btrfs: enhance transaction abort infrastructure
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
143bede5
JM
53static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
143bede5
JM
57static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
ce9adaa5 64
d352ac68
CM
65/*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
ce9adaa5
CM
70struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
22c59948 76 int metadata;
ce9adaa5 77 struct list_head list;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
d352ac68
CM
81/*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
44b8bd7e
CM
86struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
4a69a410
CM
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
92 int rw;
93 int mirror_num;
c8b97818 94 unsigned long bio_flags;
eaf25d93
CM
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
8b712842 100 struct btrfs_work work;
44b8bd7e
CM
101};
102
85d4e461
CM
103/*
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
107 *
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
4008c04a 113 *
85d4e461
CM
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 117 *
85d4e461
CM
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 121 *
85d4e461
CM
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
4008c04a
CM
125 */
126#ifdef CONFIG_DEBUG_LOCK_ALLOC
127# if BTRFS_MAX_LEVEL != 8
128# error
129# endif
85d4e461
CM
130
131static struct btrfs_lockdep_keyset {
132 u64 id; /* root objectid */
133 const char *name_stem; /* lock name stem */
134 char names[BTRFS_MAX_LEVEL + 1][20];
135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
136} btrfs_lockdep_keysets[] = {
137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
147 { .id = 0, .name_stem = "tree" },
4008c04a 148};
85d4e461
CM
149
150void __init btrfs_init_lockdep(void)
151{
152 int i, j;
153
154 /* initialize lockdep class names */
155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
157
158 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159 snprintf(ks->names[j], sizeof(ks->names[j]),
160 "btrfs-%s-%02d", ks->name_stem, j);
161 }
162}
163
164void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165 int level)
166{
167 struct btrfs_lockdep_keyset *ks;
168
169 BUG_ON(level >= ARRAY_SIZE(ks->keys));
170
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173 if (ks->id == objectid)
174 break;
175
176 lockdep_set_class_and_name(&eb->lock,
177 &ks->keys[level], ks->names[level]);
178}
179
4008c04a
CM
180#endif
181
d352ac68
CM
182/*
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
185 */
b2950863 186static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 187 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 188 int create)
7eccb903 189{
5f39d397
CM
190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191 struct extent_map *em;
192 int ret;
193
890871be 194 read_lock(&em_tree->lock);
d1310b2e 195 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
196 if (em) {
197 em->bdev =
198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 199 read_unlock(&em_tree->lock);
5f39d397 200 goto out;
a061fc8d 201 }
890871be 202 read_unlock(&em_tree->lock);
7b13b7b1 203
172ddd60 204 em = alloc_extent_map();
5f39d397
CM
205 if (!em) {
206 em = ERR_PTR(-ENOMEM);
207 goto out;
208 }
209 em->start = 0;
0afbaf8c 210 em->len = (u64)-1;
c8b97818 211 em->block_len = (u64)-1;
5f39d397 212 em->block_start = 0;
a061fc8d 213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 214
890871be 215 write_lock(&em_tree->lock);
5f39d397
CM
216 ret = add_extent_mapping(em_tree, em);
217 if (ret == -EEXIST) {
0afbaf8c
CM
218 u64 failed_start = em->start;
219 u64 failed_len = em->len;
220
5f39d397 221 free_extent_map(em);
7b13b7b1 222 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 223 if (em) {
7b13b7b1 224 ret = 0;
0afbaf8c
CM
225 } else {
226 em = lookup_extent_mapping(em_tree, failed_start,
227 failed_len);
7b13b7b1 228 ret = -EIO;
0afbaf8c 229 }
5f39d397 230 } else if (ret) {
7b13b7b1
CM
231 free_extent_map(em);
232 em = NULL;
5f39d397 233 }
890871be 234 write_unlock(&em_tree->lock);
7b13b7b1
CM
235
236 if (ret)
237 em = ERR_PTR(ret);
5f39d397
CM
238out:
239 return em;
7eccb903
CM
240}
241
19c00ddc
CM
242u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243{
163e783e 244 return crc32c(seed, data, len);
19c00ddc
CM
245}
246
247void btrfs_csum_final(u32 crc, char *result)
248{
7e75bf3f 249 put_unaligned_le32(~crc, result);
19c00ddc
CM
250}
251
d352ac68
CM
252/*
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
255 */
19c00ddc
CM
256static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
258{
6c41761f 259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 260 char *result = NULL;
19c00ddc
CM
261 unsigned long len;
262 unsigned long cur_len;
263 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
264 char *kaddr;
265 unsigned long map_start;
266 unsigned long map_len;
267 int err;
268 u32 crc = ~(u32)0;
607d432d 269 unsigned long inline_result;
19c00ddc
CM
270
271 len = buf->len - offset;
d397712b 272 while (len > 0) {
19c00ddc 273 err = map_private_extent_buffer(buf, offset, 32,
a6591715 274 &kaddr, &map_start, &map_len);
d397712b 275 if (err)
19c00ddc 276 return 1;
19c00ddc
CM
277 cur_len = min(len, map_len - (offset - map_start));
278 crc = btrfs_csum_data(root, kaddr + offset - map_start,
279 crc, cur_len);
280 len -= cur_len;
281 offset += cur_len;
19c00ddc 282 }
607d432d
JB
283 if (csum_size > sizeof(inline_result)) {
284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285 if (!result)
286 return 1;
287 } else {
288 result = (char *)&inline_result;
289 }
290
19c00ddc
CM
291 btrfs_csum_final(crc, result);
292
293 if (verify) {
607d432d 294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
295 u32 val;
296 u32 found = 0;
607d432d 297 memcpy(&found, result, csum_size);
e4204ded 298
607d432d 299 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
301 "failed on %llu wanted %X found %X "
302 "level %d\n",
303 root->fs_info->sb->s_id,
304 (unsigned long long)buf->start, val, found,
305 btrfs_header_level(buf));
607d432d
JB
306 if (result != (char *)&inline_result)
307 kfree(result);
19c00ddc
CM
308 return 1;
309 }
310 } else {
607d432d 311 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 312 }
607d432d
JB
313 if (result != (char *)&inline_result)
314 kfree(result);
19c00ddc
CM
315 return 0;
316}
317
d352ac68
CM
318/*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
1259ab75
CM
324static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid)
326{
2ac55d41 327 struct extent_state *cached_state = NULL;
1259ab75
CM
328 int ret;
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
2ac55d41 333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 334 0, &cached_state);
2ac55d41 335 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
336 btrfs_header_generation(eb) == parent_transid) {
337 ret = 0;
338 goto out;
339 }
7a36ddec 340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
341 "found %llu\n",
342 (unsigned long long)eb->start,
343 (unsigned long long)parent_transid,
344 (unsigned long long)btrfs_header_generation(eb));
1259ab75 345 ret = 1;
2ac55d41 346 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 347out:
2ac55d41
JB
348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state, GFP_NOFS);
1259ab75 350 return ret;
1259ab75
CM
351}
352
d352ac68
CM
353/*
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
356 */
f188591e
CM
357static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 struct extent_buffer *eb,
ca7a79ad 359 u64 start, u64 parent_transid)
f188591e
CM
360{
361 struct extent_io_tree *io_tree;
362 int ret;
363 int num_copies = 0;
364 int mirror_num = 0;
365
a826d6dc 366 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
367 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
368 while (1) {
bb82ab88
AJ
369 ret = read_extent_buffer_pages(io_tree, eb, start,
370 WAIT_COMPLETE,
f188591e 371 btree_get_extent, mirror_num);
1259ab75
CM
372 if (!ret &&
373 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 374 return ret;
d397712b 375
a826d6dc
JB
376 /*
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
379 * any less wrong.
380 */
381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382 return ret;
383
f188591e
CM
384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385 eb->start, eb->len);
4235298e 386 if (num_copies == 1)
f188591e 387 return ret;
4235298e 388
f188591e 389 mirror_num++;
4235298e 390 if (mirror_num > num_copies)
f188591e 391 return ret;
f188591e 392 }
f188591e
CM
393 return -EIO;
394}
19c00ddc 395
d352ac68 396/*
d397712b
CM
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 399 */
d397712b 400
b2950863 401static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 402{
d1310b2e 403 struct extent_io_tree *tree;
35ebb934 404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 405 u64 found_start;
19c00ddc
CM
406 unsigned long len;
407 struct extent_buffer *eb;
f188591e
CM
408 int ret;
409
d1310b2e 410 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 411
eb14ab8e
CM
412 if (page->private == EXTENT_PAGE_PRIVATE) {
413 WARN_ON(1);
19c00ddc 414 goto out;
eb14ab8e
CM
415 }
416 if (!page->private) {
417 WARN_ON(1);
19c00ddc 418 goto out;
eb14ab8e 419 }
19c00ddc 420 len = page->private >> 2;
d397712b
CM
421 WARN_ON(len == 0);
422
ba144192 423 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
424 if (eb == NULL) {
425 WARN_ON(1);
426 goto out;
427 }
ca7a79ad
CM
428 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
429 btrfs_header_generation(eb));
f188591e 430 BUG_ON(ret);
784b4e29
CM
431 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
432
19c00ddc
CM
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
55c69072
CM
435 WARN_ON(1);
436 goto err;
437 }
438 if (eb->first_page != page) {
55c69072
CM
439 WARN_ON(1);
440 goto err;
441 }
442 if (!PageUptodate(page)) {
55c69072
CM
443 WARN_ON(1);
444 goto err;
19c00ddc 445 }
19c00ddc 446 csum_tree_block(root, eb, 0);
55c69072 447err:
19c00ddc
CM
448 free_extent_buffer(eb);
449out:
450 return 0;
451}
452
2b82032c
YZ
453static int check_tree_block_fsid(struct btrfs_root *root,
454 struct extent_buffer *eb)
455{
456 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
457 u8 fsid[BTRFS_UUID_SIZE];
458 int ret = 1;
459
460 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
461 BTRFS_FSID_SIZE);
462 while (fs_devices) {
463 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
464 ret = 0;
465 break;
466 }
467 fs_devices = fs_devices->seed;
468 }
469 return ret;
470}
471
a826d6dc
JB
472#define CORRUPT(reason, eb, root, slot) \
473 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
474 "root=%llu, slot=%d\n", reason, \
475 (unsigned long long)btrfs_header_bytenr(eb), \
476 (unsigned long long)root->objectid, slot)
477
478static noinline int check_leaf(struct btrfs_root *root,
479 struct extent_buffer *leaf)
480{
481 struct btrfs_key key;
482 struct btrfs_key leaf_key;
483 u32 nritems = btrfs_header_nritems(leaf);
484 int slot;
485
486 if (nritems == 0)
487 return 0;
488
489 /* Check the 0 item */
490 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
491 BTRFS_LEAF_DATA_SIZE(root)) {
492 CORRUPT("invalid item offset size pair", leaf, root, 0);
493 return -EIO;
494 }
495
496 /*
497 * Check to make sure each items keys are in the correct order and their
498 * offsets make sense. We only have to loop through nritems-1 because
499 * we check the current slot against the next slot, which verifies the
500 * next slot's offset+size makes sense and that the current's slot
501 * offset is correct.
502 */
503 for (slot = 0; slot < nritems - 1; slot++) {
504 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
505 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
506
507 /* Make sure the keys are in the right order */
508 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
509 CORRUPT("bad key order", leaf, root, slot);
510 return -EIO;
511 }
512
513 /*
514 * Make sure the offset and ends are right, remember that the
515 * item data starts at the end of the leaf and grows towards the
516 * front.
517 */
518 if (btrfs_item_offset_nr(leaf, slot) !=
519 btrfs_item_end_nr(leaf, slot + 1)) {
520 CORRUPT("slot offset bad", leaf, root, slot);
521 return -EIO;
522 }
523
524 /*
525 * Check to make sure that we don't point outside of the leaf,
526 * just incase all the items are consistent to eachother, but
527 * all point outside of the leaf.
528 */
529 if (btrfs_item_end_nr(leaf, slot) >
530 BTRFS_LEAF_DATA_SIZE(root)) {
531 CORRUPT("slot end outside of leaf", leaf, root, slot);
532 return -EIO;
533 }
534 }
535
536 return 0;
537}
538
b2950863 539static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
540 struct extent_state *state)
541{
542 struct extent_io_tree *tree;
543 u64 found_start;
544 int found_level;
545 unsigned long len;
546 struct extent_buffer *eb;
547 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 548 int ret = 0;
ce9adaa5
CM
549
550 tree = &BTRFS_I(page->mapping->host)->io_tree;
551 if (page->private == EXTENT_PAGE_PRIVATE)
552 goto out;
553 if (!page->private)
554 goto out;
d397712b 555
ce9adaa5 556 len = page->private >> 2;
d397712b
CM
557 WARN_ON(len == 0);
558
ba144192 559 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
560 if (eb == NULL) {
561 ret = -EIO;
562 goto out;
563 }
f188591e 564
ce9adaa5 565 found_start = btrfs_header_bytenr(eb);
23a07867 566 if (found_start != start) {
7a36ddec 567 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
568 "%llu %llu\n",
569 (unsigned long long)found_start,
570 (unsigned long long)eb->start);
f188591e 571 ret = -EIO;
ce9adaa5
CM
572 goto err;
573 }
574 if (eb->first_page != page) {
d397712b
CM
575 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
576 eb->first_page->index, page->index);
ce9adaa5 577 WARN_ON(1);
f188591e 578 ret = -EIO;
ce9adaa5
CM
579 goto err;
580 }
2b82032c 581 if (check_tree_block_fsid(root, eb)) {
7a36ddec 582 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 583 (unsigned long long)eb->start);
1259ab75
CM
584 ret = -EIO;
585 goto err;
586 }
ce9adaa5
CM
587 found_level = btrfs_header_level(eb);
588
85d4e461
CM
589 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
590 eb, found_level);
4008c04a 591
ce9adaa5 592 ret = csum_tree_block(root, eb, 1);
a826d6dc 593 if (ret) {
f188591e 594 ret = -EIO;
a826d6dc
JB
595 goto err;
596 }
597
598 /*
599 * If this is a leaf block and it is corrupt, set the corrupt bit so
600 * that we don't try and read the other copies of this block, just
601 * return -EIO.
