Btrfs: detect corrupted filesystem after write I/O errors
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
eb60ceac 48
de0022b9
JB
49#ifdef CONFIG_X86
50#include <asm/cpufeature.h>
51#endif
52
d1310b2e 53static struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 55static void free_fs_root(struct btrfs_root *root);
fcd1f065 56static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 57 int read_only);
143bede5
JM
58static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
59static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 60static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
61 struct btrfs_root *root);
143bede5
JM
62static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
63static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_marked_extents(struct btrfs_root *root,
65 struct extent_io_tree *dirty_pages,
66 int mark);
67static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
68 struct extent_io_tree *pinned_extents);
ce9adaa5 69
d352ac68
CM
70/*
71 * end_io_wq structs are used to do processing in task context when an IO is
72 * complete. This is used during reads to verify checksums, and it is used
73 * by writes to insert metadata for new file extents after IO is complete.
74 */
ce9adaa5
CM
75struct end_io_wq {
76 struct bio *bio;
77 bio_end_io_t *end_io;
78 void *private;
79 struct btrfs_fs_info *info;
80 int error;
22c59948 81 int metadata;
ce9adaa5 82 struct list_head list;
8b712842 83 struct btrfs_work work;
ce9adaa5 84};
0da5468f 85
d352ac68
CM
86/*
87 * async submit bios are used to offload expensive checksumming
88 * onto the worker threads. They checksum file and metadata bios
89 * just before they are sent down the IO stack.
90 */
44b8bd7e
CM
91struct async_submit_bio {
92 struct inode *inode;
93 struct bio *bio;
94 struct list_head list;
4a69a410
CM
95 extent_submit_bio_hook_t *submit_bio_start;
96 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
97 int rw;
98 int mirror_num;
c8b97818 99 unsigned long bio_flags;
eaf25d93
CM
100 /*
101 * bio_offset is optional, can be used if the pages in the bio
102 * can't tell us where in the file the bio should go
103 */
104 u64 bio_offset;
8b712842 105 struct btrfs_work work;
79787eaa 106 int error;
44b8bd7e
CM
107};
108
85d4e461
CM
109/*
110 * Lockdep class keys for extent_buffer->lock's in this root. For a given
111 * eb, the lockdep key is determined by the btrfs_root it belongs to and
112 * the level the eb occupies in the tree.
113 *
114 * Different roots are used for different purposes and may nest inside each
115 * other and they require separate keysets. As lockdep keys should be
116 * static, assign keysets according to the purpose of the root as indicated
117 * by btrfs_root->objectid. This ensures that all special purpose roots
118 * have separate keysets.
4008c04a 119 *
85d4e461
CM
120 * Lock-nesting across peer nodes is always done with the immediate parent
121 * node locked thus preventing deadlock. As lockdep doesn't know this, use
122 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 123 *
85d4e461
CM
124 * The key is set by the readpage_end_io_hook after the buffer has passed
125 * csum validation but before the pages are unlocked. It is also set by
126 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 127 *
85d4e461
CM
128 * We also add a check to make sure the highest level of the tree is the
129 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
130 * needs update as well.
4008c04a
CM
131 */
132#ifdef CONFIG_DEBUG_LOCK_ALLOC
133# if BTRFS_MAX_LEVEL != 8
134# error
135# endif
85d4e461
CM
136
137static struct btrfs_lockdep_keyset {
138 u64 id; /* root objectid */
139 const char *name_stem; /* lock name stem */
140 char names[BTRFS_MAX_LEVEL + 1][20];
141 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
142} btrfs_lockdep_keysets[] = {
143 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
144 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
145 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
146 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
147 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
148 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
149 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
150 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
151 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
152 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
153 { .id = 0, .name_stem = "tree" },
4008c04a 154};
85d4e461
CM
155
156void __init btrfs_init_lockdep(void)
157{
158 int i, j;
159
160 /* initialize lockdep class names */
161 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
162 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
163
164 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
165 snprintf(ks->names[j], sizeof(ks->names[j]),
166 "btrfs-%s-%02d", ks->name_stem, j);
167 }
168}
169
170void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
171 int level)
172{
173 struct btrfs_lockdep_keyset *ks;
174
175 BUG_ON(level >= ARRAY_SIZE(ks->keys));
176
177 /* find the matching keyset, id 0 is the default entry */
178 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
179 if (ks->id == objectid)
180 break;
181
182 lockdep_set_class_and_name(&eb->lock,
183 &ks->keys[level], ks->names[level]);
184}
185
4008c04a
CM
186#endif
187
d352ac68
CM
188/*
189 * extents on the btree inode are pretty simple, there's one extent
190 * that covers the entire device
191 */
b2950863 192static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 193 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 194 int create)
7eccb903 195{
5f39d397
CM
196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
197 struct extent_map *em;
198 int ret;
199
890871be 200 read_lock(&em_tree->lock);
d1310b2e 201 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
202 if (em) {
203 em->bdev =
204 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 205 read_unlock(&em_tree->lock);
5f39d397 206 goto out;
a061fc8d 207 }
890871be 208 read_unlock(&em_tree->lock);
7b13b7b1 209
172ddd60 210 em = alloc_extent_map();
5f39d397
CM
211 if (!em) {
212 em = ERR_PTR(-ENOMEM);
213 goto out;
214 }
215 em->start = 0;
0afbaf8c 216 em->len = (u64)-1;
c8b97818 217 em->block_len = (u64)-1;
5f39d397 218 em->block_start = 0;
a061fc8d 219 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 220
890871be 221 write_lock(&em_tree->lock);
5f39d397
CM
222 ret = add_extent_mapping(em_tree, em);
223 if (ret == -EEXIST) {
224 free_extent_map(em);
7b13b7b1 225 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 226 if (!em)
0433f20d 227 em = ERR_PTR(-EIO);
5f39d397 228 } else if (ret) {
7b13b7b1 229 free_extent_map(em);
0433f20d 230 em = ERR_PTR(ret);
5f39d397 231 }
890871be 232 write_unlock(&em_tree->lock);
7b13b7b1 233
5f39d397
CM
234out:
235 return em;
7eccb903
CM
236}
237
19c00ddc
CM
238u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
239{
163e783e 240 return crc32c(seed, data, len);
19c00ddc
CM
241}
242
243void btrfs_csum_final(u32 crc, char *result)
244{
7e75bf3f 245 put_unaligned_le32(~crc, result);
19c00ddc
CM
246}
247
d352ac68
CM
248/*
249 * compute the csum for a btree block, and either verify it or write it
250 * into the csum field of the block.
251 */
19c00ddc
CM
252static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
253 int verify)
254{
6c41761f 255 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 256 char *result = NULL;
19c00ddc
CM
257 unsigned long len;
258 unsigned long cur_len;
259 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
260 char *kaddr;
261 unsigned long map_start;
262 unsigned long map_len;
263 int err;
264 u32 crc = ~(u32)0;
607d432d 265 unsigned long inline_result;
19c00ddc
CM
266
267 len = buf->len - offset;
d397712b 268 while (len > 0) {
19c00ddc 269 err = map_private_extent_buffer(buf, offset, 32,
a6591715 270 &kaddr, &map_start, &map_len);
d397712b 271 if (err)
19c00ddc 272 return 1;
19c00ddc
CM
273 cur_len = min(len, map_len - (offset - map_start));
274 crc = btrfs_csum_data(root, kaddr + offset - map_start,
275 crc, cur_len);
276 len -= cur_len;
277 offset += cur_len;
19c00ddc 278 }
607d432d
JB
279 if (csum_size > sizeof(inline_result)) {
280 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
281 if (!result)
282 return 1;
283 } else {
284 result = (char *)&inline_result;
285 }
286
19c00ddc
CM
287 btrfs_csum_final(crc, result);
288
289 if (verify) {
607d432d 290 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
291 u32 val;
292 u32 found = 0;
607d432d 293 memcpy(&found, result, csum_size);
e4204ded 294
607d432d 295 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 296 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
297 "failed on %llu wanted %X found %X "
298 "level %d\n",
299 root->fs_info->sb->s_id,
300 (unsigned long long)buf->start, val, found,
301 btrfs_header_level(buf));
607d432d
JB
302 if (result != (char *)&inline_result)
303 kfree(result);
19c00ddc
CM
304 return 1;
305 }
306 } else {
607d432d 307 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 308 }
607d432d
JB
309 if (result != (char *)&inline_result)
310 kfree(result);
19c00ddc
CM
311 return 0;
312}
313
d352ac68
CM
314/*
315 * we can't consider a given block up to date unless the transid of the
316 * block matches the transid in the parent node's pointer. This is how we
317 * detect blocks that either didn't get written at all or got written
318 * in the wrong place.
319 */
1259ab75 320static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
321 struct extent_buffer *eb, u64 parent_transid,
322 int atomic)
1259ab75 323{
2ac55d41 324 struct extent_state *cached_state = NULL;
1259ab75
CM
325 int ret;
326
327 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
328 return 0;
329
b9fab919
CM
330 if (atomic)
331 return -EAGAIN;
332
2ac55d41 333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 334 0, &cached_state);
0b32f4bb 335 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
336 btrfs_header_generation(eb) == parent_transid) {
337 ret = 0;
338 goto out;
339 }
7a36ddec 340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
341 "found %llu\n",
342 (unsigned long long)eb->start,
343 (unsigned long long)parent_transid,
344 (unsigned long long)btrfs_header_generation(eb));
1259ab75 345 ret = 1;
0b32f4bb 346 clear_extent_buffer_uptodate(eb);
33958dc6 347out:
2ac55d41
JB
348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state, GFP_NOFS);
1259ab75 350 return ret;
1259ab75
CM
351}
352
d352ac68
CM
353/*
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
356 */
f188591e
CM
357static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 struct extent_buffer *eb,
ca7a79ad 359 u64 start, u64 parent_transid)
f188591e
CM
360{
361 struct extent_io_tree *io_tree;
ea466794 362 int failed = 0;
f188591e
CM
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
ea466794 366 int failed_mirror = 0;
f188591e 367
a826d6dc 368 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
369 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
370 while (1) {
bb82ab88
AJ
371 ret = read_extent_buffer_pages(io_tree, eb, start,
372 WAIT_COMPLETE,
f188591e 373 btree_get_extent, mirror_num);
256dd1bb
SB
374 if (!ret) {
375 if (!verify_parent_transid(io_tree, eb,
b9fab919 376 parent_transid, 0))
256dd1bb
SB
377 break;
378 else
379 ret = -EIO;
380 }
d397712b 381
a826d6dc
JB
382 /*
383 * This buffer's crc is fine, but its contents are corrupted, so
384 * there is no reason to read the other copies, they won't be
385 * any less wrong.
386 */
387 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
388 break;
389
f188591e
CM
390 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
391 eb->start, eb->len);
4235298e 392 if (num_copies == 1)
ea466794 393 break;
4235298e 394
5cf1ab56
JB
395 if (!failed_mirror) {
396 failed = 1;
397 failed_mirror = eb->read_mirror;
398 }
399
f188591e 400 mirror_num++;
ea466794
JB
401 if (mirror_num == failed_mirror)
402 mirror_num++;
403
4235298e 404 if (mirror_num > num_copies)
ea466794 405 break;
f188591e 406 }
ea466794 407
c0901581 408 if (failed && !ret && failed_mirror)
ea466794
JB
409 repair_eb_io_failure(root, eb, failed_mirror);
410
411 return ret;
f188591e 412}
19c00ddc 413
d352ac68 414/*
d397712b
CM
415 * checksum a dirty tree block before IO. This has extra checks to make sure
416 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 417 */
d397712b 418
b2950863 419static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 420{
d1310b2e 421 struct extent_io_tree *tree;
35ebb934 422 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 423 u64 found_start;
19c00ddc 424 struct extent_buffer *eb;
f188591e 425
d1310b2e 426 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 427
4f2de97a
JB
428 eb = (struct extent_buffer *)page->private;
429 if (page != eb->pages[0])
430 return 0;
19c00ddc
CM
431 found_start = btrfs_header_bytenr(eb);
432 if (found_start != start) {
55c69072 433 WARN_ON(1);
4f2de97a 434 return 0;
55c69072 435 }
727011e0 436 if (eb->pages[0] != page) {
55c69072 437 WARN_ON(1);
4f2de97a 438 return 0;
55c69072
CM
439 }
440 if (!PageUptodate(page)) {
55c69072 441 WARN_ON(1);
4f2de97a 442 return 0;
19c00ddc 443 }
19c00ddc 444 csum_tree_block(root, eb, 0);
19c00ddc
CM
445 return 0;
446}
447
2b82032c
YZ
448static int check_tree_block_fsid(struct btrfs_root *root,
449 struct extent_buffer *eb)
450{
451 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
452 u8 fsid[BTRFS_UUID_SIZE];
453 int ret = 1;
454
455 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
456 BTRFS_FSID_SIZE);
457 while (fs_devices) {
458 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
459 ret = 0;
460 break;
461 }
462 fs_devices = fs_devices->seed;
463 }
464 return ret;
465}
466
a826d6dc
JB
467#define CORRUPT(reason, eb, root, slot) \
468 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
469 "root=%llu, slot=%d\n", reason, \
470 (unsigned long long)btrfs_header_bytenr(eb), \
471 (unsigned long long)root->objectid, slot)
472
473static noinline int check_leaf(struct btrfs_root *root,
474 struct extent_buffer *leaf)
475{
476 struct btrfs_key key;
477 struct btrfs_key leaf_key;
478 u32 nritems = btrfs_header_nritems(leaf);
479 int slot;
480
481 if (nritems == 0)
482 return 0;
483
484 /* Check the 0 item */
485 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
486 BTRFS_LEAF_DATA_SIZE(root)) {
487 CORRUPT("invalid item offset size pair", leaf, root, 0);
488 return -EIO;
489 }
490
491 /*
492 * Check to make sure each items keys are in the correct order and their
493 * offsets make sense. We only have to loop through nritems-1 because
494 * we check the current slot against the next slot, which verifies the
495 * next slot's offset+size makes sense and that the current's slot
496 * offset is correct.
497 */
498 for (slot = 0; slot < nritems - 1; slot++) {
499 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
500 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
501
502 /* Make sure the keys are in the right order */
503 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
504 CORRUPT("bad key order", leaf, root, slot);
505 return -EIO;
506 }
507
508 /*
509 * Make sure the offset and ends are right, remember that the
510 * item data starts at the end of the leaf and grows towards the
511 * front.
512 */
513 if (btrfs_item_offset_nr(leaf, slot) !=
514 btrfs_item_end_nr(leaf, slot + 1)) {
515 CORRUPT("slot offset bad", leaf, root, slot);
516 return -EIO;
517 }
518
519 /*
520 * Check to make sure that we don't point outside of the leaf,
521 * just incase all the items are consistent to eachother, but
522 * all point outside of the leaf.
