Btrfs: output warning instead of error when loading free space cache failed
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
8b712842 89 struct btrfs_work work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
8b712842 111 struct btrfs_work work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 160 { .id = 0, .name_stem = "tree" },
4008c04a 161};
85d4e461
CM
162
163void __init btrfs_init_lockdep(void)
164{
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175}
176
177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179{
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191}
192
4008c04a
CM
193#endif
194
d352ac68
CM
195/*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
b2950863 199static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 200 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 201 int create)
7eccb903 202{
5f39d397
CM
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
890871be 207 read_lock(&em_tree->lock);
d1310b2e 208 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 212 read_unlock(&em_tree->lock);
5f39d397 213 goto out;
a061fc8d 214 }
890871be 215 read_unlock(&em_tree->lock);
7b13b7b1 216
172ddd60 217 em = alloc_extent_map();
5f39d397
CM
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
0afbaf8c 223 em->len = (u64)-1;
c8b97818 224 em->block_len = (u64)-1;
5f39d397 225 em->block_start = 0;
a061fc8d 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 227
890871be 228 write_lock(&em_tree->lock);
09a2a8f9 229 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
230 if (ret == -EEXIST) {
231 free_extent_map(em);
7b13b7b1 232 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 233 if (!em)
0433f20d 234 em = ERR_PTR(-EIO);
5f39d397 235 } else if (ret) {
7b13b7b1 236 free_extent_map(em);
0433f20d 237 em = ERR_PTR(ret);
5f39d397 238 }
890871be 239 write_unlock(&em_tree->lock);
7b13b7b1 240
5f39d397
CM
241out:
242 return em;
7eccb903
CM
243}
244
b0496686 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 246{
0b947aff 247 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
248}
249
250void btrfs_csum_final(u32 crc, char *result)
251{
7e75bf3f 252 put_unaligned_le32(~crc, result);
19c00ddc
CM
253}
254
d352ac68
CM
255/*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
19c00ddc
CM
259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261{
6c41761f 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 263 char *result = NULL;
19c00ddc
CM
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
607d432d 272 unsigned long inline_result;
19c00ddc
CM
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
19c00ddc 276 err = map_private_extent_buffer(buf, offset, 32,
a6591715 277 &kaddr, &map_start, &map_len);
d397712b 278 if (err)
19c00ddc 279 return 1;
19c00ddc 280 cur_len = min(len, map_len - (offset - map_start));
b0496686 281 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
607d432d
JB
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75 331 int ret;
a26e8c9f
JB
332 bool need_lock = (current->journal_info ==
333 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
334
335 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
336 return 0;
337
b9fab919
CM
338 if (atomic)
339 return -EAGAIN;
340
a26e8c9f
JB
341 if (need_lock) {
342 btrfs_tree_read_lock(eb);
343 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344 }
345
2ac55d41 346 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 347 0, &cached_state);
0b32f4bb 348 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
349 btrfs_header_generation(eb) == parent_transid) {
350 ret = 0;
351 goto out;
352 }
7a36ddec 353 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 354 "found %llu\n",
c1c9ff7c 355 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 356 ret = 1;
a26e8c9f
JB
357
358 /*
359 * Things reading via commit roots that don't have normal protection,
360 * like send, can have a really old block in cache that may point at a
361 * block that has been free'd and re-allocated. So don't clear uptodate
362 * if we find an eb that is under IO (dirty/writeback) because we could
363 * end up reading in the stale data and then writing it back out and
364 * making everybody very sad.
365 */
366 if (!extent_buffer_under_io(eb))
367 clear_extent_buffer_uptodate(eb);
33958dc6 368out:
2ac55d41
JB
369 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state, GFP_NOFS);
a26e8c9f 371 btrfs_tree_read_unlock_blocking(eb);
1259ab75 372 return ret;
1259ab75
CM
373}
374
1104a885
DS
375/*
376 * Return 0 if the superblock checksum type matches the checksum value of that
377 * algorithm. Pass the raw disk superblock data.
378 */
379static int btrfs_check_super_csum(char *raw_disk_sb)
380{
381 struct btrfs_super_block *disk_sb =
382 (struct btrfs_super_block *)raw_disk_sb;
383 u16 csum_type = btrfs_super_csum_type(disk_sb);
384 int ret = 0;
385
386 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 u32 crc = ~(u32)0;
388 const int csum_size = sizeof(crc);
389 char result[csum_size];
390
391 /*
392 * The super_block structure does not span the whole
393 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394 * is filled with zeros and is included in the checkum.
395 */
396 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398 btrfs_csum_final(crc, result);
399
400 if (memcmp(raw_disk_sb, result, csum_size))
401 ret = 1;
667e7d94
CM
402
403 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
404 printk(KERN_WARNING
405 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
406 ret = 0;
407 }
1104a885
DS
408 }
409
410 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 411 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
412 csum_type);
413 ret = 1;
414 }
415
416 return ret;
417}
418
d352ac68
CM
419/*
420 * helper to read a given tree block, doing retries as required when
421 * the checksums don't match and we have alternate mirrors to try.
422 */
f188591e
CM
423static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424 struct extent_buffer *eb,
ca7a79ad 425 u64 start, u64 parent_transid)
f188591e
CM
426{
427 struct extent_io_tree *io_tree;
ea466794 428 int failed = 0;
f188591e
CM
429 int ret;
430 int num_copies = 0;
431 int mirror_num = 0;
ea466794 432 int failed_mirror = 0;
f188591e 433
a826d6dc 434 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
435 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436 while (1) {
bb82ab88
AJ
437 ret = read_extent_buffer_pages(io_tree, eb, start,
438 WAIT_COMPLETE,
f188591e 439 btree_get_extent, mirror_num);
256dd1bb
SB
440 if (!ret) {
441 if (!verify_parent_transid(io_tree, eb,
b9fab919 442 parent_transid, 0))
256dd1bb
SB
443 break;
444 else
445 ret = -EIO;
446 }
d397712b 447
a826d6dc
JB
448 /*
449 * This buffer's crc is fine, but its contents are corrupted, so
450 * there is no reason to read the other copies, they won't be
451 * any less wrong.
452 */
453 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
454 break;
455
5d964051 456 num_copies = btrfs_num_copies(root->fs_info,
f188591e 457 eb->start, eb->len);
4235298e 458 if (num_copies == 1)
ea466794 459 break;
4235298e 460
5cf1ab56
JB
461 if (!failed_mirror) {
462 failed = 1;
463 failed_mirror = eb->read_mirror;
464 }
465
f188591e 466 mirror_num++;
ea466794
JB
467 if (mirror_num == failed_mirror)
468 mirror_num++;
469
4235298e 470 if (mirror_num > num_copies)
ea466794 471 break;
f188591e 472 }
ea466794 473
c0901581 474 if (failed && !ret && failed_mirror)
ea466794
JB
475 repair_eb_io_failure(root, eb, failed_mirror);
476
477 return ret;
f188591e 478}
19c00ddc 479
d352ac68 480/*
d397712b
CM
481 * checksum a dirty tree block before IO. This has extra checks to make sure
482 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 483 */
d397712b 484
b2950863 485static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 486{
4eee4fa4 487 u64 start = page_offset(page);
19c00ddc 488 u64 found_start;
19c00ddc 489 struct extent_buffer *eb;
f188591e 490
4f2de97a
JB
491 eb = (struct extent_buffer *)page->private;
492 if (page != eb->pages[0])
493 return 0;
19c00ddc 494 found_start = btrfs_header_bytenr(eb);
fae7f21c 495 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 496 return 0;
19c00ddc 497 csum_tree_block(root, eb, 0);
19c00ddc
CM
498 return 0;
499}
500
2b82032c
YZ
501static int check_tree_block_fsid(struct btrfs_root *root,
502 struct extent_buffer *eb)
503{
504 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505 u8 fsid[BTRFS_UUID_SIZE];
506 int ret = 1;
507
0a4e5586 508 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
509 while (fs_devices) {
510 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511 ret = 0;
512 break;
513 }
514 fs_devices = fs_devices->seed;
515 }
516 return ret;
517}
518
a826d6dc 519#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
520 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
521 "root=%llu, slot=%d", reason, \
c1c9ff7c 522 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
523
524static noinline int check_leaf(struct btrfs_root *root,
525 struct extent_buffer *leaf)
526{
527 struct btrfs_key key;
528 struct btrfs_key leaf_key;
529 u32 nritems = btrfs_header_nritems(leaf);
530 int slot;
531
532 if (nritems == 0)
533 return 0;
534
535 /* Check the 0 item */
536 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537 BTRFS_LEAF_DATA_SIZE(root)) {
538 CORRUPT("invalid item offset size pair", leaf, root, 0);
539 return -EIO;
540 }
541
542 /*
543 * Check to make sure each items keys are in the correct order and their
544 * offsets make sense. We only have to loop through nritems-1 because
545 * we check the current slot against the next slot, which verifies the
546 * next slot's offset+size makes sense and that the current's slot
547 * offset is correct.
548 */
549 for (slot = 0; slot < nritems - 1; slot++) {
550 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552
553 /* Make sure the keys are in the right order */
554 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555 CORRUPT("bad key order", leaf, root, slot);
556 return -EIO;
557 }
558
559 /*
560 * Make sure the offset and ends are right, remember that the
561 * item data starts at the end of the leaf and grows towards the
562 * front.
563 */
564 if (btrfs_item_offset_nr(leaf, slot) !=
565 btrfs_item_end_nr(leaf, slot + 1)) {
566 CORRUPT("slot offset bad", leaf, root, slot);
567 return -EIO;
568 }
569
570 /*
571 * Check to make sure that we don't point outside of the leaf,
572 * just incase all the items are consistent to eachother, but
573 * all point outside of the leaf.