602 */
603 if (found_level == 0 && check_leaf(root, eb)) {
604 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
605 ret = -EIO;
606 }
ce9adaa5
CM
607
608 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
609 end = eb->start + end - 1;
ce9adaa5 610err:
4bb31e92
AJ
611 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
612 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
613 btree_readahead_hook(root, eb, eb->start, ret);
614 }
615
ce9adaa5
CM
616 free_extent_buffer(eb);
617out:
f188591e 618 return ret;
ce9adaa5
CM
619}
620
4bb31e92
AJ
621static int btree_io_failed_hook(struct bio *failed_bio,
622 struct page *page, u64 start, u64 end,
32240a91 623 int mirror_num, struct extent_state *state)
4bb31e92
AJ
624{
625 struct extent_io_tree *tree;
626 unsigned long len;
627 struct extent_buffer *eb;
628 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
629
630 tree = &BTRFS_I(page->mapping->host)->io_tree;
631 if (page->private == EXTENT_PAGE_PRIVATE)
632 goto out;
633 if (!page->private)
634 goto out;
635
636 len = page->private >> 2;
637 WARN_ON(len == 0);
638
639 eb = alloc_extent_buffer(tree, start, len, page);
640 if (eb == NULL)
641 goto out;
642
643 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
644 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
645 btree_readahead_hook(root, eb, eb->start, -EIO);
646 }
c674e04e 647 free_extent_buffer(eb);
4bb31e92
AJ
648
649out:
650 return -EIO; /* we fixed nothing */
651}
652
ce9adaa5 653static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
654{
655 struct end_io_wq *end_io_wq = bio->bi_private;
656 struct btrfs_fs_info *fs_info;
ce9adaa5 657
ce9adaa5 658 fs_info = end_io_wq->info;
ce9adaa5 659 end_io_wq->error = err;
8b712842
CM
660 end_io_wq->work.func = end_workqueue_fn;
661 end_io_wq->work.flags = 0;
d20f7043 662
7b6d91da 663 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 664 if (end_io_wq->metadata == 1)
cad321ad
CM
665 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
666 &end_io_wq->work);
0cb59c99
JB
667 else if (end_io_wq->metadata == 2)
668 btrfs_queue_worker(&fs_info->endio_freespace_worker,
669 &end_io_wq->work);
cad321ad
CM
670 else
671 btrfs_queue_worker(&fs_info->endio_write_workers,
672 &end_io_wq->work);
d20f7043
CM
673 } else {
674 if (end_io_wq->metadata)
675 btrfs_queue_worker(&fs_info->endio_meta_workers,
676 &end_io_wq->work);
677 else
678 btrfs_queue_worker(&fs_info->endio_workers,
679 &end_io_wq->work);
680 }
ce9adaa5
CM
681}
682
0cb59c99
JB
683/*
684 * For the metadata arg you want
685 *
686 * 0 - if data
687 * 1 - if normal metadta
688 * 2 - if writing to the free space cache area
689 */
22c59948
CM
690int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
691 int metadata)
0b86a832 692{
ce9adaa5 693 struct end_io_wq *end_io_wq;
ce9adaa5
CM
694 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
695 if (!end_io_wq)
696 return -ENOMEM;
697
698 end_io_wq->private = bio->bi_private;
699 end_io_wq->end_io = bio->bi_end_io;
22c59948 700 end_io_wq->info = info;
ce9adaa5
CM
701 end_io_wq->error = 0;
702 end_io_wq->bio = bio;
22c59948 703 end_io_wq->metadata = metadata;
ce9adaa5
CM
704
705 bio->bi_private = end_io_wq;
706 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
707 return 0;
708}
709
b64a2851 710unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 711{
4854ddd0
CM
712 unsigned long limit = min_t(unsigned long,
713 info->workers.max_workers,
714 info->fs_devices->open_devices);
715 return 256 * limit;
716}
0986fe9e 717
4a69a410
CM
718static void run_one_async_start(struct btrfs_work *work)
719{
4a69a410
CM
720 struct async_submit_bio *async;
721
722 async = container_of(work, struct async_submit_bio, work);
4a69a410 723 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
724 async->mirror_num, async->bio_flags,
725 async->bio_offset);
4a69a410
CM
726}
727
728static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
729{
730 struct btrfs_fs_info *fs_info;
731 struct async_submit_bio *async;
4854ddd0 732 int limit;
8b712842
CM
733
734 async = container_of(work, struct async_submit_bio, work);
735 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 736
b64a2851 737 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
738 limit = limit * 2 / 3;
739
8b712842 740 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 741
b64a2851
CM
742 if (atomic_read(&fs_info->nr_async_submits) < limit &&
743 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
744 wake_up(&fs_info->async_submit_wait);
745
4a69a410 746 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
747 async->mirror_num, async->bio_flags,
748 async->bio_offset);
4a69a410
CM
749}
750
751static void run_one_async_free(struct btrfs_work *work)
752{
753 struct async_submit_bio *async;
754
755 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
756 kfree(async);
757}
758
44b8bd7e
CM
759int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
760 int rw, struct bio *bio, int mirror_num,
c8b97818 761 unsigned long bio_flags,
eaf25d93 762 u64 bio_offset,
4a69a410
CM
763 extent_submit_bio_hook_t *submit_bio_start,
764 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
765{
766 struct async_submit_bio *async;
767
768 async = kmalloc(sizeof(*async), GFP_NOFS);
769 if (!async)
770 return -ENOMEM;
771
772 async->inode = inode;
773 async->rw = rw;
774 async->bio = bio;
775 async->mirror_num = mirror_num;
4a69a410
CM
776 async->submit_bio_start = submit_bio_start;
777 async->submit_bio_done = submit_bio_done;
778
779 async->work.func = run_one_async_start;
780 async->work.ordered_func = run_one_async_done;
781 async->work.ordered_free = run_one_async_free;
782
8b712842 783 async->work.flags = 0;
c8b97818 784 async->bio_flags = bio_flags;
eaf25d93 785 async->bio_offset = bio_offset;
8c8bee1d 786
cb03c743 787 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 788
7b6d91da 789 if (rw & REQ_SYNC)
d313d7a3
CM
790 btrfs_set_work_high_prio(&async->work);
791
8b712842 792 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 793
d397712b 794 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
795 atomic_read(&fs_info->nr_async_submits)) {
796 wait_event(fs_info->async_submit_wait,
797 (atomic_read(&fs_info->nr_async_submits) == 0));
798 }
799
44b8bd7e
CM
800 return 0;
801}
802
ce3ed71a
CM
803static int btree_csum_one_bio(struct bio *bio)
804{
805 struct bio_vec *bvec = bio->bi_io_vec;
806 int bio_index = 0;
807 struct btrfs_root *root;
808
809 WARN_ON(bio->bi_vcnt <= 0);
d397712b 810 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
811 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
812 csum_dirty_buffer(root, bvec->bv_page);
813 bio_index++;
814 bvec++;
815 }
816 return 0;
817}
818
4a69a410
CM
819static int __btree_submit_bio_start(struct inode *inode, int rw,
820 struct bio *bio, int mirror_num,
eaf25d93
CM
821 unsigned long bio_flags,
822 u64 bio_offset)
22c59948 823{
8b712842
CM
824 /*
825 * when we're called for a write, we're already in the async
5443be45 826 * submission context. Just jump into btrfs_map_bio
8b712842 827 */
4a69a410
CM
828 btree_csum_one_bio(bio);
829 return 0;
830}
22c59948 831
4a69a410 832static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
833 int mirror_num, unsigned long bio_flags,
834 u64 bio_offset)
4a69a410 835{
8b712842 836 /*
4a69a410
CM
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
8b712842 839 */
8b712842 840 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
841}
842
44b8bd7e 843static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
844 int mirror_num, unsigned long bio_flags,
845 u64 bio_offset)
44b8bd7e 846{
cad321ad
CM
847 int ret;
848
355808c2
JM
849 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, bio, 1);
850 if (ret)
851 return ret;
cad321ad 852
7b6d91da 853 if (!(rw & REQ_WRITE)) {
4a69a410
CM
854 /*
855 * called for a read, do the setup so that checksum validation
856 * can happen in the async kernel threads
857 */
4a69a410 858 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 859 mirror_num, 0);
44b8bd7e 860 }
d313d7a3 861
cad321ad
CM
862 /*
863 * kthread helpers are used to submit writes so that checksumming
864 * can happen in parallel across all CPUs
865 */
44b8bd7e 866 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 867 inode, rw, bio, mirror_num, 0,
eaf25d93 868 bio_offset,
4a69a410
CM
869 __btree_submit_bio_start,
870 __btree_submit_bio_done);
44b8bd7e
CM
871}
872
3dd1462e 873#ifdef CONFIG_MIGRATION
784b4e29 874static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
875 struct page *newpage, struct page *page,
876 enum migrate_mode mode)
784b4e29
CM
877{
878 /*
879 * we can't safely write a btree page from here,
880 * we haven't done the locking hook
881 */
882 if (PageDirty(page))
883 return -EAGAIN;
884 /*
885 * Buffers may be managed in a filesystem specific way.
886 * We must have no buffers or drop them.
887 */
888 if (page_has_private(page) &&
889 !try_to_release_page(page, GFP_KERNEL))
890 return -EAGAIN;
a6bc32b8 891 return migrate_page(mapping, newpage, page, mode);
784b4e29 892}
3dd1462e 893#endif
784b4e29 894
0da5468f
CM
895static int btree_writepage(struct page *page, struct writeback_control *wbc)
896{
d1310b2e 897 struct extent_io_tree *tree;
b9473439
CM
898 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
899 struct extent_buffer *eb;
900 int was_dirty;
901
d1310b2e 902 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
903 if (!(current->flags & PF_MEMALLOC)) {
904 return extent_write_full_page(tree, page,
905 btree_get_extent, wbc);
906 }
5443be45 907
b9473439 908 redirty_page_for_writepage(wbc, page);
784b4e29 909 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
910 WARN_ON(!eb);
911
912 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
913 if (!was_dirty) {
914 spin_lock(&root->fs_info->delalloc_lock);
915 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
916 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 917 }
b9473439
CM
918 free_extent_buffer(eb);
919
920 unlock_page(page);
921 return 0;
5f39d397 922}
0da5468f
CM
923
924static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926{
d1310b2e
CM
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 929 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 931 u64 num_dirty;
24ab9cd8 932 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
933
934 if (wbc->for_kupdate)
935 return 0;
936
b9473439
CM
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 939 if (num_dirty < thresh)
793955bc 940 return 0;
793955bc 941 }
0da5468f
CM
942 return extent_writepages(tree, mapping, btree_get_extent, wbc);
943}
944
b2950863 945static int btree_readpage(struct file *file, struct page *page)
5f39d397 946{
d1310b2e
CM
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 949 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 950}
22b0ebda 951
70dec807 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 953{
d1310b2e
CM
954 struct extent_io_tree *tree;
955 struct extent_map_tree *map;
5f39d397 956 int ret;
d98237b3 957
98509cfc 958 if (PageWriteback(page) || PageDirty(page))
d397712b 959 return 0;
98509cfc 960
d1310b2e
CM
961 tree = &BTRFS_I(page->mapping->host)->io_tree;
962 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 963
0c4e538b
DS
964 /*
965 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
966 * slab allocation from alloc_extent_state down the callchain where
967 * it'd hit a BUG_ON as those flags are not allowed.
