Btrfs: save us a read_lock
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
eb60ceac 49
de0022b9
JB
50#ifdef CONFIG_X86
51#include <asm/cpufeature.h>
52#endif
53
d1310b2e 54static struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 56static void free_fs_root(struct btrfs_root *root);
fcd1f065 57static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 58 int read_only);
143bede5
JM
59static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 61static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62 struct btrfs_root *root);
143bede5
JM
63static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66 struct extent_io_tree *dirty_pages,
67 int mark);
68static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69 struct extent_io_tree *pinned_extents);
ce9adaa5 70
d352ac68
CM
71/*
72 * end_io_wq structs are used to do processing in task context when an IO is
73 * complete. This is used during reads to verify checksums, and it is used
74 * by writes to insert metadata for new file extents after IO is complete.
75 */
ce9adaa5
CM
76struct end_io_wq {
77 struct bio *bio;
78 bio_end_io_t *end_io;
79 void *private;
80 struct btrfs_fs_info *info;
81 int error;
22c59948 82 int metadata;
ce9adaa5 83 struct list_head list;
8b712842 84 struct btrfs_work work;
ce9adaa5 85};
0da5468f 86
d352ac68
CM
87/*
88 * async submit bios are used to offload expensive checksumming
89 * onto the worker threads. They checksum file and metadata bios
90 * just before they are sent down the IO stack.
91 */
44b8bd7e
CM
92struct async_submit_bio {
93 struct inode *inode;
94 struct bio *bio;
95 struct list_head list;
4a69a410
CM
96 extent_submit_bio_hook_t *submit_bio_start;
97 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
98 int rw;
99 int mirror_num;
c8b97818 100 unsigned long bio_flags;
eaf25d93
CM
101 /*
102 * bio_offset is optional, can be used if the pages in the bio
103 * can't tell us where in the file the bio should go
104 */
105 u64 bio_offset;
8b712842 106 struct btrfs_work work;
79787eaa 107 int error;
44b8bd7e
CM
108};
109
85d4e461
CM
110/*
111 * Lockdep class keys for extent_buffer->lock's in this root. For a given
112 * eb, the lockdep key is determined by the btrfs_root it belongs to and
113 * the level the eb occupies in the tree.
114 *
115 * Different roots are used for different purposes and may nest inside each
116 * other and they require separate keysets. As lockdep keys should be
117 * static, assign keysets according to the purpose of the root as indicated
118 * by btrfs_root->objectid. This ensures that all special purpose roots
119 * have separate keysets.
4008c04a 120 *
85d4e461
CM
121 * Lock-nesting across peer nodes is always done with the immediate parent
122 * node locked thus preventing deadlock. As lockdep doesn't know this, use
123 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 124 *
85d4e461
CM
125 * The key is set by the readpage_end_io_hook after the buffer has passed
126 * csum validation but before the pages are unlocked. It is also set by
127 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 128 *
85d4e461
CM
129 * We also add a check to make sure the highest level of the tree is the
130 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
131 * needs update as well.
4008c04a
CM
132 */
133#ifdef CONFIG_DEBUG_LOCK_ALLOC
134# if BTRFS_MAX_LEVEL != 8
135# error
136# endif
85d4e461
CM
137
138static struct btrfs_lockdep_keyset {
139 u64 id; /* root objectid */
140 const char *name_stem; /* lock name stem */
141 char names[BTRFS_MAX_LEVEL + 1][20];
142 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
143} btrfs_lockdep_keysets[] = {
144 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
145 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
146 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
147 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
148 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
149 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
150 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
151 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
152 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
153 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
154 { .id = 0, .name_stem = "tree" },
4008c04a 155};
85d4e461
CM
156
157void __init btrfs_init_lockdep(void)
158{
159 int i, j;
160
161 /* initialize lockdep class names */
162 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164
165 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166 snprintf(ks->names[j], sizeof(ks->names[j]),
167 "btrfs-%s-%02d", ks->name_stem, j);
168 }
169}
170
171void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172 int level)
173{
174 struct btrfs_lockdep_keyset *ks;
175
176 BUG_ON(level >= ARRAY_SIZE(ks->keys));
177
178 /* find the matching keyset, id 0 is the default entry */
179 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180 if (ks->id == objectid)
181 break;
182
183 lockdep_set_class_and_name(&eb->lock,
184 &ks->keys[level], ks->names[level]);
185}
186
4008c04a
CM
187#endif
188
d352ac68
CM
189/*
190 * extents on the btree inode are pretty simple, there's one extent
191 * that covers the entire device
192 */
b2950863 193static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 194 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 195 int create)
7eccb903 196{
5f39d397
CM
197 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198 struct extent_map *em;
199 int ret;
200
890871be 201 read_lock(&em_tree->lock);
d1310b2e 202 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
203 if (em) {
204 em->bdev =
205 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 206 read_unlock(&em_tree->lock);
5f39d397 207 goto out;
a061fc8d 208 }
890871be 209 read_unlock(&em_tree->lock);
7b13b7b1 210
172ddd60 211 em = alloc_extent_map();
5f39d397
CM
212 if (!em) {
213 em = ERR_PTR(-ENOMEM);
214 goto out;
215 }
216 em->start = 0;
0afbaf8c 217 em->len = (u64)-1;
c8b97818 218 em->block_len = (u64)-1;
5f39d397 219 em->block_start = 0;
a061fc8d 220 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 221
890871be 222 write_lock(&em_tree->lock);
5f39d397
CM
223 ret = add_extent_mapping(em_tree, em);
224 if (ret == -EEXIST) {
225 free_extent_map(em);
7b13b7b1 226 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 227 if (!em)
0433f20d 228 em = ERR_PTR(-EIO);
5f39d397 229 } else if (ret) {
7b13b7b1 230 free_extent_map(em);
0433f20d 231 em = ERR_PTR(ret);
5f39d397 232 }
890871be 233 write_unlock(&em_tree->lock);
7b13b7b1 234
5f39d397
CM
235out:
236 return em;
7eccb903
CM
237}
238
19c00ddc
CM
239u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240{
163e783e 241 return crc32c(seed, data, len);
19c00ddc
CM
242}
243
244void btrfs_csum_final(u32 crc, char *result)
245{
7e75bf3f 246 put_unaligned_le32(~crc, result);
19c00ddc
CM
247}
248
d352ac68
CM
249/*
250 * compute the csum for a btree block, and either verify it or write it
251 * into the csum field of the block.
252 */
19c00ddc
CM
253static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254 int verify)
255{
6c41761f 256 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 257 char *result = NULL;
19c00ddc
CM
258 unsigned long len;
259 unsigned long cur_len;
260 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
261 char *kaddr;
262 unsigned long map_start;
263 unsigned long map_len;
264 int err;
265 u32 crc = ~(u32)0;
607d432d 266 unsigned long inline_result;
19c00ddc
CM
267
268 len = buf->len - offset;
d397712b 269 while (len > 0) {
19c00ddc 270 err = map_private_extent_buffer(buf, offset, 32,
a6591715 271 &kaddr, &map_start, &map_len);
d397712b 272 if (err)
19c00ddc 273 return 1;
19c00ddc
CM
274 cur_len = min(len, map_len - (offset - map_start));
275 crc = btrfs_csum_data(root, kaddr + offset - map_start,
276 crc, cur_len);
277 len -= cur_len;
278 offset += cur_len;
19c00ddc 279 }
607d432d
JB
280 if (csum_size > sizeof(inline_result)) {
281 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282 if (!result)
283 return 1;
284 } else {
285 result = (char *)&inline_result;
286 }
287
19c00ddc
CM
288 btrfs_csum_final(crc, result);
289
290 if (verify) {
607d432d 291 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
292 u32 val;
293 u32 found = 0;
607d432d 294 memcpy(&found, result, csum_size);
e4204ded 295
607d432d 296 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 297 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
298 "failed on %llu wanted %X found %X "
299 "level %d\n",
300 root->fs_info->sb->s_id,
301 (unsigned long long)buf->start, val, found,
302 btrfs_header_level(buf));
607d432d
JB
303 if (result != (char *)&inline_result)
304 kfree(result);
19c00ddc
CM
305 return 1;
306 }
307 } else {
607d432d 308 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 309 }
607d432d
JB
310 if (result != (char *)&inline_result)
311 kfree(result);
19c00ddc
CM
312 return 0;
313}
314
d352ac68
CM
315/*
316 * we can't consider a given block up to date unless the transid of the
317 * block matches the transid in the parent node's pointer. This is how we
318 * detect blocks that either didn't get written at all or got written
319 * in the wrong place.
320 */
1259ab75 321static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
322 struct extent_buffer *eb, u64 parent_transid,
323 int atomic)
1259ab75 324{
2ac55d41 325 struct extent_state *cached_state = NULL;
1259ab75
CM
326 int ret;
327
328 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329 return 0;
330
b9fab919
CM
331 if (atomic)
332 return -EAGAIN;
333
2ac55d41 334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 335 0, &cached_state);
0b32f4bb 336 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
0b32f4bb 347 clear_extent_buffer_uptodate(eb);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
ea466794 363 int failed = 0;
f188591e
CM
364 int ret;
365 int num_copies = 0;
366 int mirror_num = 0;
ea466794 367 int failed_mirror = 0;
f188591e 368
a826d6dc 369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 while (1) {
bb82ab88
AJ
372 ret = read_extent_buffer_pages(io_tree, eb, start,
373 WAIT_COMPLETE,
f188591e 374 btree_get_extent, mirror_num);
256dd1bb
SB
375 if (!ret) {
376 if (!verify_parent_transid(io_tree, eb,
b9fab919 377 parent_transid, 0))
256dd1bb
SB
378 break;
379 else
380 ret = -EIO;
381 }
d397712b 382
a826d6dc
JB
383 /*
384 * This buffer's crc is fine, but its contents are corrupted, so
385 * there is no reason to read the other copies, they won't be
386 * any less wrong.
387 */
388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
389 break;
390
5d964051 391 num_copies = btrfs_num_copies(root->fs_info,
f188591e 392 eb->start, eb->len);
4235298e 393 if (num_copies == 1)
ea466794 394 break;
4235298e 395
5cf1ab56
JB
396 if (!failed_mirror) {
397 failed = 1;
398 failed_mirror = eb->read_mirror;
399 }
400
f188591e 401 mirror_num++;
ea466794
JB
402 if (mirror_num == failed_mirror)
403 mirror_num++;
404
4235298e 405 if (mirror_num > num_copies)
ea466794 406 break;
f188591e 407 }
ea466794 408
c0901581 409 if (failed && !ret && failed_mirror)
ea466794
JB
410 repair_eb_io_failure(root, eb, failed_mirror);
411
412 return ret;
f188591e 413}
19c00ddc 414
d352ac68 415/*
d397712b
CM
416 * checksum a dirty tree block before IO. This has extra checks to make sure
417 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 418 */
d397712b 419
b2950863 420static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 421{
d1310b2e 422 struct extent_io_tree *tree;
4eee4fa4 423 u64 start = page_offset(page);
19c00ddc 424 u64 found_start;
19c00ddc 425 struct extent_buffer *eb;
f188591e 426
d1310b2e 427 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 428
4f2de97a
JB
429 eb = (struct extent_buffer *)page->private;
430 if (page != eb->pages[0])
431 return 0;
19c00ddc
CM
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
55c69072 434 WARN_ON(1);
4f2de97a 435 return 0;
55c69072 436 }
55c69072 437 if (!PageUptodate(page)) {
55c69072 438 WARN_ON(1);
4f2de97a 439 return 0;
19c00ddc 440 }
19c00ddc 441 csum_tree_block(root, eb, 0);
19c00ddc
CM
442 return 0;
443}
444
2b82032c
YZ
445static int check_tree_block_fsid(struct btrfs_root *root,
446 struct extent_buffer *eb)
447{
448 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449 u8 fsid[BTRFS_UUID_SIZE];
450 int ret = 1;
451
452 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453 BTRFS_FSID_SIZE);
454 while (fs_devices) {
455 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456 ret = 0;
457 break;
458 }
459 fs_devices = fs_devices->seed;
460 }
461 return ret;
462}
463
a826d6dc
JB
464#define CORRUPT(reason, eb, root, slot) \
465 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466 "root=%llu, slot=%d\n", reason, \
467 (unsigned long long)btrfs_header_bytenr(eb), \
468 (unsigned long long)root->objectid, slot)
469
470static noinline int check_leaf(struct btrfs_root *root,
471 struct extent_buffer *leaf)
472{
473 struct btrfs_key key;
474 struct btrfs_key leaf_key;
475 u32 nritems = btrfs_header_nritems(leaf);
476 int slot;
477
478 if (nritems == 0)
479 return 0;
480
481 /* Check the 0 item */
482 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483 BTRFS_LEAF_DATA_SIZE(root)) {
484 CORRUPT("invalid item offset size pair", leaf, root, 0);
485 return -EIO;
486 }
487
488 /*
489 * Check to make sure each items keys are in the correct order and their
490 * offsets make sense. We only have to loop through nritems-1 because
491 * we check the current slot against the next slot, which verifies the
492 * next slot's offset+size makes sense and that the current's slot
493 * offset is correct.
494 */
495 for (slot = 0; slot < nritems - 1; slot++) {
496 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499 /* Make sure the keys are in the right order */
500 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501 CORRUPT("bad key order", leaf, root, slot);
502 return -EIO;
503 }
504
505 /*
506 * Make sure the offset and ends are right, remember that the
507 * item data starts at the end of the leaf and grows towards the
508 * front.
509 */
510 if (btrfs_item_offset_nr(leaf, slot) !=
511 btrfs_item_end_nr(leaf, slot + 1)) {
512 CORRUPT("slot offset bad", leaf, root, slot);
513 return -EIO;
514 }
515
516 /*
517 * Check to make sure that we don't point outside of the leaf,
518 * just incase all the items are consistent to eachother, but
519 * all point outside of the leaf.
520 */
521 if (btrfs_item_end_nr(leaf, slot) >
522 BTRFS_LEAF_DATA_SIZE(root)) {
523 CORRUPT("slot end outside of leaf", leaf, root, slot);
524 return -EIO;
525 }
526 }
527
528 return 0;
529}
530
727011e0
CM
531struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532 struct page *page, int max_walk)
533{
534 struct extent_buffer *eb;
535 u64 start = page_offset(page);
536 u64 target = start;
537 u64 min_start;
538
539 if (start < max_walk)
540 min_start = 0;
541 else
542 min_start = start - max_walk;
543
544 while (start >= min_start) {
545 eb = find_extent_buffer(tree, start, 0);
546 if (eb) {
547 /*
548 * we found an extent buffer and it contains our page
549 * horray!