574 */
575 if (btrfs_item_end_nr(leaf, slot) >
576 BTRFS_LEAF_DATA_SIZE(root)) {
577 CORRUPT("slot end outside of leaf", leaf, root, slot);
578 return -EIO;
579 }
580 }
581
582 return 0;
583}
584
facc8a22
MX
585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 u64 phy_offset, struct page *page,
587 u64 start, u64 end, int mirror)
ce9adaa5 588{
ce9adaa5
CM
589 u64 found_start;
590 int found_level;
ce9adaa5
CM
591 struct extent_buffer *eb;
592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 593 int ret = 0;
727011e0 594 int reads_done;
ce9adaa5 595
ce9adaa5
CM
596 if (!page->private)
597 goto out;
d397712b 598
4f2de97a 599 eb = (struct extent_buffer *)page->private;
d397712b 600
0b32f4bb
JB
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
603 */
604 extent_buffer_get(eb);
605
606 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
607 if (!reads_done)
608 goto err;
f188591e 609
5cf1ab56 610 eb->read_mirror = mirror;
ea466794
JB
611 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612 ret = -EIO;
613 goto err;
614 }
615
ce9adaa5 616 found_start = btrfs_header_bytenr(eb);
727011e0 617 if (found_start != eb->start) {
efe120a0 618 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 619 "%llu %llu\n",
c1c9ff7c 620 found_start, eb->start);
f188591e 621 ret = -EIO;
ce9adaa5
CM
622 goto err;
623 }
2b82032c 624 if (check_tree_block_fsid(root, eb)) {
efe120a0 625 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 626 eb->start);
1259ab75
CM
627 ret = -EIO;
628 goto err;
629 }
ce9adaa5 630 found_level = btrfs_header_level(eb);
1c24c3ce 631 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 632 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
633 (int)btrfs_header_level(eb));
634 ret = -EIO;
635 goto err;
636 }
ce9adaa5 637
85d4e461
CM
638 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639 eb, found_level);
4008c04a 640
ce9adaa5 641 ret = csum_tree_block(root, eb, 1);
a826d6dc 642 if (ret) {
f188591e 643 ret = -EIO;
a826d6dc
JB
644 goto err;
645 }
646
647 /*
648 * If this is a leaf block and it is corrupt, set the corrupt bit so
649 * that we don't try and read the other copies of this block, just
650 * return -EIO.
651 */
652 if (found_level == 0 && check_leaf(root, eb)) {
653 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654 ret = -EIO;
655 }
ce9adaa5 656
0b32f4bb
JB
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
ce9adaa5 659err:
79fb65a1
JB
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 662 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 663
53b381b3
DW
664 if (ret) {
665 /*
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
669 */
670 atomic_inc(&eb->io_pages);
0b32f4bb 671 clear_extent_buffer_uptodate(eb);
53b381b3 672 }
0b32f4bb 673 free_extent_buffer(eb);
ce9adaa5 674out:
f188591e 675 return ret;
ce9adaa5
CM
676}
677
ea466794 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 679{
4bb31e92
AJ
680 struct extent_buffer *eb;
681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682
4f2de97a 683 eb = (struct extent_buffer *)page->private;
ea466794 684 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 685 eb->read_mirror = failed_mirror;
53b381b3 686 atomic_dec(&eb->io_pages);
ea466794 687 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 688 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
689 return -EIO; /* we fixed nothing */
690}
691
ce9adaa5 692static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
693{
694 struct end_io_wq *end_io_wq = bio->bi_private;
695 struct btrfs_fs_info *fs_info;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
ce9adaa5 698 end_io_wq->error = err;
fccb5d86 699 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
d20f7043 700
7b6d91da 701 if (bio->bi_rw & REQ_WRITE) {
53b381b3 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
fccb5d86
QW
703 btrfs_queue_work(fs_info->endio_meta_write_workers,
704 &end_io_wq->work);
53b381b3 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
fccb5d86
QW
706 btrfs_queue_work(fs_info->endio_freespace_worker,
707 &end_io_wq->work);
53b381b3 708 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
709 btrfs_queue_work(fs_info->endio_raid56_workers,
710 &end_io_wq->work);
cad321ad 711 else
fccb5d86
QW
712 btrfs_queue_work(fs_info->endio_write_workers,
713 &end_io_wq->work);
d20f7043 714 } else {
53b381b3 715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
716 btrfs_queue_work(fs_info->endio_raid56_workers,
717 &end_io_wq->work);
53b381b3 718 else if (end_io_wq->metadata)
fccb5d86
QW
719 btrfs_queue_work(fs_info->endio_meta_workers,
720 &end_io_wq->work);
d20f7043 721 else
fccb5d86
QW
722 btrfs_queue_work(fs_info->endio_workers,
723 &end_io_wq->work);
d20f7043 724 }
ce9adaa5
CM
725}
726
0cb59c99
JB
727/*
728 * For the metadata arg you want
729 *
730 * 0 - if data
731 * 1 - if normal metadta
732 * 2 - if writing to the free space cache area
53b381b3 733 * 3 - raid parity work
0cb59c99 734 */
22c59948
CM
735int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736 int metadata)
0b86a832 737{
ce9adaa5 738 struct end_io_wq *end_io_wq;
ce9adaa5
CM
739 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740 if (!end_io_wq)
741 return -ENOMEM;
742
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
22c59948 745 end_io_wq->info = info;
ce9adaa5
CM
746 end_io_wq->error = 0;
747 end_io_wq->bio = bio;
22c59948 748 end_io_wq->metadata = metadata;
ce9adaa5
CM
749
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
752 return 0;
753}
754
b64a2851 755unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 756{
4854ddd0 757 unsigned long limit = min_t(unsigned long,
5cdc7ad3 758 info->thread_pool_size,
4854ddd0
CM
759 info->fs_devices->open_devices);
760 return 256 * limit;
761}
0986fe9e 762
4a69a410
CM
763static void run_one_async_start(struct btrfs_work *work)
764{
4a69a410 765 struct async_submit_bio *async;
79787eaa 766 int ret;
4a69a410
CM
767
768 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
769 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772 if (ret)
773 async->error = ret;
4a69a410
CM
774}
775
776static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
777{
778 struct btrfs_fs_info *fs_info;
779 struct async_submit_bio *async;
4854ddd0 780 int limit;
8b712842
CM
781
782 async = container_of(work, struct async_submit_bio, work);
783 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 784
b64a2851 785 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
786 limit = limit * 2 / 3;
787
66657b31 788 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 789 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
790 wake_up(&fs_info->async_submit_wait);
791
79787eaa
JM
792 /* If an error occured we just want to clean up the bio and move on */
793 if (async->error) {
794 bio_endio(async->bio, async->error);
795 return;
796 }
797
4a69a410 798 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
799 async->mirror_num, async->bio_flags,
800 async->bio_offset);
4a69a410
CM
801}
802
803static void run_one_async_free(struct btrfs_work *work)
804{
805 struct async_submit_bio *async;
806
807 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
808 kfree(async);
809}
810
44b8bd7e
CM
811int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812 int rw, struct bio *bio, int mirror_num,
c8b97818 813 unsigned long bio_flags,
eaf25d93 814 u64 bio_offset,
4a69a410
CM
815 extent_submit_bio_hook_t *submit_bio_start,
816 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
817{
818 struct async_submit_bio *async;
819
820 async = kmalloc(sizeof(*async), GFP_NOFS);
821 if (!async)
822 return -ENOMEM;
823
824 async->inode = inode;
825 async->rw = rw;
826 async->bio = bio;
827 async->mirror_num = mirror_num;
4a69a410
CM
828 async->submit_bio_start = submit_bio_start;
829 async->submit_bio_done = submit_bio_done;
830
5cdc7ad3
QW
831 btrfs_init_work(&async->work, run_one_async_start,
832 run_one_async_done, run_one_async_free);
4a69a410 833
c8b97818 834 async->bio_flags = bio_flags;
eaf25d93 835 async->bio_offset = bio_offset;
8c8bee1d 836
79787eaa
JM
837 async->error = 0;
838
cb03c743 839 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 840
7b6d91da 841 if (rw & REQ_SYNC)
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 845
d397712b 846 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
847 atomic_read(&fs_info->nr_async_submits)) {
848 wait_event(fs_info->async_submit_wait,
849 (atomic_read(&fs_info->nr_async_submits) == 0));
850 }
851
44b8bd7e
CM
852 return 0;
853}
854
ce3ed71a
CM
855static int btree_csum_one_bio(struct bio *bio)
856{
2c30c71b 857 struct bio_vec *bvec;
ce3ed71a 858 struct btrfs_root *root;
2c30c71b 859 int i, ret = 0;
ce3ed71a 860
2c30c71b 861 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 862 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
863 ret = csum_dirty_buffer(root, bvec->bv_page);
864 if (ret)
865 break;
ce3ed71a 866 }
2c30c71b 867
79787eaa 868 return ret;
ce3ed71a
CM
869}
870
4a69a410
CM
871static int __btree_submit_bio_start(struct inode *inode, int rw,
872 struct bio *bio, int mirror_num,
eaf25d93
CM
873 unsigned long bio_flags,
874 u64 bio_offset)
22c59948 875{
8b712842
CM
876 /*
877 * when we're called for a write, we're already in the async
5443be45 878 * submission context. Just jump into btrfs_map_bio
8b712842 879 */
79787eaa 880 return btree_csum_one_bio(bio);
4a69a410 881}
22c59948 882
4a69a410 883static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
884 int mirror_num, unsigned long bio_flags,
885 u64 bio_offset)
4a69a410 886{
61891923
SB
887 int ret;
888
8b712842 889 /*
4a69a410
CM
890 * when we're called for a write, we're already in the async
891 * submission context. Just jump into btrfs_map_bio
8b712842 892 */
61891923
SB
893 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
894 if (ret)
895 bio_endio(bio, ret);
896 return ret;
0b86a832
CM
897}
898
de0022b9
JB
899static int check_async_write(struct inode *inode, unsigned long bio_flags)
900{
901 if (bio_flags & EXTENT_BIO_TREE_LOG)
902 return 0;
903#ifdef CONFIG_X86
904 if (cpu_has_xmm4_2)
905 return 0;
906#endif
907 return 1;
908}
909
44b8bd7e 910static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
911 int mirror_num, unsigned long bio_flags,
912 u64 bio_offset)
44b8bd7e 913{
de0022b9 914 int async = check_async_write(inode, bio_flags);
cad321ad
CM
915 int ret;
916
7b6d91da 917 if (!(rw & REQ_WRITE)) {
4a69a410
CM
918 /*
919 * called for a read, do the setup so that checksum validation
920 * can happen in the async kernel threads
921 */
f3f266ab
CM
922 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
923 bio, 1);
1d4284bd 924 if (ret)
61891923
SB
925 goto out_w_error;
926 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
927 mirror_num, 0);
de0022b9
JB
928 } else if (!async) {
929 ret = btree_csum_one_bio(bio);
930 if (ret)
61891923
SB
931 goto out_w_error;
932 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
933 mirror_num, 0);
934 } else {
935 /*
936 * kthread helpers are used to submit writes so that
937 * checksumming can happen in parallel across all CPUs
938 */
939 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
940 inode, rw, bio, mirror_num, 0,
941 bio_offset,
942 __btree_submit_bio_start,
943 __btree_submit_bio_done);
44b8bd7e 944 }
d313d7a3 945
61891923
SB
946 if (ret) {
947out_w_error:
948 bio_endio(bio, ret);
949 }
950 return ret;
44b8bd7e
CM
951}
952
3dd1462e 953#ifdef CONFIG_MIGRATION
784b4e29 954static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
955 struct page *newpage, struct page *page,
956 enum migrate_mode mode)
784b4e29
CM
957{
958 /*
959 * we can't safely write a btree page from here,
960 * we haven't done the locking hook
961 */
962 if (PageDirty(page))
963 return -EAGAIN;
964 /*
965 * Buffers may be managed in a filesystem specific way.