968 */
969 gfp_flags &= ~GFP_SLAB_BUG_MASK;
970
7b13b7b1 971 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 972 if (!ret)
6af118ce 973 return 0;
6af118ce
CM
974
975 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
976 if (ret == 1) {
977 ClearPagePrivate(page);
978 set_page_private(page, 0);
979 page_cache_release(page);
980 }
6af118ce 981
d98237b3
CM
982 return ret;
983}
984
5f39d397 985static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 986{
d1310b2e
CM
987 struct extent_io_tree *tree;
988 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
989 extent_invalidatepage(tree, page, offset);
990 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 991 if (PagePrivate(page)) {
d397712b
CM
992 printk(KERN_WARNING "btrfs warning page private not zero "
993 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
994 ClearPagePrivate(page);
995 set_page_private(page, 0);
996 page_cache_release(page);
997 }
d98237b3
CM
998}
999
7f09410b 1000static const struct address_space_operations btree_aops = {
d98237b3
CM
1001 .readpage = btree_readpage,
1002 .writepage = btree_writepage,
0da5468f 1003 .writepages = btree_writepages,
5f39d397
CM
1004 .releasepage = btree_releasepage,
1005 .invalidatepage = btree_invalidatepage,
5a92bc88 1006#ifdef CONFIG_MIGRATION
784b4e29 1007 .migratepage = btree_migratepage,
5a92bc88 1008#endif
d98237b3
CM
1009};
1010
ca7a79ad
CM
1011int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1012 u64 parent_transid)
090d1875 1013{
5f39d397
CM
1014 struct extent_buffer *buf = NULL;
1015 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1016 int ret = 0;
090d1875 1017
db94535d 1018 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1019 if (!buf)
090d1875 1020 return 0;
d1310b2e 1021 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1022 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1023 free_extent_buffer(buf);
de428b63 1024 return ret;
090d1875
CM
1025}
1026
ab0fff03
AJ
1027int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1028 int mirror_num, struct extent_buffer **eb)
1029{
1030 struct extent_buffer *buf = NULL;
1031 struct inode *btree_inode = root->fs_info->btree_inode;
1032 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1033 int ret;
1034
1035 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1036 if (!buf)
1037 return 0;
1038
1039 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1040
1041 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1042 btree_get_extent, mirror_num);
1043 if (ret) {
1044 free_extent_buffer(buf);
1045 return ret;
1046 }
1047
1048 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1049 free_extent_buffer(buf);
1050 return -EIO;
1051 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1052 *eb = buf;
1053 } else {
1054 free_extent_buffer(buf);
1055 }
1056 return 0;
1057}
1058
0999df54
CM
1059struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1060 u64 bytenr, u32 blocksize)
1061{
1062 struct inode *btree_inode = root->fs_info->btree_inode;
1063 struct extent_buffer *eb;
1064 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1065 bytenr, blocksize);
0999df54
CM
1066 return eb;
1067}
1068
1069struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1070 u64 bytenr, u32 blocksize)
1071{
1072 struct inode *btree_inode = root->fs_info->btree_inode;
1073 struct extent_buffer *eb;
1074
1075 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 1076 bytenr, blocksize, NULL);
0999df54
CM
1077 return eb;
1078}
1079
1080
e02119d5
CM
1081int btrfs_write_tree_block(struct extent_buffer *buf)
1082{
8aa38c31
CH
1083 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1084 buf->start + buf->len - 1);
e02119d5
CM
1085}
1086
1087int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1088{
8aa38c31
CH
1089 return filemap_fdatawait_range(buf->first_page->mapping,
1090 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1091}
1092
0999df54 1093struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1094 u32 blocksize, u64 parent_transid)
0999df54
CM
1095{
1096 struct extent_buffer *buf = NULL;
0999df54
CM
1097 int ret;
1098
0999df54
CM
1099 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1100 if (!buf)
1101 return NULL;
0999df54 1102
ca7a79ad 1103 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1104
d397712b 1105 if (ret == 0)
b4ce94de 1106 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1107 return buf;
ce9adaa5 1108
eb60ceac
CM
1109}
1110
d5c13f92
JM
1111void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1112 struct extent_buffer *buf)
ed2ff2cb 1113{
5f39d397 1114 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1115 if (btrfs_header_generation(buf) ==
925baedd 1116 root->fs_info->running_transaction->transid) {
b9447ef8 1117 btrfs_assert_tree_locked(buf);
b4ce94de 1118
b9473439
CM
1119 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1120 spin_lock(&root->fs_info->delalloc_lock);
1121 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1122 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1123 else {
1124 spin_unlock(&root->fs_info->delalloc_lock);
1125 btrfs_panic(root->fs_info, -EOVERFLOW,
1126 "Can't clear %lu bytes from "
1127 " dirty_mdatadata_bytes (%lu)",
1128 buf->len,
1129 root->fs_info->dirty_metadata_bytes);
1130 }
b9473439
CM
1131 spin_unlock(&root->fs_info->delalloc_lock);
1132 }
b4ce94de 1133
b9473439
CM
1134 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1135 btrfs_set_lock_blocking(buf);
d1310b2e 1136 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1137 buf);
925baedd 1138 }
5f39d397
CM
1139}
1140
143bede5
JM
1141static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1142 u32 stripesize, struct btrfs_root *root,
1143 struct btrfs_fs_info *fs_info,
1144 u64 objectid)
d97e63b6 1145{
cfaa7295 1146 root->node = NULL;
a28ec197 1147 root->commit_root = NULL;
db94535d
CM
1148 root->sectorsize = sectorsize;
1149 root->nodesize = nodesize;
1150 root->leafsize = leafsize;
87ee04eb 1151 root->stripesize = stripesize;
123abc88 1152 root->ref_cows = 0;
0b86a832 1153 root->track_dirty = 0;
c71bf099 1154 root->in_radix = 0;
d68fc57b
YZ
1155 root->orphan_item_inserted = 0;
1156 root->orphan_cleanup_state = 0;
0b86a832 1157
0f7d52f4
CM
1158 root->objectid = objectid;
1159 root->last_trans = 0;
13a8a7c8 1160 root->highest_objectid = 0;
58176a96 1161 root->name = NULL;
6bef4d31 1162 root->inode_tree = RB_ROOT;
16cdcec7 1163 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1164 root->block_rsv = NULL;
d68fc57b 1165 root->orphan_block_rsv = NULL;
0b86a832
CM
1166
1167 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1168 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1169 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1170 spin_lock_init(&root->orphan_lock);
5d4f98a2 1171 spin_lock_init(&root->inode_lock);
f0486c68 1172 spin_lock_init(&root->accounting_lock);
a2135011 1173 mutex_init(&root->objectid_mutex);
e02119d5 1174 mutex_init(&root->log_mutex);
7237f183
YZ
1175 init_waitqueue_head(&root->log_writer_wait);
1176 init_waitqueue_head(&root->log_commit_wait[0]);
1177 init_waitqueue_head(&root->log_commit_wait[1]);
1178 atomic_set(&root->log_commit[0], 0);
1179 atomic_set(&root->log_commit[1], 0);
1180 atomic_set(&root->log_writers, 0);
1181 root->log_batch = 0;
1182 root->log_transid = 0;
257c62e1 1183 root->last_log_commit = 0;
d0c803c4 1184 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1185 fs_info->btree_inode->i_mapping);
017e5369 1186
3768f368
CM
1187 memset(&root->root_key, 0, sizeof(root->root_key));
1188 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1189 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1190 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1191 root->defrag_trans_start = fs_info->generation;
58176a96 1192 init_completion(&root->kobj_unregister);
6702ed49 1193 root->defrag_running = 0;
4d775673 1194 root->root_key.objectid = objectid;
0ee5dc67 1195 root->anon_dev = 0;
3768f368
CM
1196}
1197
200a5c17
JM
1198static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1199 struct btrfs_fs_info *fs_info,
1200 u64 objectid,
1201 struct btrfs_root *root)
3768f368
CM
1202{
1203 int ret;
db94535d 1204 u32 blocksize;
84234f3a 1205 u64 generation;
3768f368 1206
db94535d 1207 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1208 tree_root->sectorsize, tree_root->stripesize,
1209 root, fs_info, objectid);
3768f368
CM
1210 ret = btrfs_find_last_root(tree_root, objectid,
1211 &root->root_item, &root->root_key);
4df27c4d
YZ
1212 if (ret > 0)
1213 return -ENOENT;
200a5c17
JM
1214 else if (ret < 0)
1215 return ret;
3768f368 1216
84234f3a 1217 generation = btrfs_root_generation(&root->root_item);
db94535d 1218 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1219 root->commit_root = NULL;
db94535d 1220 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1221 blocksize, generation);
68433b73
CM
1222 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1223 free_extent_buffer(root->node);
af31f5e5 1224 root->node = NULL;
68433b73
CM
1225 return -EIO;
1226 }
4df27c4d 1227 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1228 return 0;
1229}
1230
f84a8bd6 1231static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1232{
1233 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1234 if (root)
1235 root->fs_info = fs_info;
1236 return root;
1237}
1238
7237f183
YZ
1239static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1241{
1242 struct btrfs_root *root;
1243 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1244 struct extent_buffer *leaf;
e02119d5 1245
6f07e42e 1246 root = btrfs_alloc_root(fs_info);
e02119d5 1247 if (!root)
7237f183 1248 return ERR_PTR(-ENOMEM);
e02119d5
CM
1249
1250 __setup_root(tree_root->nodesize, tree_root->leafsize,
1251 tree_root->sectorsize, tree_root->stripesize,
1252 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1253
1254 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1255 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1256 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1257 /*
1258 * log trees do not get reference counted because they go away
1259 * before a real commit is actually done. They do store pointers
1260 * to file data extents, and those reference counts still get
1261 * updated (along with back refs to the log tree).
1262 */
e02119d5
CM
1263 root->ref_cows = 0;
1264
5d4f98a2 1265 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1266 BTRFS_TREE_LOG_OBJECTID, NULL,
1267 0, 0, 0, 0);
7237f183
YZ
1268 if (IS_ERR(leaf)) {
1269 kfree(root);
1270 return ERR_CAST(leaf);
1271 }
e02119d5 1272
5d4f98a2
YZ
1273 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1274 btrfs_set_header_bytenr(leaf, leaf->start);
1275 btrfs_set_header_generation(leaf, trans->transid);
1276 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1277 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1278 root->node = leaf;
e02119d5
CM
1279
1280 write_extent_buffer(root->node, root->fs_info->fsid,
1281 (unsigned long)btrfs_header_fsid(root->node),
1282 BTRFS_FSID_SIZE);
1283 btrfs_mark_buffer_dirty(root->node);
1284 btrfs_tree_unlock(root->node);
7237f183
YZ
1285 return root;
1286}
1287
1288int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1289 struct btrfs_fs_info *fs_info)
1290{
1291 struct btrfs_root *log_root;
1292
1293 log_root = alloc_log_tree(trans, fs_info);
1294 if (IS_ERR(log_root))
1295 return PTR_ERR(log_root);
1296 WARN_ON(fs_info->log_root_tree);
1297 fs_info->log_root_tree = log_root;
1298 return 0;
1299}
1300
1301int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1302 struct btrfs_root *root)
1303{
1304 struct btrfs_root *log_root;
1305 struct btrfs_inode_item *inode_item;
1306
1307 log_root = alloc_log_tree(trans, root->fs_info);
1308 if (IS_ERR(log_root))
1309 return PTR_ERR(log_root);
1310
1311 log_root->last_trans = trans->transid;
1312 log_root->root_key.offset = root->root_key.objectid;
1313
1314 inode_item = &log_root->root_item.inode;
1315 inode_item->generation = cpu_to_le64(1);
1316 inode_item->size = cpu_to_le64(3);
1317 inode_item->nlink = cpu_to_le32(1);
1318 inode_item->nbytes = cpu_to_le64(root->leafsize);
1319 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1320
5d4f98a2 1321 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1322
1323 WARN_ON(root->log_root);
1324 root->log_root = log_root;
1325 root->log_transid = 0;
257c62e1 1326 root->last_log_commit = 0;
e02119d5
CM
1327 return 0;
1328}
1329
1330struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1331 struct btrfs_key *location)
1332{
1333 struct btrfs_root *root;
1334 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1335 struct btrfs_path *path;
5f39d397 1336 struct extent_buffer *l;
84234f3a 1337 u64 generation;
db94535d 1338 u32 blocksize;
0f7d52f4
CM
1339 int ret = 0;
1340
6f07e42e 1341 root = btrfs_alloc_root(fs_info);
0cf6c620 1342 if (!root)
0f7d52f4 1343 return ERR_PTR(-ENOMEM);
0f7d52f4 1344 if (location->offset == (u64)-1) {
db94535d 1345 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1346 location->objectid, root);
1347 if (ret) {
0f7d52f4
CM
1348 kfree(root);
1349 return ERR_PTR(ret);
1350 }
13a8a7c8 1351 goto out;
0f7d52f4
CM
1352 }
1353
db94535d 1354 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1355 tree_root->sectorsize, tree_root->stripesize,
1356 root, fs_info, location->objectid);
0f7d52f4
CM
1357
1358 path = btrfs_alloc_path();
db5b493a
TI
1359 if (!path) {
1360 kfree(root);
1361 return ERR_PTR(-ENOMEM);
1362 }
0f7d52f4 1363 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1364 if (ret == 0) {
1365 l = path->nodes[0];
1366 read_extent_buffer(l, &root->root_item,
1367 btrfs_item_ptr_offset(l, path->slots[0]),
1368 sizeof(root->root_item));
1369 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1370 }
0f7d52f4
CM
1371 btrfs_free_path(path);
1372 if (ret) {
5e540f77 1373 kfree(root);
13a8a7c8
YZ
1374 if (ret > 0)
1375 ret = -ENOENT;
0f7d52f4
CM
1376 return ERR_PTR(ret);
1377 }
13a8a7c8 1378
84234f3a 1379 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1380 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1381 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1382 blocksize, generation);
5d4f98a2 1383 root->commit_root = btrfs_root_node(root);
0f7d52f4 1384 BUG_ON(!root->node);
13a8a7c8 1385out:
08fe4db1 1386 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1387 root->ref_cows = 1;
08fe4db1
LZ
1388 btrfs_check_and_init_root_item(&root->root_item);
1389 }
13a8a7c8 1390
5eda7b5e
CM
1391 return root;
1392}
1393
edbd8d4e
CM
1394struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1395 struct btrfs_key *location)
5eda7b5e
CM
1396{
1397 struct btrfs_root *root;
1398 int ret;
1399
edbd8d4e
CM
1400 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1401 return fs_info->tree_root;
1402 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1403 return fs_info->extent_root;
8f18cf13
CM
1404 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1405 return fs_info->chunk_root;
1406 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1407 return fs_info->dev_root;
0403e47e
YZ
1408 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1409 return fs_info->csum_root;
4df27c4d
YZ
1410again:
1411 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1412 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1413 (unsigned long)location->objectid);
4df27c4d 1414 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1415 if (root)
1416 return root;
1417
e02119d5 1418 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1419 if (IS_ERR(root))
1420 return root;
3394e160 1421
581bb050 1422 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1423 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1424 GFP_NOFS);
35a30d7c
DS
1425 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1426 ret = -ENOMEM;
581bb050 1427 goto fail;
35a30d7c 1428 }
581bb050
LZ
1429
1430 btrfs_init_free_ino_ctl(root);
1431 mutex_init(&root->fs_commit_mutex);
1432 spin_lock_init(&root->cache_lock);
1433 init_waitqueue_head(&root->cache_wait);
1434
0ee5dc67 1435 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1436 if (ret)
1437 goto fail;
3394e160 1438
d68fc57b
YZ
1439 if (btrfs_root_refs(&root->root_item) == 0) {
1440 ret = -ENOENT;
1441 goto fail;
1442 }
1443
1444 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1445 if (ret < 0)
1446 goto fail;
1447 if (ret == 0)
1448 root->orphan_item_inserted = 1;
1449
4df27c4d
YZ
1450 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1451 if (ret)
1452 goto fail;
1453
1454 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1455 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1456 (unsigned long)root->root_key.objectid,
0f7d52f4 1457 root);
d68fc57b 1458 if (ret == 0)
4df27c4d 1459 root->in_radix = 1;
d68fc57b 1460
4df27c4d
YZ
1461 spin_unlock(&fs_info->fs_roots_radix_lock);
1462 radix_tree_preload_end();
0f7d52f4 1463 if (ret) {
4df27c4d
YZ
1464 if (ret == -EEXIST) {
1465 free_fs_root(root);
1466 goto again;
1467 }
1468 goto fail;
0f7d52f4 1469 }
4df27c4d
YZ
1470
1471 ret = btrfs_find_dead_roots(fs_info->tree_root,
1472 root->root_key.objectid);
1473 WARN_ON(ret);
edbd8d4e 1474 return root;
4df27c4d
YZ
1475fail:
1476 free_fs_root(root);
1477 return ERR_PTR(ret);
edbd8d4e
CM
1478}
1479
04160088
CM
1480static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1481{
1482 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1483 int ret = 0;
04160088
CM
1484 struct btrfs_device *device;
1485 struct backing_dev_info *bdi;
b7967db7 1486
1f78160c
XG
1487 rcu_read_lock();
1488 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1489 if (!device->bdev)
1490 continue;
04160088
CM
1491 bdi = blk_get_backing_dev_info(device->bdev);
1492 if (bdi && bdi_congested(bdi, bdi_bits)) {
1493 ret = 1;
1494 break;
1495 }
1496 }
1f78160c 1497 rcu_read_unlock();
04160088
CM
1498 return ret;
1499}
1500
ad081f14
JA
1501/*
1502 * If this fails, caller must call bdi_destroy() to get rid of the
1503 * bdi again.
