Btrfs: introduce mark_extent_buffer_accessed
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41
JB
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
2ac55d41 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
727011e0 373 if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 374 return ret;
d397712b 375
a826d6dc
JB
376 /*
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
379 * any less wrong.
380 */
381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382 return ret;
383
f188591e
CM
384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385 eb->start, eb->len);
4235298e 386 if (num_copies == 1)
f188591e 387 return ret;
4235298e 388
f188591e 389 mirror_num++;
4235298e 390 if (mirror_num > num_copies)
f188591e 391 return ret;
f188591e 392 }
f188591e
CM
393 return -EIO;
394}
19c00ddc 395
d352ac68 396/*
d397712b
CM
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 399 */
d397712b 400
b2950863 401static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 402{
d1310b2e 403 struct extent_io_tree *tree;
35ebb934 404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 405 u64 found_start;
19c00ddc 406 struct extent_buffer *eb;
f188591e 407
d1310b2e 408 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 409
4f2de97a
JB
410 eb = (struct extent_buffer *)page->private;
411 if (page != eb->pages[0])
412 return 0;
784b4e29 413
19c00ddc
CM
414 found_start = btrfs_header_bytenr(eb);
415 if (found_start != start) {
55c69072 416 WARN_ON(1);
4f2de97a 417 return 0;
55c69072 418 }
727011e0 419 if (eb->pages[0] != page) {
55c69072 420 WARN_ON(1);
4f2de97a 421 return 0;
55c69072
CM
422 }
423 if (!PageUptodate(page)) {
55c69072 424 WARN_ON(1);
4f2de97a 425 return 0;
19c00ddc 426 }
19c00ddc 427 csum_tree_block(root, eb, 0);
19c00ddc
CM
428 return 0;
429}
430
2b82032c
YZ
431static int check_tree_block_fsid(struct btrfs_root *root,
432 struct extent_buffer *eb)
433{
434 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
435 u8 fsid[BTRFS_UUID_SIZE];
436 int ret = 1;
437
438 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
439 BTRFS_FSID_SIZE);
440 while (fs_devices) {
441 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
442 ret = 0;
443 break;
444 }
445 fs_devices = fs_devices->seed;
446 }
447 return ret;
448}
449
a826d6dc
JB
450#define CORRUPT(reason, eb, root, slot) \
451 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
452 "root=%llu, slot=%d\n", reason, \
453 (unsigned long long)btrfs_header_bytenr(eb), \
454 (unsigned long long)root->objectid, slot)
455
456static noinline int check_leaf(struct btrfs_root *root,
457 struct extent_buffer *leaf)
458{
459 struct btrfs_key key;
460 struct btrfs_key leaf_key;
461 u32 nritems = btrfs_header_nritems(leaf);
462 int slot;
463
464 if (nritems == 0)
465 return 0;
466
467 /* Check the 0 item */
468 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
469 BTRFS_LEAF_DATA_SIZE(root)) {
470 CORRUPT("invalid item offset size pair", leaf, root, 0);
471 return -EIO;
472 }
473
474 /*
475 * Check to make sure each items keys are in the correct order and their
476 * offsets make sense. We only have to loop through nritems-1 because
477 * we check the current slot against the next slot, which verifies the
478 * next slot's offset+size makes sense and that the current's slot
479 * offset is correct.
480 */
481 for (slot = 0; slot < nritems - 1; slot++) {
482 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
483 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
484
485 /* Make sure the keys are in the right order */
486 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
487 CORRUPT("bad key order", leaf, root, slot);
488 return -EIO;
489 }
490
491 /*
492 * Make sure the offset and ends are right, remember that the
493 * item data starts at the end of the leaf and grows towards the
494 * front.
495 */
496 if (btrfs_item_offset_nr(leaf, slot) !=
497 btrfs_item_end_nr(leaf, slot + 1)) {
498 CORRUPT("slot offset bad", leaf, root, slot);
499 return -EIO;
500 }
501
502 /*
503 * Check to make sure that we don't point outside of the leaf,
504 * just incase all the items are consistent to eachother, but
505 * all point outside of the leaf.
506 */
507 if (btrfs_item_end_nr(leaf, slot) >
508 BTRFS_LEAF_DATA_SIZE(root)) {
509 CORRUPT("slot end outside of leaf", leaf, root, slot);
510 return -EIO;
511 }
512 }
513
514 return 0;
515}
516
727011e0
CM
517struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
518 struct page *page, int max_walk)
519{
520 struct extent_buffer *eb;
521 u64 start = page_offset(page);
522 u64 target = start;
523 u64 min_start;
524
525 if (start < max_walk)
526 min_start = 0;
527 else
528 min_start = start - max_walk;
529
530 while (start >= min_start) {
531 eb = find_extent_buffer(tree, start, 0);
532 if (eb) {
533 /*
534 * we found an extent buffer and it contains our page
535 * horray!
536 */
537 if (eb->start <= target &&
538 eb->start + eb->len > target)
539 return eb;
540
541 /* we found an extent buffer that wasn't for us */
542 free_extent_buffer(eb);
543 return NULL;
544 }
545 if (start == 0)
546 break;
547 start -= PAGE_CACHE_SIZE;
548 }
549 return NULL;
550}
551
b2950863 552static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
553 struct extent_state *state)
554{
555 struct extent_io_tree *tree;
556 u64 found_start;
557 int found_level;
ce9adaa5
CM
558 struct extent_buffer *eb;
559 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 560 int ret = 0;
727011e0 561 int reads_done;
ce9adaa5 562
ce9adaa5
CM
563 if (!page->private)
564 goto out;
d397712b 565
727011e0 566 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 567 eb = (struct extent_buffer *)page->private;
d397712b 568
727011e0
CM
569 reads_done = atomic_dec_and_test(&eb->pages_reading);
570 if (!reads_done)
571 goto err;
f188591e 572
ce9adaa5 573 found_start = btrfs_header_bytenr(eb);
727011e0 574 if (found_start != eb->start) {
7a36ddec 575 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
576 "%llu %llu\n",
577 (unsigned long long)found_start,
578 (unsigned long long)eb->start);
f188591e 579 ret = -EIO;
ce9adaa5
CM
580 goto err;
581 }
2b82032c 582 if (check_tree_block_fsid(root, eb)) {
7a36ddec 583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 584 (unsigned long long)eb->start);
1259ab75
CM
585 ret = -EIO;
586 goto err;
587 }
ce9adaa5
CM
588 found_level = btrfs_header_level(eb);
589
85d4e461
CM
590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 eb, found_level);
4008c04a 592
ce9adaa5 593 ret = csum_tree_block(root, eb, 1);
a826d6dc 594 if (ret) {
f188591e 595 ret = -EIO;
a826d6dc
JB
596 goto err;
597 }
598
599 /*
600 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 * that we don't try and read the other copies of this block, just
602 * return -EIO.
603 */
604 if (found_level == 0 && check_leaf(root, eb)) {
605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 ret = -EIO;
607 }
ce9adaa5 608
ce9adaa5 609err:
4bb31e92
AJ
610 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
611 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
612 btree_readahead_hook(root, eb, eb->start, ret);
613 }
614
727011e0
CM
615 if (ret && eb)
616 clear_extent_buffer_uptodate(tree, eb, NULL);
ce9adaa5 617out:
f188591e 618 return ret;
ce9adaa5
CM
619}
620
4bb31e92
AJ
621static int btree_io_failed_hook(struct bio *failed_bio,
622 struct page *page, u64 start, u64 end,
32240a91 623 int mirror_num, struct extent_state *state)
4bb31e92 624{
4bb31e92
AJ
625 struct extent_buffer *eb;
626 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
627
4f2de97a
JB
628 eb = (struct extent_buffer *)page->private;
629 if (page != eb->pages[0])
630 return -EIO;
4bb31e92
AJ
631
632 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
633 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
634 btree_readahead_hook(root, eb, eb->start, -EIO);
635 }
4bb31e92
AJ
636 return -EIO; /* we fixed nothing */
637}
638
ce9adaa5 639static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
640{
641 struct end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
ce9adaa5 643
ce9adaa5 644 fs_info = end_io_wq->info;
ce9adaa5 645 end_io_wq->error = err;
8b712842
CM
646 end_io_wq->work.func = end_workqueue_fn;
647 end_io_wq->work.flags = 0;
d20f7043 648
7b6d91da 649 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 650 if (end_io_wq->metadata == 1)
cad321ad
CM
651 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
652 &end_io_wq->work);
0cb59c99
JB
653 else if (end_io_wq->metadata == 2)
654 btrfs_queue_worker(&fs_info->endio_freespace_worker,
655 &end_io_wq->work);
cad321ad
CM
656 else
657 btrfs_queue_worker(&fs_info->endio_write_workers,
658 &end_io_wq->work);
d20f7043
CM
659 } else {
660 if (end_io_wq->metadata)
661 btrfs_queue_worker(&fs_info->endio_meta_workers,
662 &end_io_wq->work);
663 else
664 btrfs_queue_worker(&fs_info->endio_workers,
665 &end_io_wq->work);
666 }
ce9adaa5
CM
667}
668
0cb59c99
JB
669/*
670 * For the metadata arg you want
671 *
672 * 0 - if data
673 * 1 - if normal metadta
674 * 2 - if writing to the free space cache area
675 */
22c59948
CM
676int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
677 int metadata)
0b86a832 678{
ce9adaa5 679 struct end_io_wq *end_io_wq;
ce9adaa5
CM
680 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
681 if (!end_io_wq)
682 return -ENOMEM;
683
684 end_io_wq->private = bio->bi_private;
685 end_io_wq->end_io = bio->bi_end_io;
22c59948 686 end_io_wq->info = info;
ce9adaa5
CM
687 end_io_wq->error = 0;
688 end_io_wq->bio = bio;
22c59948 689 end_io_wq->metadata = metadata;
ce9adaa5
CM
690
691 bio->bi_private = end_io_wq;
692 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
693 return 0;
694}
695
b64a2851 696unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 697{
4854ddd0
CM
698 unsigned long limit = min_t(unsigned long,
699 info->workers.max_workers,
700 info->fs_devices->open_devices);
701 return 256 * limit;
702}
0986fe9e 703
4a69a410
CM
704static void run_one_async_start(struct btrfs_work *work)
705{
4a69a410
CM
706 struct async_submit_bio *async;
707
708 async = container_of(work, struct async_submit_bio, work);
4a69a410 709 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
710 async->mirror_num, async->bio_flags,
711 async->bio_offset);
4a69a410
CM
712}
713
714static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
715{
716 struct btrfs_fs_info *fs_info;
717 struct async_submit_bio *async;
4854ddd0 718 int limit;
8b712842
CM
719
720 async = container_of(work, struct async_submit_bio, work);
721 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 722
b64a2851 723 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
724 limit = limit * 2 / 3;
725
8b712842 726 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 727
b64a2851
CM
728 if (atomic_read(&fs_info->nr_async_submits) < limit &&
729 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
730 wake_up(&fs_info->async_submit_wait);
731
4a69a410 732 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
733 async->mirror_num, async->bio_flags,
734 async->bio_offset);
4a69a410
CM
735}
736
737static void run_one_async_free(struct btrfs_work *work)
738{
739 struct async_submit_bio *async;
740
741 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
742 kfree(async);
743}
744
44b8bd7e
CM
745int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
746 int rw, struct bio *bio, int mirror_num,
c8b97818 747 unsigned long bio_flags,
eaf25d93 748 u64 bio_offset,
4a69a410
CM
749 extent_submit_bio_hook_t *submit_bio_start,
750 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
751{
752 struct async_submit_bio *async;
753
754 async = kmalloc(sizeof(*async), GFP_NOFS);
755 if (!async)
756 return -ENOMEM;
757
758 async->inode = inode;
759 async->rw = rw;
760 async->bio = bio;
761 async->mirror_num = mirror_num;
4a69a410
CM
762 async->submit_bio_start = submit_bio_start;
763 async->submit_bio_done = submit_bio_done;
764
765 async->work.func = run_one_async_start;
766 async->work.ordered_func = run_one_async_done;
767 async->work.ordered_free = run_one_async_free;
768
8b712842 769 async->work.flags = 0;
c8b97818 770 async->bio_flags = bio_flags;
eaf25d93 771 async->bio_offset = bio_offset;
8c8bee1d 772
cb03c743 773 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 774
7b6d91da 775 if (rw & REQ_SYNC)
d313d7a3
CM
776 btrfs_set_work_high_prio(&async->work);
777
8b712842 778 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 779
d397712b 780 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
781 atomic_read(&fs_info->nr_async_submits)) {
782 wait_event(fs_info->async_submit_wait,
783 (atomic_read(&fs_info->nr_async_submits) == 0));
784 }
785
44b8bd7e
CM
786 return 0;
787}
788
ce3ed71a
CM
789static int btree_csum_one_bio(struct bio *bio)
790{
791 struct bio_vec *bvec = bio->bi_io_vec;
792 int bio_index = 0;
793 struct btrfs_root *root;
794
795 WARN_ON(bio->bi_vcnt <= 0);
d397712b 796 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
797 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
798 csum_dirty_buffer(root, bvec->bv_page);
799 bio_index++;
800 bvec++;
801 }
802 return 0;
803}
804
4a69a410
CM
805static int __btree_submit_bio_start(struct inode *inode, int rw,
806 struct bio *bio, int mirror_num,
eaf25d93
CM
807 unsigned long bio_flags,
808 u64 bio_offset)
22c59948 809{
8b712842
CM
810 /*
811 * when we're called for a write, we're already in the async
5443be45 812 * submission context. Just jump into btrfs_map_bio
8b712842 813 */
4a69a410
CM
814 btree_csum_one_bio(bio);
815 return 0;
816}
22c59948 817
4a69a410 818static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
819 int mirror_num, unsigned long bio_flags,
820 u64 bio_offset)
4a69a410 821{
8b712842 822 /*
4a69a410
CM
823 * when we're called for a write, we're already in the async
824 * submission context. Just jump into btrfs_map_bio
8b712842 825 */
8b712842 826 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
827}
828
44b8bd7e 829static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
830 int mirror_num, unsigned long bio_flags,
831 u64 bio_offset)
44b8bd7e 832{
cad321ad
CM
833 int ret;
834
835 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
836 bio, 1);
837 BUG_ON(ret);
838
7b6d91da 839 if (!(rw & REQ_WRITE)) {
4a69a410
CM
840 /*
841 * called for a read, do the setup so that checksum validation
842 * can happen in the async kernel threads
843 */
4a69a410 844 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 845 mirror_num, 0);
44b8bd7e 846 }
d313d7a3 847
cad321ad
CM
848 /*
849 * kthread helpers are used to submit writes so that checksumming
850 * can happen in parallel across all CPUs
851 */
44b8bd7e 852 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 853 inode, rw, bio, mirror_num, 0,
eaf25d93 854 bio_offset,
4a69a410
CM
855 __btree_submit_bio_start,
856 __btree_submit_bio_done);
44b8bd7e
CM
857}
858
3dd1462e 859#ifdef CONFIG_MIGRATION
784b4e29 860static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
861 struct page *newpage, struct page *page,
862 enum migrate_mode mode)
784b4e29
CM
863{
864 /*
865 * we can't safely write a btree page from here,
866 * we haven't done the locking hook
867 */
868 if (PageDirty(page))
869 return -EAGAIN;
870 /*
871 * Buffers may be managed in a filesystem specific way.
