 2234
4575c9cc 2235 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2236 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2237 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2238
db94535d
CM
2239 nodesize = btrfs_super_nodesize(disk_super);
2240 leafsize = btrfs_super_leafsize(disk_super);
2241 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2242 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2243 tree_root->nodesize = nodesize;
2244 tree_root->leafsize = leafsize;
2245 tree_root->sectorsize = sectorsize;
87ee04eb 2246 tree_root->stripesize = stripesize;
a061fc8d
CM
2247
2248 sb->s_blocksize = sectorsize;
2249 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2250
39279cc3
CM
2251 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2252 sizeof(disk_super->magic))) {
d397712b 2253 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2254 goto fail_sb_buffer;
2255 }
19c00ddc 2256
941b2ddf
KM
2257 if (sectorsize < PAGE_SIZE) {
2258 printk(KERN_WARNING "btrfs: Incompatible sector size "
2259 "found on %s\n", sb->s_id);
2260 goto fail_sb_buffer;
2261 }
2262
925baedd 2263 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2264 ret = btrfs_read_sys_array(tree_root);
925baedd 2265 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2266 if (ret) {
d397712b
CM
2267 printk(KERN_WARNING "btrfs: failed to read the system "
2268 "array on %s\n", sb->s_id);
5d4f98a2 2269 goto fail_sb_buffer;
84eed90f 2270 }
0b86a832
CM
2271
2272 blocksize = btrfs_level_size(tree_root,
2273 btrfs_super_chunk_root_level(disk_super));
84234f3a 2274 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2275
2276 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2277 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2278
2279 chunk_root->node = read_tree_block(chunk_root,
2280 btrfs_super_chunk_root(disk_super),
84234f3a 2281 blocksize, generation);
0b86a832 2282 BUG_ON(!chunk_root->node);
83121942
DW
2283 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2284 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2285 sb->s_id);
af31f5e5 2286 goto fail_tree_roots;
83121942 2287 }
5d4f98a2
YZ
2288 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2289 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2290
e17cade2 2291 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2292 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2293 BTRFS_UUID_SIZE);
e17cade2 2294
0b86a832 2295 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2296 if (ret) {
d397712b
CM
2297 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2298 sb->s_id);
af31f5e5 2299 goto fail_tree_roots;
2b82032c 2300 }
0b86a832 2301
dfe25020
CM
2302 btrfs_close_extra_devices(fs_devices);
2303
a6b0d5c8
CM
2304 if (!fs_devices->latest_bdev) {
2305 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2306 sb->s_id);
2307 goto fail_tree_roots;
2308 }
2309
af31f5e5 2310retry_root_backup:
db94535d
CM
2311 blocksize = btrfs_level_size(tree_root,
2312 btrfs_super_root_level(disk_super));
84234f3a 2313 generation = btrfs_super_generation(disk_super);
0b86a832 2314
e20d96d6 2315 tree_root->node = read_tree_block(tree_root,
db94535d 2316 btrfs_super_root(disk_super),
84234f3a 2317 blocksize, generation);
af31f5e5
CM
2318 if (!tree_root->node ||
2319 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2320 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2321 sb->s_id);
af31f5e5
CM
2322
2323 goto recovery_tree_root;
83121942 2324 }
af31f5e5 2325
5d4f98a2
YZ
2326 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2327 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2328
2329 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2330 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2331 if (ret)
af31f5e5 2332 goto recovery_tree_root;
0b86a832
CM
2333 extent_root->track_dirty = 1;
2334
2335 ret = find_and_setup_root(tree_root, fs_info,
2336 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2337 if (ret)
af31f5e5 2338 goto recovery_tree_root;
5d4f98a2 2339 dev_root->track_dirty = 1;
3768f368 2340
d20f7043
CM
2341 ret = find_and_setup_root(tree_root, fs_info,
2342 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2343 if (ret)
af31f5e5 2344 goto recovery_tree_root;
d20f7043
CM
2345
2346 csum_root->track_dirty = 1;
2347
8929ecfa
YZ
2348 fs_info->generation = generation;
2349 fs_info->last_trans_committed = generation;
8929ecfa 2350
c59021f8 2351 ret = btrfs_init_space_info(fs_info);
2352 if (ret) {
2353 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2354 goto fail_block_groups;
2355 }
2356
1b1d1f66
JB
2357 ret = btrfs_read_block_groups(extent_root);
2358 if (ret) {
2359 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2360 goto fail_block_groups;
2361 }
9078a3e1 2362
a74a4b97
CM
2363 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2364 "btrfs-cleaner");
57506d50 2365 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2366 goto fail_block_groups;
a74a4b97
CM
2367
2368 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2369 tree_root,
2370 "btrfs-transaction");
57506d50 2371 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2372 goto fail_cleaner;
a74a4b97 2373
c289811c
CM
2374 if (!btrfs_test_opt(tree_root, SSD) &&
2375 !btrfs_test_opt(tree_root, NOSSD) &&
2376 !fs_info->fs_devices->rotating) {
2377 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2378 "mode\n");
2379 btrfs_set_opt(fs_info->mount_opt, SSD);
2380 }
2381
21adbd5c
SB
2382#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2383 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2384 ret = btrfsic_mount(tree_root, fs_devices,
2385 btrfs_test_opt(tree_root,
2386 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2387 1 : 0,
2388 fs_info->check_integrity_print_mask);
2389 if (ret)
2390 printk(KERN_WARNING "btrfs: failed to initialize"
2391 " integrity check module %s\n", sb->s_id);
2392 }
2393#endif
2394