1504 */
04160088
CM
1505static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1506{
ad081f14
JA
1507 int err;
1508
1509 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1510 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1511 if (err)
1512 return err;
1513
4575c9cc 1514 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1515 bdi->congested_fn = btrfs_congested_fn;
1516 bdi->congested_data = info;
1517 return 0;
1518}
1519
ce9adaa5
CM
1520static int bio_ready_for_csum(struct bio *bio)
1521{
1522 u64 length = 0;
1523 u64 buf_len = 0;
1524 u64 start = 0;
1525 struct page *page;
1526 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1527 struct bio_vec *bvec;
1528 int i;
1529 int ret;
1530
1531 bio_for_each_segment(bvec, bio, i) {
1532 page = bvec->bv_page;
1533 if (page->private == EXTENT_PAGE_PRIVATE) {
1534 length += bvec->bv_len;
1535 continue;
1536 }
1537 if (!page->private) {
1538 length += bvec->bv_len;
1539 continue;
1540 }
1541 length = bvec->bv_len;
1542 buf_len = page->private >> 2;
1543 start = page_offset(page) + bvec->bv_offset;
1544 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1545 }
1546 /* are we fully contained in this bio? */
1547 if (buf_len <= length)
1548 return 1;
1549
1550 ret = extent_range_uptodate(io_tree, start + length,
1551 start + buf_len - 1);
ce9adaa5
CM
1552 return ret;
1553}
1554
8b712842
CM
1555/*
1556 * called by the kthread helper functions to finally call the bio end_io
1557 * functions. This is where read checksum verification actually happens
1558 */
1559static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1560{
ce9adaa5 1561 struct bio *bio;
8b712842
CM
1562 struct end_io_wq *end_io_wq;
1563 struct btrfs_fs_info *fs_info;
ce9adaa5 1564 int error;
ce9adaa5 1565
8b712842
CM
1566 end_io_wq = container_of(work, struct end_io_wq, work);
1567 bio = end_io_wq->bio;
1568 fs_info = end_io_wq->info;
ce9adaa5 1569
cad321ad 1570 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1571 * be checksummed at once. This makes sure the entire block is in
1572 * ram and up to date before trying to verify things. For
1573 * blocksize <= pagesize, it is basically a noop
1574 */
7b6d91da 1575 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1576 !bio_ready_for_csum(bio)) {
d20f7043 1577 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1578 &end_io_wq->work);
1579 return;
1580 }
1581 error = end_io_wq->error;
1582 bio->bi_private = end_io_wq->private;
1583 bio->bi_end_io = end_io_wq->end_io;
1584 kfree(end_io_wq);
8b712842 1585 bio_endio(bio, error);
44b8bd7e
CM
1586}
1587
a74a4b97
CM
1588static int cleaner_kthread(void *arg)
1589{
1590 struct btrfs_root *root = arg;
1591
1592 do {
a74a4b97 1593 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1594
1595 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1596 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1597 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1598 btrfs_clean_old_snapshots(root);
1599 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1600 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1601 }
a74a4b97 1602
a0acae0e 1603 if (!try_to_freeze()) {
a74a4b97 1604 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1605 if (!kthread_should_stop())
1606 schedule();
a74a4b97
CM
1607 __set_current_state(TASK_RUNNING);
1608 }
1609 } while (!kthread_should_stop());
1610 return 0;
1611}
1612
1613static int transaction_kthread(void *arg)
1614{
1615 struct btrfs_root *root = arg;
1616 struct btrfs_trans_handle *trans;
1617 struct btrfs_transaction *cur;
8929ecfa 1618 u64 transid;
a74a4b97
CM
1619 unsigned long now;
1620 unsigned long delay;
1621 int ret;
1622
1623 do {
a74a4b97
CM
1624 delay = HZ * 30;
1625 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1626 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1627
a4abeea4 1628 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1629 cur = root->fs_info->running_transaction;
1630 if (!cur) {
a4abeea4 1631 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1632 goto sleep;
1633 }
31153d81 1634
a74a4b97 1635 now = get_seconds();
8929ecfa
YZ
1636 if (!cur->blocked &&
1637 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1638 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1639 delay = HZ * 5;
1640 goto sleep;
1641 }
8929ecfa 1642 transid = cur->transid;
a4abeea4 1643 spin_unlock(&root->fs_info->trans_lock);
56bec294 1644
7a7eaa40 1645 trans = btrfs_join_transaction(root);
3612b495 1646 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1647 if (transid == trans->transid) {
1648 ret = btrfs_commit_transaction(trans, root);
1649 BUG_ON(ret);
1650 } else {
1651 btrfs_end_transaction(trans, root);
1652 }
a74a4b97
CM
1653sleep:
1654 wake_up_process(root->fs_info->cleaner_kthread);
1655 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1656
a0acae0e 1657 if (!try_to_freeze()) {
a74a4b97 1658 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1659 if (!kthread_should_stop() &&
1660 !btrfs_transaction_blocked(root->fs_info))
1661 schedule_timeout(delay);
a74a4b97
CM
1662 __set_current_state(TASK_RUNNING);
1663 }
1664 } while (!kthread_should_stop());
1665 return 0;
1666}
1667
af31f5e5
CM
1668/*
1669 * this will find the highest generation in the array of
1670 * root backups. The index of the highest array is returned,
1671 * or -1 if we can't find anything.
1672 *
1673 * We check to make sure the array is valid by comparing the
1674 * generation of the latest root in the array with the generation
1675 * in the super block. If they don't match we pitch it.
1676 */
1677static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1678{
1679 u64 cur;
1680 int newest_index = -1;
1681 struct btrfs_root_backup *root_backup;
1682 int i;
1683
1684 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1685 root_backup = info->super_copy->super_roots + i;
1686 cur = btrfs_backup_tree_root_gen(root_backup);
1687 if (cur == newest_gen)
1688 newest_index = i;
1689 }
1690
1691 /* check to see if we actually wrapped around */
1692 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1693 root_backup = info->super_copy->super_roots;
1694 cur = btrfs_backup_tree_root_gen(root_backup);
1695 if (cur == newest_gen)
1696 newest_index = 0;
1697 }
1698 return newest_index;
1699}
1700
1701
1702/*
1703 * find the oldest backup so we know where to store new entries
1704 * in the backup array. This will set the backup_root_index
1705 * field in the fs_info struct
1706 */
1707static void find_oldest_super_backup(struct btrfs_fs_info *info,
1708 u64 newest_gen)
1709{
1710 int newest_index = -1;
1711
1712 newest_index = find_newest_super_backup(info, newest_gen);
1713 /* if there was garbage in there, just move along */
1714 if (newest_index == -1) {
1715 info->backup_root_index = 0;
1716 } else {
1717 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1718 }
1719}
1720
1721/*
1722 * copy all the root pointers into the super backup array.
1723 * this will bump the backup pointer by one when it is
1724 * done
1725 */
1726static void backup_super_roots(struct btrfs_fs_info *info)
1727{
1728 int next_backup;
1729 struct btrfs_root_backup *root_backup;
1730 int last_backup;
1731
1732 next_backup = info->backup_root_index;
1733 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1734 BTRFS_NUM_BACKUP_ROOTS;
1735
1736 /*
1737 * just overwrite the last backup if we're at the same generation
1738 * this happens only at umount
1739 */
1740 root_backup = info->super_for_commit->super_roots + last_backup;
1741 if (btrfs_backup_tree_root_gen(root_backup) ==
1742 btrfs_header_generation(info->tree_root->node))
1743 next_backup = last_backup;
1744
1745 root_backup = info->super_for_commit->super_roots + next_backup;
1746
1747 /*
1748 * make sure all of our padding and empty slots get zero filled
1749 * regardless of which ones we use today
1750 */
1751 memset(root_backup, 0, sizeof(*root_backup));
1752
1753 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1754
1755 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1756 btrfs_set_backup_tree_root_gen(root_backup,
1757 btrfs_header_generation(info->tree_root->node));
1758
1759 btrfs_set_backup_tree_root_level(root_backup,
1760 btrfs_header_level(info->tree_root->node));
1761
1762 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1763 btrfs_set_backup_chunk_root_gen(root_backup,
1764 btrfs_header_generation(info->chunk_root->node));
1765 btrfs_set_backup_chunk_root_level(root_backup,
1766 btrfs_header_level(info->chunk_root->node));
1767
1768 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1769 btrfs_set_backup_extent_root_gen(root_backup,
1770 btrfs_header_generation(info->extent_root->node));
1771 btrfs_set_backup_extent_root_level(root_backup,
1772 btrfs_header_level(info->extent_root->node));
1773
7c7e82a7
CM
1774 /*
1775 * we might commit during log recovery, which happens before we set
1776 * the fs_root. Make sure it is valid before we fill it in.
1777 */
1778 if (info->fs_root && info->fs_root->node) {
1779 btrfs_set_backup_fs_root(root_backup,
1780 info->fs_root->node->start);
1781 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1782 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1783 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1784 btrfs_header_level(info->fs_root->node));
7c7e82a7 1785 }
af31f5e5
CM
1786
1787 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1788 btrfs_set_backup_dev_root_gen(root_backup,
1789 btrfs_header_generation(info->dev_root->node));
1790 btrfs_set_backup_dev_root_level(root_backup,
1791 btrfs_header_level(info->dev_root->node));
1792
1793 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1794 btrfs_set_backup_csum_root_gen(root_backup,
1795 btrfs_header_generation(info->csum_root->node));
1796 btrfs_set_backup_csum_root_level(root_backup,
1797 btrfs_header_level(info->csum_root->node));
1798
1799 btrfs_set_backup_total_bytes(root_backup,
1800 btrfs_super_total_bytes(info->super_copy));
1801 btrfs_set_backup_bytes_used(root_backup,
1802 btrfs_super_bytes_used(info->super_copy));
1803 btrfs_set_backup_num_devices(root_backup,
1804 btrfs_super_num_devices(info->super_copy));
1805
1806 /*
1807 * if we don't copy this out to the super_copy, it won't get remembered
1808 * for the next commit
1809 */
1810 memcpy(&info->super_copy->super_roots,
1811 &info->super_for_commit->super_roots,
1812 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1813}
1814
1815/*
1816 * this copies info out of the root backup array and back into
1817 * the in-memory super block. It is meant to help iterate through
1818 * the array, so you send it the number of backups you've already
1819 * tried and the last backup index you used.
