Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
d458b054 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
d458b054 89 struct btrfs_work work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
d458b054 111 struct btrfs_work work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 160 { .id = 0, .name_stem = "tree" },
4008c04a 161};
85d4e461
CM
162
163void __init btrfs_init_lockdep(void)
164{
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175}
176
177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179{
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191}
192
4008c04a
CM
193#endif
194
d352ac68
CM
195/*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
b2950863 199static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 200 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 201 int create)
7eccb903 202{
5f39d397
CM
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
890871be 207 read_lock(&em_tree->lock);
d1310b2e 208 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 212 read_unlock(&em_tree->lock);
5f39d397 213 goto out;
a061fc8d 214 }
890871be 215 read_unlock(&em_tree->lock);
7b13b7b1 216
172ddd60 217 em = alloc_extent_map();
5f39d397
CM
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
0afbaf8c 223 em->len = (u64)-1;
c8b97818 224 em->block_len = (u64)-1;
5f39d397 225 em->block_start = 0;
a061fc8d 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 227
890871be 228 write_lock(&em_tree->lock);
09a2a8f9 229 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
230 if (ret == -EEXIST) {
231 free_extent_map(em);
7b13b7b1 232 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 233 if (!em)
0433f20d 234 em = ERR_PTR(-EIO);
5f39d397 235 } else if (ret) {
7b13b7b1 236 free_extent_map(em);
0433f20d 237 em = ERR_PTR(ret);
5f39d397 238 }
890871be 239 write_unlock(&em_tree->lock);
7b13b7b1 240
5f39d397
CM
241out:
242 return em;
7eccb903
CM
243}
244
b0496686 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 246{
0b947aff 247 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
248}
249
250void btrfs_csum_final(u32 crc, char *result)
251{
7e75bf3f 252 put_unaligned_le32(~crc, result);
19c00ddc
CM
253}
254
d352ac68
CM
255/*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
19c00ddc
CM
259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261{
6c41761f 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 263 char *result = NULL;
19c00ddc
CM
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
607d432d 272 unsigned long inline_result;
19c00ddc
CM
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
19c00ddc 276 err = map_private_extent_buffer(buf, offset, 32,
a6591715 277 &kaddr, &map_start, &map_len);
d397712b 278 if (err)
19c00ddc 279 return 1;
19c00ddc 280 cur_len = min(len, map_len - (offset - map_start));
b0496686 281 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
607d432d
JB
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 347 "found %llu\n",
c1c9ff7c 348 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 349 ret = 1;
0b32f4bb 350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41
JB
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
1259ab75 354 return ret;
1259ab75
CM
355}
356
1104a885
DS
357/*
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
360 */
361static int btrfs_check_super_csum(char *raw_disk_sb)
362{
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
366 int ret = 0;
367
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 u32 crc = ~(u32)0;
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
372
373 /*
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
377 */
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
381
382 if (memcmp(raw_disk_sb, result, csum_size))
383 ret = 1;
667e7d94
CM
384
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
386 printk(KERN_WARNING
387 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
388 ret = 0;
389 }
1104a885
DS
390 }
391
392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 393 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
394 csum_type);
395 ret = 1;
396 }
397
398 return ret;
399}
400
d352ac68
CM
401/*
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
404 */
f188591e
CM
405static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406 struct extent_buffer *eb,
ca7a79ad 407 u64 start, u64 parent_transid)
f188591e
CM
408{
409 struct extent_io_tree *io_tree;
ea466794 410 int failed = 0;
f188591e
CM
411 int ret;
412 int num_copies = 0;
413 int mirror_num = 0;
ea466794 414 int failed_mirror = 0;
f188591e 415
a826d6dc 416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 while (1) {
bb82ab88
AJ
419 ret = read_extent_buffer_pages(io_tree, eb, start,
420 WAIT_COMPLETE,
f188591e 421 btree_get_extent, mirror_num);
256dd1bb
SB
422 if (!ret) {
423 if (!verify_parent_transid(io_tree, eb,
b9fab919 424 parent_transid, 0))
256dd1bb
SB
425 break;
426 else
427 ret = -EIO;
428 }
d397712b 429
a826d6dc
JB
430 /*
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
433 * any less wrong.
434 */
435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
436 break;
437
5d964051 438 num_copies = btrfs_num_copies(root->fs_info,
f188591e 439 eb->start, eb->len);
4235298e 440 if (num_copies == 1)
ea466794 441 break;
4235298e 442
5cf1ab56
JB
443 if (!failed_mirror) {
444 failed = 1;
445 failed_mirror = eb->read_mirror;
446 }
447
f188591e 448 mirror_num++;
ea466794
JB
449 if (mirror_num == failed_mirror)
450 mirror_num++;
451
4235298e 452 if (mirror_num > num_copies)
ea466794 453 break;
f188591e 454 }
ea466794 455
c0901581 456 if (failed && !ret && failed_mirror)
ea466794
JB
457 repair_eb_io_failure(root, eb, failed_mirror);
458
459 return ret;
f188591e 460}
19c00ddc 461
d352ac68 462/*
d397712b
CM
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 465 */
d397712b 466
b2950863 467static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 468{
4eee4fa4 469 u64 start = page_offset(page);
19c00ddc 470 u64 found_start;
19c00ddc 471 struct extent_buffer *eb;
f188591e 472
4f2de97a
JB
473 eb = (struct extent_buffer *)page->private;
474 if (page != eb->pages[0])
475 return 0;
19c00ddc 476 found_start = btrfs_header_bytenr(eb);
fae7f21c 477 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 478 return 0;
19c00ddc 479 csum_tree_block(root, eb, 0);
19c00ddc
CM
480 return 0;
481}
482
2b82032c
YZ
483static int check_tree_block_fsid(struct btrfs_root *root,
484 struct extent_buffer *eb)
485{
486 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487 u8 fsid[BTRFS_UUID_SIZE];
488 int ret = 1;
489
0a4e5586 490 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
491 while (fs_devices) {
492 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493 ret = 0;
494 break;
495 }
496 fs_devices = fs_devices->seed;
497 }
498 return ret;
499}
500
a826d6dc 501#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
502 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
503 "root=%llu, slot=%d", reason, \
c1c9ff7c 504 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
505
506static noinline int check_leaf(struct btrfs_root *root,
507 struct extent_buffer *leaf)
508{
509 struct btrfs_key key;
510 struct btrfs_key leaf_key;
511 u32 nritems = btrfs_header_nritems(leaf);
512 int slot;
513
514 if (nritems == 0)
515 return 0;
516
517 /* Check the 0 item */
518 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519 BTRFS_LEAF_DATA_SIZE(root)) {
520 CORRUPT("invalid item offset size pair", leaf, root, 0);
521 return -EIO;
522 }
523
524 /*
525 * Check to make sure each items keys are in the correct order and their
526 * offsets make sense. We only have to loop through nritems-1 because
527 * we check the current slot against the next slot, which verifies the
528 * next slot's offset+size makes sense and that the current's slot
529 * offset is correct.
530 */
531 for (slot = 0; slot < nritems - 1; slot++) {
532 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535 /* Make sure the keys are in the right order */
536 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537 CORRUPT("bad key order", leaf, root, slot);
538 return -EIO;
539 }
540
541 /*
542 * Make sure the offset and ends are right, remember that the
543 * item data starts at the end of the leaf and grows towards the
544 * front.
545 */
546 if (btrfs_item_offset_nr(leaf, slot) !=
547 btrfs_item_end_nr(leaf, slot + 1)) {
548 CORRUPT("slot offset bad", leaf, root, slot);
549 return -EIO;
550 }
551
552 /*
553 * Check to make sure that we don't point outside of the leaf,
554 * just incase all the items are consistent to eachother, but
555 * all point outside of the leaf.
556 */
557 if (btrfs_item_end_nr(leaf, slot) >
558 BTRFS_LEAF_DATA_SIZE(root)) {
559 CORRUPT("slot end outside of leaf", leaf, root, slot);
560 return -EIO;
561 }
562 }
563
564 return 0;
565}
566
facc8a22
MX
567static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568 u64 phy_offset, struct page *page,
569 u64 start, u64 end, int mirror)
ce9adaa5 570{
ce9adaa5
CM
571 u64 found_start;
572 int found_level;
ce9adaa5
CM
573 struct extent_buffer *eb;
574 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 575 int ret = 0;
727011e0 576 int reads_done;
ce9adaa5 577
ce9adaa5
CM
578 if (!page->private)
579 goto out;
d397712b 580
4f2de97a 581 eb = (struct extent_buffer *)page->private;
d397712b 582
0b32f4bb
JB
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
589 if (!reads_done)
590 goto err;
f188591e 591
5cf1ab56 592 eb->read_mirror = mirror;
ea466794
JB
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
ce9adaa5 598 found_start = btrfs_header_bytenr(eb);
727011e0 599 if (found_start != eb->start) {
efe120a0 600 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 601 "%llu %llu\n",
c1c9ff7c 602 found_start, eb->start);
f188591e 603 ret = -EIO;
ce9adaa5
CM
604 goto err;
605 }
2b82032c 606 if (check_tree_block_fsid(root, eb)) {
efe120a0 607 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 608 eb->start);
1259ab75
CM
609 ret = -EIO;
610 goto err;
611 }
ce9adaa5 612 found_level = btrfs_header_level(eb);
1c24c3ce 613 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 614 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
615 (int)btrfs_header_level(eb));
616 ret = -EIO;
617 goto err;
618 }
ce9adaa5 619
85d4e461
CM
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
4008c04a 622
ce9adaa5 623 ret = csum_tree_block(root, eb, 1);
a826d6dc 624 if (ret) {
f188591e 625 ret = -EIO;
a826d6dc
JB
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
0b32f4bb
JB
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
ce9adaa5 641err:
79fb65a1
JB
642 if (reads_done &&
643 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 644 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 645
53b381b3
DW
646 if (ret) {
647 /*
648 * our io error hook is going to dec the io pages
649 * again, we have to make sure it has something
650 * to decrement
651 */
652 atomic_inc(&eb->io_pages);
0b32f4bb 653 clear_extent_buffer_uptodate(eb);
53b381b3 654 }
0b32f4bb 655 free_extent_buffer(eb);
ce9adaa5 656out:
f188591e 657 return ret;
ce9adaa5
CM
658}
659
ea466794 660static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 661{
4bb31e92
AJ
662 struct extent_buffer *eb;
663 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
4f2de97a 665 eb = (struct extent_buffer *)page->private;
ea466794 666 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 667 eb->read_mirror = failed_mirror;
53b381b3 668 atomic_dec(&eb->io_pages);
ea466794 669 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 670 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
671 return -EIO; /* we fixed nothing */
672}
673
ce9adaa5 674static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
675{
676 struct end_io_wq *end_io_wq = bio->bi_private;
677 struct btrfs_fs_info *fs_info;
ce9adaa5 678
ce9adaa5 679 fs_info = end_io_wq->info;
ce9adaa5 680 end_io_wq->error = err;
fccb5d86 681 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
d20f7043 682
7b6d91da 683 if (bio->bi_rw & REQ_WRITE) {
53b381b3 684 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
fccb5d86
QW
685 btrfs_queue_work(fs_info->endio_meta_write_workers,
686 &end_io_wq->work);
53b381b3 687 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
fccb5d86
QW
688 btrfs_queue_work(fs_info->endio_freespace_worker,
689 &end_io_wq->work);
53b381b3 690 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
691 btrfs_queue_work(fs_info->endio_raid56_workers,
692 &end_io_wq->work);
cad321ad 693 else
fccb5d86
QW
694 btrfs_queue_work(fs_info->endio_write_workers,
695 &end_io_wq->work);
d20f7043 696 } else {
53b381b3 697 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
698 btrfs_queue_work(fs_info->endio_raid56_workers,
699 &end_io_wq->work);
53b381b3 700 else if (end_io_wq->metadata)
fccb5d86
QW
701 btrfs_queue_work(fs_info->endio_meta_workers,
702 &end_io_wq->work);
d20f7043 703 else
fccb5d86
QW
704 btrfs_queue_work(fs_info->endio_workers,
705 &end_io_wq->work);
d20f7043 706 }
ce9adaa5
CM
707}
708
0cb59c99
JB
709/*
710 * For the metadata arg you want
711 *
712 * 0 - if data
713 * 1 - if normal metadta
714 * 2 - if writing to the free space cache area
53b381b3 715 * 3 - raid parity work
0cb59c99 716 */
22c59948
CM
717int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718 int metadata)
0b86a832 719{
ce9adaa5 720 struct end_io_wq *end_io_wq;
ce9adaa5
CM
721 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722 if (!end_io_wq)
723 return -ENOMEM;
724
725 end_io_wq->private = bio->bi_private;
726 end_io_wq->end_io = bio->bi_end_io;
22c59948 727 end_io_wq->info = info;
ce9adaa5
CM
728 end_io_wq->error = 0;
729 end_io_wq->bio = bio;
22c59948 730 end_io_wq->metadata = metadata;
ce9adaa5
CM
731
732 bio->bi_private = end_io_wq;
733 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
734 return 0;
735}
736
b64a2851 737unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 738{
4854ddd0 739 unsigned long limit = min_t(unsigned long,
5cdc7ad3 740 info->thread_pool_size,
4854ddd0
CM
741 info->fs_devices->open_devices);
742 return 256 * limit;
743}
0986fe9e 744
d458b054 745static void run_one_async_start(struct btrfs_work *work)
4a69a410 746{
4a69a410 747 struct async_submit_bio *async;
79787eaa 748 int ret;
4a69a410
CM
749
750 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
751 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752 async->mirror_num, async->bio_flags,
753 async->bio_offset);
754 if (ret)
755 async->error = ret;
4a69a410
CM
756}
757
d458b054 758static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
759{
760 struct btrfs_fs_info *fs_info;
761 struct async_submit_bio *async;
4854ddd0 762 int limit;
8b712842
CM
763
764 async = container_of(work, struct async_submit_bio, work);
765 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 766
b64a2851 767 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
768 limit = limit * 2 / 3;
769
66657b31 770 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 771 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
772 wake_up(&fs_info->async_submit_wait);
773
79787eaa
JM
774 /* If an error occured we just want to clean up the bio and move on */
775 if (async->error) {
776 bio_endio(async->bio, async->error);
777 return;
778 }
779
4a69a410 780 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
781 async->mirror_num, async->bio_flags,
782 async->bio_offset);
4a69a410
CM
783}
784
d458b054 785static void run_one_async_free(struct btrfs_work *work)
4a69a410
CM
786{
787 struct async_submit_bio *async;
788
789 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
790 kfree(async);
791}
792
44b8bd7e
CM
793int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794 int rw, struct bio *bio, int mirror_num,
c8b97818 795 unsigned long bio_flags,
eaf25d93 796 u64 bio_offset,
4a69a410
CM
797 extent_submit_bio_hook_t *submit_bio_start,
798 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
799{
800 struct async_submit_bio *async;
801
802 async = kmalloc(sizeof(*async), GFP_NOFS);
803 if (!async)
804 return -ENOMEM;
805
806 async->inode = inode;
807 async->rw = rw;
808 async->bio = bio;
809 async->mirror_num = mirror_num;
4a69a410
CM
810 async->submit_bio_start = submit_bio_start;
811 async->submit_bio_done = submit_bio_done;
812
5cdc7ad3
QW
813 btrfs_init_work(&async->work, run_one_async_start,
814 run_one_async_done, run_one_async_free);
4a69a410 815
c8b97818 816 async->bio_flags = bio_flags;
eaf25d93 817 async->bio_offset = bio_offset;
8c8bee1d 818
79787eaa
JM
819 async->error = 0;
820
cb03c743 821 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 822
7b6d91da 823 if (rw & REQ_SYNC)
5cdc7ad3 824 btrfs_set_work_high_priority(&async->work);
d313d7a3 825
5cdc7ad3 826 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 827
d397712b 828 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
829 atomic_read(&fs_info->nr_async_submits)) {
830 wait_event(fs_info->async_submit_wait,
831 (atomic_read(&fs_info->nr_async_submits) == 0));
832 }
833
44b8bd7e
CM
834 return 0;
835}
836
ce3ed71a
CM
837static int btree_csum_one_bio(struct bio *bio)
838{
839 struct bio_vec *bvec = bio->bi_io_vec;
840 int bio_index = 0;
841 struct btrfs_root *root;
79787eaa 842 int ret = 0;
ce3ed71a
CM
843
844 WARN_ON(bio->bi_vcnt <= 0);
d397712b 845 while (bio_index < bio->bi_vcnt) {
ce3ed71a 846 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
847 ret = csum_dirty_buffer(root, bvec->bv_page);
848 if (ret)
849 break;
ce3ed71a
CM
850 bio_index++;
851 bvec++;
852 }
79787eaa 853 return ret;
ce3ed71a
