Btrfs: fix possible memory leak in btrfs_create_tree()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
8b712842 89 struct btrfs_work work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
8b712842 111 struct btrfs_work work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 160 { .id = 0, .name_stem = "tree" },
4008c04a 161};
85d4e461
CM
162
163void __init btrfs_init_lockdep(void)
164{
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175}
176
177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179{
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191}
192
4008c04a
CM
193#endif
194
d352ac68
CM
195/*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
b2950863 199static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 200 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 201 int create)
7eccb903 202{
5f39d397
CM
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
890871be 207 read_lock(&em_tree->lock);
d1310b2e 208 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 212 read_unlock(&em_tree->lock);
5f39d397 213 goto out;
a061fc8d 214 }
890871be 215 read_unlock(&em_tree->lock);
7b13b7b1 216
172ddd60 217 em = alloc_extent_map();
5f39d397
CM
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
0afbaf8c 223 em->len = (u64)-1;
c8b97818 224 em->block_len = (u64)-1;
5f39d397 225 em->block_start = 0;
a061fc8d 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 227
890871be 228 write_lock(&em_tree->lock);
09a2a8f9 229 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
230 if (ret == -EEXIST) {
231 free_extent_map(em);
7b13b7b1 232 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 233 if (!em)
0433f20d 234 em = ERR_PTR(-EIO);
5f39d397 235 } else if (ret) {
7b13b7b1 236 free_extent_map(em);
0433f20d 237 em = ERR_PTR(ret);
5f39d397 238 }
890871be 239 write_unlock(&em_tree->lock);
7b13b7b1 240
5f39d397
CM
241out:
242 return em;
7eccb903
CM
243}
244
b0496686 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 246{
0b947aff 247 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
248}
249
250void btrfs_csum_final(u32 crc, char *result)
251{
7e75bf3f 252 put_unaligned_le32(~crc, result);
19c00ddc
CM
253}
254
d352ac68
CM
255/*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
19c00ddc
CM
259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261{
6c41761f 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 263 char *result = NULL;
19c00ddc
CM
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
607d432d 272 unsigned long inline_result;
19c00ddc
CM
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
19c00ddc 276 err = map_private_extent_buffer(buf, offset, 32,
a6591715 277 &kaddr, &map_start, &map_len);
d397712b 278 if (err)
19c00ddc 279 return 1;
19c00ddc 280 cur_len = min(len, map_len - (offset - map_start));
b0496686 281 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
607d432d
JB
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75 331 int ret;
a26e8c9f
JB
332 bool need_lock = (current->journal_info ==
333 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
334
335 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
336 return 0;
337
b9fab919
CM
338 if (atomic)
339 return -EAGAIN;
340
a26e8c9f
JB
341 if (need_lock) {
342 btrfs_tree_read_lock(eb);
343 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344 }
345
2ac55d41 346 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 347 0, &cached_state);
0b32f4bb 348 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
349 btrfs_header_generation(eb) == parent_transid) {
350 ret = 0;
351 goto out;
352 }
7a36ddec 353 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 354 "found %llu\n",
c1c9ff7c 355 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 356 ret = 1;
a26e8c9f
JB
357
358 /*
359 * Things reading via commit roots that don't have normal protection,
360 * like send, can have a really old block in cache that may point at a
361 * block that has been free'd and re-allocated. So don't clear uptodate
362 * if we find an eb that is under IO (dirty/writeback) because we could
363 * end up reading in the stale data and then writing it back out and
364 * making everybody very sad.
365 */
366 if (!extent_buffer_under_io(eb))
367 clear_extent_buffer_uptodate(eb);
33958dc6 368out:
2ac55d41
JB
369 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state, GFP_NOFS);
a26e8c9f 371 btrfs_tree_read_unlock_blocking(eb);
1259ab75 372 return ret;
1259ab75
CM
373}
374
1104a885
DS
375/*
376 * Return 0 if the superblock checksum type matches the checksum value of that
377 * algorithm. Pass the raw disk superblock data.
378 */
379static int btrfs_check_super_csum(char *raw_disk_sb)
380{
381 struct btrfs_super_block *disk_sb =
382 (struct btrfs_super_block *)raw_disk_sb;
383 u16 csum_type = btrfs_super_csum_type(disk_sb);
384 int ret = 0;
385
386 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 u32 crc = ~(u32)0;
388 const int csum_size = sizeof(crc);
389 char result[csum_size];
390
391 /*
392 * The super_block structure does not span the whole
393 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394 * is filled with zeros and is included in the checkum.
395 */
396 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398 btrfs_csum_final(crc, result);
399
400 if (memcmp(raw_disk_sb, result, csum_size))
401 ret = 1;
667e7d94
CM
402
403 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
404 printk(KERN_WARNING
405 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
406 ret = 0;
407 }
1104a885
DS
408 }
409
410 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 411 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
412 csum_type);
413 ret = 1;
414 }
415
416 return ret;
417}
418
d352ac68
CM
419/*
420 * helper to read a given tree block, doing retries as required when
421 * the checksums don't match and we have alternate mirrors to try.
422 */
f188591e
CM
423static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424 struct extent_buffer *eb,
ca7a79ad 425 u64 start, u64 parent_transid)
f188591e
CM
426{
427 struct extent_io_tree *io_tree;
ea466794 428 int failed = 0;
f188591e
CM
429 int ret;
430 int num_copies = 0;
431 int mirror_num = 0;
ea466794 432 int failed_mirror = 0;
f188591e 433
a826d6dc 434 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
435 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436 while (1) {
bb82ab88
AJ
437 ret = read_extent_buffer_pages(io_tree, eb, start,
438 WAIT_COMPLETE,
f188591e 439 btree_get_extent, mirror_num);
256dd1bb
SB
440 if (!ret) {
441 if (!verify_parent_transid(io_tree, eb,
b9fab919 442 parent_transid, 0))
256dd1bb
SB
443 break;
444 else
445 ret = -EIO;
446 }
d397712b 447
a826d6dc
JB
448 /*
449 * This buffer's crc is fine, but its contents are corrupted, so
450 * there is no reason to read the other copies, they won't be
451 * any less wrong.
452 */
453 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
454 break;
455
5d964051 456 num_copies = btrfs_num_copies(root->fs_info,
f188591e 457 eb->start, eb->len);
4235298e 458 if (num_copies == 1)
ea466794 459 break;
4235298e 460
5cf1ab56
JB
461 if (!failed_mirror) {
462 failed = 1;
463 failed_mirror = eb->read_mirror;
464 }
465
f188591e 466 mirror_num++;
ea466794
JB
467 if (mirror_num == failed_mirror)
468 mirror_num++;
469
4235298e 470 if (mirror_num > num_copies)
ea466794 471 break;
f188591e 472 }
ea466794 473
c0901581 474 if (failed && !ret && failed_mirror)
ea466794
JB
475 repair_eb_io_failure(root, eb, failed_mirror);
476
477 return ret;
f188591e 478}
19c00ddc 479
d352ac68 480/*
d397712b
CM
481 * checksum a dirty tree block before IO. This has extra checks to make sure
482 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 483 */
d397712b 484
b2950863 485static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 486{
4eee4fa4 487 u64 start = page_offset(page);
19c00ddc 488 u64 found_start;
19c00ddc 489 struct extent_buffer *eb;
f188591e 490
4f2de97a
JB
491 eb = (struct extent_buffer *)page->private;
492 if (page != eb->pages[0])
493 return 0;
19c00ddc 494 found_start = btrfs_header_bytenr(eb);
fae7f21c 495 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 496 return 0;
19c00ddc 497 csum_tree_block(root, eb, 0);
19c00ddc
CM
498 return 0;
499}
500
2b82032c
YZ
501static int check_tree_block_fsid(struct btrfs_root *root,
502 struct extent_buffer *eb)
503{
504 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505 u8 fsid[BTRFS_UUID_SIZE];
506 int ret = 1;
507
0a4e5586 508 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
509 while (fs_devices) {
510 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511 ret = 0;
512 break;
513 }
514 fs_devices = fs_devices->seed;
515 }
516 return ret;
517}
518
a826d6dc 519#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
520 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
521 "root=%llu, slot=%d", reason, \
c1c9ff7c 522 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
523
524static noinline int check_leaf(struct btrfs_root *root,
525 struct extent_buffer *leaf)
526{
527 struct btrfs_key key;
528 struct btrfs_key leaf_key;
529 u32 nritems = btrfs_header_nritems(leaf);
530 int slot;
531
532 if (nritems == 0)
533 return 0;
534
535 /* Check the 0 item */
536 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537 BTRFS_LEAF_DATA_SIZE(root)) {
538 CORRUPT("invalid item offset size pair", leaf, root, 0);
539 return -EIO;
540 }
541
542 /*
543 * Check to make sure each items keys are in the correct order and their
544 * offsets make sense. We only have to loop through nritems-1 because
545 * we check the current slot against the next slot, which verifies the
546 * next slot's offset+size makes sense and that the current's slot
547 * offset is correct.
548 */
549 for (slot = 0; slot < nritems - 1; slot++) {
550 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552
553 /* Make sure the keys are in the right order */
554 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555 CORRUPT("bad key order", leaf, root, slot);
556 return -EIO;
557 }
558
559 /*
560 * Make sure the offset and ends are right, remember that the
561 * item data starts at the end of the leaf and grows towards the
562 * front.
563 */
564 if (btrfs_item_offset_nr(leaf, slot) !=
565 btrfs_item_end_nr(leaf, slot + 1)) {
566 CORRUPT("slot offset bad", leaf, root, slot);
567 return -EIO;
568 }
569
570 /*
571 * Check to make sure that we don't point outside of the leaf,
572 * just incase all the items are consistent to eachother, but
573 * all point outside of the leaf.
574 */
575 if (btrfs_item_end_nr(leaf, slot) >
576 BTRFS_LEAF_DATA_SIZE(root)) {
577 CORRUPT("slot end outside of leaf", leaf, root, slot);
578 return -EIO;
579 }
580 }
581
582 return 0;
583}
584
facc8a22
MX
585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 u64 phy_offset, struct page *page,
587 u64 start, u64 end, int mirror)
ce9adaa5 588{
ce9adaa5
CM
589 u64 found_start;
590 int found_level;
ce9adaa5
CM
591 struct extent_buffer *eb;
592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 593 int ret = 0;
727011e0 594 int reads_done;
ce9adaa5 595
ce9adaa5
CM
596 if (!page->private)
597 goto out;
d397712b 598
4f2de97a 599 eb = (struct extent_buffer *)page->private;
d397712b 600
0b32f4bb
JB
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
603 */
604 extent_buffer_get(eb);
605
606 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
607 if (!reads_done)
608 goto err;
f188591e 609
5cf1ab56 610 eb->read_mirror = mirror;
ea466794
JB
611 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612 ret = -EIO;
613 goto err;
614 }
615
ce9adaa5 616 found_start = btrfs_header_bytenr(eb);
727011e0 617 if (found_start != eb->start) {
efe120a0 618 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 619 "%llu %llu\n",
c1c9ff7c 620 found_start, eb->start);
f188591e 621 ret = -EIO;
ce9adaa5
CM
622 goto err;
623 }
2b82032c 624 if (check_tree_block_fsid(root, eb)) {
efe120a0 625 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 626 eb->start);
1259ab75
CM
627 ret = -EIO;
628 goto err;
629 }
ce9adaa5 630 found_level = btrfs_header_level(eb);
1c24c3ce 631 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 632 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
633 (int)btrfs_header_level(eb));
634 ret = -EIO;
635 goto err;
636 }
ce9adaa5 637
85d4e461
CM
638 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639 eb, found_level);
4008c04a 640
ce9adaa5 641 ret = csum_tree_block(root, eb, 1);
a826d6dc 642 if (ret) {
f188591e 643 ret = -EIO;
a826d6dc
JB
644 goto err;
645 }
646
647 /*
648 * If this is a leaf block and it is corrupt, set the corrupt bit so
649 * that we don't try and read the other copies of this block, just
650 * return -EIO.