550 */
551 if (eb->start <= target &&
552 eb->start + eb->len > target)
553 return eb;
554
555 /* we found an extent buffer that wasn't for us */
556 free_extent_buffer(eb);
557 return NULL;
558 }
559 if (start == 0)
560 break;
561 start -= PAGE_CACHE_SIZE;
562 }
563 return NULL;
564}
565
b2950863 566static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 567 struct extent_state *state, int mirror)
ce9adaa5
CM
568{
569 struct extent_io_tree *tree;
570 u64 found_start;
571 int found_level;
ce9adaa5
CM
572 struct extent_buffer *eb;
573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 574 int ret = 0;
727011e0 575 int reads_done;
ce9adaa5 576
ce9adaa5
CM
577 if (!page->private)
578 goto out;
d397712b 579
727011e0 580 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 581 eb = (struct extent_buffer *)page->private;
d397712b 582
0b32f4bb
JB
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
589 if (!reads_done)
590 goto err;
f188591e 591
5cf1ab56 592 eb->read_mirror = mirror;
ea466794
JB
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
ce9adaa5 598 found_start = btrfs_header_bytenr(eb);
727011e0 599 if (found_start != eb->start) {
7a36ddec 600 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
601 "%llu %llu\n",
602 (unsigned long long)found_start,
603 (unsigned long long)eb->start);
f188591e 604 ret = -EIO;
ce9adaa5
CM
605 goto err;
606 }
2b82032c 607 if (check_tree_block_fsid(root, eb)) {
7a36ddec 608 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 609 (unsigned long long)eb->start);
1259ab75
CM
610 ret = -EIO;
611 goto err;
612 }
ce9adaa5
CM
613 found_level = btrfs_header_level(eb);
614
85d4e461
CM
615 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616 eb, found_level);
4008c04a 617
ce9adaa5 618 ret = csum_tree_block(root, eb, 1);
a826d6dc 619 if (ret) {
f188591e 620 ret = -EIO;
a826d6dc
JB
621 goto err;
622 }
623
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
629 if (found_level == 0 && check_leaf(root, eb)) {
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
ce9adaa5 633
0b32f4bb
JB
634 if (!ret)
635 set_extent_buffer_uptodate(eb);
ce9adaa5 636err:
4bb31e92
AJ
637 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639 btree_readahead_hook(root, eb, eb->start, ret);
640 }
641
0b32f4bb
JB
642 if (ret)
643 clear_extent_buffer_uptodate(eb);
644 free_extent_buffer(eb);
ce9adaa5 645out:
f188591e 646 return ret;
ce9adaa5
CM
647}
648
ea466794 649static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 650{
4bb31e92
AJ
651 struct extent_buffer *eb;
652 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
4f2de97a 654 eb = (struct extent_buffer *)page->private;
ea466794 655 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 656 eb->read_mirror = failed_mirror;
ea466794 657 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 658 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
659 return -EIO; /* we fixed nothing */
660}
661
ce9adaa5 662static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
663{
664 struct end_io_wq *end_io_wq = bio->bi_private;
665 struct btrfs_fs_info *fs_info;
ce9adaa5 666
ce9adaa5 667 fs_info = end_io_wq->info;
ce9adaa5 668 end_io_wq->error = err;
8b712842
CM
669 end_io_wq->work.func = end_workqueue_fn;
670 end_io_wq->work.flags = 0;
d20f7043 671
7b6d91da 672 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 673 if (end_io_wq->metadata == 1)
cad321ad
CM
674 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 &end_io_wq->work);
0cb59c99
JB
676 else if (end_io_wq->metadata == 2)
677 btrfs_queue_worker(&fs_info->endio_freespace_worker,
678 &end_io_wq->work);
cad321ad
CM
679 else
680 btrfs_queue_worker(&fs_info->endio_write_workers,
681 &end_io_wq->work);
d20f7043
CM
682 } else {
683 if (end_io_wq->metadata)
684 btrfs_queue_worker(&fs_info->endio_meta_workers,
685 &end_io_wq->work);
686 else
687 btrfs_queue_worker(&fs_info->endio_workers,
688 &end_io_wq->work);
689 }
ce9adaa5
CM
690}
691
0cb59c99
JB
692/*
693 * For the metadata arg you want
694 *
695 * 0 - if data
696 * 1 - if normal metadta
697 * 2 - if writing to the free space cache area
698 */
22c59948
CM
699int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700 int metadata)
0b86a832 701{
ce9adaa5 702 struct end_io_wq *end_io_wq;
ce9adaa5
CM
703 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704 if (!end_io_wq)
705 return -ENOMEM;
706
707 end_io_wq->private = bio->bi_private;
708 end_io_wq->end_io = bio->bi_end_io;
22c59948 709 end_io_wq->info = info;
ce9adaa5
CM
710 end_io_wq->error = 0;
711 end_io_wq->bio = bio;
22c59948 712 end_io_wq->metadata = metadata;
ce9adaa5
CM
713
714 bio->bi_private = end_io_wq;
715 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
716 return 0;
717}
718
b64a2851 719unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 720{
4854ddd0
CM
721 unsigned long limit = min_t(unsigned long,
722 info->workers.max_workers,
723 info->fs_devices->open_devices);
724 return 256 * limit;
725}
0986fe9e 726
4a69a410
CM
727static void run_one_async_start(struct btrfs_work *work)
728{
4a69a410 729 struct async_submit_bio *async;
79787eaa 730 int ret;
4a69a410
CM
731
732 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
733 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734 async->mirror_num, async->bio_flags,
735 async->bio_offset);
736 if (ret)
737 async->error = ret;
4a69a410
CM
738}
739
740static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
741{
742 struct btrfs_fs_info *fs_info;
743 struct async_submit_bio *async;
4854ddd0 744 int limit;
8b712842
CM
745
746 async = container_of(work, struct async_submit_bio, work);
747 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 748
b64a2851 749 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
750 limit = limit * 2 / 3;
751
66657b31 752 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 753 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
754 wake_up(&fs_info->async_submit_wait);
755
79787eaa
JM
756 /* If an error occured we just want to clean up the bio and move on */
757 if (async->error) {
758 bio_endio(async->bio, async->error);
759 return;
760 }
761
4a69a410 762 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
763 async->mirror_num, async->bio_flags,
764 async->bio_offset);
4a69a410
CM
765}
766
767static void run_one_async_free(struct btrfs_work *work)
768{
769 struct async_submit_bio *async;
770
771 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
772 kfree(async);
773}
774
44b8bd7e
CM
775int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776 int rw, struct bio *bio, int mirror_num,
c8b97818 777 unsigned long bio_flags,
eaf25d93 778 u64 bio_offset,
4a69a410
CM
779 extent_submit_bio_hook_t *submit_bio_start,
780 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
781{
782 struct async_submit_bio *async;
783
784 async = kmalloc(sizeof(*async), GFP_NOFS);
785 if (!async)
786 return -ENOMEM;
787
788 async->inode = inode;
789 async->rw = rw;
790 async->bio = bio;
791 async->mirror_num = mirror_num;
4a69a410
CM
792 async->submit_bio_start = submit_bio_start;
793 async->submit_bio_done = submit_bio_done;
794
795 async->work.func = run_one_async_start;
796 async->work.ordered_func = run_one_async_done;
797 async->work.ordered_free = run_one_async_free;
798
8b712842 799 async->work.flags = 0;
c8b97818 800 async->bio_flags = bio_flags;
eaf25d93 801 async->bio_offset = bio_offset;
8c8bee1d 802
79787eaa
JM
803 async->error = 0;
804
cb03c743 805 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 806
7b6d91da 807 if (rw & REQ_SYNC)
d313d7a3
CM
808 btrfs_set_work_high_prio(&async->work);
809
8b712842 810 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 811
d397712b 812 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
813 atomic_read(&fs_info->nr_async_submits)) {
814 wait_event(fs_info->async_submit_wait,
815 (atomic_read(&fs_info->nr_async_submits) == 0));
816 }
817
44b8bd7e
CM
818 return 0;
819}
820
ce3ed71a
CM
821static int btree_csum_one_bio(struct bio *bio)
822{
823 struct bio_vec *bvec = bio->bi_io_vec;
824 int bio_index = 0;
825 struct btrfs_root *root;
79787eaa 826 int ret = 0;
ce3ed71a
CM
827
828 WARN_ON(bio->bi_vcnt <= 0);
d397712b 829 while (bio_index < bio->bi_vcnt) {
ce3ed71a 830 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
831 ret = csum_dirty_buffer(root, bvec->bv_page);
832 if (ret)
833 break;
ce3ed71a
CM
834 bio_index++;
835 bvec++;
836 }
79787eaa 837 return ret;
ce3ed71a
CM
838}
839
4a69a410
CM
840static int __btree_submit_bio_start(struct inode *inode, int rw,
841 struct bio *bio, int mirror_num,
eaf25d93
CM
842 unsigned long bio_flags,
843 u64 bio_offset)
22c59948 844{
8b712842
CM
845 /*
846 * when we're called for a write, we're already in the async
5443be45 847 * submission context. Just jump into btrfs_map_bio
8b712842 848 */
79787eaa 849 return btree_csum_one_bio(bio);
4a69a410 850}
22c59948 851
4a69a410 852static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
853 int mirror_num, unsigned long bio_flags,
854 u64 bio_offset)
4a69a410 855{
61891923
SB
856 int ret;
857
8b712842 858 /*
4a69a410
CM
859 * when we're called for a write, we're already in the async
860 * submission context. Just jump into btrfs_map_bio
8b712842 861 */
61891923
SB
862 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863 if (ret)
864 bio_endio(bio, ret);
865 return ret;
0b86a832
CM
866}
867
de0022b9
JB
868static int check_async_write(struct inode *inode, unsigned long bio_flags)
869{
870 if (bio_flags & EXTENT_BIO_TREE_LOG)
871 return 0;
872#ifdef CONFIG_X86
873 if (cpu_has_xmm4_2)
874 return 0;
875#endif
876 return 1;
877}
878
44b8bd7e 879static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
880 int mirror_num, unsigned long bio_flags,
881 u64 bio_offset)
44b8bd7e 882{
de0022b9 883 int async = check_async_write(inode, bio_flags);
cad321ad
CM
884 int ret;
885
7b6d91da 886 if (!(rw & REQ_WRITE)) {
4a69a410
CM
887 /*
888 * called for a read, do the setup so that checksum validation
889 * can happen in the async kernel threads
890 */
f3f266ab
CM
891 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892 bio, 1);
1d4284bd 893 if (ret)
61891923
SB
894 goto out_w_error;
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896 mirror_num, 0);
de0022b9
JB
897 } else if (!async) {
898 ret = btree_csum_one_bio(bio);
899 if (ret)
61891923
SB
900 goto out_w_error;
901 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902 mirror_num, 0);
903 } else {
904 /*
905 * kthread helpers are used to submit writes so that
906 * checksumming can happen in parallel across all CPUs
907 */
908 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909 inode, rw, bio, mirror_num, 0,
910 bio_offset,
911 __btree_submit_bio_start,
912 __btree_submit_bio_done);
44b8bd7e 913 }
d313d7a3 914
61891923
SB
915 if (ret) {
916out_w_error:
917 bio_endio(bio, ret);
918 }
919 return ret;
44b8bd7e
CM
920}
921
3dd1462e 922#ifdef CONFIG_MIGRATION
784b4e29 923static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
924 struct page *newpage, struct page *page,
925 enum migrate_mode mode)
784b4e29
CM
926{
927 /*
928 * we can't safely write a btree page from here,
929 * we haven't done the locking hook
930 */
931 if (PageDirty(page))
932 return -EAGAIN;
933 /*
934 * Buffers may be managed in a filesystem specific way.
935 * We must have no buffers or drop them.
936 */
937 if (page_has_private(page) &&
938 !try_to_release_page(page, GFP_KERNEL))
939 return -EAGAIN;
a6bc32b8 940 return migrate_page(mapping, newpage, page, mode);
784b4e29 941}
3dd1462e 942#endif
784b4e29 943
0da5468f
CM
944
945static int btree_writepages(struct address_space *mapping,
946 struct writeback_control *wbc)
947{
d1310b2e
CM
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 950 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 951 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 952 u64 num_dirty;
24ab9cd8 953 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
954
955 if (wbc->for_kupdate)
956 return 0;
957
b9473439
CM
958 /* this is a bit racy, but that's ok */
959 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 960 if (num_dirty < thresh)
793955bc 961 return 0;
793955bc 962 }
0b32f4bb 963 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
964}
965
b2950863 966static int btree_readpage(struct file *file, struct page *page)
5f39d397 967{
d1310b2e
CM
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 970 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 971}
22b0ebda 972
70dec807 973static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 974{
98509cfc 975 if (PageWriteback(page) || PageDirty(page))
d397712b 976 return 0;
0c4e538b
DS
977 /*
978 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979 * slab allocation from alloc_extent_state down the callchain where
980 * it'd hit a BUG_ON as those flags are not allowed.