CM
854}
855
4a69a410
CM
856static int __btree_submit_bio_start(struct inode *inode, int rw,
857 struct bio *bio, int mirror_num,
eaf25d93
CM
858 unsigned long bio_flags,
859 u64 bio_offset)
22c59948 860{
8b712842
CM
861 /*
862 * when we're called for a write, we're already in the async
5443be45 863 * submission context. Just jump into btrfs_map_bio
8b712842 864 */
79787eaa 865 return btree_csum_one_bio(bio);
4a69a410 866}
22c59948 867
4a69a410 868static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
869 int mirror_num, unsigned long bio_flags,
870 u64 bio_offset)
4a69a410 871{
61891923
SB
872 int ret;
873
8b712842 874 /*
4a69a410
CM
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
8b712842 877 */
61891923
SB
878 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879 if (ret)
880 bio_endio(bio, ret);
881 return ret;
0b86a832
CM
882}
883
de0022b9
JB
884static int check_async_write(struct inode *inode, unsigned long bio_flags)
885{
886 if (bio_flags & EXTENT_BIO_TREE_LOG)
887 return 0;
888#ifdef CONFIG_X86
889 if (cpu_has_xmm4_2)
890 return 0;
891#endif
892 return 1;
893}
894
44b8bd7e 895static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
896 int mirror_num, unsigned long bio_flags,
897 u64 bio_offset)
44b8bd7e 898{
de0022b9 899 int async = check_async_write(inode, bio_flags);
cad321ad
CM
900 int ret;
901
7b6d91da 902 if (!(rw & REQ_WRITE)) {
4a69a410
CM
903 /*
904 * called for a read, do the setup so that checksum validation
905 * can happen in the async kernel threads
906 */
f3f266ab
CM
907 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908 bio, 1);
1d4284bd 909 if (ret)
61891923
SB
910 goto out_w_error;
911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912 mirror_num, 0);
de0022b9
JB
913 } else if (!async) {
914 ret = btree_csum_one_bio(bio);
915 if (ret)
61891923
SB
916 goto out_w_error;
917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918 mirror_num, 0);
919 } else {
920 /*
921 * kthread helpers are used to submit writes so that
922 * checksumming can happen in parallel across all CPUs
923 */
924 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925 inode, rw, bio, mirror_num, 0,
926 bio_offset,
927 __btree_submit_bio_start,
928 __btree_submit_bio_done);
44b8bd7e 929 }
d313d7a3 930
61891923
SB
931 if (ret) {
932out_w_error:
933 bio_endio(bio, ret);
934 }
935 return ret;
44b8bd7e
CM
936}
937
3dd1462e 938#ifdef CONFIG_MIGRATION
784b4e29 939static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
940 struct page *newpage, struct page *page,
941 enum migrate_mode mode)
784b4e29
CM
942{
943 /*
944 * we can't safely write a btree page from here,
945 * we haven't done the locking hook
946 */
947 if (PageDirty(page))
948 return -EAGAIN;
949 /*
950 * Buffers may be managed in a filesystem specific way.
951 * We must have no buffers or drop them.
952 */
953 if (page_has_private(page) &&
954 !try_to_release_page(page, GFP_KERNEL))
955 return -EAGAIN;
a6bc32b8 956 return migrate_page(mapping, newpage, page, mode);
784b4e29 957}
3dd1462e 958#endif
784b4e29 959
0da5468f
CM
960
961static int btree_writepages(struct address_space *mapping,
962 struct writeback_control *wbc)
963{
e2d84521
MX
964 struct btrfs_fs_info *fs_info;
965 int ret;
966
d8d5f3e1 967 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
968
969 if (wbc->for_kupdate)
970 return 0;
971
e2d84521 972 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 973 /* this is a bit racy, but that's ok */
e2d84521
MX
974 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
975 BTRFS_DIRTY_METADATA_THRESH);
976 if (ret < 0)
793955bc 977 return 0;
793955bc 978 }
0b32f4bb 979 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
980}
981
b2950863 982static int btree_readpage(struct file *file, struct page *page)
5f39d397 983{
d1310b2e
CM
984 struct extent_io_tree *tree;
985 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 986 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 987}
22b0ebda 988
70dec807 989static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 990{
98509cfc 991 if (PageWriteback(page) || PageDirty(page))
d397712b 992 return 0;
0c4e538b 993
f7a52a40 994 return try_release_extent_buffer(page);
d98237b3
CM
995}
996
d47992f8
LC
997static void btree_invalidatepage(struct page *page, unsigned int offset,
998 unsigned int length)
d98237b3 999{
d1310b2e
CM
1000 struct extent_io_tree *tree;
1001 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1002 extent_invalidatepage(tree, page, offset);
1003 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1004 if (PagePrivate(page)) {
efe120a0
FH
1005 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1006 "page private not zero on page %llu",
1007 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1008 ClearPagePrivate(page);
1009 set_page_private(page, 0);
1010 page_cache_release(page);
1011 }
d98237b3
CM
1012}
1013
0b32f4bb
JB
1014static int btree_set_page_dirty(struct page *page)
1015{
bb146eb2 1016#ifdef DEBUG
0b32f4bb
JB
1017 struct extent_buffer *eb;
1018
1019 BUG_ON(!PagePrivate(page));
1020 eb = (struct extent_buffer *)page->private;
1021 BUG_ON(!eb);
1022 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1023 BUG_ON(!atomic_read(&eb->refs));
1024 btrfs_assert_tree_locked(eb);
bb146eb2 1025#endif
0b32f4bb
JB
1026 return __set_page_dirty_nobuffers(page);
1027}
1028
7f09410b 1029static const struct address_space_operations btree_aops = {
d98237b3 1030 .readpage = btree_readpage,
0da5468f 1031 .writepages = btree_writepages,
5f39d397
CM
1032 .releasepage = btree_releasepage,
1033 .invalidatepage = btree_invalidatepage,
5a92bc88 1034#ifdef CONFIG_MIGRATION
784b4e29 1035 .migratepage = btree_migratepage,
5a92bc88 1036#endif
0b32f4bb 1037 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1038};
1039
ca7a79ad
CM
1040int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041 u64 parent_transid)
090d1875 1042{
5f39d397
CM
1043 struct extent_buffer *buf = NULL;
1044 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1045 int ret = 0;
090d1875 1046
db94535d 1047 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1048 if (!buf)
090d1875 1049 return 0;
d1310b2e 1050 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1051 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1052 free_extent_buffer(buf);
de428b63 1053 return ret;
090d1875
CM
1054}
1055
ab0fff03
AJ
1056int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057 int mirror_num, struct extent_buffer **eb)
1058{
1059 struct extent_buffer *buf = NULL;
1060 struct inode *btree_inode = root->fs_info->btree_inode;
1061 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1062 int ret;
1063
1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 if (!buf)
1066 return 0;
1067
1068 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1069
1070 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1071 btree_get_extent, mirror_num);
1072 if (ret) {
1073 free_extent_buffer(buf);
1074 return ret;
1075 }
1076
1077 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1078 free_extent_buffer(buf);
1079 return -EIO;
0b32f4bb 1080 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1081 *eb = buf;
1082 } else {
1083 free_extent_buffer(buf);
1084 }
1085 return 0;
1086}
1087
0999df54
CM
1088struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1089 u64 bytenr, u32 blocksize)
1090{
f28491e0 1091 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1092}
1093
1094struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1095 u64 bytenr, u32 blocksize)
1096{
f28491e0 1097 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1098}
1099
1100
e02119d5
CM
1101int btrfs_write_tree_block(struct extent_buffer *buf)
1102{
727011e0 1103 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1104 buf->start + buf->len - 1);
e02119d5
CM
1105}
1106
1107int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108{
727011e0 1109 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1110 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1111}
1112
0999df54 1113struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1114 u32 blocksize, u64 parent_transid)
0999df54
CM
1115{
1116 struct extent_buffer *buf = NULL;
0999df54
CM
1117 int ret;
1118
0999df54
CM
1119 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120 if (!buf)
1121 return NULL;
0999df54 1122
ca7a79ad 1123 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return NULL;
1127 }
5f39d397 1128 return buf;
ce9adaa5 1129
eb60ceac
CM
1130}
1131
d5c13f92
JM
1132void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133 struct extent_buffer *buf)
ed2ff2cb 1134{
e2d84521
MX
1135 struct btrfs_fs_info *fs_info = root->fs_info;
1136
55c69072 1137 if (btrfs_header_generation(buf) ==
e2d84521 1138 fs_info->running_transaction->transid) {
b9447ef8 1139 btrfs_assert_tree_locked(buf);
b4ce94de 1140
b9473439 1141 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1142 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1143 -buf->len,
1144 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1145 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146 btrfs_set_lock_blocking(buf);
1147 clear_extent_buffer_dirty(buf);
1148 }
925baedd 1149 }
5f39d397
CM
1150}
1151
8257b2dc
MX
1152static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1153{
1154 struct btrfs_subvolume_writers *writers;
1155 int ret;
1156
1157 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1158 if (!writers)
1159 return ERR_PTR(-ENOMEM);
1160
1161 ret = percpu_counter_init(&writers->counter, 0);
1162 if (ret < 0) {
1163 kfree(writers);
1164 return ERR_PTR(ret);
1165 }
1166
1167 init_waitqueue_head(&writers->wait);
1168 return writers;
1169}
1170
1171static void
1172btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1173{
1174 percpu_counter_destroy(&writers->counter);
1175 kfree(writers);
1176}
1177
143bede5
JM
1178static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1179 u32 stripesize, struct btrfs_root *root,
1180 struct btrfs_fs_info *fs_info,
1181 u64 objectid)
d97e63b6 1182{
cfaa7295 1183 root->node = NULL;
a28ec197 1184 root->commit_root = NULL;
db94535d
CM
1185 root->sectorsize = sectorsize;
1186 root->nodesize = nodesize;
1187 root->leafsize = leafsize;
87ee04eb 1188 root->stripesize = stripesize;
123abc88 1189 root->ref_cows = 0;
0b86a832 1190 root->track_dirty = 0;
c71bf099 1191 root->in_radix = 0;
d68fc57b
YZ
1192 root->orphan_item_inserted = 0;
1193 root->orphan_cleanup_state = 0;
0b86a832 1194
0f7d52f4
CM
1195 root->objectid = objectid;
1196 root->last_trans = 0;
13a8a7c8 1197 root->highest_objectid = 0;
eb73c1b7 1198 root->nr_delalloc_inodes = 0;
199c2a9c 1199 root->nr_ordered_extents = 0;
58176a96 1200 root->name = NULL;
6bef4d31 1201 root->inode_tree = RB_ROOT;
16cdcec7 1202 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1203 root->block_rsv = NULL;
d68fc57b 1204 root->orphan_block_rsv = NULL;
0b86a832
CM
1205
1206 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1207 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1208 INIT_LIST_HEAD(&root->delalloc_inodes);
1209 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1210 INIT_LIST_HEAD(&root->ordered_extents);
1211 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1212 INIT_LIST_HEAD(&root->logged_list[0]);
1213 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1214 spin_lock_init(&root->orphan_lock);
5d4f98a2 1215 spin_lock_init(&root->inode_lock);
eb73c1b7 1216 spin_lock_init(&root->delalloc_lock);
199c2a9c 1217 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1218 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1219 spin_lock_init(&root->log_extents_lock[0]);
1220 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1221 mutex_init(&root->objectid_mutex);
e02119d5 1222 mutex_init(&root->log_mutex);
7237f183
YZ
1223 init_waitqueue_head(&root->log_writer_wait);
1224 init_waitqueue_head(&root->log_commit_wait[0]);
1225 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1226 INIT_LIST_HEAD(&root->log_ctxs[0]);
1227 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1228 atomic_set(&root->log_commit[0], 0);
1229 atomic_set(&root->log_commit[1], 0);
1230 atomic_set(&root->log_writers, 0);
2ecb7923 1231 atomic_set(&root->log_batch, 0);
8a35d95f 1232 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1233 atomic_set(&root->refs, 1);
8257b2dc 1234 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1235 root->log_transid = 0;
d1433deb 1236 root->log_transid_committed = -1;
257c62e1 1237 root->last_log_commit = 0;
06ea65a3
JB
1238 if (fs_info)
1239 extent_io_tree_init(&root->dirty_log_pages,
1240 fs_info->btree_inode->i_mapping);
017e5369 1241
3768f368
CM
1242 memset(&root->root_key, 0, sizeof(root->root_key));
1243 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1244 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1245 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1246 if (fs_info)
1247 root->defrag_trans_start = fs_info->generation;
1248 else
1249 root->defrag_trans_start = 0;
58176a96 1250 init_completion(&root->kobj_unregister);
6702ed49 1251 root->defrag_running = 0;
4d775673 1252 root->root_key.objectid = objectid;
0ee5dc67 1253 root->anon_dev = 0;
8ea05e3a 1254
5f3ab90a 1255 spin_lock_init(&root->root_item_lock);
3768f368
CM
1256}
1257
f84a8bd6 1258static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1259{
1260 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1261 if (root)
1262 root->fs_info = fs_info;
1263 return root;
1264}
1265
06ea65a3
JB
1266#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1267/* Should only be used by the testing infrastructure */
1268struct btrfs_root *btrfs_alloc_dummy_root(void)
1269{
1270 struct btrfs_root *root;
1271
1272 root = btrfs_alloc_root(NULL);
1273 if (!root)
1274 return ERR_PTR(-ENOMEM);
1275 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1276 root->dummy_root = 1;
1277
1278 return root;
1279}
1280#endif
1281
20897f5c
AJ
1282struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1283 struct btrfs_fs_info *fs_info,
1284 u64 objectid)
1285{
1286 struct extent_buffer *leaf;
1287 struct btrfs_root *tree_root = fs_info->tree_root;
1288 struct btrfs_root *root;
1289 struct btrfs_key key;
1290 int ret = 0;
6463fe58 1291 uuid_le uuid;
20897f5c
AJ
1292
1293 root = btrfs_alloc_root(fs_info);
1294 if (!root)
1295 return ERR_PTR(-ENOMEM);
1296
1297 __setup_root(tree_root->nodesize, tree_root->leafsize,
1298 tree_root->sectorsize, tree_root->stripesize,
1299 root, fs_info, objectid);
1300 root->root_key.objectid = objectid;
1301 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1302 root->root_key.offset = 0;
1303
1304 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1305 0, objectid, NULL, 0, 0, 0);
1306 if (IS_ERR(leaf)) {
1307 ret = PTR_ERR(leaf);
1dd05682 1308 leaf = NULL;
20897f5c
AJ
1309 goto fail;
1310 }
1311
20897f5c
AJ
1312 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1313 btrfs_set_header_bytenr(leaf, leaf->start);
1314 btrfs_set_header_generation(leaf, trans->transid);
1315 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1316 btrfs_set_header_owner(leaf, objectid);
1317 root->node = leaf;
1318
0a4e5586 1319 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1320 BTRFS_FSID_SIZE);
1321 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1322 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1323 BTRFS_UUID_SIZE);
1324 btrfs_mark_buffer_dirty(leaf);
1325
1326 root->commit_root = btrfs_root_node(root);
1327 root->track_dirty = 1;
1328
1329
1330 root->root_item.flags = 0;
1331 root->root_item.byte_limit = 0;
1332 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1333 btrfs_set_root_generation(&root->root_item, trans->transid);
1334 btrfs_set_root_level(&root->root_item, 0);
1335 btrfs_set_root_refs(&root->root_item, 1);
1336 btrfs_set_root_used(&root->root_item, leaf->len);
1337 btrfs_set_root_last_snapshot(&root->root_item, 0);
1338 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1339 uuid_le_gen(&uuid);
1340 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1341 root->root_item.drop_level = 0;
1342
1343 key.objectid = objectid;
1344 key.type = BTRFS_ROOT_ITEM_KEY;
1345 key.offset = 0;
1346 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1347 if (ret)
1348 goto fail;
1349
1350 btrfs_tree_unlock(leaf);
1351
1dd05682
TI
1352 return root;
1353
20897f5c 1354fail:
1dd05682
TI
1355 if (leaf) {
1356 btrfs_tree_unlock(leaf);
1357 free_extent_buffer(leaf);
1358 }
1359 kfree(root);
20897f5c 1360
1dd05682 1361 return ERR_PTR(ret);
20897f5c
AJ
1362}
1363
7237f183
YZ
1364static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1365 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1366{
1367 struct btrfs_root *root;
1368 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1369 struct extent_buffer *leaf;
e02119d5 1370
6f07e42e 1371 root = btrfs_alloc_root(fs_info);
e02119d5 1372 if (!root)
7237f183 1373 return ERR_PTR(-ENOMEM);
e02119d5
CM
1374
1375 __setup_root(tree_root->nodesize, tree_root->leafsize,
1376 tree_root->sectorsize, tree_root->stripesize,
1377 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1378
1379 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1380 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1381 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1382 /*
1383 * log trees do not get reference counted because they go away
1384 * before a real commit is actually done. They do store pointers
1385 * to file data extents, and those reference counts still get
1386 * updated (along with back refs to the log tree).