651 */
652 if (found_level == 0 && check_leaf(root, eb)) {
653 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654 ret = -EIO;
655 }
ce9adaa5 656
0b32f4bb
JB
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
ce9adaa5 659err:
79fb65a1
JB
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 662 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 663
53b381b3
DW
664 if (ret) {
665 /*
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
669 */
670 atomic_inc(&eb->io_pages);
0b32f4bb 671 clear_extent_buffer_uptodate(eb);
53b381b3 672 }
0b32f4bb 673 free_extent_buffer(eb);
ce9adaa5 674out:
f188591e 675 return ret;
ce9adaa5
CM
676}
677
ea466794 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 679{
4bb31e92
AJ
680 struct extent_buffer *eb;
681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682
4f2de97a 683 eb = (struct extent_buffer *)page->private;
ea466794 684 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 685 eb->read_mirror = failed_mirror;
53b381b3 686 atomic_dec(&eb->io_pages);
ea466794 687 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 688 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
689 return -EIO; /* we fixed nothing */
690}
691
ce9adaa5 692static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
693{
694 struct end_io_wq *end_io_wq = bio->bi_private;
695 struct btrfs_fs_info *fs_info;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
ce9adaa5 698 end_io_wq->error = err;
fccb5d86 699 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
d20f7043 700
7b6d91da 701 if (bio->bi_rw & REQ_WRITE) {
53b381b3 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
fccb5d86
QW
703 btrfs_queue_work(fs_info->endio_meta_write_workers,
704 &end_io_wq->work);
53b381b3 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
fccb5d86
QW
706 btrfs_queue_work(fs_info->endio_freespace_worker,
707 &end_io_wq->work);
53b381b3 708 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
709 btrfs_queue_work(fs_info->endio_raid56_workers,
710 &end_io_wq->work);
cad321ad 711 else
fccb5d86
QW
712 btrfs_queue_work(fs_info->endio_write_workers,
713 &end_io_wq->work);
d20f7043 714 } else {
53b381b3 715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
716 btrfs_queue_work(fs_info->endio_raid56_workers,
717 &end_io_wq->work);
53b381b3 718 else if (end_io_wq->metadata)
fccb5d86
QW
719 btrfs_queue_work(fs_info->endio_meta_workers,
720 &end_io_wq->work);
d20f7043 721 else
fccb5d86
QW
722 btrfs_queue_work(fs_info->endio_workers,
723 &end_io_wq->work);
d20f7043 724 }
ce9adaa5
CM
725}
726
0cb59c99
JB
727/*
728 * For the metadata arg you want
729 *
730 * 0 - if data
731 * 1 - if normal metadta
732 * 2 - if writing to the free space cache area
53b381b3 733 * 3 - raid parity work
0cb59c99 734 */
22c59948
CM
735int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736 int metadata)
0b86a832 737{
ce9adaa5 738 struct end_io_wq *end_io_wq;
ce9adaa5
CM
739 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740 if (!end_io_wq)
741 return -ENOMEM;
742
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
22c59948 745 end_io_wq->info = info;
ce9adaa5
CM
746 end_io_wq->error = 0;
747 end_io_wq->bio = bio;
22c59948 748 end_io_wq->metadata = metadata;
ce9adaa5
CM
749
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
752 return 0;
753}
754
b64a2851 755unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 756{
4854ddd0 757 unsigned long limit = min_t(unsigned long,
5cdc7ad3 758 info->thread_pool_size,
4854ddd0
CM
759 info->fs_devices->open_devices);
760 return 256 * limit;
761}
0986fe9e 762
4a69a410
CM
763static void run_one_async_start(struct btrfs_work *work)
764{
4a69a410 765 struct async_submit_bio *async;
79787eaa 766 int ret;
4a69a410
CM
767
768 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
769 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772 if (ret)
773 async->error = ret;
4a69a410
CM
774}
775
776static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
777{
778 struct btrfs_fs_info *fs_info;
779 struct async_submit_bio *async;
4854ddd0 780 int limit;
8b712842
CM
781
782 async = container_of(work, struct async_submit_bio, work);
783 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 784
b64a2851 785 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
786 limit = limit * 2 / 3;
787
66657b31 788 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 789 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
790 wake_up(&fs_info->async_submit_wait);
791
79787eaa
JM
792 /* If an error occured we just want to clean up the bio and move on */
793 if (async->error) {
794 bio_endio(async->bio, async->error);
795 return;
796 }
797
4a69a410 798 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
799 async->mirror_num, async->bio_flags,
800 async->bio_offset);
4a69a410
CM
801}
802
803static void run_one_async_free(struct btrfs_work *work)
804{
805 struct async_submit_bio *async;
806
807 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
808 kfree(async);
809}
810
44b8bd7e
CM
811int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812 int rw, struct bio *bio, int mirror_num,
c8b97818 813 unsigned long bio_flags,
eaf25d93 814 u64 bio_offset,
4a69a410
CM
815 extent_submit_bio_hook_t *submit_bio_start,
816 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
817{
818 struct async_submit_bio *async;
819
820 async = kmalloc(sizeof(*async), GFP_NOFS);
821 if (!async)
822 return -ENOMEM;
823
824 async->inode = inode;
825 async->rw = rw;
826 async->bio = bio;
827 async->mirror_num = mirror_num;
4a69a410
CM
828 async->submit_bio_start = submit_bio_start;
829 async->submit_bio_done = submit_bio_done;
830
5cdc7ad3
QW
831 btrfs_init_work(&async->work, run_one_async_start,
832 run_one_async_done, run_one_async_free);
4a69a410 833
c8b97818 834 async->bio_flags = bio_flags;
eaf25d93 835 async->bio_offset = bio_offset;
8c8bee1d 836
79787eaa
JM
837 async->error = 0;
838
cb03c743 839 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 840
7b6d91da 841 if (rw & REQ_SYNC)
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 845
d397712b 846 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
847 atomic_read(&fs_info->nr_async_submits)) {
848 wait_event(fs_info->async_submit_wait,
849 (atomic_read(&fs_info->nr_async_submits) == 0));
850 }
851
44b8bd7e
CM
852 return 0;
853}
854
ce3ed71a
CM
855static int btree_csum_one_bio(struct bio *bio)
856{
2c30c71b 857 struct bio_vec *bvec;
ce3ed71a 858 struct btrfs_root *root;
2c30c71b 859 int i, ret = 0;
ce3ed71a 860
2c30c71b 861 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 862 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
863 ret = csum_dirty_buffer(root, bvec->bv_page);
864 if (ret)
865 break;
ce3ed71a 866 }
2c30c71b 867
79787eaa 868 return ret;
ce3ed71a
CM
869}
870
4a69a410
CM
871static int __btree_submit_bio_start(struct inode *inode, int rw,
872 struct bio *bio, int mirror_num,
eaf25d93
CM
873 unsigned long bio_flags,
874 u64 bio_offset)
22c59948 875{
8b712842
CM
876 /*
877 * when we're called for a write, we're already in the async
5443be45 878 * submission context. Just jump into btrfs_map_bio
8b712842 879 */
79787eaa 880 return btree_csum_one_bio(bio);
4a69a410 881}
22c59948 882
4a69a410 883static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
884 int mirror_num, unsigned long bio_flags,
885 u64 bio_offset)
4a69a410 886{
61891923
SB
887 int ret;
888
8b712842 889 /*
4a69a410
CM
890 * when we're called for a write, we're already in the async
891 * submission context. Just jump into btrfs_map_bio
8b712842 892 */
61891923
SB
893 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
894 if (ret)
895 bio_endio(bio, ret);
896 return ret;
0b86a832
CM
897}
898
de0022b9
JB
899static int check_async_write(struct inode *inode, unsigned long bio_flags)
900{
901 if (bio_flags & EXTENT_BIO_TREE_LOG)
902 return 0;
903#ifdef CONFIG_X86
904 if (cpu_has_xmm4_2)
905 return 0;
906#endif
907 return 1;
908}
909
44b8bd7e 910static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
911 int mirror_num, unsigned long bio_flags,
912 u64 bio_offset)
44b8bd7e 913{
de0022b9 914 int async = check_async_write(inode, bio_flags);
cad321ad
CM
915 int ret;
916
7b6d91da 917 if (!(rw & REQ_WRITE)) {
4a69a410
CM
918 /*
919 * called for a read, do the setup so that checksum validation
920 * can happen in the async kernel threads
921 */
f3f266ab
CM
922 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
923 bio, 1);
1d4284bd 924 if (ret)
61891923
SB
925 goto out_w_error;
926 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
927 mirror_num, 0);
de0022b9
JB
928 } else if (!async) {
929 ret = btree_csum_one_bio(bio);
930 if (ret)
61891923
SB
931 goto out_w_error;
932 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
933 mirror_num, 0);
934 } else {
935 /*
936 * kthread helpers are used to submit writes so that
937 * checksumming can happen in parallel across all CPUs
938 */
939 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
940 inode, rw, bio, mirror_num, 0,
941 bio_offset,
942 __btree_submit_bio_start,
943 __btree_submit_bio_done);
44b8bd7e 944 }
d313d7a3 945
61891923
SB
946 if (ret) {
947out_w_error:
948 bio_endio(bio, ret);
949 }
950 return ret;
44b8bd7e
CM
951}
952
3dd1462e 953#ifdef CONFIG_MIGRATION
784b4e29 954static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
955 struct page *newpage, struct page *page,
956 enum migrate_mode mode)
784b4e29
CM
957{
958 /*
959 * we can't safely write a btree page from here,
960 * we haven't done the locking hook
961 */
962 if (PageDirty(page))
963 return -EAGAIN;
964 /*
965 * Buffers may be managed in a filesystem specific way.
966 * We must have no buffers or drop them.
967 */
968 if (page_has_private(page) &&
969 !try_to_release_page(page, GFP_KERNEL))
970 return -EAGAIN;
a6bc32b8 971 return migrate_page(mapping, newpage, page, mode);
784b4e29 972}
3dd1462e 973#endif
784b4e29 974
0da5468f
CM
975
976static int btree_writepages(struct address_space *mapping,
977 struct writeback_control *wbc)
978{
e2d84521
MX
979 struct btrfs_fs_info *fs_info;
980 int ret;
981
d8d5f3e1 982 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
983
984 if (wbc->for_kupdate)
985 return 0;
986
e2d84521 987 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 988 /* this is a bit racy, but that's ok */
e2d84521
MX
989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990 BTRFS_DIRTY_METADATA_THRESH);
991 if (ret < 0)
793955bc 992 return 0;
793955bc 993 }
0b32f4bb 994 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
995}
996
b2950863 997static int btree_readpage(struct file *file, struct page *page)
5f39d397 998{
d1310b2e
CM
999 struct extent_io_tree *tree;
1000 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1001 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1002}
22b0ebda 1003
70dec807 1004static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1005{
98509cfc 1006 if (PageWriteback(page) || PageDirty(page))
d397712b 1007 return 0;
0c4e538b 1008
f7a52a40 1009 return try_release_extent_buffer(page);
d98237b3
CM
1010}
1011
d47992f8
LC
1012static void btree_invalidatepage(struct page *page, unsigned int offset,
1013 unsigned int length)
d98237b3 1014{
d1310b2e
CM
1015 struct extent_io_tree *tree;
1016 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1017 extent_invalidatepage(tree, page, offset);
1018 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1019 if (PagePrivate(page)) {
efe120a0
FH
1020 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021 "page private not zero on page %llu",
1022 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1023 ClearPagePrivate(page);
1024 set_page_private(page, 0);
1025 page_cache_release(page);
1026 }
d98237b3
CM
1027}
1028
0b32f4bb
JB
1029static int btree_set_page_dirty(struct page *page)
1030{
bb146eb2 1031#ifdef DEBUG
0b32f4bb
JB
1032 struct extent_buffer *eb;
1033
1034 BUG_ON(!PagePrivate(page));
1035 eb = (struct extent_buffer *)page->private;
1036 BUG_ON(!eb);
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
1039 btrfs_assert_tree_locked(eb);
bb146eb2 1040#endif
0b32f4bb
JB
1041 return __set_page_dirty_nobuffers(page);
1042}
1043
7f09410b 1044static const struct address_space_operations btree_aops = {
d98237b3 1045 .readpage = btree_readpage,
0da5468f 1046 .writepages = btree_writepages,
5f39d397
CM
1047 .releasepage = btree_releasepage,
1048 .invalidatepage = btree_invalidatepage,
5a92bc88 1049#ifdef CONFIG_MIGRATION
784b4e29 1050 .migratepage = btree_migratepage,
5a92bc88 1051#endif
0b32f4bb 1052 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1053};
1054
ca7a79ad
CM
1055int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056 u64 parent_transid)
090d1875 1057{
5f39d397
CM
1058 struct extent_buffer *buf = NULL;
1059 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1060 int ret = 0;
090d1875 1061
db94535d 1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1063 if (!buf)
090d1875 1064 return 0;
d1310b2e 1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1066 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1067 free_extent_buffer(buf);
de428b63 1068 return ret;
090d1875
CM
1069}
1070
ab0fff03
AJ
1071int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072 int mirror_num, struct extent_buffer **eb)
1073{
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077 int ret;
1078
1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080 if (!buf)
1081 return 0;
1082
1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086 btree_get_extent, mirror_num);
1087 if (ret) {
1088 free_extent_buffer(buf);
1089 return ret;
1090 }
1091
1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093 free_extent_buffer(buf);
1094 return -EIO;
0b32f4bb 1095 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1096 *eb = buf;
1097 } else {
1098 free_extent_buffer(buf);
1099 }
1100 return 0;
1101}
1102
0999df54
CM
1103struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104 u64 bytenr, u32 blocksize)
1105{
f28491e0 1106 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1107}
1108
1109struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110 u64 bytenr, u32 blocksize)
1111{
f28491e0 1112 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1113}
1114
1115
e02119d5
CM
1116int btrfs_write_tree_block(struct extent_buffer *buf)
1117{
727011e0 1118 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1119 buf->start + buf->len - 1);
e02119d5
CM
1120}
1121
1122int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123{
727011e0 1124 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1125 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1126}
1127
0999df54 1128struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1129 u32 blocksize, u64 parent_transid)
0999df54
CM
1130{
1131 struct extent_buffer *buf = NULL;
0999df54
CM
1132 int ret;
1133
0999df54
CM
1134 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135 if (!buf)
1136 return NULL;
0999df54 1137
ca7a79ad 1138 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1139 if (ret) {
1140 free_extent_buffer(buf);
1141 return NULL;
1142 }
5f39d397 1143 return buf;
ce9adaa5 1144
eb60ceac
CM
1145}
1146
d5c13f92
JM
1147void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148 struct extent_buffer *buf)
ed2ff2cb 1149{
e2d84521
MX
1150 struct btrfs_fs_info *fs_info = root->fs_info;
1151
55c69072 1152 if (btrfs_header_generation(buf) ==
e2d84521 1153 fs_info->running_transaction->transid) {
b9447ef8 1154 btrfs_assert_tree_locked(buf);
b4ce94de 1155
b9473439 1156 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1157 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158 -buf->len,
1159 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1160 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1161 btrfs_set_lock_blocking(buf);
1162 clear_extent_buffer_dirty(buf);
1163 }
925baedd 1164 }
5f39d397
CM
1165}
1166
8257b2dc
MX
1167static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1168{
1169 struct btrfs_subvolume_writers *writers;
1170 int ret;
1171
1172 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1173 if (!writers)
1174 return ERR_PTR(-ENOMEM);
1175
1176 ret = percpu_counter_init(&writers->counter, 0);
1177 if (ret < 0) {
1178 kfree(writers);
1179 return ERR_PTR(ret);
1180 }
1181
1182 init_waitqueue_head(&writers->wait);
1183 return writers;
1184}
1185
1186static void
1187btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1188{
1189 percpu_counter_destroy(&writers->counter);
1190 kfree(writers);
1191}
1192
143bede5
JM
1193static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194 u32 stripesize, struct btrfs_root *root,
1195 struct btrfs_fs_info *fs_info,
1196 u64 objectid)
d97e63b6 1197{
cfaa7295 1198 root->node = NULL;
a28ec197 1199 root->commit_root = NULL;
db94535d
CM
1200 root->sectorsize = sectorsize;
1201 root->nodesize = nodesize;
1202 root->leafsize = leafsize;
87ee04eb 1203 root->stripesize = stripesize;
27cdeb70 1204 root->state = 0;
d68fc57b 1205 root->orphan_cleanup_state = 0;
0b86a832 1206
0f7d52f4
CM
1207 root->objectid = objectid;
1208 root->last_trans = 0;
13a8a7c8 1209 root->highest_objectid = 0;
eb73c1b7 1210 root->nr_delalloc_inodes = 0;
199c2a9c 1211 root->nr_ordered_extents = 0;
58176a96 1212 root->name = NULL;
6bef4d31 1213 root->inode_tree = RB_ROOT;
16cdcec7 1214 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1215 root->block_rsv = NULL;
d68fc57b 1216 root->orphan_block_rsv = NULL;
0b86a832
CM
1217
1218 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1219 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1220 INIT_LIST_HEAD(&root->delalloc_inodes);
1221 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1222 INIT_LIST_HEAD(&root->ordered_extents);