981 */
982 gfp_flags &= ~GFP_SLAB_BUG_MASK;
983
3083ee2e 984 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
985}
986
5f39d397 987static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 988{
d1310b2e
CM
989 struct extent_io_tree *tree;
990 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
991 extent_invalidatepage(tree, page, offset);
992 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 993 if (PagePrivate(page)) {
d397712b
CM
994 printk(KERN_WARNING "btrfs warning page private not zero "
995 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
996 ClearPagePrivate(page);
997 set_page_private(page, 0);
998 page_cache_release(page);
999 }
d98237b3
CM
1000}
1001
0b32f4bb
JB
1002static int btree_set_page_dirty(struct page *page)
1003{
bb146eb2 1004#ifdef DEBUG
0b32f4bb
JB
1005 struct extent_buffer *eb;
1006
1007 BUG_ON(!PagePrivate(page));
1008 eb = (struct extent_buffer *)page->private;
1009 BUG_ON(!eb);
1010 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1011 BUG_ON(!atomic_read(&eb->refs));
1012 btrfs_assert_tree_locked(eb);
bb146eb2 1013#endif
0b32f4bb
JB
1014 return __set_page_dirty_nobuffers(page);
1015}
1016
7f09410b 1017static const struct address_space_operations btree_aops = {
d98237b3 1018 .readpage = btree_readpage,
0da5468f 1019 .writepages = btree_writepages,
5f39d397
CM
1020 .releasepage = btree_releasepage,
1021 .invalidatepage = btree_invalidatepage,
5a92bc88 1022#ifdef CONFIG_MIGRATION
784b4e29 1023 .migratepage = btree_migratepage,
5a92bc88 1024#endif
0b32f4bb 1025 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1026};
1027
ca7a79ad
CM
1028int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029 u64 parent_transid)
090d1875 1030{
5f39d397
CM
1031 struct extent_buffer *buf = NULL;
1032 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1033 int ret = 0;
090d1875 1034
db94535d 1035 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1036 if (!buf)
090d1875 1037 return 0;
d1310b2e 1038 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1039 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1040 free_extent_buffer(buf);
de428b63 1041 return ret;
090d1875
CM
1042}
1043
ab0fff03
AJ
1044int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1045 int mirror_num, struct extent_buffer **eb)
1046{
1047 struct extent_buffer *buf = NULL;
1048 struct inode *btree_inode = root->fs_info->btree_inode;
1049 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1050 int ret;
1051
1052 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1053 if (!buf)
1054 return 0;
1055
1056 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1057
1058 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1059 btree_get_extent, mirror_num);
1060 if (ret) {
1061 free_extent_buffer(buf);
1062 return ret;
1063 }
1064
1065 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1066 free_extent_buffer(buf);
1067 return -EIO;
0b32f4bb 1068 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1069 *eb = buf;
1070 } else {
1071 free_extent_buffer(buf);
1072 }
1073 return 0;
1074}
1075
0999df54
CM
1076struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1077 u64 bytenr, u32 blocksize)
1078{
1079 struct inode *btree_inode = root->fs_info->btree_inode;
1080 struct extent_buffer *eb;
1081 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1082 bytenr, blocksize);
0999df54
CM
1083 return eb;
1084}
1085
1086struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1087 u64 bytenr, u32 blocksize)
1088{
1089 struct inode *btree_inode = root->fs_info->btree_inode;
1090 struct extent_buffer *eb;
1091
1092 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1093 bytenr, blocksize);
0999df54
CM
1094 return eb;
1095}
1096
1097
e02119d5
CM
1098int btrfs_write_tree_block(struct extent_buffer *buf)
1099{
727011e0 1100 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1101 buf->start + buf->len - 1);
e02119d5
CM
1102}
1103
1104int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1105{
727011e0 1106 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1107 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1108}
1109
0999df54 1110struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1111 u32 blocksize, u64 parent_transid)
0999df54
CM
1112{
1113 struct extent_buffer *buf = NULL;
0999df54
CM
1114 int ret;
1115
0999df54
CM
1116 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1117 if (!buf)
1118 return NULL;
0999df54 1119
ca7a79ad 1120 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1121 return buf;
ce9adaa5 1122
eb60ceac
CM
1123}
1124
d5c13f92
JM
1125void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1126 struct extent_buffer *buf)
ed2ff2cb 1127{
55c69072 1128 if (btrfs_header_generation(buf) ==
925baedd 1129 root->fs_info->running_transaction->transid) {
b9447ef8 1130 btrfs_assert_tree_locked(buf);
b4ce94de 1131
b9473439
CM
1132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1133 spin_lock(&root->fs_info->delalloc_lock);
1134 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1135 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1136 else {
1137 spin_unlock(&root->fs_info->delalloc_lock);
1138 btrfs_panic(root->fs_info, -EOVERFLOW,
1139 "Can't clear %lu bytes from "
533574c6 1140 " dirty_mdatadata_bytes (%llu)",
d5c13f92
JM
1141 buf->len,
1142 root->fs_info->dirty_metadata_bytes);
1143 }
b9473439 1144 spin_unlock(&root->fs_info->delalloc_lock);
b4ce94de 1145
ed7b63eb
JB
1146 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1147 btrfs_set_lock_blocking(buf);
1148 clear_extent_buffer_dirty(buf);
1149 }
925baedd 1150 }
5f39d397
CM
1151}
1152
143bede5
JM
1153static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1154 u32 stripesize, struct btrfs_root *root,
1155 struct btrfs_fs_info *fs_info,
1156 u64 objectid)
d97e63b6 1157{
cfaa7295 1158 root->node = NULL;
a28ec197 1159 root->commit_root = NULL;
db94535d
CM
1160 root->sectorsize = sectorsize;
1161 root->nodesize = nodesize;
1162 root->leafsize = leafsize;
87ee04eb 1163 root->stripesize = stripesize;
123abc88 1164 root->ref_cows = 0;
0b86a832 1165 root->track_dirty = 0;
c71bf099 1166 root->in_radix = 0;
d68fc57b
YZ
1167 root->orphan_item_inserted = 0;
1168 root->orphan_cleanup_state = 0;
0b86a832 1169
0f7d52f4
CM
1170 root->objectid = objectid;
1171 root->last_trans = 0;
13a8a7c8 1172 root->highest_objectid = 0;
58176a96 1173 root->name = NULL;
6bef4d31 1174 root->inode_tree = RB_ROOT;
16cdcec7 1175 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1176 root->block_rsv = NULL;
d68fc57b 1177 root->orphan_block_rsv = NULL;
0b86a832
CM
1178
1179 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1180 INIT_LIST_HEAD(&root->root_list);
2ab28f32
JB
1181 INIT_LIST_HEAD(&root->logged_list[0]);
1182 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1183 spin_lock_init(&root->orphan_lock);
5d4f98a2 1184 spin_lock_init(&root->inode_lock);
f0486c68 1185 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1186 spin_lock_init(&root->log_extents_lock[0]);
1187 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1188 mutex_init(&root->objectid_mutex);
e02119d5 1189 mutex_init(&root->log_mutex);
7237f183
YZ
1190 init_waitqueue_head(&root->log_writer_wait);
1191 init_waitqueue_head(&root->log_commit_wait[0]);
1192 init_waitqueue_head(&root->log_commit_wait[1]);
1193 atomic_set(&root->log_commit[0], 0);
1194 atomic_set(&root->log_commit[1], 0);
1195 atomic_set(&root->log_writers, 0);
2ecb7923 1196 atomic_set(&root->log_batch, 0);
8a35d95f 1197 atomic_set(&root->orphan_inodes, 0);
7237f183 1198 root->log_transid = 0;
257c62e1 1199 root->last_log_commit = 0;
d0c803c4 1200 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1201 fs_info->btree_inode->i_mapping);
017e5369 1202
3768f368
CM
1203 memset(&root->root_key, 0, sizeof(root->root_key));
1204 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1205 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1206 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1207 root->defrag_trans_start = fs_info->generation;
58176a96 1208 init_completion(&root->kobj_unregister);
6702ed49 1209 root->defrag_running = 0;
4d775673 1210 root->root_key.objectid = objectid;
0ee5dc67 1211 root->anon_dev = 0;
8ea05e3a 1212
5f3ab90a 1213 spin_lock_init(&root->root_item_lock);
3768f368
CM
1214}
1215
200a5c17
JM
1216static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1217 struct btrfs_fs_info *fs_info,
1218 u64 objectid,
1219 struct btrfs_root *root)
3768f368
CM
1220{
1221 int ret;
db94535d 1222 u32 blocksize;
84234f3a 1223 u64 generation;
3768f368 1224
db94535d 1225 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1226 tree_root->sectorsize, tree_root->stripesize,
1227 root, fs_info, objectid);
3768f368
CM
1228 ret = btrfs_find_last_root(tree_root, objectid,
1229 &root->root_item, &root->root_key);
4df27c4d
YZ
1230 if (ret > 0)
1231 return -ENOENT;
200a5c17
JM
1232 else if (ret < 0)
1233 return ret;
3768f368 1234
84234f3a 1235 generation = btrfs_root_generation(&root->root_item);
db94535d 1236 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1237 root->commit_root = NULL;
db94535d 1238 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1239 blocksize, generation);
b9fab919 1240 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1241 free_extent_buffer(root->node);
af31f5e5 1242 root->node = NULL;
68433b73
CM
1243 return -EIO;
1244 }
4df27c4d 1245 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1246 return 0;
1247}
1248
f84a8bd6 1249static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1250{
1251 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1252 if (root)
1253 root->fs_info = fs_info;
1254 return root;
1255}
1256
20897f5c
AJ
1257struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1258 struct btrfs_fs_info *fs_info,
1259 u64 objectid)
1260{
1261 struct extent_buffer *leaf;
1262 struct btrfs_root *tree_root = fs_info->tree_root;
1263 struct btrfs_root *root;
1264 struct btrfs_key key;
1265 int ret = 0;
1266 u64 bytenr;
1267
1268 root = btrfs_alloc_root(fs_info);
1269 if (!root)
1270 return ERR_PTR(-ENOMEM);
1271
1272 __setup_root(tree_root->nodesize, tree_root->leafsize,
1273 tree_root->sectorsize, tree_root->stripesize,
1274 root, fs_info, objectid);
1275 root->root_key.objectid = objectid;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = 0;
1278
1279 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280 0, objectid, NULL, 0, 0, 0);
1281 if (IS_ERR(leaf)) {
1282 ret = PTR_ERR(leaf);
1283 goto fail;
1284 }
1285
1286 bytenr = leaf->start;
1287 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1288 btrfs_set_header_bytenr(leaf, leaf->start);
1289 btrfs_set_header_generation(leaf, trans->transid);
1290 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1291 btrfs_set_header_owner(leaf, objectid);
1292 root->node = leaf;
1293
1294 write_extent_buffer(leaf, fs_info->fsid,
1295 (unsigned long)btrfs_header_fsid(leaf),
1296 BTRFS_FSID_SIZE);
1297 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1298 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1299 BTRFS_UUID_SIZE);
1300 btrfs_mark_buffer_dirty(leaf);
1301
1302 root->commit_root = btrfs_root_node(root);
1303 root->track_dirty = 1;
1304
1305
1306 root->root_item.flags = 0;
1307 root->root_item.byte_limit = 0;
1308 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309 btrfs_set_root_generation(&root->root_item, trans->transid);
1310 btrfs_set_root_level(&root->root_item, 0);
1311 btrfs_set_root_refs(&root->root_item, 1);
1312 btrfs_set_root_used(&root->root_item, leaf->len);
1313 btrfs_set_root_last_snapshot(&root->root_item, 0);
1314 btrfs_set_root_dirid(&root->root_item, 0);
1315 root->root_item.drop_level = 0;
1316
1317 key.objectid = objectid;
1318 key.type = BTRFS_ROOT_ITEM_KEY;
1319 key.offset = 0;
1320 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1321 if (ret)
1322 goto fail;
1323
1324 btrfs_tree_unlock(leaf);
1325
1326fail:
1327 if (ret)
1328 return ERR_PTR(ret);
1329
1330 return root;
1331}
1332
7237f183
YZ
1333static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1334 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1335{
1336 struct btrfs_root *root;
1337 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1338 struct extent_buffer *leaf;
e02119d5 1339
6f07e42e 1340 root = btrfs_alloc_root(fs_info);
e02119d5 1341 if (!root)
7237f183 1342 return ERR_PTR(-ENOMEM);
e02119d5
CM
1343
1344 __setup_root(tree_root->nodesize, tree_root->leafsize,
1345 tree_root->sectorsize, tree_root->stripesize,
1346 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1347
1348 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1349 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1350 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1351 /*
1352 * log trees do not get reference counted because they go away
1353 * before a real commit is actually done. They do store pointers
1354 * to file data extents, and those reference counts still get
1355 * updated (along with back refs to the log tree).
1356 */
e02119d5
CM
1357 root->ref_cows = 0;
1358
5d4f98a2 1359 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1360 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1361 0, 0, 0);
7237f183
YZ
1362 if (IS_ERR(leaf)) {
1363 kfree(root);
1364 return ERR_CAST(leaf);
1365 }
e02119d5 1366
5d4f98a2
YZ
1367 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1368 btrfs_set_header_bytenr(leaf, leaf->start);
1369 btrfs_set_header_generation(leaf, trans->transid);
1370 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1371 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1372 root->node = leaf;
e02119d5
CM
1373
1374 write_extent_buffer(root->node, root->fs_info->fsid,
1375 (unsigned long)btrfs_header_fsid(root->node),
1376 BTRFS_FSID_SIZE);
1377 btrfs_mark_buffer_dirty(root->node);
1378 btrfs_tree_unlock(root->node);
7237f183
YZ
1379 return root;
1380}
1381
1382int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1383 struct btrfs_fs_info *fs_info)
1384{
1385 struct btrfs_root *log_root;
1386
1387 log_root = alloc_log_tree(trans, fs_info);
1388 if (IS_ERR(log_root))
1389 return PTR_ERR(log_root);
1390 WARN_ON(fs_info->log_root_tree);
1391 fs_info->log_root_tree = log_root;
1392 return 0;
1393}
1394
1395int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root)
1397{
1398 struct btrfs_root *log_root;
1399 struct btrfs_inode_item *inode_item;
1400
1401 log_root = alloc_log_tree(trans, root->fs_info);
1402 if (IS_ERR(log_root))
1403 return PTR_ERR(log_root);
1404
1405 log_root->last_trans = trans->transid;
1406 log_root->root_key.offset = root->root_key.objectid;
1407
1408 inode_item = &log_root->root_item.inode;
1409 inode_item->generation = cpu_to_le64(1);
1410 inode_item->size = cpu_to_le64(3);
1411 inode_item->nlink = cpu_to_le32(1);
1412 inode_item->nbytes = cpu_to_le64(root->leafsize);
1413 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1414
5d4f98a2 1415 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1416
1417 WARN_ON(root->log_root);
1418 root->log_root = log_root;
1419 root->log_transid = 0;
257c62e1 1420 root->last_log_commit = 0;
e02119d5
CM
1421 return 0;
1422}
1423
1424struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1425 struct btrfs_key *location)
1426{
1427 struct btrfs_root *root;
1428 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1429 struct btrfs_path *path;
5f39d397 1430 struct extent_buffer *l;
84234f3a 1431 u64 generation;
db94535d 1432 u32 blocksize;
0f7d52f4 1433 int ret = 0;
8ea05e3a 1434 int slot;
0f7d52f4 1435
6f07e42e 1436 root = btrfs_alloc_root(fs_info);
0cf6c620 1437 if (!root)
0f7d52f4 1438 return ERR_PTR(-ENOMEM);
0f7d52f4 1439 if (location->offset == (u64)-1) {
db94535d 1440 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1441 location->objectid, root);
1442 if (ret) {
0f7d52f4
CM
1443 kfree(root);
1444 return ERR_PTR(ret);
1445 }
13a8a7c8 1446 goto out;
0f7d52f4
CM
1447 }
1448
db94535d 1449 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1450 tree_root->sectorsize, tree_root->stripesize,
1451 root, fs_info, location->objectid);
0f7d52f4
CM
1452
1453 path = btrfs_alloc_path();
db5b493a
TI
1454 if (!path) {
1455 kfree(root);
1456 return ERR_PTR(-ENOMEM);
1457 }
0f7d52f4 1458 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1459 if (ret == 0) {
1460 l = path->nodes[0];
8ea05e3a
AB
1461 slot = path->slots[0];
1462 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1463 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1464 }
0f7d52f4
CM
1465 btrfs_free_path(path);
1466 if (ret) {
5e540f77 1467 kfree(root);
13a8a7c8
YZ
1468 if (ret > 0)
1469 ret = -ENOENT;
0f7d52f4
CM
1470 return ERR_PTR(ret);
1471 }
13a8a7c8 1472
84234f3a 1473 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1474 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1475 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1476 blocksize, generation);
5d4f98a2 1477 root->commit_root = btrfs_root_node(root);
79787eaa 1478 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1479out:
08fe4db1 1480 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1481 root->ref_cows = 1;
08fe4db1
LZ
1482 btrfs_check_and_init_root_item(&root->root_item);
1483 }
13a8a7c8 1484
5eda7b5e
CM
1485 return root;
1486}
1487
edbd8d4e
CM
1488struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1489 struct btrfs_key *location)
5eda7b5e
CM
1490{
1491 struct btrfs_root *root;
1492 int ret;
1493
edbd8d4e
CM
1494 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1495 return fs_info->tree_root;
1496 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1497 return fs_info->extent_root;
8f18cf13
CM
1498 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1499 return fs_info->chunk_root;
1500 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1501 return fs_info->dev_root;
0403e47e
YZ
1502 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1503 return fs_info->csum_root;
bcef60f2
AJ
1504 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1505 return fs_info->quota_root ? fs_info->quota_root :
1506 ERR_PTR(-ENOENT);
4df27c4d
YZ
1507again:
1508 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1509 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1510 (unsigned long)location->objectid);
4df27c4d 1511 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1512 if (root)
1513 return root;
1514
e02119d5 1515 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1516 if (IS_ERR(root))
1517 return root;
3394e160 1518
581bb050 1519 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1520 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1521 GFP_NOFS);
35a30d7c
DS
1522 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1523 ret = -ENOMEM;
581bb050 1524 goto fail;
35a30d7c 1525 }
581bb050
LZ
1526
1527 btrfs_init_free_ino_ctl(root);
1528 mutex_init(&root->fs_commit_mutex);
1529 spin_lock_init(&root->cache_lock);
1530 init_waitqueue_head(&root->cache_wait);
1531
0ee5dc67 1532 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1533 if (ret)
1534 goto fail;
3394e160 1535
d68fc57b
YZ
1536 if (btrfs_root_refs(&root->root_item) == 0) {
1537 ret = -ENOENT;
1538 goto fail;
1539 }
1540
1541 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1542 if (ret < 0)
1543 goto fail;
1544 if (ret == 0)
1545 root->orphan_item_inserted = 1;
1546
4df27c4d
YZ
1547 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1548 if (ret)
1549 goto fail;
1550
1551 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1552 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553 (unsigned long)root->root_key.objectid,
0f7d52f4 1554 root);
d68fc57b 1555 if (ret == 0)
4df27c4d 1556 root->in_radix = 1;
d68fc57b 1557
4df27c4d
YZ
1558 spin_unlock(&fs_info->fs_roots_radix_lock);
1559 radix_tree_preload_end();
0f7d52f4 1560 if (ret) {
4df27c4d
YZ
1561 if (ret == -EEXIST) {
1562 free_fs_root(root);
1563 goto again;
1564 }
1565 goto fail;
0f7d52f4 1566 }
4df27c4d
YZ
1567
1568 ret = btrfs_find_dead_roots(fs_info->tree_root,
1569 root->root_key.objectid);
1570 WARN_ON(ret);
edbd8d4e 1571 return root;
4df27c4d
YZ
1572fail:
1573 free_fs_root(root);
1574 return ERR_PTR(ret);
edbd8d4e
CM
1575}
1576
04160088
CM
1577static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1578{
1579 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1580 int ret = 0;
04160088
CM
1581 struct btrfs_device *device;
1582 struct backing_dev_info *bdi;
b7967db7 1583
1f78160c
XG
1584 rcu_read_lock();
1585 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1586 if (!device->bdev)
1587 continue;
04160088
CM
1588 bdi = blk_get_backing_dev_info(device->bdev);
1589 if (bdi && bdi_congested(bdi, bdi_bits)) {
1590 ret = 1;
1591 break;
1592 }
1593 }
1f78160c 1594 rcu_read_unlock();
04160088
CM
1595 return ret;
1596}
1597
ad081f14
JA
1598/*
1599 * If this fails, caller must call bdi_destroy() to get rid of the
1600 * bdi again.