872 * We must have no buffers or drop them.
873 */
874 if (page_has_private(page) &&
875 !try_to_release_page(page, GFP_KERNEL))
876 return -EAGAIN;
a6bc32b8 877 return migrate_page(mapping, newpage, page, mode);
784b4e29 878}
3dd1462e 879#endif
784b4e29 880
0da5468f
CM
881static int btree_writepage(struct page *page, struct writeback_control *wbc)
882{
d1310b2e
CM
883 struct extent_io_tree *tree;
884 tree = &BTRFS_I(page->mapping->host)->io_tree;
727011e0 885
b9473439
CM
886 if (!(current->flags & PF_MEMALLOC)) {
887 return extent_write_full_page(tree, page,
888 btree_get_extent, wbc);
889 }
5443be45 890
b9473439 891 redirty_page_for_writepage(wbc, page);
b9473439
CM
892 unlock_page(page);
893 return 0;
5f39d397 894}
0da5468f
CM
895
896static int btree_writepages(struct address_space *mapping,
897 struct writeback_control *wbc)
898{
d1310b2e
CM
899 struct extent_io_tree *tree;
900 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 901 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 902 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 903 u64 num_dirty;
24ab9cd8 904 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
905
906 if (wbc->for_kupdate)
907 return 0;
908
b9473439
CM
909 /* this is a bit racy, but that's ok */
910 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 911 if (num_dirty < thresh)
793955bc 912 return 0;
793955bc 913 }
0da5468f
CM
914 return extent_writepages(tree, mapping, btree_get_extent, wbc);
915}
916
b2950863 917static int btree_readpage(struct file *file, struct page *page)
5f39d397 918{
d1310b2e
CM
919 struct extent_io_tree *tree;
920 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 921 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 922}
22b0ebda 923
70dec807 924static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 925{
98509cfc 926 if (PageWriteback(page) || PageDirty(page))
d397712b 927 return 0;
0c4e538b
DS
928 /*
929 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
930 * slab allocation from alloc_extent_state down the callchain where
931 * it'd hit a BUG_ON as those flags are not allowed.
932 */
933 gfp_flags &= ~GFP_SLAB_BUG_MASK;
934
3083ee2e 935 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
936}
937
5f39d397 938static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 939{
d1310b2e
CM
940 struct extent_io_tree *tree;
941 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
942 extent_invalidatepage(tree, page, offset);
943 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 944 if (PagePrivate(page)) {
d397712b
CM
945 printk(KERN_WARNING "btrfs warning page private not zero "
946 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
947 ClearPagePrivate(page);
948 set_page_private(page, 0);
949 page_cache_release(page);
950 }
d98237b3
CM
951}
952
7f09410b 953static const struct address_space_operations btree_aops = {
d98237b3
CM
954 .readpage = btree_readpage,
955 .writepage = btree_writepage,
0da5468f 956 .writepages = btree_writepages,
5f39d397
CM
957 .releasepage = btree_releasepage,
958 .invalidatepage = btree_invalidatepage,
5a92bc88 959#ifdef CONFIG_MIGRATION
784b4e29 960 .migratepage = btree_migratepage,
5a92bc88 961#endif
d98237b3
CM
962};
963
ca7a79ad
CM
964int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
965 u64 parent_transid)
090d1875 966{
5f39d397
CM
967 struct extent_buffer *buf = NULL;
968 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 969 int ret = 0;
090d1875 970
db94535d 971 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 972 if (!buf)
090d1875 973 return 0;
d1310b2e 974 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 975 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 976 free_extent_buffer(buf);
de428b63 977 return ret;
090d1875
CM
978}
979
ab0fff03
AJ
980int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
981 int mirror_num, struct extent_buffer **eb)
982{
983 struct extent_buffer *buf = NULL;
984 struct inode *btree_inode = root->fs_info->btree_inode;
985 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
986 int ret;
987
988 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
989 if (!buf)
990 return 0;
991
992 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
993
994 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
995 btree_get_extent, mirror_num);
996 if (ret) {
997 free_extent_buffer(buf);
998 return ret;
999 }
1000
1001 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1002 free_extent_buffer(buf);
1003 return -EIO;
1004 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1005 *eb = buf;
1006 } else {
1007 free_extent_buffer(buf);
1008 }
1009 return 0;
1010}
1011
0999df54
CM
1012struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1013 u64 bytenr, u32 blocksize)
1014{
1015 struct inode *btree_inode = root->fs_info->btree_inode;
1016 struct extent_buffer *eb;
1017 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1018 bytenr, blocksize);
0999df54
CM
1019 return eb;
1020}
1021
1022struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1023 u64 bytenr, u32 blocksize)
1024{
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_buffer *eb;
1027
1028 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1029 bytenr, blocksize);
0999df54
CM
1030 return eb;
1031}
1032
1033
e02119d5
CM
1034int btrfs_write_tree_block(struct extent_buffer *buf)
1035{
727011e0 1036 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1037 buf->start + buf->len - 1);
e02119d5
CM
1038}
1039
1040int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1041{
727011e0 1042 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1043 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1044}
1045
0999df54 1046struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1047 u32 blocksize, u64 parent_transid)
0999df54
CM
1048{
1049 struct extent_buffer *buf = NULL;
0999df54
CM
1050 int ret;
1051
0999df54
CM
1052 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1053 if (!buf)
1054 return NULL;
0999df54 1055
ca7a79ad 1056 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1057
d397712b 1058 if (ret == 0)
b4ce94de 1059 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1060 return buf;
ce9adaa5 1061
eb60ceac
CM
1062}
1063
e089f05c 1064int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1065 struct extent_buffer *buf)
ed2ff2cb 1066{
5f39d397 1067 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1068 if (btrfs_header_generation(buf) ==
925baedd 1069 root->fs_info->running_transaction->transid) {
b9447ef8 1070 btrfs_assert_tree_locked(buf);
b4ce94de 1071
b9473439
CM
1072 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1073 spin_lock(&root->fs_info->delalloc_lock);
1074 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1075 root->fs_info->dirty_metadata_bytes -= buf->len;
1076 else
1077 WARN_ON(1);
1078 spin_unlock(&root->fs_info->delalloc_lock);
1079 }
b4ce94de 1080
b9473439
CM
1081 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1082 btrfs_set_lock_blocking(buf);
d1310b2e 1083 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1084 buf);
925baedd 1085 }
5f39d397
CM
1086 return 0;
1087}
1088
db94535d 1089static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1090 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1091 struct btrfs_fs_info *fs_info,
e20d96d6 1092 u64 objectid)
d97e63b6 1093{
cfaa7295 1094 root->node = NULL;
a28ec197 1095 root->commit_root = NULL;
db94535d
CM
1096 root->sectorsize = sectorsize;
1097 root->nodesize = nodesize;
1098 root->leafsize = leafsize;
87ee04eb 1099 root->stripesize = stripesize;
123abc88 1100 root->ref_cows = 0;
0b86a832 1101 root->track_dirty = 0;
c71bf099 1102 root->in_radix = 0;
d68fc57b
YZ
1103 root->orphan_item_inserted = 0;
1104 root->orphan_cleanup_state = 0;
0b86a832 1105
0f7d52f4
CM
1106 root->objectid = objectid;
1107 root->last_trans = 0;
13a8a7c8 1108 root->highest_objectid = 0;
58176a96 1109 root->name = NULL;
6bef4d31 1110 root->inode_tree = RB_ROOT;
16cdcec7 1111 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1112 root->block_rsv = NULL;
d68fc57b 1113 root->orphan_block_rsv = NULL;
0b86a832
CM
1114
1115 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1116 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1117 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1118 spin_lock_init(&root->orphan_lock);
5d4f98a2 1119 spin_lock_init(&root->inode_lock);
f0486c68 1120 spin_lock_init(&root->accounting_lock);
a2135011 1121 mutex_init(&root->objectid_mutex);
e02119d5 1122 mutex_init(&root->log_mutex);
7237f183
YZ
1123 init_waitqueue_head(&root->log_writer_wait);
1124 init_waitqueue_head(&root->log_commit_wait[0]);
1125 init_waitqueue_head(&root->log_commit_wait[1]);
1126 atomic_set(&root->log_commit[0], 0);
1127 atomic_set(&root->log_commit[1], 0);
1128 atomic_set(&root->log_writers, 0);
1129 root->log_batch = 0;
1130 root->log_transid = 0;
257c62e1 1131 root->last_log_commit = 0;
d0c803c4 1132 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1133 fs_info->btree_inode->i_mapping);
017e5369 1134
3768f368
CM
1135 memset(&root->root_key, 0, sizeof(root->root_key));
1136 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1137 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1138 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1139 root->defrag_trans_start = fs_info->generation;
58176a96 1140 init_completion(&root->kobj_unregister);
6702ed49 1141 root->defrag_running = 0;
4d775673 1142 root->root_key.objectid = objectid;
0ee5dc67 1143 root->anon_dev = 0;
3768f368
CM
1144 return 0;
1145}
1146
db94535d 1147static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1148 struct btrfs_fs_info *fs_info,
1149 u64 objectid,
e20d96d6 1150 struct btrfs_root *root)
3768f368
CM
1151{
1152 int ret;
db94535d 1153 u32 blocksize;
84234f3a 1154 u64 generation;
3768f368 1155
db94535d 1156 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1157 tree_root->sectorsize, tree_root->stripesize,
1158 root, fs_info, objectid);
3768f368
CM
1159 ret = btrfs_find_last_root(tree_root, objectid,
1160 &root->root_item, &root->root_key);
4df27c4d
YZ
1161 if (ret > 0)
1162 return -ENOENT;
3768f368
CM
1163 BUG_ON(ret);
1164
84234f3a 1165 generation = btrfs_root_generation(&root->root_item);
db94535d 1166 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1167 root->commit_root = NULL;
db94535d 1168 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1169 blocksize, generation);
68433b73
CM
1170 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1171 free_extent_buffer(root->node);
af31f5e5 1172 root->node = NULL;
68433b73
CM
1173 return -EIO;
1174 }
4df27c4d 1175 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1176 return 0;
1177}
1178
f84a8bd6 1179static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1180{
1181 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1182 if (root)
1183 root->fs_info = fs_info;
1184 return root;
1185}
1186
7237f183
YZ
1187static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1188 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1189{
1190 struct btrfs_root *root;
1191 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1192 struct extent_buffer *leaf;
e02119d5 1193
6f07e42e 1194 root = btrfs_alloc_root(fs_info);
e02119d5 1195 if (!root)
7237f183 1196 return ERR_PTR(-ENOMEM);
e02119d5
CM
1197
1198 __setup_root(tree_root->nodesize, tree_root->leafsize,
1199 tree_root->sectorsize, tree_root->stripesize,
1200 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1201
1202 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1203 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1204 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1205 /*
1206 * log trees do not get reference counted because they go away
1207 * before a real commit is actually done. They do store pointers
1208 * to file data extents, and those reference counts still get
1209 * updated (along with back refs to the log tree).