1223 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1224 INIT_LIST_HEAD(&root->logged_list[0]);
1225 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1226 spin_lock_init(&root->orphan_lock);
5d4f98a2 1227 spin_lock_init(&root->inode_lock);
eb73c1b7 1228 spin_lock_init(&root->delalloc_lock);
199c2a9c 1229 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1230 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1231 spin_lock_init(&root->log_extents_lock[0]);
1232 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1233 mutex_init(&root->objectid_mutex);
e02119d5 1234 mutex_init(&root->log_mutex);
31f3d255 1235 mutex_init(&root->ordered_extent_mutex);
573bfb72 1236 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1237 init_waitqueue_head(&root->log_writer_wait);
1238 init_waitqueue_head(&root->log_commit_wait[0]);
1239 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1240 INIT_LIST_HEAD(&root->log_ctxs[0]);
1241 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1242 atomic_set(&root->log_commit[0], 0);
1243 atomic_set(&root->log_commit[1], 0);
1244 atomic_set(&root->log_writers, 0);
2ecb7923 1245 atomic_set(&root->log_batch, 0);
8a35d95f 1246 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1247 atomic_set(&root->refs, 1);
8257b2dc 1248 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1249 root->log_transid = 0;
d1433deb 1250 root->log_transid_committed = -1;
257c62e1 1251 root->last_log_commit = 0;
06ea65a3
JB
1252 if (fs_info)
1253 extent_io_tree_init(&root->dirty_log_pages,
1254 fs_info->btree_inode->i_mapping);
017e5369 1255
3768f368
CM
1256 memset(&root->root_key, 0, sizeof(root->root_key));
1257 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1258 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1259 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1260 if (fs_info)
1261 root->defrag_trans_start = fs_info->generation;
1262 else
1263 root->defrag_trans_start = 0;
58176a96 1264 init_completion(&root->kobj_unregister);
4d775673 1265 root->root_key.objectid = objectid;
0ee5dc67 1266 root->anon_dev = 0;
8ea05e3a 1267
5f3ab90a 1268 spin_lock_init(&root->root_item_lock);
3768f368
CM
1269}
1270
f84a8bd6 1271static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1272{
1273 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1274 if (root)
1275 root->fs_info = fs_info;
1276 return root;
1277}
1278
06ea65a3
JB
1279#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1280/* Should only be used by the testing infrastructure */
1281struct btrfs_root *btrfs_alloc_dummy_root(void)
1282{
1283 struct btrfs_root *root;
1284
1285 root = btrfs_alloc_root(NULL);
1286 if (!root)
1287 return ERR_PTR(-ENOMEM);
1288 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
27cdeb70 1289 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
06ea65a3
JB
1290
1291 return root;
1292}
1293#endif
1294
20897f5c
AJ
1295struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1296 struct btrfs_fs_info *fs_info,
1297 u64 objectid)
1298{
1299 struct extent_buffer *leaf;
1300 struct btrfs_root *tree_root = fs_info->tree_root;
1301 struct btrfs_root *root;
1302 struct btrfs_key key;
1303 int ret = 0;
6463fe58 1304 uuid_le uuid;
20897f5c
AJ
1305
1306 root = btrfs_alloc_root(fs_info);
1307 if (!root)
1308 return ERR_PTR(-ENOMEM);
1309
1310 __setup_root(tree_root->nodesize, tree_root->leafsize,
1311 tree_root->sectorsize, tree_root->stripesize,
1312 root, fs_info, objectid);
1313 root->root_key.objectid = objectid;
1314 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1315 root->root_key.offset = 0;
1316
1317 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1318 0, objectid, NULL, 0, 0, 0);
1319 if (IS_ERR(leaf)) {
1320 ret = PTR_ERR(leaf);
1dd05682 1321 leaf = NULL;
20897f5c
AJ
1322 goto fail;
1323 }
1324
20897f5c
AJ
1325 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1326 btrfs_set_header_bytenr(leaf, leaf->start);
1327 btrfs_set_header_generation(leaf, trans->transid);
1328 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1329 btrfs_set_header_owner(leaf, objectid);
1330 root->node = leaf;
1331
0a4e5586 1332 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1333 BTRFS_FSID_SIZE);
1334 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1335 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1336 BTRFS_UUID_SIZE);
1337 btrfs_mark_buffer_dirty(leaf);
1338
1339 root->commit_root = btrfs_root_node(root);
27cdeb70 1340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1341
1342 root->root_item.flags = 0;
1343 root->root_item.byte_limit = 0;
1344 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1345 btrfs_set_root_generation(&root->root_item, trans->transid);
1346 btrfs_set_root_level(&root->root_item, 0);
1347 btrfs_set_root_refs(&root->root_item, 1);
1348 btrfs_set_root_used(&root->root_item, leaf->len);
1349 btrfs_set_root_last_snapshot(&root->root_item, 0);
1350 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1351 uuid_le_gen(&uuid);
1352 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1353 root->root_item.drop_level = 0;
1354
1355 key.objectid = objectid;
1356 key.type = BTRFS_ROOT_ITEM_KEY;
1357 key.offset = 0;
1358 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1359 if (ret)
1360 goto fail;
1361
1362 btrfs_tree_unlock(leaf);
1363
1dd05682
TI
1364 return root;
1365
20897f5c 1366fail:
1dd05682
TI
1367 if (leaf) {
1368 btrfs_tree_unlock(leaf);
59885b39 1369 free_extent_buffer(root->commit_root);
1dd05682
TI
1370 free_extent_buffer(leaf);
1371 }
1372 kfree(root);
20897f5c 1373
1dd05682 1374 return ERR_PTR(ret);
20897f5c
AJ
1375}
1376
7237f183
YZ
1377static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1378 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1379{
1380 struct btrfs_root *root;
1381 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1382 struct extent_buffer *leaf;
e02119d5 1383
6f07e42e 1384 root = btrfs_alloc_root(fs_info);
e02119d5 1385 if (!root)
7237f183 1386 return ERR_PTR(-ENOMEM);
e02119d5
CM
1387
1388 __setup_root(tree_root->nodesize, tree_root->leafsize,
1389 tree_root->sectorsize, tree_root->stripesize,
1390 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1391
1392 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1393 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1394 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1395
7237f183 1396 /*
27cdeb70
MX
1397 * DON'T set REF_COWS for log trees
1398 *
7237f183
YZ
1399 * log trees do not get reference counted because they go away
1400 * before a real commit is actually done. They do store pointers
1401 * to file data extents, and those reference counts still get
1402 * updated (along with back refs to the log tree).
1403 */
e02119d5 1404
5d4f98a2 1405 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1406 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1407 0, 0, 0);
7237f183
YZ
1408 if (IS_ERR(leaf)) {
1409 kfree(root);
1410 return ERR_CAST(leaf);
1411 }
e02119d5 1412
5d4f98a2
YZ
1413 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1414 btrfs_set_header_bytenr(leaf, leaf->start);
1415 btrfs_set_header_generation(leaf, trans->transid);
1416 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1417 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1418 root->node = leaf;
e02119d5
CM
1419
1420 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1421 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1422 btrfs_mark_buffer_dirty(root->node);
1423 btrfs_tree_unlock(root->node);
7237f183
YZ
1424 return root;
1425}
1426
1427int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1428 struct btrfs_fs_info *fs_info)
1429{
1430 struct btrfs_root *log_root;
1431
1432 log_root = alloc_log_tree(trans, fs_info);
1433 if (IS_ERR(log_root))
1434 return PTR_ERR(log_root);
1435 WARN_ON(fs_info->log_root_tree);
1436 fs_info->log_root_tree = log_root;
1437 return 0;
1438}
1439
1440int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1441 struct btrfs_root *root)
1442{
1443 struct btrfs_root *log_root;
1444 struct btrfs_inode_item *inode_item;
1445
1446 log_root = alloc_log_tree(trans, root->fs_info);
1447 if (IS_ERR(log_root))
1448 return PTR_ERR(log_root);
1449
1450 log_root->last_trans = trans->transid;
1451 log_root->root_key.offset = root->root_key.objectid;
1452
1453 inode_item = &log_root->root_item.inode;
3cae210f
QW
1454 btrfs_set_stack_inode_generation(inode_item, 1);
1455 btrfs_set_stack_inode_size(inode_item, 3);
1456 btrfs_set_stack_inode_nlink(inode_item, 1);
1457 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1458 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1459
5d4f98a2 1460 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1461
1462 WARN_ON(root->log_root);
1463 root->log_root = log_root;
1464 root->log_transid = 0;
d1433deb 1465 root->log_transid_committed = -1;
257c62e1 1466 root->last_log_commit = 0;
e02119d5
CM
1467 return 0;
1468}
1469
35a3621b
SB
1470static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1471 struct btrfs_key *key)
e02119d5
CM
1472{
1473 struct btrfs_root *root;
1474 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1475 struct btrfs_path *path;
84234f3a 1476 u64 generation;
db94535d 1477 u32 blocksize;
cb517eab 1478 int ret;
0f7d52f4 1479
cb517eab
MX
1480 path = btrfs_alloc_path();
1481 if (!path)
0f7d52f4 1482 return ERR_PTR(-ENOMEM);
cb517eab
MX
1483
1484 root = btrfs_alloc_root(fs_info);
1485 if (!root) {
1486 ret = -ENOMEM;
1487 goto alloc_fail;
0f7d52f4
CM
1488 }
1489
db94535d 1490 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1491 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1492 root, fs_info, key->objectid);
0f7d52f4 1493
cb517eab
MX
1494 ret = btrfs_find_root(tree_root, key, path,
1495 &root->root_item, &root->root_key);
0f7d52f4 1496 if (ret) {
13a8a7c8
YZ
1497 if (ret > 0)
1498 ret = -ENOENT;
cb517eab 1499 goto find_fail;
0f7d52f4 1500 }
13a8a7c8 1501
84234f3a 1502 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1503 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1504 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1505 blocksize, generation);
cb517eab
MX
1506 if (!root->node) {
1507 ret = -ENOMEM;
1508 goto find_fail;
1509 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1510 ret = -EIO;
1511 goto read_fail;
416bc658 1512 }
5d4f98a2 1513 root->commit_root = btrfs_root_node(root);
13a8a7c8 1514out:
cb517eab
MX
1515 btrfs_free_path(path);
1516 return root;
1517
1518read_fail:
1519 free_extent_buffer(root->node);
1520find_fail:
1521 kfree(root);
1522alloc_fail:
1523 root = ERR_PTR(ret);
1524 goto out;
1525}
1526
1527struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1528 struct btrfs_key *location)
1529{
1530 struct btrfs_root *root;
1531
1532 root = btrfs_read_tree_root(tree_root, location);
1533 if (IS_ERR(root))
1534 return root;
1535
1536 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1537 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1538 btrfs_check_and_init_root_item(&root->root_item);
1539 }
13a8a7c8 1540
5eda7b5e
CM
1541 return root;
1542}
1543
cb517eab
MX
1544int btrfs_init_fs_root(struct btrfs_root *root)
1545{
1546 int ret;
8257b2dc 1547 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1548
1549 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1550 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1551 GFP_NOFS);
1552 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1553 ret = -ENOMEM;
1554 goto fail;
1555 }
1556
8257b2dc
MX
1557 writers = btrfs_alloc_subvolume_writers();
1558 if (IS_ERR(writers)) {
1559 ret = PTR_ERR(writers);
1560 goto fail;
1561 }
1562 root->subv_writers = writers;
1563
cb517eab 1564 btrfs_init_free_ino_ctl(root);
cb517eab
MX
1565 spin_lock_init(&root->cache_lock);
1566 init_waitqueue_head(&root->cache_wait);
1567
1568 ret = get_anon_bdev(&root->anon_dev);
1569 if (ret)
8257b2dc 1570 goto free_writers;
cb517eab 1571 return 0;
8257b2dc
MX
1572
1573free_writers:
1574 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1575fail:
1576 kfree(root->free_ino_ctl);
1577 kfree(root->free_ino_pinned);
1578 return ret;
1579}
1580
171170c1
ST
1581static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1582 u64 root_id)
cb517eab
MX
1583{
1584 struct btrfs_root *root;
1585
1586 spin_lock(&fs_info->fs_roots_radix_lock);
1587 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1588 (unsigned long)root_id);
1589 spin_unlock(&fs_info->fs_roots_radix_lock);
1590 return root;
1591}
1592
1593int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1594 struct btrfs_root *root)
1595{
1596 int ret;
1597
1598 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1599 if (ret)
1600 return ret;
1601
1602 spin_lock(&fs_info->fs_roots_radix_lock);
1603 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1604 (unsigned long)root->root_key.objectid,
1605 root);
1606 if (ret == 0)
27cdeb70 1607 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1608 spin_unlock(&fs_info->fs_roots_radix_lock);
1609 radix_tree_preload_end();
1610
1611 return ret;
1612}
1613
c00869f1
MX
1614struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1615 struct btrfs_key *location,
1616 bool check_ref)
5eda7b5e
CM
1617{
1618 struct btrfs_root *root;
1619 int ret;
1620
edbd8d4e
CM
1621 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1622 return fs_info->tree_root;
1623 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1624 return fs_info->extent_root;
8f18cf13
CM
1625 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1626 return fs_info->chunk_root;
1627 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1628 return fs_info->dev_root;
0403e47e
YZ
1629 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1630 return fs_info->csum_root;
bcef60f2
AJ
1631 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1632 return fs_info->quota_root ? fs_info->quota_root :
1633 ERR_PTR(-ENOENT);
f7a81ea4
SB
1634 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1635 return fs_info->uuid_root ? fs_info->uuid_root :
1636 ERR_PTR(-ENOENT);
4df27c4d 1637again:
cb517eab 1638 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1639 if (root) {
c00869f1 1640 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1641 return ERR_PTR(-ENOENT);
5eda7b5e 1642 return root;
48475471 1643 }
5eda7b5e 1644
cb517eab 1645 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1646 if (IS_ERR(root))
1647 return root;
3394e160 1648
c00869f1 1649 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1650 ret = -ENOENT;
581bb050 1651 goto fail;
35a30d7c 1652 }
581bb050 1653
cb517eab 1654 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1655 if (ret)
1656 goto fail;
3394e160 1657
3f870c28
KN
1658 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1659 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1660 if (ret < 0)
1661 goto fail;
1662 if (ret == 0)
27cdeb70 1663 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1664
cb517eab 1665 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1666 if (ret) {
4df27c4d
YZ
1667 if (ret == -EEXIST) {
1668 free_fs_root(root);
1669 goto again;
1670 }
1671 goto fail;
0f7d52f4 1672 }
edbd8d4e 1673 return root;
4df27c4d
YZ
1674fail:
1675 free_fs_root(root);
1676 return ERR_PTR(ret);
edbd8d4e
CM
1677}
1678
04160088
CM
1679static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1680{
1681 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1682 int ret = 0;
04160088
CM
1683 struct btrfs_device *device;
1684 struct backing_dev_info *bdi;
b7967db7 1685
1f78160c
XG
1686 rcu_read_lock();
1687 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1688 if (!device->bdev)
1689 continue;
04160088
CM
1690 bdi = blk_get_backing_dev_info(device->bdev);
1691 if (bdi && bdi_congested(bdi, bdi_bits)) {
1692 ret = 1;
1693 break;
1694 }
1695 }
1f78160c 1696 rcu_read_unlock();
04160088
CM
1697 return ret;
1698}
1699
ad081f14
JA
1700/*
1701 * If this fails, caller must call bdi_destroy() to get rid of the
1702 * bdi again.
1703 */
04160088
CM
1704static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1705{
ad081f14
JA
1706 int err;
1707
1708 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1709 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1710 if (err)
1711 return err;
1712
4575c9cc 1713 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1714 bdi->congested_fn = btrfs_congested_fn;
1715 bdi->congested_data = info;
1716 return 0;
1717}
1718
8b712842
CM
1719/*
1720 * called by the kthread helper functions to finally call the bio end_io
1721 * functions. This is where read checksum verification actually happens
1722 */
1723static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1724{
ce9adaa5 1725 struct bio *bio;
8b712842 1726 struct end_io_wq *end_io_wq;
ce9adaa5 1727 int error;
ce9adaa5 1728
8b712842
CM
1729 end_io_wq = container_of(work, struct end_io_wq, work);
1730 bio = end_io_wq->bio;
ce9adaa5 1731
8b712842
CM
1732 error = end_io_wq->error;
1733 bio->bi_private = end_io_wq->private;
1734 bio->bi_end_io = end_io_wq->end_io;
1735 kfree(end_io_wq);
bc1e79ac 1736 bio_endio_nodec(bio, error);
44b8bd7e
CM
1737}
1738
a74a4b97
CM
1739static int cleaner_kthread(void *arg)
1740{
1741 struct btrfs_root *root = arg;
d0278245 1742 int again;
a74a4b97
CM
1743
1744 do {
d0278245 1745 again = 0;
a74a4b97 1746
d0278245 1747 /* Make the cleaner go to sleep early. */
babbf170 1748 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1749 goto sleep;
1750
1751 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1752 goto sleep;
1753
dc7f370c
MX
1754 /*
1755 * Avoid the problem that we change the status of the fs
1756 * during the above check and trylock.