1601 */
04160088
CM
1602static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1603{
ad081f14
JA
1604 int err;
1605
1606 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1607 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1608 if (err)
1609 return err;
1610
4575c9cc 1611 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1612 bdi->congested_fn = btrfs_congested_fn;
1613 bdi->congested_data = info;
1614 return 0;
1615}
1616
8b712842
CM
1617/*
1618 * called by the kthread helper functions to finally call the bio end_io
1619 * functions. This is where read checksum verification actually happens
1620 */
1621static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1622{
ce9adaa5 1623 struct bio *bio;
8b712842
CM
1624 struct end_io_wq *end_io_wq;
1625 struct btrfs_fs_info *fs_info;
ce9adaa5 1626 int error;
ce9adaa5 1627
8b712842
CM
1628 end_io_wq = container_of(work, struct end_io_wq, work);
1629 bio = end_io_wq->bio;
1630 fs_info = end_io_wq->info;
ce9adaa5 1631
8b712842
CM
1632 error = end_io_wq->error;
1633 bio->bi_private = end_io_wq->private;
1634 bio->bi_end_io = end_io_wq->end_io;
1635 kfree(end_io_wq);
8b712842 1636 bio_endio(bio, error);
44b8bd7e
CM
1637}
1638
a74a4b97
CM
1639static int cleaner_kthread(void *arg)
1640{
1641 struct btrfs_root *root = arg;
1642
1643 do {
76dda93c
YZ
1644 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1645 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1646 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1647 btrfs_clean_old_snapshots(root);
1648 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1649 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1650 }
a74a4b97 1651
a0acae0e 1652 if (!try_to_freeze()) {
a74a4b97 1653 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1654 if (!kthread_should_stop())
1655 schedule();
a74a4b97
CM
1656 __set_current_state(TASK_RUNNING);
1657 }
1658 } while (!kthread_should_stop());
1659 return 0;
1660}
1661
1662static int transaction_kthread(void *arg)
1663{
1664 struct btrfs_root *root = arg;
1665 struct btrfs_trans_handle *trans;
1666 struct btrfs_transaction *cur;
8929ecfa 1667 u64 transid;
a74a4b97
CM
1668 unsigned long now;
1669 unsigned long delay;
914b2007 1670 bool cannot_commit;
a74a4b97
CM
1671
1672 do {
914b2007 1673 cannot_commit = false;
a74a4b97 1674 delay = HZ * 30;
a74a4b97
CM
1675 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1676
a4abeea4 1677 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1678 cur = root->fs_info->running_transaction;
1679 if (!cur) {
a4abeea4 1680 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1681 goto sleep;
1682 }
31153d81 1683
a74a4b97 1684 now = get_seconds();
8929ecfa
YZ
1685 if (!cur->blocked &&
1686 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1687 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1688 delay = HZ * 5;
1689 goto sleep;
1690 }
8929ecfa 1691 transid = cur->transid;
a4abeea4 1692 spin_unlock(&root->fs_info->trans_lock);
56bec294 1693
79787eaa 1694 /* If the file system is aborted, this will always fail. */
354aa0fb 1695 trans = btrfs_attach_transaction(root);
914b2007 1696 if (IS_ERR(trans)) {
354aa0fb
MX
1697 if (PTR_ERR(trans) != -ENOENT)
1698 cannot_commit = true;
79787eaa 1699 goto sleep;
914b2007 1700 }
8929ecfa 1701 if (transid == trans->transid) {
79787eaa 1702 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1703 } else {
1704 btrfs_end_transaction(trans, root);
1705 }
a74a4b97
CM
1706sleep:
1707 wake_up_process(root->fs_info->cleaner_kthread);
1708 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1709
a0acae0e 1710 if (!try_to_freeze()) {
a74a4b97 1711 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1712 if (!kthread_should_stop() &&
914b2007
JK
1713 (!btrfs_transaction_blocked(root->fs_info) ||
1714 cannot_commit))
8929ecfa 1715 schedule_timeout(delay);
a74a4b97
CM
1716 __set_current_state(TASK_RUNNING);
1717 }
1718 } while (!kthread_should_stop());
1719 return 0;
1720}
1721
af31f5e5
CM
1722/*
1723 * this will find the highest generation in the array of
1724 * root backups. The index of the highest array is returned,
1725 * or -1 if we can't find anything.
1726 *
1727 * We check to make sure the array is valid by comparing the
1728 * generation of the latest root in the array with the generation
1729 * in the super block. If they don't match we pitch it.
1730 */
1731static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1732{
1733 u64 cur;
1734 int newest_index = -1;
1735 struct btrfs_root_backup *root_backup;
1736 int i;
1737
1738 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1739 root_backup = info->super_copy->super_roots + i;
1740 cur = btrfs_backup_tree_root_gen(root_backup);
1741 if (cur == newest_gen)
1742 newest_index = i;
1743 }
1744
1745 /* check to see if we actually wrapped around */
1746 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1747 root_backup = info->super_copy->super_roots;
1748 cur = btrfs_backup_tree_root_gen(root_backup);
1749 if (cur == newest_gen)
1750 newest_index = 0;
1751 }
1752 return newest_index;
1753}
1754
1755
1756/*
1757 * find the oldest backup so we know where to store new entries
1758 * in the backup array. This will set the backup_root_index
1759 * field in the fs_info struct
1760 */
1761static void find_oldest_super_backup(struct btrfs_fs_info *info,
1762 u64 newest_gen)
1763{
1764 int newest_index = -1;
1765
1766 newest_index = find_newest_super_backup(info, newest_gen);
1767 /* if there was garbage in there, just move along */
1768 if (newest_index == -1) {
1769 info->backup_root_index = 0;
1770 } else {
1771 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1772 }
1773}
1774
1775/*
1776 * copy all the root pointers into the super backup array.
1777 * this will bump the backup pointer by one when it is
1778 * done
1779 */
1780static void backup_super_roots(struct btrfs_fs_info *info)
1781{
1782 int next_backup;
1783 struct btrfs_root_backup *root_backup;
1784 int last_backup;
1785
1786 next_backup = info->backup_root_index;
1787 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1788 BTRFS_NUM_BACKUP_ROOTS;
1789
1790 /*
1791 * just overwrite the last backup if we're at the same generation
1792 * this happens only at umount
1793 */
1794 root_backup = info->super_for_commit->super_roots + last_backup;
1795 if (btrfs_backup_tree_root_gen(root_backup) ==
1796 btrfs_header_generation(info->tree_root->node))
1797 next_backup = last_backup;
1798
1799 root_backup = info->super_for_commit->super_roots + next_backup;
1800
1801 /*
1802 * make sure all of our padding and empty slots get zero filled
1803 * regardless of which ones we use today
1804 */
1805 memset(root_backup, 0, sizeof(*root_backup));
1806
1807 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1808
1809 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1810 btrfs_set_backup_tree_root_gen(root_backup,
1811 btrfs_header_generation(info->tree_root->node));
1812
1813 btrfs_set_backup_tree_root_level(root_backup,
1814 btrfs_header_level(info->tree_root->node));
1815
1816 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1817 btrfs_set_backup_chunk_root_gen(root_backup,
1818 btrfs_header_generation(info->chunk_root->node));
1819 btrfs_set_backup_chunk_root_level(root_backup,
1820 btrfs_header_level(info->chunk_root->node));
1821
1822 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1823 btrfs_set_backup_extent_root_gen(root_backup,
1824 btrfs_header_generation(info->extent_root->node));
1825 btrfs_set_backup_extent_root_level(root_backup,
1826 btrfs_header_level(info->extent_root->node));
1827
7c7e82a7
CM
1828 /*
1829 * we might commit during log recovery, which happens before we set
1830 * the fs_root. Make sure it is valid before we fill it in.
1831 */
1832 if (info->fs_root && info->fs_root->node) {
1833 btrfs_set_backup_fs_root(root_backup,
1834 info->fs_root->node->start);
1835 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1836 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1837 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1838 btrfs_header_level(info->fs_root->node));
7c7e82a7 1839 }
af31f5e5
CM
1840
1841 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1842 btrfs_set_backup_dev_root_gen(root_backup,
1843 btrfs_header_generation(info->dev_root->node));
1844 btrfs_set_backup_dev_root_level(root_backup,
1845 btrfs_header_level(info->dev_root->node));
1846
1847 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1848 btrfs_set_backup_csum_root_gen(root_backup,
1849 btrfs_header_generation(info->csum_root->node));
1850 btrfs_set_backup_csum_root_level(root_backup,
1851 btrfs_header_level(info->csum_root->node));
1852
1853 btrfs_set_backup_total_bytes(root_backup,
1854 btrfs_super_total_bytes(info->super_copy));
1855 btrfs_set_backup_bytes_used(root_backup,
1856 btrfs_super_bytes_used(info->super_copy));
1857 btrfs_set_backup_num_devices(root_backup,
1858 btrfs_super_num_devices(info->super_copy));
1859
1860 /*
1861 * if we don't copy this out to the super_copy, it won't get remembered
1862 * for the next commit
1863 */
1864 memcpy(&info->super_copy->super_roots,
1865 &info->super_for_commit->super_roots,
1866 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1867}
1868
1869/*
1870 * this copies info out of the root backup array and back into
1871 * the in-memory super block. It is meant to help iterate through
1872 * the array, so you send it the number of backups you've already
1873 * tried and the last backup index you used.
