btrfs: cleanup ino cache members of btrfs_root
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68
CM
74/*
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
ce9adaa5
CM
79struct end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
22c59948 85 int metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
d352ac68
CM
90/*
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
94 */
44b8bd7e
CM
95struct async_submit_bio {
96 struct inode *inode;
97 struct bio *bio;
98 struct list_head list;
4a69a410
CM
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
101 int rw;
102 int mirror_num;
c8b97818 103 unsigned long bio_flags;
eaf25d93
CM
104 /*
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
107 */
108 u64 bio_offset;
8b712842 109 struct btrfs_work work;
79787eaa 110 int error;
44b8bd7e
CM
111};
112
85d4e461
CM
113/*
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
117 *
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
4008c04a 123 *
85d4e461
CM
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 127 *
85d4e461
CM
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 131 *
85d4e461
CM
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
4008c04a
CM
135 */
136#ifdef CONFIG_DEBUG_LOCK_ALLOC
137# if BTRFS_MAX_LEVEL != 8
138# error
139# endif
85d4e461
CM
140
141static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146} btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 153 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 157 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 158 { .id = 0, .name_stem = "tree" },
4008c04a 159};
85d4e461
CM
160
161void __init btrfs_init_lockdep(void)
162{
163 int i, j;
164
165 /* initialize lockdep class names */
166 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170 snprintf(ks->names[j], sizeof(ks->names[j]),
171 "btrfs-%s-%02d", ks->name_stem, j);
172 }
173}
174
175void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176 int level)
177{
178 struct btrfs_lockdep_keyset *ks;
179
180 BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182 /* find the matching keyset, id 0 is the default entry */
183 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184 if (ks->id == objectid)
185 break;
186
187 lockdep_set_class_and_name(&eb->lock,
188 &ks->keys[level], ks->names[level]);
189}
190
4008c04a
CM
191#endif
192
d352ac68
CM
193/*
194 * extents on the btree inode are pretty simple, there's one extent
195 * that covers the entire device
196 */
b2950863 197static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 198 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 199 int create)
7eccb903 200{
5f39d397
CM
201 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202 struct extent_map *em;
203 int ret;
204
890871be 205 read_lock(&em_tree->lock);
d1310b2e 206 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
207 if (em) {
208 em->bdev =
209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 210 read_unlock(&em_tree->lock);
5f39d397 211 goto out;
a061fc8d 212 }
890871be 213 read_unlock(&em_tree->lock);
7b13b7b1 214
172ddd60 215 em = alloc_extent_map();
5f39d397
CM
216 if (!em) {
217 em = ERR_PTR(-ENOMEM);
218 goto out;
219 }
220 em->start = 0;
0afbaf8c 221 em->len = (u64)-1;
c8b97818 222 em->block_len = (u64)-1;
5f39d397 223 em->block_start = 0;
a061fc8d 224 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 225
890871be 226 write_lock(&em_tree->lock);
09a2a8f9 227 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
228 if (ret == -EEXIST) {
229 free_extent_map(em);
7b13b7b1 230 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 231 if (!em)
0433f20d 232 em = ERR_PTR(-EIO);
5f39d397 233 } else if (ret) {
7b13b7b1 234 free_extent_map(em);
0433f20d 235 em = ERR_PTR(ret);
5f39d397 236 }
890871be 237 write_unlock(&em_tree->lock);
7b13b7b1 238
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
b0496686 243u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 244{
0b947aff 245 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc 278 cur_len = min(len, map_len - (offset - map_start));
b0496686 279 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
301 printk_ratelimited(KERN_INFO
302 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id, buf->start,
305 val, found, btrfs_header_level(buf));
607d432d
JB
306 if (result != (char *)&inline_result)
307 kfree(result);
19c00ddc
CM
308 return 1;
309 }
310 } else {
607d432d 311 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 312 }
607d432d
JB
313 if (result != (char *)&inline_result)
314 kfree(result);
19c00ddc
CM
315 return 0;
316}
317
d352ac68
CM
318/*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
1259ab75 324static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
325 struct extent_buffer *eb, u64 parent_transid,
326 int atomic)
1259ab75 327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75 329 int ret;
a26e8c9f
JB
330 bool need_lock = (current->journal_info ==
331 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
a26e8c9f
JB
339 if (need_lock) {
340 btrfs_tree_read_lock(eb);
341 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342 }
343
2ac55d41 344 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 345 0, &cached_state);
0b32f4bb 346 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
347 btrfs_header_generation(eb) == parent_transid) {
348 ret = 0;
349 goto out;
350 }
7a36ddec 351 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 352 "found %llu\n",
c1c9ff7c 353 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 354 ret = 1;
a26e8c9f
JB
355
356 /*
357 * Things reading via commit roots that don't have normal protection,
358 * like send, can have a really old block in cache that may point at a
359 * block that has been free'd and re-allocated. So don't clear uptodate
360 * if we find an eb that is under IO (dirty/writeback) because we could
361 * end up reading in the stale data and then writing it back out and
362 * making everybody very sad.
363 */
364 if (!extent_buffer_under_io(eb))
365 clear_extent_buffer_uptodate(eb);
33958dc6 366out:
2ac55d41
JB
367 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 &cached_state, GFP_NOFS);
472b909f
JB
369 if (need_lock)
370 btrfs_tree_read_unlock_blocking(eb);
1259ab75 371 return ret;
1259ab75
CM
372}
373
1104a885
DS
374/*
375 * Return 0 if the superblock checksum type matches the checksum value of that
376 * algorithm. Pass the raw disk superblock data.
377 */
378static int btrfs_check_super_csum(char *raw_disk_sb)
379{
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
383 int ret = 0;
384
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 u32 crc = ~(u32)0;
387 const int csum_size = sizeof(crc);
388 char result[csum_size];
389
390 /*
391 * The super_block structure does not span the whole
392 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393 * is filled with zeros and is included in the checkum.
394 */
395 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397 btrfs_csum_final(crc, result);
398
399 if (memcmp(raw_disk_sb, result, csum_size))
400 ret = 1;
667e7d94
CM
401
402 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
403 printk(KERN_WARNING
404 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
405 ret = 0;
406 }
1104a885
DS
407 }
408
409 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 410 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
411 csum_type);
412 ret = 1;
413 }
414
415 return ret;
416}
417
d352ac68
CM
418/*
419 * helper to read a given tree block, doing retries as required when
420 * the checksums don't match and we have alternate mirrors to try.
421 */
f188591e
CM
422static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423 struct extent_buffer *eb,
ca7a79ad 424 u64 start, u64 parent_transid)
f188591e
CM
425{
426 struct extent_io_tree *io_tree;
ea466794 427 int failed = 0;
f188591e
CM
428 int ret;
429 int num_copies = 0;
430 int mirror_num = 0;
ea466794 431 int failed_mirror = 0;
f188591e 432
a826d6dc 433 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
434 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435 while (1) {
bb82ab88
AJ
436 ret = read_extent_buffer_pages(io_tree, eb, start,
437 WAIT_COMPLETE,
f188591e 438 btree_get_extent, mirror_num);
256dd1bb
SB
439 if (!ret) {
440 if (!verify_parent_transid(io_tree, eb,
b9fab919 441 parent_transid, 0))
256dd1bb
SB
442 break;
443 else
444 ret = -EIO;
445 }
d397712b 446
a826d6dc
JB
447 /*
448 * This buffer's crc is fine, but its contents are corrupted, so
449 * there is no reason to read the other copies, they won't be
450 * any less wrong.
451 */
452 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
453 break;
454
5d964051 455 num_copies = btrfs_num_copies(root->fs_info,
f188591e 456 eb->start, eb->len);
4235298e 457 if (num_copies == 1)
ea466794 458 break;
4235298e 459
5cf1ab56
JB
460 if (!failed_mirror) {
461 failed = 1;
462 failed_mirror = eb->read_mirror;
463 }
464
f188591e 465 mirror_num++;
ea466794
JB
466 if (mirror_num == failed_mirror)
467 mirror_num++;
468
4235298e 469 if (mirror_num > num_copies)
ea466794 470 break;
f188591e 471 }
ea466794 472
c0901581 473 if (failed && !ret && failed_mirror)
ea466794
JB
474 repair_eb_io_failure(root, eb, failed_mirror);
475
476 return ret;
f188591e 477}
19c00ddc 478
d352ac68 479/*
d397712b
CM
480 * checksum a dirty tree block before IO. This has extra checks to make sure
481 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 482 */
d397712b 483
b2950863 484static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 485{
4eee4fa4 486 u64 start = page_offset(page);
19c00ddc 487 u64 found_start;
19c00ddc 488 struct extent_buffer *eb;
f188591e 489
4f2de97a
JB
490 eb = (struct extent_buffer *)page->private;
491 if (page != eb->pages[0])
492 return 0;
19c00ddc 493 found_start = btrfs_header_bytenr(eb);
fae7f21c 494 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 495 return 0;
19c00ddc 496 csum_tree_block(root, eb, 0);
19c00ddc
CM
497 return 0;
498}
499
2b82032c
YZ
500static int check_tree_block_fsid(struct btrfs_root *root,
501 struct extent_buffer *eb)
502{
503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504 u8 fsid[BTRFS_UUID_SIZE];
505 int ret = 1;
506
0a4e5586 507 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
508 while (fs_devices) {
509 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510 ret = 0;
511 break;
512 }
513 fs_devices = fs_devices->seed;
514 }
515 return ret;
516}
517
a826d6dc 518#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
519 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
520 "root=%llu, slot=%d", reason, \
c1c9ff7c 521 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
522
523static noinline int check_leaf(struct btrfs_root *root,
524 struct extent_buffer *leaf)
525{
526 struct btrfs_key key;
527 struct btrfs_key leaf_key;
528 u32 nritems = btrfs_header_nritems(leaf);
529 int slot;
530
531 if (nritems == 0)
532 return 0;
533
534 /* Check the 0 item */
535 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536 BTRFS_LEAF_DATA_SIZE(root)) {
537 CORRUPT("invalid item offset size pair", leaf, root, 0);
538 return -EIO;
539 }
540
541 /*
542 * Check to make sure each items keys are in the correct order and their
543 * offsets make sense. We only have to loop through nritems-1 because
544 * we check the current slot against the next slot, which verifies the
545 * next slot's offset+size makes sense and that the current's slot
546 * offset is correct.
547 */
548 for (slot = 0; slot < nritems - 1; slot++) {
549 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552 /* Make sure the keys are in the right order */
553 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554 CORRUPT("bad key order", leaf, root, slot);
555 return -EIO;
556 }
557
558 /*
559 * Make sure the offset and ends are right, remember that the
560 * item data starts at the end of the leaf and grows towards the
561 * front.
562 */
563 if (btrfs_item_offset_nr(leaf, slot) !=
564 btrfs_item_end_nr(leaf, slot + 1)) {
565 CORRUPT("slot offset bad", leaf, root, slot);
566 return -EIO;
567 }
568
569 /*
570 * Check to make sure that we don't point outside of the leaf,
571 * just incase all the items are consistent to eachother, but
572 * all point outside of the leaf.
573 */
574 if (btrfs_item_end_nr(leaf, slot) >
575 BTRFS_LEAF_DATA_SIZE(root)) {
576 CORRUPT("slot end outside of leaf", leaf, root, slot);
577 return -EIO;
578 }
579 }
580
581 return 0;
582}
583
facc8a22
MX
584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
ce9adaa5 587{
ce9adaa5
CM
588 u64 found_start;
589 int found_level;
ce9adaa5
CM
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 592 int ret = 0;
727011e0 593 int reads_done;
ce9adaa5 594
ce9adaa5
CM
595 if (!page->private)
596 goto out;
d397712b 597
4f2de97a 598 eb = (struct extent_buffer *)page->private;
d397712b 599
0b32f4bb
JB
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
602 */
603 extent_buffer_get(eb);
604
605 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
606 if (!reads_done)
607 goto err;
f188591e 608
5cf1ab56 609 eb->read_mirror = mirror;
ea466794
JB
610 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611 ret = -EIO;
612 goto err;
613 }
614
ce9adaa5 615 found_start = btrfs_header_bytenr(eb);
727011e0 616 if (found_start != eb->start) {
efe120a0 617 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 618 "%llu %llu\n",
c1c9ff7c 619 found_start, eb->start);
f188591e 620 ret = -EIO;
ce9adaa5
CM
621 goto err;
622 }
2b82032c 623 if (check_tree_block_fsid(root, eb)) {
efe120a0 624 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 625 eb->start);
1259ab75
CM
626 ret = -EIO;
627 goto err;
628 }
ce9adaa5 629 found_level = btrfs_header_level(eb);
1c24c3ce 630 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 631 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
632 (int)btrfs_header_level(eb));
633 ret = -EIO;
634 goto err;
635 }
ce9adaa5 636
85d4e461
CM
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
4008c04a 639
ce9adaa5 640 ret = csum_tree_block(root, eb, 1);
a826d6dc 641 if (ret) {
f188591e 642 ret = -EIO;
a826d6dc
JB
643 goto err;
644 }
645
646 /*
647 * If this is a leaf block and it is corrupt, set the corrupt bit so
648 * that we don't try and read the other copies of this block, just
649 * return -EIO.