1820 *
1821 * this returns -1 when it has tried all the backups
1822 */
1823static noinline int next_root_backup(struct btrfs_fs_info *info,
1824 struct btrfs_super_block *super,
1825 int *num_backups_tried, int *backup_index)
1826{
1827 struct btrfs_root_backup *root_backup;
1828 int newest = *backup_index;
1829
1830 if (*num_backups_tried == 0) {
1831 u64 gen = btrfs_super_generation(super);
1832
1833 newest = find_newest_super_backup(info, gen);
1834 if (newest == -1)
1835 return -1;
1836
1837 *backup_index = newest;
1838 *num_backups_tried = 1;
1839 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1840 /* we've tried all the backups, all done */
1841 return -1;
1842 } else {
1843 /* jump to the next oldest backup */
1844 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1845 BTRFS_NUM_BACKUP_ROOTS;
1846 *backup_index = newest;
1847 *num_backups_tried += 1;
1848 }
1849 root_backup = super->super_roots + newest;
1850
1851 btrfs_set_super_generation(super,
1852 btrfs_backup_tree_root_gen(root_backup));
1853 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1854 btrfs_set_super_root_level(super,
1855 btrfs_backup_tree_root_level(root_backup));
1856 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1857
1858 /*
1859 * fixme: the total bytes and num_devices need to match or we should
1860 * need a fsck
1861 */
1862 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1863 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1864 return 0;
1865}
1866
1867/* helper to cleanup tree roots */
1868static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1869{
1870 free_extent_buffer(info->tree_root->node);
1871 free_extent_buffer(info->tree_root->commit_root);
1872 free_extent_buffer(info->dev_root->node);
1873 free_extent_buffer(info->dev_root->commit_root);
1874 free_extent_buffer(info->extent_root->node);
1875 free_extent_buffer(info->extent_root->commit_root);
1876 free_extent_buffer(info->csum_root->node);
1877 free_extent_buffer(info->csum_root->commit_root);
1878
1879 info->tree_root->node = NULL;
1880 info->tree_root->commit_root = NULL;
1881 info->dev_root->node = NULL;
1882 info->dev_root->commit_root = NULL;
1883 info->extent_root->node = NULL;
1884 info->extent_root->commit_root = NULL;
1885 info->csum_root->node = NULL;
1886 info->csum_root->commit_root = NULL;
1887
1888 if (chunk_root) {
1889 free_extent_buffer(info->chunk_root->node);
1890 free_extent_buffer(info->chunk_root->commit_root);
1891 info->chunk_root->node = NULL;
1892 info->chunk_root->commit_root = NULL;
1893 }
1894}
1895
1896
ad2b2c80
AV
1897int open_ctree(struct super_block *sb,
1898 struct btrfs_fs_devices *fs_devices,
1899 char *options)
2e635a27 1900{
db94535d
CM
1901 u32 sectorsize;
1902 u32 nodesize;
1903 u32 leafsize;
1904 u32 blocksize;
87ee04eb 1905 u32 stripesize;
84234f3a 1906 u64 generation;
f2b636e8 1907 u64 features;
3de4586c 1908 struct btrfs_key location;
a061fc8d 1909 struct buffer_head *bh;
4d34b278 1910 struct btrfs_super_block *disk_super;
815745cf 1911 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1912 struct btrfs_root *tree_root;
4d34b278
ID
1913 struct btrfs_root *extent_root;
1914 struct btrfs_root *csum_root;
1915 struct btrfs_root *chunk_root;
1916 struct btrfs_root *dev_root;
e02119d5 1917 struct btrfs_root *log_tree_root;
eb60ceac 1918 int ret;
e58ca020 1919 int err = -EINVAL;
af31f5e5
CM
1920 int num_backups_tried = 0;
1921 int backup_index = 0;
4543df7e 1922
f84a8bd6 1923 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1924 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1925 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1926 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1927 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1928
f84a8bd6
AV
1929 if (!tree_root || !extent_root || !csum_root ||
1930 !chunk_root || !dev_root) {
39279cc3
CM
1931 err = -ENOMEM;
1932 goto fail;
1933 }
76dda93c
YZ
1934
1935 ret = init_srcu_struct(&fs_info->subvol_srcu);
1936 if (ret) {
1937 err = ret;
1938 goto fail;
1939 }
1940
1941 ret = setup_bdi(fs_info, &fs_info->bdi);
1942 if (ret) {
1943 err = ret;
1944 goto fail_srcu;
1945 }
1946
1947 fs_info->btree_inode = new_inode(sb);
1948 if (!fs_info->btree_inode) {
1949 err = -ENOMEM;
1950 goto fail_bdi;
1951 }
1952
a6591715 1953 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1954
76dda93c 1955 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1956 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1957 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1958 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1959 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1960 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1961 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1962 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1963 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1964 spin_lock_init(&fs_info->trans_lock);
31153d81 1965 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1966 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1967 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1968 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1969 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1970 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1971
58176a96 1972 init_completion(&fs_info->kobj_unregister);
0b86a832 1973 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1974 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1975 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1976 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1977 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1978 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1979 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1980 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1981 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1982 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1983 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1984 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1985 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1986 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1987 fs_info->sb = sb;
6f568d35 1988 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1989 fs_info->metadata_ratio = 0;
4cb5300b 1990 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1991 fs_info->trans_no_join = 0;
2bf64758 1992 fs_info->free_chunk_space = 0;
c8b97818 1993
90519d66
AJ
1994 /* readahead state */
1995 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1996 spin_lock_init(&fs_info->reada_lock);
c8b97818 1997
b34b086c
CM
1998 fs_info->thread_pool_size = min_t(unsigned long,
1999 num_online_cpus() + 2, 8);
0afbaf8c 2000
3eaa2885
CM
2001 INIT_LIST_HEAD(&fs_info->ordered_extents);
2002 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2003 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2004 GFP_NOFS);
2005 if (!fs_info->delayed_root) {
2006 err = -ENOMEM;
2007 goto fail_iput;
2008 }
2009 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2010
a2de733c
AJ
2011 mutex_init(&fs_info->scrub_lock);
2012 atomic_set(&fs_info->scrubs_running, 0);
2013 atomic_set(&fs_info->scrub_pause_req, 0);
2014 atomic_set(&fs_info->scrubs_paused, 0);
2015 atomic_set(&fs_info->scrub_cancel_req, 0);
2016 init_waitqueue_head(&fs_info->scrub_pause_wait);
2017 init_rwsem(&fs_info->scrub_super_lock);
2018 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2019#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2020 fs_info->check_integrity_print_mask = 0;
2021#endif
a2de733c 2022
c9e9f97b
ID
2023 spin_lock_init(&fs_info->balance_lock);
2024 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2025 atomic_set(&fs_info->balance_running, 0);
2026 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2027 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2028 fs_info->balance_ctl = NULL;
837d5b6e 2029 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2030
a061fc8d
CM
2031 sb->s_blocksize = 4096;
2032 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2033 sb->s_bdi = &fs_info->bdi;
a061fc8d 2034
76dda93c 2035 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2036 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2037 /*
2038 * we set the i_size on the btree inode to the max possible int.
2039 * the real end of the address space is determined by all of
2040 * the devices in the system
2041 */
2042 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2043 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2044 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2045
5d4f98a2 2046 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2047 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2048 fs_info->btree_inode->i_mapping);
a8067e02 2049 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2050
2051 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2052
76dda93c
YZ
2053 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2054 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2055 sizeof(struct btrfs_key));
2056 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 2057 insert_inode_hash(fs_info->btree_inode);
76dda93c 2058
0f9dd46c 2059 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2060 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2061
11833d66 2062 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2063 fs_info->btree_inode->i_mapping);
11833d66 2064 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2065 fs_info->btree_inode->i_mapping);
11833d66 2066 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2067 fs_info->do_barriers = 1;
e18e4809 2068
39279cc3 2069
5a3f23d5 2070 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2071 mutex_init(&fs_info->tree_log_mutex);
925baedd 2072 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2073 mutex_init(&fs_info->transaction_kthread_mutex);
2074 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2075 mutex_init(&fs_info->volume_mutex);
276e680d 2076 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2077 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2078 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2079
2080 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2081 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2082
e6dcd2dc 2083 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2084 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2085 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2086 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2087
0b86a832 2088 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2089 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2090
a512bbf8 2091 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2092 if (!bh) {
2093 err = -EINVAL;
16cdcec7 2094 goto fail_alloc;
20b45077 2095 }
39279cc3 2096
6c41761f
DS
2097 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2098 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2099 sizeof(*fs_info->super_for_commit));
a061fc8d 2100 brelse(bh);
5f39d397 2101
6c41761f 2102 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2103
6c41761f 2104 disk_super = fs_info->super_copy;
0f7d52f4 2105 if (!btrfs_super_root(disk_super))
16cdcec7 2106 goto fail_alloc;
0f7d52f4 2107
acce952b 2108 /* check FS state, whether FS is broken. */
2109 fs_info->fs_state |= btrfs_super_flags(disk_super);
2110
2111 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2112
af31f5e5
CM
2113 /*
2114 * run through our array of backup supers and setup
2115 * our ring pointer to the oldest one
2116 */
2117 generation = btrfs_super_generation(disk_super);
2118 find_oldest_super_backup(fs_info, generation);
2119
75e7cb7f
LB
2120 /*
2121 * In the long term, we'll store the compression type in the super
2122 * block, and it'll be used for per file compression control.
2123 */
2124 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2125
2b82032c
YZ
2126 ret = btrfs_parse_options(tree_root, options);
2127 if (ret) {
2128 err = ret;
16cdcec7 2129 goto fail_alloc;
2b82032c 2130 }
dfe25020 2131
f2b636e8
JB
2132 features = btrfs_super_incompat_flags(disk_super) &
2133 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2134 if (features) {
2135 printk(KERN_ERR "BTRFS: couldn't mount because of "
2136 "unsupported optional features (%Lx).\n",
21380931 2137 (unsigned long long)features);
f2b636e8 2138 err = -EINVAL;
16cdcec7 2139 goto fail_alloc;
f2b636e8
JB
2140 }
2141
5d4f98a2 2142 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2143 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2144 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2145 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2146 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2147
f2b636e8
JB
2148 features = btrfs_super_compat_ro_flags(disk_super) &
2149 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2150 if (!(sb->s_flags & MS_RDONLY) && features) {
2151 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2152 "unsupported option features (%Lx).\n",
21380931 2153 (unsigned long long)features);
f2b636e8 2154 err = -EINVAL;
16cdcec7 2155 goto fail_alloc;
f2b636e8 2156 }
61d92c32
CM
2157
2158 btrfs_init_workers(&fs_info->generic_worker,
2159 "genwork", 1, NULL);
2160
5443be45 2161 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2162 fs_info->thread_pool_size,
2163 &fs_info->generic_worker);
c8b97818 2164
771ed689 2165 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2166 fs_info->thread_pool_size,
2167 &fs_info->generic_worker);
771ed689 2168
5443be45 2169 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2170 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2171 fs_info->thread_pool_size),
2172 &fs_info->generic_worker);
61b49440 2173
bab39bf9
JB
2174 btrfs_init_workers(&fs_info->caching_workers, "cache",
2175 2, &fs_info->generic_worker);
2176
61b49440
CM
2177 /* a higher idle thresh on the submit workers makes it much more
2178 * likely that bios will be send down in a sane order to the
2179 * devices
2180 */
2181 fs_info->submit_workers.idle_thresh = 64;
53863232 2182
771ed689 2183 fs_info->workers.idle_thresh = 16;
4a69a410 2184 fs_info->workers.ordered = 1;
61b49440 2185
771ed689
CM
2186 fs_info->delalloc_workers.idle_thresh = 2;
2187 fs_info->delalloc_workers.ordered = 1;
2188
61d92c32
CM
2189 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2190 &fs_info->generic_worker);
5443be45 2191 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2192 fs_info->thread_pool_size,
2193 &fs_info->generic_worker);
d20f7043 2194 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2195 fs_info->thread_pool_size,
2196 &fs_info->generic_worker);
cad321ad 2197 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2198 "endio-meta-write", fs_info->thread_pool_size,
2199 &fs_info->generic_worker);
5443be45 2200 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2201 fs_info->thread_pool_size,
2202 &fs_info->generic_worker);
0cb59c99
JB
2203 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2204 1, &fs_info->generic_worker);
16cdcec7
MX
2205 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2206 fs_info->thread_pool_size,
2207 &fs_info->generic_worker);
90519d66
AJ
2208 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2209 fs_info->thread_pool_size,
2210 &fs_info->generic_worker);
61b49440
CM
2211
2212 /*
2213 * endios are largely parallel and should have a very
2214 * low idle thresh
2215 */
2216 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2217 fs_info->endio_meta_workers.idle_thresh = 4;
2218
9042846b
CM
2219 fs_info->endio_write_workers.idle_thresh = 2;
2220 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2221 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2222
0dc3b84a
JB
2223 /*
2224 * btrfs_start_workers can really only fail because of ENOMEM so just
2225 * return -ENOMEM if any of these fail.