1210 */
e02119d5
CM
1211 root->ref_cows = 0;
1212
5d4f98a2 1213 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1214 BTRFS_TREE_LOG_OBJECTID, NULL,
1215 0, 0, 0, 0);
7237f183
YZ
1216 if (IS_ERR(leaf)) {
1217 kfree(root);
1218 return ERR_CAST(leaf);
1219 }
e02119d5 1220
5d4f98a2
YZ
1221 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1222 btrfs_set_header_bytenr(leaf, leaf->start);
1223 btrfs_set_header_generation(leaf, trans->transid);
1224 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1225 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1226 root->node = leaf;
e02119d5
CM
1227
1228 write_extent_buffer(root->node, root->fs_info->fsid,
1229 (unsigned long)btrfs_header_fsid(root->node),
1230 BTRFS_FSID_SIZE);
1231 btrfs_mark_buffer_dirty(root->node);
1232 btrfs_tree_unlock(root->node);
7237f183
YZ
1233 return root;
1234}
1235
1236int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1237 struct btrfs_fs_info *fs_info)
1238{
1239 struct btrfs_root *log_root;
1240
1241 log_root = alloc_log_tree(trans, fs_info);
1242 if (IS_ERR(log_root))
1243 return PTR_ERR(log_root);
1244 WARN_ON(fs_info->log_root_tree);
1245 fs_info->log_root_tree = log_root;
1246 return 0;
1247}
1248
1249int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1250 struct btrfs_root *root)
1251{
1252 struct btrfs_root *log_root;
1253 struct btrfs_inode_item *inode_item;
1254
1255 log_root = alloc_log_tree(trans, root->fs_info);
1256 if (IS_ERR(log_root))
1257 return PTR_ERR(log_root);
1258
1259 log_root->last_trans = trans->transid;
1260 log_root->root_key.offset = root->root_key.objectid;
1261
1262 inode_item = &log_root->root_item.inode;
1263 inode_item->generation = cpu_to_le64(1);
1264 inode_item->size = cpu_to_le64(3);
1265 inode_item->nlink = cpu_to_le32(1);
1266 inode_item->nbytes = cpu_to_le64(root->leafsize);
1267 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1268
5d4f98a2 1269 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1270
1271 WARN_ON(root->log_root);
1272 root->log_root = log_root;
1273 root->log_transid = 0;
257c62e1 1274 root->last_log_commit = 0;
e02119d5
CM
1275 return 0;
1276}
1277
1278struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1279 struct btrfs_key *location)
1280{
1281 struct btrfs_root *root;
1282 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1283 struct btrfs_path *path;
5f39d397 1284 struct extent_buffer *l;
84234f3a 1285 u64 generation;
db94535d 1286 u32 blocksize;
0f7d52f4
CM
1287 int ret = 0;
1288
6f07e42e 1289 root = btrfs_alloc_root(fs_info);
0cf6c620 1290 if (!root)
0f7d52f4 1291 return ERR_PTR(-ENOMEM);
0f7d52f4 1292 if (location->offset == (u64)-1) {
db94535d 1293 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1294 location->objectid, root);
1295 if (ret) {
0f7d52f4
CM
1296 kfree(root);
1297 return ERR_PTR(ret);
1298 }
13a8a7c8 1299 goto out;
0f7d52f4
CM
1300 }
1301
db94535d 1302 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1303 tree_root->sectorsize, tree_root->stripesize,
1304 root, fs_info, location->objectid);
0f7d52f4
CM
1305
1306 path = btrfs_alloc_path();
db5b493a
TI
1307 if (!path) {
1308 kfree(root);
1309 return ERR_PTR(-ENOMEM);
1310 }
0f7d52f4 1311 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1312 if (ret == 0) {
1313 l = path->nodes[0];
1314 read_extent_buffer(l, &root->root_item,
1315 btrfs_item_ptr_offset(l, path->slots[0]),
1316 sizeof(root->root_item));
1317 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1318 }
0f7d52f4
CM
1319 btrfs_free_path(path);
1320 if (ret) {
5e540f77 1321 kfree(root);
13a8a7c8
YZ
1322 if (ret > 0)
1323 ret = -ENOENT;
0f7d52f4
CM
1324 return ERR_PTR(ret);
1325 }
13a8a7c8 1326
84234f3a 1327 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1328 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1329 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1330 blocksize, generation);
5d4f98a2 1331 root->commit_root = btrfs_root_node(root);
0f7d52f4 1332 BUG_ON(!root->node);
13a8a7c8 1333out:
08fe4db1 1334 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1335 root->ref_cows = 1;
08fe4db1
LZ
1336 btrfs_check_and_init_root_item(&root->root_item);
1337 }
13a8a7c8 1338
5eda7b5e
CM
1339 return root;
1340}
1341
edbd8d4e
CM
1342struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1343 struct btrfs_key *location)
5eda7b5e
CM
1344{
1345 struct btrfs_root *root;
1346 int ret;
1347
edbd8d4e
CM
1348 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1349 return fs_info->tree_root;
1350 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1351 return fs_info->extent_root;
8f18cf13
CM
1352 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1353 return fs_info->chunk_root;
1354 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1355 return fs_info->dev_root;
0403e47e
YZ
1356 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1357 return fs_info->csum_root;
4df27c4d
YZ
1358again:
1359 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1360 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1361 (unsigned long)location->objectid);
4df27c4d 1362 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1363 if (root)
1364 return root;
1365
e02119d5 1366 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1367 if (IS_ERR(root))
1368 return root;
3394e160 1369
581bb050 1370 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1371 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1372 GFP_NOFS);
35a30d7c
DS
1373 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1374 ret = -ENOMEM;
581bb050 1375 goto fail;
35a30d7c 1376 }
581bb050
LZ
1377
1378 btrfs_init_free_ino_ctl(root);
1379 mutex_init(&root->fs_commit_mutex);
1380 spin_lock_init(&root->cache_lock);
1381 init_waitqueue_head(&root->cache_wait);
1382
0ee5dc67 1383 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1384 if (ret)
1385 goto fail;
3394e160 1386
d68fc57b
YZ
1387 if (btrfs_root_refs(&root->root_item) == 0) {
1388 ret = -ENOENT;
1389 goto fail;
1390 }
1391
1392 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1393 if (ret < 0)
1394 goto fail;
1395 if (ret == 0)
1396 root->orphan_item_inserted = 1;
1397
4df27c4d
YZ
1398 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1399 if (ret)
1400 goto fail;
1401
1402 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1403 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1404 (unsigned long)root->root_key.objectid,
0f7d52f4 1405 root);
d68fc57b 1406 if (ret == 0)
4df27c4d 1407 root->in_radix = 1;
d68fc57b 1408
4df27c4d
YZ
1409 spin_unlock(&fs_info->fs_roots_radix_lock);
1410 radix_tree_preload_end();
0f7d52f4 1411 if (ret) {
4df27c4d
YZ
1412 if (ret == -EEXIST) {
1413 free_fs_root(root);
1414 goto again;
1415 }
1416 goto fail;
0f7d52f4 1417 }
4df27c4d
YZ
1418
1419 ret = btrfs_find_dead_roots(fs_info->tree_root,
1420 root->root_key.objectid);
1421 WARN_ON(ret);
edbd8d4e 1422 return root;
4df27c4d
YZ
1423fail:
1424 free_fs_root(root);
1425 return ERR_PTR(ret);
edbd8d4e
CM
1426}
1427
04160088
CM
1428static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1429{
1430 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1431 int ret = 0;
04160088
CM
1432 struct btrfs_device *device;
1433 struct backing_dev_info *bdi;
b7967db7 1434
1f78160c
XG
1435 rcu_read_lock();
1436 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1437 if (!device->bdev)
1438 continue;
04160088
CM
1439 bdi = blk_get_backing_dev_info(device->bdev);
1440 if (bdi && bdi_congested(bdi, bdi_bits)) {
1441 ret = 1;
1442 break;
1443 }
1444 }
1f78160c 1445 rcu_read_unlock();
04160088
CM
1446 return ret;
1447}
1448
ad081f14
JA
1449/*
1450 * If this fails, caller must call bdi_destroy() to get rid of the
1451 * bdi again.
1452 */
04160088
CM
1453static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1454{
ad081f14
JA
1455 int err;
1456
1457 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1458 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1459 if (err)
1460 return err;
1461
4575c9cc 1462 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1463 bdi->congested_fn = btrfs_congested_fn;
1464 bdi->congested_data = info;
1465 return 0;
1466}
1467
8b712842
CM
1468/*
1469 * called by the kthread helper functions to finally call the bio end_io
1470 * functions. This is where read checksum verification actually happens
1471 */
1472static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1473{
ce9adaa5 1474 struct bio *bio;
8b712842
CM
1475 struct end_io_wq *end_io_wq;
1476 struct btrfs_fs_info *fs_info;
ce9adaa5 1477 int error;
ce9adaa5 1478
8b712842
CM
1479 end_io_wq = container_of(work, struct end_io_wq, work);
1480 bio = end_io_wq->bio;
1481 fs_info = end_io_wq->info;
ce9adaa5 1482
8b712842
CM
1483 error = end_io_wq->error;
1484 bio->bi_private = end_io_wq->private;
1485 bio->bi_end_io = end_io_wq->end_io;
1486 kfree(end_io_wq);
8b712842 1487 bio_endio(bio, error);
44b8bd7e
CM
1488}
1489
a74a4b97
CM
1490static int cleaner_kthread(void *arg)
1491{
1492 struct btrfs_root *root = arg;
1493
1494 do {
a74a4b97 1495 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1496
1497 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1498 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1499 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1500 btrfs_clean_old_snapshots(root);
1501 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1502 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1503 }
a74a4b97 1504
a0acae0e 1505 if (!try_to_freeze()) {
a74a4b97 1506 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1507 if (!kthread_should_stop())
1508 schedule();
a74a4b97
CM
1509 __set_current_state(TASK_RUNNING);
1510 }
1511 } while (!kthread_should_stop());
1512 return 0;
1513}
1514
1515static int transaction_kthread(void *arg)
1516{
1517 struct btrfs_root *root = arg;
1518 struct btrfs_trans_handle *trans;
1519 struct btrfs_transaction *cur;
8929ecfa 1520 u64 transid;
a74a4b97
CM
1521 unsigned long now;
1522 unsigned long delay;
1523 int ret;
1524
1525 do {
a74a4b97
CM
1526 delay = HZ * 30;
1527 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1528 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1529
a4abeea4 1530 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1531 cur = root->fs_info->running_transaction;
1532 if (!cur) {
a4abeea4 1533 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1534 goto sleep;
1535 }
31153d81 1536
a74a4b97 1537 now = get_seconds();
8929ecfa
YZ
1538 if (!cur->blocked &&
1539 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1540 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1541 delay = HZ * 5;
1542 goto sleep;
1543 }
8929ecfa 1544 transid = cur->transid;
a4abeea4 1545 spin_unlock(&root->fs_info->trans_lock);
56bec294 1546
7a7eaa40 1547 trans = btrfs_join_transaction(root);
3612b495 1548 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1549 if (transid == trans->transid) {
1550 ret = btrfs_commit_transaction(trans, root);
1551 BUG_ON(ret);
1552 } else {
1553 btrfs_end_transaction(trans, root);
1554 }
a74a4b97
CM
1555sleep:
1556 wake_up_process(root->fs_info->cleaner_kthread);
1557 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1558
a0acae0e 1559 if (!try_to_freeze()) {
a74a4b97 1560 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1561 if (!kthread_should_stop() &&
1562 !btrfs_transaction_blocked(root->fs_info))
1563 schedule_timeout(delay);
a74a4b97
CM
1564 __set_current_state(TASK_RUNNING);
1565 }
1566 } while (!kthread_should_stop());
1567 return 0;
1568}
1569
af31f5e5
CM
1570/*
1571 * this will find the highest generation in the array of
1572 * root backups. The index of the highest array is returned,
1573 * or -1 if we can't find anything.