1874 *
1875 * this returns -1 when it has tried all the backups
1876 */
1877static noinline int next_root_backup(struct btrfs_fs_info *info,
1878 struct btrfs_super_block *super,
1879 int *num_backups_tried, int *backup_index)
1880{
1881 struct btrfs_root_backup *root_backup;
1882 int newest = *backup_index;
1883
1884 if (*num_backups_tried == 0) {
1885 u64 gen = btrfs_super_generation(super);
1886
1887 newest = find_newest_super_backup(info, gen);
1888 if (newest == -1)
1889 return -1;
1890
1891 *backup_index = newest;
1892 *num_backups_tried = 1;
1893 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1894 /* we've tried all the backups, all done */
1895 return -1;
1896 } else {
1897 /* jump to the next oldest backup */
1898 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1899 BTRFS_NUM_BACKUP_ROOTS;
1900 *backup_index = newest;
1901 *num_backups_tried += 1;
1902 }
1903 root_backup = super->super_roots + newest;
1904
1905 btrfs_set_super_generation(super,
1906 btrfs_backup_tree_root_gen(root_backup));
1907 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1908 btrfs_set_super_root_level(super,
1909 btrfs_backup_tree_root_level(root_backup));
1910 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1911
1912 /*
1913 * fixme: the total bytes and num_devices need to match or we should
1914 * need a fsck
1915 */
1916 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1917 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1918 return 0;
1919}
1920
1921/* helper to cleanup tree roots */
1922static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1923{
1924 free_extent_buffer(info->tree_root->node);
1925 free_extent_buffer(info->tree_root->commit_root);
1926 free_extent_buffer(info->dev_root->node);
1927 free_extent_buffer(info->dev_root->commit_root);
1928 free_extent_buffer(info->extent_root->node);
1929 free_extent_buffer(info->extent_root->commit_root);
1930 free_extent_buffer(info->csum_root->node);
1931 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1932 if (info->quota_root) {
1933 free_extent_buffer(info->quota_root->node);
1934 free_extent_buffer(info->quota_root->commit_root);
1935 }
af31f5e5
CM
1936
1937 info->tree_root->node = NULL;
1938 info->tree_root->commit_root = NULL;
1939 info->dev_root->node = NULL;
1940 info->dev_root->commit_root = NULL;
1941 info->extent_root->node = NULL;
1942 info->extent_root->commit_root = NULL;
1943 info->csum_root->node = NULL;
1944 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1945 if (info->quota_root) {
1946 info->quota_root->node = NULL;
1947 info->quota_root->commit_root = NULL;
1948 }
af31f5e5
CM
1949
1950 if (chunk_root) {
1951 free_extent_buffer(info->chunk_root->node);
1952 free_extent_buffer(info->chunk_root->commit_root);
1953 info->chunk_root->node = NULL;
1954 info->chunk_root->commit_root = NULL;
1955 }
1956}
1957
1958
ad2b2c80
AV
1959int open_ctree(struct super_block *sb,
1960 struct btrfs_fs_devices *fs_devices,
1961 char *options)
2e635a27 1962{
db94535d
CM
1963 u32 sectorsize;
1964 u32 nodesize;
1965 u32 leafsize;
1966 u32 blocksize;
87ee04eb 1967 u32 stripesize;
84234f3a 1968 u64 generation;
f2b636e8 1969 u64 features;
3de4586c 1970 struct btrfs_key location;
a061fc8d 1971 struct buffer_head *bh;
4d34b278 1972 struct btrfs_super_block *disk_super;
815745cf 1973 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1974 struct btrfs_root *tree_root;
4d34b278
ID
1975 struct btrfs_root *extent_root;
1976 struct btrfs_root *csum_root;
1977 struct btrfs_root *chunk_root;
1978 struct btrfs_root *dev_root;
bcef60f2 1979 struct btrfs_root *quota_root;
e02119d5 1980 struct btrfs_root *log_tree_root;
eb60ceac 1981 int ret;
e58ca020 1982 int err = -EINVAL;
af31f5e5
CM
1983 int num_backups_tried = 0;
1984 int backup_index = 0;
4543df7e 1985
f84a8bd6 1986 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1987 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1988 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1989 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1990 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1991 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1992
f84a8bd6 1993 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1994 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1995 err = -ENOMEM;
1996 goto fail;
1997 }
76dda93c
YZ
1998
1999 ret = init_srcu_struct(&fs_info->subvol_srcu);
2000 if (ret) {
2001 err = ret;
2002 goto fail;
2003 }
2004
2005 ret = setup_bdi(fs_info, &fs_info->bdi);
2006 if (ret) {
2007 err = ret;
2008 goto fail_srcu;
2009 }
2010
2011 fs_info->btree_inode = new_inode(sb);
2012 if (!fs_info->btree_inode) {
2013 err = -ENOMEM;
2014 goto fail_bdi;
2015 }
2016
a6591715 2017 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2018
76dda93c 2019 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2020 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2021 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2022 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 2023 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 2024 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 2025 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2026 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2027 spin_lock_init(&fs_info->trans_lock);
76dda93c 2028 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2029 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2030 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2031 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2032 spin_lock_init(&fs_info->tree_mod_seq_lock);
2033 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2034 mutex_init(&fs_info->reloc_mutex);
19c00ddc 2035
58176a96 2036 init_completion(&fs_info->kobj_unregister);
0b86a832 2037 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2038 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2039 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2040 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2041 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2042 BTRFS_BLOCK_RSV_GLOBAL);
2043 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2044 BTRFS_BLOCK_RSV_DELALLOC);
2045 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2046 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2047 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2048 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2049 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2050 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2051 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2052 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2053 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2054 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2055 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2056 fs_info->sb = sb;
6f568d35 2057 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2058 fs_info->metadata_ratio = 0;
4cb5300b 2059 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2060 fs_info->trans_no_join = 0;
2bf64758 2061 fs_info->free_chunk_space = 0;
f29021b2 2062 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2063
90519d66
AJ
2064 /* readahead state */
2065 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2066 spin_lock_init(&fs_info->reada_lock);
c8b97818 2067
b34b086c
CM
2068 fs_info->thread_pool_size = min_t(unsigned long,
2069 num_online_cpus() + 2, 8);
0afbaf8c 2070
3eaa2885
CM
2071 INIT_LIST_HEAD(&fs_info->ordered_extents);
2072 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2073 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2074 GFP_NOFS);
2075 if (!fs_info->delayed_root) {
2076 err = -ENOMEM;
2077 goto fail_iput;
2078 }
2079 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2080
a2de733c
AJ
2081 mutex_init(&fs_info->scrub_lock);
2082 atomic_set(&fs_info->scrubs_running, 0);
2083 atomic_set(&fs_info->scrub_pause_req, 0);
2084 atomic_set(&fs_info->scrubs_paused, 0);
2085 atomic_set(&fs_info->scrub_cancel_req, 0);
2086 init_waitqueue_head(&fs_info->scrub_pause_wait);
2087 init_rwsem(&fs_info->scrub_super_lock);
2088 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2089#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2090 fs_info->check_integrity_print_mask = 0;
2091#endif
a2de733c 2092
c9e9f97b
ID
2093 spin_lock_init(&fs_info->balance_lock);
2094 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2095 atomic_set(&fs_info->balance_running, 0);
2096 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2097 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2098 fs_info->balance_ctl = NULL;
837d5b6e 2099 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2100
a061fc8d
CM
2101 sb->s_blocksize = 4096;
2102 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2103 sb->s_bdi = &fs_info->bdi;
a061fc8d 2104
76dda93c 2105 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2106 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2107 /*
2108 * we set the i_size on the btree inode to the max possible int.
2109 * the real end of the address space is determined by all of
2110 * the devices in the system
2111 */
2112 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2113 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2114 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2115
5d4f98a2 2116 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2117 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2118 fs_info->btree_inode->i_mapping);
0b32f4bb 2119 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2120 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2121
2122 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2123
76dda93c
YZ
2124 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2125 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2126 sizeof(struct btrfs_key));
72ac3c0d
JB
2127 set_bit(BTRFS_INODE_DUMMY,
2128 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2129 insert_inode_hash(fs_info->btree_inode);
76dda93c 2130
0f9dd46c 2131 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2132 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2133
11833d66 2134 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2135 fs_info->btree_inode->i_mapping);
11833d66 2136 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2137 fs_info->btree_inode->i_mapping);
11833d66 2138 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2139 fs_info->do_barriers = 1;
e18e4809 2140
39279cc3 2141
5a3f23d5 2142 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2143 mutex_init(&fs_info->tree_log_mutex);
925baedd 2144 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2145 mutex_init(&fs_info->transaction_kthread_mutex);
2146 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2147 mutex_init(&fs_info->volume_mutex);
276e680d 2148 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2149 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2150 init_rwsem(&fs_info->subvol_sem);
e922e087
SB
2151 fs_info->dev_replace.lock_owner = 0;
2152 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2153 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2154 mutex_init(&fs_info->dev_replace.lock_management_lock);
2155 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2156
416ac51d
AJ
2157 spin_lock_init(&fs_info->qgroup_lock);
2158 fs_info->qgroup_tree = RB_ROOT;
2159 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2160 fs_info->qgroup_seq = 1;
2161 fs_info->quota_enabled = 0;
2162 fs_info->pending_quota_state = 0;
2163
fa9c0d79
CM
2164 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2165 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2166
e6dcd2dc 2167 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2168 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2169 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2170 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2171
0b86a832 2172 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2173 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2174
3c4bb26b 2175 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2176 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2177 if (!bh) {
2178 err = -EINVAL;
16cdcec7 2179 goto fail_alloc;
20b45077 2180 }
39279cc3 2181
6c41761f
DS
2182 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2183 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2184 sizeof(*fs_info->super_for_commit));
a061fc8d 2185 brelse(bh);
5f39d397 2186
6c41761f 2187 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2188
6c41761f 2189 disk_super = fs_info->super_copy;
0f7d52f4 2190 if (!btrfs_super_root(disk_super))
16cdcec7 2191 goto fail_alloc;
0f7d52f4 2192
acce952b 2193 /* check FS state, whether FS is broken. */
2194 fs_info->fs_state |= btrfs_super_flags(disk_super);
2195
fcd1f065
DS
2196 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2197 if (ret) {
2198 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2199 err = ret;
2200 goto fail_alloc;
2201 }
acce952b 2202
af31f5e5
CM
2203 /*
2204 * run through our array of backup supers and setup
2205 * our ring pointer to the oldest one
2206 */
2207 generation = btrfs_super_generation(disk_super);
2208 find_oldest_super_backup(fs_info, generation);
2209
75e7cb7f
LB
2210 /*
2211 * In the long term, we'll store the compression type in the super
2212 * block, and it'll be used for per file compression control.
2213 */
2214 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2215
2b82032c
YZ
2216 ret = btrfs_parse_options(tree_root, options);
2217 if (ret) {
2218 err = ret;
16cdcec7 2219 goto fail_alloc;
2b82032c 2220 }
dfe25020 2221
f2b636e8
JB
2222 features = btrfs_super_incompat_flags(disk_super) &
2223 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2224 if (features) {
2225 printk(KERN_ERR "BTRFS: couldn't mount because of "
2226 "unsupported optional features (%Lx).\n",
21380931 2227 (unsigned long long)features);
f2b636e8 2228 err = -EINVAL;
16cdcec7 2229 goto fail_alloc;
f2b636e8
JB
2230 }
2231
727011e0
CM
2232 if (btrfs_super_leafsize(disk_super) !=
2233 btrfs_super_nodesize(disk_super)) {
2234 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2235 "blocksizes don't match. node %d leaf %d\n",
2236 btrfs_super_nodesize(disk_super),
2237 btrfs_super_leafsize(disk_super));
2238 err = -EINVAL;
2239 goto fail_alloc;
2240 }
2241 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2242 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2243 "blocksize (%d) was too large\n",
2244 btrfs_super_leafsize(disk_super));
2245 err = -EINVAL;
2246 goto fail_alloc;
2247 }
2248
5d4f98a2 2249 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2250 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2251 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2252 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2253
2254 /*
2255 * flag our filesystem as having big metadata blocks if
2256 * they are bigger than the page size
2257 */
2258 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2259 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2260 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2261 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2262 }
2263
bc3f116f
CM
2264 nodesize = btrfs_super_nodesize(disk_super);
2265 leafsize = btrfs_super_leafsize(disk_super);
2266 sectorsize = btrfs_super_sectorsize(disk_super);
2267 stripesize = btrfs_super_stripesize(disk_super);
2268
2269 /*
2270 * mixed block groups end up with duplicate but slightly offset
2271 * extent buffers for the same range. It leads to corruptions
2272 */
2273 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2274 (sectorsize != leafsize)) {
2275 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2276 "are not allowed for mixed block groups on %s\n",
2277 sb->s_id);
2278 goto fail_alloc;
2279 }
2280
a6fa6fae 2281 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2282
f2b636e8
JB
2283 features = btrfs_super_compat_ro_flags(disk_super) &
2284 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2285 if (!(sb->s_flags & MS_RDONLY) && features) {
2286 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2287 "unsupported option features (%Lx).\n",
21380931 2288 (unsigned long long)features);
f2b636e8 2289 err = -EINVAL;
16cdcec7 2290 goto fail_alloc;
f2b636e8 2291 }
61d92c32
CM
2292
2293 btrfs_init_workers(&fs_info->generic_worker,
2294 "genwork", 1, NULL);
2295
5443be45 2296 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2297 fs_info->thread_pool_size,
2298 &fs_info->generic_worker);
c8b97818 2299
771ed689 2300 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2301 fs_info->thread_pool_size,
2302 &fs_info->generic_worker);
771ed689 2303
8ccf6f19
MX
2304 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2305 fs_info->thread_pool_size,
2306 &fs_info->generic_worker);
2307
5443be45 2308 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2309 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2310 fs_info->thread_pool_size),
2311 &fs_info->generic_worker);
61b49440 2312
bab39bf9
JB
2313 btrfs_init_workers(&fs_info->caching_workers, "cache",
2314 2, &fs_info->generic_worker);
2315
61b49440
CM
2316 /* a higher idle thresh on the submit workers makes it much more
2317 * likely that bios will be send down in a sane order to the
2318 * devices
2319 */
2320 fs_info->submit_workers.idle_thresh = 64;
53863232 2321
771ed689 2322 fs_info->workers.idle_thresh = 16;
4a69a410 2323 fs_info->workers.ordered = 1;
61b49440 2324
771ed689
CM
2325 fs_info->delalloc_workers.idle_thresh = 2;
2326 fs_info->delalloc_workers.ordered = 1;
2327
61d92c32
CM
2328 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2329 &fs_info->generic_worker);
5443be45 2330 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2331 fs_info->thread_pool_size,
2332 &fs_info->generic_worker);
d20f7043 2333 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2334 fs_info->thread_pool_size,
2335 &fs_info->generic_worker);
cad321ad 2336 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2337 "endio-meta-write", fs_info->thread_pool_size,
2338 &fs_info->generic_worker);
5443be45 2339 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2340 fs_info->thread_pool_size,
2341 &fs_info->generic_worker);
0cb59c99
JB
2342 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2343 1, &fs_info->generic_worker);
16cdcec7
MX
2344 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2345 fs_info->thread_pool_size,
2346 &fs_info->generic_worker);
90519d66
AJ
2347 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2348 fs_info->thread_pool_size,
2349 &fs_info->generic_worker);
61b49440
CM
2350
2351 /*
2352 * endios are largely parallel and should have a very
2353 * low idle thresh
2354 */
2355 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2356 fs_info->endio_meta_workers.idle_thresh = 4;
2357
9042846b
CM
2358 fs_info->endio_write_workers.idle_thresh = 2;
2359 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2360 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2361
0dc3b84a
JB
2362 /*
2363 * btrfs_start_workers can really only fail because of ENOMEM so just
2364 * return -ENOMEM if any of these fail.