1387 */
e02119d5
CM
1388 root->ref_cows = 0;
1389
5d4f98a2 1390 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1391 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1392 0, 0, 0);
7237f183
YZ
1393 if (IS_ERR(leaf)) {
1394 kfree(root);
1395 return ERR_CAST(leaf);
1396 }
e02119d5 1397
5d4f98a2
YZ
1398 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1399 btrfs_set_header_bytenr(leaf, leaf->start);
1400 btrfs_set_header_generation(leaf, trans->transid);
1401 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1402 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1403 root->node = leaf;
e02119d5
CM
1404
1405 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1406 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1407 btrfs_mark_buffer_dirty(root->node);
1408 btrfs_tree_unlock(root->node);
7237f183
YZ
1409 return root;
1410}
1411
1412int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info)
1414{
1415 struct btrfs_root *log_root;
1416
1417 log_root = alloc_log_tree(trans, fs_info);
1418 if (IS_ERR(log_root))
1419 return PTR_ERR(log_root);
1420 WARN_ON(fs_info->log_root_tree);
1421 fs_info->log_root_tree = log_root;
1422 return 0;
1423}
1424
1425int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *root)
1427{
1428 struct btrfs_root *log_root;
1429 struct btrfs_inode_item *inode_item;
1430
1431 log_root = alloc_log_tree(trans, root->fs_info);
1432 if (IS_ERR(log_root))
1433 return PTR_ERR(log_root);
1434
1435 log_root->last_trans = trans->transid;
1436 log_root->root_key.offset = root->root_key.objectid;
1437
1438 inode_item = &log_root->root_item.inode;
3cae210f
QW
1439 btrfs_set_stack_inode_generation(inode_item, 1);
1440 btrfs_set_stack_inode_size(inode_item, 3);
1441 btrfs_set_stack_inode_nlink(inode_item, 1);
1442 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1443 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1444
5d4f98a2 1445 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1446
1447 WARN_ON(root->log_root);
1448 root->log_root = log_root;
1449 root->log_transid = 0;
d1433deb 1450 root->log_transid_committed = -1;
257c62e1 1451 root->last_log_commit = 0;
e02119d5
CM
1452 return 0;
1453}
1454
35a3621b
SB
1455static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1456 struct btrfs_key *key)
e02119d5
CM
1457{
1458 struct btrfs_root *root;
1459 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1460 struct btrfs_path *path;
84234f3a 1461 u64 generation;
db94535d 1462 u32 blocksize;
cb517eab 1463 int ret;
0f7d52f4 1464
cb517eab
MX
1465 path = btrfs_alloc_path();
1466 if (!path)
0f7d52f4 1467 return ERR_PTR(-ENOMEM);
cb517eab
MX
1468
1469 root = btrfs_alloc_root(fs_info);
1470 if (!root) {
1471 ret = -ENOMEM;
1472 goto alloc_fail;
0f7d52f4
CM
1473 }
1474
db94535d 1475 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1476 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1477 root, fs_info, key->objectid);
0f7d52f4 1478
cb517eab
MX
1479 ret = btrfs_find_root(tree_root, key, path,
1480 &root->root_item, &root->root_key);
0f7d52f4 1481 if (ret) {
13a8a7c8
YZ
1482 if (ret > 0)
1483 ret = -ENOENT;
cb517eab 1484 goto find_fail;
0f7d52f4 1485 }
13a8a7c8 1486
84234f3a 1487 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1488 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1489 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1490 blocksize, generation);
cb517eab
MX
1491 if (!root->node) {
1492 ret = -ENOMEM;
1493 goto find_fail;
1494 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1495 ret = -EIO;
1496 goto read_fail;
416bc658 1497 }
5d4f98a2 1498 root->commit_root = btrfs_root_node(root);
13a8a7c8 1499out:
cb517eab
MX
1500 btrfs_free_path(path);
1501 return root;
1502
1503read_fail:
1504 free_extent_buffer(root->node);
1505find_fail:
1506 kfree(root);
1507alloc_fail:
1508 root = ERR_PTR(ret);
1509 goto out;
1510}
1511
1512struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1513 struct btrfs_key *location)
1514{
1515 struct btrfs_root *root;
1516
1517 root = btrfs_read_tree_root(tree_root, location);
1518 if (IS_ERR(root))
1519 return root;
1520
1521 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1522 root->ref_cows = 1;
08fe4db1
LZ
1523 btrfs_check_and_init_root_item(&root->root_item);
1524 }
13a8a7c8 1525
5eda7b5e
CM
1526 return root;
1527}
1528
cb517eab
MX
1529int btrfs_init_fs_root(struct btrfs_root *root)
1530{
1531 int ret;
8257b2dc 1532 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1533
1534 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1535 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1536 GFP_NOFS);
1537 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1538 ret = -ENOMEM;
1539 goto fail;
1540 }
1541
8257b2dc
MX
1542 writers = btrfs_alloc_subvolume_writers();
1543 if (IS_ERR(writers)) {
1544 ret = PTR_ERR(writers);
1545 goto fail;
1546 }
1547 root->subv_writers = writers;
1548
cb517eab
MX
1549 btrfs_init_free_ino_ctl(root);
1550 mutex_init(&root->fs_commit_mutex);
1551 spin_lock_init(&root->cache_lock);
1552 init_waitqueue_head(&root->cache_wait);
1553
1554 ret = get_anon_bdev(&root->anon_dev);
1555 if (ret)
8257b2dc 1556 goto free_writers;
cb517eab 1557 return 0;
8257b2dc
MX
1558
1559free_writers:
1560 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1561fail:
1562 kfree(root->free_ino_ctl);
1563 kfree(root->free_ino_pinned);
1564 return ret;
1565}
1566
171170c1
ST
1567static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1568 u64 root_id)
cb517eab
MX
1569{
1570 struct btrfs_root *root;
1571
1572 spin_lock(&fs_info->fs_roots_radix_lock);
1573 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1574 (unsigned long)root_id);
1575 spin_unlock(&fs_info->fs_roots_radix_lock);
1576 return root;
1577}
1578
1579int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1580 struct btrfs_root *root)
1581{
1582 int ret;
1583
1584 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1585 if (ret)
1586 return ret;
1587
1588 spin_lock(&fs_info->fs_roots_radix_lock);
1589 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 (unsigned long)root->root_key.objectid,
1591 root);
1592 if (ret == 0)
1593 root->in_radix = 1;
1594 spin_unlock(&fs_info->fs_roots_radix_lock);
1595 radix_tree_preload_end();
1596
1597 return ret;
1598}
1599
c00869f1
MX
1600struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1601 struct btrfs_key *location,
1602 bool check_ref)
5eda7b5e
CM
1603{
1604 struct btrfs_root *root;
1605 int ret;
1606
edbd8d4e
CM
1607 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1608 return fs_info->tree_root;
1609 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1610 return fs_info->extent_root;
8f18cf13
CM
1611 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1612 return fs_info->chunk_root;
1613 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1614 return fs_info->dev_root;
0403e47e
YZ
1615 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1616 return fs_info->csum_root;
bcef60f2
AJ
1617 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1618 return fs_info->quota_root ? fs_info->quota_root :
1619 ERR_PTR(-ENOENT);
f7a81ea4
SB
1620 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1621 return fs_info->uuid_root ? fs_info->uuid_root :
1622 ERR_PTR(-ENOENT);
4df27c4d 1623again:
cb517eab 1624 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1625 if (root) {
c00869f1 1626 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1627 return ERR_PTR(-ENOENT);
5eda7b5e 1628 return root;
48475471 1629 }
5eda7b5e 1630
cb517eab 1631 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1632 if (IS_ERR(root))
1633 return root;
3394e160 1634
c00869f1 1635 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1636 ret = -ENOENT;
581bb050 1637 goto fail;
35a30d7c 1638 }
581bb050 1639
cb517eab 1640 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1641 if (ret)
1642 goto fail;
3394e160 1643
3f870c28
KN
1644 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1645 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1646 if (ret < 0)
1647 goto fail;
1648 if (ret == 0)
1649 root->orphan_item_inserted = 1;
1650
cb517eab 1651 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1652 if (ret) {
4df27c4d
YZ
1653 if (ret == -EEXIST) {
1654 free_fs_root(root);
1655 goto again;
1656 }
1657 goto fail;
0f7d52f4 1658 }
edbd8d4e 1659 return root;
4df27c4d
YZ
1660fail:
1661 free_fs_root(root);
1662 return ERR_PTR(ret);
edbd8d4e
CM
1663}
1664
04160088
CM
1665static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1666{
1667 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1668 int ret = 0;
04160088
CM
1669 struct btrfs_device *device;
1670 struct backing_dev_info *bdi;
b7967db7 1671
1f78160c
XG
1672 rcu_read_lock();
1673 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1674 if (!device->bdev)
1675 continue;
04160088
CM
1676 bdi = blk_get_backing_dev_info(device->bdev);
1677 if (bdi && bdi_congested(bdi, bdi_bits)) {
1678 ret = 1;
1679 break;
1680 }
1681 }
1f78160c 1682 rcu_read_unlock();
04160088
CM
1683 return ret;
1684}
1685
ad081f14
JA
1686/*
1687 * If this fails, caller must call bdi_destroy() to get rid of the
1688 * bdi again.
1689 */
04160088
CM
1690static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1691{
ad081f14
JA
1692 int err;
1693
1694 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1695 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1696 if (err)
1697 return err;
1698
4575c9cc 1699 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1700 bdi->congested_fn = btrfs_congested_fn;
1701 bdi->congested_data = info;
1702 return 0;
1703}
1704
8b712842
CM
1705/*
1706 * called by the kthread helper functions to finally call the bio end_io
1707 * functions. This is where read checksum verification actually happens
1708 */
d458b054 1709static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1710{
ce9adaa5 1711 struct bio *bio;
8b712842 1712 struct end_io_wq *end_io_wq;
ce9adaa5 1713 int error;
ce9adaa5 1714
8b712842
CM
1715 end_io_wq = container_of(work, struct end_io_wq, work);
1716 bio = end_io_wq->bio;
ce9adaa5 1717
8b712842
CM
1718 error = end_io_wq->error;
1719 bio->bi_private = end_io_wq->private;
1720 bio->bi_end_io = end_io_wq->end_io;
1721 kfree(end_io_wq);
8b712842 1722 bio_endio(bio, error);
44b8bd7e
CM
1723}
1724
a74a4b97
CM
1725static int cleaner_kthread(void *arg)
1726{
1727 struct btrfs_root *root = arg;
d0278245 1728 int again;
a74a4b97
CM
1729
1730 do {
d0278245 1731 again = 0;
a74a4b97 1732
d0278245 1733 /* Make the cleaner go to sleep early. */
babbf170 1734 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1735 goto sleep;
1736
1737 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1738 goto sleep;
1739
dc7f370c
MX
1740 /*
1741 * Avoid the problem that we change the status of the fs
1742 * during the above check and trylock.