1574 *
1575 * We check to make sure the array is valid by comparing the
1576 * generation of the latest root in the array with the generation
1577 * in the super block. If they don't match we pitch it.
1578 */
1579static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1580{
1581 u64 cur;
1582 int newest_index = -1;
1583 struct btrfs_root_backup *root_backup;
1584 int i;
1585
1586 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1587 root_backup = info->super_copy->super_roots + i;
1588 cur = btrfs_backup_tree_root_gen(root_backup);
1589 if (cur == newest_gen)
1590 newest_index = i;
1591 }
1592
1593 /* check to see if we actually wrapped around */
1594 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1595 root_backup = info->super_copy->super_roots;
1596 cur = btrfs_backup_tree_root_gen(root_backup);
1597 if (cur == newest_gen)
1598 newest_index = 0;
1599 }
1600 return newest_index;
1601}
1602
1603
1604/*
1605 * find the oldest backup so we know where to store new entries
1606 * in the backup array. This will set the backup_root_index
1607 * field in the fs_info struct
1608 */
1609static void find_oldest_super_backup(struct btrfs_fs_info *info,
1610 u64 newest_gen)
1611{
1612 int newest_index = -1;
1613
1614 newest_index = find_newest_super_backup(info, newest_gen);
1615 /* if there was garbage in there, just move along */
1616 if (newest_index == -1) {
1617 info->backup_root_index = 0;
1618 } else {
1619 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1620 }
1621}
1622
1623/*
1624 * copy all the root pointers into the super backup array.
1625 * this will bump the backup pointer by one when it is
1626 * done
1627 */
1628static void backup_super_roots(struct btrfs_fs_info *info)
1629{
1630 int next_backup;
1631 struct btrfs_root_backup *root_backup;
1632 int last_backup;
1633
1634 next_backup = info->backup_root_index;
1635 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1636 BTRFS_NUM_BACKUP_ROOTS;
1637
1638 /*
1639 * just overwrite the last backup if we're at the same generation
1640 * this happens only at umount
1641 */
1642 root_backup = info->super_for_commit->super_roots + last_backup;
1643 if (btrfs_backup_tree_root_gen(root_backup) ==
1644 btrfs_header_generation(info->tree_root->node))
1645 next_backup = last_backup;
1646
1647 root_backup = info->super_for_commit->super_roots + next_backup;
1648
1649 /*
1650 * make sure all of our padding and empty slots get zero filled
1651 * regardless of which ones we use today
1652 */
1653 memset(root_backup, 0, sizeof(*root_backup));
1654
1655 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1656
1657 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1658 btrfs_set_backup_tree_root_gen(root_backup,
1659 btrfs_header_generation(info->tree_root->node));
1660
1661 btrfs_set_backup_tree_root_level(root_backup,
1662 btrfs_header_level(info->tree_root->node));
1663
1664 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1665 btrfs_set_backup_chunk_root_gen(root_backup,
1666 btrfs_header_generation(info->chunk_root->node));
1667 btrfs_set_backup_chunk_root_level(root_backup,
1668 btrfs_header_level(info->chunk_root->node));
1669
1670 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1671 btrfs_set_backup_extent_root_gen(root_backup,
1672 btrfs_header_generation(info->extent_root->node));
1673 btrfs_set_backup_extent_root_level(root_backup,
1674 btrfs_header_level(info->extent_root->node));
1675
7c7e82a7
CM
1676 /*
1677 * we might commit during log recovery, which happens before we set
1678 * the fs_root. Make sure it is valid before we fill it in.
1679 */
1680 if (info->fs_root && info->fs_root->node) {
1681 btrfs_set_backup_fs_root(root_backup,
1682 info->fs_root->node->start);
1683 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1684 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1685 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1686 btrfs_header_level(info->fs_root->node));
7c7e82a7 1687 }
af31f5e5
CM
1688
1689 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1690 btrfs_set_backup_dev_root_gen(root_backup,
1691 btrfs_header_generation(info->dev_root->node));
1692 btrfs_set_backup_dev_root_level(root_backup,
1693 btrfs_header_level(info->dev_root->node));
1694
1695 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1696 btrfs_set_backup_csum_root_gen(root_backup,
1697 btrfs_header_generation(info->csum_root->node));
1698 btrfs_set_backup_csum_root_level(root_backup,
1699 btrfs_header_level(info->csum_root->node));
1700
1701 btrfs_set_backup_total_bytes(root_backup,
1702 btrfs_super_total_bytes(info->super_copy));
1703 btrfs_set_backup_bytes_used(root_backup,
1704 btrfs_super_bytes_used(info->super_copy));
1705 btrfs_set_backup_num_devices(root_backup,
1706 btrfs_super_num_devices(info->super_copy));
1707
1708 /*
1709 * if we don't copy this out to the super_copy, it won't get remembered
1710 * for the next commit
1711 */
1712 memcpy(&info->super_copy->super_roots,
1713 &info->super_for_commit->super_roots,
1714 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1715}
1716
1717/*
1718 * this copies info out of the root backup array and back into
1719 * the in-memory super block. It is meant to help iterate through
1720 * the array, so you send it the number of backups you've already
1721 * tried and the last backup index you used.
1722 *
1723 * this returns -1 when it has tried all the backups
1724 */
1725static noinline int next_root_backup(struct btrfs_fs_info *info,
1726 struct btrfs_super_block *super,
1727 int *num_backups_tried, int *backup_index)
1728{
1729 struct btrfs_root_backup *root_backup;
1730 int newest = *backup_index;
1731
1732 if (*num_backups_tried == 0) {
1733 u64 gen = btrfs_super_generation(super);
1734
1735 newest = find_newest_super_backup(info, gen);
1736 if (newest == -1)
1737 return -1;
1738
1739 *backup_index = newest;
1740 *num_backups_tried = 1;
1741 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1742 /* we've tried all the backups, all done */
1743 return -1;
1744 } else {
1745 /* jump to the next oldest backup */
1746 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1747 BTRFS_NUM_BACKUP_ROOTS;
1748 *backup_index = newest;
1749 *num_backups_tried += 1;
1750 }
1751 root_backup = super->super_roots + newest;
1752
1753 btrfs_set_super_generation(super,
1754 btrfs_backup_tree_root_gen(root_backup));
1755 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1756 btrfs_set_super_root_level(super,
1757 btrfs_backup_tree_root_level(root_backup));
1758 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1759
1760 /*
1761 * fixme: the total bytes and num_devices need to match or we should
1762 * need a fsck
1763 */
1764 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1765 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1766 return 0;
1767}
1768
1769/* helper to cleanup tree roots */
1770static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1771{
1772 free_extent_buffer(info->tree_root->node);
1773 free_extent_buffer(info->tree_root->commit_root);
1774 free_extent_buffer(info->dev_root->node);
1775 free_extent_buffer(info->dev_root->commit_root);
1776 free_extent_buffer(info->extent_root->node);
1777 free_extent_buffer(info->extent_root->commit_root);
1778 free_extent_buffer(info->csum_root->node);
1779 free_extent_buffer(info->csum_root->commit_root);
1780
1781 info->tree_root->node = NULL;
1782 info->tree_root->commit_root = NULL;
1783 info->dev_root->node = NULL;
1784 info->dev_root->commit_root = NULL;
1785 info->extent_root->node = NULL;
1786 info->extent_root->commit_root = NULL;
1787 info->csum_root->node = NULL;
1788 info->csum_root->commit_root = NULL;
1789
1790 if (chunk_root) {
1791 free_extent_buffer(info->chunk_root->node);
1792 free_extent_buffer(info->chunk_root->commit_root);
1793 info->chunk_root->node = NULL;
1794 info->chunk_root->commit_root = NULL;
1795 }
1796}
1797
1798
ad2b2c80
AV
1799int open_ctree(struct super_block *sb,
1800 struct btrfs_fs_devices *fs_devices,
1801 char *options)
2e635a27 1802{
db94535d
CM
1803 u32 sectorsize;
1804 u32 nodesize;
1805 u32 leafsize;
1806 u32 blocksize;
87ee04eb 1807 u32 stripesize;
84234f3a 1808 u64 generation;
f2b636e8 1809 u64 features;
3de4586c 1810 struct btrfs_key location;
a061fc8d 1811 struct buffer_head *bh;
4d34b278 1812 struct btrfs_super_block *disk_super;
815745cf 1813 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1814 struct btrfs_root *tree_root;
4d34b278
ID
1815 struct btrfs_root *extent_root;
1816 struct btrfs_root *csum_root;
1817 struct btrfs_root *chunk_root;
1818 struct btrfs_root *dev_root;
e02119d5 1819 struct btrfs_root *log_tree_root;
eb60ceac 1820 int ret;
e58ca020 1821 int err = -EINVAL;
af31f5e5
CM
1822 int num_backups_tried = 0;
1823 int backup_index = 0;
4543df7e 1824
f84a8bd6 1825 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1826 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1827 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1828 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1829 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1830
f84a8bd6
AV
1831 if (!tree_root || !extent_root || !csum_root ||
1832 !chunk_root || !dev_root) {
39279cc3
CM
1833 err = -ENOMEM;
1834 goto fail;
1835 }
76dda93c
YZ
1836
1837 ret = init_srcu_struct(&fs_info->subvol_srcu);
1838 if (ret) {
1839 err = ret;
1840 goto fail;
1841 }
1842
1843 ret = setup_bdi(fs_info, &fs_info->bdi);
1844 if (ret) {
1845 err = ret;
1846 goto fail_srcu;
1847 }
1848
1849 fs_info->btree_inode = new_inode(sb);
1850 if (!fs_info->btree_inode) {
1851 err = -ENOMEM;
1852 goto fail_bdi;
1853 }
1854
a6591715 1855 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1856
76dda93c 1857 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1858 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1859 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1860 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1861 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1862 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1863 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1864 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1865 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1866 spin_lock_init(&fs_info->trans_lock);
31153d81 1867 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1868 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1869 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1870 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1871 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1872 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1873
58176a96 1874 init_completion(&fs_info->kobj_unregister);
0b86a832 1875 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1876 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1877 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1878 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1879 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1880 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1881 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1882 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1883 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1884 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1885 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1886 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1887 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1888 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1889 fs_info->sb = sb;
6f568d35 1890 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1891 fs_info->metadata_ratio = 0;
4cb5300b 1892 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1893 fs_info->trans_no_join = 0;
2bf64758 1894 fs_info->free_chunk_space = 0;
c8b97818 1895
90519d66
AJ
1896 /* readahead state */
1897 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1898 spin_lock_init(&fs_info->reada_lock);
c8b97818 1899
b34b086c
CM
1900 fs_info->thread_pool_size = min_t(unsigned long,
1901 num_online_cpus() + 2, 8);
0afbaf8c 1902
3eaa2885
CM
1903 INIT_LIST_HEAD(&fs_info->ordered_extents);
1904 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1905 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1906 GFP_NOFS);
1907 if (!fs_info->delayed_root) {
1908 err = -ENOMEM;
1909 goto fail_iput;
1910 }
1911 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1912
a2de733c
AJ
1913 mutex_init(&fs_info->scrub_lock);
1914 atomic_set(&fs_info->scrubs_running, 0);
1915 atomic_set(&fs_info->scrub_pause_req, 0);
1916 atomic_set(&fs_info->scrubs_paused, 0);
1917 atomic_set(&fs_info->scrub_cancel_req, 0);
1918 init_waitqueue_head(&fs_info->scrub_pause_wait);
1919 init_rwsem(&fs_info->scrub_super_lock);
1920 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
1921#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1922 fs_info->check_integrity_print_mask = 0;
1923#endif
a2de733c 1924
c9e9f97b
ID
1925 spin_lock_init(&fs_info->balance_lock);
1926 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
1927 atomic_set(&fs_info->balance_running, 0);
1928 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 1929 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 1930 fs_info->balance_ctl = NULL;
837d5b6e 1931 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 1932
a061fc8d
CM
1933 sb->s_blocksize = 4096;
1934 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 1935 sb->s_bdi = &fs_info->bdi;
a061fc8d 1936
76dda93c 1937 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 1938 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
1939 /*
1940 * we set the i_size on the btree inode to the max possible int.