650 */
651 if (found_level == 0 && check_leaf(root, eb)) {
652 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653 ret = -EIO;
654 }
ce9adaa5 655
0b32f4bb
JB
656 if (!ret)
657 set_extent_buffer_uptodate(eb);
ce9adaa5 658err:
79fb65a1
JB
659 if (reads_done &&
660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 661 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 662
53b381b3
DW
663 if (ret) {
664 /*
665 * our io error hook is going to dec the io pages
666 * again, we have to make sure it has something
667 * to decrement
668 */
669 atomic_inc(&eb->io_pages);
0b32f4bb 670 clear_extent_buffer_uptodate(eb);
53b381b3 671 }
0b32f4bb 672 free_extent_buffer(eb);
ce9adaa5 673out:
f188591e 674 return ret;
ce9adaa5
CM
675}
676
ea466794 677static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 678{
4bb31e92
AJ
679 struct extent_buffer *eb;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
4f2de97a 682 eb = (struct extent_buffer *)page->private;
ea466794 683 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 684 eb->read_mirror = failed_mirror;
53b381b3 685 atomic_dec(&eb->io_pages);
ea466794 686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 687 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
688 return -EIO; /* we fixed nothing */
689}
690
ce9adaa5 691static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
692{
693 struct end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
9e0af237
LB
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
ce9adaa5 697
ce9adaa5 698 fs_info = end_io_wq->info;
ce9adaa5 699 end_io_wq->error = err;
d20f7043 700
7b6d91da 701 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
714 }
d20f7043 715 } else {
9e0af237
LB
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
717 wq = fs_info->endio_raid56_workers;
718 func = btrfs_endio_raid56_helper;
719 } else if (end_io_wq->metadata) {
720 wq = fs_info->endio_meta_workers;
721 func = btrfs_endio_meta_helper;
722 } else {
723 wq = fs_info->endio_workers;
724 func = btrfs_endio_helper;
725 }
d20f7043 726 }
9e0af237
LB
727
728 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
729 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
730}
731
0cb59c99
JB
732/*
733 * For the metadata arg you want
734 *
735 * 0 - if data
736 * 1 - if normal metadta
737 * 2 - if writing to the free space cache area
53b381b3 738 * 3 - raid parity work
0cb59c99 739 */
22c59948
CM
740int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
741 int metadata)
0b86a832 742{
ce9adaa5 743 struct end_io_wq *end_io_wq;
ce9adaa5
CM
744 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
745 if (!end_io_wq)
746 return -ENOMEM;
747
748 end_io_wq->private = bio->bi_private;
749 end_io_wq->end_io = bio->bi_end_io;
22c59948 750 end_io_wq->info = info;
ce9adaa5
CM
751 end_io_wq->error = 0;
752 end_io_wq->bio = bio;
22c59948 753 end_io_wq->metadata = metadata;
ce9adaa5
CM
754
755 bio->bi_private = end_io_wq;
756 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
757 return 0;
758}
759
b64a2851 760unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 761{
4854ddd0 762 unsigned long limit = min_t(unsigned long,
5cdc7ad3 763 info->thread_pool_size,
4854ddd0
CM
764 info->fs_devices->open_devices);
765 return 256 * limit;
766}
0986fe9e 767
4a69a410
CM
768static void run_one_async_start(struct btrfs_work *work)
769{
4a69a410 770 struct async_submit_bio *async;
79787eaa 771 int ret;
4a69a410
CM
772
773 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
774 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
775 async->mirror_num, async->bio_flags,
776 async->bio_offset);
777 if (ret)
778 async->error = ret;
4a69a410
CM
779}
780
781static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
782{
783 struct btrfs_fs_info *fs_info;
784 struct async_submit_bio *async;
4854ddd0 785 int limit;
8b712842
CM
786
787 async = container_of(work, struct async_submit_bio, work);
788 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 789
b64a2851 790 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
791 limit = limit * 2 / 3;
792
66657b31 793 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 794 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
795 wake_up(&fs_info->async_submit_wait);
796
79787eaa
JM
797 /* If an error occured we just want to clean up the bio and move on */
798 if (async->error) {
799 bio_endio(async->bio, async->error);
800 return;
801 }
802
4a69a410 803 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
804 async->mirror_num, async->bio_flags,
805 async->bio_offset);
4a69a410
CM
806}
807
808static void run_one_async_free(struct btrfs_work *work)
809{
810 struct async_submit_bio *async;
811
812 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
813 kfree(async);
814}
815
44b8bd7e
CM
816int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
817 int rw, struct bio *bio, int mirror_num,
c8b97818 818 unsigned long bio_flags,
eaf25d93 819 u64 bio_offset,
4a69a410
CM
820 extent_submit_bio_hook_t *submit_bio_start,
821 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
822{
823 struct async_submit_bio *async;
824
825 async = kmalloc(sizeof(*async), GFP_NOFS);
826 if (!async)
827 return -ENOMEM;
828
829 async->inode = inode;
830 async->rw = rw;
831 async->bio = bio;
832 async->mirror_num = mirror_num;
4a69a410
CM
833 async->submit_bio_start = submit_bio_start;
834 async->submit_bio_done = submit_bio_done;
835
9e0af237 836 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 837 run_one_async_done, run_one_async_free);
4a69a410 838
c8b97818 839 async->bio_flags = bio_flags;
eaf25d93 840 async->bio_offset = bio_offset;
8c8bee1d 841
79787eaa
JM
842 async->error = 0;
843
cb03c743 844 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 845
7b6d91da 846 if (rw & REQ_SYNC)
5cdc7ad3 847 btrfs_set_work_high_priority(&async->work);
d313d7a3 848
5cdc7ad3 849 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 850
d397712b 851 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
852 atomic_read(&fs_info->nr_async_submits)) {
853 wait_event(fs_info->async_submit_wait,
854 (atomic_read(&fs_info->nr_async_submits) == 0));
855 }
856
44b8bd7e
CM
857 return 0;
858}
859
ce3ed71a
CM
860static int btree_csum_one_bio(struct bio *bio)
861{
2c30c71b 862 struct bio_vec *bvec;
ce3ed71a 863 struct btrfs_root *root;
2c30c71b 864 int i, ret = 0;
ce3ed71a 865
2c30c71b 866 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 867 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
868 ret = csum_dirty_buffer(root, bvec->bv_page);
869 if (ret)
870 break;
ce3ed71a 871 }
2c30c71b 872
79787eaa 873 return ret;
ce3ed71a
CM
874}
875
4a69a410
CM
876static int __btree_submit_bio_start(struct inode *inode, int rw,
877 struct bio *bio, int mirror_num,
eaf25d93
CM
878 unsigned long bio_flags,
879 u64 bio_offset)
22c59948 880{
8b712842
CM
881 /*
882 * when we're called for a write, we're already in the async
5443be45 883 * submission context. Just jump into btrfs_map_bio
8b712842 884 */
79787eaa 885 return btree_csum_one_bio(bio);
4a69a410 886}
22c59948 887
4a69a410 888static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
889 int mirror_num, unsigned long bio_flags,
890 u64 bio_offset)
4a69a410 891{
61891923
SB
892 int ret;
893
8b712842 894 /*
4a69a410
CM
895 * when we're called for a write, we're already in the async
896 * submission context. Just jump into btrfs_map_bio
8b712842 897 */
61891923
SB
898 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
899 if (ret)
900 bio_endio(bio, ret);
901 return ret;
0b86a832
CM
902}
903
de0022b9
JB
904static int check_async_write(struct inode *inode, unsigned long bio_flags)
905{
906 if (bio_flags & EXTENT_BIO_TREE_LOG)
907 return 0;
908#ifdef CONFIG_X86
909 if (cpu_has_xmm4_2)
910 return 0;
911#endif
912 return 1;
913}
914
44b8bd7e 915static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
916 int mirror_num, unsigned long bio_flags,
917 u64 bio_offset)
44b8bd7e 918{
de0022b9 919 int async = check_async_write(inode, bio_flags);
cad321ad
CM
920 int ret;
921
7b6d91da 922 if (!(rw & REQ_WRITE)) {
4a69a410
CM
923 /*
924 * called for a read, do the setup so that checksum validation
925 * can happen in the async kernel threads
926 */
f3f266ab
CM
927 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
928 bio, 1);
1d4284bd 929 if (ret)
61891923
SB
930 goto out_w_error;
931 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932 mirror_num, 0);
de0022b9
JB
933 } else if (!async) {
934 ret = btree_csum_one_bio(bio);
935 if (ret)
61891923
SB
936 goto out_w_error;
937 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
938 mirror_num, 0);
939 } else {
940 /*
941 * kthread helpers are used to submit writes so that
942 * checksumming can happen in parallel across all CPUs
943 */
944 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
945 inode, rw, bio, mirror_num, 0,
946 bio_offset,
947 __btree_submit_bio_start,
948 __btree_submit_bio_done);
44b8bd7e 949 }
d313d7a3 950
61891923
SB
951 if (ret) {
952out_w_error:
953 bio_endio(bio, ret);
954 }
955 return ret;
44b8bd7e
CM
956}
957
3dd1462e 958#ifdef CONFIG_MIGRATION
784b4e29 959static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
960 struct page *newpage, struct page *page,
961 enum migrate_mode mode)
784b4e29
CM
962{
963 /*
964 * we can't safely write a btree page from here,
965 * we haven't done the locking hook
966 */
967 if (PageDirty(page))
968 return -EAGAIN;
969 /*
970 * Buffers may be managed in a filesystem specific way.
971 * We must have no buffers or drop them.
972 */
973 if (page_has_private(page) &&
974 !try_to_release_page(page, GFP_KERNEL))
975 return -EAGAIN;
a6bc32b8 976 return migrate_page(mapping, newpage, page, mode);
784b4e29 977}
3dd1462e 978#endif
784b4e29 979
0da5468f
CM
980
981static int btree_writepages(struct address_space *mapping,
982 struct writeback_control *wbc)
983{
e2d84521
MX
984 struct btrfs_fs_info *fs_info;
985 int ret;
986
d8d5f3e1 987 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
988
989 if (wbc->for_kupdate)
990 return 0;
991
e2d84521 992 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 993 /* this is a bit racy, but that's ok */
e2d84521
MX
994 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
995 BTRFS_DIRTY_METADATA_THRESH);
996 if (ret < 0)
793955bc 997 return 0;
793955bc 998 }
0b32f4bb 999 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1000}
1001
b2950863 1002static int btree_readpage(struct file *file, struct page *page)
5f39d397 1003{
d1310b2e
CM
1004 struct extent_io_tree *tree;
1005 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1006 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1007}
22b0ebda 1008
70dec807 1009static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1010{
98509cfc 1011 if (PageWriteback(page) || PageDirty(page))
d397712b 1012 return 0;
0c4e538b 1013
f7a52a40 1014 return try_release_extent_buffer(page);
d98237b3
CM
1015}
1016
d47992f8
LC
1017static void btree_invalidatepage(struct page *page, unsigned int offset,
1018 unsigned int length)
d98237b3 1019{
d1310b2e
CM
1020 struct extent_io_tree *tree;
1021 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1022 extent_invalidatepage(tree, page, offset);
1023 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1024 if (PagePrivate(page)) {
efe120a0
FH
1025 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1026 "page private not zero on page %llu",
1027 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1028 ClearPagePrivate(page);
1029 set_page_private(page, 0);
1030 page_cache_release(page);
1031 }
d98237b3
CM
1032}
1033
0b32f4bb
JB
1034static int btree_set_page_dirty(struct page *page)
1035{
bb146eb2 1036#ifdef DEBUG
0b32f4bb
JB
1037 struct extent_buffer *eb;
1038
1039 BUG_ON(!PagePrivate(page));
1040 eb = (struct extent_buffer *)page->private;
1041 BUG_ON(!eb);
1042 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1043 BUG_ON(!atomic_read(&eb->refs));
1044 btrfs_assert_tree_locked(eb);
bb146eb2 1045#endif
0b32f4bb
JB
1046 return __set_page_dirty_nobuffers(page);
1047}
1048
7f09410b 1049static const struct address_space_operations btree_aops = {
d98237b3 1050 .readpage = btree_readpage,
0da5468f 1051 .writepages = btree_writepages,
5f39d397
CM
1052 .releasepage = btree_releasepage,
1053 .invalidatepage = btree_invalidatepage,
5a92bc88 1054#ifdef CONFIG_MIGRATION
784b4e29 1055 .migratepage = btree_migratepage,
5a92bc88 1056#endif
0b32f4bb 1057 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1058};
1059
ca7a79ad
CM
1060int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1061 u64 parent_transid)
090d1875 1062{
5f39d397
CM
1063 struct extent_buffer *buf = NULL;
1064 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1065 int ret = 0;
090d1875 1066
db94535d 1067 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1068 if (!buf)
090d1875 1069 return 0;
d1310b2e 1070 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1071 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1072 free_extent_buffer(buf);
de428b63 1073 return ret;
090d1875
CM
1074}
1075
ab0fff03
AJ
1076int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1077 int mirror_num, struct extent_buffer **eb)
1078{
1079 struct extent_buffer *buf = NULL;
1080 struct inode *btree_inode = root->fs_info->btree_inode;
1081 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1082 int ret;
1083
1084 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1085 if (!buf)
1086 return 0;
1087
1088 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1089
1090 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1091 btree_get_extent, mirror_num);
1092 if (ret) {
1093 free_extent_buffer(buf);
1094 return ret;
1095 }
1096
1097 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1098 free_extent_buffer(buf);
1099 return -EIO;
0b32f4bb 1100 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1101 *eb = buf;
1102 } else {
1103 free_extent_buffer(buf);
1104 }
1105 return 0;
1106}
1107
0999df54
CM
1108struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1109 u64 bytenr, u32 blocksize)
1110{
f28491e0 1111 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1112}
1113
1114struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1115 u64 bytenr, u32 blocksize)
1116{
faa2dbf0
JB
1117#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1118 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1119 return alloc_test_extent_buffer(root->fs_info, bytenr,
1120 blocksize);
1121#endif
f28491e0 1122 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1123}
1124
1125
e02119d5
CM
1126int btrfs_write_tree_block(struct extent_buffer *buf)
1127{
727011e0 1128 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1129 buf->start + buf->len - 1);
e02119d5
CM
1130}
1131
1132int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1133{
727011e0 1134 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1135 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1136}
1137
0999df54 1138struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1139 u32 blocksize, u64 parent_transid)
0999df54
CM
1140{
1141 struct extent_buffer *buf = NULL;
0999df54
CM
1142 int ret;
1143
0999df54
CM
1144 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1145 if (!buf)
1146 return NULL;
0999df54 1147
ca7a79ad 1148 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1149 if (ret) {
1150 free_extent_buffer(buf);
1151 return NULL;
1152 }
5f39d397 1153 return buf;
ce9adaa5 1154
eb60ceac
CM
1155}
1156
d5c13f92
JM
1157void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1158 struct extent_buffer *buf)
ed2ff2cb 1159{
e2d84521
MX
1160 struct btrfs_fs_info *fs_info = root->fs_info;
1161
55c69072 1162 if (btrfs_header_generation(buf) ==
e2d84521 1163 fs_info->running_transaction->transid) {
b9447ef8 1164 btrfs_assert_tree_locked(buf);
b4ce94de 1165
b9473439 1166 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1167 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1168 -buf->len,
1169 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1170 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1171 btrfs_set_lock_blocking(buf);
1172 clear_extent_buffer_dirty(buf);
1173 }
925baedd 1174 }
5f39d397
CM
1175}
1176
8257b2dc
MX
1177static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1178{
1179 struct btrfs_subvolume_writers *writers;
1180 int ret;
1181
1182 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1183 if (!writers)
1184 return ERR_PTR(-ENOMEM);
1185
1186 ret = percpu_counter_init(&writers->counter, 0);
1187 if (ret < 0) {
1188 kfree(writers);
1189 return ERR_PTR(ret);
1190 }
1191
1192 init_waitqueue_head(&writers->wait);
1193 return writers;
1194}
1195
1196static void
1197btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1198{
1199 percpu_counter_destroy(&writers->counter);
1200 kfree(writers);
1201}
1202
143bede5
JM
1203static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1204 u32 stripesize, struct btrfs_root *root,
1205 struct btrfs_fs_info *fs_info,