523 */
524 if (btrfs_item_end_nr(leaf, slot) >
525 BTRFS_LEAF_DATA_SIZE(root)) {
526 CORRUPT("slot end outside of leaf", leaf, root, slot);
527 return -EIO;
528 }
529 }
530
531 return 0;
532}
533
727011e0
CM
534struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
535 struct page *page, int max_walk)
536{
537 struct extent_buffer *eb;
538 u64 start = page_offset(page);
539 u64 target = start;
540 u64 min_start;
541
542 if (start < max_walk)
543 min_start = 0;
544 else
545 min_start = start - max_walk;
546
547 while (start >= min_start) {
548 eb = find_extent_buffer(tree, start, 0);
549 if (eb) {
550 /*
551 * we found an extent buffer and it contains our page
552 * horray!
553 */
554 if (eb->start <= target &&
555 eb->start + eb->len > target)
556 return eb;
557
558 /* we found an extent buffer that wasn't for us */
559 free_extent_buffer(eb);
560 return NULL;
561 }
562 if (start == 0)
563 break;
564 start -= PAGE_CACHE_SIZE;
565 }
566 return NULL;
567}
568
b2950863 569static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 570 struct extent_state *state, int mirror)
ce9adaa5
CM
571{
572 struct extent_io_tree *tree;
573 u64 found_start;
574 int found_level;
ce9adaa5
CM
575 struct extent_buffer *eb;
576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 577 int ret = 0;
727011e0 578 int reads_done;
ce9adaa5 579
ce9adaa5
CM
580 if (!page->private)
581 goto out;
d397712b 582
727011e0 583 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 584 eb = (struct extent_buffer *)page->private;
d397712b 585
0b32f4bb
JB
586 /* the pending IO might have been the only thing that kept this buffer
587 * in memory. Make sure we have a ref for all this other checks
588 */
589 extent_buffer_get(eb);
590
591 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
592 if (!reads_done)
593 goto err;
f188591e 594
5cf1ab56 595 eb->read_mirror = mirror;
ea466794
JB
596 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
597 ret = -EIO;
598 goto err;
599 }
600
ce9adaa5 601 found_start = btrfs_header_bytenr(eb);
727011e0 602 if (found_start != eb->start) {
7a36ddec 603 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
604 "%llu %llu\n",
605 (unsigned long long)found_start,
606 (unsigned long long)eb->start);
f188591e 607 ret = -EIO;
ce9adaa5
CM
608 goto err;
609 }
2b82032c 610 if (check_tree_block_fsid(root, eb)) {
7a36ddec 611 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 612 (unsigned long long)eb->start);
1259ab75
CM
613 ret = -EIO;
614 goto err;
615 }
ce9adaa5
CM
616 found_level = btrfs_header_level(eb);
617
85d4e461
CM
618 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
619 eb, found_level);
4008c04a 620
ce9adaa5 621 ret = csum_tree_block(root, eb, 1);
a826d6dc 622 if (ret) {
f188591e 623 ret = -EIO;
a826d6dc
JB
624 goto err;
625 }
626
627 /*
628 * If this is a leaf block and it is corrupt, set the corrupt bit so
629 * that we don't try and read the other copies of this block, just
630 * return -EIO.
631 */
632 if (found_level == 0 && check_leaf(root, eb)) {
633 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
634 ret = -EIO;
635 }
ce9adaa5 636
0b32f4bb
JB
637 if (!ret)
638 set_extent_buffer_uptodate(eb);
ce9adaa5 639err:
4bb31e92
AJ
640 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
641 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
642 btree_readahead_hook(root, eb, eb->start, ret);
643 }
644
0b32f4bb
JB
645 if (ret)
646 clear_extent_buffer_uptodate(eb);
647 free_extent_buffer(eb);
ce9adaa5 648out:
f188591e 649 return ret;
ce9adaa5
CM
650}
651
ea466794 652static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 653{
4bb31e92
AJ
654 struct extent_buffer *eb;
655 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
656
4f2de97a 657 eb = (struct extent_buffer *)page->private;
ea466794 658 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 659 eb->read_mirror = failed_mirror;
ea466794 660 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 661 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
662 return -EIO; /* we fixed nothing */
663}
664
ce9adaa5 665static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
666{
667 struct end_io_wq *end_io_wq = bio->bi_private;
668 struct btrfs_fs_info *fs_info;
ce9adaa5 669
ce9adaa5 670 fs_info = end_io_wq->info;
ce9adaa5 671 end_io_wq->error = err;
8b712842
CM
672 end_io_wq->work.func = end_workqueue_fn;
673 end_io_wq->work.flags = 0;
d20f7043 674
7b6d91da 675 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 676 if (end_io_wq->metadata == 1)
cad321ad
CM
677 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
678 &end_io_wq->work);
0cb59c99
JB
679 else if (end_io_wq->metadata == 2)
680 btrfs_queue_worker(&fs_info->endio_freespace_worker,
681 &end_io_wq->work);
cad321ad
CM
682 else
683 btrfs_queue_worker(&fs_info->endio_write_workers,
684 &end_io_wq->work);
d20f7043
CM
685 } else {
686 if (end_io_wq->metadata)
687 btrfs_queue_worker(&fs_info->endio_meta_workers,
688 &end_io_wq->work);
689 else
690 btrfs_queue_worker(&fs_info->endio_workers,
691 &end_io_wq->work);
692 }
ce9adaa5
CM
693}
694
0cb59c99
JB
695/*
696 * For the metadata arg you want
697 *
698 * 0 - if data
699 * 1 - if normal metadta
700 * 2 - if writing to the free space cache area
701 */
22c59948
CM
702int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
703 int metadata)
0b86a832 704{
ce9adaa5 705 struct end_io_wq *end_io_wq;
ce9adaa5
CM
706 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
707 if (!end_io_wq)
708 return -ENOMEM;
709
710 end_io_wq->private = bio->bi_private;
711 end_io_wq->end_io = bio->bi_end_io;
22c59948 712 end_io_wq->info = info;
ce9adaa5
CM
713 end_io_wq->error = 0;
714 end_io_wq->bio = bio;
22c59948 715 end_io_wq->metadata = metadata;
ce9adaa5
CM
716
717 bio->bi_private = end_io_wq;
718 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
719 return 0;
720}
721
b64a2851 722unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 723{
4854ddd0
CM
724 unsigned long limit = min_t(unsigned long,
725 info->workers.max_workers,
726 info->fs_devices->open_devices);
727 return 256 * limit;
728}
0986fe9e 729
4a69a410
CM
730static void run_one_async_start(struct btrfs_work *work)
731{
4a69a410 732 struct async_submit_bio *async;
79787eaa 733 int ret;
4a69a410
CM
734
735 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
736 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
737 async->mirror_num, async->bio_flags,
738 async->bio_offset);
739 if (ret)
740 async->error = ret;
4a69a410
CM
741}
742
743static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
744{
745 struct btrfs_fs_info *fs_info;
746 struct async_submit_bio *async;
4854ddd0 747 int limit;
8b712842
CM
748
749 async = container_of(work, struct async_submit_bio, work);
750 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 751
b64a2851 752 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
753 limit = limit * 2 / 3;
754
66657b31 755 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 756 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
757 wake_up(&fs_info->async_submit_wait);
758
79787eaa
JM
759 /* If an error occured we just want to clean up the bio and move on */
760 if (async->error) {
761 bio_endio(async->bio, async->error);
762 return;
763 }
764
4a69a410 765 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
766 async->mirror_num, async->bio_flags,
767 async->bio_offset);
4a69a410
CM
768}
769
770static void run_one_async_free(struct btrfs_work *work)
771{
772 struct async_submit_bio *async;
773
774 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
775 kfree(async);
776}
777
44b8bd7e
CM
778int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
779 int rw, struct bio *bio, int mirror_num,
c8b97818 780 unsigned long bio_flags,
eaf25d93 781 u64 bio_offset,
4a69a410
CM
782 extent_submit_bio_hook_t *submit_bio_start,
783 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
784{
785 struct async_submit_bio *async;
786
787 async = kmalloc(sizeof(*async), GFP_NOFS);
788 if (!async)
789 return -ENOMEM;
790
791 async->inode = inode;
792 async->rw = rw;
793 async->bio = bio;
794 async->mirror_num = mirror_num;
4a69a410
CM
795 async->submit_bio_start = submit_bio_start;
796 async->submit_bio_done = submit_bio_done;
797
798 async->work.func = run_one_async_start;
799 async->work.ordered_func = run_one_async_done;
800 async->work.ordered_free = run_one_async_free;
801
8b712842 802 async->work.flags = 0;
c8b97818 803 async->bio_flags = bio_flags;
eaf25d93 804 async->bio_offset = bio_offset;
8c8bee1d 805
79787eaa
JM
806 async->error = 0;
807
cb03c743 808 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 809
7b6d91da 810 if (rw & REQ_SYNC)
d313d7a3
CM
811 btrfs_set_work_high_prio(&async->work);
812
8b712842 813 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 814
d397712b 815 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
816 atomic_read(&fs_info->nr_async_submits)) {
817 wait_event(fs_info->async_submit_wait,
818 (atomic_read(&fs_info->nr_async_submits) == 0));
819 }
820
44b8bd7e
CM
821 return 0;
822}
823
ce3ed71a
CM
824static int btree_csum_one_bio(struct bio *bio)
825{
826 struct bio_vec *bvec = bio->bi_io_vec;
827 int bio_index = 0;
828 struct btrfs_root *root;
79787eaa 829 int ret = 0;
ce3ed71a
CM
830
831 WARN_ON(bio->bi_vcnt <= 0);
d397712b 832 while (bio_index < bio->bi_vcnt) {
ce3ed71a 833 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
834 ret = csum_dirty_buffer(root, bvec->bv_page);
835 if (ret)
836 break;
ce3ed71a
CM
837 bio_index++;
838 bvec++;
839 }
79787eaa 840 return ret;
ce3ed71a
CM
841}
842
4a69a410
CM
843static int __btree_submit_bio_start(struct inode *inode, int rw,
844 struct bio *bio, int mirror_num,
eaf25d93
CM
845 unsigned long bio_flags,
846 u64 bio_offset)
22c59948 847{
8b712842
CM
848 /*
849 * when we're called for a write, we're already in the async
5443be45 850 * submission context. Just jump into btrfs_map_bio
8b712842 851 */
79787eaa 852 return btree_csum_one_bio(bio);
4a69a410 853}
22c59948 854
4a69a410 855static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
856 int mirror_num, unsigned long bio_flags,
857 u64 bio_offset)
4a69a410 858{
8b712842 859 /*
4a69a410
CM
860 * when we're called for a write, we're already in the async
861 * submission context. Just jump into btrfs_map_bio
8b712842 862 */
8b712842 863 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
864}
865
de0022b9
JB
866static int check_async_write(struct inode *inode, unsigned long bio_flags)
867{
868 if (bio_flags & EXTENT_BIO_TREE_LOG)
869 return 0;
870#ifdef CONFIG_X86
871 if (cpu_has_xmm4_2)
872 return 0;
873#endif
874 return 1;
875}
876
44b8bd7e 877static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
878 int mirror_num, unsigned long bio_flags,
879 u64 bio_offset)
44b8bd7e 880{
de0022b9 881 int async = check_async_write(inode, bio_flags);
cad321ad
CM
882 int ret;
883
7b6d91da 884 if (!(rw & REQ_WRITE)) {
f3f266ab 885
4a69a410
CM
886 /*
887 * called for a read, do the setup so that checksum validation
888 * can happen in the async kernel threads
889 */
f3f266ab
CM
890 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
891 bio, 1);
1d4284bd
CM
892 if (ret)
893 return ret;
4a69a410 894 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 895 mirror_num, 0);
de0022b9
JB
896 } else if (!async) {
897 ret = btree_csum_one_bio(bio);
898 if (ret)
899 return ret;
900 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
901 mirror_num, 0);
44b8bd7e 902 }
d313d7a3 903
cad321ad
CM
904 /*
905 * kthread helpers are used to submit writes so that checksumming
906 * can happen in parallel across all CPUs
907 */
44b8bd7e 908 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 909 inode, rw, bio, mirror_num, 0,
eaf25d93 910 bio_offset,
4a69a410
CM
911 __btree_submit_bio_start,
912 __btree_submit_bio_done);
44b8bd7e
CM
913}
914
3dd1462e 915#ifdef CONFIG_MIGRATION
784b4e29 916static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
917 struct page *newpage, struct page *page,
918 enum migrate_mode mode)
784b4e29
CM
919{
920 /*
921 * we can't safely write a btree page from here,
922 * we haven't done the locking hook
923 */
924 if (PageDirty(page))
925 return -EAGAIN;
926 /*
927 * Buffers may be managed in a filesystem specific way.
928 * We must have no buffers or drop them.
929 */
930 if (page_has_private(page) &&
931 !try_to_release_page(page, GFP_KERNEL))
932 return -EAGAIN;
a6bc32b8 933 return migrate_page(mapping, newpage, page, mode);
784b4e29 934}
3dd1462e 935#endif
784b4e29 936
0da5468f
CM
937
938static int btree_writepages(struct address_space *mapping,
939 struct writeback_control *wbc)
940{
d1310b2e
CM
941 struct extent_io_tree *tree;
942 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 943 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 944 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 945 u64 num_dirty;
24ab9cd8 946 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
947
948 if (wbc->for_kupdate)
949 return 0;
950
b9473439
CM
951 /* this is a bit racy, but that's ok */
952 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 953 if (num_dirty < thresh)
793955bc 954 return 0;
793955bc 955 }
0b32f4bb 956 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
957}
958
b2950863 959static int btree_readpage(struct file *file, struct page *page)
5f39d397 960{
d1310b2e
CM
961 struct extent_io_tree *tree;
962 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 963 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 964}
22b0ebda 965
70dec807 966static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 967{
98509cfc 968 if (PageWriteback(page) || PageDirty(page))
d397712b 969 return 0;
0c4e538b
DS
970 /*
971 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
972 * slab allocation from alloc_extent_state down the callchain where
973 * it'd hit a BUG_ON as those flags are not allowed.