966 * We must have no buffers or drop them.
967 */
968 if (page_has_private(page) &&
969 !try_to_release_page(page, GFP_KERNEL))
970 return -EAGAIN;
a6bc32b8 971 return migrate_page(mapping, newpage, page, mode);
784b4e29 972}
3dd1462e 973#endif
784b4e29 974
0da5468f
CM
975
976static int btree_writepages(struct address_space *mapping,
977 struct writeback_control *wbc)
978{
e2d84521
MX
979 struct btrfs_fs_info *fs_info;
980 int ret;
981
d8d5f3e1 982 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
983
984 if (wbc->for_kupdate)
985 return 0;
986
e2d84521 987 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 988 /* this is a bit racy, but that's ok */
e2d84521
MX
989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990 BTRFS_DIRTY_METADATA_THRESH);
991 if (ret < 0)
793955bc 992 return 0;
793955bc 993 }
0b32f4bb 994 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
995}
996
b2950863 997static int btree_readpage(struct file *file, struct page *page)
5f39d397 998{
d1310b2e
CM
999 struct extent_io_tree *tree;
1000 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1001 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1002}
22b0ebda 1003
70dec807 1004static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1005{
98509cfc 1006 if (PageWriteback(page) || PageDirty(page))
d397712b 1007 return 0;
0c4e538b 1008
f7a52a40 1009 return try_release_extent_buffer(page);
d98237b3
CM
1010}
1011
d47992f8
LC
1012static void btree_invalidatepage(struct page *page, unsigned int offset,
1013 unsigned int length)
d98237b3 1014{
d1310b2e
CM
1015 struct extent_io_tree *tree;
1016 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1017 extent_invalidatepage(tree, page, offset);
1018 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1019 if (PagePrivate(page)) {
efe120a0
FH
1020 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021 "page private not zero on page %llu",
1022 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1023 ClearPagePrivate(page);
1024 set_page_private(page, 0);
1025 page_cache_release(page);
1026 }
d98237b3
CM
1027}
1028
0b32f4bb
JB
1029static int btree_set_page_dirty(struct page *page)
1030{
bb146eb2 1031#ifdef DEBUG
0b32f4bb
JB
1032 struct extent_buffer *eb;
1033
1034 BUG_ON(!PagePrivate(page));
1035 eb = (struct extent_buffer *)page->private;
1036 BUG_ON(!eb);
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
1039 btrfs_assert_tree_locked(eb);
bb146eb2 1040#endif
0b32f4bb
JB
1041 return __set_page_dirty_nobuffers(page);
1042}
1043
7f09410b 1044static const struct address_space_operations btree_aops = {
d98237b3 1045 .readpage = btree_readpage,
0da5468f 1046 .writepages = btree_writepages,
5f39d397
CM
1047 .releasepage = btree_releasepage,
1048 .invalidatepage = btree_invalidatepage,
5a92bc88 1049#ifdef CONFIG_MIGRATION
784b4e29 1050 .migratepage = btree_migratepage,
5a92bc88 1051#endif
0b32f4bb 1052 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1053};
1054
ca7a79ad
CM
1055int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056 u64 parent_transid)
090d1875 1057{
5f39d397
CM
1058 struct extent_buffer *buf = NULL;
1059 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1060 int ret = 0;
090d1875 1061
db94535d 1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1063 if (!buf)
090d1875 1064 return 0;
d1310b2e 1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1066 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1067 free_extent_buffer(buf);
de428b63 1068 return ret;
090d1875
CM
1069}
1070
ab0fff03
AJ
1071int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072 int mirror_num, struct extent_buffer **eb)
1073{
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077 int ret;
1078
1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080 if (!buf)
1081 return 0;
1082
1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086 btree_get_extent, mirror_num);
1087 if (ret) {
1088 free_extent_buffer(buf);
1089 return ret;
1090 }
1091
1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093 free_extent_buffer(buf);
1094 return -EIO;
0b32f4bb 1095 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1096 *eb = buf;
1097 } else {
1098 free_extent_buffer(buf);
1099 }
1100 return 0;
1101}
1102
0999df54
CM
1103struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104 u64 bytenr, u32 blocksize)
1105{
f28491e0 1106 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1107}
1108
1109struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110 u64 bytenr, u32 blocksize)
1111{
f28491e0 1112 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1113}
1114
1115
e02119d5
CM
1116int btrfs_write_tree_block(struct extent_buffer *buf)
1117{
727011e0 1118 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1119 buf->start + buf->len - 1);
e02119d5
CM
1120}
1121
1122int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123{
727011e0 1124 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1125 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1126}
1127
0999df54 1128struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1129 u32 blocksize, u64 parent_transid)
0999df54
CM
1130{
1131 struct extent_buffer *buf = NULL;
0999df54
CM
1132 int ret;
1133
0999df54
CM
1134 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135 if (!buf)
1136 return NULL;
0999df54 1137
ca7a79ad 1138 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1139 if (ret) {
1140 free_extent_buffer(buf);
1141 return NULL;
1142 }
5f39d397 1143 return buf;
ce9adaa5 1144
eb60ceac
CM
1145}
1146
d5c13f92
JM
1147void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148 struct extent_buffer *buf)
ed2ff2cb 1149{
e2d84521
MX
1150 struct btrfs_fs_info *fs_info = root->fs_info;
1151
55c69072 1152 if (btrfs_header_generation(buf) ==
e2d84521 1153 fs_info->running_transaction->transid) {
b9447ef8 1154 btrfs_assert_tree_locked(buf);
b4ce94de 1155
b9473439 1156 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1157 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158 -buf->len,
1159 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1160 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1161 btrfs_set_lock_blocking(buf);
1162 clear_extent_buffer_dirty(buf);
1163 }
925baedd 1164 }
5f39d397
CM
1165}
1166
8257b2dc
MX
1167static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1168{
1169 struct btrfs_subvolume_writers *writers;
1170 int ret;
1171
1172 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1173 if (!writers)
1174 return ERR_PTR(-ENOMEM);
1175
1176 ret = percpu_counter_init(&writers->counter, 0);
1177 if (ret < 0) {
1178 kfree(writers);
1179 return ERR_PTR(ret);
1180 }
1181
1182 init_waitqueue_head(&writers->wait);
1183 return writers;
1184}
1185
1186static void
1187btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1188{
1189 percpu_counter_destroy(&writers->counter);
1190 kfree(writers);
1191}
1192
143bede5
JM
1193static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194 u32 stripesize, struct btrfs_root *root,
1195 struct btrfs_fs_info *fs_info,
1196 u64 objectid)
d97e63b6 1197{
cfaa7295 1198 root->node = NULL;
a28ec197 1199 root->commit_root = NULL;
db94535d
CM
1200 root->sectorsize = sectorsize;
1201 root->nodesize = nodesize;
1202 root->leafsize = leafsize;
87ee04eb 1203 root->stripesize = stripesize;
123abc88 1204 root->ref_cows = 0;
0b86a832 1205 root->track_dirty = 0;
c71bf099 1206 root->in_radix = 0;
d68fc57b
YZ
1207 root->orphan_item_inserted = 0;
1208 root->orphan_cleanup_state = 0;
0b86a832 1209
0f7d52f4
CM
1210 root->objectid = objectid;
1211 root->last_trans = 0;
13a8a7c8 1212 root->highest_objectid = 0;
eb73c1b7 1213 root->nr_delalloc_inodes = 0;
199c2a9c 1214 root->nr_ordered_extents = 0;
58176a96 1215 root->name = NULL;
6bef4d31 1216 root->inode_tree = RB_ROOT;
16cdcec7 1217 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1218 root->block_rsv = NULL;
d68fc57b 1219 root->orphan_block_rsv = NULL;
0b86a832
CM
1220
1221 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1222 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1223 INIT_LIST_HEAD(&root->delalloc_inodes);
1224 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1225 INIT_LIST_HEAD(&root->ordered_extents);
1226 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1227 INIT_LIST_HEAD(&root->logged_list[0]);
1228 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1229 spin_lock_init(&root->orphan_lock);
5d4f98a2 1230 spin_lock_init(&root->inode_lock);
eb73c1b7 1231 spin_lock_init(&root->delalloc_lock);
199c2a9c 1232 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1233 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1234 spin_lock_init(&root->log_extents_lock[0]);
1235 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1236 mutex_init(&root->objectid_mutex);
e02119d5 1237 mutex_init(&root->log_mutex);
31f3d255 1238 mutex_init(&root->ordered_extent_mutex);
573bfb72 1239 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1240 init_waitqueue_head(&root->log_writer_wait);
1241 init_waitqueue_head(&root->log_commit_wait[0]);
1242 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1243 INIT_LIST_HEAD(&root->log_ctxs[0]);
1244 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1245 atomic_set(&root->log_commit[0], 0);
1246 atomic_set(&root->log_commit[1], 0);
1247 atomic_set(&root->log_writers, 0);
2ecb7923 1248 atomic_set(&root->log_batch, 0);
8a35d95f 1249 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1250 atomic_set(&root->refs, 1);
8257b2dc 1251 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1252 root->log_transid = 0;
d1433deb 1253 root->log_transid_committed = -1;