1757 */
babbf170 1758 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1759 mutex_unlock(&root->fs_info->cleaner_mutex);
1760 goto sleep;
76dda93c 1761 }
a74a4b97 1762
d0278245
MX
1763 btrfs_run_delayed_iputs(root);
1764 again = btrfs_clean_one_deleted_snapshot(root);
1765 mutex_unlock(&root->fs_info->cleaner_mutex);
1766
1767 /*
05323cd1
MX
1768 * The defragger has dealt with the R/O remount and umount,
1769 * needn't do anything special here.
d0278245
MX
1770 */
1771 btrfs_run_defrag_inodes(root->fs_info);
1772sleep:
9d1a2a3a 1773 if (!try_to_freeze() && !again) {
a74a4b97 1774 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1775 if (!kthread_should_stop())
1776 schedule();
a74a4b97
CM
1777 __set_current_state(TASK_RUNNING);
1778 }
1779 } while (!kthread_should_stop());
1780 return 0;
1781}
1782
1783static int transaction_kthread(void *arg)
1784{
1785 struct btrfs_root *root = arg;
1786 struct btrfs_trans_handle *trans;
1787 struct btrfs_transaction *cur;
8929ecfa 1788 u64 transid;
a74a4b97
CM
1789 unsigned long now;
1790 unsigned long delay;
914b2007 1791 bool cannot_commit;
a74a4b97
CM
1792
1793 do {
914b2007 1794 cannot_commit = false;
8b87dc17 1795 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1796 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1797
a4abeea4 1798 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1799 cur = root->fs_info->running_transaction;
1800 if (!cur) {
a4abeea4 1801 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1802 goto sleep;
1803 }
31153d81 1804
a74a4b97 1805 now = get_seconds();
4a9d8bde 1806 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1807 (now < cur->start_time ||
1808 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1809 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1810 delay = HZ * 5;
1811 goto sleep;
1812 }
8929ecfa 1813 transid = cur->transid;
a4abeea4 1814 spin_unlock(&root->fs_info->trans_lock);
56bec294 1815
79787eaa 1816 /* If the file system is aborted, this will always fail. */
354aa0fb 1817 trans = btrfs_attach_transaction(root);
914b2007 1818 if (IS_ERR(trans)) {
354aa0fb
MX
1819 if (PTR_ERR(trans) != -ENOENT)
1820 cannot_commit = true;
79787eaa 1821 goto sleep;
914b2007 1822 }
8929ecfa 1823 if (transid == trans->transid) {
79787eaa 1824 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1825 } else {
1826 btrfs_end_transaction(trans, root);
1827 }
a74a4b97
CM
1828sleep:
1829 wake_up_process(root->fs_info->cleaner_kthread);
1830 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1831
4e121c06
JB
1832 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1833 &root->fs_info->fs_state)))
1834 btrfs_cleanup_transaction(root);
a0acae0e 1835 if (!try_to_freeze()) {
a74a4b97 1836 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1837 if (!kthread_should_stop() &&
914b2007
JK
1838 (!btrfs_transaction_blocked(root->fs_info) ||
1839 cannot_commit))
8929ecfa 1840 schedule_timeout(delay);
a74a4b97
CM
1841 __set_current_state(TASK_RUNNING);
1842 }
1843 } while (!kthread_should_stop());
1844 return 0;
1845}
1846
af31f5e5
CM
1847/*
1848 * this will find the highest generation in the array of
1849 * root backups. The index of the highest array is returned,
1850 * or -1 if we can't find anything.
1851 *
1852 * We check to make sure the array is valid by comparing the
1853 * generation of the latest root in the array with the generation
1854 * in the super block. If they don't match we pitch it.
1855 */
1856static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1857{
1858 u64 cur;
1859 int newest_index = -1;
1860 struct btrfs_root_backup *root_backup;
1861 int i;
1862
1863 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1864 root_backup = info->super_copy->super_roots + i;
1865 cur = btrfs_backup_tree_root_gen(root_backup);
1866 if (cur == newest_gen)
1867 newest_index = i;
1868 }
1869
1870 /* check to see if we actually wrapped around */
1871 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1872 root_backup = info->super_copy->super_roots;
1873 cur = btrfs_backup_tree_root_gen(root_backup);
1874 if (cur == newest_gen)
1875 newest_index = 0;
1876 }
1877 return newest_index;
1878}
1879
1880
1881/*
1882 * find the oldest backup so we know where to store new entries
1883 * in the backup array. This will set the backup_root_index
1884 * field in the fs_info struct
1885 */
1886static void find_oldest_super_backup(struct btrfs_fs_info *info,
1887 u64 newest_gen)
1888{
1889 int newest_index = -1;
1890
1891 newest_index = find_newest_super_backup(info, newest_gen);
1892 /* if there was garbage in there, just move along */
1893 if (newest_index == -1) {
1894 info->backup_root_index = 0;
1895 } else {
1896 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1897 }
1898}
1899
1900/*
1901 * copy all the root pointers into the super backup array.
1902 * this will bump the backup pointer by one when it is
1903 * done
1904 */
1905static void backup_super_roots(struct btrfs_fs_info *info)
1906{
1907 int next_backup;
1908 struct btrfs_root_backup *root_backup;
1909 int last_backup;
1910
1911 next_backup = info->backup_root_index;
1912 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1913 BTRFS_NUM_BACKUP_ROOTS;
1914
1915 /*
1916 * just overwrite the last backup if we're at the same generation
1917 * this happens only at umount
1918 */
1919 root_backup = info->super_for_commit->super_roots + last_backup;
1920 if (btrfs_backup_tree_root_gen(root_backup) ==
1921 btrfs_header_generation(info->tree_root->node))
1922 next_backup = last_backup;
1923
1924 root_backup = info->super_for_commit->super_roots + next_backup;
1925
1926 /*
1927 * make sure all of our padding and empty slots get zero filled
1928 * regardless of which ones we use today
1929 */
1930 memset(root_backup, 0, sizeof(*root_backup));
1931
1932 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1933
1934 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1935 btrfs_set_backup_tree_root_gen(root_backup,
1936 btrfs_header_generation(info->tree_root->node));
1937
1938 btrfs_set_backup_tree_root_level(root_backup,
1939 btrfs_header_level(info->tree_root->node));
1940
1941 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1942 btrfs_set_backup_chunk_root_gen(root_backup,
1943 btrfs_header_generation(info->chunk_root->node));
1944 btrfs_set_backup_chunk_root_level(root_backup,
1945 btrfs_header_level(info->chunk_root->node));
1946
1947 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1948 btrfs_set_backup_extent_root_gen(root_backup,
1949 btrfs_header_generation(info->extent_root->node));
1950 btrfs_set_backup_extent_root_level(root_backup,
1951 btrfs_header_level(info->extent_root->node));
1952
7c7e82a7
CM
1953 /*
1954 * we might commit during log recovery, which happens before we set
1955 * the fs_root. Make sure it is valid before we fill it in.
1956 */
1957 if (info->fs_root && info->fs_root->node) {
1958 btrfs_set_backup_fs_root(root_backup,
1959 info->fs_root->node->start);
1960 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1961 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1962 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1963 btrfs_header_level(info->fs_root->node));
7c7e82a7 1964 }
af31f5e5
CM
1965
1966 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1967 btrfs_set_backup_dev_root_gen(root_backup,
1968 btrfs_header_generation(info->dev_root->node));
1969 btrfs_set_backup_dev_root_level(root_backup,
1970 btrfs_header_level(info->dev_root->node));
1971
1972 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1973 btrfs_set_backup_csum_root_gen(root_backup,
1974 btrfs_header_generation(info->csum_root->node));
1975 btrfs_set_backup_csum_root_level(root_backup,
1976 btrfs_header_level(info->csum_root->node));
1977
1978 btrfs_set_backup_total_bytes(root_backup,
1979 btrfs_super_total_bytes(info->super_copy));
1980 btrfs_set_backup_bytes_used(root_backup,
1981 btrfs_super_bytes_used(info->super_copy));
1982 btrfs_set_backup_num_devices(root_backup,
1983 btrfs_super_num_devices(info->super_copy));
1984
1985 /*
1986 * if we don't copy this out to the super_copy, it won't get remembered
1987 * for the next commit
1988 */
1989 memcpy(&info->super_copy->super_roots,
1990 &info->super_for_commit->super_roots,
1991 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1992}
1993
1994/*
1995 * this copies info out of the root backup array and back into
1996 * the in-memory super block. It is meant to help iterate through
1997 * the array, so you send it the number of backups you've already
1998 * tried and the last backup index you used.
1999 *
2000 * this returns -1 when it has tried all the backups
2001 */
2002static noinline int next_root_backup(struct btrfs_fs_info *info,
2003 struct btrfs_super_block *super,
2004 int *num_backups_tried, int *backup_index)
2005{
2006 struct btrfs_root_backup *root_backup;
2007 int newest = *backup_index;
2008
2009 if (*num_backups_tried == 0) {
2010 u64 gen = btrfs_super_generation(super);
2011
2012 newest = find_newest_super_backup(info, gen);
2013 if (newest == -1)
2014 return -1;
2015
2016 *backup_index = newest;
2017 *num_backups_tried = 1;
2018 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2019 /* we've tried all the backups, all done */
2020 return -1;
2021 } else {
2022 /* jump to the next oldest backup */
2023 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2024 BTRFS_NUM_BACKUP_ROOTS;
2025 *backup_index = newest;
2026 *num_backups_tried += 1;
2027 }
2028 root_backup = super->super_roots + newest;
2029
2030 btrfs_set_super_generation(super,
2031 btrfs_backup_tree_root_gen(root_backup));
2032 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2033 btrfs_set_super_root_level(super,
2034 btrfs_backup_tree_root_level(root_backup));
2035 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2036
2037 /*
2038 * fixme: the total bytes and num_devices need to match or we should
2039 * need a fsck
2040 */
2041 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2042 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2043 return 0;
2044}
2045
7abadb64
LB
2046/* helper to cleanup workers */
2047static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2048{
dc6e3209 2049 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2050 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2051 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2052 btrfs_destroy_workqueue(fs_info->endio_workers);
2053 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2054 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2055 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2056 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2057 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2058 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2059 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2060 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2061 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2062 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2063 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2064 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
7abadb64
LB
2065}
2066
2e9f5954
R
2067static void free_root_extent_buffers(struct btrfs_root *root)
2068{
2069 if (root) {
2070 free_extent_buffer(root->node);
2071 free_extent_buffer(root->commit_root);
2072 root->node = NULL;
2073 root->commit_root = NULL;
2074 }
2075}
2076
af31f5e5
CM
2077/* helper to cleanup tree roots */
2078static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2079{
2e9f5954 2080 free_root_extent_buffers(info->tree_root);
655b09fe 2081
2e9f5954
R
2082 free_root_extent_buffers(info->dev_root);
2083 free_root_extent_buffers(info->extent_root);
2084 free_root_extent_buffers(info->csum_root);
2085 free_root_extent_buffers(info->quota_root);
2086 free_root_extent_buffers(info->uuid_root);
2087 if (chunk_root)
2088 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2089}
2090
171f6537
JB
2091static void del_fs_roots(struct btrfs_fs_info *fs_info)
2092{
2093 int ret;
2094 struct btrfs_root *gang[8];
2095 int i;
2096
2097 while (!list_empty(&fs_info->dead_roots)) {
2098 gang[0] = list_entry(fs_info->dead_roots.next,
2099 struct btrfs_root, root_list);
2100 list_del(&gang[0]->root_list);
2101
27cdeb70 2102 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2103 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2104 } else {
2105 free_extent_buffer(gang[0]->node);
2106 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2107 btrfs_put_fs_root(gang[0]);
171f6537
JB
2108 }
2109 }
2110
2111 while (1) {
2112 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2113 (void **)gang, 0,
2114 ARRAY_SIZE(gang));
2115 if (!ret)
2116 break;
2117 for (i = 0; i < ret; i++)
cb517eab 2118 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2119 }
1a4319cc
LB
2120
2121 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2122 btrfs_free_log_root_tree(NULL, fs_info);
2123 btrfs_destroy_pinned_extent(fs_info->tree_root,
2124 fs_info->pinned_extents);
2125 }
171f6537 2126}
af31f5e5 2127
ad2b2c80
AV
2128int open_ctree(struct super_block *sb,
2129 struct btrfs_fs_devices *fs_devices,
2130 char *options)
2e635a27 2131{
db94535d
CM
2132 u32 sectorsize;
2133 u32 nodesize;
2134 u32 leafsize;
2135 u32 blocksize;
87ee04eb 2136 u32 stripesize;
84234f3a 2137 u64 generation;
f2b636e8 2138 u64 features;
3de4586c 2139 struct btrfs_key location;
a061fc8d 2140 struct buffer_head *bh;
4d34b278 2141 struct btrfs_super_block *disk_super;
815745cf 2142 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2143 struct btrfs_root *tree_root;
4d34b278
ID
2144 struct btrfs_root *extent_root;
2145 struct btrfs_root *csum_root;
2146 struct btrfs_root *chunk_root;
2147 struct btrfs_root *dev_root;
bcef60f2 2148 struct btrfs_root *quota_root;
f7a81ea4 2149 struct btrfs_root *uuid_root;
e02119d5 2150 struct btrfs_root *log_tree_root;
eb60ceac 2151 int ret;
e58ca020 2152 int err = -EINVAL;
af31f5e5
CM
2153 int num_backups_tried = 0;
2154 int backup_index = 0;
5cdc7ad3
QW
2155 int max_active;
2156 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2157 bool create_uuid_tree;
2158 bool check_uuid_tree;
4543df7e 2159
f84a8bd6 2160 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2161 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2162 if (!tree_root || !chunk_root) {
39279cc3
CM
2163 err = -ENOMEM;
2164 goto fail;
2165 }
76dda93c
YZ
2166
2167 ret = init_srcu_struct(&fs_info->subvol_srcu);
2168 if (ret) {
2169 err = ret;
2170 goto fail;
2171 }
2172
2173 ret = setup_bdi(fs_info, &fs_info->bdi);
2174 if (ret) {
2175 err = ret;
2176 goto fail_srcu;
2177 }
2178
e2d84521
MX
2179 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2180 if (ret) {
2181 err = ret;
2182 goto fail_bdi;
2183 }
2184 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2185 (1 + ilog2(nr_cpu_ids));
2186
963d678b
MX
2187 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2188 if (ret) {
2189 err = ret;
2190 goto fail_dirty_metadata_bytes;
2191 }
2192
c404e0dc
MX
2193 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2194 if (ret) {
2195 err = ret;
2196 goto fail_delalloc_bytes;
2197 }
2198
76dda93c
YZ
2199 fs_info->btree_inode = new_inode(sb);
2200 if (!fs_info->btree_inode) {
2201 err = -ENOMEM;
c404e0dc 2202 goto fail_bio_counter;
76dda93c
YZ
2203 }
2204
a6591715 2205 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2206
76dda93c 2207 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2208 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2209 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2210 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2211 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2212 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2213 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2214 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2215 spin_lock_init(&fs_info->trans_lock);
76dda93c 2216 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2217 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2218 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2219 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2220 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2221 spin_lock_init(&fs_info->super_lock);
f28491e0 2222 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2223 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2224 mutex_init(&fs_info->reloc_mutex);
573bfb72 2225 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2226 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2227
58176a96 2228 init_completion(&fs_info->kobj_unregister);
0b86a832 2229 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2230 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2231 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2232 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2233 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2234 BTRFS_BLOCK_RSV_GLOBAL);
2235 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2236 BTRFS_BLOCK_RSV_DELALLOC);
2237 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2238 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2239 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2240 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2241 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2242 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2243 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2244 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2245 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2246 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2247 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2248 fs_info->sb = sb;
6f568d35 2249 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2250 fs_info->metadata_ratio = 0;
4cb5300b 2251 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2252 fs_info->free_chunk_space = 0;
f29021b2 2253 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2254 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2255 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2256 /* readahead state */
2257 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2258 spin_lock_init(&fs_info->reada_lock);
c8b97818 2259
b34b086c
CM
2260 fs_info->thread_pool_size = min_t(unsigned long,
2261 num_online_cpus() + 2, 8);
0afbaf8c 2262
199c2a9c
MX
2263 INIT_LIST_HEAD(&fs_info->ordered_roots);
2264 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2265 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2266 GFP_NOFS);
2267 if (!fs_info->delayed_root) {
2268 err = -ENOMEM;
2269 goto fail_iput;
2270 }
2271 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2272
a2de733c
AJ
2273 mutex_init(&fs_info->scrub_lock);
2274 atomic_set(&fs_info->scrubs_running, 0);
2275 atomic_set(&fs_info->scrub_pause_req, 0);
2276 atomic_set(&fs_info->scrubs_paused, 0);
2277 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2278 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2279 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2280 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2281#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2282 fs_info->check_integrity_print_mask = 0;
2283#endif
a2de733c 2284
c9e9f97b
ID
2285 spin_lock_init(&fs_info->balance_lock);
2286 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2287 atomic_set(&fs_info->balance_running, 0);
2288 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2289 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2290 fs_info->balance_ctl = NULL;
837d5b6e 2291 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2292 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2293
a061fc8d
CM
2294 sb->s_blocksize = 4096;
2295 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2296 sb->s_bdi = &fs_info->bdi;
a061fc8d 2297
76dda93c 2298 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2299 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2300 /*
2301 * we set the i_size on the btree inode to the max possible int.