974 */
975 gfp_flags &= ~GFP_SLAB_BUG_MASK;
976
3083ee2e 977 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
978}
979
5f39d397 980static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 981{
d1310b2e
CM
982 struct extent_io_tree *tree;
983 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
984 extent_invalidatepage(tree, page, offset);
985 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 986 if (PagePrivate(page)) {
d397712b
CM
987 printk(KERN_WARNING "btrfs warning page private not zero "
988 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
989 ClearPagePrivate(page);
990 set_page_private(page, 0);
991 page_cache_release(page);
992 }
d98237b3
CM
993}
994
0b32f4bb
JB
995static int btree_set_page_dirty(struct page *page)
996{
997 struct extent_buffer *eb;
998
999 BUG_ON(!PagePrivate(page));
1000 eb = (struct extent_buffer *)page->private;
1001 BUG_ON(!eb);
1002 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1003 BUG_ON(!atomic_read(&eb->refs));
1004 btrfs_assert_tree_locked(eb);
1005 return __set_page_dirty_nobuffers(page);
1006}
1007
7f09410b 1008static const struct address_space_operations btree_aops = {
d98237b3 1009 .readpage = btree_readpage,
0da5468f 1010 .writepages = btree_writepages,
5f39d397
CM
1011 .releasepage = btree_releasepage,
1012 .invalidatepage = btree_invalidatepage,
5a92bc88 1013#ifdef CONFIG_MIGRATION
784b4e29 1014 .migratepage = btree_migratepage,
5a92bc88 1015#endif
0b32f4bb 1016 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1017};
1018
ca7a79ad
CM
1019int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1020 u64 parent_transid)
090d1875 1021{
5f39d397
CM
1022 struct extent_buffer *buf = NULL;
1023 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1024 int ret = 0;
090d1875 1025
db94535d 1026 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1027 if (!buf)
090d1875 1028 return 0;
d1310b2e 1029 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1030 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1031 free_extent_buffer(buf);
de428b63 1032 return ret;
090d1875
CM
1033}
1034
ab0fff03
AJ
1035int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1036 int mirror_num, struct extent_buffer **eb)
1037{
1038 struct extent_buffer *buf = NULL;
1039 struct inode *btree_inode = root->fs_info->btree_inode;
1040 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1041 int ret;
1042
1043 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1044 if (!buf)
1045 return 0;
1046
1047 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1048
1049 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1050 btree_get_extent, mirror_num);
1051 if (ret) {
1052 free_extent_buffer(buf);
1053 return ret;
1054 }
1055
1056 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1057 free_extent_buffer(buf);
1058 return -EIO;
0b32f4bb 1059 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1060 *eb = buf;
1061 } else {
1062 free_extent_buffer(buf);
1063 }
1064 return 0;
1065}
1066
0999df54
CM
1067struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1068 u64 bytenr, u32 blocksize)
1069{
1070 struct inode *btree_inode = root->fs_info->btree_inode;
1071 struct extent_buffer *eb;
1072 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1073 bytenr, blocksize);
0999df54
CM
1074 return eb;
1075}
1076
1077struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1078 u64 bytenr, u32 blocksize)
1079{
1080 struct inode *btree_inode = root->fs_info->btree_inode;
1081 struct extent_buffer *eb;
1082
1083 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1084 bytenr, blocksize);
0999df54
CM
1085 return eb;
1086}
1087
1088
e02119d5
CM
1089int btrfs_write_tree_block(struct extent_buffer *buf)
1090{
727011e0 1091 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1092 buf->start + buf->len - 1);
e02119d5
CM
1093}
1094
1095int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1096{
727011e0 1097 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1098 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1099}
1100
0999df54 1101struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1102 u32 blocksize, u64 parent_transid)
0999df54
CM
1103{
1104 struct extent_buffer *buf = NULL;
0999df54
CM
1105 int ret;
1106
0999df54
CM
1107 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1108 if (!buf)
1109 return NULL;
0999df54 1110
ca7a79ad 1111 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1112 return buf;
ce9adaa5 1113
eb60ceac
CM
1114}
1115
d5c13f92
JM
1116void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1117 struct extent_buffer *buf)
ed2ff2cb 1118{
55c69072 1119 if (btrfs_header_generation(buf) ==
925baedd 1120 root->fs_info->running_transaction->transid) {
b9447ef8 1121 btrfs_assert_tree_locked(buf);
b4ce94de 1122
b9473439
CM
1123 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1124 spin_lock(&root->fs_info->delalloc_lock);
1125 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1126 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1127 else {
1128 spin_unlock(&root->fs_info->delalloc_lock);
1129 btrfs_panic(root->fs_info, -EOVERFLOW,
1130 "Can't clear %lu bytes from "
533574c6 1131 " dirty_mdatadata_bytes (%llu)",
d5c13f92
JM
1132 buf->len,
1133 root->fs_info->dirty_metadata_bytes);
1134 }
b9473439
CM
1135 spin_unlock(&root->fs_info->delalloc_lock);
1136 }
b4ce94de 1137
b9473439
CM
1138 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1139 btrfs_set_lock_blocking(buf);
0b32f4bb 1140 clear_extent_buffer_dirty(buf);
925baedd 1141 }
5f39d397
CM
1142}
1143
143bede5
JM
1144static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1145 u32 stripesize, struct btrfs_root *root,
1146 struct btrfs_fs_info *fs_info,
1147 u64 objectid)
d97e63b6 1148{
cfaa7295 1149 root->node = NULL;
a28ec197 1150 root->commit_root = NULL;
db94535d
CM
1151 root->sectorsize = sectorsize;
1152 root->nodesize = nodesize;
1153 root->leafsize = leafsize;
87ee04eb 1154 root->stripesize = stripesize;
123abc88 1155 root->ref_cows = 0;
0b86a832 1156 root->track_dirty = 0;
c71bf099 1157 root->in_radix = 0;
d68fc57b
YZ
1158 root->orphan_item_inserted = 0;
1159 root->orphan_cleanup_state = 0;
0b86a832 1160
0f7d52f4
CM
1161 root->objectid = objectid;
1162 root->last_trans = 0;
13a8a7c8 1163 root->highest_objectid = 0;
58176a96 1164 root->name = NULL;
6bef4d31 1165 root->inode_tree = RB_ROOT;
16cdcec7 1166 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1167 root->block_rsv = NULL;
d68fc57b 1168 root->orphan_block_rsv = NULL;
0b86a832
CM
1169
1170 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1171 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1172 spin_lock_init(&root->orphan_lock);
5d4f98a2 1173 spin_lock_init(&root->inode_lock);
f0486c68 1174 spin_lock_init(&root->accounting_lock);
a2135011 1175 mutex_init(&root->objectid_mutex);
e02119d5 1176 mutex_init(&root->log_mutex);
7237f183
YZ
1177 init_waitqueue_head(&root->log_writer_wait);
1178 init_waitqueue_head(&root->log_commit_wait[0]);
1179 init_waitqueue_head(&root->log_commit_wait[1]);
1180 atomic_set(&root->log_commit[0], 0);
1181 atomic_set(&root->log_commit[1], 0);
1182 atomic_set(&root->log_writers, 0);
2ecb7923 1183 atomic_set(&root->log_batch, 0);
8a35d95f 1184 atomic_set(&root->orphan_inodes, 0);
7237f183 1185 root->log_transid = 0;
257c62e1 1186 root->last_log_commit = 0;
d0c803c4 1187 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1188 fs_info->btree_inode->i_mapping);
017e5369 1189
3768f368
CM
1190 memset(&root->root_key, 0, sizeof(root->root_key));
1191 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1192 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1193 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1194 root->defrag_trans_start = fs_info->generation;
58176a96 1195 init_completion(&root->kobj_unregister);
6702ed49 1196 root->defrag_running = 0;
4d775673 1197 root->root_key.objectid = objectid;
0ee5dc67 1198 root->anon_dev = 0;
8ea05e3a
AB
1199
1200 spin_lock_init(&root->root_times_lock);
3768f368
CM
1201}
1202
200a5c17
JM
1203static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1204 struct btrfs_fs_info *fs_info,
1205 u64 objectid,
1206 struct btrfs_root *root)
3768f368
CM
1207{
1208 int ret;
db94535d 1209 u32 blocksize;
84234f3a 1210 u64 generation;
3768f368 1211
db94535d 1212 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1213 tree_root->sectorsize, tree_root->stripesize,
1214 root, fs_info, objectid);
3768f368
CM
1215 ret = btrfs_find_last_root(tree_root, objectid,
1216 &root->root_item, &root->root_key);
4df27c4d
YZ
1217 if (ret > 0)
1218 return -ENOENT;
200a5c17
JM
1219 else if (ret < 0)
1220 return ret;
3768f368 1221
84234f3a 1222 generation = btrfs_root_generation(&root->root_item);
db94535d 1223 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1224 root->commit_root = NULL;
db94535d 1225 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1226 blocksize, generation);
b9fab919 1227 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1228 free_extent_buffer(root->node);
af31f5e5 1229 root->node = NULL;
68433b73
CM
1230 return -EIO;
1231 }
4df27c4d 1232 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1233 return 0;
1234}
1235
f84a8bd6 1236static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1237{
1238 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1239 if (root)
1240 root->fs_info = fs_info;
1241 return root;
1242}
1243
20897f5c
AJ
1244struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1245 struct btrfs_fs_info *fs_info,
1246 u64 objectid)
1247{
1248 struct extent_buffer *leaf;
1249 struct btrfs_root *tree_root = fs_info->tree_root;
1250 struct btrfs_root *root;
1251 struct btrfs_key key;
1252 int ret = 0;
1253 u64 bytenr;
1254
1255 root = btrfs_alloc_root(fs_info);
1256 if (!root)
1257 return ERR_PTR(-ENOMEM);
1258
1259 __setup_root(tree_root->nodesize, tree_root->leafsize,
1260 tree_root->sectorsize, tree_root->stripesize,
1261 root, fs_info, objectid);
1262 root->root_key.objectid = objectid;
1263 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1264 root->root_key.offset = 0;
1265
1266 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1267 0, objectid, NULL, 0, 0, 0);
1268 if (IS_ERR(leaf)) {
1269 ret = PTR_ERR(leaf);
1270 goto fail;
1271 }
1272
1273 bytenr = leaf->start;
1274 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1275 btrfs_set_header_bytenr(leaf, leaf->start);
1276 btrfs_set_header_generation(leaf, trans->transid);
1277 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1278 btrfs_set_header_owner(leaf, objectid);
1279 root->node = leaf;
1280
1281 write_extent_buffer(leaf, fs_info->fsid,
1282 (unsigned long)btrfs_header_fsid(leaf),
1283 BTRFS_FSID_SIZE);
1284 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1285 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1286 BTRFS_UUID_SIZE);
1287 btrfs_mark_buffer_dirty(leaf);
1288
1289 root->commit_root = btrfs_root_node(root);
1290 root->track_dirty = 1;
1291
1292
1293 root->root_item.flags = 0;
1294 root->root_item.byte_limit = 0;
1295 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1296 btrfs_set_root_generation(&root->root_item, trans->transid);
1297 btrfs_set_root_level(&root->root_item, 0);
1298 btrfs_set_root_refs(&root->root_item, 1);
1299 btrfs_set_root_used(&root->root_item, leaf->len);
1300 btrfs_set_root_last_snapshot(&root->root_item, 0);
1301 btrfs_set_root_dirid(&root->root_item, 0);
1302 root->root_item.drop_level = 0;
1303
1304 key.objectid = objectid;
1305 key.type = BTRFS_ROOT_ITEM_KEY;
1306 key.offset = 0;
1307 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1308 if (ret)
1309 goto fail;
1310
1311 btrfs_tree_unlock(leaf);
1312
1313fail:
1314 if (ret)
1315 return ERR_PTR(ret);
1316
1317 return root;
1318}
1319
7237f183
YZ
1320static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1321 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1322{
1323 struct btrfs_root *root;
1324 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1325 struct extent_buffer *leaf;
e02119d5 1326
6f07e42e 1327 root = btrfs_alloc_root(fs_info);
e02119d5 1328 if (!root)
7237f183 1329 return ERR_PTR(-ENOMEM);
e02119d5
CM
1330
1331 __setup_root(tree_root->nodesize, tree_root->leafsize,
1332 tree_root->sectorsize, tree_root->stripesize,
1333 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1334
1335 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1336 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1338 /*
1339 * log trees do not get reference counted because they go away
1340 * before a real commit is actually done. They do store pointers
1341 * to file data extents, and those reference counts still get
1342 * updated (along with back refs to the log tree).