257c62e1 1254 root->last_log_commit = 0;
06ea65a3
JB
1255 if (fs_info)
1256 extent_io_tree_init(&root->dirty_log_pages,
1257 fs_info->btree_inode->i_mapping);
017e5369 1258
3768f368
CM
1259 memset(&root->root_key, 0, sizeof(root->root_key));
1260 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1261 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1262 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1263 if (fs_info)
1264 root->defrag_trans_start = fs_info->generation;
1265 else
1266 root->defrag_trans_start = 0;
58176a96 1267 init_completion(&root->kobj_unregister);
6702ed49 1268 root->defrag_running = 0;
4d775673 1269 root->root_key.objectid = objectid;
0ee5dc67 1270 root->anon_dev = 0;
8ea05e3a 1271
5f3ab90a 1272 spin_lock_init(&root->root_item_lock);
3768f368
CM
1273}
1274
f84a8bd6 1275static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1276{
1277 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1278 if (root)
1279 root->fs_info = fs_info;
1280 return root;
1281}
1282
06ea65a3
JB
1283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1284/* Should only be used by the testing infrastructure */
1285struct btrfs_root *btrfs_alloc_dummy_root(void)
1286{
1287 struct btrfs_root *root;
1288
1289 root = btrfs_alloc_root(NULL);
1290 if (!root)
1291 return ERR_PTR(-ENOMEM);
1292 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1293 root->dummy_root = 1;
1294
1295 return root;
1296}
1297#endif
1298
20897f5c
AJ
1299struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1300 struct btrfs_fs_info *fs_info,
1301 u64 objectid)
1302{
1303 struct extent_buffer *leaf;
1304 struct btrfs_root *tree_root = fs_info->tree_root;
1305 struct btrfs_root *root;
1306 struct btrfs_key key;
1307 int ret = 0;
6463fe58 1308 uuid_le uuid;
20897f5c
AJ
1309
1310 root = btrfs_alloc_root(fs_info);
1311 if (!root)
1312 return ERR_PTR(-ENOMEM);
1313
1314 __setup_root(tree_root->nodesize, tree_root->leafsize,
1315 tree_root->sectorsize, tree_root->stripesize,
1316 root, fs_info, objectid);
1317 root->root_key.objectid = objectid;
1318 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319 root->root_key.offset = 0;
1320
1321 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1322 0, objectid, NULL, 0, 0, 0);
1323 if (IS_ERR(leaf)) {
1324 ret = PTR_ERR(leaf);
1dd05682 1325 leaf = NULL;
20897f5c
AJ
1326 goto fail;
1327 }
1328
20897f5c
AJ
1329 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1330 btrfs_set_header_bytenr(leaf, leaf->start);
1331 btrfs_set_header_generation(leaf, trans->transid);
1332 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1333 btrfs_set_header_owner(leaf, objectid);
1334 root->node = leaf;
1335
0a4e5586 1336 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1337 BTRFS_FSID_SIZE);
1338 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1339 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1340 BTRFS_UUID_SIZE);
1341 btrfs_mark_buffer_dirty(leaf);
1342
1343 root->commit_root = btrfs_root_node(root);
1344 root->track_dirty = 1;
1345
1346
1347 root->root_item.flags = 0;
1348 root->root_item.byte_limit = 0;
1349 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1350 btrfs_set_root_generation(&root->root_item, trans->transid);
1351 btrfs_set_root_level(&root->root_item, 0);
1352 btrfs_set_root_refs(&root->root_item, 1);
1353 btrfs_set_root_used(&root->root_item, leaf->len);
1354 btrfs_set_root_last_snapshot(&root->root_item, 0);
1355 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1356 uuid_le_gen(&uuid);
1357 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1358 root->root_item.drop_level = 0;
1359
1360 key.objectid = objectid;
1361 key.type = BTRFS_ROOT_ITEM_KEY;
1362 key.offset = 0;
1363 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1364 if (ret)
1365 goto fail;
1366
1367 btrfs_tree_unlock(leaf);
1368
1dd05682
TI
1369 return root;
1370
20897f5c 1371fail:
1dd05682
TI
1372 if (leaf) {
1373 btrfs_tree_unlock(leaf);
1374 free_extent_buffer(leaf);
1375 }
1376 kfree(root);
20897f5c 1377
1dd05682 1378 return ERR_PTR(ret);
20897f5c
AJ
1379}
1380
7237f183
YZ
1381static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1382 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1383{
1384 struct btrfs_root *root;
1385 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1386 struct extent_buffer *leaf;
e02119d5 1387
6f07e42e 1388 root = btrfs_alloc_root(fs_info);
e02119d5 1389 if (!root)
7237f183 1390 return ERR_PTR(-ENOMEM);
e02119d5
CM
1391
1392 __setup_root(tree_root->nodesize, tree_root->leafsize,
1393 tree_root->sectorsize, tree_root->stripesize,
1394 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1395
1396 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1397 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1398 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1399 /*
1400 * log trees do not get reference counted because they go away
1401 * before a real commit is actually done. They do store pointers
1402 * to file data extents, and those reference counts still get
1403 * updated (along with back refs to the log tree).
1404 */
e02119d5
CM
1405 root->ref_cows = 0;
1406
5d4f98a2 1407 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1408 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1409 0, 0, 0);
7237f183
YZ
1410 if (IS_ERR(leaf)) {
1411 kfree(root);
1412 return ERR_CAST(leaf);
1413 }
e02119d5 1414
5d4f98a2
YZ
1415 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1416 btrfs_set_header_bytenr(leaf, leaf->start);
1417 btrfs_set_header_generation(leaf, trans->transid);
1418 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1419 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1420 root->node = leaf;
e02119d5
CM
1421
1422 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1423 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1424 btrfs_mark_buffer_dirty(root->node);
1425 btrfs_tree_unlock(root->node);
7237f183
YZ
1426 return root;
1427}
1428
1429int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1430 struct btrfs_fs_info *fs_info)
1431{
1432 struct btrfs_root *log_root;
1433
1434 log_root = alloc_log_tree(trans, fs_info);
1435 if (IS_ERR(log_root))
1436 return PTR_ERR(log_root);
1437 WARN_ON(fs_info->log_root_tree);
1438 fs_info->log_root_tree = log_root;
1439 return 0;
1440}
1441
1442int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_root *root)
1444{
1445 struct btrfs_root *log_root;
1446 struct btrfs_inode_item *inode_item;
1447
1448 log_root = alloc_log_tree(trans, root->fs_info);
1449 if (IS_ERR(log_root))
1450 return PTR_ERR(log_root);
1451
1452 log_root->last_trans = trans->transid;
1453 log_root->root_key.offset = root->root_key.objectid;
1454
1455 inode_item = &log_root->root_item.inode;
3cae210f
QW
1456 btrfs_set_stack_inode_generation(inode_item, 1);
1457 btrfs_set_stack_inode_size(inode_item, 3);
1458 btrfs_set_stack_inode_nlink(inode_item, 1);
1459 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1460 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1461
5d4f98a2 1462 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1463
1464 WARN_ON(root->log_root);
1465 root->log_root = log_root;
1466 root->log_transid = 0;
d1433deb 1467 root->log_transid_committed = -1;
257c62e1 1468 root->last_log_commit = 0;
e02119d5
CM
1469 return 0;
1470}
1471
35a3621b
SB
1472static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1473 struct btrfs_key *key)
e02119d5
CM
1474{
1475 struct btrfs_root *root;
1476 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1477 struct btrfs_path *path;
84234f3a 1478 u64 generation;
db94535d 1479 u32 blocksize;
cb517eab 1480 int ret;
0f7d52f4 1481
cb517eab
MX
1482 path = btrfs_alloc_path();
1483 if (!path)
0f7d52f4 1484 return ERR_PTR(-ENOMEM);
cb517eab
MX
1485
1486 root = btrfs_alloc_root(fs_info);
1487 if (!root) {
1488 ret = -ENOMEM;
1489 goto alloc_fail;
0f7d52f4
CM
1490 }
1491
db94535d 1492 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1493 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1494 root, fs_info, key->objectid);
0f7d52f4 1495
cb517eab
MX
1496 ret = btrfs_find_root(tree_root, key, path,
1497 &root->root_item, &root->root_key);
0f7d52f4 1498 if (ret) {
13a8a7c8
YZ
1499 if (ret > 0)
1500 ret = -ENOENT;
cb517eab 1501 goto find_fail;
0f7d52f4 1502 }
13a8a7c8 1503
84234f3a 1504 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1505 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1506 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1507 blocksize, generation);
cb517eab
MX
1508 if (!root->node) {
1509 ret = -ENOMEM;
1510 goto find_fail;
1511 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1512 ret = -EIO;
1513 goto read_fail;
416bc658 1514 }
5d4f98a2 1515 root->commit_root = btrfs_root_node(root);
13a8a7c8 1516out:
cb517eab
MX
1517 btrfs_free_path(path);
1518 return root;
1519
1520read_fail:
1521 free_extent_buffer(root->node);
1522find_fail:
1523 kfree(root);
1524alloc_fail:
1525 root = ERR_PTR(ret);
1526 goto out;
1527}
1528
1529struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1530 struct btrfs_key *location)
1531{
1532 struct btrfs_root *root;
1533
1534 root = btrfs_read_tree_root(tree_root, location);
1535 if (IS_ERR(root))
1536 return root;
1537
1538 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1539 root->ref_cows = 1;
08fe4db1
LZ
1540 btrfs_check_and_init_root_item(&root->root_item);
1541 }
13a8a7c8 1542
5eda7b5e
CM
1543 return root;
1544}
1545
cb517eab
MX
1546int btrfs_init_fs_root(struct btrfs_root *root)
1547{
1548 int ret;
8257b2dc 1549 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1550