1206 u64 objectid)
d97e63b6 1207{
cfaa7295 1208 root->node = NULL;
a28ec197 1209 root->commit_root = NULL;
db94535d
CM
1210 root->sectorsize = sectorsize;
1211 root->nodesize = nodesize;
1212 root->leafsize = leafsize;
87ee04eb 1213 root->stripesize = stripesize;
27cdeb70 1214 root->state = 0;
d68fc57b 1215 root->orphan_cleanup_state = 0;
0b86a832 1216
0f7d52f4
CM
1217 root->objectid = objectid;
1218 root->last_trans = 0;
13a8a7c8 1219 root->highest_objectid = 0;
eb73c1b7 1220 root->nr_delalloc_inodes = 0;
199c2a9c 1221 root->nr_ordered_extents = 0;
58176a96 1222 root->name = NULL;
6bef4d31 1223 root->inode_tree = RB_ROOT;
16cdcec7 1224 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1225 root->block_rsv = NULL;
d68fc57b 1226 root->orphan_block_rsv = NULL;
0b86a832
CM
1227
1228 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1229 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1230 INIT_LIST_HEAD(&root->delalloc_inodes);
1231 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1232 INIT_LIST_HEAD(&root->ordered_extents);
1233 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1234 INIT_LIST_HEAD(&root->logged_list[0]);
1235 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1236 spin_lock_init(&root->orphan_lock);
5d4f98a2 1237 spin_lock_init(&root->inode_lock);
eb73c1b7 1238 spin_lock_init(&root->delalloc_lock);
199c2a9c 1239 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1240 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1241 spin_lock_init(&root->log_extents_lock[0]);
1242 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1243 mutex_init(&root->objectid_mutex);
e02119d5 1244 mutex_init(&root->log_mutex);
31f3d255 1245 mutex_init(&root->ordered_extent_mutex);
573bfb72 1246 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1247 init_waitqueue_head(&root->log_writer_wait);
1248 init_waitqueue_head(&root->log_commit_wait[0]);
1249 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1250 INIT_LIST_HEAD(&root->log_ctxs[0]);
1251 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1252 atomic_set(&root->log_commit[0], 0);
1253 atomic_set(&root->log_commit[1], 0);
1254 atomic_set(&root->log_writers, 0);
2ecb7923 1255 atomic_set(&root->log_batch, 0);
8a35d95f 1256 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1257 atomic_set(&root->refs, 1);
8257b2dc 1258 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1259 root->log_transid = 0;
d1433deb 1260 root->log_transid_committed = -1;
257c62e1 1261 root->last_log_commit = 0;
06ea65a3
JB
1262 if (fs_info)
1263 extent_io_tree_init(&root->dirty_log_pages,
1264 fs_info->btree_inode->i_mapping);
017e5369 1265
3768f368
CM
1266 memset(&root->root_key, 0, sizeof(root->root_key));
1267 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1268 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1269 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1270 if (fs_info)
1271 root->defrag_trans_start = fs_info->generation;
1272 else
1273 root->defrag_trans_start = 0;
58176a96 1274 init_completion(&root->kobj_unregister);
4d775673 1275 root->root_key.objectid = objectid;
0ee5dc67 1276 root->anon_dev = 0;
8ea05e3a 1277
5f3ab90a 1278 spin_lock_init(&root->root_item_lock);
3768f368
CM
1279}
1280
f84a8bd6 1281static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1282{
1283 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1284 if (root)
1285 root->fs_info = fs_info;
1286 return root;
1287}
1288
06ea65a3
JB
1289#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1290/* Should only be used by the testing infrastructure */
1291struct btrfs_root *btrfs_alloc_dummy_root(void)
1292{
1293 struct btrfs_root *root;
1294
1295 root = btrfs_alloc_root(NULL);
1296 if (!root)
1297 return ERR_PTR(-ENOMEM);
1298 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
27cdeb70 1299 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1300 root->alloc_bytenr = 0;
06ea65a3
JB
1301
1302 return root;
1303}
1304#endif
1305
20897f5c
AJ
1306struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1307 struct btrfs_fs_info *fs_info,
1308 u64 objectid)
1309{
1310 struct extent_buffer *leaf;
1311 struct btrfs_root *tree_root = fs_info->tree_root;
1312 struct btrfs_root *root;
1313 struct btrfs_key key;
1314 int ret = 0;
6463fe58 1315 uuid_le uuid;
20897f5c
AJ
1316
1317 root = btrfs_alloc_root(fs_info);
1318 if (!root)
1319 return ERR_PTR(-ENOMEM);
1320
1321 __setup_root(tree_root->nodesize, tree_root->leafsize,
1322 tree_root->sectorsize, tree_root->stripesize,
1323 root, fs_info, objectid);
1324 root->root_key.objectid = objectid;
1325 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 root->root_key.offset = 0;
1327
1328 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1329 0, objectid, NULL, 0, 0, 0);
1330 if (IS_ERR(leaf)) {
1331 ret = PTR_ERR(leaf);
1dd05682 1332 leaf = NULL;
20897f5c
AJ
1333 goto fail;
1334 }
1335
20897f5c
AJ
1336 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1337 btrfs_set_header_bytenr(leaf, leaf->start);
1338 btrfs_set_header_generation(leaf, trans->transid);
1339 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1340 btrfs_set_header_owner(leaf, objectid);
1341 root->node = leaf;
1342
0a4e5586 1343 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1344 BTRFS_FSID_SIZE);
1345 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1346 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1347 BTRFS_UUID_SIZE);
1348 btrfs_mark_buffer_dirty(leaf);
1349
1350 root->commit_root = btrfs_root_node(root);
27cdeb70 1351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1352
1353 root->root_item.flags = 0;
1354 root->root_item.byte_limit = 0;
1355 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1356 btrfs_set_root_generation(&root->root_item, trans->transid);
1357 btrfs_set_root_level(&root->root_item, 0);
1358 btrfs_set_root_refs(&root->root_item, 1);
1359 btrfs_set_root_used(&root->root_item, leaf->len);
1360 btrfs_set_root_last_snapshot(&root->root_item, 0);
1361 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1362 uuid_le_gen(&uuid);
1363 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1364 root->root_item.drop_level = 0;
1365
1366 key.objectid = objectid;
1367 key.type = BTRFS_ROOT_ITEM_KEY;
1368 key.offset = 0;
1369 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1370 if (ret)
1371 goto fail;
1372
1373 btrfs_tree_unlock(leaf);
1374
1dd05682
TI
1375 return root;
1376
20897f5c 1377fail:
1dd05682
TI
1378 if (leaf) {
1379 btrfs_tree_unlock(leaf);
59885b39 1380 free_extent_buffer(root->commit_root);
1dd05682
TI
1381 free_extent_buffer(leaf);
1382 }
1383 kfree(root);
20897f5c 1384
1dd05682 1385 return ERR_PTR(ret);
20897f5c
AJ
1386}
1387
7237f183
YZ
1388static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1389 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1390{
1391 struct btrfs_root *root;
1392 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1393 struct extent_buffer *leaf;
e02119d5 1394
6f07e42e 1395 root = btrfs_alloc_root(fs_info);
e02119d5 1396 if (!root)
7237f183 1397 return ERR_PTR(-ENOMEM);
e02119d5
CM
1398
1399 __setup_root(tree_root->nodesize, tree_root->leafsize,
1400 tree_root->sectorsize, tree_root->stripesize,
1401 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1402
1403 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1404 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1405 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1406
7237f183 1407 /*
27cdeb70
MX
1408 * DON'T set REF_COWS for log trees
1409 *
7237f183
YZ
1410 * log trees do not get reference counted because they go away
1411 * before a real commit is actually done. They do store pointers
1412 * to file data extents, and those reference counts still get
1413 * updated (along with back refs to the log tree).
1414 */
e02119d5 1415
5d4f98a2 1416 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1417 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1418 0, 0, 0);
7237f183
YZ
1419 if (IS_ERR(leaf)) {
1420 kfree(root);
1421 return ERR_CAST(leaf);
1422 }
e02119d5 1423
5d4f98a2
YZ
1424 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1425 btrfs_set_header_bytenr(leaf, leaf->start);
1426 btrfs_set_header_generation(leaf, trans->transid);
1427 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1428 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1429 root->node = leaf;
e02119d5
CM
1430
1431 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1432 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1433 btrfs_mark_buffer_dirty(root->node);
1434 btrfs_tree_unlock(root->node);
7237f183
YZ
1435 return root;
1436}
1437
1438int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1439 struct btrfs_fs_info *fs_info)
1440{
1441 struct btrfs_root *log_root;
1442
1443 log_root = alloc_log_tree(trans, fs_info);
1444 if (IS_ERR(log_root))
1445 return PTR_ERR(log_root);
1446 WARN_ON(fs_info->log_root_tree);
1447 fs_info->log_root_tree = log_root;
1448 return 0;
1449}
1450
1451int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1452 struct btrfs_root *root)
1453{
1454 struct btrfs_root *log_root;
1455 struct btrfs_inode_item *inode_item;
1456
1457 log_root = alloc_log_tree(trans, root->fs_info);
1458 if (IS_ERR(log_root))
1459 return PTR_ERR(log_root);
1460
1461 log_root->last_trans = trans->transid;
1462 log_root->root_key.offset = root->root_key.objectid;
1463
1464 inode_item = &log_root->root_item.inode;
3cae210f
QW
1465 btrfs_set_stack_inode_generation(inode_item, 1);
1466 btrfs_set_stack_inode_size(inode_item, 3);
1467 btrfs_set_stack_inode_nlink(inode_item, 1);
1468 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1469 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1470
5d4f98a2 1471 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1472
1473 WARN_ON(root->log_root);
1474 root->log_root = log_root;
1475 root->log_transid = 0;
d1433deb 1476 root->log_transid_committed = -1;
257c62e1 1477 root->last_log_commit = 0;
e02119d5
CM
1478 return 0;
1479}
1480
35a3621b
SB
1481static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1482 struct btrfs_key *key)
e02119d5
CM
1483{
1484 struct btrfs_root *root;
1485 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1486 struct btrfs_path *path;
84234f3a 1487 u64 generation;
db94535d 1488 u32 blocksize;
cb517eab 1489 int ret;
0f7d52f4 1490
cb517eab
MX
1491 path = btrfs_alloc_path();
1492 if (!path)
0f7d52f4 1493 return ERR_PTR(-ENOMEM);
cb517eab
MX
1494
1495 root = btrfs_alloc_root(fs_info);
1496 if (!root) {
1497 ret = -ENOMEM;
1498 goto alloc_fail;
0f7d52f4
CM
1499 }
1500
db94535d 1501 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1502 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1503 root, fs_info, key->objectid);
0f7d52f4 1504
cb517eab
MX
1505 ret = btrfs_find_root(tree_root, key, path,
1506 &root->root_item, &root->root_key);
0f7d52f4 1507 if (ret) {
13a8a7c8
YZ
1508 if (ret > 0)
1509 ret = -ENOENT;
cb517eab 1510 goto find_fail;
0f7d52f4 1511 }
13a8a7c8 1512
84234f3a 1513 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1514 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1515 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1516 blocksize, generation);
cb517eab
MX
1517 if (!root->node) {
1518 ret = -ENOMEM;
1519 goto find_fail;
1520 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1521 ret = -EIO;
1522 goto read_fail;
416bc658 1523 }
5d4f98a2 1524 root->commit_root = btrfs_root_node(root);
13a8a7c8 1525out:
cb517eab
MX
1526 btrfs_free_path(path);
1527 return root;
1528
1529read_fail:
1530 free_extent_buffer(root->node);
1531find_fail:
1532 kfree(root);
1533alloc_fail:
1534 root = ERR_PTR(ret);
1535 goto out;
1536}
1537
1538struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1539 struct btrfs_key *location)
1540{
1541 struct btrfs_root *root;
1542
1543 root = btrfs_read_tree_root(tree_root, location);
1544 if (IS_ERR(root))
1545 return root;
1546
1547 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1548 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1549 btrfs_check_and_init_root_item(&root->root_item);
1550 }
13a8a7c8 1551
5eda7b5e
CM
1552 return root;
1553}
1554
cb517eab
MX
1555int btrfs_init_fs_root(struct btrfs_root *root)
1556{
1557 int ret;
8257b2dc 1558 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1559
1560 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1561 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1562 GFP_NOFS);
1563 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1564 ret = -ENOMEM;
1565 goto fail;
1566 }
1567
8257b2dc
MX
1568 writers = btrfs_alloc_subvolume_writers();
1569 if (IS_ERR(writers)) {
1570 ret = PTR_ERR(writers);
1571 goto fail;
1572 }
1573 root->subv_writers = writers;
1574
cb517eab 1575 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1576 spin_lock_init(&root->ino_cache_lock);
1577 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1578
1579 ret = get_anon_bdev(&root->anon_dev);
1580 if (ret)
8257b2dc 1581 goto free_writers;
cb517eab 1582 return 0;
8257b2dc
MX
1583
1584free_writers:
1585 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1586fail:
1587 kfree(root->free_ino_ctl);
1588 kfree(root->free_ino_pinned);
1589 return ret;
1590}
1591
171170c1
ST
1592static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1593 u64 root_id)
cb517eab
MX
1594{
1595 struct btrfs_root *root;
1596
1597 spin_lock(&fs_info->fs_roots_radix_lock);
1598 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1599 (unsigned long)root_id);
1600 spin_unlock(&fs_info->fs_roots_radix_lock);
1601 return root;
1602}
1603
1604int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1605 struct btrfs_root *root)
1606{
1607 int ret;
1608
1609 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1610 if (ret)
1611 return ret;
1612
1613 spin_lock(&fs_info->fs_roots_radix_lock);
1614 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1615 (unsigned long)root->root_key.objectid,
1616 root);
1617 if (ret == 0)
27cdeb70 1618 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 radix_tree_preload_end();
1621
1622 return ret;
1623}
1624
c00869f1
MX
1625struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626 struct btrfs_key *location,
1627 bool check_ref)
5eda7b5e
CM
1628{
1629 struct btrfs_root *root;
1630 int ret;
1631
edbd8d4e
CM
1632 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1633 return fs_info->tree_root;
1634 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1635 return fs_info->extent_root;
8f18cf13
CM
1636 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1637 return fs_info->chunk_root;
1638 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1639 return fs_info->dev_root;
0403e47e
YZ
1640 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1641 return fs_info->csum_root;
bcef60f2
AJ
1642 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1643 return fs_info->quota_root ? fs_info->quota_root :
1644 ERR_PTR(-ENOENT);
f7a81ea4
SB
1645 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1646 return fs_info->uuid_root ? fs_info->uuid_root :
1647 ERR_PTR(-ENOENT);
4df27c4d 1648again:
cb517eab 1649 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1650 if (root) {
c00869f1 1651 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1652 return ERR_PTR(-ENOENT);
5eda7b5e 1653 return root;
48475471 1654 }
5eda7b5e 1655
cb517eab 1656 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1657 if (IS_ERR(root))
1658 return root;
3394e160 1659
c00869f1 1660 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1661 ret = -ENOENT;
581bb050 1662 goto fail;
35a30d7c 1663 }
581bb050 1664
cb517eab 1665 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1666 if (ret)
1667 goto fail;
3394e160 1668
3f870c28
KN
1669 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1670 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1671 if (ret < 0)
1672 goto fail;
1673 if (ret == 0)
27cdeb70 1674 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1675
cb517eab 1676 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1677 if (ret) {
4df27c4d
YZ
1678 if (ret == -EEXIST) {
1679 free_fs_root(root);
1680 goto again;
1681 }
1682 goto fail;
0f7d52f4 1683 }
edbd8d4e 1684 return root;
4df27c4d
YZ
1685fail:
1686 free_fs_root(root);
1687 return ERR_PTR(ret);
edbd8d4e
CM
1688}
1689
04160088
CM
1690static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1691{
1692 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1693 int ret = 0;
04160088
CM
1694 struct btrfs_device *device;
1695 struct backing_dev_info *bdi;
b7967db7 1696
1f78160c
XG
1697 rcu_read_lock();
1698 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1699 if (!device->bdev)
1700 continue;
04160088
CM
1701 bdi = blk_get_backing_dev_info(device->bdev);
1702 if (bdi && bdi_congested(bdi, bdi_bits)) {
1703 ret = 1;
1704 break;
1705 }
1706 }
1f78160c 1707 rcu_read_unlock();
04160088
CM
1708 return ret;
1709}
1710
ad081f14
JA
1711/*
1712 * If this fails, caller must call bdi_destroy() to get rid of the
1713 * bdi again.