1343 */
e02119d5
CM
1344 root->ref_cows = 0;
1345
5d4f98a2 1346 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1347 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1348 0, 0, 0);
7237f183
YZ
1349 if (IS_ERR(leaf)) {
1350 kfree(root);
1351 return ERR_CAST(leaf);
1352 }
e02119d5 1353
5d4f98a2
YZ
1354 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1355 btrfs_set_header_bytenr(leaf, leaf->start);
1356 btrfs_set_header_generation(leaf, trans->transid);
1357 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1358 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1359 root->node = leaf;
e02119d5
CM
1360
1361 write_extent_buffer(root->node, root->fs_info->fsid,
1362 (unsigned long)btrfs_header_fsid(root->node),
1363 BTRFS_FSID_SIZE);
1364 btrfs_mark_buffer_dirty(root->node);
1365 btrfs_tree_unlock(root->node);
7237f183
YZ
1366 return root;
1367}
1368
1369int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1370 struct btrfs_fs_info *fs_info)
1371{
1372 struct btrfs_root *log_root;
1373
1374 log_root = alloc_log_tree(trans, fs_info);
1375 if (IS_ERR(log_root))
1376 return PTR_ERR(log_root);
1377 WARN_ON(fs_info->log_root_tree);
1378 fs_info->log_root_tree = log_root;
1379 return 0;
1380}
1381
1382int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1383 struct btrfs_root *root)
1384{
1385 struct btrfs_root *log_root;
1386 struct btrfs_inode_item *inode_item;
1387
1388 log_root = alloc_log_tree(trans, root->fs_info);
1389 if (IS_ERR(log_root))
1390 return PTR_ERR(log_root);
1391
1392 log_root->last_trans = trans->transid;
1393 log_root->root_key.offset = root->root_key.objectid;
1394
1395 inode_item = &log_root->root_item.inode;
1396 inode_item->generation = cpu_to_le64(1);
1397 inode_item->size = cpu_to_le64(3);
1398 inode_item->nlink = cpu_to_le32(1);
1399 inode_item->nbytes = cpu_to_le64(root->leafsize);
1400 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1401
5d4f98a2 1402 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1403
1404 WARN_ON(root->log_root);
1405 root->log_root = log_root;
1406 root->log_transid = 0;
257c62e1 1407 root->last_log_commit = 0;
e02119d5
CM
1408 return 0;
1409}
1410
1411struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1412 struct btrfs_key *location)
1413{
1414 struct btrfs_root *root;
1415 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1416 struct btrfs_path *path;
5f39d397 1417 struct extent_buffer *l;
84234f3a 1418 u64 generation;
db94535d 1419 u32 blocksize;
0f7d52f4 1420 int ret = 0;
8ea05e3a 1421 int slot;
0f7d52f4 1422
6f07e42e 1423 root = btrfs_alloc_root(fs_info);
0cf6c620 1424 if (!root)
0f7d52f4 1425 return ERR_PTR(-ENOMEM);
0f7d52f4 1426 if (location->offset == (u64)-1) {
db94535d 1427 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1428 location->objectid, root);
1429 if (ret) {
0f7d52f4
CM
1430 kfree(root);
1431 return ERR_PTR(ret);
1432 }
13a8a7c8 1433 goto out;
0f7d52f4
CM
1434 }
1435
db94535d 1436 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1437 tree_root->sectorsize, tree_root->stripesize,
1438 root, fs_info, location->objectid);
0f7d52f4
CM
1439
1440 path = btrfs_alloc_path();
db5b493a
TI
1441 if (!path) {
1442 kfree(root);
1443 return ERR_PTR(-ENOMEM);
1444 }
0f7d52f4 1445 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1446 if (ret == 0) {
1447 l = path->nodes[0];
8ea05e3a
AB
1448 slot = path->slots[0];
1449 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1450 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1451 }
0f7d52f4
CM
1452 btrfs_free_path(path);
1453 if (ret) {
5e540f77 1454 kfree(root);
13a8a7c8
YZ
1455 if (ret > 0)
1456 ret = -ENOENT;
0f7d52f4
CM
1457 return ERR_PTR(ret);
1458 }
13a8a7c8 1459
84234f3a 1460 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1461 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1462 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1463 blocksize, generation);
5d4f98a2 1464 root->commit_root = btrfs_root_node(root);
79787eaa 1465 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1466out:
08fe4db1 1467 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1468 root->ref_cows = 1;
08fe4db1
LZ
1469 btrfs_check_and_init_root_item(&root->root_item);
1470 }
13a8a7c8 1471
5eda7b5e
CM
1472 return root;
1473}
1474
edbd8d4e
CM
1475struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1476 struct btrfs_key *location)
5eda7b5e
CM
1477{
1478 struct btrfs_root *root;
1479 int ret;
1480
edbd8d4e
CM
1481 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1482 return fs_info->tree_root;
1483 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1484 return fs_info->extent_root;
8f18cf13
CM
1485 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1486 return fs_info->chunk_root;
1487 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1488 return fs_info->dev_root;
0403e47e
YZ
1489 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1490 return fs_info->csum_root;
bcef60f2
AJ
1491 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1492 return fs_info->quota_root ? fs_info->quota_root :
1493 ERR_PTR(-ENOENT);
4df27c4d
YZ
1494again:
1495 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1496 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1497 (unsigned long)location->objectid);
4df27c4d 1498 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1499 if (root)
1500 return root;
1501
e02119d5 1502 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1503 if (IS_ERR(root))
1504 return root;
3394e160 1505
581bb050 1506 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1507 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1508 GFP_NOFS);
35a30d7c
DS
1509 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1510 ret = -ENOMEM;
581bb050 1511 goto fail;
35a30d7c 1512 }
581bb050
LZ
1513
1514 btrfs_init_free_ino_ctl(root);
1515 mutex_init(&root->fs_commit_mutex);
1516 spin_lock_init(&root->cache_lock);
1517 init_waitqueue_head(&root->cache_wait);
1518
0ee5dc67 1519 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1520 if (ret)
1521 goto fail;
3394e160 1522
d68fc57b
YZ
1523 if (btrfs_root_refs(&root->root_item) == 0) {
1524 ret = -ENOENT;
1525 goto fail;
1526 }
1527
1528 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1529 if (ret < 0)
1530 goto fail;
1531 if (ret == 0)
1532 root->orphan_item_inserted = 1;
1533
4df27c4d
YZ
1534 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1535 if (ret)
1536 goto fail;
1537
1538 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1539 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1540 (unsigned long)root->root_key.objectid,
0f7d52f4 1541 root);
d68fc57b 1542 if (ret == 0)
4df27c4d 1543 root->in_radix = 1;
d68fc57b 1544
4df27c4d
YZ
1545 spin_unlock(&fs_info->fs_roots_radix_lock);
1546 radix_tree_preload_end();
0f7d52f4 1547 if (ret) {
4df27c4d
YZ
1548 if (ret == -EEXIST) {
1549 free_fs_root(root);
1550 goto again;
1551 }
1552 goto fail;
0f7d52f4 1553 }
4df27c4d
YZ
1554
1555 ret = btrfs_find_dead_roots(fs_info->tree_root,
1556 root->root_key.objectid);
1557 WARN_ON(ret);
edbd8d4e 1558 return root;
4df27c4d
YZ
1559fail:
1560 free_fs_root(root);
1561 return ERR_PTR(ret);
edbd8d4e
CM
1562}
1563
04160088
CM
1564static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1565{
1566 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1567 int ret = 0;
04160088
CM
1568 struct btrfs_device *device;
1569 struct backing_dev_info *bdi;
b7967db7 1570
1f78160c
XG
1571 rcu_read_lock();
1572 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1573 if (!device->bdev)
1574 continue;
04160088
CM
1575 bdi = blk_get_backing_dev_info(device->bdev);
1576 if (bdi && bdi_congested(bdi, bdi_bits)) {
1577 ret = 1;
1578 break;
1579 }
1580 }
1f78160c 1581 rcu_read_unlock();
04160088
CM
1582 return ret;
1583}
1584
ad081f14
JA
1585/*
1586 * If this fails, caller must call bdi_destroy() to get rid of the
1587 * bdi again.
1588 */
04160088
CM
1589static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1590{
ad081f14
JA
1591 int err;
1592
1593 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1594 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1595 if (err)
1596 return err;
1597
4575c9cc 1598 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1599 bdi->congested_fn = btrfs_congested_fn;
1600 bdi->congested_data = info;
1601 return 0;
1602}
1603
8b712842
CM
1604/*
1605 * called by the kthread helper functions to finally call the bio end_io
1606 * functions. This is where read checksum verification actually happens
1607 */
1608static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1609{
ce9adaa5 1610 struct bio *bio;
8b712842
CM
1611 struct end_io_wq *end_io_wq;
1612 struct btrfs_fs_info *fs_info;
ce9adaa5 1613 int error;
ce9adaa5 1614
8b712842
CM
1615 end_io_wq = container_of(work, struct end_io_wq, work);
1616 bio = end_io_wq->bio;
1617 fs_info = end_io_wq->info;
ce9adaa5 1618
8b712842
CM
1619 error = end_io_wq->error;
1620 bio->bi_private = end_io_wq->private;
1621 bio->bi_end_io = end_io_wq->end_io;
1622 kfree(end_io_wq);
8b712842 1623 bio_endio(bio, error);
44b8bd7e
CM
1624}
1625
a74a4b97
CM
1626static int cleaner_kthread(void *arg)
1627{
1628 struct btrfs_root *root = arg;
1629
1630 do {
76dda93c
YZ
1631 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1632 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1633 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1634 btrfs_clean_old_snapshots(root);
1635 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1636 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1637 }
a74a4b97 1638
a0acae0e 1639 if (!try_to_freeze()) {
a74a4b97 1640 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1641 if (!kthread_should_stop())
1642 schedule();
a74a4b97
CM
1643 __set_current_state(TASK_RUNNING);
1644 }
1645 } while (!kthread_should_stop());
1646 return 0;
1647}
1648
1649static int transaction_kthread(void *arg)
1650{
1651 struct btrfs_root *root = arg;
1652 struct btrfs_trans_handle *trans;
1653 struct btrfs_transaction *cur;
8929ecfa 1654 u64 transid;
a74a4b97
CM
1655 unsigned long now;
1656 unsigned long delay;
914b2007 1657 bool cannot_commit;
a74a4b97
CM
1658
1659 do {
914b2007 1660 cannot_commit = false;
a74a4b97 1661 delay = HZ * 30;
a74a4b97
CM
1662 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1663
a4abeea4 1664 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1665 cur = root->fs_info->running_transaction;
1666 if (!cur) {
a4abeea4 1667 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1668 goto sleep;
1669 }
31153d81 1670
a74a4b97 1671 now = get_seconds();
8929ecfa
YZ
1672 if (!cur->blocked &&
1673 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1674 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1675 delay = HZ * 5;
1676 goto sleep;
1677 }
8929ecfa 1678 transid = cur->transid;
a4abeea4 1679 spin_unlock(&root->fs_info->trans_lock);
56bec294 1680
79787eaa 1681 /* If the file system is aborted, this will always fail. */
354aa0fb 1682 trans = btrfs_attach_transaction(root);
914b2007 1683 if (IS_ERR(trans)) {
354aa0fb
MX
1684 if (PTR_ERR(trans) != -ENOENT)
1685 cannot_commit = true;
79787eaa 1686 goto sleep;
914b2007 1687 }
8929ecfa 1688 if (transid == trans->transid) {
79787eaa 1689 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1690 } else {
1691 btrfs_end_transaction(trans, root);
1692 }
a74a4b97
CM
1693sleep:
1694 wake_up_process(root->fs_info->cleaner_kthread);
1695 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1696
a0acae0e 1697 if (!try_to_freeze()) {
a74a4b97 1698 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1699 if (!kthread_should_stop() &&
914b2007
JK
1700 (!btrfs_transaction_blocked(root->fs_info) ||
1701 cannot_commit))
8929ecfa 1702 schedule_timeout(delay);
a74a4b97
CM
1703 __set_current_state(TASK_RUNNING);
1704 }
1705 } while (!kthread_should_stop());
1706 return 0;
1707}
1708
af31f5e5
CM
1709/*
1710 * this will find the highest generation in the array of
1711 * root backups. The index of the highest array is returned,
1712 * or -1 if we can't find anything.
1713 *
1714 * We check to make sure the array is valid by comparing the
1715 * generation of the latest root in the array with the generation
1716 * in the super block. If they don't match we pitch it.
1717 */
1718static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1719{
1720 u64 cur;
1721 int newest_index = -1;
1722 struct btrfs_root_backup *root_backup;
1723 int i;
1724
1725 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1726 root_backup = info->super_copy->super_roots + i;
1727 cur = btrfs_backup_tree_root_gen(root_backup);
1728 if (cur == newest_gen)
1729 newest_index = i;
1730 }
1731
1732 /* check to see if we actually wrapped around */
1733 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1734 root_backup = info->super_copy->super_roots;
1735 cur = btrfs_backup_tree_root_gen(root_backup);
1736 if (cur == newest_gen)
1737 newest_index = 0;
1738 }
1739 return newest_index;
1740}
1741
1742
1743/*
1744 * find the oldest backup so we know where to store new entries
1745 * in the backup array. This will set the backup_root_index
1746 * field in the fs_info struct
1747 */
1748static void find_oldest_super_backup(struct btrfs_fs_info *info,
1749 u64 newest_gen)
1750{
1751 int newest_index = -1;
1752
1753 newest_index = find_newest_super_backup(info, newest_gen);
1754 /* if there was garbage in there, just move along */
1755 if (newest_index == -1) {
1756 info->backup_root_index = 0;
1757 } else {
1758 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1759 }
1760}
1761
1762/*
1763 * copy all the root pointers into the super backup array.
1764 * this will bump the backup pointer by one when it is
1765 * done
1766 */
1767static void backup_super_roots(struct btrfs_fs_info *info)
1768{
1769 int next_backup;
1770 struct btrfs_root_backup *root_backup;
1771 int last_backup;
1772
1773 next_backup = info->backup_root_index;
1774 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1775 BTRFS_NUM_BACKUP_ROOTS;
1776
1777 /*
1778 * just overwrite the last backup if we're at the same generation
1779 * this happens only at umount
1780 */
1781 root_backup = info->super_for_commit->super_roots + last_backup;
1782 if (btrfs_backup_tree_root_gen(root_backup) ==
1783 btrfs_header_generation(info->tree_root->node))
1784 next_backup = last_backup;
1785
1786 root_backup = info->super_for_commit->super_roots + next_backup;
1787
1788 /*
1789 * make sure all of our padding and empty slots get zero filled
1790 * regardless of which ones we use today
1791 */
1792 memset(root_backup, 0, sizeof(*root_backup));
1793
1794 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1795
1796 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1797 btrfs_set_backup_tree_root_gen(root_backup,
1798 btrfs_header_generation(info->tree_root->node));
1799
1800 btrfs_set_backup_tree_root_level(root_backup,
1801 btrfs_header_level(info->tree_root->node));
1802
1803 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1804 btrfs_set_backup_chunk_root_gen(root_backup,
1805 btrfs_header_generation(info->chunk_root->node));
1806 btrfs_set_backup_chunk_root_level(root_backup,
1807 btrfs_header_level(info->chunk_root->node));
1808
1809 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1810 btrfs_set_backup_extent_root_gen(root_backup,
1811 btrfs_header_generation(info->extent_root->node));
1812 btrfs_set_backup_extent_root_level(root_backup,
1813 btrfs_header_level(info->extent_root->node));
1814
7c7e82a7
CM
1815 /*
1816 * we might commit during log recovery, which happens before we set
1817 * the fs_root. Make sure it is valid before we fill it in.
1818 */
1819 if (info->fs_root && info->fs_root->node) {
1820 btrfs_set_backup_fs_root(root_backup,
1821 info->fs_root->node->start);
1822 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1823 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1824 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1825 btrfs_header_level(info->fs_root->node));
7c7e82a7 1826 }
af31f5e5
CM
1827
1828 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1829 btrfs_set_backup_dev_root_gen(root_backup,
1830 btrfs_header_generation(info->dev_root->node));
1831 btrfs_set_backup_dev_root_level(root_backup,
1832 btrfs_header_level(info->dev_root->node));
1833
1834 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1835 btrfs_set_backup_csum_root_gen(root_backup,
1836 btrfs_header_generation(info->csum_root->node));
1837 btrfs_set_backup_csum_root_level(root_backup,
1838 btrfs_header_level(info->csum_root->node));
1839
1840 btrfs_set_backup_total_bytes(root_backup,
1841 btrfs_super_total_bytes(info->super_copy));
1842 btrfs_set_backup_bytes_used(root_backup,
1843 btrfs_super_bytes_used(info->super_copy));
1844 btrfs_set_backup_num_devices(root_backup,
1845 btrfs_super_num_devices(info->super_copy));
1846
1847 /*
1848 * if we don't copy this out to the super_copy, it won't get remembered
1849 * for the next commit
1850 */
1851 memcpy(&info->super_copy->super_roots,
1852 &info->super_for_commit->super_roots,
1853 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1854}
1855
1856/*
1857 * this copies info out of the root backup array and back into
1858 * the in-memory super block. It is meant to help iterate through
1859 * the array, so you send it the number of backups you've already
1860 * tried and the last backup index you used.