1743 */
babbf170 1744 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1745 mutex_unlock(&root->fs_info->cleaner_mutex);
1746 goto sleep;
76dda93c 1747 }
a74a4b97 1748
d0278245
MX
1749 btrfs_run_delayed_iputs(root);
1750 again = btrfs_clean_one_deleted_snapshot(root);
1751 mutex_unlock(&root->fs_info->cleaner_mutex);
1752
1753 /*
05323cd1
MX
1754 * The defragger has dealt with the R/O remount and umount,
1755 * needn't do anything special here.
d0278245
MX
1756 */
1757 btrfs_run_defrag_inodes(root->fs_info);
1758sleep:
9d1a2a3a 1759 if (!try_to_freeze() && !again) {
a74a4b97 1760 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1761 if (!kthread_should_stop())
1762 schedule();
a74a4b97
CM
1763 __set_current_state(TASK_RUNNING);
1764 }
1765 } while (!kthread_should_stop());
1766 return 0;
1767}
1768
1769static int transaction_kthread(void *arg)
1770{
1771 struct btrfs_root *root = arg;
1772 struct btrfs_trans_handle *trans;
1773 struct btrfs_transaction *cur;
8929ecfa 1774 u64 transid;
a74a4b97
CM
1775 unsigned long now;
1776 unsigned long delay;
914b2007 1777 bool cannot_commit;
a74a4b97
CM
1778
1779 do {
914b2007 1780 cannot_commit = false;
8b87dc17 1781 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1782 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1783
a4abeea4 1784 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1785 cur = root->fs_info->running_transaction;
1786 if (!cur) {
a4abeea4 1787 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1788 goto sleep;
1789 }
31153d81 1790
a74a4b97 1791 now = get_seconds();
4a9d8bde 1792 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1793 (now < cur->start_time ||
1794 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1795 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1796 delay = HZ * 5;
1797 goto sleep;
1798 }
8929ecfa 1799 transid = cur->transid;
a4abeea4 1800 spin_unlock(&root->fs_info->trans_lock);
56bec294 1801
79787eaa 1802 /* If the file system is aborted, this will always fail. */
354aa0fb 1803 trans = btrfs_attach_transaction(root);
914b2007 1804 if (IS_ERR(trans)) {
354aa0fb
MX
1805 if (PTR_ERR(trans) != -ENOENT)
1806 cannot_commit = true;
79787eaa 1807 goto sleep;
914b2007 1808 }
8929ecfa 1809 if (transid == trans->transid) {
79787eaa 1810 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1811 } else {
1812 btrfs_end_transaction(trans, root);
1813 }
a74a4b97
CM
1814sleep:
1815 wake_up_process(root->fs_info->cleaner_kthread);
1816 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1817
4e121c06
JB
1818 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1819 &root->fs_info->fs_state)))
1820 btrfs_cleanup_transaction(root);
a0acae0e 1821 if (!try_to_freeze()) {
a74a4b97 1822 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1823 if (!kthread_should_stop() &&
914b2007
JK
1824 (!btrfs_transaction_blocked(root->fs_info) ||
1825 cannot_commit))
8929ecfa 1826 schedule_timeout(delay);
a74a4b97
CM
1827 __set_current_state(TASK_RUNNING);
1828 }
1829 } while (!kthread_should_stop());
1830 return 0;
1831}
1832
af31f5e5
CM
1833/*
1834 * this will find the highest generation in the array of
1835 * root backups. The index of the highest array is returned,
1836 * or -1 if we can't find anything.
1837 *
1838 * We check to make sure the array is valid by comparing the
1839 * generation of the latest root in the array with the generation
1840 * in the super block. If they don't match we pitch it.
1841 */
1842static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1843{
1844 u64 cur;
1845 int newest_index = -1;
1846 struct btrfs_root_backup *root_backup;
1847 int i;
1848
1849 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1850 root_backup = info->super_copy->super_roots + i;
1851 cur = btrfs_backup_tree_root_gen(root_backup);
1852 if (cur == newest_gen)
1853 newest_index = i;
1854 }
1855
1856 /* check to see if we actually wrapped around */
1857 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1858 root_backup = info->super_copy->super_roots;
1859 cur = btrfs_backup_tree_root_gen(root_backup);
1860 if (cur == newest_gen)
1861 newest_index = 0;
1862 }
1863 return newest_index;
1864}
1865
1866
1867/*
1868 * find the oldest backup so we know where to store new entries
1869 * in the backup array. This will set the backup_root_index
1870 * field in the fs_info struct
1871 */
1872static void find_oldest_super_backup(struct btrfs_fs_info *info,
1873 u64 newest_gen)
1874{
1875 int newest_index = -1;
1876
1877 newest_index = find_newest_super_backup(info, newest_gen);
1878 /* if there was garbage in there, just move along */
1879 if (newest_index == -1) {
1880 info->backup_root_index = 0;
1881 } else {
1882 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1883 }
1884}
1885
1886/*
1887 * copy all the root pointers into the super backup array.
1888 * this will bump the backup pointer by one when it is
1889 * done
1890 */
1891static void backup_super_roots(struct btrfs_fs_info *info)
1892{
1893 int next_backup;
1894 struct btrfs_root_backup *root_backup;
1895 int last_backup;
1896
1897 next_backup = info->backup_root_index;
1898 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1899 BTRFS_NUM_BACKUP_ROOTS;
1900
1901 /*
1902 * just overwrite the last backup if we're at the same generation
1903 * this happens only at umount
1904 */
1905 root_backup = info->super_for_commit->super_roots + last_backup;
1906 if (btrfs_backup_tree_root_gen(root_backup) ==
1907 btrfs_header_generation(info->tree_root->node))
1908 next_backup = last_backup;
1909
1910 root_backup = info->super_for_commit->super_roots + next_backup;
1911
1912 /*
1913 * make sure all of our padding and empty slots get zero filled
1914 * regardless of which ones we use today
1915 */
1916 memset(root_backup, 0, sizeof(*root_backup));
1917
1918 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1919
1920 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1921 btrfs_set_backup_tree_root_gen(root_backup,
1922 btrfs_header_generation(info->tree_root->node));
1923
1924 btrfs_set_backup_tree_root_level(root_backup,
1925 btrfs_header_level(info->tree_root->node));
1926
1927 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1928 btrfs_set_backup_chunk_root_gen(root_backup,
1929 btrfs_header_generation(info->chunk_root->node));
1930 btrfs_set_backup_chunk_root_level(root_backup,
1931 btrfs_header_level(info->chunk_root->node));
1932
1933 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1934 btrfs_set_backup_extent_root_gen(root_backup,
1935 btrfs_header_generation(info->extent_root->node));
1936 btrfs_set_backup_extent_root_level(root_backup,
1937 btrfs_header_level(info->extent_root->node));
1938
7c7e82a7
CM
1939 /*
1940 * we might commit during log recovery, which happens before we set
1941 * the fs_root. Make sure it is valid before we fill it in.
1942 */
1943 if (info->fs_root && info->fs_root->node) {
1944 btrfs_set_backup_fs_root(root_backup,
1945 info->fs_root->node->start);
1946 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1947 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1948 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1949 btrfs_header_level(info->fs_root->node));
7c7e82a7 1950 }
af31f5e5
CM
1951
1952 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1953 btrfs_set_backup_dev_root_gen(root_backup,
1954 btrfs_header_generation(info->dev_root->node));
1955 btrfs_set_backup_dev_root_level(root_backup,
1956 btrfs_header_level(info->dev_root->node));
1957
1958 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1959 btrfs_set_backup_csum_root_gen(root_backup,
1960 btrfs_header_generation(info->csum_root->node));
1961 btrfs_set_backup_csum_root_level(root_backup,
1962 btrfs_header_level(info->csum_root->node));
1963
1964 btrfs_set_backup_total_bytes(root_backup,
1965 btrfs_super_total_bytes(info->super_copy));
1966 btrfs_set_backup_bytes_used(root_backup,
1967 btrfs_super_bytes_used(info->super_copy));
1968 btrfs_set_backup_num_devices(root_backup,
1969 btrfs_super_num_devices(info->super_copy));
1970
1971 /*
1972 * if we don't copy this out to the super_copy, it won't get remembered
1973 * for the next commit
1974 */
1975 memcpy(&info->super_copy->super_roots,
1976 &info->super_for_commit->super_roots,
1977 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1978}
1979
1980/*
1981 * this copies info out of the root backup array and back into
1982 * the in-memory super block. It is meant to help iterate through
1983 * the array, so you send it the number of backups you've already
1984 * tried and the last backup index you used.
1985 *
1986 * this returns -1 when it has tried all the backups
1987 */
1988static noinline int next_root_backup(struct btrfs_fs_info *info,
1989 struct btrfs_super_block *super,
1990 int *num_backups_tried, int *backup_index)
1991{
1992 struct btrfs_root_backup *root_backup;
1993 int newest = *backup_index;
1994
1995 if (*num_backups_tried == 0) {
1996 u64 gen = btrfs_super_generation(super);
1997
1998 newest = find_newest_super_backup(info, gen);
1999 if (newest == -1)
2000 return -1;
2001
2002 *backup_index = newest;
2003 *num_backups_tried = 1;
2004 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2005 /* we've tried all the backups, all done */
2006 return -1;
2007 } else {
2008 /* jump to the next oldest backup */
2009 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2010 BTRFS_NUM_BACKUP_ROOTS;
2011 *backup_index = newest;
2012 *num_backups_tried += 1;
2013 }
2014 root_backup = super->super_roots + newest;
2015
2016 btrfs_set_super_generation(super,
2017 btrfs_backup_tree_root_gen(root_backup));
2018 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2019 btrfs_set_super_root_level(super,
2020 btrfs_backup_tree_root_level(root_backup));
2021 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2022
2023 /*
2024 * fixme: the total bytes and num_devices need to match or we should
2025 * need a fsck
2026 */
2027 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2028 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2029 return 0;
2030}
2031
7abadb64
LB
2032/* helper to cleanup workers */
2033static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2034{
dc6e3209 2035 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2036 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2037 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2038 btrfs_destroy_workqueue(fs_info->endio_workers);
2039 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2040 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2041 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2042 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2043 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2044 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2045 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2046 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2047 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2048 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2049 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2050 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
7abadb64
LB
2051}
2052
2e9f5954
R
2053static void free_root_extent_buffers(struct btrfs_root *root)
2054{
2055 if (root) {
2056 free_extent_buffer(root->node);
2057 free_extent_buffer(root->commit_root);
2058 root->node = NULL;
2059 root->commit_root = NULL;
2060 }
2061}
2062
af31f5e5
CM
2063/* helper to cleanup tree roots */
2064static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2065{
2e9f5954 2066 free_root_extent_buffers(info->tree_root);
655b09fe 2067
2e9f5954
R
2068 free_root_extent_buffers(info->dev_root);
2069 free_root_extent_buffers(info->extent_root);
2070 free_root_extent_buffers(info->csum_root);
2071 free_root_extent_buffers(info->quota_root);
2072 free_root_extent_buffers(info->uuid_root);
2073 if (chunk_root)
2074 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2075}
2076
171f6537
JB
2077static void del_fs_roots(struct btrfs_fs_info *fs_info)
2078{
2079 int ret;
2080 struct btrfs_root *gang[8];
2081 int i;
2082
2083 while (!list_empty(&fs_info->dead_roots)) {
2084 gang[0] = list_entry(fs_info->dead_roots.next,
2085 struct btrfs_root, root_list);
2086 list_del(&gang[0]->root_list);
2087
2088 if (gang[0]->in_radix) {
cb517eab 2089 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2090 } else {
2091 free_extent_buffer(gang[0]->node);
2092 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2093 btrfs_put_fs_root(gang[0]);
171f6537
JB
2094 }
2095 }
2096
2097 while (1) {
2098 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2099 (void **)gang, 0,
2100 ARRAY_SIZE(gang));
2101 if (!ret)
2102 break;
2103 for (i = 0; i < ret; i++)
cb517eab 2104 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2105 }
1a4319cc
LB
2106
2107 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2108 btrfs_free_log_root_tree(NULL, fs_info);
2109 btrfs_destroy_pinned_extent(fs_info->tree_root,
2110 fs_info->pinned_extents);
2111 }
171f6537 2112}
af31f5e5 2113
ad2b2c80
AV
2114int open_ctree(struct super_block *sb,
2115 struct btrfs_fs_devices *fs_devices,
2116 char *options)
2e635a27 2117{
db94535d
CM
2118 u32 sectorsize;
2119 u32 nodesize;
2120 u32 leafsize;
2121 u32 blocksize;
87ee04eb 2122 u32 stripesize;
84234f3a 2123 u64 generation;
f2b636e8 2124 u64 features;
3de4586c 2125 struct btrfs_key location;
a061fc8d 2126 struct buffer_head *bh;
4d34b278 2127 struct btrfs_super_block *disk_super;
815745cf 2128 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2129 struct btrfs_root *tree_root;
4d34b278
ID
2130 struct btrfs_root *extent_root;
2131 struct btrfs_root *csum_root;
2132 struct btrfs_root *chunk_root;
2133 struct btrfs_root *dev_root;
bcef60f2 2134 struct btrfs_root *quota_root;
f7a81ea4 2135 struct btrfs_root *uuid_root;
e02119d5 2136 struct btrfs_root *log_tree_root;
eb60ceac 2137 int ret;
e58ca020 2138 int err = -EINVAL;
af31f5e5
CM
2139 int num_backups_tried = 0;
2140 int backup_index = 0;
5cdc7ad3
QW
2141 int max_active;
2142 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2143 bool create_uuid_tree;
2144 bool check_uuid_tree;
4543df7e 2145
f84a8bd6 2146 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2147 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2148 if (!tree_root || !chunk_root) {
39279cc3
CM
2149 err = -ENOMEM;
2150 goto fail;
2151 }
76dda93c
YZ
2152
2153 ret = init_srcu_struct(&fs_info->subvol_srcu);
2154 if (ret) {
2155 err = ret;
2156 goto fail;
2157 }
2158
2159 ret = setup_bdi(fs_info, &fs_info->bdi);
2160 if (ret) {
2161 err = ret;
2162 goto fail_srcu;
2163 }
2164
e2d84521
MX
2165 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2166 if (ret) {
2167 err = ret;
2168 goto fail_bdi;
2169 }
2170 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2171 (1 + ilog2(nr_cpu_ids));
2172
963d678b
MX
2173 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2174 if (ret) {
2175 err = ret;
2176 goto fail_dirty_metadata_bytes;
2177 }
2178
c404e0dc
MX
2179 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2180 if (ret) {
2181 err = ret;
2182 goto fail_delalloc_bytes;
2183 }
2184
76dda93c
YZ
2185 fs_info->btree_inode = new_inode(sb);
2186 if (!fs_info->btree_inode) {
2187 err = -ENOMEM;
c404e0dc 2188 goto fail_bio_counter;
76dda93c
YZ
2189 }
2190
a6591715 2191 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2192
76dda93c 2193 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2194 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2195 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2196 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2197 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2198 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2199 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2200 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2201 spin_lock_init(&fs_info->trans_lock);
76dda93c 2202 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2203 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2204 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2205 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2206 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2207 spin_lock_init(&fs_info->super_lock);
f28491e0 2208 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2209 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2210 mutex_init(&fs_info->reloc_mutex);
de98ced9 2211 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2212
58176a96 2213 init_completion(&fs_info->kobj_unregister);
0b86a832 2214 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2215 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2216 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2217 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2218 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2219 BTRFS_BLOCK_RSV_GLOBAL);
2220 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2221 BTRFS_BLOCK_RSV_DELALLOC);
2222 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2223 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2224 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2225 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2226 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2227 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2228 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2229 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2230 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2231 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2232 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2233 fs_info->sb = sb;
6f568d35 2234 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2235 fs_info->metadata_ratio = 0;
4cb5300b 2236 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2237 fs_info->free_chunk_space = 0;
f29021b2 2238 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2239 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2240 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2241 /* readahead state */
2242 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2243 spin_lock_init(&fs_info->reada_lock);
c8b97818 2244
b34b086c
CM
2245 fs_info->thread_pool_size = min_t(unsigned long,
2246 num_online_cpus() + 2, 8);
0afbaf8c 2247
199c2a9c
MX
2248 INIT_LIST_HEAD(&fs_info->ordered_roots);
2249 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2250 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2251 GFP_NOFS);
2252 if (!fs_info->delayed_root) {
2253 err = -ENOMEM;
2254 goto fail_iput;
2255 }
2256 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2257
a2de733c
AJ
2258 mutex_init(&fs_info->scrub_lock);
2259 atomic_set(&fs_info->scrubs_running, 0);
2260 atomic_set(&fs_info->scrub_pause_req, 0);
2261 atomic_set(&fs_info->scrubs_paused, 0);
2262 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2263 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2264 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2265 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2266#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2267 fs_info->check_integrity_print_mask = 0;
2268#endif
a2de733c 2269
c9e9f97b
ID
2270 spin_lock_init(&fs_info->balance_lock);
2271 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2272 atomic_set(&fs_info->balance_running, 0);
2273 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2274 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2275 fs_info->balance_ctl = NULL;
837d5b6e 2276 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2277
a061fc8d
CM
2278 sb->s_blocksize = 4096;
2279 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2280 sb->s_bdi = &fs_info->bdi;
a061fc8d 2281
76dda93c 2282 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2283 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2284 /*
2285 * we set the i_size on the btree inode to the max possible int.