acce952b 2395 /* do not make disk changes in broken FS */
2396 if (btrfs_super_log_root(disk_super) != 0 &&
2397 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2398 u64 bytenr = btrfs_super_log_root(disk_super);
2399
7c2ca468 2400 if (fs_devices->rw_devices == 0) {
d397712b
CM
2401 printk(KERN_WARNING "Btrfs log replay required "
2402 "on RO media\n");
7c2ca468
CM
2403 err = -EIO;
2404 goto fail_trans_kthread;
2405 }
e02119d5
CM
2406 blocksize =
2407 btrfs_level_size(tree_root,
2408 btrfs_super_log_root_level(disk_super));
d18a2c44 2409
6f07e42e 2410 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2411 if (!log_tree_root) {
2412 err = -ENOMEM;
2413 goto fail_trans_kthread;
2414 }
e02119d5
CM
2415
2416 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2417 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2418
2419 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2420 blocksize,
2421 generation + 1);
e02119d5
CM
2422 ret = btrfs_recover_log_trees(log_tree_root);
2423 BUG_ON(ret);
e556ce2c
YZ
2424
2425 if (sb->s_flags & MS_RDONLY) {
2426 ret = btrfs_commit_super(tree_root);
2427 BUG_ON(ret);
2428 }
e02119d5 2429 }
1a40e23b 2430
76dda93c
YZ
2431 ret = btrfs_find_orphan_roots(tree_root);
2432 BUG_ON(ret);
2433
7c2ca468 2434 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2435 ret = btrfs_cleanup_fs_roots(fs_info);
2436 BUG_ON(ret);
2437
5d4f98a2 2438 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2439 if (ret < 0) {
2440 printk(KERN_WARNING
2441 "btrfs: failed to recover relocation\n");
2442 err = -EINVAL;
2443 goto fail_trans_kthread;
2444 }
7c2ca468 2445 }
1a40e23b 2446
3de4586c
CM
2447 location.objectid = BTRFS_FS_TREE_OBJECTID;
2448 location.type = BTRFS_ROOT_ITEM_KEY;
2449 location.offset = (u64)-1;
2450
3de4586c
CM
2451 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2452 if (!fs_info->fs_root)
7c2ca468 2453 goto fail_trans_kthread;
3140c9a3
DC
2454 if (IS_ERR(fs_info->fs_root)) {
2455 err = PTR_ERR(fs_info->fs_root);
2456 goto fail_trans_kthread;
2457 }
c289811c 2458
e3acc2a6
JB
2459 if (!(sb->s_flags & MS_RDONLY)) {
2460 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2461 err = btrfs_orphan_cleanup(fs_info->fs_root);
2462 if (!err)
2463 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2464 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2465
2466 if (!err)
2467 err = btrfs_recover_balance(fs_info->tree_root);
2468
66b4ffd1
JB
2469 if (err) {
2470 close_ctree(tree_root);
ad2b2c80 2471 return err;
66b4ffd1 2472 }
e3acc2a6
JB
2473 }
2474
ad2b2c80 2475 return 0;
39279cc3 2476
7c2ca468
CM
2477fail_trans_kthread:
2478 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2479fail_cleaner:
a74a4b97 2480 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2481
2482 /*
2483 * make sure we're done with the btree inode before we stop our
2484 * kthreads
2485 */
2486 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2487 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2488
1b1d1f66
JB
2489fail_block_groups:
2490 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2491
2492fail_tree_roots:
2493 free_root_pointers(fs_info, 1);
2494
39279cc3 2495fail_sb_buffer:
61d92c32 2496 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2497 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2498 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2499 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2500 btrfs_stop_workers(&fs_info->workers);
2501 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2502 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2503 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2504 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2505 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2506 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2507 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2508 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2509fail_alloc:
4543df7e 2510fail_iput:
586e46e2
ID
2511 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2512
7c2ca468 2513 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2514 iput(fs_info->btree_inode);
ad081f14 2515fail_bdi:
7e662854 2516 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2517fail_srcu:
2518 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2519fail:
586e46e2 2520 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2521 return err;
af31f5e5
CM
2522
2523recovery_tree_root:
af31f5e5
CM
2524 if (!btrfs_test_opt(tree_root, RECOVERY))
2525 goto fail_tree_roots;
2526
2527 free_root_pointers(fs_info, 0);
2528
2529 /* don't use the log in recovery mode, it won't be valid */
2530 btrfs_set_super_log_root(disk_super, 0);
2531
2532 /* we can't trust the free space cache either */
2533 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2534
2535 ret = next_root_backup(fs_info, fs_info->super_copy,
2536 &num_backups_tried, &backup_index);
2537 if (ret == -1)
2538 goto fail_block_groups;
2539 goto retry_root_backup;
eb60ceac
CM
2540}
2541
f2984462
CM
2542static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2543{
2544 char b[BDEVNAME_SIZE];
2545
2546 if (uptodate) {
2547 set_buffer_uptodate(bh);
2548 } else {
7a36ddec 2549 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2550 "I/O error on %s\n",
2551 bdevname(bh->b_bdev, b));
1259ab75
CM
2552 /* note, we dont' set_buffer_write_io_error because we have
2553 * our own ways of dealing with the IO errors
2554 */
f2984462
CM
2555 clear_buffer_uptodate(bh);
2556 }
2557 unlock_buffer(bh);
2558 put_bh(bh);
2559}
2560
a512bbf8
YZ
2561struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2562{
2563 struct buffer_head *bh;
2564 struct buffer_head *latest = NULL;
2565 struct btrfs_super_block *super;
2566 int i;
2567 u64 transid = 0;
2568 u64 bytenr;
2569
2570 /* we would like to check all the supers, but that would make
2571 * a btrfs mount succeed after a mkfs from a different FS.