1861 *
1862 * this returns -1 when it has tried all the backups
1863 */
1864static noinline int next_root_backup(struct btrfs_fs_info *info,
1865 struct btrfs_super_block *super,
1866 int *num_backups_tried, int *backup_index)
1867{
1868 struct btrfs_root_backup *root_backup;
1869 int newest = *backup_index;
1870
1871 if (*num_backups_tried == 0) {
1872 u64 gen = btrfs_super_generation(super);
1873
1874 newest = find_newest_super_backup(info, gen);
1875 if (newest == -1)
1876 return -1;
1877
1878 *backup_index = newest;
1879 *num_backups_tried = 1;
1880 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1881 /* we've tried all the backups, all done */
1882 return -1;
1883 } else {
1884 /* jump to the next oldest backup */
1885 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1886 BTRFS_NUM_BACKUP_ROOTS;
1887 *backup_index = newest;
1888 *num_backups_tried += 1;
1889 }
1890 root_backup = super->super_roots + newest;
1891
1892 btrfs_set_super_generation(super,
1893 btrfs_backup_tree_root_gen(root_backup));
1894 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1895 btrfs_set_super_root_level(super,
1896 btrfs_backup_tree_root_level(root_backup));
1897 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1898
1899 /*
1900 * fixme: the total bytes and num_devices need to match or we should
1901 * need a fsck
1902 */
1903 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1904 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1905 return 0;
1906}
1907
1908/* helper to cleanup tree roots */
1909static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1910{
1911 free_extent_buffer(info->tree_root->node);
1912 free_extent_buffer(info->tree_root->commit_root);
1913 free_extent_buffer(info->dev_root->node);
1914 free_extent_buffer(info->dev_root->commit_root);
1915 free_extent_buffer(info->extent_root->node);
1916 free_extent_buffer(info->extent_root->commit_root);
1917 free_extent_buffer(info->csum_root->node);
1918 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1919 if (info->quota_root) {
1920 free_extent_buffer(info->quota_root->node);
1921 free_extent_buffer(info->quota_root->commit_root);
1922 }
af31f5e5
CM
1923
1924 info->tree_root->node = NULL;
1925 info->tree_root->commit_root = NULL;
1926 info->dev_root->node = NULL;
1927 info->dev_root->commit_root = NULL;
1928 info->extent_root->node = NULL;
1929 info->extent_root->commit_root = NULL;
1930 info->csum_root->node = NULL;
1931 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1932 if (info->quota_root) {
1933 info->quota_root->node = NULL;
1934 info->quota_root->commit_root = NULL;
1935 }
af31f5e5
CM
1936
1937 if (chunk_root) {
1938 free_extent_buffer(info->chunk_root->node);
1939 free_extent_buffer(info->chunk_root->commit_root);
1940 info->chunk_root->node = NULL;
1941 info->chunk_root->commit_root = NULL;
1942 }
1943}
1944
1945
ad2b2c80
AV
1946int open_ctree(struct super_block *sb,
1947 struct btrfs_fs_devices *fs_devices,
1948 char *options)
2e635a27 1949{
db94535d
CM
1950 u32 sectorsize;
1951 u32 nodesize;
1952 u32 leafsize;
1953 u32 blocksize;
87ee04eb 1954 u32 stripesize;
84234f3a 1955 u64 generation;
f2b636e8 1956 u64 features;
3de4586c 1957 struct btrfs_key location;
a061fc8d 1958 struct buffer_head *bh;
4d34b278 1959 struct btrfs_super_block *disk_super;
815745cf 1960 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1961 struct btrfs_root *tree_root;
4d34b278
ID
1962 struct btrfs_root *extent_root;
1963 struct btrfs_root *csum_root;
1964 struct btrfs_root *chunk_root;
1965 struct btrfs_root *dev_root;
bcef60f2 1966 struct btrfs_root *quota_root;
e02119d5 1967 struct btrfs_root *log_tree_root;
eb60ceac 1968 int ret;
e58ca020 1969 int err = -EINVAL;
af31f5e5
CM
1970 int num_backups_tried = 0;
1971 int backup_index = 0;
4543df7e 1972
f84a8bd6 1973 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1974 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1975 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1976 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1977 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1978 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1979
f84a8bd6 1980 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1981 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1982 err = -ENOMEM;
1983 goto fail;
1984 }
76dda93c
YZ
1985
1986 ret = init_srcu_struct(&fs_info->subvol_srcu);
1987 if (ret) {
1988 err = ret;
1989 goto fail;
1990 }
1991
1992 ret = setup_bdi(fs_info, &fs_info->bdi);
1993 if (ret) {
1994 err = ret;
1995 goto fail_srcu;
1996 }
1997
1998 fs_info->btree_inode = new_inode(sb);
1999 if (!fs_info->btree_inode) {
2000 err = -ENOMEM;
2001 goto fail_bdi;
2002 }
2003
a6591715 2004 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2005
76dda93c 2006 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2007 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2008 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2009 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 2010 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 2011 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 2012 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2013 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2014 spin_lock_init(&fs_info->trans_lock);
76dda93c 2015 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2016 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2017 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2018 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2019 spin_lock_init(&fs_info->tree_mod_seq_lock);
2020 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2021 mutex_init(&fs_info->reloc_mutex);
19c00ddc 2022
58176a96 2023 init_completion(&fs_info->kobj_unregister);
0b86a832 2024 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2025 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2026 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2027 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2028 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2029 BTRFS_BLOCK_RSV_GLOBAL);
2030 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2031 BTRFS_BLOCK_RSV_DELALLOC);
2032 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2033 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2034 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2035 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2036 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2037 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2038 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2039 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2040 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2041 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2042 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2043 fs_info->sb = sb;
6f568d35 2044 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2045 fs_info->metadata_ratio = 0;
4cb5300b 2046 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2047 fs_info->trans_no_join = 0;
2bf64758 2048 fs_info->free_chunk_space = 0;
f29021b2 2049 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2050
90519d66
AJ
2051 /* readahead state */
2052 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2053 spin_lock_init(&fs_info->reada_lock);
c8b97818 2054
b34b086c
CM
2055 fs_info->thread_pool_size = min_t(unsigned long,
2056 num_online_cpus() + 2, 8);
0afbaf8c 2057
3eaa2885
CM
2058 INIT_LIST_HEAD(&fs_info->ordered_extents);
2059 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2060 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2061 GFP_NOFS);
2062 if (!fs_info->delayed_root) {
2063 err = -ENOMEM;
2064 goto fail_iput;
2065 }
2066 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2067
a2de733c
AJ
2068 mutex_init(&fs_info->scrub_lock);
2069 atomic_set(&fs_info->scrubs_running, 0);
2070 atomic_set(&fs_info->scrub_pause_req, 0);
2071 atomic_set(&fs_info->scrubs_paused, 0);
2072 atomic_set(&fs_info->scrub_cancel_req, 0);
2073 init_waitqueue_head(&fs_info->scrub_pause_wait);
2074 init_rwsem(&fs_info->scrub_super_lock);
2075 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2076#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2077 fs_info->check_integrity_print_mask = 0;
2078#endif
a2de733c 2079
c9e9f97b
ID
2080 spin_lock_init(&fs_info->balance_lock);
2081 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2082 atomic_set(&fs_info->balance_running, 0);
2083 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2084 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2085 fs_info->balance_ctl = NULL;
837d5b6e 2086 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2087
a061fc8d
CM
2088 sb->s_blocksize = 4096;
2089 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2090 sb->s_bdi = &fs_info->bdi;
a061fc8d 2091
76dda93c 2092 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2093 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2094 /*
2095 * we set the i_size on the btree inode to the max possible int.
2096 * the real end of the address space is determined by all of
2097 * the devices in the system
2098 */
2099 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2100 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2101 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2102
5d4f98a2 2103 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2104 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2105 fs_info->btree_inode->i_mapping);
0b32f4bb 2106 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2107 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2108
2109 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2110
76dda93c
YZ
2111 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2112 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2113 sizeof(struct btrfs_key));
72ac3c0d
JB
2114 set_bit(BTRFS_INODE_DUMMY,
2115 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2116 insert_inode_hash(fs_info->btree_inode);
76dda93c 2117
0f9dd46c 2118 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2119 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2120
11833d66 2121 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2122 fs_info->btree_inode->i_mapping);
11833d66 2123 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2124 fs_info->btree_inode->i_mapping);
11833d66 2125 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2126 fs_info->do_barriers = 1;
e18e4809 2127
39279cc3 2128
5a3f23d5 2129 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2130 mutex_init(&fs_info->tree_log_mutex);
925baedd 2131 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2132 mutex_init(&fs_info->transaction_kthread_mutex);
2133 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2134 mutex_init(&fs_info->volume_mutex);
276e680d 2135 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2136 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2137 init_rwsem(&fs_info->subvol_sem);
fa9c0d79 2138
416ac51d
AJ
2139 spin_lock_init(&fs_info->qgroup_lock);
2140 fs_info->qgroup_tree = RB_ROOT;
2141 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2142 fs_info->qgroup_seq = 1;
2143 fs_info->quota_enabled = 0;
2144 fs_info->pending_quota_state = 0;
2145
fa9c0d79
CM
2146 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2147 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2148
e6dcd2dc 2149 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2150 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2151 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2152 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2153
0b86a832 2154 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2155 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2156
3c4bb26b 2157 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2158 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2159 if (!bh) {
2160 err = -EINVAL;
16cdcec7 2161 goto fail_alloc;
20b45077 2162 }
39279cc3 2163
6c41761f
DS
2164 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2165 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2166 sizeof(*fs_info->super_for_commit));
a061fc8d 2167 brelse(bh);
5f39d397 2168
6c41761f 2169 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2170
6c41761f 2171 disk_super = fs_info->super_copy;
0f7d52f4 2172 if (!btrfs_super_root(disk_super))
16cdcec7 2173 goto fail_alloc;
0f7d52f4 2174
acce952b 2175 /* check FS state, whether FS is broken. */
2176 fs_info->fs_state |= btrfs_super_flags(disk_super);
2177
fcd1f065
DS
2178 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2179 if (ret) {
2180 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2181 err = ret;
2182 goto fail_alloc;
2183 }
acce952b 2184
af31f5e5
CM
2185 /*
2186 * run through our array of backup supers and setup
2187 * our ring pointer to the oldest one
2188 */
2189 generation = btrfs_super_generation(disk_super);
2190 find_oldest_super_backup(fs_info, generation);
2191
75e7cb7f
LB
2192 /*
2193 * In the long term, we'll store the compression type in the super
2194 * block, and it'll be used for per file compression control.
2195 */
2196 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2197
2b82032c
YZ
2198 ret = btrfs_parse_options(tree_root, options);
2199 if (ret) {
2200 err = ret;
16cdcec7 2201 goto fail_alloc;
2b82032c 2202 }
dfe25020 2203
f2b636e8
JB
2204 features = btrfs_super_incompat_flags(disk_super) &
2205 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2206 if (features) {
2207 printk(KERN_ERR "BTRFS: couldn't mount because of "
2208 "unsupported optional features (%Lx).\n",
21380931 2209 (unsigned long long)features);
f2b636e8 2210 err = -EINVAL;
16cdcec7 2211 goto fail_alloc;
f2b636e8
JB
2212 }
2213
727011e0
CM
2214 if (btrfs_super_leafsize(disk_super) !=
2215 btrfs_super_nodesize(disk_super)) {
2216 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2217 "blocksizes don't match. node %d leaf %d\n",
2218 btrfs_super_nodesize(disk_super),
2219 btrfs_super_leafsize(disk_super));
2220 err = -EINVAL;
2221 goto fail_alloc;
2222 }
2223 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2224 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2225 "blocksize (%d) was too large\n",
2226 btrfs_super_leafsize(disk_super));
2227 err = -EINVAL;
2228 goto fail_alloc;
2229 }
2230
5d4f98a2 2231 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2232 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2233 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2234 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2235
2236 /*
2237 * flag our filesystem as having big metadata blocks if
2238 * they are bigger than the page size
2239 */
2240 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2241 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2242 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2243 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2244 }
2245
bc3f116f
CM
2246 nodesize = btrfs_super_nodesize(disk_super);
2247 leafsize = btrfs_super_leafsize(disk_super);
2248 sectorsize = btrfs_super_sectorsize(disk_super);
2249 stripesize = btrfs_super_stripesize(disk_super);
2250
2251 /*
2252 * mixed block groups end up with duplicate but slightly offset
2253 * extent buffers for the same range. It leads to corruptions
2254 */
2255 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2256 (sectorsize != leafsize)) {
2257 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2258 "are not allowed for mixed block groups on %s\n",
2259 sb->s_id);
2260 goto fail_alloc;
2261 }
2262
a6fa6fae 2263 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2264
f2b636e8
JB
2265 features = btrfs_super_compat_ro_flags(disk_super) &
2266 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2267 if (!(sb->s_flags & MS_RDONLY) && features) {
2268 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2269 "unsupported option features (%Lx).\n",
21380931 2270 (unsigned long long)features);
f2b636e8 2271 err = -EINVAL;
16cdcec7 2272 goto fail_alloc;
f2b636e8 2273 }
61d92c32
CM
2274
2275 btrfs_init_workers(&fs_info->generic_worker,
2276 "genwork", 1, NULL);
2277
5443be45 2278 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2279 fs_info->thread_pool_size,
2280 &fs_info->generic_worker);
c8b97818 2281
771ed689 2282 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2283 fs_info->thread_pool_size,
2284 &fs_info->generic_worker);
771ed689 2285
5443be45 2286 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2287 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2288 fs_info->thread_pool_size),
2289 &fs_info->generic_worker);
61b49440 2290
bab39bf9
JB
2291 btrfs_init_workers(&fs_info->caching_workers, "cache",
2292 2, &fs_info->generic_worker);
2293
61b49440
CM
2294 /* a higher idle thresh on the submit workers makes it much more
2295 * likely that bios will be send down in a sane order to the
2296 * devices
2297 */
2298 fs_info->submit_workers.idle_thresh = 64;
53863232 2299
771ed689 2300 fs_info->workers.idle_thresh = 16;
4a69a410 2301 fs_info->workers.ordered = 1;
61b49440 2302
771ed689
CM
2303 fs_info->delalloc_workers.idle_thresh = 2;
2304 fs_info->delalloc_workers.ordered = 1;
2305
61d92c32
CM
2306 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2307 &fs_info->generic_worker);
5443be45 2308 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2309 fs_info->thread_pool_size,
2310 &fs_info->generic_worker);
d20f7043 2311 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2312 fs_info->thread_pool_size,
2313 &fs_info->generic_worker);
cad321ad 2314 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2315 "endio-meta-write", fs_info->thread_pool_size,
2316 &fs_info->generic_worker);
5443be45 2317 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2318 fs_info->thread_pool_size,
2319 &fs_info->generic_worker);
0cb59c99
JB
2320 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2321 1, &fs_info->generic_worker);
16cdcec7
MX
2322 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2323 fs_info->thread_pool_size,
2324 &fs_info->generic_worker);
90519d66
AJ
2325 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2326 fs_info->thread_pool_size,
2327 &fs_info->generic_worker);
61b49440
CM
2328
2329 /*
2330 * endios are largely parallel and should have a very
2331 * low idle thresh
2332 */
2333 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2334 fs_info->endio_meta_workers.idle_thresh = 4;
2335
9042846b
CM
2336 fs_info->endio_write_workers.idle_thresh = 2;
2337 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2338 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2339
0dc3b84a
JB
2340 /*
2341 * btrfs_start_workers can really only fail because of ENOMEM so just
2342 * return -ENOMEM if any of these fail.