2226 */
2227 ret = btrfs_start_workers(&fs_info->workers);
2228 ret |= btrfs_start_workers(&fs_info->generic_worker);
2229 ret |= btrfs_start_workers(&fs_info->submit_workers);
2230 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2231 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2232 ret |= btrfs_start_workers(&fs_info->endio_workers);
2233 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2234 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2235 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2236 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2237 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2238 ret |= btrfs_start_workers(&fs_info->caching_workers);
2239 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2240 if (ret) {
2241 ret = -ENOMEM;
2242 goto fail_sb_buffer;
2243 }
4543df7e 2244
4575c9cc 2245 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2246 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2247 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2248
db94535d
CM
2249 nodesize = btrfs_super_nodesize(disk_super);
2250 leafsize = btrfs_super_leafsize(disk_super);
2251 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2252 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2253 tree_root->nodesize = nodesize;
2254 tree_root->leafsize = leafsize;
2255 tree_root->sectorsize = sectorsize;
87ee04eb 2256 tree_root->stripesize = stripesize;
a061fc8d
CM
2257
2258 sb->s_blocksize = sectorsize;
2259 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2260
39279cc3
CM
2261 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2262 sizeof(disk_super->magic))) {
d397712b 2263 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2264 goto fail_sb_buffer;
2265 }
19c00ddc 2266
941b2ddf
KM
2267 if (sectorsize < PAGE_SIZE) {
2268 printk(KERN_WARNING "btrfs: Incompatible sector size "
2269 "found on %s\n", sb->s_id);
2270 goto fail_sb_buffer;
2271 }
2272
925baedd 2273 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2274 ret = btrfs_read_sys_array(tree_root);
925baedd 2275 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2276 if (ret) {
d397712b
CM
2277 printk(KERN_WARNING "btrfs: failed to read the system "
2278 "array on %s\n", sb->s_id);
5d4f98a2 2279 goto fail_sb_buffer;
84eed90f 2280 }
0b86a832
CM
2281
2282 blocksize = btrfs_level_size(tree_root,
2283 btrfs_super_chunk_root_level(disk_super));
84234f3a 2284 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2285
2286 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2287 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2288
2289 chunk_root->node = read_tree_block(chunk_root,
2290 btrfs_super_chunk_root(disk_super),
84234f3a 2291 blocksize, generation);
0b86a832 2292 BUG_ON(!chunk_root->node);
83121942
DW
2293 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2294 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2295 sb->s_id);
af31f5e5 2296 goto fail_tree_roots;
83121942 2297 }
5d4f98a2
YZ
2298 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2299 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2300
e17cade2 2301 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2302 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2303 BTRFS_UUID_SIZE);
e17cade2 2304
0b86a832 2305 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2306 if (ret) {
d397712b
CM
2307 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2308 sb->s_id);
af31f5e5 2309 goto fail_tree_roots;
2b82032c 2310 }
0b86a832 2311
dfe25020
CM
2312 btrfs_close_extra_devices(fs_devices);
2313
a6b0d5c8
CM
2314 if (!fs_devices->latest_bdev) {
2315 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2316 sb->s_id);
2317 goto fail_tree_roots;
2318 }
2319
af31f5e5 2320retry_root_backup:
db94535d
CM
2321 blocksize = btrfs_level_size(tree_root,
2322 btrfs_super_root_level(disk_super));
84234f3a 2323 generation = btrfs_super_generation(disk_super);
0b86a832 2324
e20d96d6 2325 tree_root->node = read_tree_block(tree_root,
db94535d 2326 btrfs_super_root(disk_super),
84234f3a 2327 blocksize, generation);
af31f5e5
CM
2328 if (!tree_root->node ||
2329 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2330 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2331 sb->s_id);
af31f5e5
CM
2332
2333 goto recovery_tree_root;
83121942 2334 }
af31f5e5 2335
5d4f98a2
YZ
2336 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2337 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2338
2339 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2340 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2341 if (ret)
af31f5e5 2342 goto recovery_tree_root;
0b86a832
CM
2343 extent_root->track_dirty = 1;
2344
2345 ret = find_and_setup_root(tree_root, fs_info,
2346 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2347 if (ret)
af31f5e5 2348 goto recovery_tree_root;
5d4f98a2 2349 dev_root->track_dirty = 1;
3768f368 2350
d20f7043
CM
2351 ret = find_and_setup_root(tree_root, fs_info,
2352 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2353 if (ret)
af31f5e5 2354 goto recovery_tree_root;
d20f7043
CM
2355
2356 csum_root->track_dirty = 1;
2357
8929ecfa
YZ
2358 fs_info->generation = generation;
2359 fs_info->last_trans_committed = generation;
8929ecfa 2360
c59021f8 2361 ret = btrfs_init_space_info(fs_info);
2362 if (ret) {
2363 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2364 goto fail_block_groups;
2365 }
2366
1b1d1f66
JB
2367 ret = btrfs_read_block_groups(extent_root);
2368 if (ret) {
2369 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2370 goto fail_block_groups;
2371 }
9078a3e1 2372
a74a4b97
CM
2373 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2374 "btrfs-cleaner");
57506d50 2375 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2376 goto fail_block_groups;
a74a4b97
CM
2377
2378 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2379 tree_root,
2380 "btrfs-transaction");
57506d50 2381 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2382 goto fail_cleaner;
a74a4b97 2383
c289811c
CM
2384 if (!btrfs_test_opt(tree_root, SSD) &&
2385 !btrfs_test_opt(tree_root, NOSSD) &&
2386 !fs_info->fs_devices->rotating) {
2387 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2388 "mode\n");
2389 btrfs_set_opt(fs_info->mount_opt, SSD);
2390 }
2391
21adbd5c
SB
2392#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2393 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2394 ret = btrfsic_mount(tree_root, fs_devices,
2395 btrfs_test_opt(tree_root,
2396 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2397 1 : 0,
2398 fs_info->check_integrity_print_mask);
2399 if (ret)
2400 printk(KERN_WARNING "btrfs: failed to initialize"
2401 " integrity check module %s\n", sb->s_id);
2402 }
2403#endif
2404
acce952b 2405 /* do not make disk changes in broken FS */
2406 if (btrfs_super_log_root(disk_super) != 0 &&
2407 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2408 u64 bytenr = btrfs_super_log_root(disk_super);
2409
7c2ca468 2410 if (fs_devices->rw_devices == 0) {
d397712b
CM
2411 printk(KERN_WARNING "Btrfs log replay required "
2412 "on RO media\n");
7c2ca468
CM
2413 err = -EIO;
2414 goto fail_trans_kthread;
2415 }
e02119d5
CM
2416 blocksize =
2417 btrfs_level_size(tree_root,
2418 btrfs_super_log_root_level(disk_super));
d18a2c44 2419
6f07e42e 2420 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2421 if (!log_tree_root) {
2422 err = -ENOMEM;
2423 goto fail_trans_kthread;
2424 }
e02119d5
CM
2425
2426 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2427 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2428
2429 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2430 blocksize,
2431 generation + 1);
e02119d5
CM
2432 ret = btrfs_recover_log_trees(log_tree_root);
2433 BUG_ON(ret);
e556ce2c
YZ
2434
2435 if (sb->s_flags & MS_RDONLY) {
2436 ret = btrfs_commit_super(tree_root);
2437 BUG_ON(ret);
2438 }
e02119d5 2439 }
1a40e23b 2440
76dda93c
YZ
2441 ret = btrfs_find_orphan_roots(tree_root);
2442 BUG_ON(ret);
2443
7c2ca468 2444 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2445 ret = btrfs_cleanup_fs_roots(fs_info);
2446 BUG_ON(ret);
2447
5d4f98a2 2448 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2449 if (ret < 0) {
2450 printk(KERN_WARNING
2451 "btrfs: failed to recover relocation\n");
2452 err = -EINVAL;
2453 goto fail_trans_kthread;
2454 }
7c2ca468 2455 }
1a40e23b 2456
3de4586c
CM
2457 location.objectid = BTRFS_FS_TREE_OBJECTID;
2458 location.type = BTRFS_ROOT_ITEM_KEY;
2459 location.offset = (u64)-1;
2460
3de4586c
CM
2461 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2462 if (!fs_info->fs_root)
7c2ca468 2463 goto fail_trans_kthread;
3140c9a3
DC
2464 if (IS_ERR(fs_info->fs_root)) {
2465 err = PTR_ERR(fs_info->fs_root);
2466 goto fail_trans_kthread;
2467 }
c289811c 2468
e3acc2a6
JB
2469 if (!(sb->s_flags & MS_RDONLY)) {
2470 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2471 err = btrfs_orphan_cleanup(fs_info->fs_root);
2472 if (!err)
2473 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2474 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2475
2476 if (!err)
2477 err = btrfs_recover_balance(fs_info->tree_root);
2478
66b4ffd1
JB
2479 if (err) {
2480 close_ctree(tree_root);
ad2b2c80 2481 return err;
66b4ffd1 2482 }
e3acc2a6
JB
2483 }
2484
ad2b2c80 2485 return 0;
39279cc3 2486
7c2ca468
CM
2487fail_trans_kthread:
2488 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2489fail_cleaner:
a74a4b97 2490 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2491
2492 /*
2493 * make sure we're done with the btree inode before we stop our
2494 * kthreads
2495 */
2496 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2497 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2498
1b1d1f66
JB
2499fail_block_groups:
2500 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2501
2502fail_tree_roots:
2503 free_root_pointers(fs_info, 1);
2504
39279cc3 2505fail_sb_buffer:
61d92c32 2506 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2507 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2508 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2509 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2510 btrfs_stop_workers(&fs_info->workers);
2511 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2512 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2513 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2514 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2515 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2516 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2517 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2518 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2519fail_alloc:
4543df7e 2520fail_iput:
586e46e2
ID
2521 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2522
7c2ca468 2523 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2524 iput(fs_info->btree_inode);
ad081f14 2525fail_bdi:
7e662854 2526 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2527fail_srcu:
2528 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2529fail:
586e46e2 2530 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2531 return err;
af31f5e5
CM
2532
2533recovery_tree_root:
af31f5e5
CM
2534 if (!btrfs_test_opt(tree_root, RECOVERY))
2535 goto fail_tree_roots;
2536
2537 free_root_pointers(fs_info, 0);
2538
2539 /* don't use the log in recovery mode, it won't be valid */
2540 btrfs_set_super_log_root(disk_super, 0);
2541
2542 /* we can't trust the free space cache either */
2543 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2544
2545 ret = next_root_backup(fs_info, fs_info->super_copy,
2546 &num_backups_tried, &backup_index);
2547 if (ret == -1)
2548 goto fail_block_groups;
2549 goto retry_root_backup;
eb60ceac
CM
2550}
2551
f2984462
CM
2552static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2553{
2554 char b[BDEVNAME_SIZE];
2555
2556 if (uptodate) {
2557 set_buffer_uptodate(bh);
2558 } else {
7a36ddec 2559 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2560 "I/O error on %s\n",
2561 bdevname(bh->b_bdev, b));
1259ab75
CM
2562 /* note, we dont' set_buffer_write_io_error because we have
2563 * our own ways of dealing with the IO errors
2564 */
f2984462
CM
2565 clear_buffer_uptodate(bh);
2566 }
2567 unlock_buffer(bh);
2568 put_bh(bh);
2569}
2570
a512bbf8
YZ
2571struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2572{
2573 struct buffer_head *bh;
2574 struct buffer_head *latest = NULL;
2575 struct btrfs_super_block *super;
2576 int i;
2577 u64 transid = 0;
2578 u64 bytenr;
2579
2580 /* we would like to check all the supers, but that would make
2581 * a btrfs mount succeed after a mkfs from a different FS.
2582 * So, we need to add a special mount option to scan for
2583 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2584 */
2585 for (i = 0; i < 1; i++) {
2586 bytenr = btrfs_sb_offset(i);
2587 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2588 break;
2589 bh = __bread(bdev, bytenr / 4096, 4096);
2590 if (!bh)
2591 continue;
2592
2593 super = (struct btrfs_super_block *)bh->b_data;
2594 if (btrfs_super_bytenr(super) != bytenr ||
2595 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2596 sizeof(super->magic))) {
2597 brelse(bh);
2598 continue;
2599 }
2600
2601 if (!latest || btrfs_super_generation(super) > transid) {
2602 brelse(latest);
2603 latest = bh;
2604 transid = btrfs_super_generation(super);
2605 } else {
2606 brelse(bh);
2607 }
2608 }
2609 return latest;
2610}
2611
4eedeb75
HH
2612/*
2613 * this should be called twice, once with wait == 0 and
2614 * once with wait == 1. When wait == 0 is done, all the buffer heads
2615 * we write are pinned.
2616 *
2617 * They are released when wait == 1 is done.
2618 * max_mirrors must be the same for both runs, and it indicates how
2619 * many supers on this one device should be written.
2620 *
2621 * max_mirrors == 0 means to write them all.
2622 */
a512bbf8
YZ
2623static int write_dev_supers(struct btrfs_device *device,
2624 struct btrfs_super_block *sb,
2625 int do_barriers, int wait, int max_mirrors)
2626{
2627 struct buffer_head *bh;
2628 int i;
2629 int ret;
2630 int errors = 0;
2631 u32 crc;
2632 u64 bytenr;
a512bbf8
YZ
2633
2634 if (max_mirrors == 0)
2635 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2636
a512bbf8
YZ
2637 for (i = 0; i < max_mirrors; i++) {
2638 bytenr = btrfs_sb_offset(i);
2639 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2640 break;
2641
2642 if (wait) {
2643 bh = __find_get_block(device->bdev, bytenr / 4096,
2644 BTRFS_SUPER_INFO_SIZE);
2645 BUG_ON(!bh);
a512bbf8 2646 wait_on_buffer(bh);
4eedeb75
HH
2647 if (!buffer_uptodate(bh))
2648 errors++;
2649
2650 /* drop our reference */
2651 brelse(bh);
2652
2653 /* drop the reference from the wait == 0 run */
2654 brelse(bh);
2655 continue;
a512bbf8
YZ
2656 } else {
2657 btrfs_set_super_bytenr(sb, bytenr);
2658
2659 crc = ~(u32)0;
2660 crc = btrfs_csum_data(NULL, (char *)sb +
2661 BTRFS_CSUM_SIZE, crc,
2662 BTRFS_SUPER_INFO_SIZE -
2663 BTRFS_CSUM_SIZE);
2664 btrfs_csum_final(crc, sb->csum);
2665
4eedeb75
HH
2666 /*
2667 * one reference for us, and we leave it for the
2668 * caller
2669 */
a512bbf8
YZ
2670 bh = __getblk(device->bdev, bytenr / 4096,
2671 BTRFS_SUPER_INFO_SIZE);
2672 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2673
4eedeb75 2674 /* one reference for submit_bh */
a512bbf8 2675 get_bh(bh);
4eedeb75
HH
2676
2677 set_buffer_uptodate(bh);
a512bbf8
YZ
2678 lock_buffer(bh);
2679 bh->b_end_io = btrfs_end_buffer_write_sync;
2680 }
2681
387125fc
CM
2682 /*
2683 * we fua the first super. The others we allow
2684 * to go down lazy.
2685 */
21adbd5c 2686 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2687 if (ret)
a512bbf8 2688 errors++;
a512bbf8
YZ
2689 }
2690 return errors < i ? 0 : -1;
2691}
2692
387125fc
CM
2693/*
2694 * endio for the write_dev_flush, this will wake anyone waiting
2695 * for the barrier when it is done
2696 */
2697static void btrfs_end_empty_barrier(struct bio *bio, int err)
2698{
2699 if (err) {
2700 if (err == -EOPNOTSUPP)
2701 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2702 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2703 }
2704 if (bio->bi_private)
2705 complete(bio->bi_private);
2706 bio_put(bio);
2707}
2708
2709/*
2710 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2711 * sent down. With wait == 1, it waits for the previous flush.