2572 * So, we need to add a special mount option to scan for
2573 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2574 */
2575 for (i = 0; i < 1; i++) {
2576 bytenr = btrfs_sb_offset(i);
2577 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2578 break;
2579 bh = __bread(bdev, bytenr / 4096, 4096);
2580 if (!bh)
2581 continue;
2582
2583 super = (struct btrfs_super_block *)bh->b_data;
2584 if (btrfs_super_bytenr(super) != bytenr ||
2585 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2586 sizeof(super->magic))) {
2587 brelse(bh);
2588 continue;
2589 }
2590
2591 if (!latest || btrfs_super_generation(super) > transid) {
2592 brelse(latest);
2593 latest = bh;
2594 transid = btrfs_super_generation(super);
2595 } else {
2596 brelse(bh);
2597 }
2598 }
2599 return latest;
2600}
2601
4eedeb75
HH
2602/*
2603 * this should be called twice, once with wait == 0 and
2604 * once with wait == 1. When wait == 0 is done, all the buffer heads
2605 * we write are pinned.
2606 *
2607 * They are released when wait == 1 is done.
2608 * max_mirrors must be the same for both runs, and it indicates how
2609 * many supers on this one device should be written.
2610 *
2611 * max_mirrors == 0 means to write them all.
2612 */
a512bbf8
YZ
2613static int write_dev_supers(struct btrfs_device *device,
2614 struct btrfs_super_block *sb,
2615 int do_barriers, int wait, int max_mirrors)
2616{
2617 struct buffer_head *bh;
2618 int i;
2619 int ret;
2620 int errors = 0;
2621 u32 crc;
2622 u64 bytenr;
a512bbf8
YZ
2623
2624 if (max_mirrors == 0)
2625 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2626
a512bbf8
YZ
2627 for (i = 0; i < max_mirrors; i++) {
2628 bytenr = btrfs_sb_offset(i);
2629 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2630 break;
2631
2632 if (wait) {
2633 bh = __find_get_block(device->bdev, bytenr / 4096,
2634 BTRFS_SUPER_INFO_SIZE);
2635 BUG_ON(!bh);
a512bbf8 2636 wait_on_buffer(bh);
4eedeb75
HH
2637 if (!buffer_uptodate(bh))
2638 errors++;
2639
2640 /* drop our reference */
2641 brelse(bh);
2642
2643 /* drop the reference from the wait == 0 run */
2644 brelse(bh);
2645 continue;
a512bbf8
YZ
2646 } else {
2647 btrfs_set_super_bytenr(sb, bytenr);
2648
2649 crc = ~(u32)0;
2650 crc = btrfs_csum_data(NULL, (char *)sb +
2651 BTRFS_CSUM_SIZE, crc,
2652 BTRFS_SUPER_INFO_SIZE -
2653 BTRFS_CSUM_SIZE);
2654 btrfs_csum_final(crc, sb->csum);
2655
4eedeb75
HH
2656 /*
2657 * one reference for us, and we leave it for the
2658 * caller
2659 */
a512bbf8
YZ
2660 bh = __getblk(device->bdev, bytenr / 4096,
2661 BTRFS_SUPER_INFO_SIZE);
2662 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2663
4eedeb75 2664 /* one reference for submit_bh */
a512bbf8 2665 get_bh(bh);
4eedeb75
HH
2666
2667 set_buffer_uptodate(bh);
a512bbf8
YZ
2668 lock_buffer(bh);
2669 bh->b_end_io = btrfs_end_buffer_write_sync;
2670 }
2671
387125fc
CM
2672 /*
2673 * we fua the first super. The others we allow
2674 * to go down lazy.
2675 */
21adbd5c 2676 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2677 if (ret)
a512bbf8 2678 errors++;
a512bbf8
YZ
2679 }
2680 return errors < i ? 0 : -1;
2681}
2682
387125fc
CM
2683/*
2684 * endio for the write_dev_flush, this will wake anyone waiting
2685 * for the barrier when it is done
2686 */
2687static void btrfs_end_empty_barrier(struct bio *bio, int err)
2688{
2689 if (err) {
2690 if (err == -EOPNOTSUPP)
2691 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2692 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2693 }
2694 if (bio->bi_private)
2695 complete(bio->bi_private);
2696 bio_put(bio);
2697}
2698
2699/*
2700 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2701 * sent down. With wait == 1, it waits for the previous flush.