2343 */
2344 ret = btrfs_start_workers(&fs_info->workers);
2345 ret |= btrfs_start_workers(&fs_info->generic_worker);
2346 ret |= btrfs_start_workers(&fs_info->submit_workers);
2347 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2348 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2349 ret |= btrfs_start_workers(&fs_info->endio_workers);
2350 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2351 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2352 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2353 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2354 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2355 ret |= btrfs_start_workers(&fs_info->caching_workers);
2356 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2357 if (ret) {
fed425c7 2358 err = -ENOMEM;
0dc3b84a
JB
2359 goto fail_sb_buffer;
2360 }
4543df7e 2361
4575c9cc 2362 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2363 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2364 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2365
db94535d
CM
2366 tree_root->nodesize = nodesize;
2367 tree_root->leafsize = leafsize;
2368 tree_root->sectorsize = sectorsize;
87ee04eb 2369 tree_root->stripesize = stripesize;
a061fc8d
CM
2370
2371 sb->s_blocksize = sectorsize;
2372 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2373
39279cc3
CM
2374 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2375 sizeof(disk_super->magic))) {
d397712b 2376 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2377 goto fail_sb_buffer;
2378 }
19c00ddc 2379
8d082fb7
LB
2380 if (sectorsize != PAGE_SIZE) {
2381 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2382 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2383 goto fail_sb_buffer;
2384 }
2385
925baedd 2386 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2387 ret = btrfs_read_sys_array(tree_root);
925baedd 2388 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2389 if (ret) {
d397712b
CM
2390 printk(KERN_WARNING "btrfs: failed to read the system "
2391 "array on %s\n", sb->s_id);
5d4f98a2 2392 goto fail_sb_buffer;
84eed90f 2393 }
0b86a832
CM
2394
2395 blocksize = btrfs_level_size(tree_root,
2396 btrfs_super_chunk_root_level(disk_super));
84234f3a 2397 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2398
2399 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2400 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2401
2402 chunk_root->node = read_tree_block(chunk_root,
2403 btrfs_super_chunk_root(disk_super),
84234f3a 2404 blocksize, generation);
79787eaa 2405 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2406 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2407 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2408 sb->s_id);
af31f5e5 2409 goto fail_tree_roots;
83121942 2410 }
5d4f98a2
YZ
2411 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2412 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2413
e17cade2 2414 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2415 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2416 BTRFS_UUID_SIZE);
e17cade2 2417
0b86a832 2418 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2419 if (ret) {
d397712b
CM
2420 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2421 sb->s_id);
af31f5e5 2422 goto fail_tree_roots;
2b82032c 2423 }
0b86a832 2424
dfe25020
CM
2425 btrfs_close_extra_devices(fs_devices);
2426
a6b0d5c8
CM
2427 if (!fs_devices->latest_bdev) {
2428 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2429 sb->s_id);
2430 goto fail_tree_roots;
2431 }
2432
af31f5e5 2433retry_root_backup:
db94535d
CM
2434 blocksize = btrfs_level_size(tree_root,
2435 btrfs_super_root_level(disk_super));
84234f3a 2436 generation = btrfs_super_generation(disk_super);
0b86a832 2437
e20d96d6 2438 tree_root->node = read_tree_block(tree_root,
db94535d 2439 btrfs_super_root(disk_super),
84234f3a 2440 blocksize, generation);
af31f5e5
CM
2441 if (!tree_root->node ||
2442 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2443 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2444 sb->s_id);
af31f5e5
CM
2445
2446 goto recovery_tree_root;
83121942 2447 }
af31f5e5 2448
5d4f98a2
YZ
2449 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2450 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2451
2452 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2453 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2454 if (ret)
af31f5e5 2455 goto recovery_tree_root;
0b86a832
CM
2456 extent_root->track_dirty = 1;
2457
2458 ret = find_and_setup_root(tree_root, fs_info,
2459 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2460 if (ret)
af31f5e5 2461 goto recovery_tree_root;
5d4f98a2 2462 dev_root->track_dirty = 1;
3768f368 2463
d20f7043
CM
2464 ret = find_and_setup_root(tree_root, fs_info,
2465 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2466 if (ret)
af31f5e5 2467 goto recovery_tree_root;
d20f7043
CM
2468 csum_root->track_dirty = 1;
2469
bcef60f2
AJ
2470 ret = find_and_setup_root(tree_root, fs_info,
2471 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2472 if (ret) {
2473 kfree(quota_root);
2474 quota_root = fs_info->quota_root = NULL;
2475 } else {
2476 quota_root->track_dirty = 1;
2477 fs_info->quota_enabled = 1;
2478 fs_info->pending_quota_state = 1;
2479 }
2480
8929ecfa
YZ
2481 fs_info->generation = generation;
2482 fs_info->last_trans_committed = generation;
8929ecfa 2483
68310a5e
ID
2484 ret = btrfs_recover_balance(fs_info);
2485 if (ret) {
2486 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2487 goto fail_block_groups;
2488 }
2489
733f4fbb
SB
2490 ret = btrfs_init_dev_stats(fs_info);
2491 if (ret) {
2492 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2493 ret);
2494 goto fail_block_groups;
2495 }
2496
c59021f8 2497 ret = btrfs_init_space_info(fs_info);
2498 if (ret) {
2499 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2500 goto fail_block_groups;
2501 }
2502
1b1d1f66
JB
2503 ret = btrfs_read_block_groups(extent_root);
2504 if (ret) {
2505 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2506 goto fail_block_groups;
2507 }
9078a3e1 2508
a74a4b97
CM
2509 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2510 "btrfs-cleaner");
57506d50 2511 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2512 goto fail_block_groups;
a74a4b97
CM
2513
2514 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2515 tree_root,
2516 "btrfs-transaction");
57506d50 2517 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2518 goto fail_cleaner;
a74a4b97 2519
c289811c
CM
2520 if (!btrfs_test_opt(tree_root, SSD) &&
2521 !btrfs_test_opt(tree_root, NOSSD) &&
2522 !fs_info->fs_devices->rotating) {
2523 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2524 "mode\n");
2525 btrfs_set_opt(fs_info->mount_opt, SSD);
2526 }
2527
21adbd5c
SB
2528#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2529 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2530 ret = btrfsic_mount(tree_root, fs_devices,
2531 btrfs_test_opt(tree_root,
2532 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2533 1 : 0,
2534 fs_info->check_integrity_print_mask);
2535 if (ret)
2536 printk(KERN_WARNING "btrfs: failed to initialize"
2537 " integrity check module %s\n", sb->s_id);
2538 }
2539#endif
bcef60f2
AJ
2540 ret = btrfs_read_qgroup_config(fs_info);
2541 if (ret)
2542 goto fail_trans_kthread;
21adbd5c 2543
acce952b 2544 /* do not make disk changes in broken FS */
68ce9682 2545 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2546 u64 bytenr = btrfs_super_log_root(disk_super);
2547
7c2ca468 2548 if (fs_devices->rw_devices == 0) {
d397712b
CM
2549 printk(KERN_WARNING "Btrfs log replay required "
2550 "on RO media\n");
7c2ca468 2551 err = -EIO;
bcef60f2 2552 goto fail_qgroup;
7c2ca468 2553 }
e02119d5
CM
2554 blocksize =
2555 btrfs_level_size(tree_root,
2556 btrfs_super_log_root_level(disk_super));
d18a2c44 2557
6f07e42e 2558 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2559 if (!log_tree_root) {
2560 err = -ENOMEM;
bcef60f2 2561 goto fail_qgroup;
676e4c86 2562 }
e02119d5
CM
2563
2564 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2565 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2566
2567 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2568 blocksize,
2569 generation + 1);
79787eaa 2570 /* returns with log_tree_root freed on success */
e02119d5 2571 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2572 if (ret) {
2573 btrfs_error(tree_root->fs_info, ret,
2574 "Failed to recover log tree");
2575 free_extent_buffer(log_tree_root->node);
2576 kfree(log_tree_root);
2577 goto fail_trans_kthread;
2578 }
e556ce2c
YZ
2579
2580 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2581 ret = btrfs_commit_super(tree_root);
2582 if (ret)
2583 goto fail_trans_kthread;
e556ce2c 2584 }
e02119d5 2585 }
1a40e23b 2586
76dda93c 2587 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2588 if (ret)
2589 goto fail_trans_kthread;
76dda93c 2590
7c2ca468 2591 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2592 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2593 if (ret)
2594 goto fail_trans_kthread;
d68fc57b 2595
5d4f98a2 2596 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2597 if (ret < 0) {
2598 printk(KERN_WARNING
2599 "btrfs: failed to recover relocation\n");
2600 err = -EINVAL;
bcef60f2 2601 goto fail_qgroup;
d7ce5843 2602 }
7c2ca468 2603 }
1a40e23b 2604
3de4586c
CM
2605 location.objectid = BTRFS_FS_TREE_OBJECTID;
2606 location.type = BTRFS_ROOT_ITEM_KEY;
2607 location.offset = (u64)-1;
2608
3de4586c
CM
2609 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2610 if (!fs_info->fs_root)
bcef60f2 2611 goto fail_qgroup;
3140c9a3
DC
2612 if (IS_ERR(fs_info->fs_root)) {
2613 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2614 goto fail_qgroup;
3140c9a3 2615 }
c289811c 2616
2b6ba629
ID
2617 if (sb->s_flags & MS_RDONLY)
2618 return 0;
59641015 2619
2b6ba629
ID
2620 down_read(&fs_info->cleanup_work_sem);
2621 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2622 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2623 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2624 close_ctree(tree_root);
2625 return ret;
2626 }
2627 up_read(&fs_info->cleanup_work_sem);
59641015 2628
2b6ba629
ID
2629 ret = btrfs_resume_balance_async(fs_info);
2630 if (ret) {
2631 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2632 close_ctree(tree_root);
2633 return ret;
e3acc2a6
JB
2634 }
2635
ad2b2c80 2636 return 0;
39279cc3 2637
bcef60f2
AJ
2638fail_qgroup:
2639 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2640fail_trans_kthread:
2641 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2642fail_cleaner:
a74a4b97 2643 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2644
2645 /*
2646 * make sure we're done with the btree inode before we stop our
2647 * kthreads
2648 */
2649 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2650 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2651
1b1d1f66
JB
2652fail_block_groups:
2653 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2654
2655fail_tree_roots:
2656 free_root_pointers(fs_info, 1);
2657
39279cc3 2658fail_sb_buffer:
61d92c32 2659 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2660 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2661 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2662 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2663 btrfs_stop_workers(&fs_info->workers);
2664 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2665 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2666 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2667 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2668 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2669 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2670 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2671 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2672fail_alloc:
4543df7e 2673fail_iput:
586e46e2
ID
2674 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2675
7c2ca468 2676 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2677 iput(fs_info->btree_inode);
ad081f14 2678fail_bdi:
7e662854 2679 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2680fail_srcu:
2681 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2682fail:
586e46e2 2683 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2684 return err;
af31f5e5
CM
2685
2686recovery_tree_root:
af31f5e5
CM
2687 if (!btrfs_test_opt(tree_root, RECOVERY))
2688 goto fail_tree_roots;
2689
2690 free_root_pointers(fs_info, 0);
2691
2692 /* don't use the log in recovery mode, it won't be valid */
2693 btrfs_set_super_log_root(disk_super, 0);
2694
2695 /* we can't trust the free space cache either */
2696 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2697
2698 ret = next_root_backup(fs_info, fs_info->super_copy,
2699 &num_backups_tried, &backup_index);
2700 if (ret == -1)
2701 goto fail_block_groups;
2702 goto retry_root_backup;
eb60ceac
CM
2703}
2704
f2984462
CM
2705static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2706{
f2984462
CM
2707 if (uptodate) {
2708 set_buffer_uptodate(bh);
2709 } else {
442a4f63
SB
2710 struct btrfs_device *device = (struct btrfs_device *)
2711 bh->b_private;
2712
606686ee
JB
2713 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2714 "I/O error on %s\n",
2715 rcu_str_deref(device->name));
1259ab75
CM
2716 /* note, we dont' set_buffer_write_io_error because we have
2717 * our own ways of dealing with the IO errors
2718 */
f2984462 2719 clear_buffer_uptodate(bh);
442a4f63 2720 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2721 }
2722 unlock_buffer(bh);
2723 put_bh(bh);
2724}
2725
a512bbf8
YZ
2726struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2727{
2728 struct buffer_head *bh;
2729 struct buffer_head *latest = NULL;
2730 struct btrfs_super_block *super;
2731 int i;
2732 u64 transid = 0;
2733 u64 bytenr;
2734
2735 /* we would like to check all the supers, but that would make
2736 * a btrfs mount succeed after a mkfs from a different FS.
2737 * So, we need to add a special mount option to scan for
2738 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2739 */
2740 for (i = 0; i < 1; i++) {
2741 bytenr = btrfs_sb_offset(i);
2742 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2743 break;
2744 bh = __bread(bdev, bytenr / 4096, 4096);
2745 if (!bh)
2746 continue;
2747
2748 super = (struct btrfs_super_block *)bh->b_data;
2749 if (btrfs_super_bytenr(super) != bytenr ||
2750 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2751 sizeof(super->magic))) {
2752 brelse(bh);
2753 continue;
2754 }
2755
2756 if (!latest || btrfs_super_generation(super) > transid) {
2757 brelse(latest);
2758 latest = bh;
2759 transid = btrfs_super_generation(super);
2760 } else {
2761 brelse(bh);
2762 }
2763 }
2764 return latest;
2765}
2766
4eedeb75
HH
2767/*
2768 * this should be called twice, once with wait == 0 and
2769 * once with wait == 1. When wait == 0 is done, all the buffer heads
2770 * we write are pinned.
2771 *
2772 * They are released when wait == 1 is done.
2773 * max_mirrors must be the same for both runs, and it indicates how
2774 * many supers on this one device should be written.
2775 *
2776 * max_mirrors == 0 means to write them all.