2302 * the real end of the address space is determined by all of
2303 * the devices in the system
2304 */
2305 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2306 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2307 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2308
5d4f98a2 2309 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2310 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2311 fs_info->btree_inode->i_mapping);
0b32f4bb 2312 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2313 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2314
2315 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2316
76dda93c
YZ
2317 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2318 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2319 sizeof(struct btrfs_key));
72ac3c0d
JB
2320 set_bit(BTRFS_INODE_DUMMY,
2321 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2322 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2323
0f9dd46c 2324 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2325 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2326 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2327
11833d66 2328 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2329 fs_info->btree_inode->i_mapping);
11833d66 2330 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2331 fs_info->btree_inode->i_mapping);
11833d66 2332 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2333 fs_info->do_barriers = 1;
e18e4809 2334
39279cc3 2335
5a3f23d5 2336 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2337 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2338 mutex_init(&fs_info->tree_log_mutex);
925baedd 2339 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2340 mutex_init(&fs_info->transaction_kthread_mutex);
2341 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2342 mutex_init(&fs_info->volume_mutex);
9e351cc8 2343 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2344 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2345 init_rwsem(&fs_info->subvol_sem);
803b2f54 2346 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2347 fs_info->dev_replace.lock_owner = 0;
2348 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2349 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2350 mutex_init(&fs_info->dev_replace.lock_management_lock);
2351 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2352
416ac51d 2353 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2354 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2355 fs_info->qgroup_tree = RB_ROOT;
2356 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2357 fs_info->qgroup_seq = 1;
2358 fs_info->quota_enabled = 0;
2359 fs_info->pending_quota_state = 0;
1e8f9158 2360 fs_info->qgroup_ulist = NULL;
2f232036 2361 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2362
fa9c0d79
CM
2363 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2364 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2365
e6dcd2dc 2366 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2367 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2368 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2369 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2370
53b381b3
DW
2371 ret = btrfs_alloc_stripe_hash_table(fs_info);
2372 if (ret) {
83c8266a 2373 err = ret;
53b381b3
DW
2374 goto fail_alloc;
2375 }
2376
0b86a832 2377 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2378 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2379
3c4bb26b 2380 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2381
2382 /*
2383 * Read super block and check the signature bytes only
2384 */
a512bbf8 2385 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2386 if (!bh) {
2387 err = -EINVAL;
16cdcec7 2388 goto fail_alloc;
20b45077 2389 }
39279cc3 2390
1104a885
DS
2391 /*
2392 * We want to check superblock checksum, the type is stored inside.
2393 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2394 */
2395 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2396 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2397 err = -EINVAL;
2398 goto fail_alloc;
2399 }
2400
2401 /*
2402 * super_copy is zeroed at allocation time and we never touch the
2403 * following bytes up to INFO_SIZE, the checksum is calculated from
2404 * the whole block of INFO_SIZE
2405 */
6c41761f
DS
2406 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2407 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2408 sizeof(*fs_info->super_for_commit));
a061fc8d 2409 brelse(bh);
5f39d397 2410
6c41761f 2411 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2412
1104a885
DS
2413 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2414 if (ret) {
efe120a0 2415 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2416 err = -EINVAL;
2417 goto fail_alloc;
2418 }
2419
6c41761f 2420 disk_super = fs_info->super_copy;
0f7d52f4 2421 if (!btrfs_super_root(disk_super))
16cdcec7 2422 goto fail_alloc;
0f7d52f4 2423
acce952b 2424 /* check FS state, whether FS is broken. */
87533c47
MX
2425 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2426 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2427
af31f5e5
CM
2428 /*
2429 * run through our array of backup supers and setup
2430 * our ring pointer to the oldest one
2431 */
2432 generation = btrfs_super_generation(disk_super);
2433 find_oldest_super_backup(fs_info, generation);
2434
75e7cb7f
LB
2435 /*
2436 * In the long term, we'll store the compression type in the super
2437 * block, and it'll be used for per file compression control.
2438 */
2439 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2440
2b82032c
YZ
2441 ret = btrfs_parse_options(tree_root, options);
2442 if (ret) {
2443 err = ret;
16cdcec7 2444 goto fail_alloc;
2b82032c 2445 }
dfe25020 2446
f2b636e8
JB
2447 features = btrfs_super_incompat_flags(disk_super) &
2448 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2449 if (features) {
2450 printk(KERN_ERR "BTRFS: couldn't mount because of "
2451 "unsupported optional features (%Lx).\n",
c1c9ff7c 2452 features);
f2b636e8 2453 err = -EINVAL;
16cdcec7 2454 goto fail_alloc;
f2b636e8
JB
2455 }
2456
727011e0
CM
2457 if (btrfs_super_leafsize(disk_super) !=
2458 btrfs_super_nodesize(disk_super)) {
2459 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2460 "blocksizes don't match. node %d leaf %d\n",
2461 btrfs_super_nodesize(disk_super),
2462 btrfs_super_leafsize(disk_super));
2463 err = -EINVAL;
2464 goto fail_alloc;
2465 }
2466 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2467 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2468 "blocksize (%d) was too large\n",
2469 btrfs_super_leafsize(disk_super));
2470 err = -EINVAL;
2471 goto fail_alloc;
2472 }
2473
5d4f98a2 2474 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2475 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2476 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2477 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2478
3173a18f 2479 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2480 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2481
727011e0
CM
2482 /*
2483 * flag our filesystem as having big metadata blocks if
2484 * they are bigger than the page size
2485 */
2486 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2487 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2488 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2489 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2490 }
2491
bc3f116f
CM
2492 nodesize = btrfs_super_nodesize(disk_super);
2493 leafsize = btrfs_super_leafsize(disk_super);
2494 sectorsize = btrfs_super_sectorsize(disk_super);
2495 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2496 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2497 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2498
2499 /*
2500 * mixed block groups end up with duplicate but slightly offset
2501 * extent buffers for the same range. It leads to corruptions
2502 */
2503 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2504 (sectorsize != leafsize)) {
efe120a0 2505 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2506 "are not allowed for mixed block groups on %s\n",
2507 sb->s_id);
2508 goto fail_alloc;
2509 }
2510
ceda0864
MX
2511 /*
2512 * Needn't use the lock because there is no other task which will
2513 * update the flag.
2514 */
a6fa6fae 2515 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2516
f2b636e8
JB
2517 features = btrfs_super_compat_ro_flags(disk_super) &
2518 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2519 if (!(sb->s_flags & MS_RDONLY) && features) {
2520 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2521 "unsupported option features (%Lx).\n",
c1c9ff7c 2522 features);
f2b636e8 2523 err = -EINVAL;
16cdcec7 2524 goto fail_alloc;
f2b636e8 2525 }
61d92c32 2526
5cdc7ad3 2527 max_active = fs_info->thread_pool_size;
61d92c32 2528
5cdc7ad3
QW
2529 fs_info->workers =
2530 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2531 max_active, 16);
c8b97818 2532
afe3d242
QW
2533 fs_info->delalloc_workers =
2534 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2535
a44903ab
QW
2536 fs_info->flush_workers =
2537 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2538
e66f0bb1
QW
2539 fs_info->caching_workers =
2540 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2541
a8c93d4e
QW
2542 /*
2543 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2544 * likely that bios will be send down in a sane order to the
2545 * devices
2546 */
a8c93d4e
QW
2547 fs_info->submit_workers =
2548 btrfs_alloc_workqueue("submit", flags,
2549 min_t(u64, fs_devices->num_devices,
2550 max_active), 64);
53863232 2551
dc6e3209
QW
2552 fs_info->fixup_workers =
2553 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2554
2555 /*
2556 * endios are largely parallel and should have a very
2557 * low idle thresh
2558 */
fccb5d86
QW
2559 fs_info->endio_workers =
2560 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2561 fs_info->endio_meta_workers =
2562 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2563 fs_info->endio_meta_write_workers =
2564 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2565 fs_info->endio_raid56_workers =
2566 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
d05a33ac
QW
2567 fs_info->rmw_workers =
2568 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2569 fs_info->endio_write_workers =
2570 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2571 fs_info->endio_freespace_worker =
2572 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2573 fs_info->delayed_workers =
2574 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2575 fs_info->readahead_workers =
2576 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2577 fs_info->qgroup_rescan_workers =
2578 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
61b49440 2579
a8c93d4e 2580 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2581 fs_info->submit_workers && fs_info->flush_workers &&
2582 fs_info->endio_workers && fs_info->endio_meta_workers &&
2583 fs_info->endio_meta_write_workers &&
2584 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2585 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2586 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0
QW
2587 fs_info->fixup_workers && fs_info->delayed_workers &&
2588 fs_info->qgroup_rescan_workers)) {
fed425c7 2589 err = -ENOMEM;
0dc3b84a
JB
2590 goto fail_sb_buffer;
2591 }
4543df7e 2592
4575c9cc 2593 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2594 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2595 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2596
db94535d
CM
2597 tree_root->nodesize = nodesize;
2598 tree_root->leafsize = leafsize;
2599 tree_root->sectorsize = sectorsize;
87ee04eb 2600 tree_root->stripesize = stripesize;
a061fc8d
CM
2601
2602 sb->s_blocksize = sectorsize;
2603 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2604
3cae210f 2605 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2606 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2607 goto fail_sb_buffer;
2608 }
19c00ddc 2609
8d082fb7 2610 if (sectorsize != PAGE_SIZE) {
efe120a0 2611 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2612 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2613 goto fail_sb_buffer;
2614 }
2615
925baedd 2616 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2617 ret = btrfs_read_sys_array(tree_root);
925baedd 2618 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2619 if (ret) {
efe120a0 2620 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2621 "array on %s\n", sb->s_id);
5d4f98a2 2622 goto fail_sb_buffer;
84eed90f 2623 }
0b86a832
CM
2624
2625 blocksize = btrfs_level_size(tree_root,
2626 btrfs_super_chunk_root_level(disk_super));
84234f3a 2627 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2628
2629 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2630 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2631
2632 chunk_root->node = read_tree_block(chunk_root,
2633 btrfs_super_chunk_root(disk_super),
84234f3a 2634 blocksize, generation);
416bc658
JB
2635 if (!chunk_root->node ||
2636 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2637 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2638 sb->s_id);
af31f5e5 2639 goto fail_tree_roots;
83121942 2640 }
5d4f98a2
YZ
2641 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2642 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2643
e17cade2 2644 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2645 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2646
0b86a832 2647 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2648 if (ret) {
efe120a0 2649 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2650 sb->s_id);
af31f5e5 2651 goto fail_tree_roots;
2b82032c 2652 }
0b86a832 2653
8dabb742
SB
2654 /*
2655 * keep the device that is marked to be the target device for the
2656 * dev_replace procedure
2657 */
2658 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2659
a6b0d5c8 2660 if (!fs_devices->latest_bdev) {
efe120a0 2661 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2662 sb->s_id);
2663 goto fail_tree_roots;
2664 }
2665
af31f5e5 2666retry_root_backup:
db94535d
CM
2667 blocksize = btrfs_level_size(tree_root,
2668 btrfs_super_root_level(disk_super));
84234f3a 2669 generation = btrfs_super_generation(disk_super);
0b86a832 2670
e20d96d6 2671 tree_root->node = read_tree_block(tree_root,
db94535d 2672 btrfs_super_root(disk_super),
84234f3a 2673 blocksize, generation);
af31f5e5
CM
2674 if (!tree_root->node ||
2675 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2676 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2677 sb->s_id);
af31f5e5
CM
2678
2679 goto recovery_tree_root;
83121942 2680 }
af31f5e5 2681
5d4f98a2
YZ
2682 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2683 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2684 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2685
cb517eab
MX
2686 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2687 location.type = BTRFS_ROOT_ITEM_KEY;
2688 location.offset = 0;
2689
2690 extent_root = btrfs_read_tree_root(tree_root, &location);
2691 if (IS_ERR(extent_root)) {
2692 ret = PTR_ERR(extent_root);
af31f5e5 2693 goto recovery_tree_root;
cb517eab 2694 }
27cdeb70 2695 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2696 fs_info->extent_root = extent_root;
0b86a832 2697
cb517eab
MX
2698 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2699 dev_root = btrfs_read_tree_root(tree_root, &location);
2700 if (IS_ERR(dev_root)) {
2701 ret = PTR_ERR(dev_root);
af31f5e5 2702 goto recovery_tree_root;
cb517eab 2703 }