2286 * the real end of the address space is determined by all of
2287 * the devices in the system
2288 */
2289 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2290 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2291 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2292
5d4f98a2 2293 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2294 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2295 fs_info->btree_inode->i_mapping);
0b32f4bb 2296 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2297 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2298
2299 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2300
76dda93c
YZ
2301 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2302 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2303 sizeof(struct btrfs_key));
72ac3c0d
JB
2304 set_bit(BTRFS_INODE_DUMMY,
2305 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2306 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2307
0f9dd46c 2308 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2309 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2310 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2311
11833d66 2312 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2313 fs_info->btree_inode->i_mapping);
11833d66 2314 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2315 fs_info->btree_inode->i_mapping);
11833d66 2316 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2317 fs_info->do_barriers = 1;
e18e4809 2318
39279cc3 2319
5a3f23d5 2320 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2321 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2322 mutex_init(&fs_info->tree_log_mutex);
925baedd 2323 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2324 mutex_init(&fs_info->transaction_kthread_mutex);
2325 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2326 mutex_init(&fs_info->volume_mutex);
276e680d 2327 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2328 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2329 init_rwsem(&fs_info->subvol_sem);
803b2f54 2330 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2331 fs_info->dev_replace.lock_owner = 0;
2332 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2333 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2334 mutex_init(&fs_info->dev_replace.lock_management_lock);
2335 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2336
416ac51d 2337 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2338 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2339 fs_info->qgroup_tree = RB_ROOT;
2340 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2341 fs_info->qgroup_seq = 1;
2342 fs_info->quota_enabled = 0;
2343 fs_info->pending_quota_state = 0;
1e8f9158 2344 fs_info->qgroup_ulist = NULL;
2f232036 2345 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2346
fa9c0d79
CM
2347 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2348 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2349
e6dcd2dc 2350 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2351 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2352 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2353 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2354
53b381b3
DW
2355 ret = btrfs_alloc_stripe_hash_table(fs_info);
2356 if (ret) {
83c8266a 2357 err = ret;
53b381b3
DW
2358 goto fail_alloc;
2359 }
2360
0b86a832 2361 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2362 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2363
3c4bb26b 2364 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2365
2366 /*
2367 * Read super block and check the signature bytes only
2368 */
a512bbf8 2369 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2370 if (!bh) {
2371 err = -EINVAL;
16cdcec7 2372 goto fail_alloc;
20b45077 2373 }
39279cc3 2374
1104a885
DS
2375 /*
2376 * We want to check superblock checksum, the type is stored inside.
2377 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2378 */
2379 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2380 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2381 err = -EINVAL;
2382 goto fail_alloc;
2383 }
2384
2385 /*
2386 * super_copy is zeroed at allocation time and we never touch the
2387 * following bytes up to INFO_SIZE, the checksum is calculated from
2388 * the whole block of INFO_SIZE
2389 */
6c41761f
DS
2390 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2391 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2392 sizeof(*fs_info->super_for_commit));
a061fc8d 2393 brelse(bh);
5f39d397 2394
6c41761f 2395 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2396
1104a885
DS
2397 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2398 if (ret) {
efe120a0 2399 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2400 err = -EINVAL;
2401 goto fail_alloc;
2402 }
2403
6c41761f 2404 disk_super = fs_info->super_copy;
0f7d52f4 2405 if (!btrfs_super_root(disk_super))
16cdcec7 2406 goto fail_alloc;
0f7d52f4 2407
acce952b 2408 /* check FS state, whether FS is broken. */
87533c47
MX
2409 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2410 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2411
af31f5e5
CM
2412 /*
2413 * run through our array of backup supers and setup
2414 * our ring pointer to the oldest one
2415 */
2416 generation = btrfs_super_generation(disk_super);
2417 find_oldest_super_backup(fs_info, generation);
2418
75e7cb7f
LB
2419 /*
2420 * In the long term, we'll store the compression type in the super
2421 * block, and it'll be used for per file compression control.
2422 */
2423 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2424
2b82032c
YZ
2425 ret = btrfs_parse_options(tree_root, options);
2426 if (ret) {
2427 err = ret;
16cdcec7 2428 goto fail_alloc;
2b82032c 2429 }
dfe25020 2430
f2b636e8
JB
2431 features = btrfs_super_incompat_flags(disk_super) &
2432 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2433 if (features) {
2434 printk(KERN_ERR "BTRFS: couldn't mount because of "
2435 "unsupported optional features (%Lx).\n",
c1c9ff7c 2436 features);
f2b636e8 2437 err = -EINVAL;
16cdcec7 2438 goto fail_alloc;
f2b636e8
JB
2439 }
2440
727011e0
CM
2441 if (btrfs_super_leafsize(disk_super) !=
2442 btrfs_super_nodesize(disk_super)) {
2443 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2444 "blocksizes don't match. node %d leaf %d\n",
2445 btrfs_super_nodesize(disk_super),
2446 btrfs_super_leafsize(disk_super));
2447 err = -EINVAL;
2448 goto fail_alloc;
2449 }
2450 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2452 "blocksize (%d) was too large\n",
2453 btrfs_super_leafsize(disk_super));
2454 err = -EINVAL;
2455 goto fail_alloc;
2456 }
2457
5d4f98a2 2458 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2459 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2460 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2461 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2462
3173a18f 2463 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2464 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2465
727011e0
CM
2466 /*
2467 * flag our filesystem as having big metadata blocks if
2468 * they are bigger than the page size
2469 */
2470 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2471 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2472 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2473 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2474 }
2475
bc3f116f
CM
2476 nodesize = btrfs_super_nodesize(disk_super);
2477 leafsize = btrfs_super_leafsize(disk_super);
2478 sectorsize = btrfs_super_sectorsize(disk_super);
2479 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2480 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2481 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2482
2483 /*
2484 * mixed block groups end up with duplicate but slightly offset
2485 * extent buffers for the same range. It leads to corruptions
2486 */
2487 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2488 (sectorsize != leafsize)) {
efe120a0 2489 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2490 "are not allowed for mixed block groups on %s\n",
2491 sb->s_id);
2492 goto fail_alloc;
2493 }
2494
ceda0864
MX
2495 /*
2496 * Needn't use the lock because there is no other task which will
2497 * update the flag.
2498 */
a6fa6fae 2499 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2500
f2b636e8
JB
2501 features = btrfs_super_compat_ro_flags(disk_super) &
2502 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2503 if (!(sb->s_flags & MS_RDONLY) && features) {
2504 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2505 "unsupported option features (%Lx).\n",
c1c9ff7c 2506 features);
f2b636e8 2507 err = -EINVAL;
16cdcec7 2508 goto fail_alloc;
f2b636e8 2509 }
61d92c32 2510
5cdc7ad3 2511 max_active = fs_info->thread_pool_size;
61d92c32 2512
5cdc7ad3
QW
2513 fs_info->workers =
2514 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2515 max_active, 16);
c8b97818 2516
afe3d242
QW
2517 fs_info->delalloc_workers =
2518 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2519
a44903ab
QW
2520 fs_info->flush_workers =
2521 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
61b49440 2522
e66f0bb1
QW
2523 fs_info->caching_workers =
2524 btrfs_alloc_workqueue("cache", flags, max_active, 0);
bab39bf9 2525
a8c93d4e
QW
2526 /*
2527 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2528 * likely that bios will be send down in a sane order to the
2529 * devices
2530 */
a8c93d4e
QW
2531 fs_info->submit_workers =
2532 btrfs_alloc_workqueue("submit", flags,
2533 min_t(u64, fs_devices->num_devices,
2534 max_active), 64);
53863232 2535
dc6e3209
QW
2536 fs_info->fixup_workers =
2537 btrfs_alloc_workqueue("fixup", flags, 1, 0);
fccb5d86
QW
2538
2539 /*
2540 * endios are largely parallel and should have a very
2541 * low idle thresh
2542 */
2543 fs_info->endio_workers =
2544 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2545 fs_info->endio_meta_workers =
2546 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2547 fs_info->endio_meta_write_workers =
2548 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2549 fs_info->endio_raid56_workers =
2550 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
d05a33ac
QW
2551 fs_info->rmw_workers =
2552 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2553 fs_info->endio_write_workers =
2554 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2555 fs_info->endio_freespace_worker =
2556 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2557 fs_info->delayed_workers =
2558 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2559 fs_info->readahead_workers =
2560 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2561 fs_info->qgroup_rescan_workers =
2562 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
61b49440 2563
a8c93d4e 2564 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2565 fs_info->submit_workers && fs_info->flush_workers &&
2566 fs_info->endio_workers && fs_info->endio_meta_workers &&
2567 fs_info->endio_meta_write_workers &&
2568 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2569 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2570 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0
QW
2571 fs_info->fixup_workers && fs_info->delayed_workers &&
2572 fs_info->qgroup_rescan_workers)) {
5cdc7ad3
QW
2573 err = -ENOMEM;
2574 goto fail_sb_buffer;
2575 }
4543df7e 2576
4575c9cc 2577 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2578 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2579 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2580
db94535d
CM
2581 tree_root->nodesize = nodesize;
2582 tree_root->leafsize = leafsize;
2583 tree_root->sectorsize = sectorsize;
87ee04eb 2584 tree_root->stripesize = stripesize;
a061fc8d
CM
2585
2586 sb->s_blocksize = sectorsize;
2587 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2588
3cae210f 2589 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2590 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2591 goto fail_sb_buffer;
2592 }
19c00ddc 2593
8d082fb7 2594 if (sectorsize != PAGE_SIZE) {
efe120a0 2595 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2596 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2597 goto fail_sb_buffer;
2598 }
2599
925baedd 2600 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2601 ret = btrfs_read_sys_array(tree_root);
925baedd 2602 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2603 if (ret) {
efe120a0 2604 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2605 "array on %s\n", sb->s_id);
5d4f98a2 2606 goto fail_sb_buffer;
84eed90f 2607 }
0b86a832
CM
2608
2609 blocksize = btrfs_level_size(tree_root,
2610 btrfs_super_chunk_root_level(disk_super));
84234f3a 2611 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2612
2613 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2614 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2615
2616 chunk_root->node = read_tree_block(chunk_root,
2617 btrfs_super_chunk_root(disk_super),
84234f3a 2618 blocksize, generation);
416bc658
JB
2619 if (!chunk_root->node ||
2620 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2621 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2622 sb->s_id);
af31f5e5 2623 goto fail_tree_roots;
83121942 2624 }
5d4f98a2
YZ
2625 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2626 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2627
e17cade2 2628 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2629 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2630
0b86a832 2631 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2632 if (ret) {
efe120a0 2633 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2634 sb->s_id);
af31f5e5 2635 goto fail_tree_roots;
2b82032c 2636 }
0b86a832 2637
8dabb742
SB
2638 /*
2639 * keep the device that is marked to be the target device for the
2640 * dev_replace procedure
2641 */
2642 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2643
a6b0d5c8 2644 if (!fs_devices->latest_bdev) {
efe120a0 2645 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2646 sb->s_id);
2647 goto fail_tree_roots;
2648 }
2649
af31f5e5 2650retry_root_backup:
db94535d
CM
2651 blocksize = btrfs_level_size(tree_root,
2652 btrfs_super_root_level(disk_super));
84234f3a 2653 generation = btrfs_super_generation(disk_super);
0b86a832 2654
e20d96d6 2655 tree_root->node = read_tree_block(tree_root,
db94535d 2656 btrfs_super_root(disk_super),
84234f3a 2657 blocksize, generation);
af31f5e5
CM
2658 if (!tree_root->node ||
2659 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2660 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2661 sb->s_id);
af31f5e5
CM
2662
2663 goto recovery_tree_root;
83121942 2664 }
af31f5e5 2665
5d4f98a2
YZ
2666 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2667 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2668 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2669
cb517eab
MX
2670 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2671 location.type = BTRFS_ROOT_ITEM_KEY;
2672 location.offset = 0;
2673
2674 extent_root = btrfs_read_tree_root(tree_root, &location);
2675 if (IS_ERR(extent_root)) {
2676 ret = PTR_ERR(extent_root);
af31f5e5 2677 goto recovery_tree_root;
cb517eab 2678 }
0b86a832 2679 extent_root->track_dirty = 1;
cb517eab 2680 fs_info->extent_root = extent_root;
0b86a832 2681
cb517eab
MX
2682 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2683 dev_root = btrfs_read_tree_root(tree_root, &location);
2684 if (IS_ERR(dev_root)) {
2685 ret = PTR_ERR(dev_root);
af31f5e5 2686 goto recovery_tree_root;
cb517eab 2687 }
5d4f98a2 2688 dev_root->track_dirty = 1;