2712 *
2713 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2714 * capable
2715 */
2716static int write_dev_flush(struct btrfs_device *device, int wait)
2717{
2718 struct bio *bio;
2719 int ret = 0;
2720
2721 if (device->nobarriers)
2722 return 0;
2723
2724 if (wait) {
2725 bio = device->flush_bio;
2726 if (!bio)
2727 return 0;
2728
2729 wait_for_completion(&device->flush_wait);
2730
2731 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2732 printk("btrfs: disabling barriers on dev %s\n",
2733 device->name);
2734 device->nobarriers = 1;
2735 }
2736 if (!bio_flagged(bio, BIO_UPTODATE)) {
2737 ret = -EIO;
2738 }
2739
2740 /* drop the reference from the wait == 0 run */
2741 bio_put(bio);
2742 device->flush_bio = NULL;
2743
2744 return ret;
2745 }
2746
2747 /*
2748 * one reference for us, and we leave it for the
2749 * caller
2750 */
2751 device->flush_bio = NULL;;
2752 bio = bio_alloc(GFP_NOFS, 0);
2753 if (!bio)
2754 return -ENOMEM;
2755
2756 bio->bi_end_io = btrfs_end_empty_barrier;
2757 bio->bi_bdev = device->bdev;
2758 init_completion(&device->flush_wait);
2759 bio->bi_private = &device->flush_wait;
2760 device->flush_bio = bio;
2761
2762 bio_get(bio);
21adbd5c 2763 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2764
2765 return 0;
2766}
2767
2768/*
2769 * send an empty flush down to each device in parallel,
2770 * then wait for them
2771 */
2772static int barrier_all_devices(struct btrfs_fs_info *info)
2773{
2774 struct list_head *head;
2775 struct btrfs_device *dev;
2776 int errors = 0;
2777 int ret;
2778
2779 /* send down all the barriers */
2780 head = &info->fs_devices->devices;
2781 list_for_each_entry_rcu(dev, head, dev_list) {
2782 if (!dev->bdev) {
2783 errors++;
2784 continue;
2785 }
2786 if (!dev->in_fs_metadata || !dev->writeable)
2787 continue;
2788
2789 ret = write_dev_flush(dev, 0);
2790 if (ret)
2791 errors++;
2792 }
2793
2794 /* wait for all the barriers */
2795 list_for_each_entry_rcu(dev, head, dev_list) {
2796 if (!dev->bdev) {
2797 errors++;
2798 continue;
2799 }
2800 if (!dev->in_fs_metadata || !dev->writeable)
2801 continue;
2802
2803 ret = write_dev_flush(dev, 1);
2804 if (ret)
2805 errors++;
2806 }
2807 if (errors)
2808 return -EIO;
2809 return 0;
2810}
2811
a512bbf8 2812int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2813{
e5e9a520 2814 struct list_head *head;
f2984462 2815 struct btrfs_device *dev;
a061fc8d 2816 struct btrfs_super_block *sb;
f2984462 2817 struct btrfs_dev_item *dev_item;
f2984462
CM
2818 int ret;
2819 int do_barriers;
a236aed1
CM
2820 int max_errors;
2821 int total_errors = 0;
a061fc8d 2822 u64 flags;
f2984462 2823
6c41761f 2824 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2825 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2826 backup_super_roots(root->fs_info);
f2984462 2827
6c41761f 2828 sb = root->fs_info->super_for_commit;
a061fc8d 2829 dev_item = &sb->dev_item;
e5e9a520 2830
174ba509 2831 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2832 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2833
2834 if (do_barriers)
2835 barrier_all_devices(root->fs_info);
2836
1f78160c 2837 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2838 if (!dev->bdev) {
2839 total_errors++;
2840 continue;
2841 }
2b82032c 2842 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2843 continue;
2844
2b82032c 2845 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2846 btrfs_set_stack_device_type(dev_item, dev->type);
2847 btrfs_set_stack_device_id(dev_item, dev->devid);
2848 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2849 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2850 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2851 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2852 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2853 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2854 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2855
a061fc8d
CM
2856 flags = btrfs_super_flags(sb);
2857 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2858
a512bbf8 2859 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2860 if (ret)
2861 total_errors++;
f2984462 2862 }
a236aed1 2863 if (total_errors > max_errors) {
d397712b
CM
2864 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2865 total_errors);
a236aed1
CM
2866 BUG();
2867 }
f2984462 2868
a512bbf8 2869 total_errors = 0;
1f78160c 2870 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2871 if (!dev->bdev)
2872 continue;
2b82032c 2873 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2874 continue;
2875
a512bbf8
YZ
2876 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2877 if (ret)
2878 total_errors++;
f2984462 2879 }
174ba509 2880 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2881 if (total_errors > max_errors) {
d397712b
CM
2882 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2883 total_errors);
a236aed1
CM
2884 BUG();
2885 }
f2984462
CM
2886 return 0;
2887}
2888
a512bbf8
YZ
2889int write_ctree_super(struct btrfs_trans_handle *trans,
2890 struct btrfs_root *root, int max_mirrors)
eb60ceac 2891{
e66f709b 2892 int ret;
5f39d397 2893
a512bbf8 2894 ret = write_all_supers(root, max_mirrors);
5f39d397 2895 return ret;
cfaa7295
CM
2896}
2897
49b25e05
JM
2898/* Kill all outstanding I/O */
2899void btrfs_abort_devices(struct btrfs_root *root)
2900{
2901 struct list_head *head;
2902 struct btrfs_device *dev;
2903 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2904 head = &root->fs_info->fs_devices->devices;
2905 list_for_each_entry_rcu(dev, head, dev_list) {
2906 blk_abort_queue(dev->bdev->bd_disk->queue);
2907 }
2908 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2909}
2910
143bede5 2911void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2912{
4df27c4d 2913 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2914 radix_tree_delete(&fs_info->fs_roots_radix,
2915 (unsigned long)root->root_key.objectid);
4df27c4d 2916 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2917
2918 if (btrfs_root_refs(&root->root_item) == 0)
2919 synchronize_srcu(&fs_info->subvol_srcu);
2920
581bb050
LZ
2921 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2922 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 2923 free_fs_root(root);
4df27c4d
YZ
2924}
2925
2926static void free_fs_root(struct btrfs_root *root)
2927{
82d5902d 2928 iput(root->cache_inode);
4df27c4d 2929 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2930 if (root->anon_dev)
2931 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2932 free_extent_buffer(root->node);
2933 free_extent_buffer(root->commit_root);
581bb050
LZ
2934 kfree(root->free_ino_ctl);
2935 kfree(root->free_ino_pinned);
d397712b 2936 kfree(root->name);
2619ba1f 2937 kfree(root);
2619ba1f
CM
2938}
2939
143bede5 2940static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2941{
2942 int ret;
2943 struct btrfs_root *gang[8];
2944 int i;
2945
76dda93c
YZ
2946 while (!list_empty(&fs_info->dead_roots)) {
2947 gang[0] = list_entry(fs_info->dead_roots.next,
2948 struct btrfs_root, root_list);
2949 list_del(&gang[0]->root_list);
2950
2951 if (gang[0]->in_radix) {
2952 btrfs_free_fs_root(fs_info, gang[0]);
2953 } else {
2954 free_extent_buffer(gang[0]->node);
2955 free_extent_buffer(gang[0]->commit_root);
2956 kfree(gang[0]);
2957 }
2958 }
2959
d397712b 2960 while (1) {
0f7d52f4
CM
2961 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2962 (void **)gang, 0,
2963 ARRAY_SIZE(gang));
2964 if (!ret)
2965 break;
2619ba1f 2966 for (i = 0; i < ret; i++)
5eda7b5e 2967 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 2968 }
0f7d52f4 2969}
b4100d64 2970
c146afad 2971int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2972{
c146afad
YZ
2973 u64 root_objectid = 0;
2974 struct btrfs_root *gang[8];
2975 int i;
3768f368 2976 int ret;
e089f05c 2977
c146afad
YZ
2978 while (1) {
2979 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2980 (void **)gang, root_objectid,
2981 ARRAY_SIZE(gang));
2982 if (!ret)
2983 break;
5d4f98a2
YZ
2984
2985 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2986 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2987 int err;
2988
c146afad 2989 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2990 err = btrfs_orphan_cleanup(gang[i]);
2991 if (err)
2992 return err;
c146afad
YZ
2993 }
2994 root_objectid++;
2995 }
2996 return 0;
2997}
a2135011 2998
c146afad
YZ
2999int btrfs_commit_super(struct btrfs_root *root)
3000{
3001 struct btrfs_trans_handle *trans;
3002 int ret;
a74a4b97 3003
c146afad 3004 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3005 btrfs_run_delayed_iputs(root);
a74a4b97 3006 btrfs_clean_old_snapshots(root);
c146afad 3007 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3008
3009 /* wait until ongoing cleanup work done */
3010 down_write(&root->fs_info->cleanup_work_sem);
3011 up_write(&root->fs_info->cleanup_work_sem);
3012
7a7eaa40 3013 trans = btrfs_join_transaction(root);
3612b495
TI
3014 if (IS_ERR(trans))
3015 return PTR_ERR(trans);
54aa1f4d 3016 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
3017 BUG_ON(ret);
3018 /* run commit again to drop the original snapshot */
7a7eaa40 3019 trans = btrfs_join_transaction(root);
3612b495
TI
3020 if (IS_ERR(trans))
3021 return PTR_ERR(trans);
79154b1b
CM
3022 btrfs_commit_transaction(trans, root);
3023 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 3024 BUG_ON(ret);
d6bfde87 3025
a512bbf8 3026 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3027 return ret;
3028}
3029
3030int close_ctree(struct btrfs_root *root)
3031{
3032 struct btrfs_fs_info *fs_info = root->fs_info;
3033 int ret;
3034
3035 fs_info->closing = 1;
3036 smp_mb();
3037
837d5b6e
ID
3038 /* pause restriper - we want to resume on mount */
3039 btrfs_pause_balance(root->fs_info);
3040
a2de733c 3041 btrfs_scrub_cancel(root);
4cb5300b
CM
3042
3043 /* wait for any defraggers to finish */
3044 wait_event(fs_info->transaction_wait,
3045 (atomic_read(&fs_info->defrag_running) == 0));
3046
3047 /* clear out the rbtree of defraggable inodes */
e3029d9f 3048 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3049
acce952b 3050 /*
3051 * Here come 2 situations when btrfs is broken to flip readonly:
3052 *
3053 * 1. when btrfs flips readonly somewhere else before
3054 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3055 * and btrfs will skip to write sb directly to keep
3056 * ERROR state on disk.
3057 *
3058 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3059 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3060 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3061 * btrfs will cleanup all FS resources first and write sb then.