1714 */
04160088
CM
1715static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1716{
ad081f14
JA
1717 int err;
1718
1719 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1720 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1721 if (err)
1722 return err;
1723
4575c9cc 1724 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1725 bdi->congested_fn = btrfs_congested_fn;
1726 bdi->congested_data = info;
1727 return 0;
1728}
1729
8b712842
CM
1730/*
1731 * called by the kthread helper functions to finally call the bio end_io
1732 * functions. This is where read checksum verification actually happens
1733 */
1734static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1735{
ce9adaa5 1736 struct bio *bio;
8b712842 1737 struct end_io_wq *end_io_wq;
ce9adaa5 1738 int error;
ce9adaa5 1739
8b712842
CM
1740 end_io_wq = container_of(work, struct end_io_wq, work);
1741 bio = end_io_wq->bio;
ce9adaa5 1742
8b712842
CM
1743 error = end_io_wq->error;
1744 bio->bi_private = end_io_wq->private;
1745 bio->bi_end_io = end_io_wq->end_io;
1746 kfree(end_io_wq);
bc1e79ac 1747 bio_endio_nodec(bio, error);
44b8bd7e
CM
1748}
1749
a74a4b97
CM
1750static int cleaner_kthread(void *arg)
1751{
1752 struct btrfs_root *root = arg;
d0278245 1753 int again;
a74a4b97
CM
1754
1755 do {
d0278245 1756 again = 0;
a74a4b97 1757
d0278245 1758 /* Make the cleaner go to sleep early. */
babbf170 1759 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1760 goto sleep;
1761
1762 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1763 goto sleep;
1764
dc7f370c
MX
1765 /*
1766 * Avoid the problem that we change the status of the fs
1767 * during the above check and trylock.
1768 */
babbf170 1769 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1770 mutex_unlock(&root->fs_info->cleaner_mutex);
1771 goto sleep;
76dda93c 1772 }
a74a4b97 1773
d0278245
MX
1774 btrfs_run_delayed_iputs(root);
1775 again = btrfs_clean_one_deleted_snapshot(root);
1776 mutex_unlock(&root->fs_info->cleaner_mutex);
1777
1778 /*
05323cd1
MX
1779 * The defragger has dealt with the R/O remount and umount,
1780 * needn't do anything special here.
d0278245
MX
1781 */
1782 btrfs_run_defrag_inodes(root->fs_info);
1783sleep:
9d1a2a3a 1784 if (!try_to_freeze() && !again) {
a74a4b97 1785 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1786 if (!kthread_should_stop())
1787 schedule();
a74a4b97
CM
1788 __set_current_state(TASK_RUNNING);
1789 }
1790 } while (!kthread_should_stop());
1791 return 0;
1792}
1793
1794static int transaction_kthread(void *arg)
1795{
1796 struct btrfs_root *root = arg;
1797 struct btrfs_trans_handle *trans;
1798 struct btrfs_transaction *cur;
8929ecfa 1799 u64 transid;
a74a4b97
CM
1800 unsigned long now;
1801 unsigned long delay;
914b2007 1802 bool cannot_commit;
a74a4b97
CM
1803
1804 do {
914b2007 1805 cannot_commit = false;
8b87dc17 1806 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1807 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1808
a4abeea4 1809 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1810 cur = root->fs_info->running_transaction;
1811 if (!cur) {
a4abeea4 1812 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1813 goto sleep;
1814 }
31153d81 1815
a74a4b97 1816 now = get_seconds();
4a9d8bde 1817 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1818 (now < cur->start_time ||
1819 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1820 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1821 delay = HZ * 5;
1822 goto sleep;
1823 }
8929ecfa 1824 transid = cur->transid;
a4abeea4 1825 spin_unlock(&root->fs_info->trans_lock);
56bec294 1826
79787eaa 1827 /* If the file system is aborted, this will always fail. */
354aa0fb 1828 trans = btrfs_attach_transaction(root);
914b2007 1829 if (IS_ERR(trans)) {
354aa0fb
MX
1830 if (PTR_ERR(trans) != -ENOENT)
1831 cannot_commit = true;
79787eaa 1832 goto sleep;
914b2007 1833 }
8929ecfa 1834 if (transid == trans->transid) {
79787eaa 1835 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1836 } else {
1837 btrfs_end_transaction(trans, root);
1838 }
a74a4b97
CM
1839sleep:
1840 wake_up_process(root->fs_info->cleaner_kthread);
1841 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1842
4e121c06
JB
1843 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1844 &root->fs_info->fs_state)))
1845 btrfs_cleanup_transaction(root);
a0acae0e 1846 if (!try_to_freeze()) {
a74a4b97 1847 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1848 if (!kthread_should_stop() &&
914b2007
JK
1849 (!btrfs_transaction_blocked(root->fs_info) ||
1850 cannot_commit))
8929ecfa 1851 schedule_timeout(delay);
a74a4b97
CM
1852 __set_current_state(TASK_RUNNING);
1853 }
1854 } while (!kthread_should_stop());
1855 return 0;
1856}
1857
af31f5e5
CM
1858/*
1859 * this will find the highest generation in the array of
1860 * root backups. The index of the highest array is returned,
1861 * or -1 if we can't find anything.
1862 *
1863 * We check to make sure the array is valid by comparing the
1864 * generation of the latest root in the array with the generation
1865 * in the super block. If they don't match we pitch it.
1866 */
1867static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1868{
1869 u64 cur;
1870 int newest_index = -1;
1871 struct btrfs_root_backup *root_backup;
1872 int i;
1873
1874 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1875 root_backup = info->super_copy->super_roots + i;
1876 cur = btrfs_backup_tree_root_gen(root_backup);
1877 if (cur == newest_gen)
1878 newest_index = i;
1879 }
1880
1881 /* check to see if we actually wrapped around */
1882 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1883 root_backup = info->super_copy->super_roots;
1884 cur = btrfs_backup_tree_root_gen(root_backup);
1885 if (cur == newest_gen)
1886 newest_index = 0;
1887 }
1888 return newest_index;
1889}
1890
1891
1892/*
1893 * find the oldest backup so we know where to store new entries
1894 * in the backup array. This will set the backup_root_index
1895 * field in the fs_info struct
1896 */
1897static void find_oldest_super_backup(struct btrfs_fs_info *info,
1898 u64 newest_gen)
1899{
1900 int newest_index = -1;
1901
1902 newest_index = find_newest_super_backup(info, newest_gen);
1903 /* if there was garbage in there, just move along */
1904 if (newest_index == -1) {
1905 info->backup_root_index = 0;
1906 } else {
1907 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1908 }
1909}
1910
1911/*
1912 * copy all the root pointers into the super backup array.
1913 * this will bump the backup pointer by one when it is
1914 * done
1915 */
1916static void backup_super_roots(struct btrfs_fs_info *info)
1917{
1918 int next_backup;
1919 struct btrfs_root_backup *root_backup;
1920 int last_backup;
1921
1922 next_backup = info->backup_root_index;
1923 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1924 BTRFS_NUM_BACKUP_ROOTS;
1925
1926 /*
1927 * just overwrite the last backup if we're at the same generation
1928 * this happens only at umount
1929 */
1930 root_backup = info->super_for_commit->super_roots + last_backup;
1931 if (btrfs_backup_tree_root_gen(root_backup) ==
1932 btrfs_header_generation(info->tree_root->node))
1933 next_backup = last_backup;
1934
1935 root_backup = info->super_for_commit->super_roots + next_backup;
1936
1937 /*
1938 * make sure all of our padding and empty slots get zero filled
1939 * regardless of which ones we use today
1940 */
1941 memset(root_backup, 0, sizeof(*root_backup));
1942
1943 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1944
1945 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1946 btrfs_set_backup_tree_root_gen(root_backup,
1947 btrfs_header_generation(info->tree_root->node));
1948
1949 btrfs_set_backup_tree_root_level(root_backup,
1950 btrfs_header_level(info->tree_root->node));
1951
1952 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1953 btrfs_set_backup_chunk_root_gen(root_backup,
1954 btrfs_header_generation(info->chunk_root->node));
1955 btrfs_set_backup_chunk_root_level(root_backup,
1956 btrfs_header_level(info->chunk_root->node));
1957
1958 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1959 btrfs_set_backup_extent_root_gen(root_backup,
1960 btrfs_header_generation(info->extent_root->node));
1961 btrfs_set_backup_extent_root_level(root_backup,
1962 btrfs_header_level(info->extent_root->node));
1963
7c7e82a7
CM
1964 /*
1965 * we might commit during log recovery, which happens before we set
1966 * the fs_root. Make sure it is valid before we fill it in.
1967 */
1968 if (info->fs_root && info->fs_root->node) {
1969 btrfs_set_backup_fs_root(root_backup,
1970 info->fs_root->node->start);
1971 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1972 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1973 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1974 btrfs_header_level(info->fs_root->node));
7c7e82a7 1975 }
af31f5e5
CM
1976
1977 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1978 btrfs_set_backup_dev_root_gen(root_backup,
1979 btrfs_header_generation(info->dev_root->node));
1980 btrfs_set_backup_dev_root_level(root_backup,
1981 btrfs_header_level(info->dev_root->node));
1982
1983 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1984 btrfs_set_backup_csum_root_gen(root_backup,
1985 btrfs_header_generation(info->csum_root->node));
1986 btrfs_set_backup_csum_root_level(root_backup,
1987 btrfs_header_level(info->csum_root->node));
1988
1989 btrfs_set_backup_total_bytes(root_backup,
1990 btrfs_super_total_bytes(info->super_copy));
1991 btrfs_set_backup_bytes_used(root_backup,
1992 btrfs_super_bytes_used(info->super_copy));
1993 btrfs_set_backup_num_devices(root_backup,
1994 btrfs_super_num_devices(info->super_copy));
1995
1996 /*
1997 * if we don't copy this out to the super_copy, it won't get remembered
1998 * for the next commit
1999 */
2000 memcpy(&info->super_copy->super_roots,
2001 &info->super_for_commit->super_roots,
2002 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2003}
2004
2005/*
2006 * this copies info out of the root backup array and back into
2007 * the in-memory super block. It is meant to help iterate through
2008 * the array, so you send it the number of backups you've already
2009 * tried and the last backup index you used.
2010 *
2011 * this returns -1 when it has tried all the backups
2012 */
2013static noinline int next_root_backup(struct btrfs_fs_info *info,
2014 struct btrfs_super_block *super,
2015 int *num_backups_tried, int *backup_index)
2016{
2017 struct btrfs_root_backup *root_backup;
2018 int newest = *backup_index;
2019
2020 if (*num_backups_tried == 0) {
2021 u64 gen = btrfs_super_generation(super);
2022
2023 newest = find_newest_super_backup(info, gen);
2024 if (newest == -1)
2025 return -1;
2026
2027 *backup_index = newest;
2028 *num_backups_tried = 1;
2029 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2030 /* we've tried all the backups, all done */
2031 return -1;
2032 } else {
2033 /* jump to the next oldest backup */
2034 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2035 BTRFS_NUM_BACKUP_ROOTS;
2036 *backup_index = newest;
2037 *num_backups_tried += 1;
2038 }
2039 root_backup = super->super_roots + newest;
2040
2041 btrfs_set_super_generation(super,
2042 btrfs_backup_tree_root_gen(root_backup));
2043 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2044 btrfs_set_super_root_level(super,
2045 btrfs_backup_tree_root_level(root_backup));
2046 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2047
2048 /*
2049 * fixme: the total bytes and num_devices need to match or we should
2050 * need a fsck
2051 */
2052 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2053 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2054 return 0;
2055}
2056
7abadb64
LB
2057/* helper to cleanup workers */
2058static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2059{
dc6e3209 2060 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2061 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2062 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2063 btrfs_destroy_workqueue(fs_info->endio_workers);
2064 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2065 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2066 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2067 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2068 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2069 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2070 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2071 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2072 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2073 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2074 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2075 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2076 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2077}
2078
2e9f5954
R
2079static void free_root_extent_buffers(struct btrfs_root *root)
2080{
2081 if (root) {
2082 free_extent_buffer(root->node);
2083 free_extent_buffer(root->commit_root);
2084 root->node = NULL;
2085 root->commit_root = NULL;
2086 }
2087}
2088
af31f5e5
CM
2089/* helper to cleanup tree roots */
2090static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2091{
2e9f5954 2092 free_root_extent_buffers(info->tree_root);
655b09fe 2093
2e9f5954
R
2094 free_root_extent_buffers(info->dev_root);
2095 free_root_extent_buffers(info->extent_root);
2096 free_root_extent_buffers(info->csum_root);
2097 free_root_extent_buffers(info->quota_root);
2098 free_root_extent_buffers(info->uuid_root);
2099 if (chunk_root)
2100 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2101}
2102
faa2dbf0 2103void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2104{
2105 int ret;
2106 struct btrfs_root *gang[8];
2107 int i;
2108
2109 while (!list_empty(&fs_info->dead_roots)) {
2110 gang[0] = list_entry(fs_info->dead_roots.next,
2111 struct btrfs_root, root_list);
2112 list_del(&gang[0]->root_list);
2113
27cdeb70 2114 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2115 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2116 } else {
2117 free_extent_buffer(gang[0]->node);
2118 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2119 btrfs_put_fs_root(gang[0]);
171f6537
JB
2120 }
2121 }
2122
2123 while (1) {
2124 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2125 (void **)gang, 0,
2126 ARRAY_SIZE(gang));
2127 if (!ret)
2128 break;
2129 for (i = 0; i < ret; i++)
cb517eab 2130 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2131 }
1a4319cc
LB
2132
2133 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2134 btrfs_free_log_root_tree(NULL, fs_info);
2135 btrfs_destroy_pinned_extent(fs_info->tree_root,
2136 fs_info->pinned_extents);
2137 }
171f6537 2138}
af31f5e5 2139
ad2b2c80
AV
2140int open_ctree(struct super_block *sb,
2141 struct btrfs_fs_devices *fs_devices,
2142 char *options)
2e635a27 2143{
db94535d
CM
2144 u32 sectorsize;
2145 u32 nodesize;
2146 u32 leafsize;
2147 u32 blocksize;
87ee04eb 2148 u32 stripesize;
84234f3a 2149 u64 generation;
f2b636e8 2150 u64 features;
3de4586c 2151 struct btrfs_key location;
a061fc8d 2152 struct buffer_head *bh;
4d34b278 2153 struct btrfs_super_block *disk_super;
815745cf 2154 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2155 struct btrfs_root *tree_root;
4d34b278
ID
2156 struct btrfs_root *extent_root;
2157 struct btrfs_root *csum_root;
2158 struct btrfs_root *chunk_root;
2159 struct btrfs_root *dev_root;
bcef60f2 2160 struct btrfs_root *quota_root;
f7a81ea4 2161 struct btrfs_root *uuid_root;
e02119d5 2162 struct btrfs_root *log_tree_root;
eb60ceac 2163 int ret;
e58ca020 2164 int err = -EINVAL;
af31f5e5
CM
2165 int num_backups_tried = 0;
2166 int backup_index = 0;
5cdc7ad3
QW
2167 int max_active;
2168 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2169 bool create_uuid_tree;
2170 bool check_uuid_tree;
4543df7e 2171
f84a8bd6 2172 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2173 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2174 if (!tree_root || !chunk_root) {
39279cc3
CM
2175 err = -ENOMEM;
2176 goto fail;
2177 }
76dda93c
YZ
2178
2179 ret = init_srcu_struct(&fs_info->subvol_srcu);
2180 if (ret) {
2181 err = ret;
2182 goto fail;
2183 }
2184
2185 ret = setup_bdi(fs_info, &fs_info->bdi);
2186 if (ret) {
2187 err = ret;
2188 goto fail_srcu;
2189 }
2190
e2d84521
MX
2191 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2192 if (ret) {
2193 err = ret;
2194 goto fail_bdi;
2195 }
2196 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2197 (1 + ilog2(nr_cpu_ids));
2198
963d678b
MX
2199 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2200 if (ret) {
2201 err = ret;
2202 goto fail_dirty_metadata_bytes;
2203 }
2204
c404e0dc
MX
2205 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2206 if (ret) {
2207 err = ret;
2208 goto fail_delalloc_bytes;
2209 }
2210
76dda93c
YZ
2211 fs_info->btree_inode = new_inode(sb);
2212 if (!fs_info->btree_inode) {
2213 err = -ENOMEM;
c404e0dc 2214 goto fail_bio_counter;
76dda93c
YZ
2215 }
2216
a6591715 2217 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2218
76dda93c 2219 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2220 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2221 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2222 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2223 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2224 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2225 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2226 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2227 spin_lock_init(&fs_info->trans_lock);
76dda93c 2228 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2229 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2230 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2231 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2232 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2233 spin_lock_init(&fs_info->super_lock);
fcebe456 2234 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2235 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2236 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2237 mutex_init(&fs_info->reloc_mutex);
573bfb72 2238 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2239 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2240
58176a96 2241 init_completion(&fs_info->kobj_unregister);
0b86a832 2242 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2243 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2244 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2245 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2246 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2247 BTRFS_BLOCK_RSV_GLOBAL);
2248 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2249 BTRFS_BLOCK_RSV_DELALLOC);
2250 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2251 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2252 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2253 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2254 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2255 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2256 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2257 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2258 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2259 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2260 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2261 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2262 fs_info->sb = sb;
6f568d35 2263 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2264 fs_info->metadata_ratio = 0;
4cb5300b 2265 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2266 fs_info->free_chunk_space = 0;
f29021b2 2267 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2268 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2269 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2270 /* readahead state */
2271 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2272 spin_lock_init(&fs_info->reada_lock);
c8b97818 2273
b34b086c
CM
2274 fs_info->thread_pool_size = min_t(unsigned long,
2275 num_online_cpus() + 2, 8);
0afbaf8c 2276
199c2a9c
MX
2277 INIT_LIST_HEAD(&fs_info->ordered_roots);
2278 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2279 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2280 GFP_NOFS);
2281 if (!fs_info->delayed_root) {
2282 err = -ENOMEM;
2283 goto fail_iput;
2284 }
2285 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2286
a2de733c
AJ
2287 mutex_init(&fs_info->scrub_lock);
2288 atomic_set(&fs_info->scrubs_running, 0);
2289 atomic_set(&fs_info->scrub_pause_req, 0);
2290 atomic_set(&fs_info->scrubs_paused, 0);
2291 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2292 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2293 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2294 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2295#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2296 fs_info->check_integrity_print_mask = 0;
2297#endif
a2de733c 2298
c9e9f97b
ID
2299 spin_lock_init(&fs_info->balance_lock);
2300 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2301 atomic_set(&fs_info->balance_running, 0);
2302 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2303 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2304 fs_info->balance_ctl = NULL;
837d5b6e 2305 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2306 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2307
a061fc8d
CM
2308 sb->s_blocksize = 4096;
2309 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2310 sb->s_bdi = &fs_info->bdi;
a061fc8d 2311
76dda93c 2312 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2313 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2314 /*
2315 * we set the i_size on the btree inode to the max possible int.