cb517eab
MX
2689 fs_info->dev_root = dev_root;
2690 btrfs_init_devices_late(fs_info);
3768f368 2691
cb517eab
MX
2692 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2693 csum_root = btrfs_read_tree_root(tree_root, &location);
2694 if (IS_ERR(csum_root)) {
2695 ret = PTR_ERR(csum_root);
af31f5e5 2696 goto recovery_tree_root;
cb517eab 2697 }
d20f7043 2698 csum_root->track_dirty = 1;
cb517eab 2699 fs_info->csum_root = csum_root;
d20f7043 2700
cb517eab
MX
2701 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2702 quota_root = btrfs_read_tree_root(tree_root, &location);
2703 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2704 quota_root->track_dirty = 1;
2705 fs_info->quota_enabled = 1;
2706 fs_info->pending_quota_state = 1;
cb517eab 2707 fs_info->quota_root = quota_root;
bcef60f2
AJ
2708 }
2709
f7a81ea4
SB
2710 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2711 uuid_root = btrfs_read_tree_root(tree_root, &location);
2712 if (IS_ERR(uuid_root)) {
2713 ret = PTR_ERR(uuid_root);
2714 if (ret != -ENOENT)
2715 goto recovery_tree_root;
2716 create_uuid_tree = true;
70f80175 2717 check_uuid_tree = false;
f7a81ea4
SB
2718 } else {
2719 uuid_root->track_dirty = 1;
2720 fs_info->uuid_root = uuid_root;
70f80175
SB
2721 create_uuid_tree = false;
2722 check_uuid_tree =
2723 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2724 }
2725
8929ecfa
YZ
2726 fs_info->generation = generation;
2727 fs_info->last_trans_committed = generation;
8929ecfa 2728
68310a5e
ID
2729 ret = btrfs_recover_balance(fs_info);
2730 if (ret) {
efe120a0 2731 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2732 goto fail_block_groups;
2733 }
2734
733f4fbb
SB
2735 ret = btrfs_init_dev_stats(fs_info);
2736 if (ret) {
efe120a0 2737 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2738 ret);
2739 goto fail_block_groups;
2740 }
2741
8dabb742
SB
2742 ret = btrfs_init_dev_replace(fs_info);
2743 if (ret) {
efe120a0 2744 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2745 goto fail_block_groups;
2746 }
2747
2748 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2749
5ac1d209
JM
2750 ret = btrfs_sysfs_add_one(fs_info);
2751 if (ret) {
efe120a0 2752 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
5ac1d209
JM
2753 goto fail_block_groups;
2754 }
2755
c59021f8 2756 ret = btrfs_init_space_info(fs_info);
2757 if (ret) {
efe120a0 2758 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2759 goto fail_sysfs;
c59021f8 2760 }
2761
1b1d1f66
JB
2762 ret = btrfs_read_block_groups(extent_root);
2763 if (ret) {
efe120a0 2764 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2765 goto fail_sysfs;
1b1d1f66 2766 }
5af3e8cc
SB
2767 fs_info->num_tolerated_disk_barrier_failures =
2768 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2769 if (fs_info->fs_devices->missing_devices >
2770 fs_info->num_tolerated_disk_barrier_failures &&
2771 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2772 printk(KERN_WARNING "BTRFS: "
2773 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2774 goto fail_sysfs;
292fd7fc 2775 }
9078a3e1 2776
a74a4b97
CM
2777 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2778 "btrfs-cleaner");
57506d50 2779 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2780 goto fail_sysfs;
a74a4b97
CM
2781
2782 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2783 tree_root,
2784 "btrfs-transaction");
57506d50 2785 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2786 goto fail_cleaner;
a74a4b97 2787
c289811c
CM
2788 if (!btrfs_test_opt(tree_root, SSD) &&
2789 !btrfs_test_opt(tree_root, NOSSD) &&
2790 !fs_info->fs_devices->rotating) {
efe120a0 2791 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2792 "mode\n");
2793 btrfs_set_opt(fs_info->mount_opt, SSD);
2794 }
2795
3818aea2
QW
2796 /* Set the real inode map cache flag */
2797 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2798 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2799
21adbd5c
SB
2800#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2801 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2802 ret = btrfsic_mount(tree_root, fs_devices,
2803 btrfs_test_opt(tree_root,
2804 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2805 1 : 0,
2806 fs_info->check_integrity_print_mask);
2807 if (ret)
efe120a0 2808 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2809 " integrity check module %s\n", sb->s_id);
2810 }
2811#endif
bcef60f2
AJ
2812 ret = btrfs_read_qgroup_config(fs_info);
2813 if (ret)
2814 goto fail_trans_kthread;
21adbd5c 2815
acce952b 2816 /* do not make disk changes in broken FS */
68ce9682 2817 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2818 u64 bytenr = btrfs_super_log_root(disk_super);
2819
7c2ca468 2820 if (fs_devices->rw_devices == 0) {
efe120a0 2821 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2822 "on RO media\n");
7c2ca468 2823 err = -EIO;
bcef60f2 2824 goto fail_qgroup;
7c2ca468 2825 }
e02119d5
CM
2826 blocksize =
2827 btrfs_level_size(tree_root,
2828 btrfs_super_log_root_level(disk_super));
d18a2c44 2829
6f07e42e 2830 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2831 if (!log_tree_root) {
2832 err = -ENOMEM;
bcef60f2 2833 goto fail_qgroup;
676e4c86 2834 }
e02119d5
CM
2835
2836 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2837 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2838
2839 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2840 blocksize,
2841 generation + 1);
416bc658
JB
2842 if (!log_tree_root->node ||
2843 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2844 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2845 free_extent_buffer(log_tree_root->node);
2846 kfree(log_tree_root);
2847 goto fail_trans_kthread;
2848 }
79787eaa 2849 /* returns with log_tree_root freed on success */
e02119d5 2850 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2851 if (ret) {
2852 btrfs_error(tree_root->fs_info, ret,
2853 "Failed to recover log tree");
2854 free_extent_buffer(log_tree_root->node);
2855 kfree(log_tree_root);
2856 goto fail_trans_kthread;
2857 }
e556ce2c
YZ
2858
2859 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2860 ret = btrfs_commit_super(tree_root);
2861 if (ret)
2862 goto fail_trans_kthread;
e556ce2c 2863 }
e02119d5 2864 }
1a40e23b 2865
76dda93c 2866 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2867 if (ret)
2868 goto fail_trans_kthread;
76dda93c 2869
7c2ca468 2870 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2871 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2872 if (ret)
2873 goto fail_trans_kthread;
d68fc57b 2874
5d4f98a2 2875 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2876 if (ret < 0) {
2877 printk(KERN_WARNING
efe120a0 2878 "BTRFS: failed to recover relocation\n");
d7ce5843 2879 err = -EINVAL;
bcef60f2 2880 goto fail_qgroup;
d7ce5843 2881 }
7c2ca468 2882 }
1a40e23b 2883
3de4586c
CM
2884 location.objectid = BTRFS_FS_TREE_OBJECTID;
2885 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2886 location.offset = 0;
3de4586c 2887
3de4586c 2888 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2889 if (IS_ERR(fs_info->fs_root)) {
2890 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2891 goto fail_qgroup;
3140c9a3 2892 }
c289811c 2893
2b6ba629
ID
2894 if (sb->s_flags & MS_RDONLY)
2895 return 0;
59641015 2896
2b6ba629
ID
2897 down_read(&fs_info->cleanup_work_sem);
2898 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2899 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2900 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2901 close_ctree(tree_root);
2902 return ret;
2903 }
2904 up_read(&fs_info->cleanup_work_sem);
59641015 2905
2b6ba629
ID
2906 ret = btrfs_resume_balance_async(fs_info);
2907 if (ret) {
efe120a0 2908 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2909 close_ctree(tree_root);
2910 return ret;
e3acc2a6
JB
2911 }
2912
8dabb742
SB
2913 ret = btrfs_resume_dev_replace_async(fs_info);
2914 if (ret) {
efe120a0 2915 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2916 close_ctree(tree_root);
2917 return ret;
2918 }
2919
b382a324
JS
2920 btrfs_qgroup_rescan_resume(fs_info);
2921
f7a81ea4 2922 if (create_uuid_tree) {
efe120a0 2923 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2924 ret = btrfs_create_uuid_tree(fs_info);
2925 if (ret) {
efe120a0 2926 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2927 ret);
2928 close_ctree(tree_root);
2929 return ret;
2930 }
f420ee1e
SB
2931 } else if (check_uuid_tree ||
2932 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2933 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2934 ret = btrfs_check_uuid_tree(fs_info);
2935 if (ret) {
efe120a0 2936 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2937 ret);
2938 close_ctree(tree_root);
2939 return ret;
2940 }
2941 } else {
2942 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2943 }
2944
ad2b2c80 2945 return 0;
39279cc3 2946
bcef60f2
AJ
2947fail_qgroup:
2948 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2949fail_trans_kthread:
2950 kthread_stop(fs_info->transaction_kthread);
54067ae9 2951 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2952 del_fs_roots(fs_info);
3f157a2f 2953fail_cleaner:
a74a4b97 2954 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2955
2956 /*
2957 * make sure we're done with the btree inode before we stop our
2958 * kthreads
2959 */
2960 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2961
2365dd3c
AJ
2962fail_sysfs:
2963 btrfs_sysfs_remove_one(fs_info);
2964
1b1d1f66 2965fail_block_groups:
54067ae9 2966 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2967 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2968
2969fail_tree_roots:
2970 free_root_pointers(fs_info, 1);
2b8195bb 2971 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2972
39279cc3 2973fail_sb_buffer:
7abadb64 2974 btrfs_stop_all_workers(fs_info);
16cdcec7 2975fail_alloc:
4543df7e 2976fail_iput:
586e46e2
ID
2977 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2978
4543df7e 2979 iput(fs_info->btree_inode);
c404e0dc
MX
2980fail_bio_counter:
2981 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
2982fail_delalloc_bytes:
2983 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2984fail_dirty_metadata_bytes:
2985 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2986fail_bdi:
7e662854 2987 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2988fail_srcu:
2989 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2990fail:
53b381b3 2991 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2992 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2993 return err;
af31f5e5
CM
2994
2995recovery_tree_root:
af31f5e5
CM
2996 if (!btrfs_test_opt(tree_root, RECOVERY))
2997 goto fail_tree_roots;
2998
2999 free_root_pointers(fs_info, 0);
3000
3001 /* don't use the log in recovery mode, it won't be valid */
3002 btrfs_set_super_log_root(disk_super, 0);
3003
3004 /* we can't trust the free space cache either */
3005 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3006
3007 ret = next_root_backup(fs_info, fs_info->super_copy,
3008 &num_backups_tried, &backup_index);
3009 if (ret == -1)
3010 goto fail_block_groups;
3011 goto retry_root_backup;
eb60ceac
CM
3012}
3013
f2984462
CM
3014static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3015{
f2984462
CM
3016 if (uptodate) {
3017 set_buffer_uptodate(bh);
3018 } else {
442a4f63
SB
3019 struct btrfs_device *device = (struct btrfs_device *)
3020 bh->b_private;
3021
efe120a0 3022 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3023 "I/O error on %s\n",
3024 rcu_str_deref(device->name));
1259ab75
CM
3025 /* note, we dont' set_buffer_write_io_error because we have
3026 * our own ways of dealing with the IO errors
3027 */
f2984462 3028 clear_buffer_uptodate(bh);
442a4f63 3029 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3030 }
3031 unlock_buffer(bh);
3032 put_bh(bh);
3033}
3034
a512bbf8
YZ
3035struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3036{
3037 struct buffer_head *bh;
3038 struct buffer_head *latest = NULL;
3039 struct btrfs_super_block *super;
3040 int i;
3041 u64 transid = 0;
3042 u64 bytenr;
3043
3044 /* we would like to check all the supers, but that would make
3045 * a btrfs mount succeed after a mkfs from a different FS.
3046 * So, we need to add a special mount option to scan for
3047 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3048 */
3049 for (i = 0; i < 1; i++) {
3050 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3051 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3052 i_size_read(bdev->bd_inode))
a512bbf8 3053 break;
8068a47e
AJ
3054 bh = __bread(bdev, bytenr / 4096,
3055 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3056 if (!bh)
3057 continue;
3058
3059 super = (struct btrfs_super_block *)bh->b_data;
3060 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3061 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3062 brelse(bh);
3063 continue;
3064 }
3065
3066 if (!latest || btrfs_super_generation(super) > transid) {
3067 brelse(latest);
3068 latest = bh;
3069 transid = btrfs_super_generation(super);
3070 } else {
3071 brelse(bh);
3072 }
3073 }
3074 return latest;
3075}
3076
4eedeb75
HH
3077/*
3078 * this should be called twice, once with wait == 0 and
3079 * once with wait == 1. When wait == 0 is done, all the buffer heads
3080 * we write are pinned.
3081 *
3082 * They are released when wait == 1 is done.
3083 * max_mirrors must be the same for both runs, and it indicates how
3084 * many supers on this one device should be written.
3085 *
3086 * max_mirrors == 0 means to write them all.
3087 */
a512bbf8
YZ
3088static int write_dev_supers(struct btrfs_device *device,
3089 struct btrfs_super_block *sb,
3090 int do_barriers, int wait, int max_mirrors)
3091{
3092 struct buffer_head *bh;
3093 int i;
3094 int ret;
3095 int errors = 0;
3096 u32 crc;
3097 u64 bytenr;
a512bbf8
YZ
3098
3099 if (max_mirrors == 0)
3100 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3101
a512bbf8
YZ
3102 for (i = 0; i < max_mirrors; i++) {
3103 bytenr = btrfs_sb_offset(i);
3104 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3105 break;
3106
3107 if (wait) {
3108 bh = __find_get_block(device->bdev, bytenr / 4096,
3109 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3110 if (!bh) {
3111 errors++;
3112 continue;
3113 }
a512bbf8 3114 wait_on_buffer(bh);
4eedeb75
HH
3115 if (!buffer_uptodate(bh))
3116 errors++;
3117
3118 /* drop our reference */
3119 brelse(bh);
3120
3121 /* drop the reference from the wait == 0 run */
3122 brelse(bh);
3123 continue;
a512bbf8
YZ
3124 } else {
3125 btrfs_set_super_bytenr(sb, bytenr);
3126
3127 crc = ~(u32)0;
b0496686 3128 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3129 BTRFS_CSUM_SIZE, crc,
3130 BTRFS_SUPER_INFO_SIZE -
3131 BTRFS_CSUM_SIZE);
3132 btrfs_csum_final(crc, sb->csum);
3133
4eedeb75
HH
3134 /*
3135 * one reference for us, and we leave it for the
3136 * caller
3137 */
a512bbf8
YZ
3138 bh = __getblk(device->bdev, bytenr / 4096,
3139 BTRFS_SUPER_INFO_SIZE);
634554dc 3140 if (!bh) {
efe120a0 3141 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3142 "buffer head for bytenr %Lu\n", bytenr);
3143 errors++;
3144 continue;
3145 }
3146
a512bbf8
YZ
3147 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3148
4eedeb75 3149 /* one reference for submit_bh */
a512bbf8 3150 get_bh(bh);
4eedeb75
HH
3151
3152 set_buffer_uptodate(bh);
a512bbf8
YZ
3153 lock_buffer(bh);
3154 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3155 bh->b_private = device;
a512bbf8
YZ
3156 }
3157
387125fc
CM
3158 /*
3159 * we fua the first super. The others we allow
3160 * to go down lazy.