1551 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1552 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1553 GFP_NOFS);
1554 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1555 ret = -ENOMEM;
1556 goto fail;
1557 }
1558
8257b2dc
MX
1559 writers = btrfs_alloc_subvolume_writers();
1560 if (IS_ERR(writers)) {
1561 ret = PTR_ERR(writers);
1562 goto fail;
1563 }
1564 root->subv_writers = writers;
1565
cb517eab 1566 btrfs_init_free_ino_ctl(root);
cb517eab
MX
1567 spin_lock_init(&root->cache_lock);
1568 init_waitqueue_head(&root->cache_wait);
1569
1570 ret = get_anon_bdev(&root->anon_dev);
1571 if (ret)
8257b2dc 1572 goto free_writers;
cb517eab 1573 return 0;
8257b2dc
MX
1574
1575free_writers:
1576 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1577fail:
1578 kfree(root->free_ino_ctl);
1579 kfree(root->free_ino_pinned);
1580 return ret;
1581}
1582
171170c1
ST
1583static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1584 u64 root_id)
cb517eab
MX
1585{
1586 struct btrfs_root *root;
1587
1588 spin_lock(&fs_info->fs_roots_radix_lock);
1589 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1590 (unsigned long)root_id);
1591 spin_unlock(&fs_info->fs_roots_radix_lock);
1592 return root;
1593}
1594
1595int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1596 struct btrfs_root *root)
1597{
1598 int ret;
1599
1600 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1601 if (ret)
1602 return ret;
1603
1604 spin_lock(&fs_info->fs_roots_radix_lock);
1605 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1606 (unsigned long)root->root_key.objectid,
1607 root);
1608 if (ret == 0)
1609 root->in_radix = 1;
1610 spin_unlock(&fs_info->fs_roots_radix_lock);
1611 radix_tree_preload_end();
1612
1613 return ret;
1614}
1615
c00869f1
MX
1616struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1617 struct btrfs_key *location,
1618 bool check_ref)
5eda7b5e
CM
1619{
1620 struct btrfs_root *root;
1621 int ret;
1622
edbd8d4e
CM
1623 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1624 return fs_info->tree_root;
1625 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1626 return fs_info->extent_root;
8f18cf13
CM
1627 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1628 return fs_info->chunk_root;
1629 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1630 return fs_info->dev_root;
0403e47e
YZ
1631 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1632 return fs_info->csum_root;
bcef60f2
AJ
1633 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1634 return fs_info->quota_root ? fs_info->quota_root :
1635 ERR_PTR(-ENOENT);
f7a81ea4
SB
1636 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1637 return fs_info->uuid_root ? fs_info->uuid_root :
1638 ERR_PTR(-ENOENT);
4df27c4d 1639again:
cb517eab 1640 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1641 if (root) {
c00869f1 1642 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1643 return ERR_PTR(-ENOENT);
5eda7b5e 1644 return root;
48475471 1645 }
5eda7b5e 1646
cb517eab 1647 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1648 if (IS_ERR(root))
1649 return root;
3394e160 1650
c00869f1 1651 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1652 ret = -ENOENT;
581bb050 1653 goto fail;
35a30d7c 1654 }
581bb050 1655
cb517eab 1656 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1657 if (ret)
1658 goto fail;
3394e160 1659
3f870c28
KN
1660 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1661 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1662 if (ret < 0)
1663 goto fail;
1664 if (ret == 0)
1665 root->orphan_item_inserted = 1;
1666
cb517eab 1667 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1668 if (ret) {
4df27c4d
YZ
1669 if (ret == -EEXIST) {
1670 free_fs_root(root);
1671 goto again;
1672 }
1673 goto fail;
0f7d52f4 1674 }
edbd8d4e 1675 return root;
4df27c4d
YZ
1676fail:
1677 free_fs_root(root);
1678 return ERR_PTR(ret);
edbd8d4e
CM
1679}
1680
04160088
CM
1681static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1682{
1683 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1684 int ret = 0;
04160088
CM
1685 struct btrfs_device *device;
1686 struct backing_dev_info *bdi;
b7967db7 1687
1f78160c
XG
1688 rcu_read_lock();
1689 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1690 if (!device->bdev)
1691 continue;
04160088
CM
1692 bdi = blk_get_backing_dev_info(device->bdev);
1693 if (bdi && bdi_congested(bdi, bdi_bits)) {
1694 ret = 1;
1695 break;
1696 }
1697 }
1f78160c 1698 rcu_read_unlock();
04160088
CM
1699 return ret;
1700}
1701
ad081f14
JA
1702/*
1703 * If this fails, caller must call bdi_destroy() to get rid of the
1704 * bdi again.
1705 */
04160088
CM
1706static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1707{
ad081f14
JA
1708 int err;
1709
1710 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1711 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1712 if (err)
1713 return err;
1714
4575c9cc 1715 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1716 bdi->congested_fn = btrfs_congested_fn;
1717 bdi->congested_data = info;
1718 return 0;
1719}
1720
8b712842
CM
1721/*
1722 * called by the kthread helper functions to finally call the bio end_io
1723 * functions. This is where read checksum verification actually happens
1724 */
1725static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1726{
ce9adaa5 1727 struct bio *bio;
8b712842 1728 struct end_io_wq *end_io_wq;
ce9adaa5 1729 int error;
ce9adaa5 1730
8b712842
CM
1731 end_io_wq = container_of(work, struct end_io_wq, work);
1732 bio = end_io_wq->bio;
ce9adaa5 1733
8b712842
CM
1734 error = end_io_wq->error;
1735 bio->bi_private = end_io_wq->private;
1736 bio->bi_end_io = end_io_wq->end_io;
1737 kfree(end_io_wq);
bc1e79ac 1738 bio_endio_nodec(bio, error);
44b8bd7e
CM
1739}
1740
a74a4b97
CM
1741static int cleaner_kthread(void *arg)
1742{
1743 struct btrfs_root *root = arg;
d0278245 1744 int again;
a74a4b97
CM
1745
1746 do {
d0278245 1747 again = 0;
a74a4b97 1748
d0278245 1749 /* Make the cleaner go to sleep early. */
babbf170 1750 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1751 goto sleep;
1752
1753 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1754 goto sleep;
1755
dc7f370c
MX
1756 /*
1757 * Avoid the problem that we change the status of the fs
1758 * during the above check and trylock.
1759 */
babbf170 1760 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1761 mutex_unlock(&root->fs_info->cleaner_mutex);
1762 goto sleep;
76dda93c 1763 }
a74a4b97 1764
d0278245
MX
1765 btrfs_run_delayed_iputs(root);
1766 again = btrfs_clean_one_deleted_snapshot(root);
1767 mutex_unlock(&root->fs_info->cleaner_mutex);
1768
1769 /*
05323cd1
MX
1770 * The defragger has dealt with the R/O remount and umount,
1771 * needn't do anything special here.
d0278245
MX
1772 */
1773 btrfs_run_defrag_inodes(root->fs_info);
1774sleep:
9d1a2a3a 1775 if (!try_to_freeze() && !again) {
a74a4b97 1776 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1777 if (!kthread_should_stop())
1778 schedule();
a74a4b97
CM
1779 __set_current_state(TASK_RUNNING);
1780 }
1781 } while (!kthread_should_stop());
1782 return 0;
1783}
1784
1785static int transaction_kthread(void *arg)
1786{
1787 struct btrfs_root *root = arg;
1788 struct btrfs_trans_handle *trans;
1789 struct btrfs_transaction *cur;
8929ecfa 1790 u64 transid;
a74a4b97
CM
1791 unsigned long now;
1792 unsigned long delay;
914b2007 1793 bool cannot_commit;
a74a4b97
CM
1794
1795 do {
914b2007 1796 cannot_commit = false;
8b87dc17 1797 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1798 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1799
a4abeea4 1800 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1801 cur = root->fs_info->running_transaction;
1802 if (!cur) {
a4abeea4 1803 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1804 goto sleep;
1805 }
31153d81 1806
a74a4b97 1807 now = get_seconds();
4a9d8bde 1808 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1809 (now < cur->start_time ||
1810 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1811 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1812 delay = HZ * 5;
1813 goto sleep;
1814 }
8929ecfa 1815 transid = cur->transid;
a4abeea4 1816 spin_unlock(&root->fs_info->trans_lock);
56bec294 1817
79787eaa 1818 /* If the file system is aborted, this will always fail. */
354aa0fb 1819 trans = btrfs_attach_transaction(root);
914b2007 1820 if (IS_ERR(trans)) {
354aa0fb
MX
1821 if (PTR_ERR(trans) != -ENOENT)
1822 cannot_commit = true;
79787eaa 1823 goto sleep;
914b2007 1824 }
8929ecfa 1825 if (transid == trans->transid) {
79787eaa 1826 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1827 } else {
1828 btrfs_end_transaction(trans, root);
1829 }
a74a4b97
CM
1830sleep:
1831 wake_up_process(root->fs_info->cleaner_kthread);
1832 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1833
4e121c06
JB
1834 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835 &root->fs_info->fs_state)))
1836 btrfs_cleanup_transaction(root);
a0acae0e 1837 if (!try_to_freeze()) {
a74a4b97 1838 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1839 if (!kthread_should_stop() &&
914b2007
JK
1840 (!btrfs_transaction_blocked(root->fs_info) ||
1841 cannot_commit))
8929ecfa 1842 schedule_timeout(delay);
a74a4b97
CM
1843 __set_current_state(TASK_RUNNING);
1844 }
1845 } while (!kthread_should_stop());
1846 return 0;
1847}
1848
af31f5e5
CM
1849/*
1850 * this will find the highest generation in the array of
1851 * root backups. The index of the highest array is returned,
1852 * or -1 if we can't find anything.