27cdeb70 2704 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2705 fs_info->dev_root = dev_root;
2706 btrfs_init_devices_late(fs_info);
3768f368 2707
cb517eab
MX
2708 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2709 csum_root = btrfs_read_tree_root(tree_root, &location);
2710 if (IS_ERR(csum_root)) {
2711 ret = PTR_ERR(csum_root);
af31f5e5 2712 goto recovery_tree_root;
cb517eab 2713 }
27cdeb70 2714 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2715 fs_info->csum_root = csum_root;
d20f7043 2716
cb517eab
MX
2717 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2718 quota_root = btrfs_read_tree_root(tree_root, &location);
2719 if (!IS_ERR(quota_root)) {
27cdeb70 2720 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2721 fs_info->quota_enabled = 1;
2722 fs_info->pending_quota_state = 1;
cb517eab 2723 fs_info->quota_root = quota_root;
bcef60f2
AJ
2724 }
2725
f7a81ea4
SB
2726 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2727 uuid_root = btrfs_read_tree_root(tree_root, &location);
2728 if (IS_ERR(uuid_root)) {
2729 ret = PTR_ERR(uuid_root);
2730 if (ret != -ENOENT)
2731 goto recovery_tree_root;
2732 create_uuid_tree = true;
70f80175 2733 check_uuid_tree = false;
f7a81ea4 2734 } else {
27cdeb70 2735 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2736 fs_info->uuid_root = uuid_root;
70f80175
SB
2737 create_uuid_tree = false;
2738 check_uuid_tree =
2739 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2740 }
2741
8929ecfa
YZ
2742 fs_info->generation = generation;
2743 fs_info->last_trans_committed = generation;
8929ecfa 2744
68310a5e
ID
2745 ret = btrfs_recover_balance(fs_info);
2746 if (ret) {
efe120a0 2747 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2748 goto fail_block_groups;
2749 }
2750
733f4fbb
SB
2751 ret = btrfs_init_dev_stats(fs_info);
2752 if (ret) {
efe120a0 2753 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2754 ret);
2755 goto fail_block_groups;
2756 }
2757
8dabb742
SB
2758 ret = btrfs_init_dev_replace(fs_info);
2759 if (ret) {
efe120a0 2760 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2761 goto fail_block_groups;
2762 }
2763
2764 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2765
5ac1d209 2766 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2767 if (ret) {
efe120a0 2768 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2769 goto fail_block_groups;
2770 }
2771
c59021f8 2772 ret = btrfs_init_space_info(fs_info);
2773 if (ret) {
efe120a0 2774 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2775 goto fail_sysfs;
c59021f8 2776 }
2777
1b1d1f66
JB
2778 ret = btrfs_read_block_groups(extent_root);
2779 if (ret) {
efe120a0 2780 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2781 goto fail_sysfs;
1b1d1f66 2782 }
5af3e8cc
SB
2783 fs_info->num_tolerated_disk_barrier_failures =
2784 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2785 if (fs_info->fs_devices->missing_devices >
2786 fs_info->num_tolerated_disk_barrier_failures &&
2787 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2788 printk(KERN_WARNING "BTRFS: "
2789 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2790 goto fail_sysfs;
292fd7fc 2791 }
9078a3e1 2792
a74a4b97
CM
2793 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2794 "btrfs-cleaner");
57506d50 2795 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2796 goto fail_sysfs;
a74a4b97
CM
2797
2798 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2799 tree_root,
2800 "btrfs-transaction");
57506d50 2801 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2802 goto fail_cleaner;
a74a4b97 2803
c289811c
CM
2804 if (!btrfs_test_opt(tree_root, SSD) &&
2805 !btrfs_test_opt(tree_root, NOSSD) &&
2806 !fs_info->fs_devices->rotating) {
efe120a0 2807 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2808 "mode\n");
2809 btrfs_set_opt(fs_info->mount_opt, SSD);
2810 }
2811
3818aea2
QW
2812 /* Set the real inode map cache flag */
2813 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2814 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2815
21adbd5c
SB
2816#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2817 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2818 ret = btrfsic_mount(tree_root, fs_devices,
2819 btrfs_test_opt(tree_root,
2820 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2821 1 : 0,
2822 fs_info->check_integrity_print_mask);
2823 if (ret)
efe120a0 2824 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2825 " integrity check module %s\n", sb->s_id);
2826 }
2827#endif
bcef60f2
AJ
2828 ret = btrfs_read_qgroup_config(fs_info);
2829 if (ret)
2830 goto fail_trans_kthread;
21adbd5c 2831
acce952b 2832 /* do not make disk changes in broken FS */
68ce9682 2833 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2834 u64 bytenr = btrfs_super_log_root(disk_super);
2835
7c2ca468 2836 if (fs_devices->rw_devices == 0) {
efe120a0 2837 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2838 "on RO media\n");
7c2ca468 2839 err = -EIO;
bcef60f2 2840 goto fail_qgroup;
7c2ca468 2841 }
e02119d5
CM
2842 blocksize =
2843 btrfs_level_size(tree_root,
2844 btrfs_super_log_root_level(disk_super));
d18a2c44 2845
6f07e42e 2846 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2847 if (!log_tree_root) {
2848 err = -ENOMEM;
bcef60f2 2849 goto fail_qgroup;
676e4c86 2850 }
e02119d5
CM
2851
2852 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2853 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2854
2855 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2856 blocksize,
2857 generation + 1);
416bc658
JB
2858 if (!log_tree_root->node ||
2859 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2860 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2861 free_extent_buffer(log_tree_root->node);
2862 kfree(log_tree_root);
28c16cbb 2863 goto fail_qgroup;
416bc658 2864 }
79787eaa 2865 /* returns with log_tree_root freed on success */
e02119d5 2866 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2867 if (ret) {
2868 btrfs_error(tree_root->fs_info, ret,
2869 "Failed to recover log tree");
2870 free_extent_buffer(log_tree_root->node);
2871 kfree(log_tree_root);
28c16cbb 2872 goto fail_qgroup;
79787eaa 2873 }
e556ce2c
YZ
2874
2875 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2876 ret = btrfs_commit_super(tree_root);
2877 if (ret)
28c16cbb 2878 goto fail_qgroup;
e556ce2c 2879 }
e02119d5 2880 }
1a40e23b 2881
76dda93c 2882 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2883 if (ret)
28c16cbb 2884 goto fail_qgroup;
76dda93c 2885
7c2ca468 2886 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2887 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2888 if (ret)
28c16cbb 2889 goto fail_qgroup;
d68fc57b 2890
5d4f98a2 2891 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2892 if (ret < 0) {
2893 printk(KERN_WARNING
efe120a0 2894 "BTRFS: failed to recover relocation\n");
d7ce5843 2895 err = -EINVAL;
bcef60f2 2896 goto fail_qgroup;
d7ce5843 2897 }
7c2ca468 2898 }
1a40e23b 2899
3de4586c
CM
2900 location.objectid = BTRFS_FS_TREE_OBJECTID;
2901 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2902 location.offset = 0;
3de4586c 2903
3de4586c 2904 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2905 if (IS_ERR(fs_info->fs_root)) {
2906 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2907 goto fail_qgroup;
3140c9a3 2908 }
c289811c 2909
2b6ba629
ID
2910 if (sb->s_flags & MS_RDONLY)
2911 return 0;
59641015 2912
2b6ba629
ID
2913 down_read(&fs_info->cleanup_work_sem);
2914 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2915 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2916 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2917 close_ctree(tree_root);
2918 return ret;
2919 }
2920 up_read(&fs_info->cleanup_work_sem);
59641015 2921
2b6ba629
ID
2922 ret = btrfs_resume_balance_async(fs_info);
2923 if (ret) {
efe120a0 2924 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2925 close_ctree(tree_root);
2926 return ret;
e3acc2a6
JB
2927 }
2928
8dabb742
SB
2929 ret = btrfs_resume_dev_replace_async(fs_info);
2930 if (ret) {
efe120a0 2931 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2932 close_ctree(tree_root);
2933 return ret;
2934 }
2935
b382a324
JS
2936 btrfs_qgroup_rescan_resume(fs_info);
2937
f7a81ea4 2938 if (create_uuid_tree) {
efe120a0 2939 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2940 ret = btrfs_create_uuid_tree(fs_info);
2941 if (ret) {
efe120a0 2942 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2943 ret);
2944 close_ctree(tree_root);
2945 return ret;
2946 }
f420ee1e
SB
2947 } else if (check_uuid_tree ||
2948 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2949 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2950 ret = btrfs_check_uuid_tree(fs_info);
2951 if (ret) {
efe120a0 2952 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2953 ret);
2954 close_ctree(tree_root);
2955 return ret;
2956 }
2957 } else {
2958 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2959 }
2960
ad2b2c80 2961 return 0;
39279cc3 2962
bcef60f2
AJ
2963fail_qgroup:
2964 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2965fail_trans_kthread:
2966 kthread_stop(fs_info->transaction_kthread);
54067ae9 2967 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2968 del_fs_roots(fs_info);
3f157a2f 2969fail_cleaner:
a74a4b97 2970 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2971
2972 /*
2973 * make sure we're done with the btree inode before we stop our
2974 * kthreads
2975 */
2976 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2977
2365dd3c
AJ
2978fail_sysfs:
2979 btrfs_sysfs_remove_one(fs_info);
2980
1b1d1f66 2981fail_block_groups:
54067ae9 2982 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2983 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2984
2985fail_tree_roots:
2986 free_root_pointers(fs_info, 1);
2b8195bb 2987 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2988
39279cc3 2989fail_sb_buffer:
7abadb64 2990 btrfs_stop_all_workers(fs_info);
16cdcec7 2991fail_alloc:
4543df7e 2992fail_iput:
586e46e2
ID
2993 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2994
4543df7e 2995 iput(fs_info->btree_inode);
c404e0dc
MX
2996fail_bio_counter:
2997 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
2998fail_delalloc_bytes:
2999 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3000fail_dirty_metadata_bytes:
3001 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3002fail_bdi:
7e662854 3003 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3004fail_srcu:
3005 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3006fail:
53b381b3 3007 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3008 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3009 return err;
af31f5e5
CM
3010
3011recovery_tree_root:
af31f5e5
CM
3012 if (!btrfs_test_opt(tree_root, RECOVERY))
3013 goto fail_tree_roots;
3014
3015 free_root_pointers(fs_info, 0);
3016
3017 /* don't use the log in recovery mode, it won't be valid */
3018 btrfs_set_super_log_root(disk_super, 0);
3019
3020 /* we can't trust the free space cache either */
3021 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3022
3023 ret = next_root_backup(fs_info, fs_info->super_copy,
3024 &num_backups_tried, &backup_index);
3025 if (ret == -1)
3026 goto fail_block_groups;
3027 goto retry_root_backup;
eb60ceac
CM
3028}
3029
f2984462
CM
3030static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3031{
f2984462
CM
3032 if (uptodate) {
3033 set_buffer_uptodate(bh);
3034 } else {
442a4f63
SB
3035 struct btrfs_device *device = (struct btrfs_device *)
3036 bh->b_private;
3037
efe120a0 3038 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3039 "I/O error on %s\n",
3040 rcu_str_deref(device->name));
1259ab75
CM
3041 /* note, we dont' set_buffer_write_io_error because we have
3042 * our own ways of dealing with the IO errors
3043 */
f2984462 3044 clear_buffer_uptodate(bh);
442a4f63 3045 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3046 }
3047 unlock_buffer(bh);
3048 put_bh(bh);
3049}
3050
a512bbf8
YZ
3051struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3052{
3053 struct buffer_head *bh;
3054 struct buffer_head *latest = NULL;
3055 struct btrfs_super_block *super;
3056 int i;
3057 u64 transid = 0;
3058 u64 bytenr;
3059
3060 /* we would like to check all the supers, but that would make
3061 * a btrfs mount succeed after a mkfs from a different FS.
3062 * So, we need to add a special mount option to scan for
3063 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3064 */
3065 for (i = 0; i < 1; i++) {
3066 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3067 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3068 i_size_read(bdev->bd_inode))
a512bbf8 3069 break;
8068a47e
AJ
3070 bh = __bread(bdev, bytenr / 4096,
3071 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3072 if (!bh)
3073 continue;
3074
3075 super = (struct btrfs_super_block *)bh->b_data;
3076 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3077 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3078 brelse(bh);
3079 continue;
3080 }
3081
3082 if (!latest || btrfs_super_generation(super) > transid) {
3083 brelse(latest);
3084 latest = bh;
3085 transid = btrfs_super_generation(super);
3086 } else {
3087 brelse(bh);
3088 }
3089 }
3090 return latest;
3091}
3092
4eedeb75
HH
3093/*
3094 * this should be called twice, once with wait == 0 and
3095 * once with wait == 1. When wait == 0 is done, all the buffer heads
3096 * we write are pinned.
3097 *
3098 * They are released when wait == 1 is done.
3099 * max_mirrors must be the same for both runs, and it indicates how
3100 * many supers on this one device should be written.
3101 *
3102 * max_mirrors == 0 means to write them all.
3103 */
a512bbf8
YZ
3104static int write_dev_supers(struct btrfs_device *device,
3105 struct btrfs_super_block *sb,
3106 int do_barriers, int wait, int max_mirrors)
3107{
3108 struct buffer_head *bh;
3109 int i;
3110 int ret;
3111 int errors = 0;
3112 u32 crc;
3113 u64 bytenr;
a512bbf8
YZ
3114
3115 if (max_mirrors == 0)
3116 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3117
a512bbf8
YZ
3118 for (i = 0; i < max_mirrors; i++) {
3119 bytenr = btrfs_sb_offset(i);
3120 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3121 break;
3122
3123 if (wait) {
3124 bh = __find_get_block(device->bdev, bytenr / 4096,
3125 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3126 if (!bh) {
3127 errors++;
3128 continue;
3129 }
a512bbf8 3130 wait_on_buffer(bh);
4eedeb75
HH
3131 if (!buffer_uptodate(bh))
3132 errors++;
3133
3134 /* drop our reference */
3135 brelse(bh);
3136
3137 /* drop the reference from the wait == 0 run */
3138 brelse(bh);
3139 continue;
a512bbf8
YZ
3140 } else {
3141 btrfs_set_super_bytenr(sb, bytenr);
3142
3143 crc = ~(u32)0;
b0496686 3144 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3145 BTRFS_CSUM_SIZE, crc,
3146 BTRFS_SUPER_INFO_SIZE -
3147 BTRFS_CSUM_SIZE);
3148 btrfs_csum_final(crc, sb->csum);
3149
4eedeb75
HH
3150 /*
3151 * one reference for us, and we leave it for the
3152 * caller
3153 */
a512bbf8
YZ
3154 bh = __getblk(device->bdev, bytenr / 4096,
3155 BTRFS_SUPER_INFO_SIZE);
634554dc 3156 if (!bh) {
efe120a0 3157 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3158 "buffer head for bytenr %Lu\n", bytenr);
3159 errors++;
3160 continue;
3161 }
3162
a512bbf8
YZ
3163 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3164
4eedeb75 3165 /* one reference for submit_bh */
a512bbf8 3166 get_bh(bh);
4eedeb75
HH
3167
3168 set_buffer_uptodate(bh);
a512bbf8
YZ
3169 lock_buffer(bh);
3170 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3171 bh->b_private = device;
a512bbf8
YZ
3172 }
3173
387125fc
CM
3174 /*
3175 * we fua the first super. The others we allow
3176 * to go down lazy.