1941 * the real end of the address space is determined by all of
1942 * the devices in the system
1943 */
1944 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 1945 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
1946 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1947
5d4f98a2 1948 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 1949 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 1950 fs_info->btree_inode->i_mapping);
a8067e02 1951 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
1952
1953 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 1954
76dda93c
YZ
1955 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1956 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1957 sizeof(struct btrfs_key));
1958 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 1959 insert_inode_hash(fs_info->btree_inode);
76dda93c 1960
0f9dd46c 1961 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 1962 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 1963
11833d66 1964 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 1965 fs_info->btree_inode->i_mapping);
11833d66 1966 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 1967 fs_info->btree_inode->i_mapping);
11833d66 1968 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 1969 fs_info->do_barriers = 1;
e18e4809 1970
39279cc3 1971
5a3f23d5 1972 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 1973 mutex_init(&fs_info->tree_log_mutex);
925baedd 1974 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
1975 mutex_init(&fs_info->transaction_kthread_mutex);
1976 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 1977 mutex_init(&fs_info->volume_mutex);
276e680d 1978 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 1979 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 1980 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
1981
1982 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1983 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1984
e6dcd2dc 1985 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 1986 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 1987 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 1988 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 1989
0b86a832 1990 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 1991 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 1992
a512bbf8 1993 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
1994 if (!bh) {
1995 err = -EINVAL;
16cdcec7 1996 goto fail_alloc;
20b45077 1997 }
39279cc3 1998
6c41761f
DS
1999 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2000 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2001 sizeof(*fs_info->super_for_commit));
a061fc8d 2002 brelse(bh);
5f39d397 2003
6c41761f 2004 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2005
6c41761f 2006 disk_super = fs_info->super_copy;
0f7d52f4 2007 if (!btrfs_super_root(disk_super))
16cdcec7 2008 goto fail_alloc;
0f7d52f4 2009
acce952b 2010 /* check FS state, whether FS is broken. */
2011 fs_info->fs_state |= btrfs_super_flags(disk_super);
2012
2013 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2014
af31f5e5
CM
2015 /*
2016 * run through our array of backup supers and setup
2017 * our ring pointer to the oldest one
2018 */
2019 generation = btrfs_super_generation(disk_super);
2020 find_oldest_super_backup(fs_info, generation);
2021
75e7cb7f
LB
2022 /*
2023 * In the long term, we'll store the compression type in the super
2024 * block, and it'll be used for per file compression control.
2025 */
2026 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2027
2b82032c
YZ
2028 ret = btrfs_parse_options(tree_root, options);
2029 if (ret) {
2030 err = ret;
16cdcec7 2031 goto fail_alloc;
2b82032c 2032 }
dfe25020 2033
f2b636e8
JB
2034 features = btrfs_super_incompat_flags(disk_super) &
2035 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2036 if (features) {
2037 printk(KERN_ERR "BTRFS: couldn't mount because of "
2038 "unsupported optional features (%Lx).\n",
21380931 2039 (unsigned long long)features);
f2b636e8 2040 err = -EINVAL;
16cdcec7 2041 goto fail_alloc;
f2b636e8
JB
2042 }
2043
727011e0
CM
2044 if (btrfs_super_leafsize(disk_super) !=
2045 btrfs_super_nodesize(disk_super)) {
2046 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2047 "blocksizes don't match. node %d leaf %d\n",
2048 btrfs_super_nodesize(disk_super),
2049 btrfs_super_leafsize(disk_super));
2050 err = -EINVAL;
2051 goto fail_alloc;
2052 }
2053 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2054 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2055 "blocksize (%d) was too large\n",
2056 btrfs_super_leafsize(disk_super));
2057 err = -EINVAL;
2058 goto fail_alloc;
2059 }
2060
5d4f98a2 2061 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2062 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2063 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2064 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2065
2066 /*
2067 * flag our filesystem as having big metadata blocks if
2068 * they are bigger than the page size
2069 */
2070 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2071 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2072 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2073 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2074 }
2075
a6fa6fae 2076 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2077
f2b636e8
JB
2078 features = btrfs_super_compat_ro_flags(disk_super) &
2079 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2080 if (!(sb->s_flags & MS_RDONLY) && features) {
2081 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2082 "unsupported option features (%Lx).\n",
21380931 2083 (unsigned long long)features);
f2b636e8 2084 err = -EINVAL;
16cdcec7 2085 goto fail_alloc;
f2b636e8 2086 }
61d92c32
CM
2087
2088 btrfs_init_workers(&fs_info->generic_worker,
2089 "genwork", 1, NULL);
2090
5443be45 2091 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2092 fs_info->thread_pool_size,
2093 &fs_info->generic_worker);
c8b97818 2094
771ed689 2095 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2096 fs_info->thread_pool_size,
2097 &fs_info->generic_worker);
771ed689 2098
5443be45 2099 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2100 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2101 fs_info->thread_pool_size),
2102 &fs_info->generic_worker);
61b49440 2103
bab39bf9
JB
2104 btrfs_init_workers(&fs_info->caching_workers, "cache",
2105 2, &fs_info->generic_worker);
2106
61b49440
CM
2107 /* a higher idle thresh on the submit workers makes it much more
2108 * likely that bios will be send down in a sane order to the
2109 * devices
2110 */
2111 fs_info->submit_workers.idle_thresh = 64;
53863232 2112
771ed689 2113 fs_info->workers.idle_thresh = 16;
4a69a410 2114 fs_info->workers.ordered = 1;
61b49440 2115
771ed689
CM
2116 fs_info->delalloc_workers.idle_thresh = 2;
2117 fs_info->delalloc_workers.ordered = 1;
2118
61d92c32
CM
2119 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2120 &fs_info->generic_worker);
5443be45 2121 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2122 fs_info->thread_pool_size,
2123 &fs_info->generic_worker);
d20f7043 2124 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2125 fs_info->thread_pool_size,
2126 &fs_info->generic_worker);
cad321ad 2127 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2128 "endio-meta-write", fs_info->thread_pool_size,
2129 &fs_info->generic_worker);
5443be45 2130 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2131 fs_info->thread_pool_size,
2132 &fs_info->generic_worker);
0cb59c99
JB
2133 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2134 1, &fs_info->generic_worker);
16cdcec7
MX
2135 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2136 fs_info->thread_pool_size,
2137 &fs_info->generic_worker);
90519d66
AJ
2138 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2139 fs_info->thread_pool_size,
2140 &fs_info->generic_worker);
61b49440
CM
2141
2142 /*
2143 * endios are largely parallel and should have a very
2144 * low idle thresh
2145 */
2146 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2147 fs_info->endio_meta_workers.idle_thresh = 4;
2148
9042846b
CM
2149 fs_info->endio_write_workers.idle_thresh = 2;
2150 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2151 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2152
0dc3b84a
JB
2153 /*
2154 * btrfs_start_workers can really only fail because of ENOMEM so just
2155 * return -ENOMEM if any of these fail.
2156 */
2157 ret = btrfs_start_workers(&fs_info->workers);
2158 ret |= btrfs_start_workers(&fs_info->generic_worker);
2159 ret |= btrfs_start_workers(&fs_info->submit_workers);
2160 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2161 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2162 ret |= btrfs_start_workers(&fs_info->endio_workers);
2163 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2164 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2165 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2166 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2167 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2168 ret |= btrfs_start_workers(&fs_info->caching_workers);
2169 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2170 if (ret) {
2171 ret = -ENOMEM;
2172 goto fail_sb_buffer;
2173 }
4543df7e 2174
4575c9cc 2175 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2176 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2177 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2178
db94535d
CM
2179 nodesize = btrfs_super_nodesize(disk_super);
2180 leafsize = btrfs_super_leafsize(disk_super);
2181 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2182 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2183 tree_root->nodesize = nodesize;
2184 tree_root->leafsize = leafsize;
2185 tree_root->sectorsize = sectorsize;
87ee04eb 2186 tree_root->stripesize = stripesize;
a061fc8d
CM
2187
2188 sb->s_blocksize = sectorsize;
2189 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2190
39279cc3
CM
2191 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2192 sizeof(disk_super->magic))) {
d397712b 2193 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2194 goto fail_sb_buffer;
2195 }
19c00ddc 2196
941b2ddf
KM
2197 if (sectorsize < PAGE_SIZE) {
2198 printk(KERN_WARNING "btrfs: Incompatible sector size "
2199 "found on %s\n", sb->s_id);
2200 goto fail_sb_buffer;
2201 }
2202
925baedd 2203 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2204 ret = btrfs_read_sys_array(tree_root);
925baedd 2205 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2206 if (ret) {
d397712b
CM
2207 printk(KERN_WARNING "btrfs: failed to read the system "
2208 "array on %s\n", sb->s_id);
5d4f98a2 2209 goto fail_sb_buffer;
84eed90f 2210 }
0b86a832
CM
2211
2212 blocksize = btrfs_level_size(tree_root,
2213 btrfs_super_chunk_root_level(disk_super));
84234f3a 2214 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2215
2216 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2217 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2218
2219 chunk_root->node = read_tree_block(chunk_root,
2220 btrfs_super_chunk_root(disk_super),
84234f3a 2221 blocksize, generation);
0b86a832 2222 BUG_ON(!chunk_root->node);
83121942
DW
2223 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2224 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2225 sb->s_id);
af31f5e5 2226 goto fail_tree_roots;
83121942 2227 }
5d4f98a2
YZ
2228 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2229 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2230
e17cade2 2231 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2232 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2233 BTRFS_UUID_SIZE);
e17cade2 2234
0b86a832 2235 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2236 if (ret) {
d397712b
CM
2237 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2238 sb->s_id);
af31f5e5 2239 goto fail_tree_roots;
2b82032c 2240 }
0b86a832 2241
dfe25020
CM
2242 btrfs_close_extra_devices(fs_devices);
2243
a6b0d5c8
CM
2244 if (!fs_devices->latest_bdev) {
2245 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2246 sb->s_id);
2247 goto fail_tree_roots;
2248 }
2249
af31f5e5 2250retry_root_backup:
db94535d
CM
2251 blocksize = btrfs_level_size(tree_root,
2252 btrfs_super_root_level(disk_super));
84234f3a 2253 generation = btrfs_super_generation(disk_super);