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest root in the array with the generation
1856 * in the super block. If they don't match we pitch it.
1857 */
1858static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1859{
1860 u64 cur;
1861 int newest_index = -1;
1862 struct btrfs_root_backup *root_backup;
1863 int i;
1864
1865 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866 root_backup = info->super_copy->super_roots + i;
1867 cur = btrfs_backup_tree_root_gen(root_backup);
1868 if (cur == newest_gen)
1869 newest_index = i;
1870 }
1871
1872 /* check to see if we actually wrapped around */
1873 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1874 root_backup = info->super_copy->super_roots;
1875 cur = btrfs_backup_tree_root_gen(root_backup);
1876 if (cur == newest_gen)
1877 newest_index = 0;
1878 }
1879 return newest_index;
1880}
1881
1882
1883/*
1884 * find the oldest backup so we know where to store new entries
1885 * in the backup array. This will set the backup_root_index
1886 * field in the fs_info struct
1887 */
1888static void find_oldest_super_backup(struct btrfs_fs_info *info,
1889 u64 newest_gen)
1890{
1891 int newest_index = -1;
1892
1893 newest_index = find_newest_super_backup(info, newest_gen);
1894 /* if there was garbage in there, just move along */
1895 if (newest_index == -1) {
1896 info->backup_root_index = 0;
1897 } else {
1898 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899 }
1900}
1901
1902/*
1903 * copy all the root pointers into the super backup array.
1904 * this will bump the backup pointer by one when it is
1905 * done
1906 */
1907static void backup_super_roots(struct btrfs_fs_info *info)
1908{
1909 int next_backup;
1910 struct btrfs_root_backup *root_backup;
1911 int last_backup;
1912
1913 next_backup = info->backup_root_index;
1914 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1915 BTRFS_NUM_BACKUP_ROOTS;
1916
1917 /*
1918 * just overwrite the last backup if we're at the same generation
1919 * this happens only at umount
1920 */
1921 root_backup = info->super_for_commit->super_roots + last_backup;
1922 if (btrfs_backup_tree_root_gen(root_backup) ==
1923 btrfs_header_generation(info->tree_root->node))
1924 next_backup = last_backup;
1925
1926 root_backup = info->super_for_commit->super_roots + next_backup;
1927
1928 /*
1929 * make sure all of our padding and empty slots get zero filled
1930 * regardless of which ones we use today
1931 */
1932 memset(root_backup, 0, sizeof(*root_backup));
1933
1934 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1935
1936 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1937 btrfs_set_backup_tree_root_gen(root_backup,
1938 btrfs_header_generation(info->tree_root->node));
1939
1940 btrfs_set_backup_tree_root_level(root_backup,
1941 btrfs_header_level(info->tree_root->node));
1942
1943 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1944 btrfs_set_backup_chunk_root_gen(root_backup,
1945 btrfs_header_generation(info->chunk_root->node));
1946 btrfs_set_backup_chunk_root_level(root_backup,
1947 btrfs_header_level(info->chunk_root->node));
1948
1949 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1950 btrfs_set_backup_extent_root_gen(root_backup,
1951 btrfs_header_generation(info->extent_root->node));
1952 btrfs_set_backup_extent_root_level(root_backup,
1953 btrfs_header_level(info->extent_root->node));
1954
7c7e82a7
CM
1955 /*
1956 * we might commit during log recovery, which happens before we set
1957 * the fs_root. Make sure it is valid before we fill it in.
1958 */
1959 if (info->fs_root && info->fs_root->node) {
1960 btrfs_set_backup_fs_root(root_backup,
1961 info->fs_root->node->start);
1962 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1963 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1964 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1965 btrfs_header_level(info->fs_root->node));
7c7e82a7 1966 }
af31f5e5
CM
1967
1968 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1969 btrfs_set_backup_dev_root_gen(root_backup,
1970 btrfs_header_generation(info->dev_root->node));
1971 btrfs_set_backup_dev_root_level(root_backup,
1972 btrfs_header_level(info->dev_root->node));
1973
1974 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1975 btrfs_set_backup_csum_root_gen(root_backup,
1976 btrfs_header_generation(info->csum_root->node));
1977 btrfs_set_backup_csum_root_level(root_backup,
1978 btrfs_header_level(info->csum_root->node));
1979
1980 btrfs_set_backup_total_bytes(root_backup,
1981 btrfs_super_total_bytes(info->super_copy));
1982 btrfs_set_backup_bytes_used(root_backup,
1983 btrfs_super_bytes_used(info->super_copy));
1984 btrfs_set_backup_num_devices(root_backup,
1985 btrfs_super_num_devices(info->super_copy));
1986
1987 /*
1988 * if we don't copy this out to the super_copy, it won't get remembered
1989 * for the next commit
1990 */
1991 memcpy(&info->super_copy->super_roots,
1992 &info->super_for_commit->super_roots,
1993 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1994}
1995
1996/*
1997 * this copies info out of the root backup array and back into
1998 * the in-memory super block. It is meant to help iterate through
1999 * the array, so you send it the number of backups you've already
2000 * tried and the last backup index you used.
2001 *
2002 * this returns -1 when it has tried all the backups
2003 */
2004static noinline int next_root_backup(struct btrfs_fs_info *info,
2005 struct btrfs_super_block *super,
2006 int *num_backups_tried, int *backup_index)
2007{
2008 struct btrfs_root_backup *root_backup;
2009 int newest = *backup_index;
2010
2011 if (*num_backups_tried == 0) {
2012 u64 gen = btrfs_super_generation(super);
2013
2014 newest = find_newest_super_backup(info, gen);
2015 if (newest == -1)
2016 return -1;
2017
2018 *backup_index = newest;
2019 *num_backups_tried = 1;
2020 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2021 /* we've tried all the backups, all done */
2022 return -1;
2023 } else {
2024 /* jump to the next oldest backup */
2025 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2026 BTRFS_NUM_BACKUP_ROOTS;
2027 *backup_index = newest;
2028 *num_backups_tried += 1;
2029 }
2030 root_backup = super->super_roots + newest;
2031
2032 btrfs_set_super_generation(super,
2033 btrfs_backup_tree_root_gen(root_backup));
2034 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2035 btrfs_set_super_root_level(super,
2036 btrfs_backup_tree_root_level(root_backup));
2037 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2038
2039 /*
2040 * fixme: the total bytes and num_devices need to match or we should
2041 * need a fsck
2042 */
2043 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2044 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2045 return 0;
2046}
2047
7abadb64
LB
2048/* helper to cleanup workers */
2049static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2050{
dc6e3209 2051 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2052 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2053 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2054 btrfs_destroy_workqueue(fs_info->endio_workers);
2055 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2056 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2057 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2058 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2059 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2060 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2061 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2062 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2063 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2064 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2065 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2066 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
7abadb64
LB
2067}
2068
2e9f5954
R
2069static void free_root_extent_buffers(struct btrfs_root *root)
2070{
2071 if (root) {
2072 free_extent_buffer(root->node);
2073 free_extent_buffer(root->commit_root);
2074 root->node = NULL;
2075 root->commit_root = NULL;
2076 }
2077}
2078
af31f5e5
CM
2079/* helper to cleanup tree roots */
2080static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2081{
2e9f5954 2082 free_root_extent_buffers(info->tree_root);
655b09fe 2083
2e9f5954
R
2084 free_root_extent_buffers(info->dev_root);
2085 free_root_extent_buffers(info->extent_root);
2086 free_root_extent_buffers(info->csum_root);
2087 free_root_extent_buffers(info->quota_root);
2088 free_root_extent_buffers(info->uuid_root);
2089 if (chunk_root)
2090 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2091}
2092
171f6537
JB
2093static void del_fs_roots(struct btrfs_fs_info *fs_info)
2094{
2095 int ret;
2096 struct btrfs_root *gang[8];
2097 int i;
2098
2099 while (!list_empty(&fs_info->dead_roots)) {
2100 gang[0] = list_entry(fs_info->dead_roots.next,
2101 struct btrfs_root, root_list);
2102 list_del(&gang[0]->root_list);
2103
2104 if (gang[0]->in_radix) {
cb517eab 2105 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2106 } else {
2107 free_extent_buffer(gang[0]->node);
2108 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2109 btrfs_put_fs_root(gang[0]);
171f6537
JB
2110 }
2111 }
2112
2113 while (1) {
2114 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2115 (void **)gang, 0,
2116 ARRAY_SIZE(gang));
2117 if (!ret)
2118 break;
2119 for (i = 0; i < ret; i++)
cb517eab 2120 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2121 }
1a4319cc
LB
2122
2123 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2124 btrfs_free_log_root_tree(NULL, fs_info);
2125 btrfs_destroy_pinned_extent(fs_info->tree_root,
2126 fs_info->pinned_extents);
2127 }
171f6537 2128}
af31f5e5 2129
ad2b2c80
AV
2130int open_ctree(struct super_block *sb,
2131 struct btrfs_fs_devices *fs_devices,
2132 char *options)
2e635a27 2133{
db94535d
CM
2134 u32 sectorsize;
2135 u32 nodesize;
2136 u32 leafsize;
2137 u32 blocksize;
87ee04eb 2138 u32 stripesize;
84234f3a 2139 u64 generation;
f2b636e8 2140 u64 features;
3de4586c 2141 struct btrfs_key location;
a061fc8d 2142 struct buffer_head *bh;
4d34b278 2143 struct btrfs_super_block *disk_super;
815745cf 2144 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2145 struct btrfs_root *tree_root;
4d34b278
ID
2146 struct btrfs_root *extent_root;
2147 struct btrfs_root *csum_root;
2148 struct btrfs_root *chunk_root;
2149 struct btrfs_root *dev_root;
bcef60f2 2150 struct btrfs_root *quota_root;
f7a81ea4 2151 struct btrfs_root *uuid_root;
e02119d5 2152 struct btrfs_root *log_tree_root;
eb60ceac 2153 int ret;
e58ca020 2154 int err = -EINVAL;
af31f5e5
CM
2155 int num_backups_tried = 0;
2156 int backup_index = 0;
5cdc7ad3
QW
2157 int max_active;
2158 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2159 bool create_uuid_tree;
2160 bool check_uuid_tree;
4543df7e 2161
f84a8bd6 2162 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2163 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2164 if (!tree_root || !chunk_root) {
39279cc3
CM
2165 err = -ENOMEM;
2166 goto fail;
2167 }
76dda93c
YZ
2168