2702 *
2703 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2704 * capable
2705 */
2706static int write_dev_flush(struct btrfs_device *device, int wait)
2707{
2708 struct bio *bio;
2709 int ret = 0;
2710
2711 if (device->nobarriers)
2712 return 0;
2713
2714 if (wait) {
2715 bio = device->flush_bio;
2716 if (!bio)
2717 return 0;
2718
2719 wait_for_completion(&device->flush_wait);
2720
2721 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2722 printk("btrfs: disabling barriers on dev %s\n",
2723 device->name);
2724 device->nobarriers = 1;
2725 }
2726 if (!bio_flagged(bio, BIO_UPTODATE)) {
2727 ret = -EIO;
2728 }
2729
2730 /* drop the reference from the wait == 0 run */
2731 bio_put(bio);
2732 device->flush_bio = NULL;
2733
2734 return ret;
2735 }
2736
2737 /*
2738 * one reference for us, and we leave it for the
2739 * caller
2740 */
2741 device->flush_bio = NULL;;
2742 bio = bio_alloc(GFP_NOFS, 0);
2743 if (!bio)
2744 return -ENOMEM;
2745
2746 bio->bi_end_io = btrfs_end_empty_barrier;
2747 bio->bi_bdev = device->bdev;
2748 init_completion(&device->flush_wait);
2749 bio->bi_private = &device->flush_wait;
2750 device->flush_bio = bio;
2751
2752 bio_get(bio);
21adbd5c 2753 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2754
2755 return 0;
2756}
2757
2758/*
2759 * send an empty flush down to each device in parallel,
2760 * then wait for them
2761 */
2762static int barrier_all_devices(struct btrfs_fs_info *info)
2763{
2764 struct list_head *head;
2765 struct btrfs_device *dev;
2766 int errors = 0;
2767 int ret;
2768
2769 /* send down all the barriers */
2770 head = &info->fs_devices->devices;
2771 list_for_each_entry_rcu(dev, head, dev_list) {
2772 if (!dev->bdev) {
2773 errors++;
2774 continue;
2775 }
2776 if (!dev->in_fs_metadata || !dev->writeable)
2777 continue;
2778
2779 ret = write_dev_flush(dev, 0);
2780 if (ret)
2781 errors++;
2782 }
2783
2784 /* wait for all the barriers */
2785 list_for_each_entry_rcu(dev, head, dev_list) {
2786 if (!dev->bdev) {
2787 errors++;
2788 continue;
2789 }
2790 if (!dev->in_fs_metadata || !dev->writeable)
2791 continue;
2792
2793 ret = write_dev_flush(dev, 1);
2794 if (ret)
2795 errors++;
2796 }
2797 if (errors)
2798 return -EIO;
2799 return 0;
2800}
2801
a512bbf8 2802int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2803{
e5e9a520 2804 struct list_head *head;
f2984462 2805 struct btrfs_device *dev;
a061fc8d 2806 struct btrfs_super_block *sb;
f2984462 2807 struct btrfs_dev_item *dev_item;
f2984462
CM
2808 int ret;
2809 int do_barriers;
a236aed1
CM
2810 int max_errors;
2811 int total_errors = 0;
a061fc8d 2812 u64 flags;
f2984462 2813
6c41761f 2814 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2815 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2816 backup_super_roots(root->fs_info);
f2984462 2817
6c41761f 2818 sb = root->fs_info->super_for_commit;
a061fc8d 2819 dev_item = &sb->dev_item;
e5e9a520 2820
174ba509 2821 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2822 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2823
2824 if (do_barriers)
2825 barrier_all_devices(root->fs_info);
2826
1f78160c 2827 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2828 if (!dev->bdev) {
2829 total_errors++;
2830 continue;
2831 }
2b82032c 2832 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2833 continue;
2834
2b82032c 2835 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2836 btrfs_set_stack_device_type(dev_item, dev->type);
2837 btrfs_set_stack_device_id(dev_item, dev->devid);
2838 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2839 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2840 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2841 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2842 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2843 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2844 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2845
a061fc8d
CM
2846 flags = btrfs_super_flags(sb);
2847 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2848
a512bbf8 2849 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2850 if (ret)
2851 total_errors++;
f2984462 2852 }
a236aed1 2853 if (total_errors > max_errors) {
d397712b
CM
2854 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2855 total_errors);
a236aed1
CM
2856 BUG();
2857 }
f2984462 2858
a512bbf8 2859 total_errors = 0;
1f78160c 2860 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2861 if (!dev->bdev)
2862 continue;
2b82032c 2863 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2864 continue;
2865
a512bbf8
YZ
2866 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2867 if (ret)
2868 total_errors++;
f2984462 2869 }
174ba509 2870 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2871 if (total_errors > max_errors) {
d397712b
CM
2872 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2873 total_errors);
a236aed1
CM
2874 BUG();
2875 }
f2984462
CM
2876 return 0;
2877}
2878
a512bbf8
YZ
2879int write_ctree_super(struct btrfs_trans_handle *trans,
2880 struct btrfs_root *root, int max_mirrors)
eb60ceac 2881{
e66f709b 2882 int ret;