2316 * the real end of the address space is determined by all of
2317 * the devices in the system
2318 */
2319 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2320 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2321 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2322
5d4f98a2 2323 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2324 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2325 fs_info->btree_inode->i_mapping);
0b32f4bb 2326 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2327 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2328
2329 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2330
76dda93c
YZ
2331 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2332 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2333 sizeof(struct btrfs_key));
72ac3c0d
JB
2334 set_bit(BTRFS_INODE_DUMMY,
2335 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2336 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2337
0f9dd46c 2338 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2339 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2340 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2341
11833d66 2342 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2343 fs_info->btree_inode->i_mapping);
11833d66 2344 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2345 fs_info->btree_inode->i_mapping);
11833d66 2346 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2347 fs_info->do_barriers = 1;
e18e4809 2348
39279cc3 2349
5a3f23d5 2350 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2351 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2352 mutex_init(&fs_info->tree_log_mutex);
925baedd 2353 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2354 mutex_init(&fs_info->transaction_kthread_mutex);
2355 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2356 mutex_init(&fs_info->volume_mutex);
9e351cc8 2357 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2358 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2359 init_rwsem(&fs_info->subvol_sem);
803b2f54 2360 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2361 fs_info->dev_replace.lock_owner = 0;
2362 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2363 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2364 mutex_init(&fs_info->dev_replace.lock_management_lock);
2365 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2366
416ac51d 2367 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2368 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2369 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2370 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2371 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2372 fs_info->qgroup_seq = 1;
2373 fs_info->quota_enabled = 0;
2374 fs_info->pending_quota_state = 0;
1e8f9158 2375 fs_info->qgroup_ulist = NULL;
2f232036 2376 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2377
fa9c0d79
CM
2378 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2379 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2380
e6dcd2dc 2381 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2382 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2383 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2384 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2385
53b381b3
DW
2386 ret = btrfs_alloc_stripe_hash_table(fs_info);
2387 if (ret) {
83c8266a 2388 err = ret;
53b381b3
DW
2389 goto fail_alloc;
2390 }
2391
0b86a832 2392 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2393 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2394
3c4bb26b 2395 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2396
2397 /*
2398 * Read super block and check the signature bytes only
2399 */
a512bbf8 2400 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2401 if (!bh) {
2402 err = -EINVAL;
16cdcec7 2403 goto fail_alloc;
20b45077 2404 }
39279cc3 2405
1104a885
DS
2406 /*
2407 * We want to check superblock checksum, the type is stored inside.
2408 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2409 */
2410 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2411 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2412 err = -EINVAL;
2413 goto fail_alloc;
2414 }
2415
2416 /*
2417 * super_copy is zeroed at allocation time and we never touch the
2418 * following bytes up to INFO_SIZE, the checksum is calculated from
2419 * the whole block of INFO_SIZE
2420 */
6c41761f
DS
2421 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2422 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2423 sizeof(*fs_info->super_for_commit));
a061fc8d 2424 brelse(bh);
5f39d397 2425
6c41761f 2426 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2427
1104a885
DS
2428 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2429 if (ret) {
efe120a0 2430 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2431 err = -EINVAL;
2432 goto fail_alloc;
2433 }
2434
6c41761f 2435 disk_super = fs_info->super_copy;
0f7d52f4 2436 if (!btrfs_super_root(disk_super))
16cdcec7 2437 goto fail_alloc;
0f7d52f4 2438
acce952b 2439 /* check FS state, whether FS is broken. */
87533c47
MX
2440 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2441 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2442
af31f5e5
CM
2443 /*
2444 * run through our array of backup supers and setup
2445 * our ring pointer to the oldest one
2446 */
2447 generation = btrfs_super_generation(disk_super);
2448 find_oldest_super_backup(fs_info, generation);
2449
75e7cb7f
LB
2450 /*
2451 * In the long term, we'll store the compression type in the super
2452 * block, and it'll be used for per file compression control.
2453 */
2454 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2455
2b82032c
YZ
2456 ret = btrfs_parse_options(tree_root, options);
2457 if (ret) {
2458 err = ret;
16cdcec7 2459 goto fail_alloc;
2b82032c 2460 }
dfe25020 2461
f2b636e8
JB
2462 features = btrfs_super_incompat_flags(disk_super) &
2463 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2464 if (features) {
2465 printk(KERN_ERR "BTRFS: couldn't mount because of "
2466 "unsupported optional features (%Lx).\n",
c1c9ff7c 2467 features);
f2b636e8 2468 err = -EINVAL;
16cdcec7 2469 goto fail_alloc;
f2b636e8
JB
2470 }
2471
727011e0
CM
2472 if (btrfs_super_leafsize(disk_super) !=
2473 btrfs_super_nodesize(disk_super)) {
2474 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2475 "blocksizes don't match. node %d leaf %d\n",
2476 btrfs_super_nodesize(disk_super),
2477 btrfs_super_leafsize(disk_super));
2478 err = -EINVAL;
2479 goto fail_alloc;
2480 }
2481 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2482 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2483 "blocksize (%d) was too large\n",
2484 btrfs_super_leafsize(disk_super));
2485 err = -EINVAL;
2486 goto fail_alloc;
2487 }
2488
5d4f98a2 2489 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2490 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2491 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2492 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2493
3173a18f 2494 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2495 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2496
727011e0
CM
2497 /*
2498 * flag our filesystem as having big metadata blocks if
2499 * they are bigger than the page size
2500 */
2501 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2502 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2503 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2504 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2505 }
2506
bc3f116f
CM
2507 nodesize = btrfs_super_nodesize(disk_super);
2508 leafsize = btrfs_super_leafsize(disk_super);
2509 sectorsize = btrfs_super_sectorsize(disk_super);
2510 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2511 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2512 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2513
2514 /*
2515 * mixed block groups end up with duplicate but slightly offset
2516 * extent buffers for the same range. It leads to corruptions
2517 */
2518 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2519 (sectorsize != leafsize)) {
efe120a0 2520 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2521 "are not allowed for mixed block groups on %s\n",
2522 sb->s_id);
2523 goto fail_alloc;
2524 }
2525
ceda0864
MX
2526 /*
2527 * Needn't use the lock because there is no other task which will
2528 * update the flag.
2529 */
a6fa6fae 2530 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2531
f2b636e8
JB
2532 features = btrfs_super_compat_ro_flags(disk_super) &
2533 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2534 if (!(sb->s_flags & MS_RDONLY) && features) {
2535 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2536 "unsupported option features (%Lx).\n",
c1c9ff7c 2537 features);
f2b636e8 2538 err = -EINVAL;
16cdcec7 2539 goto fail_alloc;
f2b636e8 2540 }
61d92c32 2541
5cdc7ad3 2542 max_active = fs_info->thread_pool_size;
61d92c32 2543
5cdc7ad3
QW
2544 fs_info->workers =
2545 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2546 max_active, 16);
c8b97818 2547
afe3d242
QW
2548 fs_info->delalloc_workers =
2549 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2550
a44903ab
QW
2551 fs_info->flush_workers =
2552 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2553
e66f0bb1
QW
2554 fs_info->caching_workers =
2555 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2556
a8c93d4e
QW
2557 /*
2558 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2559 * likely that bios will be send down in a sane order to the
2560 * devices
2561 */
a8c93d4e
QW
2562 fs_info->submit_workers =
2563 btrfs_alloc_workqueue("submit", flags,
2564 min_t(u64, fs_devices->num_devices,
2565 max_active), 64);
53863232 2566
dc6e3209
QW
2567 fs_info->fixup_workers =
2568 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2569
2570 /*
2571 * endios are largely parallel and should have a very
2572 * low idle thresh
2573 */
fccb5d86
QW
2574 fs_info->endio_workers =
2575 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2576 fs_info->endio_meta_workers =
2577 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2578 fs_info->endio_meta_write_workers =
2579 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2580 fs_info->endio_raid56_workers =
2581 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
d05a33ac
QW
2582 fs_info->rmw_workers =
2583 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2584 fs_info->endio_write_workers =
2585 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2586 fs_info->endio_freespace_worker =
2587 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2588 fs_info->delayed_workers =
2589 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2590 fs_info->readahead_workers =
2591 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2592 fs_info->qgroup_rescan_workers =
2593 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2594 fs_info->extent_workers =
2595 btrfs_alloc_workqueue("extent-refs", flags,
2596 min_t(u64, fs_devices->num_devices,
2597 max_active), 8);
61b49440 2598
a8c93d4e 2599 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2600 fs_info->submit_workers && fs_info->flush_workers &&
2601 fs_info->endio_workers && fs_info->endio_meta_workers &&
2602 fs_info->endio_meta_write_workers &&
2603 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2604 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2605 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2606 fs_info->fixup_workers && fs_info->delayed_workers &&
a79b7d4b 2607 fs_info->fixup_workers && fs_info->extent_workers &&
fc97fab0 2608 fs_info->qgroup_rescan_workers)) {
fed425c7 2609 err = -ENOMEM;
0dc3b84a
JB
2610 goto fail_sb_buffer;
2611 }
4543df7e 2612
4575c9cc 2613 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2614 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2615 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2616
db94535d
CM
2617 tree_root->nodesize = nodesize;
2618 tree_root->leafsize = leafsize;
2619 tree_root->sectorsize = sectorsize;
87ee04eb 2620 tree_root->stripesize = stripesize;
a061fc8d
CM
2621
2622 sb->s_blocksize = sectorsize;
2623 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2624
3cae210f 2625 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2626 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2627 goto fail_sb_buffer;
2628 }
19c00ddc 2629
8d082fb7 2630 if (sectorsize != PAGE_SIZE) {
efe120a0 2631 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2632 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2633 goto fail_sb_buffer;
2634 }
2635
925baedd 2636 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2637 ret = btrfs_read_sys_array(tree_root);
925baedd 2638 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2639 if (ret) {
efe120a0 2640 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2641 "array on %s\n", sb->s_id);
5d4f98a2 2642 goto fail_sb_buffer;
84eed90f 2643 }
0b86a832
CM
2644
2645 blocksize = btrfs_level_size(tree_root,
2646 btrfs_super_chunk_root_level(disk_super));
84234f3a 2647 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2648
2649 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2650 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2651
2652 chunk_root->node = read_tree_block(chunk_root,
2653 btrfs_super_chunk_root(disk_super),
84234f3a 2654 blocksize, generation);
416bc658
JB
2655 if (!chunk_root->node ||
2656 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2657 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2658 sb->s_id);
af31f5e5 2659 goto fail_tree_roots;
83121942 2660 }
5d4f98a2
YZ
2661 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2662 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2663
e17cade2 2664 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2665 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2666
0b86a832 2667 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2668 if (ret) {
efe120a0 2669 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2670 sb->s_id);
af31f5e5 2671 goto fail_tree_roots;
2b82032c 2672 }
0b86a832 2673
8dabb742
SB
2674 /*
2675 * keep the device that is marked to be the target device for the
2676 * dev_replace procedure
2677 */
2678 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2679
a6b0d5c8 2680 if (!fs_devices->latest_bdev) {
efe120a0 2681 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2682 sb->s_id);
2683 goto fail_tree_roots;
2684 }
2685
af31f5e5 2686retry_root_backup:
db94535d
CM
2687 blocksize = btrfs_level_size(tree_root,
2688 btrfs_super_root_level(disk_super));
84234f3a 2689 generation = btrfs_super_generation(disk_super);
0b86a832 2690
e20d96d6 2691 tree_root->node = read_tree_block(tree_root,
db94535d 2692 btrfs_super_root(disk_super),
84234f3a 2693 blocksize, generation);
af31f5e5
CM
2694 if (!tree_root->node ||
2695 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2696 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2697 sb->s_id);
af31f5e5
CM
2698
2699 goto recovery_tree_root;
83121942 2700 }
af31f5e5 2701
5d4f98a2
YZ
2702 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2703 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2704 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2705
cb517eab
MX
2706 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2707 location.type = BTRFS_ROOT_ITEM_KEY;
2708 location.offset = 0;
2709
2710 extent_root = btrfs_read_tree_root(tree_root, &location);
2711 if (IS_ERR(extent_root)) {
2712 ret = PTR_ERR(extent_root);
af31f5e5 2713 goto recovery_tree_root;
cb517eab 2714 }
27cdeb70 2715 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2716 fs_info->extent_root = extent_root;
0b86a832 2717
cb517eab
MX
2718 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2719 dev_root = btrfs_read_tree_root(tree_root, &location);
2720 if (IS_ERR(dev_root)) {
2721 ret = PTR_ERR(dev_root);