2169 ret = init_srcu_struct(&fs_info->subvol_srcu);
2170 if (ret) {
2171 err = ret;
2172 goto fail;
2173 }
2174
2175 ret = setup_bdi(fs_info, &fs_info->bdi);
2176 if (ret) {
2177 err = ret;
2178 goto fail_srcu;
2179 }
2180
e2d84521
MX
2181 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2182 if (ret) {
2183 err = ret;
2184 goto fail_bdi;
2185 }
2186 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2187 (1 + ilog2(nr_cpu_ids));
2188
963d678b
MX
2189 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2190 if (ret) {
2191 err = ret;
2192 goto fail_dirty_metadata_bytes;
2193 }
2194
c404e0dc
MX
2195 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2196 if (ret) {
2197 err = ret;
2198 goto fail_delalloc_bytes;
2199 }
2200
76dda93c
YZ
2201 fs_info->btree_inode = new_inode(sb);
2202 if (!fs_info->btree_inode) {
2203 err = -ENOMEM;
c404e0dc 2204 goto fail_bio_counter;
76dda93c
YZ
2205 }
2206
a6591715 2207 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2208
76dda93c 2209 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2210 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2211 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2212 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2213 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2214 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2215 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2216 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2217 spin_lock_init(&fs_info->trans_lock);
76dda93c 2218 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2219 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2220 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2221 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2222 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2223 spin_lock_init(&fs_info->super_lock);
f28491e0 2224 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2225 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2226 mutex_init(&fs_info->reloc_mutex);
573bfb72 2227 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2228 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2229
58176a96 2230 init_completion(&fs_info->kobj_unregister);
0b86a832 2231 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2232 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2233 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2234 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2235 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2236 BTRFS_BLOCK_RSV_GLOBAL);
2237 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2238 BTRFS_BLOCK_RSV_DELALLOC);
2239 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2240 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2241 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2242 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2243 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2244 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2245 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2246 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2247 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2248 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2249 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2250 fs_info->sb = sb;
6f568d35 2251 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2252 fs_info->metadata_ratio = 0;
4cb5300b 2253 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2254 fs_info->free_chunk_space = 0;
f29021b2 2255 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2256 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2257 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2258 /* readahead state */
2259 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2260 spin_lock_init(&fs_info->reada_lock);
c8b97818 2261
b34b086c
CM
2262 fs_info->thread_pool_size = min_t(unsigned long,
2263 num_online_cpus() + 2, 8);
0afbaf8c 2264
199c2a9c
MX
2265 INIT_LIST_HEAD(&fs_info->ordered_roots);
2266 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2267 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2268 GFP_NOFS);
2269 if (!fs_info->delayed_root) {
2270 err = -ENOMEM;
2271 goto fail_iput;
2272 }
2273 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2274
a2de733c
AJ
2275 mutex_init(&fs_info->scrub_lock);
2276 atomic_set(&fs_info->scrubs_running, 0);
2277 atomic_set(&fs_info->scrub_pause_req, 0);
2278 atomic_set(&fs_info->scrubs_paused, 0);
2279 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2280 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2281 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2282 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2283#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2284 fs_info->check_integrity_print_mask = 0;
2285#endif
a2de733c 2286
c9e9f97b
ID
2287 spin_lock_init(&fs_info->balance_lock);
2288 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2289 atomic_set(&fs_info->balance_running, 0);
2290 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2291 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2292 fs_info->balance_ctl = NULL;
837d5b6e 2293 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2294
a061fc8d
CM
2295 sb->s_blocksize = 4096;
2296 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2297 sb->s_bdi = &fs_info->bdi;
a061fc8d 2298
76dda93c 2299 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2300 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2301 /*
2302 * we set the i_size on the btree inode to the max possible int.
2303 * the real end of the address space is determined by all of
2304 * the devices in the system
2305 */
2306 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2307 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2308 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2309
5d4f98a2 2310 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2311 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2312 fs_info->btree_inode->i_mapping);
0b32f4bb 2313 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2314 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2315
2316 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2317
76dda93c
YZ
2318 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2319 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2320 sizeof(struct btrfs_key));
72ac3c0d
JB
2321 set_bit(BTRFS_INODE_DUMMY,
2322 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2323 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2324
0f9dd46c 2325 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2326 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2327 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2328
11833d66 2329 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2330 fs_info->btree_inode->i_mapping);
11833d66 2331 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2332 fs_info->btree_inode->i_mapping);
11833d66 2333 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2334 fs_info->do_barriers = 1;
e18e4809 2335
39279cc3 2336
5a3f23d5 2337 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2338 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2339 mutex_init(&fs_info->tree_log_mutex);
925baedd 2340 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2341 mutex_init(&fs_info->transaction_kthread_mutex);
2342 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2343 mutex_init(&fs_info->volume_mutex);
9e351cc8 2344 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2345 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2346 init_rwsem(&fs_info->subvol_sem);
803b2f54 2347 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2348 fs_info->dev_replace.lock_owner = 0;
2349 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2350 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2351 mutex_init(&fs_info->dev_replace.lock_management_lock);
2352 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2353
416ac51d 2354 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2355 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2356 fs_info->qgroup_tree = RB_ROOT;
2357 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2358 fs_info->qgroup_seq = 1;
2359 fs_info->quota_enabled = 0;
2360 fs_info->pending_quota_state = 0;
1e8f9158 2361 fs_info->qgroup_ulist = NULL;
2f232036 2362 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2363
fa9c0d79
CM
2364 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2365 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2366
e6dcd2dc 2367 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2368 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2369 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2370 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2371
53b381b3
DW
2372 ret = btrfs_alloc_stripe_hash_table(fs_info);
2373 if (ret) {
83c8266a 2374 err = ret;
53b381b3
DW
2375 goto fail_alloc;
2376 }
2377
0b86a832 2378 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2379 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2380
3c4bb26b 2381 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2382
2383 /*
2384 * Read super block and check the signature bytes only
2385 */
a512bbf8 2386 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2387 if (!bh) {
2388 err = -EINVAL;
16cdcec7 2389 goto fail_alloc;
20b45077 2390 }
39279cc3 2391
1104a885
DS
2392 /*
2393 * We want to check superblock checksum, the type is stored inside.
2394 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2395 */
2396 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2397 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2398 err = -EINVAL;
2399 goto fail_alloc;
2400 }
2401
2402 /*
2403 * super_copy is zeroed at allocation time and we never touch the
2404 * following bytes up to INFO_SIZE, the checksum is calculated from
2405 * the whole block of INFO_SIZE
2406 */
6c41761f
DS
2407 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2408 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2409 sizeof(*fs_info->super_for_commit));
a061fc8d 2410 brelse(bh);
5f39d397 2411
6c41761f 2412 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2413
1104a885
DS
2414 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2415 if (ret) {
efe120a0 2416 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2417 err = -EINVAL;
2418 goto fail_alloc;
2419 }
2420
6c41761f 2421 disk_super = fs_info->super_copy;
0f7d52f4 2422 if (!btrfs_super_root(disk_super))
16cdcec7 2423 goto fail_alloc;
0f7d52f4 2424
acce952b 2425 /* check FS state, whether FS is broken. */
87533c47
MX
2426 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2427 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2428
af31f5e5
CM
2429 /*
2430 * run through our array of backup supers and setup
2431 * our ring pointer to the oldest one
2432 */
2433 generation = btrfs_super_generation(disk_super);
2434 find_oldest_super_backup(fs_info, generation);
2435
75e7cb7f
LB
2436 /*
2437 * In the long term, we'll store the compression type in the super
2438 * block, and it'll be used for per file compression control.