2365 */
2366 ret = btrfs_start_workers(&fs_info->workers);
2367 ret |= btrfs_start_workers(&fs_info->generic_worker);
2368 ret |= btrfs_start_workers(&fs_info->submit_workers);
2369 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2370 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2371 ret |= btrfs_start_workers(&fs_info->endio_workers);
2372 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2373 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2374 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2375 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2376 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2377 ret |= btrfs_start_workers(&fs_info->caching_workers);
2378 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2379 ret |= btrfs_start_workers(&fs_info->flush_workers);
0dc3b84a 2380 if (ret) {
fed425c7 2381 err = -ENOMEM;
0dc3b84a
JB
2382 goto fail_sb_buffer;
2383 }
4543df7e 2384
4575c9cc 2385 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2386 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2387 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2388
db94535d
CM
2389 tree_root->nodesize = nodesize;
2390 tree_root->leafsize = leafsize;
2391 tree_root->sectorsize = sectorsize;
87ee04eb 2392 tree_root->stripesize = stripesize;
a061fc8d
CM
2393
2394 sb->s_blocksize = sectorsize;
2395 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2396
39279cc3
CM
2397 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2398 sizeof(disk_super->magic))) {
d397712b 2399 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2400 goto fail_sb_buffer;
2401 }
19c00ddc 2402
8d082fb7
LB
2403 if (sectorsize != PAGE_SIZE) {
2404 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2405 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2406 goto fail_sb_buffer;
2407 }
2408
925baedd 2409 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2410 ret = btrfs_read_sys_array(tree_root);
925baedd 2411 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2412 if (ret) {
d397712b
CM
2413 printk(KERN_WARNING "btrfs: failed to read the system "
2414 "array on %s\n", sb->s_id);
5d4f98a2 2415 goto fail_sb_buffer;
84eed90f 2416 }
0b86a832
CM
2417
2418 blocksize = btrfs_level_size(tree_root,
2419 btrfs_super_chunk_root_level(disk_super));
84234f3a 2420 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2421
2422 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2423 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2424
2425 chunk_root->node = read_tree_block(chunk_root,
2426 btrfs_super_chunk_root(disk_super),
84234f3a 2427 blocksize, generation);
79787eaa 2428 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2429 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2430 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2431 sb->s_id);
af31f5e5 2432 goto fail_tree_roots;
83121942 2433 }
5d4f98a2
YZ
2434 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2435 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2436
e17cade2 2437 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2438 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2439 BTRFS_UUID_SIZE);
e17cade2 2440
0b86a832 2441 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2442 if (ret) {
d397712b
CM
2443 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2444 sb->s_id);
af31f5e5 2445 goto fail_tree_roots;
2b82032c 2446 }
0b86a832 2447
8dabb742
SB
2448 /*
2449 * keep the device that is marked to be the target device for the
2450 * dev_replace procedure
2451 */
2452 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2453
a6b0d5c8
CM
2454 if (!fs_devices->latest_bdev) {
2455 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2456 sb->s_id);
2457 goto fail_tree_roots;
2458 }
2459
af31f5e5 2460retry_root_backup:
db94535d
CM
2461 blocksize = btrfs_level_size(tree_root,
2462 btrfs_super_root_level(disk_super));
84234f3a 2463 generation = btrfs_super_generation(disk_super);
0b86a832 2464
e20d96d6 2465 tree_root->node = read_tree_block(tree_root,
db94535d 2466 btrfs_super_root(disk_super),
84234f3a 2467 blocksize, generation);
af31f5e5
CM
2468 if (!tree_root->node ||
2469 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2470 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2471 sb->s_id);
af31f5e5
CM
2472
2473 goto recovery_tree_root;
83121942 2474 }
af31f5e5 2475
5d4f98a2
YZ
2476 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2477 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2478
2479 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2480 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2481 if (ret)
af31f5e5 2482 goto recovery_tree_root;
0b86a832
CM
2483 extent_root->track_dirty = 1;
2484
2485 ret = find_and_setup_root(tree_root, fs_info,
2486 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2487 if (ret)
af31f5e5 2488 goto recovery_tree_root;
5d4f98a2 2489 dev_root->track_dirty = 1;
3768f368 2490
d20f7043
CM
2491 ret = find_and_setup_root(tree_root, fs_info,
2492 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2493 if (ret)
af31f5e5 2494 goto recovery_tree_root;
d20f7043
CM
2495 csum_root->track_dirty = 1;
2496
bcef60f2
AJ
2497 ret = find_and_setup_root(tree_root, fs_info,
2498 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2499 if (ret) {
2500 kfree(quota_root);
2501 quota_root = fs_info->quota_root = NULL;
2502 } else {
2503 quota_root->track_dirty = 1;
2504 fs_info->quota_enabled = 1;
2505 fs_info->pending_quota_state = 1;
2506 }
2507
8929ecfa
YZ
2508 fs_info->generation = generation;
2509 fs_info->last_trans_committed = generation;
8929ecfa 2510
68310a5e
ID
2511 ret = btrfs_recover_balance(fs_info);
2512 if (ret) {
2513 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2514 goto fail_block_groups;
2515 }
2516
733f4fbb
SB
2517 ret = btrfs_init_dev_stats(fs_info);
2518 if (ret) {
2519 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2520 ret);
2521 goto fail_block_groups;
2522 }
2523
8dabb742
SB
2524 ret = btrfs_init_dev_replace(fs_info);
2525 if (ret) {
2526 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2527 goto fail_block_groups;
2528 }
2529
2530 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2531
c59021f8 2532 ret = btrfs_init_space_info(fs_info);
2533 if (ret) {
2534 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2535 goto fail_block_groups;
2536 }
2537
1b1d1f66
JB
2538 ret = btrfs_read_block_groups(extent_root);
2539 if (ret) {
2540 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2541 goto fail_block_groups;
2542 }
5af3e8cc
SB
2543 fs_info->num_tolerated_disk_barrier_failures =
2544 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2545 if (fs_info->fs_devices->missing_devices >
2546 fs_info->num_tolerated_disk_barrier_failures &&
2547 !(sb->s_flags & MS_RDONLY)) {
2548 printk(KERN_WARNING
2549 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2550 goto fail_block_groups;
2551 }
9078a3e1 2552
a74a4b97
CM
2553 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2554 "btrfs-cleaner");
57506d50 2555 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2556 goto fail_block_groups;
a74a4b97
CM
2557
2558 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2559 tree_root,
2560 "btrfs-transaction");
57506d50 2561 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2562 goto fail_cleaner;
a74a4b97 2563
c289811c
CM
2564 if (!btrfs_test_opt(tree_root, SSD) &&
2565 !btrfs_test_opt(tree_root, NOSSD) &&
2566 !fs_info->fs_devices->rotating) {
2567 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2568 "mode\n");
2569 btrfs_set_opt(fs_info->mount_opt, SSD);
2570 }
2571
21adbd5c
SB
2572#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2573 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2574 ret = btrfsic_mount(tree_root, fs_devices,
2575 btrfs_test_opt(tree_root,
2576 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2577 1 : 0,
2578 fs_info->check_integrity_print_mask);
2579 if (ret)
2580 printk(KERN_WARNING "btrfs: failed to initialize"
2581 " integrity check module %s\n", sb->s_id);
2582 }
2583#endif
bcef60f2
AJ
2584 ret = btrfs_read_qgroup_config(fs_info);
2585 if (ret)
2586 goto fail_trans_kthread;
21adbd5c 2587
acce952b 2588 /* do not make disk changes in broken FS */
68ce9682 2589 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2590 u64 bytenr = btrfs_super_log_root(disk_super);
2591
7c2ca468 2592 if (fs_devices->rw_devices == 0) {
d397712b
CM
2593 printk(KERN_WARNING "Btrfs log replay required "
2594 "on RO media\n");
7c2ca468 2595 err = -EIO;
bcef60f2 2596 goto fail_qgroup;
7c2ca468 2597 }
e02119d5
CM
2598 blocksize =
2599 btrfs_level_size(tree_root,
2600 btrfs_super_log_root_level(disk_super));
d18a2c44 2601
6f07e42e 2602 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2603 if (!log_tree_root) {
2604 err = -ENOMEM;
bcef60f2 2605 goto fail_qgroup;
676e4c86 2606 }
e02119d5
CM
2607
2608 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2609 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2610
2611 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2612 blocksize,
2613 generation + 1);
79787eaa 2614 /* returns with log_tree_root freed on success */
e02119d5 2615 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2616 if (ret) {
2617 btrfs_error(tree_root->fs_info, ret,
2618 "Failed to recover log tree");
2619 free_extent_buffer(log_tree_root->node);
2620 kfree(log_tree_root);
2621 goto fail_trans_kthread;
2622 }
e556ce2c
YZ
2623
2624 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2625 ret = btrfs_commit_super(tree_root);
2626 if (ret)
2627 goto fail_trans_kthread;
e556ce2c 2628 }
e02119d5 2629 }
1a40e23b 2630
76dda93c 2631 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2632 if (ret)
2633 goto fail_trans_kthread;
76dda93c 2634
7c2ca468 2635 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2636 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2637 if (ret)
2638 goto fail_trans_kthread;
d68fc57b 2639
5d4f98a2 2640 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2641 if (ret < 0) {
2642 printk(KERN_WARNING
2643 "btrfs: failed to recover relocation\n");
2644 err = -EINVAL;
bcef60f2 2645 goto fail_qgroup;
d7ce5843 2646 }
7c2ca468 2647 }
1a40e23b 2648
3de4586c
CM
2649 location.objectid = BTRFS_FS_TREE_OBJECTID;
2650 location.type = BTRFS_ROOT_ITEM_KEY;
2651 location.offset = (u64)-1;
2652
3de4586c
CM
2653 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2654 if (!fs_info->fs_root)
bcef60f2 2655 goto fail_qgroup;
3140c9a3
DC
2656 if (IS_ERR(fs_info->fs_root)) {
2657 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2658 goto fail_qgroup;
3140c9a3 2659 }
c289811c 2660
2b6ba629
ID
2661 if (sb->s_flags & MS_RDONLY)
2662 return 0;
59641015 2663
2b6ba629
ID
2664 down_read(&fs_info->cleanup_work_sem);
2665 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2666 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2667 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2668 close_ctree(tree_root);
2669 return ret;
2670 }
2671 up_read(&fs_info->cleanup_work_sem);
59641015 2672
2b6ba629
ID
2673 ret = btrfs_resume_balance_async(fs_info);
2674 if (ret) {
2675 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2676 close_ctree(tree_root);
2677 return ret;
e3acc2a6
JB
2678 }
2679
8dabb742
SB
2680 ret = btrfs_resume_dev_replace_async(fs_info);
2681 if (ret) {
2682 pr_warn("btrfs: failed to resume dev_replace\n");
2683 close_ctree(tree_root);
2684 return ret;
2685 }
2686
ad2b2c80 2687 return 0;
39279cc3 2688
bcef60f2
AJ
2689fail_qgroup:
2690 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2691fail_trans_kthread:
2692 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2693fail_cleaner:
a74a4b97 2694 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2695
2696 /*
2697 * make sure we're done with the btree inode before we stop our
2698 * kthreads
2699 */
2700 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2701 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2702
1b1d1f66
JB
2703fail_block_groups:
2704 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2705
2706fail_tree_roots:
2707 free_root_pointers(fs_info, 1);
2708
39279cc3 2709fail_sb_buffer:
61d92c32 2710 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2711 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2712 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2713 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2714 btrfs_stop_workers(&fs_info->workers);
2715 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2716 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2717 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2718 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2719 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2720 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2721 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2722 btrfs_stop_workers(&fs_info->caching_workers);
8ccf6f19 2723 btrfs_stop_workers(&fs_info->flush_workers);
16cdcec7 2724fail_alloc:
4543df7e 2725fail_iput:
586e46e2
ID
2726 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2727
7c2ca468 2728 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2729 iput(fs_info->btree_inode);
ad081f14 2730fail_bdi:
7e662854 2731 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2732fail_srcu:
2733 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2734fail:
586e46e2 2735 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2736 return err;
af31f5e5
CM
2737
2738recovery_tree_root:
af31f5e5
CM
2739 if (!btrfs_test_opt(tree_root, RECOVERY))
2740 goto fail_tree_roots;
2741
2742 free_root_pointers(fs_info, 0);
2743
2744 /* don't use the log in recovery mode, it won't be valid */
2745 btrfs_set_super_log_root(disk_super, 0);
2746
2747 /* we can't trust the free space cache either */
2748 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2749
2750 ret = next_root_backup(fs_info, fs_info->super_copy,
2751 &num_backups_tried, &backup_index);
2752 if (ret == -1)
2753 goto fail_block_groups;
2754 goto retry_root_backup;
eb60ceac
CM
2755}
2756
f2984462
CM
2757static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2758{
f2984462
CM
2759 if (uptodate) {
2760 set_buffer_uptodate(bh);
2761 } else {
442a4f63
SB
2762 struct btrfs_device *device = (struct btrfs_device *)
2763 bh->b_private;
2764
606686ee
JB
2765 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2766 "I/O error on %s\n",
2767 rcu_str_deref(device->name));
1259ab75
CM
2768 /* note, we dont' set_buffer_write_io_error because we have
2769 * our own ways of dealing with the IO errors
2770 */
f2984462 2771 clear_buffer_uptodate(bh);
442a4f63 2772 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2773 }
2774 unlock_buffer(bh);
2775 put_bh(bh);
2776}
2777
a512bbf8
YZ
2778struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2779{
2780 struct buffer_head *bh;
2781 struct buffer_head *latest = NULL;
2782 struct btrfs_super_block *super;
2783 int i;
2784 u64 transid = 0;
2785 u64 bytenr;
2786
2787 /* we would like to check all the supers, but that would make
2788 * a btrfs mount succeed after a mkfs from a different FS.
2789 * So, we need to add a special mount option to scan for
2790 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2791 */
2792 for (i = 0; i < 1; i++) {
2793 bytenr = btrfs_sb_offset(i);
2794 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2795 break;
2796 bh = __bread(bdev, bytenr / 4096, 4096);
2797 if (!bh)
2798 continue;
2799
2800 super = (struct btrfs_super_block *)bh->b_data;
2801 if (btrfs_super_bytenr(super) != bytenr ||
2802 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2803 sizeof(super->magic))) {
2804 brelse(bh);
2805 continue;
2806 }
2807
2808 if (!latest || btrfs_super_generation(super) > transid) {
2809 brelse(latest);
2810 latest = bh;
2811 transid = btrfs_super_generation(super);
2812 } else {
2813 brelse(bh);
2814 }
2815 }
2816 return latest;
2817}
2818
4eedeb75
HH
2819/*
2820 * this should be called twice, once with wait == 0 and
2821 * once with wait == 1. When wait == 0 is done, all the buffer heads
2822 * we write are pinned.
2823 *
2824 * They are released when wait == 1 is done.
2825 * max_mirrors must be the same for both runs, and it indicates how
2826 * many supers on this one device should be written.
2827 *
2828 * max_mirrors == 0 means to write them all.
2829 */
a512bbf8
YZ
2830static int write_dev_supers(struct btrfs_device *device,
2831 struct btrfs_super_block *sb,
2832 int do_barriers, int wait, int max_mirrors)
2833{
2834 struct buffer_head *bh;
2835 int i;
2836 int ret;
2837 int errors = 0;
2838 u32 crc;
2839 u64 bytenr;
a512bbf8
YZ
2840
2841 if (max_mirrors == 0)
2842 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2843
a512bbf8
YZ
2844 for (i = 0; i < max_mirrors; i++) {
2845 bytenr = btrfs_sb_offset(i);
2846 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2847 break;
2848
2849 if (wait) {
2850 bh = __find_get_block(device->bdev, bytenr / 4096,
2851 BTRFS_SUPER_INFO_SIZE);
2852 BUG_ON(!bh);
a512bbf8 2853 wait_on_buffer(bh);
4eedeb75
HH
2854 if (!buffer_uptodate(bh))
2855 errors++;
2856
2857 /* drop our reference */
2858 brelse(bh);
2859
2860 /* drop the reference from the wait == 0 run */
2861 brelse(bh);
2862 continue;
a512bbf8
YZ
2863 } else {
2864 btrfs_set_super_bytenr(sb, bytenr);
2865
2866 crc = ~(u32)0;
2867 crc = btrfs_csum_data(NULL, (char *)sb +
2868 BTRFS_CSUM_SIZE, crc,
2869 BTRFS_SUPER_INFO_SIZE -
2870 BTRFS_CSUM_SIZE);
2871 btrfs_csum_final(crc, sb->csum);
2872
4eedeb75
HH
2873 /*
2874 * one reference for us, and we leave it for the
2875 * caller
2876 */
a512bbf8
YZ
2877 bh = __getblk(device->bdev, bytenr / 4096,
2878 BTRFS_SUPER_INFO_SIZE);
2879 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2880
4eedeb75 2881 /* one reference for submit_bh */
a512bbf8 2882 get_bh(bh);
4eedeb75
HH
2883
2884 set_buffer_uptodate(bh);
a512bbf8
YZ
2885 lock_buffer(bh);
2886 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2887 bh->b_private = device;
a512bbf8
YZ
2888 }
2889
387125fc
CM
2890 /*
2891 * we fua the first super. The others we allow
2892 * to go down lazy.
2893 */
21adbd5c 2894 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2895 if (ret)
a512bbf8 2896 errors++;
a512bbf8
YZ
2897 }
2898 return errors < i ? 0 : -1;
2899}
2900
387125fc
CM
2901/*
2902 * endio for the write_dev_flush, this will wake anyone waiting
2903 * for the barrier when it is done
2904 */
2905static void btrfs_end_empty_barrier(struct bio *bio, int err)
2906{
2907 if (err) {
2908 if (err == -EOPNOTSUPP)
2909 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2910 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2911 }
2912 if (bio->bi_private)
2913 complete(bio->bi_private);
2914 bio_put(bio);
2915}
2916
2917/*
2918 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2919 * sent down. With wait == 1, it waits for the previous flush.