5f39d397 2883
a512bbf8 2884 ret = write_all_supers(root, max_mirrors);
5f39d397 2885 return ret;
cfaa7295
CM
2886}
2887
5eda7b5e 2888int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2889{
4df27c4d 2890 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2891 radix_tree_delete(&fs_info->fs_roots_radix,
2892 (unsigned long)root->root_key.objectid);
4df27c4d 2893 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2894
2895 if (btrfs_root_refs(&root->root_item) == 0)
2896 synchronize_srcu(&fs_info->subvol_srcu);
2897
581bb050
LZ
2898 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2899 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2900 free_fs_root(root);
2901 return 0;
2902}
2903
2904static void free_fs_root(struct btrfs_root *root)
2905{
82d5902d 2906 iput(root->cache_inode);
4df27c4d 2907 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2908 if (root->anon_dev)
2909 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2910 free_extent_buffer(root->node);
2911 free_extent_buffer(root->commit_root);
581bb050
LZ
2912 kfree(root->free_ino_ctl);
2913 kfree(root->free_ino_pinned);
d397712b 2914 kfree(root->name);
2619ba1f 2915 kfree(root);
2619ba1f
CM
2916}
2917
35b7e476 2918static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2919{
2920 int ret;
2921 struct btrfs_root *gang[8];
2922 int i;
2923
76dda93c
YZ
2924 while (!list_empty(&fs_info->dead_roots)) {
2925 gang[0] = list_entry(fs_info->dead_roots.next,
2926 struct btrfs_root, root_list);
2927 list_del(&gang[0]->root_list);
2928
2929 if (gang[0]->in_radix) {
2930 btrfs_free_fs_root(fs_info, gang[0]);
2931 } else {
2932 free_extent_buffer(gang[0]->node);
2933 free_extent_buffer(gang[0]->commit_root);
2934 kfree(gang[0]);
2935 }
2936 }
2937
d397712b 2938 while (1) {
0f7d52f4
CM
2939 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2940 (void **)gang, 0,
2941 ARRAY_SIZE(gang));
2942 if (!ret)
2943 break;
2619ba1f 2944 for (i = 0; i < ret; i++)
5eda7b5e 2945 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2946 }
2947 return 0;
2948}
b4100d64 2949
c146afad 2950int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2951{
c146afad
YZ
2952 u64 root_objectid = 0;
2953 struct btrfs_root *gang[8];
2954 int i;
3768f368 2955 int ret;
e089f05c 2956
c146afad
YZ
2957 while (1) {
2958 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2959 (void **)gang, root_objectid,
2960 ARRAY_SIZE(gang));
2961 if (!ret)
2962 break;
5d4f98a2
YZ
2963
2964 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2965 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2966 int err;
2967
c146afad 2968 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2969 err = btrfs_orphan_cleanup(gang[i]);
2970 if (err)
2971 return err;
c146afad
YZ
2972 }
2973 root_objectid++;
2974 }
2975 return 0;
2976}
a2135011 2977
c146afad
YZ
2978int btrfs_commit_super(struct btrfs_root *root)
2979{
2980 struct btrfs_trans_handle *trans;
2981 int ret;
a74a4b97 2982
c146afad 2983 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2984 btrfs_run_delayed_iputs(root);
a74a4b97 2985 btrfs_clean_old_snapshots(root);
c146afad 2986 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2987
2988 /* wait until ongoing cleanup work done */
2989 down_write(&root->fs_info->cleanup_work_sem);
2990 up_write(&root->fs_info->cleanup_work_sem);
2991
7a7eaa40 2992 trans = btrfs_join_transaction(root);
3612b495
TI
2993 if (IS_ERR(trans))
2994 return PTR_ERR(trans);
54aa1f4d 2995 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2996 BUG_ON(ret);
2997 /* run commit again to drop the original snapshot */
7a7eaa40 2998 trans = btrfs_join_transaction(root);
3612b495
TI
2999 if (IS_ERR(trans))
3000 return PTR_ERR(trans);
79154b1b
CM
3001 btrfs_commit_transaction(trans, root);
3002 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 3003 BUG_ON(ret);
d6bfde87 3004
a512bbf8 3005 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3006 return ret;
3007}
3008
3009int close_ctree(struct btrfs_root *root)
3010{
3011 struct btrfs_fs_info *fs_info = root->fs_info;
3012 int ret;
3013
3014 fs_info->closing = 1;
3015 smp_mb();
3016
837d5b6e
ID
3017 /* pause restriper - we want to resume on mount */
3018 btrfs_pause_balance(root->fs_info);
3019
a2de733c 3020 btrfs_scrub_cancel(root);
4cb5300b
CM
3021
3022 /* wait for any defraggers to finish */
3023 wait_event(fs_info->transaction_wait,
3024 (atomic_read(&fs_info->defrag_running) == 0));
3025
3026 /* clear out the rbtree of defraggable inodes */
e3029d9f 3027 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3028
acce952b 3029 /*
3030 * Here come 2 situations when btrfs is broken to flip readonly:
3031 *
3032 * 1. when btrfs flips readonly somewhere else before
3033 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3034 * and btrfs will skip to write sb directly to keep
3035 * ERROR state on disk.
3036 *
3037 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3038 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3039 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3040 * btrfs will cleanup all FS resources first and write sb then.