2777 */
a512bbf8
YZ
2778static int write_dev_supers(struct btrfs_device *device,
2779 struct btrfs_super_block *sb,
2780 int do_barriers, int wait, int max_mirrors)
2781{
2782 struct buffer_head *bh;
2783 int i;
2784 int ret;
2785 int errors = 0;
2786 u32 crc;
2787 u64 bytenr;
a512bbf8
YZ
2788
2789 if (max_mirrors == 0)
2790 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2791
a512bbf8
YZ
2792 for (i = 0; i < max_mirrors; i++) {
2793 bytenr = btrfs_sb_offset(i);
2794 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2795 break;
2796
2797 if (wait) {
2798 bh = __find_get_block(device->bdev, bytenr / 4096,
2799 BTRFS_SUPER_INFO_SIZE);
2800 BUG_ON(!bh);
a512bbf8 2801 wait_on_buffer(bh);
4eedeb75
HH
2802 if (!buffer_uptodate(bh))
2803 errors++;
2804
2805 /* drop our reference */
2806 brelse(bh);
2807
2808 /* drop the reference from the wait == 0 run */
2809 brelse(bh);
2810 continue;
a512bbf8
YZ
2811 } else {
2812 btrfs_set_super_bytenr(sb, bytenr);
2813
2814 crc = ~(u32)0;
2815 crc = btrfs_csum_data(NULL, (char *)sb +
2816 BTRFS_CSUM_SIZE, crc,
2817 BTRFS_SUPER_INFO_SIZE -
2818 BTRFS_CSUM_SIZE);
2819 btrfs_csum_final(crc, sb->csum);
2820
4eedeb75
HH
2821 /*
2822 * one reference for us, and we leave it for the
2823 * caller
2824 */
a512bbf8
YZ
2825 bh = __getblk(device->bdev, bytenr / 4096,
2826 BTRFS_SUPER_INFO_SIZE);
2827 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2828
4eedeb75 2829 /* one reference for submit_bh */
a512bbf8 2830 get_bh(bh);
4eedeb75
HH
2831
2832 set_buffer_uptodate(bh);
a512bbf8
YZ
2833 lock_buffer(bh);
2834 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2835 bh->b_private = device;
a512bbf8
YZ
2836 }
2837
387125fc
CM
2838 /*
2839 * we fua the first super. The others we allow
2840 * to go down lazy.
2841 */
21adbd5c 2842 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2843 if (ret)
a512bbf8 2844 errors++;
a512bbf8
YZ
2845 }
2846 return errors < i ? 0 : -1;
2847}
2848
387125fc
CM
2849/*
2850 * endio for the write_dev_flush, this will wake anyone waiting
2851 * for the barrier when it is done
2852 */
2853static void btrfs_end_empty_barrier(struct bio *bio, int err)
2854{
2855 if (err) {
2856 if (err == -EOPNOTSUPP)
2857 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2858 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2859 }
2860 if (bio->bi_private)
2861 complete(bio->bi_private);
2862 bio_put(bio);
2863}
2864
2865/*
2866 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2867 * sent down. With wait == 1, it waits for the previous flush.
2868 *
2869 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2870 * capable
2871 */
2872static int write_dev_flush(struct btrfs_device *device, int wait)
2873{
2874 struct bio *bio;
2875 int ret = 0;
2876
2877 if (device->nobarriers)
2878 return 0;
2879
2880 if (wait) {
2881 bio = device->flush_bio;
2882 if (!bio)
2883 return 0;
2884
2885 wait_for_completion(&device->flush_wait);
2886
2887 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2888 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2889 rcu_str_deref(device->name));
387125fc
CM
2890 device->nobarriers = 1;
2891 }
2892 if (!bio_flagged(bio, BIO_UPTODATE)) {
2893 ret = -EIO;
442a4f63
SB
2894 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2895 btrfs_dev_stat_inc_and_print(device,
2896 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2897 }
2898
2899 /* drop the reference from the wait == 0 run */
2900 bio_put(bio);
2901 device->flush_bio = NULL;
2902
2903 return ret;
2904 }
2905
2906 /*
2907 * one reference for us, and we leave it for the
2908 * caller
2909 */
9c017abc 2910 device->flush_bio = NULL;
387125fc
CM
2911 bio = bio_alloc(GFP_NOFS, 0);
2912 if (!bio)
2913 return -ENOMEM;
2914
2915 bio->bi_end_io = btrfs_end_empty_barrier;
2916 bio->bi_bdev = device->bdev;
2917 init_completion(&device->flush_wait);
2918 bio->bi_private = &device->flush_wait;
2919 device->flush_bio = bio;
2920
2921 bio_get(bio);
21adbd5c 2922 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2923
2924 return 0;
2925}
2926
2927/*
2928 * send an empty flush down to each device in parallel,
2929 * then wait for them
2930 */
2931static int barrier_all_devices(struct btrfs_fs_info *info)
2932{
2933 struct list_head *head;
2934 struct btrfs_device *dev;
2935 int errors = 0;
2936 int ret;
2937
2938 /* send down all the barriers */
2939 head = &info->fs_devices->devices;
2940 list_for_each_entry_rcu(dev, head, dev_list) {
2941 if (!dev->bdev) {
2942 errors++;
2943 continue;
2944 }
2945 if (!dev->in_fs_metadata || !dev->writeable)
2946 continue;
2947
2948 ret = write_dev_flush(dev, 0);
2949 if (ret)
2950 errors++;
2951 }
2952
2953 /* wait for all the barriers */
2954 list_for_each_entry_rcu(dev, head, dev_list) {
2955 if (!dev->bdev) {
2956 errors++;
2957 continue;
2958 }
2959 if (!dev->in_fs_metadata || !dev->writeable)
2960 continue;
2961
2962 ret = write_dev_flush(dev, 1);
2963 if (ret)
2964 errors++;
2965 }
2966 if (errors)
2967 return -EIO;
2968 return 0;
2969}
2970
a512bbf8 2971int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2972{
e5e9a520 2973 struct list_head *head;
f2984462 2974 struct btrfs_device *dev;
a061fc8d 2975 struct btrfs_super_block *sb;
f2984462 2976 struct btrfs_dev_item *dev_item;
f2984462
CM
2977 int ret;
2978 int do_barriers;
a236aed1
CM
2979 int max_errors;
2980 int total_errors = 0;
a061fc8d 2981 u64 flags;
f2984462 2982
6c41761f 2983 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2984 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2985 backup_super_roots(root->fs_info);
f2984462 2986
6c41761f 2987 sb = root->fs_info->super_for_commit;
a061fc8d 2988 dev_item = &sb->dev_item;
e5e9a520 2989
174ba509 2990 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2991 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2992
2993 if (do_barriers)
2994 barrier_all_devices(root->fs_info);
2995
1f78160c 2996 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2997 if (!dev->bdev) {
2998 total_errors++;
2999 continue;
3000 }
2b82032c 3001 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3002 continue;
3003
2b82032c 3004 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3005 btrfs_set_stack_device_type(dev_item, dev->type);
3006 btrfs_set_stack_device_id(dev_item, dev->devid);
3007 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3008 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3009 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3010 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3011 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3012 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3013 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3014
a061fc8d
CM
3015 flags = btrfs_super_flags(sb);
3016 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3017
a512bbf8 3018 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3019 if (ret)
3020 total_errors++;
f2984462 3021 }
a236aed1 3022 if (total_errors > max_errors) {
d397712b
CM
3023 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3024 total_errors);
79787eaa
JM
3025
3026 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3027 BUG();
3028 }
f2984462 3029
a512bbf8 3030 total_errors = 0;
1f78160c 3031 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3032 if (!dev->bdev)
3033 continue;
2b82032c 3034 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3035 continue;
3036
a512bbf8
YZ
3037 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3038 if (ret)
3039 total_errors++;
f2984462 3040 }
174ba509 3041 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3042 if (total_errors > max_errors) {
79787eaa
JM
3043 btrfs_error(root->fs_info, -EIO,
3044 "%d errors while writing supers", total_errors);
3045 return -EIO;
a236aed1 3046 }
f2984462
CM
3047 return 0;
3048}
3049
a512bbf8
YZ
3050int write_ctree_super(struct btrfs_trans_handle *trans,
3051 struct btrfs_root *root, int max_mirrors)
eb60ceac 3052{
e66f709b 3053 int ret;
5f39d397 3054
a512bbf8 3055 ret = write_all_supers(root, max_mirrors);
5f39d397 3056 return ret;
cfaa7295
CM
3057}
3058
143bede5 3059void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3060{
4df27c4d 3061 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3062 radix_tree_delete(&fs_info->fs_roots_radix,
3063 (unsigned long)root->root_key.objectid);
4df27c4d 3064 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3065
3066 if (btrfs_root_refs(&root->root_item) == 0)
3067 synchronize_srcu(&fs_info->subvol_srcu);
3068
581bb050
LZ
3069 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3070 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3071 free_fs_root(root);
4df27c4d
YZ
3072}
3073
3074static void free_fs_root(struct btrfs_root *root)
3075{
82d5902d 3076 iput(root->cache_inode);
4df27c4d 3077 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3078 if (root->anon_dev)
3079 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3080 free_extent_buffer(root->node);
3081 free_extent_buffer(root->commit_root);
581bb050
LZ
3082 kfree(root->free_ino_ctl);
3083 kfree(root->free_ino_pinned);
d397712b 3084 kfree(root->name);
2619ba1f 3085 kfree(root);
2619ba1f
CM
3086}
3087
143bede5 3088static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3089{
3090 int ret;
3091 struct btrfs_root *gang[8];
3092 int i;
3093
76dda93c
YZ
3094 while (!list_empty(&fs_info->dead_roots)) {
3095 gang[0] = list_entry(fs_info->dead_roots.next,
3096 struct btrfs_root, root_list);
3097 list_del(&gang[0]->root_list);
3098
3099 if (gang[0]->in_radix) {
3100 btrfs_free_fs_root(fs_info, gang[0]);
3101 } else {
3102 free_extent_buffer(gang[0]->node);
3103 free_extent_buffer(gang[0]->commit_root);
3104 kfree(gang[0]);
3105 }
3106 }
3107
d397712b 3108 while (1) {
0f7d52f4
CM
3109 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3110 (void **)gang, 0,
3111 ARRAY_SIZE(gang));
3112 if (!ret)
3113 break;
2619ba1f 3114 for (i = 0; i < ret; i++)
5eda7b5e 3115 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3116 }
0f7d52f4 3117}
b4100d64 3118
c146afad 3119int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3120{
c146afad
YZ
3121 u64 root_objectid = 0;
3122 struct btrfs_root *gang[8];
3123 int i;
3768f368 3124 int ret;
e089f05c 3125
c146afad
YZ
3126 while (1) {
3127 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3128 (void **)gang, root_objectid,
3129 ARRAY_SIZE(gang));
3130 if (!ret)
3131 break;
5d4f98a2
YZ
3132
3133 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3134 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3135 int err;
3136
c146afad 3137 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3138 err = btrfs_orphan_cleanup(gang[i]);
3139 if (err)
3140 return err;
c146afad
YZ
3141 }
3142 root_objectid++;
3143 }
3144 return 0;
3145}
a2135011 3146
c146afad
YZ
3147int btrfs_commit_super(struct btrfs_root *root)
3148{
3149 struct btrfs_trans_handle *trans;
3150 int ret;
a74a4b97 3151
c146afad 3152 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3153 btrfs_run_delayed_iputs(root);
a74a4b97 3154 btrfs_clean_old_snapshots(root);
c146afad 3155 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3156
3157 /* wait until ongoing cleanup work done */
3158 down_write(&root->fs_info->cleanup_work_sem);
3159 up_write(&root->fs_info->cleanup_work_sem);
3160
7a7eaa40 3161 trans = btrfs_join_transaction(root);
3612b495
TI
3162 if (IS_ERR(trans))
3163 return PTR_ERR(trans);
54aa1f4d 3164 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3165 if (ret)
3166 return ret;
c146afad 3167 /* run commit again to drop the original snapshot */
7a7eaa40 3168 trans = btrfs_join_transaction(root);
3612b495
TI
3169 if (IS_ERR(trans))
3170 return PTR_ERR(trans);
79787eaa
JM
3171 ret = btrfs_commit_transaction(trans, root);
3172 if (ret)
3173 return ret;
79154b1b 3174 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3175 if (ret) {
3176 btrfs_error(root->fs_info, ret,
3177 "Failed to sync btree inode to disk.");
3178 return ret;
3179 }
d6bfde87 3180
a512bbf8 3181 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3182 return ret;
3183}
3184
3185int close_ctree(struct btrfs_root *root)
3186{
3187 struct btrfs_fs_info *fs_info = root->fs_info;
3188 int ret;
3189
3190 fs_info->closing = 1;
3191 smp_mb();
3192
837d5b6e
ID
3193 /* pause restriper - we want to resume on mount */
3194 btrfs_pause_balance(root->fs_info);
3195
a2de733c 3196 btrfs_scrub_cancel(root);
4cb5300b
CM
3197
3198 /* wait for any defraggers to finish */
3199 wait_event(fs_info->transaction_wait,
3200 (atomic_read(&fs_info->defrag_running) == 0));
3201
3202 /* clear out the rbtree of defraggable inodes */
e3029d9f 3203 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3204
c146afad 3205 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3206 ret = btrfs_commit_super(root);
3207 if (ret)
3208 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3209 }
3210
68ce9682
SB
3211 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3212 btrfs_error_commit_super(root);
0f7d52f4 3213
300e4f8a
JB
3214 btrfs_put_block_group_cache(fs_info);
3215
e3029d9f
AV
3216 kthread_stop(fs_info->transaction_kthread);
3217 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3218
f25784b3
YZ
3219 fs_info->closing = 2;
3220 smp_mb();
3221
bcef60f2
AJ
3222 btrfs_free_qgroup_config(root->fs_info);
3223
b0c68f8b 3224 if (fs_info->delalloc_bytes) {
d397712b 3225 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3226 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3227 }
bcc63abb 3228
5d4f98a2
YZ
3229 free_extent_buffer(fs_info->extent_root->node);
3230 free_extent_buffer(fs_info->extent_root->commit_root);
3231 free_extent_buffer(fs_info->tree_root->node);
3232 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3233 free_extent_buffer(fs_info->chunk_root->node);
3234 free_extent_buffer(fs_info->chunk_root->commit_root);
3235 free_extent_buffer(fs_info->dev_root->node);
3236 free_extent_buffer(fs_info->dev_root->commit_root);
3237 free_extent_buffer(fs_info->csum_root->node);
3238 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3239 if (fs_info->quota_root) {
3240 free_extent_buffer(fs_info->quota_root->node);
3241 free_extent_buffer(fs_info->quota_root->commit_root);
3242 }
d20f7043 3243
e3029d9f 3244 btrfs_free_block_groups(fs_info);
d10c5f31 3245
c146afad 3246 del_fs_roots(fs_info);
d10c5f31 3247
c146afad 3248 iput(fs_info->btree_inode);
9ad6b7bc 3249
61d92c32 3250 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3251 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3252 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3253 btrfs_stop_workers(&fs_info->workers);
3254 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3255 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3256 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3257 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3258 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3259 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3260 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3261 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3262 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3263
21adbd5c
SB
3264#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3265 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3266 btrfsic_unmount(root, fs_info->fs_devices);