0b86a832 2254
e20d96d6 2255 tree_root->node = read_tree_block(tree_root,
db94535d 2256 btrfs_super_root(disk_super),
84234f3a 2257 blocksize, generation);
af31f5e5
CM
2258 if (!tree_root->node ||
2259 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2260 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2261 sb->s_id);
af31f5e5
CM
2262
2263 goto recovery_tree_root;
83121942 2264 }
af31f5e5 2265
5d4f98a2
YZ
2266 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2267 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2268
2269 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2270 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2271 if (ret)
af31f5e5 2272 goto recovery_tree_root;
0b86a832
CM
2273 extent_root->track_dirty = 1;
2274
2275 ret = find_and_setup_root(tree_root, fs_info,
2276 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2277 if (ret)
af31f5e5 2278 goto recovery_tree_root;
5d4f98a2 2279 dev_root->track_dirty = 1;
3768f368 2280
d20f7043
CM
2281 ret = find_and_setup_root(tree_root, fs_info,
2282 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2283 if (ret)
af31f5e5 2284 goto recovery_tree_root;
d20f7043
CM
2285
2286 csum_root->track_dirty = 1;
2287
8929ecfa
YZ
2288 fs_info->generation = generation;
2289 fs_info->last_trans_committed = generation;
8929ecfa 2290
c59021f8 2291 ret = btrfs_init_space_info(fs_info);
2292 if (ret) {
2293 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2294 goto fail_block_groups;
2295 }
2296
1b1d1f66
JB
2297 ret = btrfs_read_block_groups(extent_root);
2298 if (ret) {
2299 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2300 goto fail_block_groups;
2301 }
9078a3e1 2302
a74a4b97
CM
2303 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2304 "btrfs-cleaner");
57506d50 2305 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2306 goto fail_block_groups;
a74a4b97
CM
2307
2308 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2309 tree_root,
2310 "btrfs-transaction");
57506d50 2311 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2312 goto fail_cleaner;
a74a4b97 2313
c289811c
CM
2314 if (!btrfs_test_opt(tree_root, SSD) &&
2315 !btrfs_test_opt(tree_root, NOSSD) &&
2316 !fs_info->fs_devices->rotating) {
2317 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2318 "mode\n");
2319 btrfs_set_opt(fs_info->mount_opt, SSD);
2320 }
2321
21adbd5c
SB
2322#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2323 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2324 ret = btrfsic_mount(tree_root, fs_devices,
2325 btrfs_test_opt(tree_root,
2326 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2327 1 : 0,
2328 fs_info->check_integrity_print_mask);
2329 if (ret)
2330 printk(KERN_WARNING "btrfs: failed to initialize"
2331 " integrity check module %s\n", sb->s_id);
2332 }
2333#endif
2334
acce952b 2335 /* do not make disk changes in broken FS */
2336 if (btrfs_super_log_root(disk_super) != 0 &&
2337 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2338 u64 bytenr = btrfs_super_log_root(disk_super);
2339
7c2ca468 2340 if (fs_devices->rw_devices == 0) {
d397712b
CM
2341 printk(KERN_WARNING "Btrfs log replay required "
2342 "on RO media\n");
7c2ca468
CM
2343 err = -EIO;
2344 goto fail_trans_kthread;
2345 }
e02119d5
CM
2346 blocksize =
2347 btrfs_level_size(tree_root,
2348 btrfs_super_log_root_level(disk_super));
d18a2c44 2349
6f07e42e 2350 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2351 if (!log_tree_root) {
2352 err = -ENOMEM;
2353 goto fail_trans_kthread;
2354 }
e02119d5
CM
2355
2356 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2357 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2358
2359 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2360 blocksize,
2361 generation + 1);
e02119d5
CM
2362 ret = btrfs_recover_log_trees(log_tree_root);
2363 BUG_ON(ret);
e556ce2c
YZ
2364
2365 if (sb->s_flags & MS_RDONLY) {
2366 ret = btrfs_commit_super(tree_root);
2367 BUG_ON(ret);
2368 }
e02119d5 2369 }
1a40e23b 2370
76dda93c
YZ
2371 ret = btrfs_find_orphan_roots(tree_root);
2372 BUG_ON(ret);
2373
7c2ca468 2374 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2375 ret = btrfs_cleanup_fs_roots(fs_info);
2376 BUG_ON(ret);
2377
5d4f98a2 2378 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2379 if (ret < 0) {
2380 printk(KERN_WARNING
2381 "btrfs: failed to recover relocation\n");
2382 err = -EINVAL;
2383 goto fail_trans_kthread;
2384 }
7c2ca468 2385 }
1a40e23b 2386
3de4586c
CM
2387 location.objectid = BTRFS_FS_TREE_OBJECTID;
2388 location.type = BTRFS_ROOT_ITEM_KEY;
2389 location.offset = (u64)-1;
2390
3de4586c
CM
2391 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2392 if (!fs_info->fs_root)
7c2ca468 2393 goto fail_trans_kthread;
3140c9a3
DC
2394 if (IS_ERR(fs_info->fs_root)) {
2395 err = PTR_ERR(fs_info->fs_root);
2396 goto fail_trans_kthread;
2397 }
c289811c 2398
e3acc2a6
JB
2399 if (!(sb->s_flags & MS_RDONLY)) {
2400 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2401 err = btrfs_orphan_cleanup(fs_info->fs_root);
2402 if (!err)
2403 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2404 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2405
2406 if (!err)
2407 err = btrfs_recover_balance(fs_info->tree_root);
2408
66b4ffd1
JB
2409 if (err) {
2410 close_ctree(tree_root);
ad2b2c80 2411 return err;
66b4ffd1 2412 }
e3acc2a6
JB
2413 }
2414
ad2b2c80 2415 return 0;
39279cc3 2416
7c2ca468
CM
2417fail_trans_kthread:
2418 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2419fail_cleaner:
a74a4b97 2420 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2421
2422 /*
2423 * make sure we're done with the btree inode before we stop our
2424 * kthreads
2425 */
2426 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2427 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2428
1b1d1f66
JB
2429fail_block_groups:
2430 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2431
2432fail_tree_roots:
2433 free_root_pointers(fs_info, 1);
2434
39279cc3 2435fail_sb_buffer:
61d92c32 2436 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2437 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2438 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2439 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2440 btrfs_stop_workers(&fs_info->workers);
2441 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2442 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2443 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2444 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2445 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2446 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2447 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2448 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2449fail_alloc:
4543df7e 2450fail_iput:
586e46e2
ID
2451 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2452
7c2ca468 2453 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2454 iput(fs_info->btree_inode);
ad081f14 2455fail_bdi:
7e662854 2456 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2457fail_srcu:
2458 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2459fail:
586e46e2 2460 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2461 return err;
af31f5e5
CM
2462
2463recovery_tree_root:
af31f5e5
CM
2464 if (!btrfs_test_opt(tree_root, RECOVERY))
2465 goto fail_tree_roots;
2466
2467 free_root_pointers(fs_info, 0);
2468
2469 /* don't use the log in recovery mode, it won't be valid */
2470 btrfs_set_super_log_root(disk_super, 0);
2471
2472 /* we can't trust the free space cache either */
2473 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2474
2475 ret = next_root_backup(fs_info, fs_info->super_copy,
2476 &num_backups_tried, &backup_index);
2477 if (ret == -1)
2478 goto fail_block_groups;
2479 goto retry_root_backup;
eb60ceac
CM
2480}
2481
f2984462
CM
2482static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2483{
2484 char b[BDEVNAME_SIZE];
2485
2486 if (uptodate) {
2487 set_buffer_uptodate(bh);
2488 } else {
7a36ddec 2489 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2490 "I/O error on %s\n",
2491 bdevname(bh->b_bdev, b));
1259ab75
CM
2492 /* note, we dont' set_buffer_write_io_error because we have
2493 * our own ways of dealing with the IO errors
2494 */
f2984462
CM
2495 clear_buffer_uptodate(bh);
2496 }
2497 unlock_buffer(bh);
2498 put_bh(bh);
2499}
2500
a512bbf8
YZ
2501struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2502{
2503 struct buffer_head *bh;
2504 struct buffer_head *latest = NULL;
2505 struct btrfs_super_block *super;
2506 int i;
2507 u64 transid = 0;
2508 u64 bytenr;
2509
2510 /* we would like to check all the supers, but that would make
2511 * a btrfs mount succeed after a mkfs from a different FS.
2512 * So, we need to add a special mount option to scan for
2513 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2514 */
2515 for (i = 0; i < 1; i++) {
2516 bytenr = btrfs_sb_offset(i);
2517 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2518 break;
2519 bh = __bread(bdev, bytenr / 4096, 4096);
2520 if (!bh)
2521 continue;
2522
2523 super = (struct btrfs_super_block *)bh->b_data;
2524 if (btrfs_super_bytenr(super) != bytenr ||
2525 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2526 sizeof(super->magic))) {
2527 brelse(bh);
2528 continue;
2529 }
2530
2531 if (!latest || btrfs_super_generation(super) > transid) {
2532 brelse(latest);
2533 latest = bh;
2534 transid = btrfs_super_generation(super);
2535 } else {
2536 brelse(bh);
2537 }
2538 }
2539 return latest;
2540}
2541
4eedeb75
HH
2542/*
2543 * this should be called twice, once with wait == 0 and
2544 * once with wait == 1. When wait == 0 is done, all the buffer heads
2545 * we write are pinned.
2546 *
2547 * They are released when wait == 1 is done.
2548 * max_mirrors must be the same for both runs, and it indicates how
2549 * many supers on this one device should be written.
2550 *
2551 * max_mirrors == 0 means to write them all.
2552 */
a512bbf8
YZ
2553static int write_dev_supers(struct btrfs_device *device,
2554 struct btrfs_super_block *sb,
2555 int do_barriers, int wait, int max_mirrors)
2556{
2557 struct buffer_head *bh;
2558 int i;
2559 int ret;
2560 int errors = 0;
2561 u32 crc;
2562 u64 bytenr;
a512bbf8
YZ
2563
2564 if (max_mirrors == 0)
2565 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2566
a512bbf8
YZ
2567 for (i = 0; i < max_mirrors; i++) {
2568 bytenr = btrfs_sb_offset(i);
2569 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2570 break;
2571
2572 if (wait) {
2573 bh = __find_get_block(device->bdev, bytenr / 4096,
2574 BTRFS_SUPER_INFO_SIZE);
2575 BUG_ON(!bh);
a512bbf8 2576 wait_on_buffer(bh);
4eedeb75
HH
2577 if (!buffer_uptodate(bh))
2578 errors++;
2579
2580 /* drop our reference */
2581 brelse(bh);
2582
2583 /* drop the reference from the wait == 0 run */
2584 brelse(bh);
2585 continue;
a512bbf8
YZ
2586 } else {
2587 btrfs_set_super_bytenr(sb, bytenr);
2588
2589 crc = ~(u32)0;
2590 crc = btrfs_csum_data(NULL, (char *)sb +
2591 BTRFS_CSUM_SIZE, crc,
2592 BTRFS_SUPER_INFO_SIZE -
2593 BTRFS_CSUM_SIZE);
2594 btrfs_csum_final(crc, sb->csum);
2595
4eedeb75
HH
2596 /*
2597 * one reference for us, and we leave it for the
2598 * caller
2599 */
a512bbf8
YZ
2600 bh = __getblk(device->bdev, bytenr / 4096,
2601 BTRFS_SUPER_INFO_SIZE);
2602 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2603
4eedeb75 2604 /* one reference for submit_bh */
a512bbf8 2605 get_bh(bh);
4eedeb75
HH
2606
2607 set_buffer_uptodate(bh);
a512bbf8
YZ
2608 lock_buffer(bh);
2609 bh->b_end_io = btrfs_end_buffer_write_sync;
2610 }
2611
387125fc
CM
2612 /*
2613 * we fua the first super. The others we allow
2614 * to go down lazy.
2615 */
21adbd5c 2616 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2617 if (ret)
a512bbf8 2618 errors++;
a512bbf8
YZ
2619 }
2620 return errors < i ? 0 : -1;
2621}
2622
387125fc
CM
2623/*
2624 * endio for the write_dev_flush, this will wake anyone waiting
2625 * for the barrier when it is done
2626 */
2627static void btrfs_end_empty_barrier(struct bio *bio, int err)
2628{
2629 if (err) {
2630 if (err == -EOPNOTSUPP)
2631 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2632 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2633 }
2634 if (bio->bi_private)
2635 complete(bio->bi_private);
2636 bio_put(bio);
2637}
2638
2639/*
2640 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2641 * sent down. With wait == 1, it waits for the previous flush.