3041 */
c146afad 3042 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3043 ret = btrfs_commit_super(root);
3044 if (ret)
3045 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3046 }
3047
3048 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3049 ret = btrfs_error_commit_super(root);
d397712b
CM
3050 if (ret)
3051 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3052 }
0f7d52f4 3053
300e4f8a
JB
3054 btrfs_put_block_group_cache(fs_info);
3055
e3029d9f
AV
3056 kthread_stop(fs_info->transaction_kthread);
3057 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3058
f25784b3
YZ
3059 fs_info->closing = 2;
3060 smp_mb();
3061
b0c68f8b 3062 if (fs_info->delalloc_bytes) {
d397712b 3063 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3064 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3065 }
31153d81 3066 if (fs_info->total_ref_cache_size) {
d397712b
CM
3067 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3068 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3069 }
bcc63abb 3070
5d4f98a2
YZ
3071 free_extent_buffer(fs_info->extent_root->node);
3072 free_extent_buffer(fs_info->extent_root->commit_root);
3073 free_extent_buffer(fs_info->tree_root->node);
3074 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3075 free_extent_buffer(fs_info->chunk_root->node);
3076 free_extent_buffer(fs_info->chunk_root->commit_root);
3077 free_extent_buffer(fs_info->dev_root->node);
3078 free_extent_buffer(fs_info->dev_root->commit_root);
3079 free_extent_buffer(fs_info->csum_root->node);
3080 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3081
e3029d9f 3082 btrfs_free_block_groups(fs_info);
d10c5f31 3083
c146afad 3084 del_fs_roots(fs_info);
d10c5f31 3085
c146afad 3086 iput(fs_info->btree_inode);
9ad6b7bc 3087
61d92c32 3088 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3089 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3090 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3091 btrfs_stop_workers(&fs_info->workers);
3092 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3093 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3094 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3095 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3096 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3097 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3098 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3099 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3100 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3101
21adbd5c
SB
3102#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3103 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3104 btrfsic_unmount(root, fs_info->fs_devices);
3105#endif
3106
dfe25020 3107 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3108 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3109
04160088 3110 bdi_destroy(&fs_info->bdi);
76dda93c 3111 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3112
eb60ceac
CM
3113 return 0;
3114}
3115
1259ab75 3116int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3117{
1259ab75 3118 int ret;
727011e0 3119 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3120
2ac55d41
JB
3121 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3122 NULL);
1259ab75
CM
3123 if (!ret)
3124 return ret;
3125
3126 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3127 parent_transid);
3128 return !ret;
5f39d397
CM
3129}
3130
3131int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3132{
727011e0 3133 struct inode *btree_inode = buf->pages[0]->mapping->host;
d1310b2e 3134 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3135 buf);
3136}
6702ed49 3137
5f39d397
CM
3138void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3139{
727011e0 3140 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397
CM
3141 u64 transid = btrfs_header_generation(buf);
3142 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3143 int was_dirty;
b4ce94de 3144
b9447ef8 3145 btrfs_assert_tree_locked(buf);
ccd467d6 3146 if (transid != root->fs_info->generation) {
d397712b
CM
3147 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3148 "found %llu running %llu\n",
db94535d 3149 (unsigned long long)buf->start,
d397712b
CM
3150 (unsigned long long)transid,
3151 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3152 WARN_ON(1);
3153 }
b9473439
CM
3154 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3155 buf);
3156 if (!was_dirty) {
3157 spin_lock(&root->fs_info->delalloc_lock);
3158 root->fs_info->dirty_metadata_bytes += buf->len;
3159 spin_unlock(&root->fs_info->delalloc_lock);
3160 }
eb60ceac
CM
3161}
3162
d3c2fdcf 3163void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3164{
3165 /*
3166 * looks as though older kernels can get into trouble with
3167 * this code, they end up stuck in balance_dirty_pages forever
3168 */
3169 u64 num_dirty;
3170 unsigned long thresh = 32 * 1024 * 1024;
3171
3172 if (current->flags & PF_MEMALLOC)
3173 return;
3174
3175 btrfs_balance_delayed_items(root);
3176
3177 num_dirty = root->fs_info->dirty_metadata_bytes;
3178
3179 if (num_dirty > thresh) {
3180 balance_dirty_pages_ratelimited_nr(
3181 root->fs_info->btree_inode->i_mapping, 1);
3182 }
3183 return;
3184}
3185
3186void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3187{
188de649
CM
3188 /*
3189 * looks as though older kernels can get into trouble with
3190 * this code, they end up stuck in balance_dirty_pages forever
3191 */
d6bfde87 3192 u64 num_dirty;
771ed689 3193 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3194
6933c02e 3195 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3196 return;
3197
585ad2c3
CM
3198 num_dirty = root->fs_info->dirty_metadata_bytes;
3199
d6bfde87
CM
3200 if (num_dirty > thresh) {
3201 balance_dirty_pages_ratelimited_nr(
d7fc640e 3202 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3203 }