af31f5e5 2722 goto recovery_tree_root;
cb517eab 2723 }
27cdeb70 2724 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2725 fs_info->dev_root = dev_root;
2726 btrfs_init_devices_late(fs_info);
3768f368 2727
cb517eab
MX
2728 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2729 csum_root = btrfs_read_tree_root(tree_root, &location);
2730 if (IS_ERR(csum_root)) {
2731 ret = PTR_ERR(csum_root);
af31f5e5 2732 goto recovery_tree_root;
cb517eab 2733 }
27cdeb70 2734 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2735 fs_info->csum_root = csum_root;
d20f7043 2736
cb517eab
MX
2737 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2738 quota_root = btrfs_read_tree_root(tree_root, &location);
2739 if (!IS_ERR(quota_root)) {
27cdeb70 2740 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2741 fs_info->quota_enabled = 1;
2742 fs_info->pending_quota_state = 1;
cb517eab 2743 fs_info->quota_root = quota_root;
bcef60f2
AJ
2744 }
2745
f7a81ea4
SB
2746 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2747 uuid_root = btrfs_read_tree_root(tree_root, &location);
2748 if (IS_ERR(uuid_root)) {
2749 ret = PTR_ERR(uuid_root);
2750 if (ret != -ENOENT)
2751 goto recovery_tree_root;
2752 create_uuid_tree = true;
70f80175 2753 check_uuid_tree = false;
f7a81ea4 2754 } else {
27cdeb70 2755 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2756 fs_info->uuid_root = uuid_root;
70f80175
SB
2757 create_uuid_tree = false;
2758 check_uuid_tree =
2759 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2760 }
2761
8929ecfa
YZ
2762 fs_info->generation = generation;
2763 fs_info->last_trans_committed = generation;
8929ecfa 2764
68310a5e
ID
2765 ret = btrfs_recover_balance(fs_info);
2766 if (ret) {
efe120a0 2767 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2768 goto fail_block_groups;
2769 }
2770
733f4fbb
SB
2771 ret = btrfs_init_dev_stats(fs_info);
2772 if (ret) {
efe120a0 2773 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2774 ret);
2775 goto fail_block_groups;
2776 }
2777
8dabb742
SB
2778 ret = btrfs_init_dev_replace(fs_info);
2779 if (ret) {
efe120a0 2780 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2781 goto fail_block_groups;
2782 }
2783
2784 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2785
5ac1d209 2786 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2787 if (ret) {
efe120a0 2788 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2789 goto fail_block_groups;
2790 }
2791
c59021f8 2792 ret = btrfs_init_space_info(fs_info);
2793 if (ret) {
efe120a0 2794 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2795 goto fail_sysfs;
c59021f8 2796 }
2797
1b1d1f66
JB
2798 ret = btrfs_read_block_groups(extent_root);
2799 if (ret) {
efe120a0 2800 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2801 goto fail_sysfs;
1b1d1f66 2802 }
5af3e8cc
SB
2803 fs_info->num_tolerated_disk_barrier_failures =
2804 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2805 if (fs_info->fs_devices->missing_devices >
2806 fs_info->num_tolerated_disk_barrier_failures &&
2807 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2808 printk(KERN_WARNING "BTRFS: "
2809 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2810 goto fail_sysfs;
292fd7fc 2811 }
9078a3e1 2812
a74a4b97
CM
2813 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2814 "btrfs-cleaner");
57506d50 2815 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2816 goto fail_sysfs;
a74a4b97
CM
2817
2818 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2819 tree_root,
2820 "btrfs-transaction");
57506d50 2821 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2822 goto fail_cleaner;
a74a4b97 2823
c289811c
CM
2824 if (!btrfs_test_opt(tree_root, SSD) &&
2825 !btrfs_test_opt(tree_root, NOSSD) &&
2826 !fs_info->fs_devices->rotating) {
efe120a0 2827 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2828 "mode\n");
2829 btrfs_set_opt(fs_info->mount_opt, SSD);
2830 }
2831
3818aea2
QW
2832 /* Set the real inode map cache flag */
2833 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2834 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2835
21adbd5c
SB
2836#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2837 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2838 ret = btrfsic_mount(tree_root, fs_devices,
2839 btrfs_test_opt(tree_root,
2840 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2841 1 : 0,
2842 fs_info->check_integrity_print_mask);
2843 if (ret)
efe120a0 2844 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2845 " integrity check module %s\n", sb->s_id);
2846 }
2847#endif
bcef60f2
AJ
2848 ret = btrfs_read_qgroup_config(fs_info);
2849 if (ret)
2850 goto fail_trans_kthread;
21adbd5c 2851
acce952b 2852 /* do not make disk changes in broken FS */
68ce9682 2853 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2854 u64 bytenr = btrfs_super_log_root(disk_super);
2855
7c2ca468 2856 if (fs_devices->rw_devices == 0) {
efe120a0 2857 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2858 "on RO media\n");
7c2ca468 2859 err = -EIO;
bcef60f2 2860 goto fail_qgroup;
7c2ca468 2861 }
e02119d5
CM
2862 blocksize =
2863 btrfs_level_size(tree_root,
2864 btrfs_super_log_root_level(disk_super));
d18a2c44 2865
6f07e42e 2866 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2867 if (!log_tree_root) {
2868 err = -ENOMEM;
bcef60f2 2869 goto fail_qgroup;
676e4c86 2870 }
e02119d5
CM
2871
2872 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2873 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2874
2875 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2876 blocksize,
2877 generation + 1);
416bc658
JB
2878 if (!log_tree_root->node ||
2879 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2880 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2881 free_extent_buffer(log_tree_root->node);
2882 kfree(log_tree_root);
28c16cbb 2883 goto fail_qgroup;
416bc658 2884 }
79787eaa 2885 /* returns with log_tree_root freed on success */
e02119d5 2886 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2887 if (ret) {
2888 btrfs_error(tree_root->fs_info, ret,
2889 "Failed to recover log tree");
2890 free_extent_buffer(log_tree_root->node);
2891 kfree(log_tree_root);
28c16cbb 2892 goto fail_qgroup;
79787eaa 2893 }
e556ce2c
YZ
2894
2895 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2896 ret = btrfs_commit_super(tree_root);
2897 if (ret)
28c16cbb 2898 goto fail_qgroup;
e556ce2c 2899 }
e02119d5 2900 }
1a40e23b 2901
76dda93c 2902 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2903 if (ret)
28c16cbb 2904 goto fail_qgroup;
76dda93c 2905
7c2ca468 2906 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2907 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2908 if (ret)
28c16cbb 2909 goto fail_qgroup;
d68fc57b 2910
5f316481 2911 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2912 ret = btrfs_recover_relocation(tree_root);
5f316481 2913 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2914 if (ret < 0) {
2915 printk(KERN_WARNING
efe120a0 2916 "BTRFS: failed to recover relocation\n");
d7ce5843 2917 err = -EINVAL;
bcef60f2 2918 goto fail_qgroup;
d7ce5843 2919 }
7c2ca468 2920 }
1a40e23b 2921
3de4586c
CM
2922 location.objectid = BTRFS_FS_TREE_OBJECTID;
2923 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2924 location.offset = 0;
3de4586c 2925
3de4586c 2926 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2927 if (IS_ERR(fs_info->fs_root)) {
2928 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2929 goto fail_qgroup;
3140c9a3 2930 }
c289811c 2931
2b6ba629
ID
2932 if (sb->s_flags & MS_RDONLY)
2933 return 0;
59641015 2934
2b6ba629
ID
2935 down_read(&fs_info->cleanup_work_sem);
2936 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2937 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2938 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2939 close_ctree(tree_root);
2940 return ret;
2941 }
2942 up_read(&fs_info->cleanup_work_sem);
59641015 2943
2b6ba629
ID
2944 ret = btrfs_resume_balance_async(fs_info);
2945 if (ret) {
efe120a0 2946 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2947 close_ctree(tree_root);
2948 return ret;
e3acc2a6
JB
2949 }
2950
8dabb742
SB
2951 ret = btrfs_resume_dev_replace_async(fs_info);
2952 if (ret) {
efe120a0 2953 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2954 close_ctree(tree_root);
2955 return ret;
2956 }
2957
b382a324
JS
2958 btrfs_qgroup_rescan_resume(fs_info);
2959
f7a81ea4 2960 if (create_uuid_tree) {
efe120a0 2961 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2962 ret = btrfs_create_uuid_tree(fs_info);
2963 if (ret) {
efe120a0 2964 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2965 ret);
2966 close_ctree(tree_root);
2967 return ret;
2968 }
f420ee1e
SB
2969 } else if (check_uuid_tree ||
2970 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2971 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2972 ret = btrfs_check_uuid_tree(fs_info);
2973 if (ret) {
efe120a0 2974 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2975 ret);
2976 close_ctree(tree_root);
2977 return ret;
2978 }
2979 } else {
2980 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2981 }
2982
ad2b2c80 2983 return 0;
39279cc3 2984
bcef60f2
AJ
2985fail_qgroup:
2986 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2987fail_trans_kthread:
2988 kthread_stop(fs_info->transaction_kthread);
54067ae9 2989 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 2990 btrfs_free_fs_roots(fs_info);
3f157a2f 2991fail_cleaner:
a74a4b97 2992 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2993
2994 /*
2995 * make sure we're done with the btree inode before we stop our
2996 * kthreads
2997 */
2998 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2999
2365dd3c
AJ
3000fail_sysfs:
3001 btrfs_sysfs_remove_one(fs_info);
3002
1b1d1f66 3003fail_block_groups:
54067ae9 3004 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3005 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3006
3007fail_tree_roots:
3008 free_root_pointers(fs_info, 1);
2b8195bb 3009 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3010
39279cc3 3011fail_sb_buffer:
7abadb64 3012 btrfs_stop_all_workers(fs_info);
16cdcec7 3013fail_alloc:
4543df7e 3014fail_iput:
586e46e2
ID
3015 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3016
4543df7e 3017 iput(fs_info->btree_inode);
c404e0dc
MX
3018fail_bio_counter:
3019 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3020fail_delalloc_bytes:
3021 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3022fail_dirty_metadata_bytes:
3023 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3024fail_bdi:
7e662854 3025 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3026fail_srcu:
3027 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3028fail:
53b381b3 3029 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3030 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3031 return err;
af31f5e5
CM
3032
3033recovery_tree_root:
af31f5e5
CM
3034 if (!btrfs_test_opt(tree_root, RECOVERY))
3035 goto fail_tree_roots;
3036
3037 free_root_pointers(fs_info, 0);
3038
3039 /* don't use the log in recovery mode, it won't be valid */
3040 btrfs_set_super_log_root(disk_super, 0);
3041
3042 /* we can't trust the free space cache either */
3043 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3044
3045 ret = next_root_backup(fs_info, fs_info->super_copy,
3046 &num_backups_tried, &backup_index);
3047 if (ret == -1)
3048 goto fail_block_groups;
3049 goto retry_root_backup;
eb60ceac
CM
3050}
3051
f2984462
CM
3052static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3053{
f2984462
CM
3054 if (uptodate) {
3055 set_buffer_uptodate(bh);
3056 } else {
442a4f63
SB
3057 struct btrfs_device *device = (struct btrfs_device *)
3058 bh->b_private;
3059
efe120a0 3060 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3061 "I/O error on %s\n",
3062 rcu_str_deref(device->name));
1259ab75
CM
3063 /* note, we dont' set_buffer_write_io_error because we have
3064 * our own ways of dealing with the IO errors
3065 */
f2984462 3066 clear_buffer_uptodate(bh);
442a4f63 3067 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3068 }
3069 unlock_buffer(bh);
3070 put_bh(bh);
3071}
3072
a512bbf8
YZ
3073struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3074{
3075 struct buffer_head *bh;
3076 struct buffer_head *latest = NULL;
3077 struct btrfs_super_block *super;
3078 int i;
3079 u64 transid = 0;
3080 u64 bytenr;
3081
3082 /* we would like to check all the supers, but that would make
3083 * a btrfs mount succeed after a mkfs from a different FS.
3084 * So, we need to add a special mount option to scan for
3085 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3086 */
3087 for (i = 0; i < 1; i++) {
3088 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3089 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3090 i_size_read(bdev->bd_inode))
a512bbf8 3091 break;
8068a47e
AJ
3092 bh = __bread(bdev, bytenr / 4096,
3093 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3094 if (!bh)
3095 continue;
3096
3097 super = (struct btrfs_super_block *)bh->b_data;
3098 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3099 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3100 brelse(bh);
3101 continue;
3102 }
3103
3104 if (!latest || btrfs_super_generation(super) > transid) {
3105 brelse(latest);
3106 latest = bh;
3107 transid = btrfs_super_generation(super);
3108 } else {
3109 brelse(bh);
3110 }
3111 }
3112 return latest;
3113}
3114
4eedeb75
HH
3115/*
3116 * this should be called twice, once with wait == 0 and
3117 * once with wait == 1. When wait == 0 is done, all the buffer heads
3118 * we write are pinned.
3119 *
3120 * They are released when wait == 1 is done.
3121 * max_mirrors must be the same for both runs, and it indicates how
3122 * many supers on this one device should be written.
3123 *
3124 * max_mirrors == 0 means to write them all.
3125 */
a512bbf8
YZ
3126static int write_dev_supers(struct btrfs_device *device,
3127 struct btrfs_super_block *sb,
3128 int do_barriers, int wait, int max_mirrors)
3129{
3130 struct buffer_head *bh;
3131 int i;
3132 int ret;
3133 int errors = 0;
3134 u32 crc;
3135 u64 bytenr;
a512bbf8
YZ
3136
3137 if (max_mirrors == 0)
3138 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3139
a512bbf8
YZ
3140 for (i = 0; i < max_mirrors; i++) {
3141 bytenr = btrfs_sb_offset(i);
3142 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3143 break;
3144
3145 if (wait) {
3146 bh = __find_get_block(device->bdev, bytenr / 4096,
3147 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3148 if (!bh) {
3149 errors++;
3150 continue;
3151 }
a512bbf8 3152 wait_on_buffer(bh);
4eedeb75
HH
3153 if (!buffer_uptodate(bh))
3154 errors++;
3155
3156 /* drop our reference */
3157 brelse(bh);
3158
3159 /* drop the reference from the wait == 0 run */
3160 brelse(bh);
3161 continue;
a512bbf8
YZ
3162 } else {
3163 btrfs_set_super_bytenr(sb, bytenr);
3164
3165 crc = ~(u32)0;
b0496686 3166 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3167 BTRFS_CSUM_SIZE, crc,
3168 BTRFS_SUPER_INFO_SIZE -
3169 BTRFS_CSUM_SIZE);
3170 btrfs_csum_final(crc, sb->csum);
3171
4eedeb75
HH
3172 /*
3173 * one reference for us, and we leave it for the
3174 * caller
3175 */
a512bbf8
YZ
3176 bh = __getblk(device->bdev, bytenr / 4096,
3177 BTRFS_SUPER_INFO_SIZE);
634554dc 3178 if (!bh) {
efe120a0 3179 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3180 "buffer head for bytenr %Lu\n", bytenr);
3181 errors++;
3182 continue;
3183 }
3184
a512bbf8
YZ
3185 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3186
4eedeb75 3187 /* one reference for submit_bh */
a512bbf8 3188 get_bh(bh);
4eedeb75
HH
3189
3190 set_buffer_uptodate(bh);
a512bbf8
YZ
3191 lock_buffer(bh);
3192 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3193 bh->b_private = device;
a512bbf8
YZ
3194 }
3195
387125fc
CM
3196 /*
3197 * we fua the first super. The others we allow
3198 * to go down lazy.