3177 */
e8117c26
WS
3178 if (i == 0)
3179 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3180 else
3181 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3182 if (ret)
a512bbf8 3183 errors++;
a512bbf8
YZ
3184 }
3185 return errors < i ? 0 : -1;
3186}
3187
387125fc
CM
3188/*
3189 * endio for the write_dev_flush, this will wake anyone waiting
3190 * for the barrier when it is done
3191 */
3192static void btrfs_end_empty_barrier(struct bio *bio, int err)
3193{
3194 if (err) {
3195 if (err == -EOPNOTSUPP)
3196 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3197 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3198 }
3199 if (bio->bi_private)
3200 complete(bio->bi_private);
3201 bio_put(bio);
3202}
3203
3204/*
3205 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3206 * sent down. With wait == 1, it waits for the previous flush.
3207 *
3208 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3209 * capable
3210 */
3211static int write_dev_flush(struct btrfs_device *device, int wait)
3212{
3213 struct bio *bio;
3214 int ret = 0;
3215
3216 if (device->nobarriers)
3217 return 0;
3218
3219 if (wait) {
3220 bio = device->flush_bio;
3221 if (!bio)
3222 return 0;
3223
3224 wait_for_completion(&device->flush_wait);
3225
3226 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3227 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3228 rcu_str_deref(device->name));
387125fc 3229 device->nobarriers = 1;
5af3e8cc 3230 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3231 ret = -EIO;
5af3e8cc
SB
3232 btrfs_dev_stat_inc_and_print(device,
3233 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3234 }
3235
3236 /* drop the reference from the wait == 0 run */
3237 bio_put(bio);
3238 device->flush_bio = NULL;
3239
3240 return ret;
3241 }
3242
3243 /*
3244 * one reference for us, and we leave it for the
3245 * caller
3246 */
9c017abc 3247 device->flush_bio = NULL;
9be3395b 3248 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3249 if (!bio)
3250 return -ENOMEM;
3251
3252 bio->bi_end_io = btrfs_end_empty_barrier;
3253 bio->bi_bdev = device->bdev;
3254 init_completion(&device->flush_wait);
3255 bio->bi_private = &device->flush_wait;
3256 device->flush_bio = bio;
3257
3258 bio_get(bio);
21adbd5c 3259 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3260
3261 return 0;
3262}
3263
3264/*
3265 * send an empty flush down to each device in parallel,
3266 * then wait for them
3267 */
3268static int barrier_all_devices(struct btrfs_fs_info *info)
3269{
3270 struct list_head *head;
3271 struct btrfs_device *dev;
5af3e8cc
SB
3272 int errors_send = 0;
3273 int errors_wait = 0;
387125fc
CM
3274 int ret;
3275
3276 /* send down all the barriers */
3277 head = &info->fs_devices->devices;
3278 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3279 if (dev->missing)
3280 continue;
387125fc 3281 if (!dev->bdev) {
5af3e8cc 3282 errors_send++;
387125fc
CM
3283 continue;
3284 }
3285 if (!dev->in_fs_metadata || !dev->writeable)
3286 continue;
3287
3288 ret = write_dev_flush(dev, 0);
3289 if (ret)
5af3e8cc 3290 errors_send++;
387125fc
CM
3291 }
3292
3293 /* wait for all the barriers */
3294 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3295 if (dev->missing)
3296 continue;
387125fc 3297 if (!dev->bdev) {
5af3e8cc 3298 errors_wait++;
387125fc
CM
3299 continue;
3300 }
3301 if (!dev->in_fs_metadata || !dev->writeable)
3302 continue;
3303
3304 ret = write_dev_flush(dev, 1);
3305 if (ret)
5af3e8cc 3306 errors_wait++;
387125fc 3307 }
5af3e8cc
SB
3308 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3309 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3310 return -EIO;
3311 return 0;
3312}
3313
5af3e8cc
SB
3314int btrfs_calc_num_tolerated_disk_barrier_failures(
3315 struct btrfs_fs_info *fs_info)
3316{
3317 struct btrfs_ioctl_space_info space;
3318 struct btrfs_space_info *sinfo;
3319 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3320 BTRFS_BLOCK_GROUP_SYSTEM,
3321 BTRFS_BLOCK_GROUP_METADATA,
3322 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3323 int num_types = 4;
3324 int i;
3325 int c;
3326 int num_tolerated_disk_barrier_failures =
3327 (int)fs_info->fs_devices->num_devices;
3328
3329 for (i = 0; i < num_types; i++) {
3330 struct btrfs_space_info *tmp;
3331
3332 sinfo = NULL;
3333 rcu_read_lock();
3334 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3335 if (tmp->flags == types[i]) {
3336 sinfo = tmp;
3337 break;
3338 }
3339 }
3340 rcu_read_unlock();
3341
3342 if (!sinfo)
3343 continue;
3344
3345 down_read(&sinfo->groups_sem);
3346 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3347 if (!list_empty(&sinfo->block_groups[c])) {
3348 u64 flags;
3349
3350 btrfs_get_block_group_info(
3351 &sinfo->block_groups[c], &space);
3352 if (space.total_bytes == 0 ||
3353 space.used_bytes == 0)
3354 continue;
3355 flags = space.flags;
3356 /*
3357 * return
3358 * 0: if dup, single or RAID0 is configured for
3359 * any of metadata, system or data, else
3360 * 1: if RAID5 is configured, or if RAID1 or
3361 * RAID10 is configured and only two mirrors
3362 * are used, else
3363 * 2: if RAID6 is configured, else
3364 * num_mirrors - 1: if RAID1 or RAID10 is
3365 * configured and more than
3366 * 2 mirrors are used.
3367 */
3368 if (num_tolerated_disk_barrier_failures > 0 &&
3369 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3370 BTRFS_BLOCK_GROUP_RAID0)) ||
3371 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3372 == 0)))
3373 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3374 else if (num_tolerated_disk_barrier_failures > 1) {
3375 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3376 BTRFS_BLOCK_GROUP_RAID5 |
3377 BTRFS_BLOCK_GROUP_RAID10)) {
3378 num_tolerated_disk_barrier_failures = 1;
3379 } else if (flags &
15b0a89d 3380 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3381 num_tolerated_disk_barrier_failures = 2;
3382 }
3383 }
5af3e8cc
SB
3384 }
3385 }
3386 up_read(&sinfo->groups_sem);
3387 }
3388
3389 return num_tolerated_disk_barrier_failures;
3390}
3391
48a3b636 3392static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3393{
e5e9a520 3394 struct list_head *head;
f2984462 3395 struct btrfs_device *dev;
a061fc8d 3396 struct btrfs_super_block *sb;
f2984462 3397 struct btrfs_dev_item *dev_item;
f2984462
CM
3398 int ret;
3399 int do_barriers;
a236aed1
CM
3400 int max_errors;
3401 int total_errors = 0;
a061fc8d 3402 u64 flags;
f2984462
CM
3403
3404 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3405 backup_super_roots(root->fs_info);
f2984462 3406
6c41761f 3407 sb = root->fs_info->super_for_commit;
a061fc8d 3408 dev_item = &sb->dev_item;
e5e9a520 3409
174ba509 3410 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3411 head = &root->fs_info->fs_devices->devices;
d7306801 3412 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3413
5af3e8cc
SB
3414 if (do_barriers) {
3415 ret = barrier_all_devices(root->fs_info);
3416 if (ret) {
3417 mutex_unlock(
3418 &root->fs_info->fs_devices->device_list_mutex);
3419 btrfs_error(root->fs_info, ret,
3420 "errors while submitting device barriers.");
3421 return ret;
3422 }
3423 }
387125fc 3424
1f78160c 3425 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3426 if (!dev->bdev) {
3427 total_errors++;
3428 continue;
3429 }
2b82032c 3430 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3431 continue;
3432
2b82032c 3433 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3434 btrfs_set_stack_device_type(dev_item, dev->type);
3435 btrfs_set_stack_device_id(dev_item, dev->devid);
3436 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3437 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3438 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3439 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3440 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3441 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3442 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3443
a061fc8d
CM
3444 flags = btrfs_super_flags(sb);
3445 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3446
a512bbf8 3447 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3448 if (ret)
3449 total_errors++;
f2984462 3450 }
a236aed1 3451 if (total_errors > max_errors) {
efe120a0 3452 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3453 total_errors);
a724b436 3454 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3455
9d565ba4
SB
3456 /* FUA is masked off if unsupported and can't be the reason */
3457 btrfs_error(root->fs_info, -EIO,
3458 "%d errors while writing supers", total_errors);
3459 return -EIO;
a236aed1 3460 }
f2984462 3461
a512bbf8 3462 total_errors = 0;
1f78160c 3463 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3464 if (!dev->bdev)
3465 continue;
2b82032c 3466 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3467 continue;
3468
a512bbf8
YZ
3469 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3470 if (ret)
3471 total_errors++;
f2984462 3472 }
174ba509 3473 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3474 if (total_errors > max_errors) {
79787eaa
JM
3475 btrfs_error(root->fs_info, -EIO,
3476 "%d errors while writing supers", total_errors);
3477 return -EIO;
a236aed1 3478 }
f2984462
CM
3479 return 0;
3480}
3481
a512bbf8
YZ
3482int write_ctree_super(struct btrfs_trans_handle *trans,
3483 struct btrfs_root *root, int max_mirrors)
eb60ceac 3484{
f570e757 3485 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3486}
3487
cb517eab
MX
3488/* Drop a fs root from the radix tree and free it. */
3489void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3490 struct btrfs_root *root)
2619ba1f 3491{
4df27c4d 3492 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3493 radix_tree_delete(&fs_info->fs_roots_radix,
3494 (unsigned long)root->root_key.objectid);
4df27c4d 3495 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3496
3497 if (btrfs_root_refs(&root->root_item) == 0)
3498 synchronize_srcu(&fs_info->subvol_srcu);
3499
1a4319cc 3500 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3501 btrfs_free_log(NULL, root);
3321719e 3502
581bb050
LZ
3503 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3504 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3505 free_fs_root(root);
4df27c4d
YZ
3506}
3507
3508static void free_fs_root(struct btrfs_root *root)
3509{
82d5902d 3510 iput(root->cache_inode);
4df27c4d 3511 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3512 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3513 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3514 if (root->anon_dev)
3515 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3516 if (root->subv_writers)
3517 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3518 free_extent_buffer(root->node);
3519 free_extent_buffer(root->commit_root);
581bb050
LZ
3520 kfree(root->free_ino_ctl);
3521 kfree(root->free_ino_pinned);
d397712b 3522 kfree(root->name);
b0feb9d9 3523 btrfs_put_fs_root(root);
2619ba1f
CM
3524}
3525
cb517eab
MX
3526void btrfs_free_fs_root(struct btrfs_root *root)
3527{
3528 free_fs_root(root);
2619ba1f
CM
3529}
3530
c146afad 3531int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3532{
c146afad
YZ
3533 u64 root_objectid = 0;
3534 struct btrfs_root *gang[8];
65d33fd7
QW
3535 int i = 0;
3536 int err = 0;
3537 unsigned int ret = 0;
3538 int index;
e089f05c 3539
c146afad 3540 while (1) {
65d33fd7 3541 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3542 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3543 (void **)gang, root_objectid,
3544 ARRAY_SIZE(gang));
65d33fd7
QW
3545 if (!ret) {
3546 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3547 break;
65d33fd7 3548 }
5d4f98a2 3549 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3550
c146afad 3551 for (i = 0; i < ret; i++) {
65d33fd7
QW
3552 /* Avoid to grab roots in dead_roots */
3553 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3554 gang[i] = NULL;
3555 continue;
3556 }
3557 /* grab all the search result for later use */
3558 gang[i] = btrfs_grab_fs_root(gang[i]);
3559 }
3560 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3561
65d33fd7
QW
3562 for (i = 0; i < ret; i++) {
3563 if (!gang[i])
3564 continue;
c146afad 3565 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3566 err = btrfs_orphan_cleanup(gang[i]);
3567 if (err)
65d33fd7
QW
3568 break;
3569 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3570 }
3571 root_objectid++;
3572 }
65d33fd7
QW
3573
3574 /* release the uncleaned roots due to error */
3575 for (; i < ret; i++) {
3576 if (gang[i])
3577 btrfs_put_fs_root(gang[i]);
3578 }
3579 return err;
c146afad 3580}
a2135011 3581
c146afad
YZ
3582int btrfs_commit_super(struct btrfs_root *root)
3583{
3584 struct btrfs_trans_handle *trans;
a74a4b97 3585
c146afad 3586 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3587 btrfs_run_delayed_iputs(root);
c146afad 3588 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3589 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3590
3591 /* wait until ongoing cleanup work done */
3592 down_write(&root->fs_info->cleanup_work_sem);
3593 up_write(&root->fs_info->cleanup_work_sem);
3594
7a7eaa40 3595 trans = btrfs_join_transaction(root);
3612b495
TI
3596 if (IS_ERR(trans))
3597 return PTR_ERR(trans);
d52c1bcc 3598 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3599}
3600
3601int close_ctree(struct btrfs_root *root)
3602{
3603 struct btrfs_fs_info *fs_info = root->fs_info;
3604 int ret;
3605
3606 fs_info->closing = 1;
3607 smp_mb();
3608
803b2f54
SB
3609 /* wait for the uuid_scan task to finish */
3610 down(&fs_info->uuid_tree_rescan_sem);
3611 /* avoid complains from lockdep et al., set sem back to initial state */
3612 up(&fs_info->uuid_tree_rescan_sem);
3613
837d5b6e 3614 /* pause restriper - we want to resume on mount */
aa1b8cd4 3615 btrfs_pause_balance(fs_info);
837d5b6e 3616
8dabb742
SB
3617 btrfs_dev_replace_suspend_for_unmount(fs_info);
3618
aa1b8cd4 3619 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3620
3621 /* wait for any defraggers to finish */
3622 wait_event(fs_info->transaction_wait,
3623 (atomic_read(&fs_info->defrag_running) == 0));
3624
3625 /* clear out the rbtree of defraggable inodes */
26176e7c 3626 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3627
21c7e756
MX
3628 cancel_work_sync(&fs_info->async_reclaim_work);
3629
c146afad 3630 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3631 ret = btrfs_commit_super(root);
3632 if (ret)
efe120a0 3633 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3634 }
3635
87533c47 3636 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3637 btrfs_error_commit_super(root);
0f7d52f4 3638
e3029d9f
AV
3639 kthread_stop(fs_info->transaction_kthread);
3640 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3641
f25784b3
YZ
3642 fs_info->closing = 2;
3643 smp_mb();
3644
bcef60f2
AJ
3645 btrfs_free_qgroup_config(root->fs_info);
3646
963d678b 3647 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3648 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3649 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3650 }
bcc63abb 3651
5ac1d209
JM
3652 btrfs_sysfs_remove_one(fs_info);
3653
c146afad 3654 del_fs_roots(fs_info);
d10c5f31 3655
1a4319cc
LB
3656 btrfs_put_block_group_cache(fs_info);
3657
2b1360da
JB
3658 btrfs_free_block_groups(fs_info);
3659
96192499
JB
3660 btrfs_stop_all_workers(fs_info);
3661
13e6c37b 3662 free_root_pointers(fs_info, 1);
9ad6b7bc 3663
13e6c37b 3664 iput(fs_info->btree_inode);
d6bfde87 3665
21adbd5c
SB
3666#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3667 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3668 btrfsic_unmount(root, fs_info->fs_devices);
3669#endif
3670
dfe25020 3671 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3672 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3673
e2d84521 3674 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3675 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3676 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3677 bdi_destroy(&fs_info->bdi);
76dda93c 3678 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3679
53b381b3
DW
3680 btrfs_free_stripe_hash_table(fs_info);
3681
1cb048f5
FDBM
3682 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3683 root->orphan_block_rsv = NULL;
3684
eb60ceac
CM
3685 return 0;
3686}
3687
b9fab919
CM
3688int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3689 int atomic)
5f39d397 3690{
1259ab75 3691 int ret;
727011e0 3692 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3693
0b32f4bb 3694 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3695 if (!ret)
3696 return ret;
3697
3698 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3699 parent_transid, atomic);
3700 if (ret == -EAGAIN)
3701 return ret;
1259ab75 3702 return !ret;
5f39d397
CM
3703}
3704
3705int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3706{
0b32f4bb 3707 return set_extent_buffer_uptodate(buf);
5f39d397 3708}
6702ed49 3709
5f39d397
CM
3710void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3711{
06ea65a3 3712 struct btrfs_root *root;
5f39d397 3713 u64 transid = btrfs_header_generation(buf);
b9473439 3714 int was_dirty;
b4ce94de 3715
06ea65a3
JB
3716#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3717 /*
3718 * This is a fast path so only do this check if we have sanity tests
3719 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3720 * outside of the sanity tests.