188de649 3204 return;
35b7e476 3205}
6b80053d 3206
ca7a79ad 3207int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3208{
727011e0 3209 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
ce9adaa5 3210 int ret;
ca7a79ad 3211 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3212 if (ret == 0)
b4ce94de 3213 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3214 return ret;
6b80053d 3215}
0da5468f 3216
01d658f2
CM
3217static int btree_lock_page_hook(struct page *page, void *data,
3218 void (*flush_fn)(void *))
4bef0848
CM
3219{
3220 struct inode *inode = page->mapping->host;
b9473439 3221 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
3222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3223 struct extent_buffer *eb;
3224 unsigned long len;
3225 u64 bytenr = page_offset(page);
3226
3227 if (page->private == EXTENT_PAGE_PRIVATE)
3228 goto out;
3229
3230 len = page->private >> 2;
f09d1f60 3231 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
3232 if (!eb)
3233 goto out;
3234
01d658f2
CM
3235 if (!btrfs_try_tree_write_lock(eb)) {
3236 flush_fn(data);
3237 btrfs_tree_lock(eb);
3238 }
4bef0848 3239 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3240
3241 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3242 spin_lock(&root->fs_info->delalloc_lock);
3243 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3244 root->fs_info->dirty_metadata_bytes -= eb->len;
3245 else
3246 WARN_ON(1);
3247 spin_unlock(&root->fs_info->delalloc_lock);
3248 }
3249
4bef0848
CM
3250 btrfs_tree_unlock(eb);
3251 free_extent_buffer(eb);
3252out:
01d658f2
CM
3253 if (!trylock_page(page)) {
3254 flush_fn(data);
3255 lock_page(page);
3256 }
4bef0848
CM
3257 return 0;
3258}
3259
acce952b 3260static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3261 int read_only)
3262{
3263 if (read_only)
3264 return;
3265
3266 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3267 printk(KERN_WARNING "warning: mount fs with errors, "
3268 "running btrfsck is recommended\n");
3269}
3270
3271int btrfs_error_commit_super(struct btrfs_root *root)
3272{
3273 int ret;
3274
3275 mutex_lock(&root->fs_info->cleaner_mutex);
3276 btrfs_run_delayed_iputs(root);
3277 mutex_unlock(&root->fs_info->cleaner_mutex);
3278
3279 down_write(&root->fs_info->cleanup_work_sem);
3280 up_write(&root->fs_info->cleanup_work_sem);
3281
3282 /* cleanup FS via transaction */
3283 btrfs_cleanup_transaction(root);
3284
3285 ret = write_ctree_super(NULL, root, 0);
3286
3287 return ret;
3288}
3289
3290static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3291{
3292 struct btrfs_inode *btrfs_inode;
3293 struct list_head splice;
3294
3295 INIT_LIST_HEAD(&splice);
3296
3297 mutex_lock(&root->fs_info->ordered_operations_mutex);
3298 spin_lock(&root->fs_info->ordered_extent_lock);
3299
3300 list_splice_init(&root->fs_info->ordered_operations, &splice);
3301 while (!list_empty(&splice)) {
3302 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3303 ordered_operations);
3304
3305 list_del_init(&btrfs_inode->ordered_operations);
3306
3307 btrfs_invalidate_inodes(btrfs_inode->root);
3308 }
3309
3310 spin_unlock(&root->fs_info->ordered_extent_lock);
3311 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3312
3313 return 0;
3314}
3315
3316static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3317{
3318 struct list_head splice;
3319 struct btrfs_ordered_extent *ordered;
3320 struct inode *inode;
3321
3322 INIT_LIST_HEAD(&splice);
3323
3324 spin_lock(&root->fs_info->ordered_extent_lock);
3325
3326 list_splice_init(&root->fs_info->ordered_extents, &splice);
3327 while (!list_empty(&splice)) {
3328 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3329 root_extent_list);
3330
3331 list_del_init(&ordered->root_extent_list);
3332 atomic_inc(&ordered->refs);
3333
3334 /* the inode may be getting freed (in sys_unlink path). */
3335 inode = igrab(ordered->inode);
3336
3337 spin_unlock(&root->fs_info->ordered_extent_lock);
3338 if (inode)
3339 iput(inode);
3340
3341 atomic_set(&ordered->refs, 1);
3342 btrfs_put_ordered_extent(ordered);
3343
3344 spin_lock(&root->fs_info->ordered_extent_lock);
3345 }
3346
3347 spin_unlock(&root->fs_info->ordered_extent_lock);
3348
3349 return 0;
3350}
3351
3352static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3353 struct btrfs_root *root)
3354{
3355 struct rb_node *node;
3356 struct btrfs_delayed_ref_root *delayed_refs;
3357 struct btrfs_delayed_ref_node *ref;
3358 int ret = 0;
3359
3360 delayed_refs = &trans->delayed_refs;
3361
3362 spin_lock(&delayed_refs->lock);
3363 if (delayed_refs->num_entries == 0) {
cfece4db 3364 spin_unlock(&delayed_refs->lock);
acce952b 3365 printk(KERN_INFO "delayed_refs has NO entry\n");
3366 return ret;
3367 }
3368
3369 node = rb_first(&delayed_refs->root);
3370 while (node) {
3371 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3372 node = rb_next(node);
3373
3374 ref->in_tree = 0;
3375 rb_erase(&ref->rb_node, &delayed_refs->root);
3376 delayed_refs->num_entries--;
3377
3378 atomic_set(&ref->refs, 1);
3379 if (btrfs_delayed_ref_is_head(ref)) {
3380 struct btrfs_delayed_ref_head *head;
3381
3382 head = btrfs_delayed_node_to_head(ref);
3383 mutex_lock(&head->mutex);
3384 kfree(head->extent_op);
3385 delayed_refs->num_heads--;
3386 if (list_empty(&head->cluster))
3387 delayed_refs->num_heads_ready--;
3388 list_del_init(&head->cluster);
3389 mutex_unlock(&head->mutex);
3390 }
3391
3392 spin_unlock(&delayed_refs->lock);
3393 btrfs_put_delayed_ref(ref);
3394
3395 cond_resched();
3396 spin_lock(&delayed_refs->lock);
3397 }
3398
3399 spin_unlock(&delayed_refs->lock);
3400
3401 return ret;
3402}
3403
3404static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3405{
3406 struct btrfs_pending_snapshot *snapshot;
3407 struct list_head splice;
3408