2920 *
2921 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2922 * capable
2923 */
2924static int write_dev_flush(struct btrfs_device *device, int wait)
2925{
2926 struct bio *bio;
2927 int ret = 0;
2928
2929 if (device->nobarriers)
2930 return 0;
2931
2932 if (wait) {
2933 bio = device->flush_bio;
2934 if (!bio)
2935 return 0;
2936
2937 wait_for_completion(&device->flush_wait);
2938
2939 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2940 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2941 rcu_str_deref(device->name));
387125fc 2942 device->nobarriers = 1;
5af3e8cc 2943 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 2944 ret = -EIO;
5af3e8cc
SB
2945 btrfs_dev_stat_inc_and_print(device,
2946 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2947 }
2948
2949 /* drop the reference from the wait == 0 run */
2950 bio_put(bio);
2951 device->flush_bio = NULL;
2952
2953 return ret;
2954 }
2955
2956 /*
2957 * one reference for us, and we leave it for the
2958 * caller
2959 */
9c017abc 2960 device->flush_bio = NULL;
387125fc
CM
2961 bio = bio_alloc(GFP_NOFS, 0);
2962 if (!bio)
2963 return -ENOMEM;
2964
2965 bio->bi_end_io = btrfs_end_empty_barrier;
2966 bio->bi_bdev = device->bdev;
2967 init_completion(&device->flush_wait);
2968 bio->bi_private = &device->flush_wait;
2969 device->flush_bio = bio;
2970
2971 bio_get(bio);
21adbd5c 2972 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2973
2974 return 0;
2975}
2976
2977/*
2978 * send an empty flush down to each device in parallel,
2979 * then wait for them
2980 */
2981static int barrier_all_devices(struct btrfs_fs_info *info)
2982{
2983 struct list_head *head;
2984 struct btrfs_device *dev;
5af3e8cc
SB
2985 int errors_send = 0;
2986 int errors_wait = 0;
387125fc
CM
2987 int ret;
2988
2989 /* send down all the barriers */
2990 head = &info->fs_devices->devices;
2991 list_for_each_entry_rcu(dev, head, dev_list) {
2992 if (!dev->bdev) {
5af3e8cc 2993 errors_send++;
387125fc
CM
2994 continue;
2995 }
2996 if (!dev->in_fs_metadata || !dev->writeable)
2997 continue;
2998
2999 ret = write_dev_flush(dev, 0);
3000 if (ret)
5af3e8cc 3001 errors_send++;
387125fc
CM
3002 }
3003
3004 /* wait for all the barriers */
3005 list_for_each_entry_rcu(dev, head, dev_list) {
3006 if (!dev->bdev) {
5af3e8cc 3007 errors_wait++;
387125fc
CM
3008 continue;
3009 }
3010 if (!dev->in_fs_metadata || !dev->writeable)
3011 continue;
3012
3013 ret = write_dev_flush(dev, 1);
3014 if (ret)
5af3e8cc 3015 errors_wait++;
387125fc 3016 }
5af3e8cc
SB
3017 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3018 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3019 return -EIO;
3020 return 0;
3021}
3022
5af3e8cc
SB
3023int btrfs_calc_num_tolerated_disk_barrier_failures(
3024 struct btrfs_fs_info *fs_info)
3025{
3026 struct btrfs_ioctl_space_info space;
3027 struct btrfs_space_info *sinfo;
3028 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3029 BTRFS_BLOCK_GROUP_SYSTEM,
3030 BTRFS_BLOCK_GROUP_METADATA,
3031 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3032 int num_types = 4;
3033 int i;
3034 int c;
3035 int num_tolerated_disk_barrier_failures =
3036 (int)fs_info->fs_devices->num_devices;
3037
3038 for (i = 0; i < num_types; i++) {
3039 struct btrfs_space_info *tmp;
3040
3041 sinfo = NULL;
3042 rcu_read_lock();
3043 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3044 if (tmp->flags == types[i]) {
3045 sinfo = tmp;
3046 break;
3047 }
3048 }
3049 rcu_read_unlock();
3050
3051 if (!sinfo)
3052 continue;
3053
3054 down_read(&sinfo->groups_sem);
3055 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3056 if (!list_empty(&sinfo->block_groups[c])) {
3057 u64 flags;
3058
3059 btrfs_get_block_group_info(
3060 &sinfo->block_groups[c], &space);
3061 if (space.total_bytes == 0 ||
3062 space.used_bytes == 0)
3063 continue;
3064 flags = space.flags;
3065 /*
3066 * return
3067 * 0: if dup, single or RAID0 is configured for
3068 * any of metadata, system or data, else
3069 * 1: if RAID5 is configured, or if RAID1 or
3070 * RAID10 is configured and only two mirrors
3071 * are used, else
3072 * 2: if RAID6 is configured, else
3073 * num_mirrors - 1: if RAID1 or RAID10 is
3074 * configured and more than
3075 * 2 mirrors are used.
3076 */
3077 if (num_tolerated_disk_barrier_failures > 0 &&
3078 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3079 BTRFS_BLOCK_GROUP_RAID0)) ||
3080 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3081 == 0)))
3082 num_tolerated_disk_barrier_failures = 0;
3083 else if (num_tolerated_disk_barrier_failures > 1
3084 &&
3085 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3086 BTRFS_BLOCK_GROUP_RAID10)))
3087 num_tolerated_disk_barrier_failures = 1;
3088 }
3089 }
3090 up_read(&sinfo->groups_sem);
3091 }
3092
3093 return num_tolerated_disk_barrier_failures;
3094}
3095
a512bbf8 3096int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3097{
e5e9a520 3098 struct list_head *head;
f2984462 3099 struct btrfs_device *dev;
a061fc8d 3100 struct btrfs_super_block *sb;
f2984462 3101 struct btrfs_dev_item *dev_item;
f2984462
CM
3102 int ret;
3103 int do_barriers;
a236aed1
CM
3104 int max_errors;
3105 int total_errors = 0;
a061fc8d 3106 u64 flags;
f2984462 3107
6c41761f 3108 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 3109 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3110 backup_super_roots(root->fs_info);
f2984462 3111
6c41761f 3112 sb = root->fs_info->super_for_commit;
a061fc8d 3113 dev_item = &sb->dev_item;
e5e9a520 3114
174ba509 3115 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3116 head = &root->fs_info->fs_devices->devices;
387125fc 3117
5af3e8cc
SB
3118 if (do_barriers) {
3119 ret = barrier_all_devices(root->fs_info);
3120 if (ret) {
3121 mutex_unlock(
3122 &root->fs_info->fs_devices->device_list_mutex);
3123 btrfs_error(root->fs_info, ret,
3124 "errors while submitting device barriers.");
3125 return ret;
3126 }
3127 }
387125fc 3128
1f78160c 3129 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3130 if (!dev->bdev) {
3131 total_errors++;
3132 continue;
3133 }
2b82032c 3134 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3135 continue;
3136
2b82032c 3137 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3138 btrfs_set_stack_device_type(dev_item, dev->type);
3139 btrfs_set_stack_device_id(dev_item, dev->devid);
3140 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3141 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3142 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3143 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3144 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3145 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3146 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3147
a061fc8d
CM
3148 flags = btrfs_super_flags(sb);
3149 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3150
a512bbf8 3151 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3152 if (ret)
3153 total_errors++;
f2984462 3154 }
a236aed1 3155 if (total_errors > max_errors) {
d397712b
CM
3156 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3157 total_errors);
79787eaa
JM
3158
3159 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3160 BUG();
3161 }
f2984462 3162
a512bbf8 3163 total_errors = 0;
1f78160c 3164 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3165 if (!dev->bdev)
3166 continue;
2b82032c 3167 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3168 continue;
3169
a512bbf8
YZ
3170 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3171 if (ret)
3172 total_errors++;
f2984462 3173 }
174ba509 3174 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3175 if (total_errors > max_errors) {
79787eaa
JM
3176 btrfs_error(root->fs_info, -EIO,
3177 "%d errors while writing supers", total_errors);
3178 return -EIO;
a236aed1 3179 }
f2984462
CM
3180 return 0;
3181}
3182
a512bbf8
YZ
3183int write_ctree_super(struct btrfs_trans_handle *trans,
3184 struct btrfs_root *root, int max_mirrors)
eb60ceac 3185{
e66f709b 3186 int ret;
5f39d397 3187
a512bbf8 3188 ret = write_all_supers(root, max_mirrors);
5f39d397 3189 return ret;
cfaa7295
CM
3190}
3191
143bede5 3192void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3193{
4df27c4d 3194 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3195 radix_tree_delete(&fs_info->fs_roots_radix,
3196 (unsigned long)root->root_key.objectid);
4df27c4d 3197 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3198
3199 if (btrfs_root_refs(&root->root_item) == 0)
3200 synchronize_srcu(&fs_info->subvol_srcu);
3201
581bb050
LZ
3202 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3203 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3204 free_fs_root(root);
4df27c4d
YZ
3205}
3206
3207static void free_fs_root(struct btrfs_root *root)
3208{
82d5902d 3209 iput(root->cache_inode);
4df27c4d 3210 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3211 if (root->anon_dev)
3212 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3213 free_extent_buffer(root->node);
3214 free_extent_buffer(root->commit_root);
581bb050
LZ
3215 kfree(root->free_ino_ctl);
3216 kfree(root->free_ino_pinned);
d397712b 3217 kfree(root->name);
2619ba1f 3218 kfree(root);
2619ba1f
CM
3219}
3220
143bede5 3221static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3222{
3223 int ret;
3224 struct btrfs_root *gang[8];
3225 int i;
3226
76dda93c
YZ
3227 while (!list_empty(&fs_info->dead_roots)) {
3228 gang[0] = list_entry(fs_info->dead_roots.next,
3229 struct btrfs_root, root_list);
3230 list_del(&gang[0]->root_list);
3231
3232 if (gang[0]->in_radix) {
3233 btrfs_free_fs_root(fs_info, gang[0]);
3234 } else {
3235 free_extent_buffer(gang[0]->node);
3236 free_extent_buffer(gang[0]->commit_root);
3237 kfree(gang[0]);
3238 }
3239 }
3240
d397712b 3241 while (1) {
0f7d52f4
CM
3242 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3243 (void **)gang, 0,
3244 ARRAY_SIZE(gang));
3245 if (!ret)
3246 break;
2619ba1f 3247 for (i = 0; i < ret; i++)
5eda7b5e 3248 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3249 }
0f7d52f4 3250}
b4100d64 3251
c146afad 3252int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3253{
c146afad
YZ
3254 u64 root_objectid = 0;
3255 struct btrfs_root *gang[8];
3256 int i;
3768f368 3257 int ret;
e089f05c 3258
c146afad
YZ
3259 while (1) {
3260 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3261 (void **)gang, root_objectid,
3262 ARRAY_SIZE(gang));
3263 if (!ret)
3264 break;
5d4f98a2
YZ
3265
3266 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3267 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3268 int err;
3269
c146afad 3270 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3271 err = btrfs_orphan_cleanup(gang[i]);
3272 if (err)
3273 return err;
c146afad
YZ
3274 }
3275 root_objectid++;
3276 }
3277 return 0;
3278}
a2135011 3279
c146afad
YZ
3280int btrfs_commit_super(struct btrfs_root *root)
3281{
3282 struct btrfs_trans_handle *trans;
3283 int ret;
a74a4b97 3284
c146afad 3285 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3286 btrfs_run_delayed_iputs(root);
a74a4b97 3287 btrfs_clean_old_snapshots(root);
c146afad 3288 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3289
3290 /* wait until ongoing cleanup work done */
3291 down_write(&root->fs_info->cleanup_work_sem);
3292 up_write(&root->fs_info->cleanup_work_sem);
3293
7a7eaa40 3294 trans = btrfs_join_transaction(root);
3612b495
TI
3295 if (IS_ERR(trans))
3296 return PTR_ERR(trans);
54aa1f4d 3297 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3298 if (ret)
3299 return ret;
c146afad 3300 /* run commit again to drop the original snapshot */
7a7eaa40 3301 trans = btrfs_join_transaction(root);
3612b495
TI
3302 if (IS_ERR(trans))
3303 return PTR_ERR(trans);
79787eaa
JM
3304 ret = btrfs_commit_transaction(trans, root);
3305 if (ret)
3306 return ret;
79154b1b 3307 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3308 if (ret) {
3309 btrfs_error(root->fs_info, ret,
3310 "Failed to sync btree inode to disk.");
3311 return ret;
3312 }
d6bfde87 3313
a512bbf8 3314 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3315 return ret;
3316}
3317
3318int close_ctree(struct btrfs_root *root)
3319{
3320 struct btrfs_fs_info *fs_info = root->fs_info;
3321 int ret;
3322
3323 fs_info->closing = 1;
3324 smp_mb();
3325
837d5b6e 3326 /* pause restriper - we want to resume on mount */
aa1b8cd4 3327 btrfs_pause_balance(fs_info);
837d5b6e 3328
8dabb742
SB
3329 btrfs_dev_replace_suspend_for_unmount(fs_info);
3330
aa1b8cd4 3331 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3332
3333 /* wait for any defraggers to finish */
3334 wait_event(fs_info->transaction_wait,
3335 (atomic_read(&fs_info->defrag_running) == 0));
3336
3337 /* clear out the rbtree of defraggable inodes */
26176e7c 3338 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3339
c146afad 3340 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3341 ret = btrfs_commit_super(root);
3342 if (ret)
3343 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3344 }
3345
68ce9682
SB
3346 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3347 btrfs_error_commit_super(root);
0f7d52f4 3348
300e4f8a
JB
3349 btrfs_put_block_group_cache(fs_info);
3350
e3029d9f
AV
3351 kthread_stop(fs_info->transaction_kthread);
3352 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3353
f25784b3
YZ
3354 fs_info->closing = 2;
3355 smp_mb();
3356
bcef60f2
AJ
3357 btrfs_free_qgroup_config(root->fs_info);
3358
b0c68f8b 3359 if (fs_info->delalloc_bytes) {
d397712b 3360 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3361 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3362 }
bcc63abb 3363
5d4f98a2
YZ
3364 free_extent_buffer(fs_info->extent_root->node);
3365 free_extent_buffer(fs_info->extent_root->commit_root);
3366 free_extent_buffer(fs_info->tree_root->node);
3367 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3368 free_extent_buffer(fs_info->chunk_root->node);
3369 free_extent_buffer(fs_info->chunk_root->commit_root);
3370 free_extent_buffer(fs_info->dev_root->node);
3371 free_extent_buffer(fs_info->dev_root->commit_root);
3372 free_extent_buffer(fs_info->csum_root->node);
3373 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3374 if (fs_info->quota_root) {
3375 free_extent_buffer(fs_info->quota_root->node);
3376 free_extent_buffer(fs_info->quota_root->commit_root);
3377 }
d20f7043 3378
e3029d9f 3379 btrfs_free_block_groups(fs_info);
d10c5f31 3380
c146afad 3381 del_fs_roots(fs_info);
d10c5f31 3382
c146afad 3383 iput(fs_info->btree_inode);
9ad6b7bc 3384
61d92c32 3385 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3386 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3387 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3388 btrfs_stop_workers(&fs_info->workers);
3389 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3390 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3391 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3392 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3393 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3394 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3395 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3396 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3397 btrfs_stop_workers(&fs_info->readahead_workers);