2642 *
2643 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2644 * capable
2645 */
2646static int write_dev_flush(struct btrfs_device *device, int wait)
2647{
2648 struct bio *bio;
2649 int ret = 0;
2650
2651 if (device->nobarriers)
2652 return 0;
2653
2654 if (wait) {
2655 bio = device->flush_bio;
2656 if (!bio)
2657 return 0;
2658
2659 wait_for_completion(&device->flush_wait);
2660
2661 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2662 printk("btrfs: disabling barriers on dev %s\n",
2663 device->name);
2664 device->nobarriers = 1;
2665 }
2666 if (!bio_flagged(bio, BIO_UPTODATE)) {
2667 ret = -EIO;
2668 }
2669
2670 /* drop the reference from the wait == 0 run */
2671 bio_put(bio);
2672 device->flush_bio = NULL;
2673
2674 return ret;
2675 }
2676
2677 /*
2678 * one reference for us, and we leave it for the
2679 * caller
2680 */
2681 device->flush_bio = NULL;;
2682 bio = bio_alloc(GFP_NOFS, 0);
2683 if (!bio)
2684 return -ENOMEM;
2685
2686 bio->bi_end_io = btrfs_end_empty_barrier;
2687 bio->bi_bdev = device->bdev;
2688 init_completion(&device->flush_wait);
2689 bio->bi_private = &device->flush_wait;
2690 device->flush_bio = bio;
2691
2692 bio_get(bio);
21adbd5c 2693 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2694
2695 return 0;
2696}
2697
2698/*
2699 * send an empty flush down to each device in parallel,
2700 * then wait for them
2701 */
2702static int barrier_all_devices(struct btrfs_fs_info *info)
2703{
2704 struct list_head *head;
2705 struct btrfs_device *dev;
2706 int errors = 0;
2707 int ret;
2708
2709 /* send down all the barriers */
2710 head = &info->fs_devices->devices;
2711 list_for_each_entry_rcu(dev, head, dev_list) {
2712 if (!dev->bdev) {
2713 errors++;
2714 continue;
2715 }
2716 if (!dev->in_fs_metadata || !dev->writeable)
2717 continue;
2718
2719 ret = write_dev_flush(dev, 0);
2720 if (ret)
2721 errors++;
2722 }
2723
2724 /* wait for all the barriers */
2725 list_for_each_entry_rcu(dev, head, dev_list) {
2726 if (!dev->bdev) {
2727 errors++;
2728 continue;
2729 }
2730 if (!dev->in_fs_metadata || !dev->writeable)
2731 continue;
2732
2733 ret = write_dev_flush(dev, 1);
2734 if (ret)
2735 errors++;
2736 }
2737 if (errors)
2738 return -EIO;
2739 return 0;
2740}
2741
a512bbf8 2742int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2743{
e5e9a520 2744 struct list_head *head;
f2984462 2745 struct btrfs_device *dev;
a061fc8d 2746 struct btrfs_super_block *sb;
f2984462 2747 struct btrfs_dev_item *dev_item;
f2984462
CM
2748 int ret;
2749 int do_barriers;
a236aed1
CM
2750 int max_errors;
2751 int total_errors = 0;
a061fc8d 2752 u64 flags;
f2984462 2753
6c41761f 2754 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2755 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2756 backup_super_roots(root->fs_info);
f2984462 2757
6c41761f 2758 sb = root->fs_info->super_for_commit;
a061fc8d 2759 dev_item = &sb->dev_item;
e5e9a520 2760
174ba509 2761 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2762 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2763
2764 if (do_barriers)
2765 barrier_all_devices(root->fs_info);
2766
1f78160c 2767 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2768 if (!dev->bdev) {
2769 total_errors++;
2770 continue;
2771 }
2b82032c 2772 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2773 continue;
2774
2b82032c 2775 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2776 btrfs_set_stack_device_type(dev_item, dev->type);
2777 btrfs_set_stack_device_id(dev_item, dev->devid);
2778 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2779 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2780 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2781 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2782 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2783 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2784 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2785
a061fc8d
CM
2786 flags = btrfs_super_flags(sb);
2787 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2788
a512bbf8 2789 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2790 if (ret)
2791 total_errors++;
f2984462 2792 }
a236aed1 2793 if (total_errors > max_errors) {
d397712b
CM
2794 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2795 total_errors);
a236aed1
CM
2796 BUG();
2797 }
f2984462 2798
a512bbf8 2799 total_errors = 0;
1f78160c 2800 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2801 if (!dev->bdev)
2802 continue;
2b82032c 2803 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2804 continue;
2805
a512bbf8
YZ
2806 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2807 if (ret)
2808 total_errors++;
f2984462 2809 }
174ba509 2810 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2811 if (total_errors > max_errors) {
d397712b
CM
2812 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2813 total_errors);
a236aed1
CM
2814 BUG();
2815 }
f2984462
CM
2816 return 0;
2817}
2818
a512bbf8
YZ
2819int write_ctree_super(struct btrfs_trans_handle *trans,
2820 struct btrfs_root *root, int max_mirrors)
eb60ceac 2821{
e66f709b 2822 int ret;
5f39d397 2823
a512bbf8 2824 ret = write_all_supers(root, max_mirrors);
5f39d397 2825 return ret;
cfaa7295
CM
2826}
2827
5eda7b5e 2828int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2829{
4df27c4d 2830 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2831 radix_tree_delete(&fs_info->fs_roots_radix,
2832 (unsigned long)root->root_key.objectid);
4df27c4d 2833 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2834
2835 if (btrfs_root_refs(&root->root_item) == 0)
2836 synchronize_srcu(&fs_info->subvol_srcu);
2837
581bb050
LZ
2838 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2839 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2840 free_fs_root(root);
2841 return 0;
2842}
2843
2844static void free_fs_root(struct btrfs_root *root)
2845{
82d5902d 2846 iput(root->cache_inode);
4df27c4d 2847 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2848 if (root->anon_dev)
2849 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2850 free_extent_buffer(root->node);
2851 free_extent_buffer(root->commit_root);
581bb050
LZ
2852 kfree(root->free_ino_ctl);
2853 kfree(root->free_ino_pinned);
d397712b 2854 kfree(root->name);
2619ba1f 2855 kfree(root);
2619ba1f
CM
2856}
2857
35b7e476 2858static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2859{
2860 int ret;
2861 struct btrfs_root *gang[8];
2862 int i;
2863
76dda93c
YZ
2864 while (!list_empty(&fs_info->dead_roots)) {
2865 gang[0] = list_entry(fs_info->dead_roots.next,
2866 struct btrfs_root, root_list);
2867 list_del(&gang[0]->root_list);
2868
2869 if (gang[0]->in_radix) {
2870 btrfs_free_fs_root(fs_info, gang[0]);
2871 } else {
2872 free_extent_buffer(gang[0]->node);
2873 free_extent_buffer(gang[0]->commit_root);
2874 kfree(gang[0]);
2875 }
2876 }
2877
d397712b 2878 while (1) {
0f7d52f4
CM
2879 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2880 (void **)gang, 0,
2881 ARRAY_SIZE(gang));
2882 if (!ret)
2883 break;
2619ba1f 2884 for (i = 0; i < ret; i++)
5eda7b5e 2885 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2886 }
2887 return 0;
2888}
b4100d64 2889
c146afad 2890int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2891{
c146afad
YZ
2892 u64 root_objectid = 0;
2893 struct btrfs_root *gang[8];
2894 int i;
3768f368 2895 int ret;
e089f05c 2896
c146afad
YZ
2897 while (1) {
2898 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2899 (void **)gang, root_objectid,
2900 ARRAY_SIZE(gang));
2901 if (!ret)
2902 break;
5d4f98a2
YZ
2903
2904 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2905 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2906 int err;
2907
c146afad 2908 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2909 err = btrfs_orphan_cleanup(gang[i]);
2910 if (err)
2911 return err;
c146afad
YZ
2912 }
2913 root_objectid++;
2914 }
2915 return 0;
2916}
a2135011 2917
c146afad
YZ
2918int btrfs_commit_super(struct btrfs_root *root)
2919{
2920 struct btrfs_trans_handle *trans;
2921 int ret;
a74a4b97 2922
c146afad 2923 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2924 btrfs_run_delayed_iputs(root);
a74a4b97 2925 btrfs_clean_old_snapshots(root);
c146afad 2926 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2927
2928 /* wait until ongoing cleanup work done */
2929 down_write(&root->fs_info->cleanup_work_sem);
2930 up_write(&root->fs_info->cleanup_work_sem);
2931
7a7eaa40 2932 trans = btrfs_join_transaction(root);
3612b495
TI
2933 if (IS_ERR(trans))
2934 return PTR_ERR(trans);
54aa1f4d 2935 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2936 BUG_ON(ret);
2937 /* run commit again to drop the original snapshot */
7a7eaa40 2938 trans = btrfs_join_transaction(root);
3612b495
TI
2939 if (IS_ERR(trans))
2940 return PTR_ERR(trans);
79154b1b
CM
2941 btrfs_commit_transaction(trans, root);
2942 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 2943 BUG_ON(ret);
d6bfde87 2944
a512bbf8 2945 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
2946 return ret;
2947}
2948
2949int close_ctree(struct btrfs_root *root)
2950{
2951 struct btrfs_fs_info *fs_info = root->fs_info;
2952 int ret;
2953
2954 fs_info->closing = 1;
2955 smp_mb();
2956
837d5b6e
ID
2957 /* pause restriper - we want to resume on mount */
2958 btrfs_pause_balance(root->fs_info);
2959
a2de733c 2960 btrfs_scrub_cancel(root);
4cb5300b
CM
2961
2962 /* wait for any defraggers to finish */
2963 wait_event(fs_info->transaction_wait,
2964 (atomic_read(&fs_info->defrag_running) == 0));
2965
2966 /* clear out the rbtree of defraggable inodes */
e3029d9f 2967 btrfs_run_defrag_inodes(fs_info);
4cb5300b 2968
acce952b 2969 /*
2970 * Here come 2 situations when btrfs is broken to flip readonly:
2971 *
2972 * 1. when btrfs flips readonly somewhere else before
2973 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2974 * and btrfs will skip to write sb directly to keep
2975 * ERROR state on disk.
2976 *
2977 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 2978 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 2979 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2980 * btrfs will cleanup all FS resources first and write sb then.
2981 */
c146afad 2982 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 2983 ret = btrfs_commit_super(root);
2984 if (ret)
2985 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2986 }
2987
2988 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2989 ret = btrfs_error_commit_super(root);
d397712b
CM
2990 if (ret)
2991 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 2992 }
0f7d52f4 2993
300e4f8a
JB
2994 btrfs_put_block_group_cache(fs_info);
2995
e3029d9f
AV
2996 kthread_stop(fs_info->transaction_kthread);
2997 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 2998
f25784b3
YZ
2999 fs_info->closing = 2;
3000 smp_mb();
3001
b0c68f8b 3002 if (fs_info->delalloc_bytes) {
d397712b 3003 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3004 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3005 }
31153d81 3006 if (fs_info->total_ref_cache_size) {
d397712b
CM
3007 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3008 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3009 }
bcc63abb 3010
5d4f98a2
YZ
3011 free_extent_buffer(fs_info->extent_root->node);
3012 free_extent_buffer(fs_info->extent_root->commit_root);
3013 free_extent_buffer(fs_info->tree_root->node);
3014 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3015 free_extent_buffer(fs_info->chunk_root->node);
3016 free_extent_buffer(fs_info->chunk_root->commit_root);
3017 free_extent_buffer(fs_info->dev_root->node);
3018 free_extent_buffer(fs_info->dev_root->commit_root);
3019 free_extent_buffer(fs_info->csum_root->node);
3020 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3021
e3029d9f 3022 btrfs_free_block_groups(fs_info);
d10c5f31 3023
c146afad 3024 del_fs_roots(fs_info);
d10c5f31 3025
c146afad 3026 iput(fs_info->btree_inode);
9ad6b7bc 3027
61d92c32 3028 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3029 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3030 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3031 btrfs_stop_workers(&fs_info->workers);
3032 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3033 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3034 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3035 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3036 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3037 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3038 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3039 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3040 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3041
21adbd5c
SB
3042#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3043 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3044 btrfsic_unmount(root, fs_info->fs_devices);
3045#endif
3046
dfe25020 3047 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3048 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3049
04160088 3050 bdi_destroy(&fs_info->bdi);
76dda93c 3051 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3052
eb60ceac
CM
3053 return 0;
3054}
3055
1259ab75 3056int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3057{
1259ab75 3058 int ret;
727011e0 3059 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3060
2ac55d41
JB
3061 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3062 NULL);
1259ab75
CM
3063 if (!ret)
3064 return ret;
3065
3066 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3067 parent_transid);
3068 return !ret;
5f39d397
CM
3069}
3070
3071int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3072{
727011e0 3073 struct inode *btree_inode = buf->pages[0]->mapping->host;
d1310b2e 3074 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3075 buf);
3076}
6702ed49 3077
5f39d397
CM
3078void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3079{
727011e0 3080 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397
CM
3081 u64 transid = btrfs_header_generation(buf);
3082 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3083 int was_dirty;
b4ce94de 3084
b9447ef8 3085 btrfs_assert_tree_locked(buf);
ccd467d6 3086 if (transid != root->fs_info->generation) {
d397712b
CM
3087 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3088 "found %llu running %llu\n",
db94535d 3089 (unsigned long long)buf->start,
d397712b
CM
3090 (unsigned long long)transid,
3091 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3092 WARN_ON(1);
3093 }
b9473439
CM
3094 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3095 buf);
3096 if (!was_dirty) {
3097 spin_lock(&root->fs_info->delalloc_lock);
3098 root->fs_info->dirty_metadata_bytes += buf->len;
3099 spin_unlock(&root->fs_info->delalloc_lock);
3100 }
eb60ceac
CM
3101}
3102
d3c2fdcf 3103void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3104{
3105 /*
3106 * looks as though older kernels can get into trouble with
3107 * this code, they end up stuck in balance_dirty_pages forever
3108 */
3109 u64 num_dirty;
3110 unsigned long thresh = 32 * 1024 * 1024;
3111
3112 if (current->flags & PF_MEMALLOC)
3113 return;
3114
3115 btrfs_balance_delayed_items(root);
3116
3117 num_dirty = root->fs_info->dirty_metadata_bytes;
3118
3119 if (num_dirty > thresh) {
3120 balance_dirty_pages_ratelimited_nr(
3121 root->fs_info->btree_inode->i_mapping, 1);
3122 }
3123 return;
3124}
3125
3126void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3127{
188de649
CM
3128 /*
3129 * looks as though older kernels can get into trouble with
3130 * this code, they end up stuck in balance_dirty_pages forever
3131 */
d6bfde87 3132 u64 num_dirty;
771ed689 3133 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3134
6933c02e 3135 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3136 return;
3137
585ad2c3
CM
3138 num_dirty = root->fs_info->dirty_metadata_bytes;
3139
d6bfde87
CM
3140 if (num_dirty > thresh) {
3141 balance_dirty_pages_ratelimited_nr(
d7fc640e 3142 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3143 }
188de649 3144 return;
35b7e476 3145}
6b80053d 3146
ca7a79ad 3147int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3148{
727011e0 3149 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
ce9adaa5 3150 int ret;
ca7a79ad 3151 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3152 if (ret == 0)
b4ce94de 3153 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3154 return ret;
6b80053d 3155}
0da5468f 3156
01d658f2
CM
3157static int btree_lock_page_hook(struct page *page, void *data,
3158 void (*flush_fn)(void *))
4bef0848
CM
3159{
3160 struct inode *inode = page->mapping->host;
b9473439 3161 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3162 struct extent_buffer *eb;
4bef0848 3163
4f2de97a
JB
3164 /*
3165 * We culled this eb but the page is still hanging out on the mapping,
3166 * carry on.