3409 INIT_LIST_HEAD(&splice);
3410
3411 list_splice_init(&t->pending_snapshots, &splice);
3412
3413 while (!list_empty(&splice)) {
3414 snapshot = list_entry(splice.next,
3415 struct btrfs_pending_snapshot,
3416 list);
3417
3418 list_del_init(&snapshot->list);
3419
3420 kfree(snapshot);
3421 }
3422
3423 return 0;
3424}
3425
3426static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3427{
3428 struct btrfs_inode *btrfs_inode;
3429 struct list_head splice;
3430
3431 INIT_LIST_HEAD(&splice);
3432
acce952b 3433 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3434 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3435
3436 while (!list_empty(&splice)) {
3437 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3438 delalloc_inodes);
3439
3440 list_del_init(&btrfs_inode->delalloc_inodes);
3441
3442 btrfs_invalidate_inodes(btrfs_inode->root);
3443 }
3444
3445 spin_unlock(&root->fs_info->delalloc_lock);
3446
3447 return 0;
3448}
3449
3450static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3451 struct extent_io_tree *dirty_pages,
3452 int mark)
3453{
3454 int ret;
3455 struct page *page;
3456 struct inode *btree_inode = root->fs_info->btree_inode;
3457 struct extent_buffer *eb;
3458 u64 start = 0;
3459 u64 end;
3460 u64 offset;
3461 unsigned long index;
3462
3463 while (1) {
3464 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3465 mark);
3466 if (ret)
3467 break;
3468
3469 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3470 while (start <= end) {
3471 index = start >> PAGE_CACHE_SHIFT;
3472 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3473 page = find_get_page(btree_inode->i_mapping, index);
3474 if (!page)
3475 continue;
3476 offset = page_offset(page);
3477
3478 spin_lock(&dirty_pages->buffer_lock);
3479 eb = radix_tree_lookup(
3480 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3481 offset >> PAGE_CACHE_SHIFT);
3482 spin_unlock(&dirty_pages->buffer_lock);
3483 if (eb) {
3484 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3485 &eb->bflags);
3486 atomic_set(&eb->refs, 1);
3487 }
3488 if (PageWriteback(page))
3489 end_page_writeback(page);
3490
3491 lock_page(page);
3492 if (PageDirty(page)) {
3493 clear_page_dirty_for_io(page);
3494 spin_lock_irq(&page->mapping->tree_lock);
3495 radix_tree_tag_clear(&page->mapping->page_tree,
3496 page_index(page),
3497 PAGECACHE_TAG_DIRTY);
3498 spin_unlock_irq(&page->mapping->tree_lock);
3499 }
3500
3501 page->mapping->a_ops->invalidatepage(page, 0);
3502 unlock_page(page);
3503 }
3504 }
3505
3506 return ret;
3507}
3508
3509static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3510 struct extent_io_tree *pinned_extents)
3511{
3512 struct extent_io_tree *unpin;
3513 u64 start;
3514 u64 end;
3515 int ret;
3516
3517 unpin = pinned_extents;
3518 while (1) {
3519 ret = find_first_extent_bit(unpin, 0, &start, &end,
3520 EXTENT_DIRTY);
3521 if (ret)
3522 break;
3523
3524 /* opt_discard */
5378e607
LD
3525 if (btrfs_test_opt(root, DISCARD))
3526 ret = btrfs_error_discard_extent(root, start,
3527 end + 1 - start,
3528 NULL);
acce952b 3529
3530 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3531 btrfs_error_unpin_extent_range(root, start, end);
3532 cond_resched();
3533 }
3534
3535 return 0;
3536}
3537
3538static int btrfs_cleanup_transaction(struct btrfs_root *root)
3539{
3540 struct btrfs_transaction *t;
3541 LIST_HEAD(list);
3542
3543 WARN_ON(1);
3544
acce952b 3545 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3546
a4abeea4 3547 spin_lock(&root->fs_info->trans_lock);
acce952b 3548 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3549 root->fs_info->trans_no_join = 1;
3550 spin_unlock(&root->fs_info->trans_lock);
3551
acce952b 3552 while (!list_empty(&list)) {
3553 t = list_entry(list.next, struct btrfs_transaction, list);
3554 if (!t)
3555 break;
3556
3557 btrfs_destroy_ordered_operations(root);
3558
3559 btrfs_destroy_ordered_extents(root);
3560
3561 btrfs_destroy_delayed_refs(t, root);
3562
3563 btrfs_block_rsv_release(root,
3564 &root->fs_info->trans_block_rsv,
3565 t->dirty_pages.dirty_bytes);
3566
3567 /* FIXME: cleanup wait for commit */
3568 t->in_commit = 1;
3569 t->blocked = 1;
3570 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3571 wake_up(&root->fs_info->transaction_blocked_wait);
3572
3573 t->blocked = 0;
3574 if (waitqueue_active(&root->fs_info->transaction_wait))
3575 wake_up(&root->fs_info->transaction_wait);
acce952b 3576
acce952b 3577 t->commit_done = 1;
3578 if (waitqueue_active(&t->commit_wait))
3579 wake_up(&t->commit_wait);
acce952b 3580
3581 btrfs_destroy_pending_snapshots(t);
3582
3583 btrfs_destroy_delalloc_inodes(root);
3584
a4abeea4 3585 spin_lock(&root->fs_info->trans_lock);
acce952b 3586 root->fs_info->running_transaction = NULL;
a4abeea4 3587 spin_unlock(&root->fs_info->trans_lock);
acce952b 3588
3589 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3590 EXTENT_DIRTY);
3591
3592 btrfs_destroy_pinned_extent(root,
3593 root->fs_info->pinned_extents);
3594
13c5a93e 3595 atomic_set(&t->use_count, 0);
acce952b 3596 list_del_init(&t->list);
3597 memset(t, 0, sizeof(*t));
3598 kmem_cache_free(btrfs_transaction_cachep, t);
3599 }
3600
a4abeea4
JB
3601 spin_lock(&root->fs_info->trans_lock);
3602 root->fs_info->trans_no_join = 0;
3603 spin_unlock(&root->fs_info->trans_lock);
acce952b 3604 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3605
3606 return 0;
3607}
3608
d1310b2e 3609static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3610 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3611 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3612 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3613 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3614 /* note we're sharing with inode.c for the merge bio hook */
3615 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3616};