8ccf6f19 3398 btrfs_stop_workers(&fs_info->flush_workers);
d6bfde87 3399
21adbd5c
SB
3400#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3401 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3402 btrfsic_unmount(root, fs_info->fs_devices);
3403#endif
3404
dfe25020 3405 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3406 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3407
04160088 3408 bdi_destroy(&fs_info->bdi);
76dda93c 3409 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3410
eb60ceac
CM
3411 return 0;
3412}
3413
b9fab919
CM
3414int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3415 int atomic)
5f39d397 3416{
1259ab75 3417 int ret;
727011e0 3418 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3419
0b32f4bb 3420 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3421 if (!ret)
3422 return ret;
3423
3424 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3425 parent_transid, atomic);
3426 if (ret == -EAGAIN)
3427 return ret;
1259ab75 3428 return !ret;
5f39d397
CM
3429}
3430
3431int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3432{
0b32f4bb 3433 return set_extent_buffer_uptodate(buf);
5f39d397 3434}
6702ed49 3435
5f39d397
CM
3436void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3437{
727011e0 3438 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3439 u64 transid = btrfs_header_generation(buf);
b9473439 3440 int was_dirty;
b4ce94de 3441
b9447ef8 3442 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3443 if (transid != root->fs_info->generation)
3444 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3445 "found %llu running %llu\n",
db94535d 3446 (unsigned long long)buf->start,
d397712b
CM
3447 (unsigned long long)transid,
3448 (unsigned long long)root->fs_info->generation);
0b32f4bb 3449 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3450 if (!was_dirty) {
3451 spin_lock(&root->fs_info->delalloc_lock);
3452 root->fs_info->dirty_metadata_bytes += buf->len;
3453 spin_unlock(&root->fs_info->delalloc_lock);
3454 }
eb60ceac
CM
3455}
3456
b53d3f5d
LB
3457static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3458 int flush_delayed)
16cdcec7
MX
3459{
3460 /*
3461 * looks as though older kernels can get into trouble with
3462 * this code, they end up stuck in balance_dirty_pages forever
3463 */
3464 u64 num_dirty;
3465 unsigned long thresh = 32 * 1024 * 1024;
3466
3467 if (current->flags & PF_MEMALLOC)
3468 return;
3469
b53d3f5d
LB
3470 if (flush_delayed)
3471 btrfs_balance_delayed_items(root);
16cdcec7
MX
3472
3473 num_dirty = root->fs_info->dirty_metadata_bytes;
3474
3475 if (num_dirty > thresh) {
3476 balance_dirty_pages_ratelimited_nr(
3477 root->fs_info->btree_inode->i_mapping, 1);
3478 }
3479 return;
3480}
3481
b53d3f5d 3482void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3483{
b53d3f5d
LB
3484 __btrfs_btree_balance_dirty(root, 1);
3485}
585ad2c3 3486
b53d3f5d
LB
3487void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3488{
3489 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3490}
6b80053d 3491
ca7a79ad 3492int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3493{
727011e0 3494 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3495 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3496}
0da5468f 3497
fcd1f065 3498static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3499 int read_only)
3500{
fcd1f065
DS
3501 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3502 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3503 return -EINVAL;
3504 }
3505
acce952b 3506 if (read_only)
fcd1f065 3507 return 0;
acce952b 3508
fcd1f065 3509 return 0;
acce952b 3510}
3511
68ce9682 3512void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3513{
acce952b 3514 mutex_lock(&root->fs_info->cleaner_mutex);
3515 btrfs_run_delayed_iputs(root);
3516 mutex_unlock(&root->fs_info->cleaner_mutex);
3517
3518 down_write(&root->fs_info->cleanup_work_sem);
3519 up_write(&root->fs_info->cleanup_work_sem);
3520
3521 /* cleanup FS via transaction */
3522 btrfs_cleanup_transaction(root);
acce952b 3523}
3524
143bede5 3525static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3526{
3527 struct btrfs_inode *btrfs_inode;
3528 struct list_head splice;
3529
3530 INIT_LIST_HEAD(&splice);
3531
3532 mutex_lock(&root->fs_info->ordered_operations_mutex);
3533 spin_lock(&root->fs_info->ordered_extent_lock);
3534
3535 list_splice_init(&root->fs_info->ordered_operations, &splice);
3536 while (!list_empty(&splice)) {
3537 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3538 ordered_operations);
3539
3540 list_del_init(&btrfs_inode->ordered_operations);
3541
3542 btrfs_invalidate_inodes(btrfs_inode->root);
3543 }
3544
3545 spin_unlock(&root->fs_info->ordered_extent_lock);
3546 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3547}
3548
143bede5 3549static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3550{
3551 struct list_head splice;
3552 struct btrfs_ordered_extent *ordered;
3553 struct inode *inode;
3554
3555 INIT_LIST_HEAD(&splice);
3556
3557 spin_lock(&root->fs_info->ordered_extent_lock);
3558
3559 list_splice_init(&root->fs_info->ordered_extents, &splice);
3560 while (!list_empty(&splice)) {
3561 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3562 root_extent_list);
3563
3564 list_del_init(&ordered->root_extent_list);
3565 atomic_inc(&ordered->refs);
3566
3567 /* the inode may be getting freed (in sys_unlink path). */
3568 inode = igrab(ordered->inode);
3569
3570 spin_unlock(&root->fs_info->ordered_extent_lock);
3571 if (inode)
3572 iput(inode);
3573
3574 atomic_set(&ordered->refs, 1);
3575 btrfs_put_ordered_extent(ordered);
3576
3577 spin_lock(&root->fs_info->ordered_extent_lock);
3578 }
3579
3580 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3581}
3582
79787eaa
JM
3583int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3584 struct btrfs_root *root)
acce952b 3585{
3586 struct rb_node *node;
3587 struct btrfs_delayed_ref_root *delayed_refs;
3588 struct btrfs_delayed_ref_node *ref;
3589 int ret = 0;
3590
3591 delayed_refs = &trans->delayed_refs;
3592
3593 spin_lock(&delayed_refs->lock);
3594 if (delayed_refs->num_entries == 0) {
cfece4db 3595 spin_unlock(&delayed_refs->lock);
acce952b 3596 printk(KERN_INFO "delayed_refs has NO entry\n");
3597 return ret;
3598 }
3599
b939d1ab 3600 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3601 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3602
3603 atomic_set(&ref->refs, 1);
3604 if (btrfs_delayed_ref_is_head(ref)) {
3605 struct btrfs_delayed_ref_head *head;
3606
3607 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3608 if (!mutex_trylock(&head->mutex)) {
3609 atomic_inc(&ref->refs);
3610 spin_unlock(&delayed_refs->lock);
3611
3612 /* Need to wait for the delayed ref to run */
3613 mutex_lock(&head->mutex);
3614 mutex_unlock(&head->mutex);
3615 btrfs_put_delayed_ref(ref);
3616
e18fca73 3617 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3618 continue;
3619 }
3620
78a6184a 3621 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3622 delayed_refs->num_heads--;
3623 if (list_empty(&head->cluster))
3624 delayed_refs->num_heads_ready--;
3625 list_del_init(&head->cluster);
acce952b 3626 }
b939d1ab
JB
3627 ref->in_tree = 0;
3628 rb_erase(&ref->rb_node, &delayed_refs->root);
3629 delayed_refs->num_entries--;
3630
acce952b 3631 spin_unlock(&delayed_refs->lock);
3632 btrfs_put_delayed_ref(ref);
3633
3634 cond_resched();
3635 spin_lock(&delayed_refs->lock);
3636 }
3637
3638 spin_unlock(&delayed_refs->lock);
3639
3640 return ret;
3641}
3642
143bede5 3643static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3644{
3645 struct btrfs_pending_snapshot *snapshot;
3646 struct list_head splice;
3647
3648 INIT_LIST_HEAD(&splice);
3649
3650 list_splice_init(&t->pending_snapshots, &splice);
3651
3652 while (!list_empty(&splice)) {
3653 snapshot = list_entry(splice.next,
3654 struct btrfs_pending_snapshot,
3655 list);
3656
3657 list_del_init(&snapshot->list);
3658
3659 kfree(snapshot);
3660 }
acce952b 3661}
3662
143bede5 3663static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3664{
3665 struct btrfs_inode *btrfs_inode;
3666 struct list_head splice;
3667
3668 INIT_LIST_HEAD(&splice);
3669
acce952b 3670 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3671 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3672
3673 while (!list_empty(&splice)) {
3674 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3675 delalloc_inodes);
3676
3677 list_del_init(&btrfs_inode->delalloc_inodes);
3678
3679 btrfs_invalidate_inodes(btrfs_inode->root);
3680 }
3681
3682 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3683}
3684
3685static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3686 struct extent_io_tree *dirty_pages,
3687 int mark)
3688{
3689 int ret;
3690 struct page *page;
3691 struct inode *btree_inode = root->fs_info->btree_inode;
3692 struct extent_buffer *eb;
3693 u64 start = 0;
3694 u64 end;
3695 u64 offset;
3696 unsigned long index;
3697
3698 while (1) {
3699 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3700 mark, NULL);
acce952b 3701 if (ret)
3702 break;
3703
3704 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3705 while (start <= end) {
3706 index = start >> PAGE_CACHE_SHIFT;
3707 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3708 page = find_get_page(btree_inode->i_mapping, index);
3709 if (!page)
3710 continue;
3711 offset = page_offset(page);
3712
3713 spin_lock(&dirty_pages->buffer_lock);
3714 eb = radix_tree_lookup(
3715 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3716 offset >> PAGE_CACHE_SHIFT);
3717 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3718 if (eb)
acce952b 3719 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3720 &eb->bflags);
acce952b 3721 if (PageWriteback(page))
3722 end_page_writeback(page);
3723
3724 lock_page(page);
3725 if (PageDirty(page)) {
3726 clear_page_dirty_for_io(page);
3727 spin_lock_irq(&page->mapping->tree_lock);
3728 radix_tree_tag_clear(&page->mapping->page_tree,
3729 page_index(page),
3730 PAGECACHE_TAG_DIRTY);
3731 spin_unlock_irq(&page->mapping->tree_lock);
3732 }
3733
acce952b 3734 unlock_page(page);
ee670f0a 3735 page_cache_release(page);
acce952b 3736 }
3737 }
3738
3739 return ret;
3740}
3741
3742static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3743 struct extent_io_tree *pinned_extents)
3744{
3745 struct extent_io_tree *unpin;
3746 u64 start;
3747 u64 end;
3748 int ret;
ed0eaa14 3749 bool loop = true;
acce952b 3750
3751 unpin = pinned_extents;
ed0eaa14 3752again:
acce952b 3753 while (1) {
3754 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3755 EXTENT_DIRTY, NULL);
acce952b 3756 if (ret)
3757 break;
3758
3759 /* opt_discard */
5378e607
LD
3760 if (btrfs_test_opt(root, DISCARD))
3761 ret = btrfs_error_discard_extent(root, start,
3762 end + 1 - start,
3763 NULL);
acce952b 3764
3765 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3766 btrfs_error_unpin_extent_range(root, start, end);
3767 cond_resched();
3768 }
3769
ed0eaa14
LB
3770 if (loop) {
3771 if (unpin == &root->fs_info->freed_extents[0])
3772 unpin = &root->fs_info->freed_extents[1];
3773 else
3774 unpin = &root->fs_info->freed_extents[0];
3775 loop = false;
3776 goto again;
3777 }
3778
acce952b 3779 return 0;
3780}
3781
49b25e05
JM
3782void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3783 struct btrfs_root *root)
3784{
3785 btrfs_destroy_delayed_refs(cur_trans, root);
3786 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3787 cur_trans->dirty_pages.dirty_bytes);
3788
3789 /* FIXME: cleanup wait for commit */
3790 cur_trans->in_commit = 1;
3791 cur_trans->blocked = 1;
d7096fc3 3792 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3793
3794 cur_trans->blocked = 0;
d7096fc3 3795 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3796
3797 cur_trans->commit_done = 1;
d7096fc3 3798 wake_up(&cur_trans->commit_wait);
49b25e05 3799
67cde344
MX
3800 btrfs_destroy_delayed_inodes(root);
3801 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3802
3803 btrfs_destroy_pending_snapshots(cur_trans);
3804
3805 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3806 EXTENT_DIRTY);
6e841e32
LB
3807 btrfs_destroy_pinned_extent(root,
3808 root->fs_info->pinned_extents);
49b25e05
JM
3809
3810 /*
3811 memset(cur_trans, 0, sizeof(*cur_trans));
3812 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3813 */
3814}
3815
3816int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3817{
3818 struct btrfs_transaction *t;
3819 LIST_HEAD(list);
3820
acce952b 3821 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3822
a4abeea4 3823 spin_lock(&root->fs_info->trans_lock);
acce952b 3824 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3825 root->fs_info->trans_no_join = 1;
3826 spin_unlock(&root->fs_info->trans_lock);
3827
acce952b 3828 while (!list_empty(&list)) {
3829 t = list_entry(list.next, struct btrfs_transaction, list);
3830 if (!t)
3831 break;
3832
3833 btrfs_destroy_ordered_operations(root);
3834
3835 btrfs_destroy_ordered_extents(root);
3836
3837 btrfs_destroy_delayed_refs(t, root);
3838
3839 btrfs_block_rsv_release(root,
3840 &root->fs_info->trans_block_rsv,
3841 t->dirty_pages.dirty_bytes);
3842
3843 /* FIXME: cleanup wait for commit */
3844 t->in_commit = 1;
3845 t->blocked = 1;
66657b31 3846 smp_mb();
acce952b 3847 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3848 wake_up(&root->fs_info->transaction_blocked_wait);
3849
3850 t->blocked = 0;
66657b31 3851 smp_mb();
acce952b 3852 if (waitqueue_active(&root->fs_info->transaction_wait))
3853 wake_up(&root->fs_info->transaction_wait);
acce952b 3854
acce952b 3855 t->commit_done = 1;
66657b31 3856 smp_mb();
acce952b 3857 if (waitqueue_active(&t->commit_wait))
3858 wake_up(&t->commit_wait);
acce952b 3859
67cde344
MX
3860 btrfs_destroy_delayed_inodes(root);
3861 btrfs_assert_delayed_root_empty(root);
3862
acce952b 3863 btrfs_destroy_pending_snapshots(t);
3864
3865 btrfs_destroy_delalloc_inodes(root);
3866
a4abeea4 3867 spin_lock(&root->fs_info->trans_lock);
acce952b 3868 root->fs_info->running_transaction = NULL;
a4abeea4 3869 spin_unlock(&root->fs_info->trans_lock);
acce952b 3870
3871 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3872 EXTENT_DIRTY);
3873
3874 btrfs_destroy_pinned_extent(root,
3875 root->fs_info->pinned_extents);
3876
13c5a93e 3877 atomic_set(&t->use_count, 0);
acce952b 3878 list_del_init(&t->list);
3879 memset(t, 0, sizeof(*t));
3880 kmem_cache_free(btrfs_transaction_cachep, t);
3881 }
3882
a4abeea4
JB
3883 spin_lock(&root->fs_info->trans_lock);
3884 root->fs_info->trans_no_join = 0;
3885 spin_unlock(&root->fs_info->trans_lock);
acce952b 3886 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3887
3888 return 0;
3889}
3890
d1310b2e 3891static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 3892 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3893 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3894 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3895 /* note we're sharing with inode.c for the merge bio hook */
3896 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3897};