3161 */
e8117c26
WS
3162 if (i == 0)
3163 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3164 else
3165 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3166 if (ret)
a512bbf8 3167 errors++;
a512bbf8
YZ
3168 }
3169 return errors < i ? 0 : -1;
3170}
3171
387125fc
CM
3172/*
3173 * endio for the write_dev_flush, this will wake anyone waiting
3174 * for the barrier when it is done
3175 */
3176static void btrfs_end_empty_barrier(struct bio *bio, int err)
3177{
3178 if (err) {
3179 if (err == -EOPNOTSUPP)
3180 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3181 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3182 }
3183 if (bio->bi_private)
3184 complete(bio->bi_private);
3185 bio_put(bio);
3186}
3187
3188/*
3189 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3190 * sent down. With wait == 1, it waits for the previous flush.
3191 *
3192 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3193 * capable
3194 */
3195static int write_dev_flush(struct btrfs_device *device, int wait)
3196{
3197 struct bio *bio;
3198 int ret = 0;
3199
3200 if (device->nobarriers)
3201 return 0;
3202
3203 if (wait) {
3204 bio = device->flush_bio;
3205 if (!bio)
3206 return 0;
3207
3208 wait_for_completion(&device->flush_wait);
3209
3210 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3211 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3212 rcu_str_deref(device->name));
387125fc 3213 device->nobarriers = 1;
5af3e8cc 3214 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3215 ret = -EIO;
5af3e8cc
SB
3216 btrfs_dev_stat_inc_and_print(device,
3217 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3218 }
3219
3220 /* drop the reference from the wait == 0 run */
3221 bio_put(bio);
3222 device->flush_bio = NULL;
3223
3224 return ret;
3225 }
3226
3227 /*
3228 * one reference for us, and we leave it for the
3229 * caller
3230 */
9c017abc 3231 device->flush_bio = NULL;
9be3395b 3232 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3233 if (!bio)
3234 return -ENOMEM;
3235
3236 bio->bi_end_io = btrfs_end_empty_barrier;
3237 bio->bi_bdev = device->bdev;
3238 init_completion(&device->flush_wait);
3239 bio->bi_private = &device->flush_wait;
3240 device->flush_bio = bio;
3241
3242 bio_get(bio);
21adbd5c 3243 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3244
3245 return 0;
3246}
3247
3248/*
3249 * send an empty flush down to each device in parallel,
3250 * then wait for them
3251 */
3252static int barrier_all_devices(struct btrfs_fs_info *info)
3253{
3254 struct list_head *head;
3255 struct btrfs_device *dev;
5af3e8cc
SB
3256 int errors_send = 0;
3257 int errors_wait = 0;
387125fc
CM
3258 int ret;
3259
3260 /* send down all the barriers */
3261 head = &info->fs_devices->devices;
3262 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3263 if (dev->missing)
3264 continue;
387125fc 3265 if (!dev->bdev) {
5af3e8cc 3266 errors_send++;
387125fc
CM
3267 continue;
3268 }
3269 if (!dev->in_fs_metadata || !dev->writeable)
3270 continue;
3271
3272 ret = write_dev_flush(dev, 0);
3273 if (ret)
5af3e8cc 3274 errors_send++;
387125fc
CM
3275 }
3276
3277 /* wait for all the barriers */
3278 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3279 if (dev->missing)
3280 continue;
387125fc 3281 if (!dev->bdev) {
5af3e8cc 3282 errors_wait++;
387125fc
CM
3283 continue;
3284 }
3285 if (!dev->in_fs_metadata || !dev->writeable)
3286 continue;
3287
3288 ret = write_dev_flush(dev, 1);
3289 if (ret)
5af3e8cc 3290 errors_wait++;
387125fc 3291 }
5af3e8cc
SB
3292 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3293 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3294 return -EIO;
3295 return 0;
3296}
3297
5af3e8cc
SB
3298int btrfs_calc_num_tolerated_disk_barrier_failures(
3299 struct btrfs_fs_info *fs_info)
3300{
3301 struct btrfs_ioctl_space_info space;
3302 struct btrfs_space_info *sinfo;
3303 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3304 BTRFS_BLOCK_GROUP_SYSTEM,
3305 BTRFS_BLOCK_GROUP_METADATA,
3306 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3307 int num_types = 4;
3308 int i;
3309 int c;
3310 int num_tolerated_disk_barrier_failures =
3311 (int)fs_info->fs_devices->num_devices;
3312
3313 for (i = 0; i < num_types; i++) {
3314 struct btrfs_space_info *tmp;
3315
3316 sinfo = NULL;
3317 rcu_read_lock();
3318 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3319 if (tmp->flags == types[i]) {
3320 sinfo = tmp;
3321 break;
3322 }
3323 }
3324 rcu_read_unlock();
3325
3326 if (!sinfo)
3327 continue;
3328
3329 down_read(&sinfo->groups_sem);
3330 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3331 if (!list_empty(&sinfo->block_groups[c])) {
3332 u64 flags;
3333
3334 btrfs_get_block_group_info(
3335 &sinfo->block_groups[c], &space);
3336 if (space.total_bytes == 0 ||
3337 space.used_bytes == 0)
3338 continue;
3339 flags = space.flags;
3340 /*
3341 * return
3342 * 0: if dup, single or RAID0 is configured for
3343 * any of metadata, system or data, else
3344 * 1: if RAID5 is configured, or if RAID1 or
3345 * RAID10 is configured and only two mirrors
3346 * are used, else
3347 * 2: if RAID6 is configured, else
3348 * num_mirrors - 1: if RAID1 or RAID10 is
3349 * configured and more than
3350 * 2 mirrors are used.
3351 */
3352 if (num_tolerated_disk_barrier_failures > 0 &&
3353 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3354 BTRFS_BLOCK_GROUP_RAID0)) ||
3355 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3356 == 0)))
3357 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3358 else if (num_tolerated_disk_barrier_failures > 1) {
3359 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3360 BTRFS_BLOCK_GROUP_RAID5 |
3361 BTRFS_BLOCK_GROUP_RAID10)) {
3362 num_tolerated_disk_barrier_failures = 1;
3363 } else if (flags &
15b0a89d 3364 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3365 num_tolerated_disk_barrier_failures = 2;
3366 }
3367 }
5af3e8cc
SB
3368 }
3369 }
3370 up_read(&sinfo->groups_sem);
3371 }
3372
3373 return num_tolerated_disk_barrier_failures;
3374}
3375
48a3b636 3376static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3377{
e5e9a520 3378 struct list_head *head;
f2984462 3379 struct btrfs_device *dev;
a061fc8d 3380 struct btrfs_super_block *sb;
f2984462 3381 struct btrfs_dev_item *dev_item;
f2984462
CM
3382 int ret;
3383 int do_barriers;
a236aed1
CM
3384 int max_errors;
3385 int total_errors = 0;
a061fc8d 3386 u64 flags;
f2984462
CM
3387
3388 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3389 backup_super_roots(root->fs_info);
f2984462 3390
6c41761f 3391 sb = root->fs_info->super_for_commit;
a061fc8d 3392 dev_item = &sb->dev_item;
e5e9a520 3393
174ba509 3394 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3395 head = &root->fs_info->fs_devices->devices;
d7306801 3396 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3397
5af3e8cc
SB
3398 if (do_barriers) {
3399 ret = barrier_all_devices(root->fs_info);
3400 if (ret) {
3401 mutex_unlock(
3402 &root->fs_info->fs_devices->device_list_mutex);
3403 btrfs_error(root->fs_info, ret,
3404 "errors while submitting device barriers.");
3405 return ret;
3406 }
3407 }
387125fc 3408
1f78160c 3409 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3410 if (!dev->bdev) {
3411 total_errors++;
3412 continue;
3413 }
2b82032c 3414 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3415 continue;
3416
2b82032c 3417 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3418 btrfs_set_stack_device_type(dev_item, dev->type);
3419 btrfs_set_stack_device_id(dev_item, dev->devid);
3420 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3421 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3422 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3423 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3424 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3425 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3426 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3427
a061fc8d
CM
3428 flags = btrfs_super_flags(sb);
3429 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3430
a512bbf8 3431 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3432 if (ret)
3433 total_errors++;
f2984462 3434 }
a236aed1 3435 if (total_errors > max_errors) {
efe120a0 3436 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3437 total_errors);
a724b436 3438 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3439
9d565ba4
SB
3440 /* FUA is masked off if unsupported and can't be the reason */
3441 btrfs_error(root->fs_info, -EIO,
3442 "%d errors while writing supers", total_errors);
3443 return -EIO;
a236aed1 3444 }
f2984462 3445
a512bbf8 3446 total_errors = 0;
1f78160c 3447 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3448 if (!dev->bdev)
3449 continue;
2b82032c 3450 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3451 continue;
3452
a512bbf8
YZ
3453 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3454 if (ret)
3455 total_errors++;
f2984462 3456 }
174ba509 3457 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3458 if (total_errors > max_errors) {
79787eaa
JM
3459 btrfs_error(root->fs_info, -EIO,
3460 "%d errors while writing supers", total_errors);
3461 return -EIO;
a236aed1 3462 }
f2984462
CM
3463 return 0;
3464}
3465
a512bbf8
YZ
3466int write_ctree_super(struct btrfs_trans_handle *trans,
3467 struct btrfs_root *root, int max_mirrors)
eb60ceac 3468{
f570e757 3469 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3470}
3471
cb517eab
MX
3472/* Drop a fs root from the radix tree and free it. */
3473void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3474 struct btrfs_root *root)
2619ba1f 3475{
4df27c4d 3476 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3477 radix_tree_delete(&fs_info->fs_roots_radix,
3478 (unsigned long)root->root_key.objectid);
4df27c4d 3479 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3480
3481 if (btrfs_root_refs(&root->root_item) == 0)
3482 synchronize_srcu(&fs_info->subvol_srcu);
3483
1a4319cc 3484 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3485 btrfs_free_log(NULL, root);
3321719e 3486
581bb050
LZ
3487 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3488 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3489 free_fs_root(root);
4df27c4d
YZ
3490}
3491
3492static void free_fs_root(struct btrfs_root *root)
3493{
82d5902d 3494 iput(root->cache_inode);
4df27c4d 3495 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3496 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3497 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3498 if (root->anon_dev)
3499 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3500 if (root->subv_writers)
3501 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3502 free_extent_buffer(root->node);
3503 free_extent_buffer(root->commit_root);
581bb050
LZ
3504 kfree(root->free_ino_ctl);
3505 kfree(root->free_ino_pinned);
d397712b 3506 kfree(root->name);
b0feb9d9 3507 btrfs_put_fs_root(root);
2619ba1f
CM
3508}
3509
cb517eab
MX
3510void btrfs_free_fs_root(struct btrfs_root *root)
3511{
3512 free_fs_root(root);
2619ba1f
CM
3513}
3514
c146afad 3515int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3516{
c146afad
YZ
3517 u64 root_objectid = 0;
3518 struct btrfs_root *gang[8];
3519 int i;
3768f368 3520 int ret;
e089f05c 3521
c146afad
YZ
3522 while (1) {
3523 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3524 (void **)gang, root_objectid,
3525 ARRAY_SIZE(gang));
3526 if (!ret)
3527 break;
5d4f98a2
YZ
3528
3529 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3530 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3531 int err;
3532
c146afad 3533 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3534 err = btrfs_orphan_cleanup(gang[i]);
3535 if (err)
3536 return err;
c146afad
YZ
3537 }
3538 root_objectid++;
3539 }
3540 return 0;
3541}
a2135011 3542
c146afad
YZ
3543int btrfs_commit_super(struct btrfs_root *root)
3544{
3545 struct btrfs_trans_handle *trans;
a74a4b97 3546
c146afad 3547 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3548 btrfs_run_delayed_iputs(root);
c146afad 3549 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3550 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3551
3552 /* wait until ongoing cleanup work done */
3553 down_write(&root->fs_info->cleanup_work_sem);
3554 up_write(&root->fs_info->cleanup_work_sem);
3555
7a7eaa40 3556 trans = btrfs_join_transaction(root);
3612b495
TI
3557 if (IS_ERR(trans))
3558 return PTR_ERR(trans);
d52c1bcc 3559 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3560}
3561
3562int close_ctree(struct btrfs_root *root)
3563{
3564 struct btrfs_fs_info *fs_info = root->fs_info;
3565 int ret;
3566
3567 fs_info->closing = 1;
3568 smp_mb();
3569
803b2f54
SB
3570 /* wait for the uuid_scan task to finish */
3571 down(&fs_info->uuid_tree_rescan_sem);
3572 /* avoid complains from lockdep et al., set sem back to initial state */
3573 up(&fs_info->uuid_tree_rescan_sem);
3574
837d5b6e 3575 /* pause restriper - we want to resume on mount */
aa1b8cd4 3576 btrfs_pause_balance(fs_info);
837d5b6e 3577
8dabb742
SB
3578 btrfs_dev_replace_suspend_for_unmount(fs_info);
3579
aa1b8cd4 3580 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3581
3582 /* wait for any defraggers to finish */
3583 wait_event(fs_info->transaction_wait,
3584 (atomic_read(&fs_info->defrag_running) == 0));
3585
3586 /* clear out the rbtree of defraggable inodes */
26176e7c 3587 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3588
c146afad 3589 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3590 ret = btrfs_commit_super(root);
3591 if (ret)
efe120a0 3592 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3593 }
3594
87533c47 3595 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3596 btrfs_error_commit_super(root);
0f7d52f4 3597
e3029d9f
AV
3598 kthread_stop(fs_info->transaction_kthread);
3599 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3600
f25784b3
YZ
3601 fs_info->closing = 2;
3602 smp_mb();
3603
bcef60f2
AJ
3604 btrfs_free_qgroup_config(root->fs_info);
3605
963d678b 3606 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3607 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3608 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3609 }
bcc63abb 3610
5ac1d209
JM
3611 btrfs_sysfs_remove_one(fs_info);
3612
c146afad 3613 del_fs_roots(fs_info);
d10c5f31 3614
1a4319cc
LB
3615 btrfs_put_block_group_cache(fs_info);
3616
2b1360da
JB
3617 btrfs_free_block_groups(fs_info);
3618
96192499
JB
3619 btrfs_stop_all_workers(fs_info);
3620
13e6c37b 3621 free_root_pointers(fs_info, 1);
9ad6b7bc 3622
13e6c37b 3623 iput(fs_info->btree_inode);
d6bfde87 3624
21adbd5c
SB
3625#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3626 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3627 btrfsic_unmount(root, fs_info->fs_devices);
3628#endif
3629
dfe25020 3630 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3631 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3632
e2d84521 3633 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3634 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3635 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3636 bdi_destroy(&fs_info->bdi);
76dda93c 3637 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3638
53b381b3
DW
3639 btrfs_free_stripe_hash_table(fs_info);
3640
1cb048f5
FDBM
3641 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3642 root->orphan_block_rsv = NULL;
3643
eb60ceac
CM
3644 return 0;
3645}
3646
b9fab919
CM
3647int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3648 int atomic)
5f39d397 3649{
1259ab75 3650 int ret;
727011e0 3651 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3652
0b32f4bb 3653 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3654 if (!ret)
3655 return ret;
3656
3657 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3658 parent_transid, atomic);
3659 if (ret == -EAGAIN)
3660 return ret;
1259ab75 3661 return !ret;
5f39d397
CM
3662}
3663
3664int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3665{
0b32f4bb 3666 return set_extent_buffer_uptodate(buf);
5f39d397 3667}
6702ed49 3668
5f39d397
CM
3669void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3670{
06ea65a3 3671 struct btrfs_root *root;
5f39d397 3672 u64 transid = btrfs_header_generation(buf);
b9473439 3673 int was_dirty;
b4ce94de 3674
06ea65a3
JB
3675#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3676 /*
3677 * This is a fast path so only do this check if we have sanity tests
3678 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3679 * outside of the sanity tests.