3199 */
e8117c26
WS
3200 if (i == 0)
3201 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3202 else
3203 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3204 if (ret)
a512bbf8 3205 errors++;
a512bbf8
YZ
3206 }
3207 return errors < i ? 0 : -1;
3208}
3209
387125fc
CM
3210/*
3211 * endio for the write_dev_flush, this will wake anyone waiting
3212 * for the barrier when it is done
3213 */
3214static void btrfs_end_empty_barrier(struct bio *bio, int err)
3215{
3216 if (err) {
3217 if (err == -EOPNOTSUPP)
3218 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3219 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3220 }
3221 if (bio->bi_private)
3222 complete(bio->bi_private);
3223 bio_put(bio);
3224}
3225
3226/*
3227 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3228 * sent down. With wait == 1, it waits for the previous flush.
3229 *
3230 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3231 * capable
3232 */
3233static int write_dev_flush(struct btrfs_device *device, int wait)
3234{
3235 struct bio *bio;
3236 int ret = 0;
3237
3238 if (device->nobarriers)
3239 return 0;
3240
3241 if (wait) {
3242 bio = device->flush_bio;
3243 if (!bio)
3244 return 0;
3245
3246 wait_for_completion(&device->flush_wait);
3247
3248 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3249 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3250 rcu_str_deref(device->name));
387125fc 3251 device->nobarriers = 1;
5af3e8cc 3252 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3253 ret = -EIO;
5af3e8cc
SB
3254 btrfs_dev_stat_inc_and_print(device,
3255 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3256 }
3257
3258 /* drop the reference from the wait == 0 run */
3259 bio_put(bio);
3260 device->flush_bio = NULL;
3261
3262 return ret;
3263 }
3264
3265 /*
3266 * one reference for us, and we leave it for the
3267 * caller
3268 */
9c017abc 3269 device->flush_bio = NULL;
9be3395b 3270 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3271 if (!bio)
3272 return -ENOMEM;
3273
3274 bio->bi_end_io = btrfs_end_empty_barrier;
3275 bio->bi_bdev = device->bdev;
3276 init_completion(&device->flush_wait);
3277 bio->bi_private = &device->flush_wait;
3278 device->flush_bio = bio;
3279
3280 bio_get(bio);
21adbd5c 3281 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3282
3283 return 0;
3284}
3285
3286/*
3287 * send an empty flush down to each device in parallel,
3288 * then wait for them
3289 */
3290static int barrier_all_devices(struct btrfs_fs_info *info)
3291{
3292 struct list_head *head;
3293 struct btrfs_device *dev;
5af3e8cc
SB
3294 int errors_send = 0;
3295 int errors_wait = 0;
387125fc
CM
3296 int ret;
3297
3298 /* send down all the barriers */
3299 head = &info->fs_devices->devices;
3300 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3301 if (dev->missing)
3302 continue;
387125fc 3303 if (!dev->bdev) {
5af3e8cc 3304 errors_send++;
387125fc
CM
3305 continue;
3306 }
3307 if (!dev->in_fs_metadata || !dev->writeable)
3308 continue;
3309
3310 ret = write_dev_flush(dev, 0);
3311 if (ret)
5af3e8cc 3312 errors_send++;
387125fc
CM
3313 }
3314
3315 /* wait for all the barriers */
3316 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3317 if (dev->missing)
3318 continue;
387125fc 3319 if (!dev->bdev) {
5af3e8cc 3320 errors_wait++;
387125fc
CM
3321 continue;
3322 }
3323 if (!dev->in_fs_metadata || !dev->writeable)
3324 continue;
3325
3326 ret = write_dev_flush(dev, 1);
3327 if (ret)
5af3e8cc 3328 errors_wait++;
387125fc 3329 }
5af3e8cc
SB
3330 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3331 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3332 return -EIO;
3333 return 0;
3334}
3335
5af3e8cc
SB
3336int btrfs_calc_num_tolerated_disk_barrier_failures(
3337 struct btrfs_fs_info *fs_info)
3338{
3339 struct btrfs_ioctl_space_info space;
3340 struct btrfs_space_info *sinfo;
3341 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3342 BTRFS_BLOCK_GROUP_SYSTEM,
3343 BTRFS_BLOCK_GROUP_METADATA,
3344 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3345 int num_types = 4;
3346 int i;
3347 int c;
3348 int num_tolerated_disk_barrier_failures =
3349 (int)fs_info->fs_devices->num_devices;
3350
3351 for (i = 0; i < num_types; i++) {
3352 struct btrfs_space_info *tmp;
3353
3354 sinfo = NULL;
3355 rcu_read_lock();
3356 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3357 if (tmp->flags == types[i]) {
3358 sinfo = tmp;
3359 break;
3360 }
3361 }
3362 rcu_read_unlock();
3363
3364 if (!sinfo)
3365 continue;
3366
3367 down_read(&sinfo->groups_sem);
3368 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3369 if (!list_empty(&sinfo->block_groups[c])) {
3370 u64 flags;
3371
3372 btrfs_get_block_group_info(
3373 &sinfo->block_groups[c], &space);
3374 if (space.total_bytes == 0 ||
3375 space.used_bytes == 0)
3376 continue;
3377 flags = space.flags;
3378 /*
3379 * return
3380 * 0: if dup, single or RAID0 is configured for
3381 * any of metadata, system or data, else
3382 * 1: if RAID5 is configured, or if RAID1 or
3383 * RAID10 is configured and only two mirrors
3384 * are used, else
3385 * 2: if RAID6 is configured, else
3386 * num_mirrors - 1: if RAID1 or RAID10 is
3387 * configured and more than
3388 * 2 mirrors are used.
3389 */
3390 if (num_tolerated_disk_barrier_failures > 0 &&
3391 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3392 BTRFS_BLOCK_GROUP_RAID0)) ||
3393 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3394 == 0)))
3395 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3396 else if (num_tolerated_disk_barrier_failures > 1) {
3397 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3398 BTRFS_BLOCK_GROUP_RAID5 |
3399 BTRFS_BLOCK_GROUP_RAID10)) {
3400 num_tolerated_disk_barrier_failures = 1;
3401 } else if (flags &
15b0a89d 3402 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3403 num_tolerated_disk_barrier_failures = 2;
3404 }
3405 }
5af3e8cc
SB
3406 }
3407 }
3408 up_read(&sinfo->groups_sem);
3409 }
3410
3411 return num_tolerated_disk_barrier_failures;
3412}
3413
48a3b636 3414static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3415{
e5e9a520 3416 struct list_head *head;
f2984462 3417 struct btrfs_device *dev;
a061fc8d 3418 struct btrfs_super_block *sb;
f2984462 3419 struct btrfs_dev_item *dev_item;
f2984462
CM
3420 int ret;
3421 int do_barriers;
a236aed1
CM
3422 int max_errors;
3423 int total_errors = 0;
a061fc8d 3424 u64 flags;
f2984462
CM
3425
3426 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3427 backup_super_roots(root->fs_info);
f2984462 3428
6c41761f 3429 sb = root->fs_info->super_for_commit;
a061fc8d 3430 dev_item = &sb->dev_item;
e5e9a520 3431
174ba509 3432 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3433 head = &root->fs_info->fs_devices->devices;
d7306801 3434 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3435
5af3e8cc
SB
3436 if (do_barriers) {
3437 ret = barrier_all_devices(root->fs_info);
3438 if (ret) {
3439 mutex_unlock(
3440 &root->fs_info->fs_devices->device_list_mutex);
3441 btrfs_error(root->fs_info, ret,
3442 "errors while submitting device barriers.");
3443 return ret;
3444 }
3445 }
387125fc 3446
1f78160c 3447 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3448 if (!dev->bdev) {
3449 total_errors++;
3450 continue;
3451 }
2b82032c 3452 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3453 continue;
3454
2b82032c 3455 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3456 btrfs_set_stack_device_type(dev_item, dev->type);
3457 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e
MX
3458 btrfs_set_stack_device_total_bytes(dev_item,
3459 dev->disk_total_bytes);
a061fc8d
CM
3460 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3461 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3462 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3463 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3464 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3465 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3466
a061fc8d
CM
3467 flags = btrfs_super_flags(sb);
3468 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3469
a512bbf8 3470 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3471 if (ret)
3472 total_errors++;
f2984462 3473 }
a236aed1 3474 if (total_errors > max_errors) {
efe120a0 3475 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3476 total_errors);
a724b436 3477 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3478
9d565ba4
SB
3479 /* FUA is masked off if unsupported and can't be the reason */
3480 btrfs_error(root->fs_info, -EIO,
3481 "%d errors while writing supers", total_errors);
3482 return -EIO;
a236aed1 3483 }
f2984462 3484
a512bbf8 3485 total_errors = 0;
1f78160c 3486 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3487 if (!dev->bdev)
3488 continue;
2b82032c 3489 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3490 continue;
3491
a512bbf8
YZ
3492 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3493 if (ret)
3494 total_errors++;
f2984462 3495 }
174ba509 3496 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3497 if (total_errors > max_errors) {
79787eaa
JM
3498 btrfs_error(root->fs_info, -EIO,
3499 "%d errors while writing supers", total_errors);
3500 return -EIO;
a236aed1 3501 }
f2984462
CM
3502 return 0;
3503}
3504
a512bbf8
YZ
3505int write_ctree_super(struct btrfs_trans_handle *trans,
3506 struct btrfs_root *root, int max_mirrors)
eb60ceac 3507{
f570e757 3508 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3509}
3510
cb517eab
MX
3511/* Drop a fs root from the radix tree and free it. */
3512void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3513 struct btrfs_root *root)
2619ba1f 3514{
4df27c4d 3515 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3516 radix_tree_delete(&fs_info->fs_roots_radix,
3517 (unsigned long)root->root_key.objectid);
4df27c4d 3518 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3519
3520 if (btrfs_root_refs(&root->root_item) == 0)
3521 synchronize_srcu(&fs_info->subvol_srcu);
3522
1a4319cc 3523 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3524 btrfs_free_log(NULL, root);
3321719e 3525
faa2dbf0
JB
3526 if (root->free_ino_pinned)
3527 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3528 if (root->free_ino_ctl)
3529 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3530 free_fs_root(root);
4df27c4d
YZ
3531}
3532
3533static void free_fs_root(struct btrfs_root *root)
3534{
57cdc8db 3535 iput(root->ino_cache_inode);
4df27c4d 3536 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3537 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3538 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3539 if (root->anon_dev)
3540 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3541 if (root->subv_writers)
3542 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3543 free_extent_buffer(root->node);
3544 free_extent_buffer(root->commit_root);
581bb050
LZ
3545 kfree(root->free_ino_ctl);
3546 kfree(root->free_ino_pinned);
d397712b 3547 kfree(root->name);
b0feb9d9 3548 btrfs_put_fs_root(root);
2619ba1f
CM
3549}
3550
cb517eab
MX
3551void btrfs_free_fs_root(struct btrfs_root *root)
3552{
3553 free_fs_root(root);
2619ba1f
CM
3554}
3555
c146afad 3556int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3557{
c146afad
YZ
3558 u64 root_objectid = 0;
3559 struct btrfs_root *gang[8];
65d33fd7
QW
3560 int i = 0;
3561 int err = 0;
3562 unsigned int ret = 0;
3563 int index;
e089f05c 3564
c146afad 3565 while (1) {
65d33fd7 3566 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3567 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3568 (void **)gang, root_objectid,
3569 ARRAY_SIZE(gang));
65d33fd7
QW
3570 if (!ret) {
3571 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3572 break;
65d33fd7 3573 }
5d4f98a2 3574 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3575
c146afad 3576 for (i = 0; i < ret; i++) {
65d33fd7
QW
3577 /* Avoid to grab roots in dead_roots */
3578 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3579 gang[i] = NULL;
3580 continue;
3581 }
3582 /* grab all the search result for later use */
3583 gang[i] = btrfs_grab_fs_root(gang[i]);
3584 }
3585 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3586
65d33fd7
QW
3587 for (i = 0; i < ret; i++) {
3588 if (!gang[i])
3589 continue;
c146afad 3590 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3591 err = btrfs_orphan_cleanup(gang[i]);
3592 if (err)
65d33fd7
QW
3593 break;
3594 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3595 }
3596 root_objectid++;
3597 }
65d33fd7
QW
3598
3599 /* release the uncleaned roots due to error */
3600 for (; i < ret; i++) {
3601 if (gang[i])
3602 btrfs_put_fs_root(gang[i]);
3603 }
3604 return err;
c146afad 3605}
a2135011 3606
c146afad
YZ
3607int btrfs_commit_super(struct btrfs_root *root)
3608{
3609 struct btrfs_trans_handle *trans;
a74a4b97 3610
c146afad 3611 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3612 btrfs_run_delayed_iputs(root);
c146afad 3613 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3614 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3615
3616 /* wait until ongoing cleanup work done */
3617 down_write(&root->fs_info->cleanup_work_sem);
3618 up_write(&root->fs_info->cleanup_work_sem);
3619
7a7eaa40 3620 trans = btrfs_join_transaction(root);
3612b495
TI
3621 if (IS_ERR(trans))
3622 return PTR_ERR(trans);
d52c1bcc 3623 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3624}
3625
3626int close_ctree(struct btrfs_root *root)
3627{
3628 struct btrfs_fs_info *fs_info = root->fs_info;
3629 int ret;
3630
3631 fs_info->closing = 1;
3632 smp_mb();
3633
803b2f54
SB
3634 /* wait for the uuid_scan task to finish */
3635 down(&fs_info->uuid_tree_rescan_sem);
3636 /* avoid complains from lockdep et al., set sem back to initial state */
3637 up(&fs_info->uuid_tree_rescan_sem);
3638
837d5b6e 3639 /* pause restriper - we want to resume on mount */
aa1b8cd4 3640 btrfs_pause_balance(fs_info);
837d5b6e 3641
8dabb742
SB
3642 btrfs_dev_replace_suspend_for_unmount(fs_info);
3643
aa1b8cd4 3644 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3645
3646 /* wait for any defraggers to finish */
3647 wait_event(fs_info->transaction_wait,
3648 (atomic_read(&fs_info->defrag_running) == 0));
3649
3650 /* clear out the rbtree of defraggable inodes */
26176e7c 3651 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3652
21c7e756
MX
3653 cancel_work_sync(&fs_info->async_reclaim_work);
3654
c146afad 3655 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3656 ret = btrfs_commit_super(root);
3657 if (ret)
efe120a0 3658 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3659 }
3660
87533c47 3661 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3662 btrfs_error_commit_super(root);
0f7d52f4 3663
e3029d9f
AV
3664 kthread_stop(fs_info->transaction_kthread);
3665 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3666
f25784b3
YZ
3667 fs_info->closing = 2;
3668 smp_mb();
3669
bcef60f2
AJ
3670 btrfs_free_qgroup_config(root->fs_info);
3671
963d678b 3672 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3673 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3674 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3675 }
bcc63abb 3676
5ac1d209
JM
3677 btrfs_sysfs_remove_one(fs_info);
3678
faa2dbf0 3679 btrfs_free_fs_roots(fs_info);
d10c5f31 3680
1a4319cc
LB
3681 btrfs_put_block_group_cache(fs_info);
3682
2b1360da
JB
3683 btrfs_free_block_groups(fs_info);
3684
de348ee0
WS
3685 /*
3686 * we must make sure there is not any read request to
3687 * submit after we stopping all workers.