3721 */
3722 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3723 return;
3724#endif
3725 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3726 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3727 if (transid != root->fs_info->generation)
3728 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3729 "found %llu running %llu\n",
c1c9ff7c 3730 buf->start, transid, root->fs_info->generation);
0b32f4bb 3731 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3732 if (!was_dirty)
3733 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3734 buf->len,
3735 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3736}
3737
b53d3f5d
LB
3738static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3739 int flush_delayed)
16cdcec7
MX
3740{
3741 /*
3742 * looks as though older kernels can get into trouble with
3743 * this code, they end up stuck in balance_dirty_pages forever
3744 */
e2d84521 3745 int ret;
16cdcec7
MX
3746
3747 if (current->flags & PF_MEMALLOC)
3748 return;
3749
b53d3f5d
LB
3750 if (flush_delayed)
3751 btrfs_balance_delayed_items(root);
16cdcec7 3752
e2d84521
MX
3753 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3754 BTRFS_DIRTY_METADATA_THRESH);
3755 if (ret > 0) {
d0e1d66b
NJ
3756 balance_dirty_pages_ratelimited(
3757 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3758 }
3759 return;
3760}
3761
b53d3f5d 3762void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3763{
b53d3f5d
LB
3764 __btrfs_btree_balance_dirty(root, 1);
3765}
585ad2c3 3766
b53d3f5d
LB
3767void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3768{
3769 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3770}
6b80053d 3771
ca7a79ad 3772int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3773{
727011e0 3774 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3775 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3776}
0da5468f 3777
fcd1f065 3778static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3779 int read_only)
3780{
1104a885
DS
3781 /*
3782 * Placeholder for checks
3783 */
fcd1f065 3784 return 0;
acce952b 3785}
3786
48a3b636 3787static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3788{
acce952b 3789 mutex_lock(&root->fs_info->cleaner_mutex);
3790 btrfs_run_delayed_iputs(root);
3791 mutex_unlock(&root->fs_info->cleaner_mutex);
3792
3793 down_write(&root->fs_info->cleanup_work_sem);
3794 up_write(&root->fs_info->cleanup_work_sem);
3795
3796 /* cleanup FS via transaction */
3797 btrfs_cleanup_transaction(root);
acce952b 3798}
3799
569e0f35
JB
3800static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3801 struct btrfs_root *root)
acce952b 3802{
3803 struct btrfs_inode *btrfs_inode;
3804 struct list_head splice;
3805
3806 INIT_LIST_HEAD(&splice);
3807
3808 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3809 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3810
569e0f35 3811 list_splice_init(&t->ordered_operations, &splice);
acce952b 3812 while (!list_empty(&splice)) {
3813 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3814 ordered_operations);
3815
3816 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3817 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3818
3819 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3820
199c2a9c 3821 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3822 }
3823
199c2a9c 3824 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3825 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3826}
3827
143bede5 3828static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3829{
acce952b 3830 struct btrfs_ordered_extent *ordered;
acce952b 3831
199c2a9c 3832 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3833 /*
3834 * This will just short circuit the ordered completion stuff which will
3835 * make sure the ordered extent gets properly cleaned up.
3836 */
199c2a9c 3837 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3838 root_extent_list)
3839 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3840 spin_unlock(&root->ordered_extent_lock);
3841}
3842
3843static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3844{
3845 struct btrfs_root *root;
3846 struct list_head splice;
3847
3848 INIT_LIST_HEAD(&splice);
3849
3850 spin_lock(&fs_info->ordered_root_lock);
3851 list_splice_init(&fs_info->ordered_roots, &splice);
3852 while (!list_empty(&splice)) {
3853 root = list_first_entry(&splice, struct btrfs_root,
3854 ordered_root);
1de2cfde
JB
3855 list_move_tail(&root->ordered_root,
3856 &fs_info->ordered_roots);
199c2a9c 3857
2a85d9ca 3858 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3859 btrfs_destroy_ordered_extents(root);
3860
2a85d9ca
LB
3861 cond_resched();
3862 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3863 }
3864 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3865}
3866
35a3621b
SB
3867static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3868 struct btrfs_root *root)
acce952b 3869{
3870 struct rb_node *node;
3871 struct btrfs_delayed_ref_root *delayed_refs;
3872 struct btrfs_delayed_ref_node *ref;
3873 int ret = 0;
3874
3875 delayed_refs = &trans->delayed_refs;
3876
3877 spin_lock(&delayed_refs->lock);
d7df2c79 3878 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3879 spin_unlock(&delayed_refs->lock);
efe120a0 3880 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3881 return ret;
3882 }
3883
d7df2c79
JB
3884 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3885 struct btrfs_delayed_ref_head *head;
e78417d1 3886 bool pin_bytes = false;
acce952b 3887
d7df2c79
JB
3888 head = rb_entry(node, struct btrfs_delayed_ref_head,
3889 href_node);
3890 if (!mutex_trylock(&head->mutex)) {
3891 atomic_inc(&head->node.refs);
3892 spin_unlock(&delayed_refs->lock);
eb12db69 3893
d7df2c79 3894 mutex_lock(&head->mutex);
e78417d1 3895 mutex_unlock(&head->mutex);
d7df2c79
JB
3896 btrfs_put_delayed_ref(&head->node);
3897 spin_lock(&delayed_refs->lock);
3898 continue;
3899 }
3900 spin_lock(&head->lock);
3901 while ((node = rb_first(&head->ref_root)) != NULL) {
3902 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3903 rb_node);
3904 ref->in_tree = 0;
3905 rb_erase(&ref->rb_node, &head->ref_root);
3906 atomic_dec(&delayed_refs->num_entries);
3907 btrfs_put_delayed_ref(ref);
e78417d1 3908 }
d7df2c79
JB
3909 if (head->must_insert_reserved)
3910 pin_bytes = true;
3911 btrfs_free_delayed_extent_op(head->extent_op);
3912 delayed_refs->num_heads--;
3913 if (head->processing == 0)
3914 delayed_refs->num_heads_ready--;
3915 atomic_dec(&delayed_refs->num_entries);
3916 head->node.in_tree = 0;
3917 rb_erase(&head->href_node, &delayed_refs->href_root);
3918 spin_unlock(&head->lock);
3919 spin_unlock(&delayed_refs->lock);
3920 mutex_unlock(&head->mutex);
acce952b 3921
d7df2c79
JB
3922 if (pin_bytes)
3923 btrfs_pin_extent(root, head->node.bytenr,
3924 head->node.num_bytes, 1);
3925 btrfs_put_delayed_ref(&head->node);
acce952b 3926 cond_resched();
3927 spin_lock(&delayed_refs->lock);
3928 }
3929
3930 spin_unlock(&delayed_refs->lock);
3931
3932 return ret;
3933}
3934
143bede5 3935static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3936{
3937 struct btrfs_inode *btrfs_inode;
3938 struct list_head splice;
3939
3940 INIT_LIST_HEAD(&splice);
3941
eb73c1b7
MX
3942 spin_lock(&root->delalloc_lock);
3943 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3944
3945 while (!list_empty(&splice)) {
eb73c1b7
MX
3946 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3947 delalloc_inodes);
acce952b 3948
3949 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3950 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3951 &btrfs_inode->runtime_flags);
eb73c1b7 3952 spin_unlock(&root->delalloc_lock);
acce952b 3953
3954 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3955
eb73c1b7 3956 spin_lock(&root->delalloc_lock);
acce952b 3957 }
3958
eb73c1b7
MX
3959 spin_unlock(&root->delalloc_lock);
3960}
3961
3962static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3963{
3964 struct btrfs_root *root;
3965 struct list_head splice;
3966
3967 INIT_LIST_HEAD(&splice);
3968
3969 spin_lock(&fs_info->delalloc_root_lock);
3970 list_splice_init(&fs_info->delalloc_roots, &splice);
3971 while (!list_empty(&splice)) {
3972 root = list_first_entry(&splice, struct btrfs_root,
3973 delalloc_root);
3974 list_del_init(&root->delalloc_root);
3975 root = btrfs_grab_fs_root(root);
3976 BUG_ON(!root);
3977 spin_unlock(&fs_info->delalloc_root_lock);
3978
3979 btrfs_destroy_delalloc_inodes(root);
3980 btrfs_put_fs_root(root);
3981
3982 spin_lock(&fs_info->delalloc_root_lock);
3983 }
3984 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3985}
3986
3987static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3988 struct extent_io_tree *dirty_pages,
3989 int mark)
3990{
3991 int ret;
acce952b 3992 struct extent_buffer *eb;
3993 u64 start = 0;
3994 u64 end;
acce952b 3995
3996 while (1) {
3997 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3998 mark, NULL);
acce952b 3999 if (ret)
4000 break;
4001
4002 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4003 while (start <= end) {
fd8b2b61
JB
4004 eb = btrfs_find_tree_block(root, start,
4005 root->leafsize);
69a85bd8 4006 start += root->leafsize;
fd8b2b61 4007 if (!eb)
acce952b 4008 continue;
fd8b2b61 4009 wait_on_extent_buffer_writeback(eb);
acce952b 4010
fd8b2b61
JB
4011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4012 &eb->bflags))
4013 clear_extent_buffer_dirty(eb);
4014 free_extent_buffer_stale(eb);
acce952b 4015 }
4016 }
4017
4018 return ret;
4019}
4020
4021static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4022 struct extent_io_tree *pinned_extents)
4023{
4024 struct extent_io_tree *unpin;
4025 u64 start;
4026 u64 end;
4027 int ret;
ed0eaa14 4028 bool loop = true;
acce952b 4029
4030 unpin = pinned_extents;
ed0eaa14 4031again:
acce952b 4032 while (1) {
4033 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4034 EXTENT_DIRTY, NULL);
acce952b 4035 if (ret)
4036 break;
4037
4038 /* opt_discard */
5378e607
LD
4039 if (btrfs_test_opt(root, DISCARD))
4040 ret = btrfs_error_discard_extent(root, start,
4041 end + 1 - start,
4042 NULL);
acce952b 4043
4044 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4045 btrfs_error_unpin_extent_range(root, start, end);
4046 cond_resched();
4047 }
4048
ed0eaa14
LB
4049 if (loop) {
4050 if (unpin == &root->fs_info->freed_extents[0])
4051 unpin = &root->fs_info->freed_extents[1];
4052 else
4053 unpin = &root->fs_info->freed_extents[0];
4054 loop = false;
4055 goto again;
4056 }
4057
acce952b 4058 return 0;
4059}
4060
49b25e05
JM
4061void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4062 struct btrfs_root *root)
4063{
724e2315
JB
4064 btrfs_destroy_ordered_operations(cur_trans, root);
4065
49b25e05 4066 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4067
4a9d8bde 4068 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4069 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4070
4a9d8bde 4071 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4072 wake_up(&root->fs_info->transaction_wait);
49b25e05 4073
67cde344
MX
4074 btrfs_destroy_delayed_inodes(root);
4075 btrfs_assert_delayed_root_empty(root);
49b25e05 4076
49b25e05
JM
4077 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4078 EXTENT_DIRTY);
6e841e32
LB
4079 btrfs_destroy_pinned_extent(root,
4080 root->fs_info->pinned_extents);
49b25e05 4081
4a9d8bde
MX
4082 cur_trans->state =TRANS_STATE_COMPLETED;
4083 wake_up(&cur_trans->commit_wait);
4084
49b25e05
JM
4085 /*
4086 memset(cur_trans, 0, sizeof(*cur_trans));
4087 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4088 */
4089}
4090
48a3b636 4091static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4092{
4093 struct btrfs_transaction *t;
acce952b 4094
acce952b 4095 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4096
a4abeea4 4097 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4098 while (!list_empty(&root->fs_info->trans_list)) {
4099 t = list_first_entry(&root->fs_info->trans_list,
4100 struct btrfs_transaction, list);
4101 if (t->state >= TRANS_STATE_COMMIT_START) {
4102 atomic_inc(&t->use_count);
4103 spin_unlock(&root->fs_info->trans_lock);
4104 btrfs_wait_for_commit(root, t->transid);
4105 btrfs_put_transaction(t);
4106 spin_lock(&root->fs_info->trans_lock);
4107 continue;
4108 }
4109 if (t == root->fs_info->running_transaction) {
4110 t->state = TRANS_STATE_COMMIT_DOING;
4111 spin_unlock(&root->fs_info->trans_lock);
4112 /*
4113 * We wait for 0 num_writers since we don't hold a trans
4114 * handle open currently for this transaction.
4115 */
4116 wait_event(t->writer_wait,
4117 atomic_read(&t->num_writers) == 0);
4118 } else {
4119 spin_unlock(&root->fs_info->trans_lock);
4120 }
4121 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4122
724e2315
JB
4123 spin_lock(&root->fs_info->trans_lock);
4124 if (t == root->fs_info->running_transaction)
4125 root->fs_info->running_transaction = NULL;
acce952b 4126 list_del_init(&t->list);
724e2315 4127 spin_unlock(&root->fs_info->trans_lock);
acce952b 4128
724e2315
JB
4129 btrfs_put_transaction(t);
4130 trace_btrfs_transaction_commit(root);
4131 spin_lock(&root->fs_info->trans_lock);
4132 }
4133 spin_unlock(&root->fs_info->trans_lock);
4134 btrfs_destroy_all_ordered_extents(root->fs_info);
4135 btrfs_destroy_delayed_inodes(root);
4136 btrfs_assert_delayed_root_empty(root);
4137 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4138 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4139 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4140
4141 return 0;
4142}
4143
d1310b2e 4144static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4145 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4146 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4147 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4148 /* note we're sharing with inode.c for the merge bio hook */
4149 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4150};