3680 */
3681 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3682 return;
3683#endif
3684 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3685 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3686 if (transid != root->fs_info->generation)
3687 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3688 "found %llu running %llu\n",
c1c9ff7c 3689 buf->start, transid, root->fs_info->generation);
0b32f4bb 3690 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3691 if (!was_dirty)
3692 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3693 buf->len,
3694 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3695}
3696
b53d3f5d
LB
3697static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3698 int flush_delayed)
16cdcec7
MX
3699{
3700 /*
3701 * looks as though older kernels can get into trouble with
3702 * this code, they end up stuck in balance_dirty_pages forever
3703 */
e2d84521 3704 int ret;
16cdcec7
MX
3705
3706 if (current->flags & PF_MEMALLOC)
3707 return;
3708
b53d3f5d
LB
3709 if (flush_delayed)
3710 btrfs_balance_delayed_items(root);
16cdcec7 3711
e2d84521
MX
3712 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3713 BTRFS_DIRTY_METADATA_THRESH);
3714 if (ret > 0) {
d0e1d66b
NJ
3715 balance_dirty_pages_ratelimited(
3716 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3717 }
3718 return;
3719}
3720
b53d3f5d 3721void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3722{
b53d3f5d
LB
3723 __btrfs_btree_balance_dirty(root, 1);
3724}
585ad2c3 3725
b53d3f5d
LB
3726void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3727{
3728 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3729}
6b80053d 3730
ca7a79ad 3731int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3732{
727011e0 3733 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3734 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3735}
0da5468f 3736
fcd1f065 3737static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3738 int read_only)
3739{
1104a885
DS
3740 /*
3741 * Placeholder for checks
3742 */
fcd1f065 3743 return 0;
acce952b 3744}
3745
48a3b636 3746static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3747{
acce952b 3748 mutex_lock(&root->fs_info->cleaner_mutex);
3749 btrfs_run_delayed_iputs(root);
3750 mutex_unlock(&root->fs_info->cleaner_mutex);
3751
3752 down_write(&root->fs_info->cleanup_work_sem);
3753 up_write(&root->fs_info->cleanup_work_sem);
3754
3755 /* cleanup FS via transaction */
3756 btrfs_cleanup_transaction(root);
acce952b 3757}
3758
569e0f35
JB
3759static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3760 struct btrfs_root *root)
acce952b 3761{
3762 struct btrfs_inode *btrfs_inode;
3763 struct list_head splice;
3764
3765 INIT_LIST_HEAD(&splice);
3766
3767 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3768 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3769
569e0f35 3770 list_splice_init(&t->ordered_operations, &splice);
acce952b 3771 while (!list_empty(&splice)) {
3772 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3773 ordered_operations);
3774
3775 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3776 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3777
3778 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3779
199c2a9c 3780 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3781 }
3782
199c2a9c 3783 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3784 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3785}
3786
143bede5 3787static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3788{
acce952b 3789 struct btrfs_ordered_extent *ordered;
acce952b 3790
199c2a9c 3791 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3792 /*
3793 * This will just short circuit the ordered completion stuff which will
3794 * make sure the ordered extent gets properly cleaned up.
3795 */
199c2a9c 3796 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3797 root_extent_list)
3798 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3799 spin_unlock(&root->ordered_extent_lock);
3800}
3801
3802static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3803{
3804 struct btrfs_root *root;
3805 struct list_head splice;
3806
3807 INIT_LIST_HEAD(&splice);
3808
3809 spin_lock(&fs_info->ordered_root_lock);
3810 list_splice_init(&fs_info->ordered_roots, &splice);
3811 while (!list_empty(&splice)) {
3812 root = list_first_entry(&splice, struct btrfs_root,
3813 ordered_root);
1de2cfde
JB
3814 list_move_tail(&root->ordered_root,
3815 &fs_info->ordered_roots);
199c2a9c 3816
2a85d9ca 3817 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3818 btrfs_destroy_ordered_extents(root);
3819
2a85d9ca
LB
3820 cond_resched();
3821 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3822 }
3823 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3824}
3825
35a3621b
SB
3826static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3827 struct btrfs_root *root)
acce952b 3828{
3829 struct rb_node *node;
3830 struct btrfs_delayed_ref_root *delayed_refs;
3831 struct btrfs_delayed_ref_node *ref;
3832 int ret = 0;
3833
3834 delayed_refs = &trans->delayed_refs;
3835
3836 spin_lock(&delayed_refs->lock);
d7df2c79 3837 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3838 spin_unlock(&delayed_refs->lock);
efe120a0 3839 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3840 return ret;
3841 }
3842
d7df2c79
JB
3843 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3844 struct btrfs_delayed_ref_head *head;
e78417d1 3845 bool pin_bytes = false;
acce952b 3846
d7df2c79
JB
3847 head = rb_entry(node, struct btrfs_delayed_ref_head,
3848 href_node);
3849 if (!mutex_trylock(&head->mutex)) {
3850 atomic_inc(&head->node.refs);
3851 spin_unlock(&delayed_refs->lock);
acce952b 3852
d7df2c79 3853 mutex_lock(&head->mutex);
e78417d1 3854 mutex_unlock(&head->mutex);
d7df2c79
JB
3855 btrfs_put_delayed_ref(&head->node);
3856 spin_lock(&delayed_refs->lock);
3857 continue;
3858 }
3859 spin_lock(&head->lock);
3860 while ((node = rb_first(&head->ref_root)) != NULL) {
3861 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3862 rb_node);
3863 ref->in_tree = 0;
3864 rb_erase(&ref->rb_node, &head->ref_root);
3865 atomic_dec(&delayed_refs->num_entries);
3866 btrfs_put_delayed_ref(ref);
e78417d1 3867 }
d7df2c79
JB
3868 if (head->must_insert_reserved)
3869 pin_bytes = true;
3870 btrfs_free_delayed_extent_op(head->extent_op);
3871 delayed_refs->num_heads--;
3872 if (head->processing == 0)
3873 delayed_refs->num_heads_ready--;
3874 atomic_dec(&delayed_refs->num_entries);
3875 head->node.in_tree = 0;
3876 rb_erase(&head->href_node, &delayed_refs->href_root);
3877 spin_unlock(&head->lock);
3878 spin_unlock(&delayed_refs->lock);
3879 mutex_unlock(&head->mutex);
acce952b 3880
d7df2c79
JB
3881 if (pin_bytes)
3882 btrfs_pin_extent(root, head->node.bytenr,
3883 head->node.num_bytes, 1);
3884 btrfs_put_delayed_ref(&head->node);
acce952b 3885 cond_resched();
3886 spin_lock(&delayed_refs->lock);
3887 }
3888
3889 spin_unlock(&delayed_refs->lock);
3890
3891 return ret;
3892}
3893
143bede5 3894static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3895{
3896 struct btrfs_inode *btrfs_inode;
3897 struct list_head splice;
3898
3899 INIT_LIST_HEAD(&splice);
3900
eb73c1b7
MX
3901 spin_lock(&root->delalloc_lock);
3902 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3903
3904 while (!list_empty(&splice)) {
eb73c1b7
MX
3905 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3906 delalloc_inodes);
acce952b 3907
3908 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3909 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3910 &btrfs_inode->runtime_flags);
eb73c1b7 3911 spin_unlock(&root->delalloc_lock);
acce952b 3912
3913 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3914
eb73c1b7 3915 spin_lock(&root->delalloc_lock);
acce952b 3916 }
3917
eb73c1b7
MX
3918 spin_unlock(&root->delalloc_lock);
3919}
3920
3921static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3922{
3923 struct btrfs_root *root;
3924 struct list_head splice;
3925
3926 INIT_LIST_HEAD(&splice);
3927
3928 spin_lock(&fs_info->delalloc_root_lock);
3929 list_splice_init(&fs_info->delalloc_roots, &splice);
3930 while (!list_empty(&splice)) {
3931 root = list_first_entry(&splice, struct btrfs_root,
3932 delalloc_root);
3933 list_del_init(&root->delalloc_root);
3934 root = btrfs_grab_fs_root(root);
3935 BUG_ON(!root);
3936 spin_unlock(&fs_info->delalloc_root_lock);
3937
3938 btrfs_destroy_delalloc_inodes(root);
3939 btrfs_put_fs_root(root);
3940
3941 spin_lock(&fs_info->delalloc_root_lock);
3942 }
3943 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3944}
3945
3946static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3947 struct extent_io_tree *dirty_pages,
3948 int mark)
3949{
3950 int ret;
acce952b 3951 struct extent_buffer *eb;
3952 u64 start = 0;
3953 u64 end;
acce952b 3954
3955 while (1) {
3956 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3957 mark, NULL);
acce952b 3958 if (ret)
3959 break;
3960
3961 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3962 while (start <= end) {
fd8b2b61
JB
3963 eb = btrfs_find_tree_block(root, start,
3964 root->leafsize);
69a85bd8 3965 start += root->leafsize;
fd8b2b61 3966 if (!eb)
acce952b 3967 continue;
fd8b2b61 3968 wait_on_extent_buffer_writeback(eb);
acce952b 3969
fd8b2b61
JB
3970 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3971 &eb->bflags))
3972 clear_extent_buffer_dirty(eb);
3973 free_extent_buffer_stale(eb);
acce952b 3974 }
3975 }
3976
3977 return ret;
3978}
3979
3980static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3981 struct extent_io_tree *pinned_extents)
3982{
3983 struct extent_io_tree *unpin;
3984 u64 start;
3985 u64 end;
3986 int ret;
ed0eaa14 3987 bool loop = true;
acce952b 3988
3989 unpin = pinned_extents;
ed0eaa14 3990again:
acce952b 3991 while (1) {
3992 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3993 EXTENT_DIRTY, NULL);
acce952b 3994 if (ret)
3995 break;
3996
3997 /* opt_discard */
5378e607
LD
3998 if (btrfs_test_opt(root, DISCARD))
3999 ret = btrfs_error_discard_extent(root, start,
4000 end + 1 - start,
4001 NULL);
acce952b 4002
4003 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4004 btrfs_error_unpin_extent_range(root, start, end);
4005 cond_resched();
4006 }
4007
ed0eaa14
LB
4008 if (loop) {
4009 if (unpin == &root->fs_info->freed_extents[0])
4010 unpin = &root->fs_info->freed_extents[1];
4011 else
4012 unpin = &root->fs_info->freed_extents[0];
4013 loop = false;
4014 goto again;
4015 }
4016
acce952b 4017 return 0;
4018}
4019
49b25e05
JM
4020void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4021 struct btrfs_root *root)
4022{
724e2315
JB
4023 btrfs_destroy_ordered_operations(cur_trans, root);
4024
49b25e05 4025 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4026
4a9d8bde 4027 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4028 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4029
4a9d8bde 4030 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4031 wake_up(&root->fs_info->transaction_wait);
49b25e05 4032
67cde344
MX
4033 btrfs_destroy_delayed_inodes(root);
4034 btrfs_assert_delayed_root_empty(root);
49b25e05 4035
49b25e05
JM
4036 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4037 EXTENT_DIRTY);
6e841e32
LB
4038 btrfs_destroy_pinned_extent(root,
4039 root->fs_info->pinned_extents);
49b25e05 4040
4a9d8bde
MX
4041 cur_trans->state =TRANS_STATE_COMPLETED;
4042 wake_up(&cur_trans->commit_wait);
4043
49b25e05
JM
4044 /*
4045 memset(cur_trans, 0, sizeof(*cur_trans));
4046 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4047 */
4048}
4049
48a3b636 4050static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4051{
4052 struct btrfs_transaction *t;
acce952b 4053
acce952b 4054 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4055
a4abeea4 4056 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4057 while (!list_empty(&root->fs_info->trans_list)) {
4058 t = list_first_entry(&root->fs_info->trans_list,
4059 struct btrfs_transaction, list);
4060 if (t->state >= TRANS_STATE_COMMIT_START) {
4061 atomic_inc(&t->use_count);
4062 spin_unlock(&root->fs_info->trans_lock);
4063 btrfs_wait_for_commit(root, t->transid);
4064 btrfs_put_transaction(t);
4065 spin_lock(&root->fs_info->trans_lock);
4066 continue;
4067 }
4068 if (t == root->fs_info->running_transaction) {
4069 t->state = TRANS_STATE_COMMIT_DOING;
4070 spin_unlock(&root->fs_info->trans_lock);
4071 /*
4072 * We wait for 0 num_writers since we don't hold a trans
4073 * handle open currently for this transaction.
4074 */
4075 wait_event(t->writer_wait,
4076 atomic_read(&t->num_writers) == 0);
4077 } else {
4078 spin_unlock(&root->fs_info->trans_lock);
4079 }
4080 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4081
724e2315
JB
4082 spin_lock(&root->fs_info->trans_lock);
4083 if (t == root->fs_info->running_transaction)
4084 root->fs_info->running_transaction = NULL;
acce952b 4085 list_del_init(&t->list);
724e2315 4086 spin_unlock(&root->fs_info->trans_lock);
acce952b 4087
724e2315
JB
4088 btrfs_put_transaction(t);
4089 trace_btrfs_transaction_commit(root);
4090 spin_lock(&root->fs_info->trans_lock);
4091 }
4092 spin_unlock(&root->fs_info->trans_lock);
4093 btrfs_destroy_all_ordered_extents(root->fs_info);
4094 btrfs_destroy_delayed_inodes(root);
4095 btrfs_assert_delayed_root_empty(root);
4096 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4097 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4098 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4099
4100 return 0;
4101}
4102
d1310b2e 4103static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4104 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4105 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4106 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4107 /* note we're sharing with inode.c for the merge bio hook */
4108 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4109};