3062 */
c146afad 3063 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3064 ret = btrfs_commit_super(root);
3065 if (ret)
3066 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3067 }
3068
3069 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3070 ret = btrfs_error_commit_super(root);
d397712b
CM
3071 if (ret)
3072 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3073 }
0f7d52f4 3074
300e4f8a
JB
3075 btrfs_put_block_group_cache(fs_info);
3076
e3029d9f
AV
3077 kthread_stop(fs_info->transaction_kthread);
3078 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3079
f25784b3
YZ
3080 fs_info->closing = 2;
3081 smp_mb();
3082
b0c68f8b 3083 if (fs_info->delalloc_bytes) {
d397712b 3084 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3085 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3086 }
31153d81 3087 if (fs_info->total_ref_cache_size) {
d397712b
CM
3088 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3089 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3090 }
bcc63abb 3091
5d4f98a2
YZ
3092 free_extent_buffer(fs_info->extent_root->node);
3093 free_extent_buffer(fs_info->extent_root->commit_root);
3094 free_extent_buffer(fs_info->tree_root->node);
3095 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3096 free_extent_buffer(fs_info->chunk_root->node);
3097 free_extent_buffer(fs_info->chunk_root->commit_root);
3098 free_extent_buffer(fs_info->dev_root->node);
3099 free_extent_buffer(fs_info->dev_root->commit_root);
3100 free_extent_buffer(fs_info->csum_root->node);
3101 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3102
e3029d9f 3103 btrfs_free_block_groups(fs_info);
d10c5f31 3104
c146afad 3105 del_fs_roots(fs_info);
d10c5f31 3106
c146afad 3107 iput(fs_info->btree_inode);
9ad6b7bc 3108
61d92c32 3109 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3110 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3111 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3112 btrfs_stop_workers(&fs_info->workers);
3113 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3114 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3115 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3116 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3117 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3118 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3119 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3120 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3121 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3122
21adbd5c
SB
3123#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3124 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3125 btrfsic_unmount(root, fs_info->fs_devices);
3126#endif
3127
dfe25020 3128 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3129 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3130
04160088 3131 bdi_destroy(&fs_info->bdi);
76dda93c 3132 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3133
eb60ceac
CM
3134 return 0;
3135}
3136
1259ab75 3137int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3138{
1259ab75 3139 int ret;
810191ff 3140 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 3141
2ac55d41
JB
3142 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3143 NULL);
1259ab75
CM
3144 if (!ret)
3145 return ret;
3146
3147 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3148 parent_transid);
3149 return !ret;
5f39d397
CM
3150}
3151
3152int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3153{
810191ff 3154 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 3155 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3156 buf);
3157}
6702ed49 3158
5f39d397
CM
3159void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3160{
810191ff 3161 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
3162 u64 transid = btrfs_header_generation(buf);
3163 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3164 int was_dirty;
b4ce94de 3165
b9447ef8 3166 btrfs_assert_tree_locked(buf);
ccd467d6 3167 if (transid != root->fs_info->generation) {
d397712b
CM
3168 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3169 "found %llu running %llu\n",
db94535d 3170 (unsigned long long)buf->start,
d397712b
CM
3171 (unsigned long long)transid,
3172 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3173 WARN_ON(1);
3174 }
b9473439
CM
3175 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3176 buf);
3177 if (!was_dirty) {
3178 spin_lock(&root->fs_info->delalloc_lock);
3179 root->fs_info->dirty_metadata_bytes += buf->len;
3180 spin_unlock(&root->fs_info->delalloc_lock);
3181 }
eb60ceac
CM
3182}
3183
d3c2fdcf 3184void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3185{
3186 /*
3187 * looks as though older kernels can get into trouble with
3188 * this code, they end up stuck in balance_dirty_pages forever
3189 */
3190 u64 num_dirty;
3191 unsigned long thresh = 32 * 1024 * 1024;
3192
3193 if (current->flags & PF_MEMALLOC)
3194 return;
3195
3196 btrfs_balance_delayed_items(root);
3197
3198 num_dirty = root->fs_info->dirty_metadata_bytes;
3199
3200 if (num_dirty > thresh) {
3201 balance_dirty_pages_ratelimited_nr(
3202 root->fs_info->btree_inode->i_mapping, 1);
3203 }
3204 return;
3205}
3206
3207void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3208{
188de649
CM
3209 /*
3210 * looks as though older kernels can get into trouble with
3211 * this code, they end up stuck in balance_dirty_pages forever
3212 */
d6bfde87 3213 u64 num_dirty;
771ed689 3214 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3215
6933c02e 3216 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3217 return;
3218
585ad2c3
CM
3219 num_dirty = root->fs_info->dirty_metadata_bytes;
3220
d6bfde87
CM
3221 if (num_dirty > thresh) {
3222 balance_dirty_pages_ratelimited_nr(
d7fc640e 3223 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3224 }
188de649 3225 return;
35b7e476 3226}
6b80053d 3227
ca7a79ad 3228int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3229{
810191ff 3230 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 3231 int ret;
ca7a79ad 3232 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3233 if (ret == 0)
b4ce94de 3234 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3235 return ret;
6b80053d 3236}
0da5468f 3237
01d658f2
CM
3238static int btree_lock_page_hook(struct page *page, void *data,
3239 void (*flush_fn)(void *))
4bef0848
CM
3240{
3241 struct inode *inode = page->mapping->host;
b9473439 3242 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
3243 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3244 struct extent_buffer *eb;
3245 unsigned long len;
3246 u64 bytenr = page_offset(page);
3247
3248 if (page->private == EXTENT_PAGE_PRIVATE)
3249 goto out;
3250
3251 len = page->private >> 2;
f09d1f60 3252 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
3253 if (!eb)
3254 goto out;
3255
01d658f2
CM
3256 if (!btrfs_try_tree_write_lock(eb)) {
3257 flush_fn(data);
3258 btrfs_tree_lock(eb);
3259 }
4bef0848 3260 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3261
3262 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3263 spin_lock(&root->fs_info->delalloc_lock);
3264 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3265 root->fs_info->dirty_metadata_bytes -= eb->len;
3266 else
3267 WARN_ON(1);
3268 spin_unlock(&root->fs_info->delalloc_lock);
3269 }
3270
4bef0848
CM
3271 btrfs_tree_unlock(eb);
3272 free_extent_buffer(eb);
3273out:
01d658f2
CM
3274 if (!trylock_page(page)) {
3275 flush_fn(data);
3276 lock_page(page);
3277 }
4bef0848
CM
3278 return 0;
3279}
3280
acce952b 3281static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3282 int read_only)
3283{
3284 if (read_only)
3285 return;
3286
3287 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3288 printk(KERN_WARNING "warning: mount fs with errors, "
3289 "running btrfsck is recommended\n");
3290}
3291
3292int btrfs_error_commit_super(struct btrfs_root *root)
3293{
3294 int ret;
3295
3296 mutex_lock(&root->fs_info->cleaner_mutex);
3297 btrfs_run_delayed_iputs(root);
3298 mutex_unlock(&root->fs_info->cleaner_mutex);
3299
3300 down_write(&root->fs_info->cleanup_work_sem);
3301 up_write(&root->fs_info->cleanup_work_sem);
3302
3303 /* cleanup FS via transaction */
3304 btrfs_cleanup_transaction(root);
3305
3306 ret = write_ctree_super(NULL, root, 0);
3307
3308 return ret;
3309}
3310
143bede5 3311static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3312{
3313 struct btrfs_inode *btrfs_inode;
3314 struct list_head splice;
3315
3316 INIT_LIST_HEAD(&splice);
3317
3318 mutex_lock(&root->fs_info->ordered_operations_mutex);
3319 spin_lock(&root->fs_info->ordered_extent_lock);
3320
3321 list_splice_init(&root->fs_info->ordered_operations, &splice);
3322 while (!list_empty(&splice)) {
3323 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3324 ordered_operations);
3325
3326 list_del_init(&btrfs_inode->ordered_operations);
3327
3328 btrfs_invalidate_inodes(btrfs_inode->root);
3329 }
3330
3331 spin_unlock(&root->fs_info->ordered_extent_lock);
3332 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3333}
3334
143bede5 3335static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3336{
3337 struct list_head splice;
3338 struct btrfs_ordered_extent *ordered;
3339 struct inode *inode;
3340
3341 INIT_LIST_HEAD(&splice);
3342
3343 spin_lock(&root->fs_info->ordered_extent_lock);
3344
3345 list_splice_init(&root->fs_info->ordered_extents, &splice);
3346 while (!list_empty(&splice)) {
3347 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3348 root_extent_list);
3349
3350 list_del_init(&ordered->root_extent_list);
3351 atomic_inc(&ordered->refs);
3352
3353 /* the inode may be getting freed (in sys_unlink path). */
3354 inode = igrab(ordered->inode);
3355
3356 spin_unlock(&root->fs_info->ordered_extent_lock);
3357 if (inode)
3358 iput(inode);
3359
3360 atomic_set(&ordered->refs, 1);
3361 btrfs_put_ordered_extent(ordered);
3362
3363 spin_lock(&root->fs_info->ordered_extent_lock);
3364 }
3365
3366 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3367}
3368
3369static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3370 struct btrfs_root *root)
3371{
3372 struct rb_node *node;
3373 struct btrfs_delayed_ref_root *delayed_refs;
3374 struct btrfs_delayed_ref_node *ref;
3375 int ret = 0;
3376
3377 delayed_refs = &trans->delayed_refs;
3378
3379 spin_lock(&delayed_refs->lock);
3380 if (delayed_refs->num_entries == 0) {
cfece4db 3381 spin_unlock(&delayed_refs->lock);
acce952b 3382 printk(KERN_INFO "delayed_refs has NO entry\n");
3383 return ret;
3384 }
3385
3386 node = rb_first(&delayed_refs->root);
3387 while (node) {
3388 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3389 node = rb_next(node);
3390
3391 ref->in_tree = 0;
3392 rb_erase(&ref->rb_node, &delayed_refs->root);
3393 delayed_refs->num_entries--;
3394
3395 atomic_set(&ref->refs, 1);
3396 if (btrfs_delayed_ref_is_head(ref)) {
3397 struct btrfs_delayed_ref_head *head;
3398
3399 head = btrfs_delayed_node_to_head(ref);
3400 mutex_lock(&head->mutex);
3401 kfree(head->extent_op);
3402 delayed_refs->num_heads--;
3403 if (list_empty(&head->cluster))
3404 delayed_refs->num_heads_ready--;
3405 list_del_init(&head->cluster);
3406 mutex_unlock(&head->mutex);
3407 }
3408
3409 spin_unlock(&delayed_refs->lock);
3410 btrfs_put_delayed_ref(ref);
3411
3412 cond_resched();
3413 spin_lock(&delayed_refs->lock);
3414 }
3415
3416 spin_unlock(&delayed_refs->lock);
3417
3418 return ret;
3419}
3420
143bede5 3421static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3422{
3423 struct btrfs_pending_snapshot *snapshot;
3424 struct list_head splice;
3425
3426 INIT_LIST_HEAD(&splice);
3427
3428 list_splice_init(&t->pending_snapshots, &splice);
3429
3430 while (!list_empty(&splice)) {
3431 snapshot = list_entry(splice.next,
3432 struct btrfs_pending_snapshot,
3433 list);
3434
3435 list_del_init(&snapshot->list);
3436
3437 kfree(snapshot);
3438 }
acce952b 3439}
3440
143bede5 3441static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3442{
3443 struct btrfs_inode *btrfs_inode;
3444 struct list_head splice;
3445
3446 INIT_LIST_HEAD(&splice);
3447
acce952b 3448 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3449 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3450
3451 while (!list_empty(&splice)) {
3452 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3453 delalloc_inodes);
3454
3455 list_del_init(&btrfs_inode->delalloc_inodes);
3456
3457 btrfs_invalidate_inodes(btrfs_inode->root);
3458 }
3459
3460 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3461}
3462
3463static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3464 struct extent_io_tree *dirty_pages,
3465 int mark)
3466{
3467 int ret;
3468 struct page *page;
3469 struct inode *btree_inode = root->fs_info->btree_inode;
3470 struct extent_buffer *eb;
3471 u64 start = 0;
3472 u64 end;
3473 u64 offset;
3474 unsigned long index;
3475
3476 while (1) {
3477 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3478 mark);
3479 if (ret)
3480 break;
3481
3482 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3483 while (start <= end) {
3484 index = start >> PAGE_CACHE_SHIFT;
3485 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3486 page = find_get_page(btree_inode->i_mapping, index);
3487 if (!page)
3488 continue;
3489 offset = page_offset(page);
3490
3491 spin_lock(&dirty_pages->buffer_lock);
3492 eb = radix_tree_lookup(
3493 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3494 offset >> PAGE_CACHE_SHIFT);
3495 spin_unlock(&dirty_pages->buffer_lock);
3496 if (eb) {
3497 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3498 &eb->bflags);
3499 atomic_set(&eb->refs, 1);
3500 }
3501 if (PageWriteback(page))
3502 end_page_writeback(page);
3503
3504 lock_page(page);
3505 if (PageDirty(page)) {
3506 clear_page_dirty_for_io(page);
3507 spin_lock_irq(&page->mapping->tree_lock);
3508 radix_tree_tag_clear(&page->mapping->page_tree,
3509 page_index(page),
3510 PAGECACHE_TAG_DIRTY);
3511 spin_unlock_irq(&page->mapping->tree_lock);
3512 }
3513
3514 page->mapping->a_ops->invalidatepage(page, 0);
3515 unlock_page(page);
3516 }
3517 }
3518
3519 return ret;
3520}
3521
3522static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3523 struct extent_io_tree *pinned_extents)
3524{
3525 struct extent_io_tree *unpin;
3526 u64 start;
3527 u64 end;
3528 int ret;
3529
3530 unpin = pinned_extents;
3531 while (1) {
3532 ret = find_first_extent_bit(unpin, 0, &start, &end,
3533 EXTENT_DIRTY);
3534 if (ret)
3535 break;
3536
3537 /* opt_discard */
5378e607
LD
3538 if (btrfs_test_opt(root, DISCARD))
3539 ret = btrfs_error_discard_extent(root, start,
3540 end + 1 - start,
3541 NULL);
acce952b 3542
3543 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3544 btrfs_error_unpin_extent_range(root, start, end);
3545 cond_resched();
3546 }
3547
3548 return 0;
3549}
3550
49b25e05
JM
3551void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3552 struct btrfs_root *root)
3553{
3554 btrfs_destroy_delayed_refs(cur_trans, root);
3555 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3556 cur_trans->dirty_pages.dirty_bytes);
3557
3558 /* FIXME: cleanup wait for commit */
3559 cur_trans->in_commit = 1;
3560 cur_trans->blocked = 1;
3561 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3562 wake_up(&root->fs_info->transaction_blocked_wait);
3563
3564 cur_trans->blocked = 0;
3565 if (waitqueue_active(&root->fs_info->transaction_wait))
3566 wake_up(&root->fs_info->transaction_wait);
3567
3568 cur_trans->commit_done = 1;
3569 if (waitqueue_active(&cur_trans->commit_wait))
3570 wake_up(&cur_trans->commit_wait);
3571
3572 btrfs_destroy_pending_snapshots(cur_trans);
3573
3574 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3575 EXTENT_DIRTY);
3576
3577 /*
3578 memset(cur_trans, 0, sizeof(*cur_trans));
3579 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3580 */
3581}
3582
3583int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3584{
3585 struct btrfs_transaction *t;
3586 LIST_HEAD(list);
3587
acce952b 3588 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3589
a4abeea4 3590 spin_lock(&root->fs_info->trans_lock);
acce952b 3591 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3592 root->fs_info->trans_no_join = 1;
3593 spin_unlock(&root->fs_info->trans_lock);
3594
acce952b 3595 while (!list_empty(&list)) {
3596 t = list_entry(list.next, struct btrfs_transaction, list);
3597 if (!t)
3598 break;
3599
3600 btrfs_destroy_ordered_operations(root);
3601
3602 btrfs_destroy_ordered_extents(root);
3603
3604 btrfs_destroy_delayed_refs(t, root);
3605
3606 btrfs_block_rsv_release(root,
3607 &root->fs_info->trans_block_rsv,
3608 t->dirty_pages.dirty_bytes);
3609
3610 /* FIXME: cleanup wait for commit */
3611 t->in_commit = 1;
3612 t->blocked = 1;
3613 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3614 wake_up(&root->fs_info->transaction_blocked_wait);
3615
3616 t->blocked = 0;
3617 if (waitqueue_active(&root->fs_info->transaction_wait))
3618 wake_up(&root->fs_info->transaction_wait);
acce952b 3619
acce952b 3620 t->commit_done = 1;
3621 if (waitqueue_active(&t->commit_wait))
3622 wake_up(&t->commit_wait);
acce952b 3623
3624 btrfs_destroy_pending_snapshots(t);
3625
3626 btrfs_destroy_delalloc_inodes(root);
3627
a4abeea4 3628 spin_lock(&root->fs_info->trans_lock);
acce952b 3629 root->fs_info->running_transaction = NULL;
a4abeea4 3630 spin_unlock(&root->fs_info->trans_lock);
acce952b 3631
3632 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3633 EXTENT_DIRTY);
3634
3635 btrfs_destroy_pinned_extent(root,
3636 root->fs_info->pinned_extents);
3637
13c5a93e 3638 atomic_set(&t->use_count, 0);
acce952b 3639 list_del_init(&t->list);
3640 memset(t, 0, sizeof(*t));
3641 kmem_cache_free(btrfs_transaction_cachep, t);
3642 }
3643
a4abeea4
JB
3644 spin_lock(&root->fs_info->trans_lock);
3645 root->fs_info->trans_no_join = 0;
3646 spin_unlock(&root->fs_info->trans_lock);
acce952b 3647 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3648
3649 return 0;
3650}
3651
d1310b2e 3652static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3653 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3654 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3655 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3656 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3657 /* note we're sharing with inode.c for the merge bio hook */
3658 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3659};