3167 */
3168 if (!PagePrivate(page))
4bef0848
CM
3169 goto out;
3170
4f2de97a
JB
3171 eb = (struct extent_buffer *)page->private;
3172 if (!eb) {
3173 WARN_ON(1);
3174 goto out;
3175 }
3176 if (page != eb->pages[0])
4bef0848
CM
3177 goto out;
3178
01d658f2
CM
3179 if (!btrfs_try_tree_write_lock(eb)) {
3180 flush_fn(data);
3181 btrfs_tree_lock(eb);
3182 }
4bef0848 3183 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3184
3185 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3186 spin_lock(&root->fs_info->delalloc_lock);
3187 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3188 root->fs_info->dirty_metadata_bytes -= eb->len;
3189 else
3190 WARN_ON(1);
3191 spin_unlock(&root->fs_info->delalloc_lock);
3192 }
3193
4bef0848 3194 btrfs_tree_unlock(eb);
4bef0848 3195out:
01d658f2
CM
3196 if (!trylock_page(page)) {
3197 flush_fn(data);
3198 lock_page(page);
3199 }
4bef0848
CM
3200 return 0;
3201}
3202
acce952b 3203static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3204 int read_only)
3205{
3206 if (read_only)
3207 return;
3208
3209 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3210 printk(KERN_WARNING "warning: mount fs with errors, "
3211 "running btrfsck is recommended\n");
3212}
3213
3214int btrfs_error_commit_super(struct btrfs_root *root)
3215{
3216 int ret;
3217
3218 mutex_lock(&root->fs_info->cleaner_mutex);
3219 btrfs_run_delayed_iputs(root);
3220 mutex_unlock(&root->fs_info->cleaner_mutex);
3221
3222 down_write(&root->fs_info->cleanup_work_sem);
3223 up_write(&root->fs_info->cleanup_work_sem);
3224
3225 /* cleanup FS via transaction */
3226 btrfs_cleanup_transaction(root);
3227
3228 ret = write_ctree_super(NULL, root, 0);
3229
3230 return ret;
3231}
3232
3233static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3234{
3235 struct btrfs_inode *btrfs_inode;
3236 struct list_head splice;
3237
3238 INIT_LIST_HEAD(&splice);
3239
3240 mutex_lock(&root->fs_info->ordered_operations_mutex);
3241 spin_lock(&root->fs_info->ordered_extent_lock);
3242
3243 list_splice_init(&root->fs_info->ordered_operations, &splice);
3244 while (!list_empty(&splice)) {
3245 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3246 ordered_operations);
3247
3248 list_del_init(&btrfs_inode->ordered_operations);
3249
3250 btrfs_invalidate_inodes(btrfs_inode->root);
3251 }
3252
3253 spin_unlock(&root->fs_info->ordered_extent_lock);
3254 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3255
3256 return 0;
3257}
3258
3259static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3260{
3261 struct list_head splice;
3262 struct btrfs_ordered_extent *ordered;
3263 struct inode *inode;
3264
3265 INIT_LIST_HEAD(&splice);
3266
3267 spin_lock(&root->fs_info->ordered_extent_lock);
3268
3269 list_splice_init(&root->fs_info->ordered_extents, &splice);
3270 while (!list_empty(&splice)) {
3271 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3272 root_extent_list);
3273
3274 list_del_init(&ordered->root_extent_list);
3275 atomic_inc(&ordered->refs);
3276
3277 /* the inode may be getting freed (in sys_unlink path). */
3278 inode = igrab(ordered->inode);
3279
3280 spin_unlock(&root->fs_info->ordered_extent_lock);
3281 if (inode)
3282 iput(inode);
3283
3284 atomic_set(&ordered->refs, 1);
3285 btrfs_put_ordered_extent(ordered);
3286
3287 spin_lock(&root->fs_info->ordered_extent_lock);
3288 }
3289
3290 spin_unlock(&root->fs_info->ordered_extent_lock);
3291
3292 return 0;
3293}
3294
3295static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3296 struct btrfs_root *root)
3297{
3298 struct rb_node *node;
3299 struct btrfs_delayed_ref_root *delayed_refs;
3300 struct btrfs_delayed_ref_node *ref;
3301 int ret = 0;
3302
3303 delayed_refs = &trans->delayed_refs;
3304
3305 spin_lock(&delayed_refs->lock);
3306 if (delayed_refs->num_entries == 0) {
cfece4db 3307 spin_unlock(&delayed_refs->lock);
acce952b 3308 printk(KERN_INFO "delayed_refs has NO entry\n");
3309 return ret;
3310 }
3311
3312 node = rb_first(&delayed_refs->root);
3313 while (node) {
3314 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3315 node = rb_next(node);
3316
3317 ref->in_tree = 0;
3318 rb_erase(&ref->rb_node, &delayed_refs->root);
3319 delayed_refs->num_entries--;
3320
3321 atomic_set(&ref->refs, 1);
3322 if (btrfs_delayed_ref_is_head(ref)) {
3323 struct btrfs_delayed_ref_head *head;
3324
3325 head = btrfs_delayed_node_to_head(ref);
3326 mutex_lock(&head->mutex);
3327 kfree(head->extent_op);
3328 delayed_refs->num_heads--;
3329 if (list_empty(&head->cluster))
3330 delayed_refs->num_heads_ready--;
3331 list_del_init(&head->cluster);
3332 mutex_unlock(&head->mutex);
3333 }
3334
3335 spin_unlock(&delayed_refs->lock);
3336 btrfs_put_delayed_ref(ref);
3337
3338 cond_resched();
3339 spin_lock(&delayed_refs->lock);
3340 }
3341
3342 spin_unlock(&delayed_refs->lock);
3343
3344 return ret;
3345}
3346
3347static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3348{
3349 struct btrfs_pending_snapshot *snapshot;
3350 struct list_head splice;
3351
3352 INIT_LIST_HEAD(&splice);
3353
3354 list_splice_init(&t->pending_snapshots, &splice);
3355
3356 while (!list_empty(&splice)) {
3357 snapshot = list_entry(splice.next,
3358 struct btrfs_pending_snapshot,
3359 list);
3360
3361 list_del_init(&snapshot->list);
3362
3363 kfree(snapshot);
3364 }
3365
3366 return 0;
3367}
3368
3369static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3370{
3371 struct btrfs_inode *btrfs_inode;
3372 struct list_head splice;
3373
3374 INIT_LIST_HEAD(&splice);
3375
acce952b 3376 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3377 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3378
3379 while (!list_empty(&splice)) {
3380 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3381 delalloc_inodes);
3382
3383 list_del_init(&btrfs_inode->delalloc_inodes);
3384
3385 btrfs_invalidate_inodes(btrfs_inode->root);
3386 }
3387
3388 spin_unlock(&root->fs_info->delalloc_lock);
3389
3390 return 0;
3391}
3392
3393static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3394 struct extent_io_tree *dirty_pages,
3395 int mark)
3396{
3397 int ret;
3398 struct page *page;
3399 struct inode *btree_inode = root->fs_info->btree_inode;
3400 struct extent_buffer *eb;
3401 u64 start = 0;
3402 u64 end;
3403 u64 offset;
3404 unsigned long index;
3405
3406 while (1) {
3407 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3408 mark);
3409 if (ret)
3410 break;
3411
3412 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3413 while (start <= end) {
3414 index = start >> PAGE_CACHE_SHIFT;
3415 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3416 page = find_get_page(btree_inode->i_mapping, index);
3417 if (!page)
3418 continue;
3419 offset = page_offset(page);
3420
3421 spin_lock(&dirty_pages->buffer_lock);
3422 eb = radix_tree_lookup(
3423 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3424 offset >> PAGE_CACHE_SHIFT);
3425 spin_unlock(&dirty_pages->buffer_lock);
3426 if (eb) {
3427 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3428 &eb->bflags);
3429 atomic_set(&eb->refs, 1);
3430 }
3431 if (PageWriteback(page))
3432 end_page_writeback(page);
3433
3434 lock_page(page);
3435 if (PageDirty(page)) {
3436 clear_page_dirty_for_io(page);
3437 spin_lock_irq(&page->mapping->tree_lock);
3438 radix_tree_tag_clear(&page->mapping->page_tree,
3439 page_index(page),
3440 PAGECACHE_TAG_DIRTY);
3441 spin_unlock_irq(&page->mapping->tree_lock);
3442 }
3443
3444 page->mapping->a_ops->invalidatepage(page, 0);
3445 unlock_page(page);
3446 }
3447 }
3448
3449 return ret;
3450}
3451
3452static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3453 struct extent_io_tree *pinned_extents)
3454{
3455 struct extent_io_tree *unpin;
3456 u64 start;
3457 u64 end;
3458 int ret;
3459
3460 unpin = pinned_extents;
3461 while (1) {
3462 ret = find_first_extent_bit(unpin, 0, &start, &end,
3463 EXTENT_DIRTY);
3464 if (ret)
3465 break;
3466
3467 /* opt_discard */
5378e607
LD
3468 if (btrfs_test_opt(root, DISCARD))
3469 ret = btrfs_error_discard_extent(root, start,
3470 end + 1 - start,
3471 NULL);
acce952b 3472
3473 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3474 btrfs_error_unpin_extent_range(root, start, end);
3475 cond_resched();
3476 }
3477
3478 return 0;
3479}
3480
3481static int btrfs_cleanup_transaction(struct btrfs_root *root)
3482{
3483 struct btrfs_transaction *t;
3484 LIST_HEAD(list);
3485
3486 WARN_ON(1);
3487
acce952b 3488 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3489
a4abeea4 3490 spin_lock(&root->fs_info->trans_lock);
acce952b 3491 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3492 root->fs_info->trans_no_join = 1;
3493 spin_unlock(&root->fs_info->trans_lock);
3494
acce952b 3495 while (!list_empty(&list)) {
3496 t = list_entry(list.next, struct btrfs_transaction, list);
3497 if (!t)
3498 break;
3499
3500 btrfs_destroy_ordered_operations(root);
3501
3502 btrfs_destroy_ordered_extents(root);
3503
3504 btrfs_destroy_delayed_refs(t, root);
3505
3506 btrfs_block_rsv_release(root,
3507 &root->fs_info->trans_block_rsv,
3508 t->dirty_pages.dirty_bytes);
3509
3510 /* FIXME: cleanup wait for commit */
3511 t->in_commit = 1;
3512 t->blocked = 1;
3513 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3514 wake_up(&root->fs_info->transaction_blocked_wait);
3515
3516 t->blocked = 0;
3517 if (waitqueue_active(&root->fs_info->transaction_wait))
3518 wake_up(&root->fs_info->transaction_wait);
acce952b 3519
acce952b 3520 t->commit_done = 1;
3521 if (waitqueue_active(&t->commit_wait))
3522 wake_up(&t->commit_wait);
acce952b 3523
3524 btrfs_destroy_pending_snapshots(t);
3525
3526 btrfs_destroy_delalloc_inodes(root);
3527
a4abeea4 3528 spin_lock(&root->fs_info->trans_lock);
acce952b 3529 root->fs_info->running_transaction = NULL;
a4abeea4 3530 spin_unlock(&root->fs_info->trans_lock);
acce952b 3531
3532 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3533 EXTENT_DIRTY);
3534
3535 btrfs_destroy_pinned_extent(root,
3536 root->fs_info->pinned_extents);
3537
13c5a93e 3538 atomic_set(&t->use_count, 0);
acce952b 3539 list_del_init(&t->list);
3540 memset(t, 0, sizeof(*t));
3541 kmem_cache_free(btrfs_transaction_cachep, t);
3542 }
3543
a4abeea4
JB
3544 spin_lock(&root->fs_info->trans_lock);
3545 root->fs_info->trans_no_join = 0;
3546 spin_unlock(&root->fs_info->trans_lock);
acce952b 3547 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3548
3549 return 0;
3550}
3551
d1310b2e 3552static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3553 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3554 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3555 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3556 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3557 /* note we're sharing with inode.c for the merge bio hook */
3558 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3559};