3267#endif
3268
dfe25020 3269 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3270 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3271
04160088 3272 bdi_destroy(&fs_info->bdi);
76dda93c 3273 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3274
eb60ceac
CM
3275 return 0;
3276}
3277
b9fab919
CM
3278int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3279 int atomic)
5f39d397 3280{
1259ab75 3281 int ret;
727011e0 3282 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3283
0b32f4bb 3284 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3285 if (!ret)
3286 return ret;
3287
3288 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3289 parent_transid, atomic);
3290 if (ret == -EAGAIN)
3291 return ret;
1259ab75 3292 return !ret;
5f39d397
CM
3293}
3294
3295int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3296{
0b32f4bb 3297 return set_extent_buffer_uptodate(buf);
5f39d397 3298}
6702ed49 3299
5f39d397
CM
3300void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3301{
727011e0 3302 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3303 u64 transid = btrfs_header_generation(buf);
b9473439 3304 int was_dirty;
b4ce94de 3305
b9447ef8 3306 btrfs_assert_tree_locked(buf);
ccd467d6 3307 if (transid != root->fs_info->generation) {
d397712b
CM
3308 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3309 "found %llu running %llu\n",
db94535d 3310 (unsigned long long)buf->start,
d397712b
CM
3311 (unsigned long long)transid,
3312 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3313 WARN_ON(1);
3314 }
0b32f4bb 3315 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3316 if (!was_dirty) {
3317 spin_lock(&root->fs_info->delalloc_lock);
3318 root->fs_info->dirty_metadata_bytes += buf->len;
3319 spin_unlock(&root->fs_info->delalloc_lock);
3320 }
eb60ceac
CM
3321}
3322
d3c2fdcf 3323void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3324{
3325 /*
3326 * looks as though older kernels can get into trouble with
3327 * this code, they end up stuck in balance_dirty_pages forever
3328 */
3329 u64 num_dirty;
3330 unsigned long thresh = 32 * 1024 * 1024;
3331
3332 if (current->flags & PF_MEMALLOC)
3333 return;
3334
3335 btrfs_balance_delayed_items(root);
3336
3337 num_dirty = root->fs_info->dirty_metadata_bytes;
3338
3339 if (num_dirty > thresh) {
3340 balance_dirty_pages_ratelimited_nr(
3341 root->fs_info->btree_inode->i_mapping, 1);
3342 }
3343 return;
3344}
3345
3346void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3347{
188de649
CM
3348 /*
3349 * looks as though older kernels can get into trouble with
3350 * this code, they end up stuck in balance_dirty_pages forever
3351 */
d6bfde87 3352 u64 num_dirty;
771ed689 3353 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3354
6933c02e 3355 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3356 return;
3357
585ad2c3
CM
3358 num_dirty = root->fs_info->dirty_metadata_bytes;
3359
d6bfde87
CM
3360 if (num_dirty > thresh) {
3361 balance_dirty_pages_ratelimited_nr(
d7fc640e 3362 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3363 }
188de649 3364 return;
35b7e476 3365}
6b80053d 3366
ca7a79ad 3367int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3368{
727011e0 3369 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3370 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3371}
0da5468f 3372
fcd1f065 3373static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3374 int read_only)
3375{
fcd1f065
DS
3376 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3377 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3378 return -EINVAL;
3379 }
3380
acce952b 3381 if (read_only)
fcd1f065 3382 return 0;
acce952b 3383
fcd1f065 3384 return 0;
acce952b 3385}
3386
68ce9682 3387void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3388{
acce952b 3389 mutex_lock(&root->fs_info->cleaner_mutex);
3390 btrfs_run_delayed_iputs(root);
3391 mutex_unlock(&root->fs_info->cleaner_mutex);
3392
3393 down_write(&root->fs_info->cleanup_work_sem);
3394 up_write(&root->fs_info->cleanup_work_sem);
3395
3396 /* cleanup FS via transaction */
3397 btrfs_cleanup_transaction(root);
acce952b 3398}
3399
143bede5 3400static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3401{
3402 struct btrfs_inode *btrfs_inode;
3403 struct list_head splice;
3404
3405 INIT_LIST_HEAD(&splice);
3406
3407 mutex_lock(&root->fs_info->ordered_operations_mutex);
3408 spin_lock(&root->fs_info->ordered_extent_lock);
3409
3410 list_splice_init(&root->fs_info->ordered_operations, &splice);
3411 while (!list_empty(&splice)) {
3412 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3413 ordered_operations);
3414
3415 list_del_init(&btrfs_inode->ordered_operations);
3416
3417 btrfs_invalidate_inodes(btrfs_inode->root);
3418 }
3419
3420 spin_unlock(&root->fs_info->ordered_extent_lock);
3421 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3422}
3423
143bede5 3424static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3425{
3426 struct list_head splice;
3427 struct btrfs_ordered_extent *ordered;
3428 struct inode *inode;
3429
3430 INIT_LIST_HEAD(&splice);
3431
3432 spin_lock(&root->fs_info->ordered_extent_lock);
3433
3434 list_splice_init(&root->fs_info->ordered_extents, &splice);
3435 while (!list_empty(&splice)) {
3436 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3437 root_extent_list);
3438
3439 list_del_init(&ordered->root_extent_list);
3440 atomic_inc(&ordered->refs);
3441
3442 /* the inode may be getting freed (in sys_unlink path). */
3443 inode = igrab(ordered->inode);
3444
3445 spin_unlock(&root->fs_info->ordered_extent_lock);
3446 if (inode)
3447 iput(inode);
3448
3449 atomic_set(&ordered->refs, 1);
3450 btrfs_put_ordered_extent(ordered);
3451
3452 spin_lock(&root->fs_info->ordered_extent_lock);
3453 }
3454
3455 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3456}
3457
79787eaa
JM
3458int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3459 struct btrfs_root *root)
acce952b 3460{
3461 struct rb_node *node;
3462 struct btrfs_delayed_ref_root *delayed_refs;
3463 struct btrfs_delayed_ref_node *ref;
3464 int ret = 0;
3465
3466 delayed_refs = &trans->delayed_refs;
3467
3468 spin_lock(&delayed_refs->lock);
3469 if (delayed_refs->num_entries == 0) {
cfece4db 3470 spin_unlock(&delayed_refs->lock);
acce952b 3471 printk(KERN_INFO "delayed_refs has NO entry\n");
3472 return ret;
3473 }
3474
b939d1ab 3475 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3476 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3477
3478 atomic_set(&ref->refs, 1);
3479 if (btrfs_delayed_ref_is_head(ref)) {
3480 struct btrfs_delayed_ref_head *head;
3481
3482 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3483 if (!mutex_trylock(&head->mutex)) {
3484 atomic_inc(&ref->refs);
3485 spin_unlock(&delayed_refs->lock);
3486
3487 /* Need to wait for the delayed ref to run */
3488 mutex_lock(&head->mutex);
3489 mutex_unlock(&head->mutex);
3490 btrfs_put_delayed_ref(ref);
3491
e18fca73 3492 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3493 continue;
3494 }
3495
acce952b 3496 kfree(head->extent_op);
3497 delayed_refs->num_heads--;
3498 if (list_empty(&head->cluster))
3499 delayed_refs->num_heads_ready--;
3500 list_del_init(&head->cluster);
acce952b 3501 }
b939d1ab
JB
3502 ref->in_tree = 0;
3503 rb_erase(&ref->rb_node, &delayed_refs->root);
3504 delayed_refs->num_entries--;
3505
acce952b 3506 spin_unlock(&delayed_refs->lock);
3507 btrfs_put_delayed_ref(ref);
3508
3509 cond_resched();
3510 spin_lock(&delayed_refs->lock);
3511 }
3512
3513 spin_unlock(&delayed_refs->lock);
3514
3515 return ret;
3516}
3517
143bede5 3518static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3519{
3520 struct btrfs_pending_snapshot *snapshot;
3521 struct list_head splice;
3522
3523 INIT_LIST_HEAD(&splice);
3524
3525 list_splice_init(&t->pending_snapshots, &splice);
3526
3527 while (!list_empty(&splice)) {
3528 snapshot = list_entry(splice.next,
3529 struct btrfs_pending_snapshot,
3530 list);
3531
3532 list_del_init(&snapshot->list);
3533
3534 kfree(snapshot);
3535 }
acce952b 3536}
3537
143bede5 3538static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3539{
3540 struct btrfs_inode *btrfs_inode;
3541 struct list_head splice;
3542
3543 INIT_LIST_HEAD(&splice);
3544
acce952b 3545 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3546 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3547
3548 while (!list_empty(&splice)) {
3549 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3550 delalloc_inodes);
3551
3552 list_del_init(&btrfs_inode->delalloc_inodes);
3553
3554 btrfs_invalidate_inodes(btrfs_inode->root);
3555 }
3556
3557 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3558}
3559
3560static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3561 struct extent_io_tree *dirty_pages,
3562 int mark)
3563{
3564 int ret;
3565 struct page *page;
3566 struct inode *btree_inode = root->fs_info->btree_inode;
3567 struct extent_buffer *eb;
3568 u64 start = 0;
3569 u64 end;
3570 u64 offset;
3571 unsigned long index;
3572
3573 while (1) {
3574 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3575 mark, NULL);
acce952b 3576 if (ret)
3577 break;
3578
3579 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3580 while (start <= end) {
3581 index = start >> PAGE_CACHE_SHIFT;
3582 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3583 page = find_get_page(btree_inode->i_mapping, index);
3584 if (!page)
3585 continue;
3586 offset = page_offset(page);
3587
3588 spin_lock(&dirty_pages->buffer_lock);
3589 eb = radix_tree_lookup(
3590 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3591 offset >> PAGE_CACHE_SHIFT);
3592 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3593 if (eb)
acce952b 3594 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3595 &eb->bflags);
acce952b 3596 if (PageWriteback(page))
3597 end_page_writeback(page);
3598
3599 lock_page(page);
3600 if (PageDirty(page)) {
3601 clear_page_dirty_for_io(page);
3602 spin_lock_irq(&page->mapping->tree_lock);
3603 radix_tree_tag_clear(&page->mapping->page_tree,
3604 page_index(page),
3605 PAGECACHE_TAG_DIRTY);
3606 spin_unlock_irq(&page->mapping->tree_lock);
3607 }
3608
acce952b 3609 unlock_page(page);
ee670f0a 3610 page_cache_release(page);
acce952b 3611 }
3612 }
3613
3614 return ret;
3615}
3616
3617static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3618 struct extent_io_tree *pinned_extents)
3619{
3620 struct extent_io_tree *unpin;
3621 u64 start;
3622 u64 end;
3623 int ret;
ed0eaa14 3624 bool loop = true;
acce952b 3625
3626 unpin = pinned_extents;
ed0eaa14 3627again:
acce952b 3628 while (1) {
3629 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3630 EXTENT_DIRTY, NULL);
acce952b 3631 if (ret)
3632 break;
3633
3634 /* opt_discard */
5378e607
LD
3635 if (btrfs_test_opt(root, DISCARD))
3636 ret = btrfs_error_discard_extent(root, start,
3637 end + 1 - start,
3638 NULL);
acce952b 3639
3640 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3641 btrfs_error_unpin_extent_range(root, start, end);
3642 cond_resched();
3643 }
3644
ed0eaa14
LB
3645 if (loop) {
3646 if (unpin == &root->fs_info->freed_extents[0])
3647 unpin = &root->fs_info->freed_extents[1];
3648 else
3649 unpin = &root->fs_info->freed_extents[0];
3650 loop = false;
3651 goto again;
3652 }
3653
acce952b 3654 return 0;
3655}
3656
49b25e05
JM
3657void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3658 struct btrfs_root *root)
3659{
3660 btrfs_destroy_delayed_refs(cur_trans, root);
3661 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3662 cur_trans->dirty_pages.dirty_bytes);
3663
3664 /* FIXME: cleanup wait for commit */
3665 cur_trans->in_commit = 1;
3666 cur_trans->blocked = 1;
d7096fc3 3667 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3668
3669 cur_trans->blocked = 0;
d7096fc3 3670 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3671
3672 cur_trans->commit_done = 1;
d7096fc3 3673 wake_up(&cur_trans->commit_wait);
49b25e05 3674
67cde344
MX
3675 btrfs_destroy_delayed_inodes(root);
3676 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3677
3678 btrfs_destroy_pending_snapshots(cur_trans);
3679
3680 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3681 EXTENT_DIRTY);
6e841e32
LB
3682 btrfs_destroy_pinned_extent(root,
3683 root->fs_info->pinned_extents);
49b25e05
JM
3684
3685 /*
3686 memset(cur_trans, 0, sizeof(*cur_trans));
3687 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3688 */
3689}
3690
3691int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3692{
3693 struct btrfs_transaction *t;
3694 LIST_HEAD(list);
3695
acce952b 3696 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3697
a4abeea4 3698 spin_lock(&root->fs_info->trans_lock);
acce952b 3699 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3700 root->fs_info->trans_no_join = 1;
3701 spin_unlock(&root->fs_info->trans_lock);
3702
acce952b 3703 while (!list_empty(&list)) {
3704 t = list_entry(list.next, struct btrfs_transaction, list);
3705 if (!t)
3706 break;
3707
3708 btrfs_destroy_ordered_operations(root);
3709
3710 btrfs_destroy_ordered_extents(root);
3711
3712 btrfs_destroy_delayed_refs(t, root);
3713
3714 btrfs_block_rsv_release(root,
3715 &root->fs_info->trans_block_rsv,
3716 t->dirty_pages.dirty_bytes);
3717
3718 /* FIXME: cleanup wait for commit */
3719 t->in_commit = 1;
3720 t->blocked = 1;
66657b31 3721 smp_mb();
acce952b 3722 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3723 wake_up(&root->fs_info->transaction_blocked_wait);
3724
3725 t->blocked = 0;
66657b31 3726 smp_mb();
acce952b 3727 if (waitqueue_active(&root->fs_info->transaction_wait))
3728 wake_up(&root->fs_info->transaction_wait);
acce952b 3729
acce952b 3730 t->commit_done = 1;
66657b31 3731 smp_mb();
acce952b 3732 if (waitqueue_active(&t->commit_wait))
3733 wake_up(&t->commit_wait);
acce952b 3734
67cde344
MX
3735 btrfs_destroy_delayed_inodes(root);
3736 btrfs_assert_delayed_root_empty(root);
3737
acce952b 3738 btrfs_destroy_pending_snapshots(t);
3739
3740 btrfs_destroy_delalloc_inodes(root);
3741
a4abeea4 3742 spin_lock(&root->fs_info->trans_lock);
acce952b 3743 root->fs_info->running_transaction = NULL;
a4abeea4 3744 spin_unlock(&root->fs_info->trans_lock);
acce952b 3745
3746 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3747 EXTENT_DIRTY);
3748
3749 btrfs_destroy_pinned_extent(root,
3750 root->fs_info->pinned_extents);
3751
13c5a93e 3752 atomic_set(&t->use_count, 0);
acce952b 3753 list_del_init(&t->list);
3754 memset(t, 0, sizeof(*t));
3755 kmem_cache_free(btrfs_transaction_cachep, t);
3756 }
3757
a4abeea4
JB
3758 spin_lock(&root->fs_info->trans_lock);
3759 root->fs_info->trans_no_join = 0;
3760 spin_unlock(&root->fs_info->trans_lock);
acce952b 3761 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3762
3763 return 0;
3764}
3765
d1310b2e 3766static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 3767 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3768 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3769 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3770 /* note we're sharing with inode.c for the merge bio hook */
3771 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3772};