3688 */
3689 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3690 btrfs_stop_all_workers(fs_info);
3691
13e6c37b 3692 free_root_pointers(fs_info, 1);
9ad6b7bc 3693
13e6c37b 3694 iput(fs_info->btree_inode);
d6bfde87 3695
21adbd5c
SB
3696#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3697 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3698 btrfsic_unmount(root, fs_info->fs_devices);
3699#endif
3700
dfe25020 3701 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3702 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3703
e2d84521 3704 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3705 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3706 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3707 bdi_destroy(&fs_info->bdi);
76dda93c 3708 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3709
53b381b3
DW
3710 btrfs_free_stripe_hash_table(fs_info);
3711
1cb048f5
FDBM
3712 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3713 root->orphan_block_rsv = NULL;
3714
eb60ceac
CM
3715 return 0;
3716}
3717
b9fab919
CM
3718int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3719 int atomic)
5f39d397 3720{
1259ab75 3721 int ret;
727011e0 3722 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3723
0b32f4bb 3724 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3725 if (!ret)
3726 return ret;
3727
3728 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3729 parent_transid, atomic);
3730 if (ret == -EAGAIN)
3731 return ret;
1259ab75 3732 return !ret;
5f39d397
CM
3733}
3734
3735int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3736{
0b32f4bb 3737 return set_extent_buffer_uptodate(buf);
5f39d397 3738}
6702ed49 3739
5f39d397
CM
3740void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3741{
06ea65a3 3742 struct btrfs_root *root;
5f39d397 3743 u64 transid = btrfs_header_generation(buf);
b9473439 3744 int was_dirty;
b4ce94de 3745
06ea65a3
JB
3746#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3747 /*
3748 * This is a fast path so only do this check if we have sanity tests
3749 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3750 * outside of the sanity tests.
3751 */
3752 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3753 return;
3754#endif
3755 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3756 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3757 if (transid != root->fs_info->generation)
3758 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3759 "found %llu running %llu\n",
c1c9ff7c 3760 buf->start, transid, root->fs_info->generation);
0b32f4bb 3761 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3762 if (!was_dirty)
3763 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3764 buf->len,
3765 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3766#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3767 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3768 btrfs_print_leaf(root, buf);
3769 ASSERT(0);
3770 }
3771#endif
eb60ceac
CM
3772}
3773
b53d3f5d
LB
3774static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3775 int flush_delayed)
16cdcec7
MX
3776{
3777 /*
3778 * looks as though older kernels can get into trouble with
3779 * this code, they end up stuck in balance_dirty_pages forever
3780 */
e2d84521 3781 int ret;
16cdcec7
MX
3782
3783 if (current->flags & PF_MEMALLOC)
3784 return;
3785
b53d3f5d
LB
3786 if (flush_delayed)
3787 btrfs_balance_delayed_items(root);
16cdcec7 3788
e2d84521
MX
3789 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3790 BTRFS_DIRTY_METADATA_THRESH);
3791 if (ret > 0) {
d0e1d66b
NJ
3792 balance_dirty_pages_ratelimited(
3793 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3794 }
3795 return;
3796}
3797
b53d3f5d 3798void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3799{
b53d3f5d
LB
3800 __btrfs_btree_balance_dirty(root, 1);
3801}
585ad2c3 3802
b53d3f5d
LB
3803void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3804{
3805 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3806}
6b80053d 3807
ca7a79ad 3808int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3809{
727011e0 3810 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3811 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3812}
0da5468f 3813
fcd1f065 3814static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3815 int read_only)
3816{
1104a885
DS
3817 /*
3818 * Placeholder for checks
3819 */
fcd1f065 3820 return 0;
acce952b 3821}
3822
48a3b636 3823static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3824{
acce952b 3825 mutex_lock(&root->fs_info->cleaner_mutex);
3826 btrfs_run_delayed_iputs(root);
3827 mutex_unlock(&root->fs_info->cleaner_mutex);
3828
3829 down_write(&root->fs_info->cleanup_work_sem);
3830 up_write(&root->fs_info->cleanup_work_sem);
3831
3832 /* cleanup FS via transaction */
3833 btrfs_cleanup_transaction(root);
acce952b 3834}
3835
143bede5 3836static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3837{
acce952b 3838 struct btrfs_ordered_extent *ordered;
acce952b 3839
199c2a9c 3840 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3841 /*
3842 * This will just short circuit the ordered completion stuff which will
3843 * make sure the ordered extent gets properly cleaned up.
3844 */
199c2a9c 3845 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3846 root_extent_list)
3847 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3848 spin_unlock(&root->ordered_extent_lock);
3849}
3850
3851static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3852{
3853 struct btrfs_root *root;
3854 struct list_head splice;
3855
3856 INIT_LIST_HEAD(&splice);
3857
3858 spin_lock(&fs_info->ordered_root_lock);
3859 list_splice_init(&fs_info->ordered_roots, &splice);
3860 while (!list_empty(&splice)) {
3861 root = list_first_entry(&splice, struct btrfs_root,
3862 ordered_root);
1de2cfde
JB
3863 list_move_tail(&root->ordered_root,
3864 &fs_info->ordered_roots);
199c2a9c 3865
2a85d9ca 3866 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3867 btrfs_destroy_ordered_extents(root);
3868
2a85d9ca
LB
3869 cond_resched();
3870 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3871 }
3872 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3873}
3874
35a3621b
SB
3875static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3876 struct btrfs_root *root)
acce952b 3877{
3878 struct rb_node *node;
3879 struct btrfs_delayed_ref_root *delayed_refs;
3880 struct btrfs_delayed_ref_node *ref;
3881 int ret = 0;
3882
3883 delayed_refs = &trans->delayed_refs;
3884
3885 spin_lock(&delayed_refs->lock);
d7df2c79 3886 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3887 spin_unlock(&delayed_refs->lock);
efe120a0 3888 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3889 return ret;
3890 }
3891
d7df2c79
JB
3892 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3893 struct btrfs_delayed_ref_head *head;
e78417d1 3894 bool pin_bytes = false;
acce952b 3895
d7df2c79
JB
3896 head = rb_entry(node, struct btrfs_delayed_ref_head,
3897 href_node);
3898 if (!mutex_trylock(&head->mutex)) {
3899 atomic_inc(&head->node.refs);
3900 spin_unlock(&delayed_refs->lock);
eb12db69 3901
d7df2c79 3902 mutex_lock(&head->mutex);
e78417d1 3903 mutex_unlock(&head->mutex);
d7df2c79
JB
3904 btrfs_put_delayed_ref(&head->node);
3905 spin_lock(&delayed_refs->lock);
3906 continue;
3907 }
3908 spin_lock(&head->lock);
3909 while ((node = rb_first(&head->ref_root)) != NULL) {
3910 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3911 rb_node);
3912 ref->in_tree = 0;
3913 rb_erase(&ref->rb_node, &head->ref_root);
3914 atomic_dec(&delayed_refs->num_entries);
3915 btrfs_put_delayed_ref(ref);
e78417d1 3916 }
d7df2c79
JB
3917 if (head->must_insert_reserved)
3918 pin_bytes = true;
3919 btrfs_free_delayed_extent_op(head->extent_op);
3920 delayed_refs->num_heads--;
3921 if (head->processing == 0)
3922 delayed_refs->num_heads_ready--;
3923 atomic_dec(&delayed_refs->num_entries);
3924 head->node.in_tree = 0;
3925 rb_erase(&head->href_node, &delayed_refs->href_root);
3926 spin_unlock(&head->lock);
3927 spin_unlock(&delayed_refs->lock);
3928 mutex_unlock(&head->mutex);
acce952b 3929
d7df2c79
JB
3930 if (pin_bytes)
3931 btrfs_pin_extent(root, head->node.bytenr,
3932 head->node.num_bytes, 1);
3933 btrfs_put_delayed_ref(&head->node);
acce952b 3934 cond_resched();
3935 spin_lock(&delayed_refs->lock);
3936 }
3937
3938 spin_unlock(&delayed_refs->lock);
3939
3940 return ret;
3941}
3942
143bede5 3943static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3944{
3945 struct btrfs_inode *btrfs_inode;
3946 struct list_head splice;
3947
3948 INIT_LIST_HEAD(&splice);
3949
eb73c1b7
MX
3950 spin_lock(&root->delalloc_lock);
3951 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3952
3953 while (!list_empty(&splice)) {
eb73c1b7
MX
3954 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3955 delalloc_inodes);
acce952b 3956
3957 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3958 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3959 &btrfs_inode->runtime_flags);
eb73c1b7 3960 spin_unlock(&root->delalloc_lock);
acce952b 3961
3962 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3963
eb73c1b7 3964 spin_lock(&root->delalloc_lock);
acce952b 3965 }
3966
eb73c1b7
MX
3967 spin_unlock(&root->delalloc_lock);
3968}
3969
3970static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3971{
3972 struct btrfs_root *root;
3973 struct list_head splice;
3974
3975 INIT_LIST_HEAD(&splice);
3976
3977 spin_lock(&fs_info->delalloc_root_lock);
3978 list_splice_init(&fs_info->delalloc_roots, &splice);
3979 while (!list_empty(&splice)) {
3980 root = list_first_entry(&splice, struct btrfs_root,
3981 delalloc_root);
3982 list_del_init(&root->delalloc_root);
3983 root = btrfs_grab_fs_root(root);
3984 BUG_ON(!root);
3985 spin_unlock(&fs_info->delalloc_root_lock);
3986
3987 btrfs_destroy_delalloc_inodes(root);
3988 btrfs_put_fs_root(root);
3989
3990 spin_lock(&fs_info->delalloc_root_lock);
3991 }
3992 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3993}
3994
3995static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3996 struct extent_io_tree *dirty_pages,
3997 int mark)
3998{
3999 int ret;
acce952b 4000 struct extent_buffer *eb;
4001 u64 start = 0;
4002 u64 end;
acce952b 4003
4004 while (1) {
4005 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4006 mark, NULL);
acce952b 4007 if (ret)
4008 break;
4009
4010 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4011 while (start <= end) {
fd8b2b61
JB
4012 eb = btrfs_find_tree_block(root, start,
4013 root->leafsize);
69a85bd8 4014 start += root->leafsize;
fd8b2b61 4015 if (!eb)
acce952b 4016 continue;
fd8b2b61 4017 wait_on_extent_buffer_writeback(eb);
acce952b 4018
fd8b2b61
JB
4019 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4020 &eb->bflags))
4021 clear_extent_buffer_dirty(eb);
4022 free_extent_buffer_stale(eb);
acce952b 4023 }
4024 }
4025
4026 return ret;
4027}
4028
4029static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4030 struct extent_io_tree *pinned_extents)
4031{
4032 struct extent_io_tree *unpin;
4033 u64 start;
4034 u64 end;
4035 int ret;
ed0eaa14 4036 bool loop = true;
acce952b 4037
4038 unpin = pinned_extents;
ed0eaa14 4039again:
acce952b 4040 while (1) {
4041 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4042 EXTENT_DIRTY, NULL);
acce952b 4043 if (ret)
4044 break;
4045
4046 /* opt_discard */
5378e607
LD
4047 if (btrfs_test_opt(root, DISCARD))
4048 ret = btrfs_error_discard_extent(root, start,
4049 end + 1 - start,
4050 NULL);
acce952b 4051
4052 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4053 btrfs_error_unpin_extent_range(root, start, end);
4054 cond_resched();
4055 }
4056
ed0eaa14
LB
4057 if (loop) {
4058 if (unpin == &root->fs_info->freed_extents[0])
4059 unpin = &root->fs_info->freed_extents[1];
4060 else
4061 unpin = &root->fs_info->freed_extents[0];
4062 loop = false;
4063 goto again;
4064 }
4065
acce952b 4066 return 0;
4067}
4068
49b25e05
JM
4069void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4070 struct btrfs_root *root)
4071{
4072 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4073
4a9d8bde 4074 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4075 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4076
4a9d8bde 4077 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4078 wake_up(&root->fs_info->transaction_wait);
49b25e05 4079
67cde344
MX
4080 btrfs_destroy_delayed_inodes(root);
4081 btrfs_assert_delayed_root_empty(root);
49b25e05 4082
49b25e05
JM
4083 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4084 EXTENT_DIRTY);
6e841e32
LB
4085 btrfs_destroy_pinned_extent(root,
4086 root->fs_info->pinned_extents);
49b25e05 4087
4a9d8bde
MX
4088 cur_trans->state =TRANS_STATE_COMPLETED;
4089 wake_up(&cur_trans->commit_wait);
4090
49b25e05
JM
4091 /*
4092 memset(cur_trans, 0, sizeof(*cur_trans));
4093 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4094 */
4095}
4096
48a3b636 4097static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4098{
4099 struct btrfs_transaction *t;
acce952b 4100
acce952b 4101 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4102
a4abeea4 4103 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4104 while (!list_empty(&root->fs_info->trans_list)) {
4105 t = list_first_entry(&root->fs_info->trans_list,
4106 struct btrfs_transaction, list);
4107 if (t->state >= TRANS_STATE_COMMIT_START) {
4108 atomic_inc(&t->use_count);
4109 spin_unlock(&root->fs_info->trans_lock);
4110 btrfs_wait_for_commit(root, t->transid);
4111 btrfs_put_transaction(t);
4112 spin_lock(&root->fs_info->trans_lock);
4113 continue;
4114 }
4115 if (t == root->fs_info->running_transaction) {
4116 t->state = TRANS_STATE_COMMIT_DOING;
4117 spin_unlock(&root->fs_info->trans_lock);
4118 /*
4119 * We wait for 0 num_writers since we don't hold a trans
4120 * handle open currently for this transaction.
4121 */
4122 wait_event(t->writer_wait,
4123 atomic_read(&t->num_writers) == 0);
4124 } else {
4125 spin_unlock(&root->fs_info->trans_lock);
4126 }
4127 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4128
724e2315
JB
4129 spin_lock(&root->fs_info->trans_lock);
4130 if (t == root->fs_info->running_transaction)
4131 root->fs_info->running_transaction = NULL;
acce952b 4132 list_del_init(&t->list);
724e2315 4133 spin_unlock(&root->fs_info->trans_lock);
acce952b 4134
724e2315
JB
4135 btrfs_put_transaction(t);
4136 trace_btrfs_transaction_commit(root);
4137 spin_lock(&root->fs_info->trans_lock);
4138 }
4139 spin_unlock(&root->fs_info->trans_lock);
4140 btrfs_destroy_all_ordered_extents(root->fs_info);
4141 btrfs_destroy_delayed_inodes(root);
4142 btrfs_assert_delayed_root_empty(root);
4143 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4144 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4145 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4146
4147 return 0;
4148}
4149
d1310b2e 4150static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4151 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4152 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4153 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4154 /* note we're sharing with inode.c for the merge bio hook */
4155 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4156};