2439 */
2440 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2441
2b82032c
YZ
2442 ret = btrfs_parse_options(tree_root, options);
2443 if (ret) {
2444 err = ret;
16cdcec7 2445 goto fail_alloc;
2b82032c 2446 }
dfe25020 2447
f2b636e8
JB
2448 features = btrfs_super_incompat_flags(disk_super) &
2449 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2450 if (features) {
2451 printk(KERN_ERR "BTRFS: couldn't mount because of "
2452 "unsupported optional features (%Lx).\n",
c1c9ff7c 2453 features);
f2b636e8 2454 err = -EINVAL;
16cdcec7 2455 goto fail_alloc;
f2b636e8
JB
2456 }
2457
727011e0
CM
2458 if (btrfs_super_leafsize(disk_super) !=
2459 btrfs_super_nodesize(disk_super)) {
2460 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2461 "blocksizes don't match. node %d leaf %d\n",
2462 btrfs_super_nodesize(disk_super),
2463 btrfs_super_leafsize(disk_super));
2464 err = -EINVAL;
2465 goto fail_alloc;
2466 }
2467 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2468 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2469 "blocksize (%d) was too large\n",
2470 btrfs_super_leafsize(disk_super));
2471 err = -EINVAL;
2472 goto fail_alloc;
2473 }
2474
5d4f98a2 2475 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2476 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2477 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2478 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2479
3173a18f 2480 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2481 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2482
727011e0
CM
2483 /*
2484 * flag our filesystem as having big metadata blocks if
2485 * they are bigger than the page size
2486 */
2487 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2488 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2489 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2490 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2491 }
2492
bc3f116f
CM
2493 nodesize = btrfs_super_nodesize(disk_super);
2494 leafsize = btrfs_super_leafsize(disk_super);
2495 sectorsize = btrfs_super_sectorsize(disk_super);
2496 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2497 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2498 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2499
2500 /*
2501 * mixed block groups end up with duplicate but slightly offset
2502 * extent buffers for the same range. It leads to corruptions
2503 */
2504 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2505 (sectorsize != leafsize)) {
efe120a0 2506 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2507 "are not allowed for mixed block groups on %s\n",
2508 sb->s_id);
2509 goto fail_alloc;
2510 }
2511
ceda0864
MX
2512 /*
2513 * Needn't use the lock because there is no other task which will
2514 * update the flag.
2515 */
a6fa6fae 2516 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2517
f2b636e8
JB
2518 features = btrfs_super_compat_ro_flags(disk_super) &
2519 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2520 if (!(sb->s_flags & MS_RDONLY) && features) {
2521 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2522 "unsupported option features (%Lx).\n",
c1c9ff7c 2523 features);
f2b636e8 2524 err = -EINVAL;
16cdcec7 2525 goto fail_alloc;
f2b636e8 2526 }
61d92c32 2527
5cdc7ad3 2528 max_active = fs_info->thread_pool_size;
61d92c32 2529
5cdc7ad3
QW
2530 fs_info->workers =
2531 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2532 max_active, 16);
c8b97818 2533
afe3d242
QW
2534 fs_info->delalloc_workers =
2535 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2536
a44903ab
QW
2537 fs_info->flush_workers =
2538 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2539
e66f0bb1
QW
2540 fs_info->caching_workers =
2541 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2542
a8c93d4e
QW
2543 /*
2544 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2545 * likely that bios will be send down in a sane order to the
2546 * devices
2547 */
a8c93d4e
QW
2548 fs_info->submit_workers =
2549 btrfs_alloc_workqueue("submit", flags,
2550 min_t(u64, fs_devices->num_devices,
2551 max_active), 64);
53863232 2552
dc6e3209
QW
2553 fs_info->fixup_workers =
2554 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2555
2556 /*
2557 * endios are largely parallel and should have a very
2558 * low idle thresh
2559 */
fccb5d86
QW
2560 fs_info->endio_workers =
2561 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2562 fs_info->endio_meta_workers =
2563 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2564 fs_info->endio_meta_write_workers =
2565 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2566 fs_info->endio_raid56_workers =
2567 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
d05a33ac
QW
2568 fs_info->rmw_workers =
2569 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2570 fs_info->endio_write_workers =
2571 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2572 fs_info->endio_freespace_worker =
2573 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2574 fs_info->delayed_workers =
2575 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2576 fs_info->readahead_workers =
2577 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2578 fs_info->qgroup_rescan_workers =
2579 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
61b49440 2580
a8c93d4e 2581 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2582 fs_info->submit_workers && fs_info->flush_workers &&
2583 fs_info->endio_workers && fs_info->endio_meta_workers &&
2584 fs_info->endio_meta_write_workers &&
2585 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2586 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2587 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0
QW
2588 fs_info->fixup_workers && fs_info->delayed_workers &&
2589 fs_info->qgroup_rescan_workers)) {
fed425c7 2590 err = -ENOMEM;
0dc3b84a
JB
2591 goto fail_sb_buffer;
2592 }
4543df7e 2593
4575c9cc 2594 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2595 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2596 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2597
db94535d
CM
2598 tree_root->nodesize = nodesize;
2599 tree_root->leafsize = leafsize;
2600 tree_root->sectorsize = sectorsize;
87ee04eb 2601 tree_root->stripesize = stripesize;
a061fc8d
CM
2602
2603 sb->s_blocksize = sectorsize;
2604 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2605
3cae210f 2606 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2607 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2608 goto fail_sb_buffer;
2609 }
19c00ddc 2610
8d082fb7 2611 if (sectorsize != PAGE_SIZE) {
efe120a0 2612 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2613 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2614 goto fail_sb_buffer;
2615 }
2616
925baedd 2617 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2618 ret = btrfs_read_sys_array(tree_root);
925baedd 2619 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2620 if (ret) {
efe120a0 2621 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2622 "array on %s\n", sb->s_id);
5d4f98a2 2623 goto fail_sb_buffer;
84eed90f 2624 }
0b86a832
CM
2625
2626 blocksize = btrfs_level_size(tree_root,
2627 btrfs_super_chunk_root_level(disk_super));
84234f3a 2628 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2629
2630 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2631 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2632
2633 chunk_root->node = read_tree_block(chunk_root,
2634 btrfs_super_chunk_root(disk_super),
84234f3a 2635 blocksize, generation);
416bc658
JB
2636 if (!chunk_root->node ||
2637 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2638 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2639 sb->s_id);
af31f5e5 2640 goto fail_tree_roots;
83121942 2641 }
5d4f98a2
YZ
2642 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2643 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2644
e17cade2 2645 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2646 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2647
0b86a832 2648 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2649 if (ret) {
efe120a0 2650 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2651 sb->s_id);
af31f5e5 2652 goto fail_tree_roots;
2b82032c 2653 }
0b86a832 2654
8dabb742
SB
2655 /*
2656 * keep the device that is marked to be the target device for the
2657 * dev_replace procedure
2658 */
2659 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2660
a6b0d5c8 2661 if (!fs_devices->latest_bdev) {
efe120a0 2662 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2663 sb->s_id);
2664 goto fail_tree_roots;
2665 }
2666
af31f5e5 2667retry_root_backup:
db94535d
CM
2668 blocksize = btrfs_level_size(tree_root,
2669 btrfs_super_root_level(disk_super));
84234f3a 2670 generation = btrfs_super_generation(disk_super);
0b86a832 2671
e20d96d6 2672 tree_root->node = read_tree_block(tree_root,
db94535d 2673 btrfs_super_root(disk_super),
84234f3a 2674 blocksize, generation);
af31f5e5
CM
2675 if (!tree_root->node ||
2676 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2677 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2678 sb->s_id);
af31f5e5
CM
2679
2680 goto recovery_tree_root;
83121942 2681 }
af31f5e5 2682
5d4f98a2
YZ
2683 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2684 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2685 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2686
cb517eab
MX
2687 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2688 location.type = BTRFS_ROOT_ITEM_KEY;
2689 location.offset = 0;
2690
2691 extent_root = btrfs_read_tree_root(tree_root, &location);
2692 if (IS_ERR(extent_root)) {
2693 ret = PTR_ERR(extent_root);
af31f5e5 2694 goto recovery_tree_root;
cb517eab 2695 }
0b86a832 2696 extent_root->track_dirty = 1;
cb517eab 2697 fs_info->extent_root = extent_root;
0b86a832 2698
cb517eab
MX
2699 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2700 dev_root = btrfs_read_tree_root(tree_root, &location);
2701 if (IS_ERR(dev_root)) {
2702 ret = PTR_ERR(dev_root);
af31f5e5 2703 goto recovery_tree_root;
cb517eab 2704 }
5d4f98a2 2705 dev_root->track_dirty = 1;
cb517eab
MX
2706 fs_info->dev_root = dev_root;
2707 btrfs_init_devices_late(fs_info);
3768f368 2708
cb517eab
MX
2709 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2710 csum_root = btrfs_read_tree_root(tree_root, &location);
2711 if (IS_ERR(csum_root)) {
2712 ret = PTR_ERR(csum_root);
af31f5e5 2713 goto recovery_tree_root;
cb517eab 2714 }
d20f7043 2715 csum_root->track_dirty = 1;
cb517eab 2716 fs_info->csum_root = csum_root;
d20f7043 2717
cb517eab
MX
2718 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2719 quota_root = btrfs_read_tree_root(tree_root, &location);
2720 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2721 quota_root->track_dirty = 1;
2722 fs_info->quota_enabled = 1;
2723 fs_info->pending_quota_state = 1;
cb517eab 2724 fs_info->quota_root = quota_root;
bcef60f2
AJ
2725 }
2726
f7a81ea4
SB
2727 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2728 uuid_root = btrfs_read_tree_root(tree_root, &location);
2729 if (IS_ERR(uuid_root)) {
2730 ret = PTR_ERR(uuid_root);
2731 if (ret != -ENOENT)
2732 goto recovery_tree_root;
2733 create_uuid_tree = true;
70f80175 2734 check_uuid_tree = false;
f7a81ea4
SB
2735 } else {
2736 uuid_root->track_dirty = 1;
2737 fs_info->uuid_root = uuid_root;
70f80175
SB
2738 create_uuid_tree = false;
2739 check_uuid_tree =
2740 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2741 }
2742
8929ecfa
YZ
2743 fs_info->generation = generation;
2744 fs_info->last_trans_committed = generation;
8929ecfa 2745
68310a5e
ID
2746 ret = btrfs_recover_balance(fs_info);
2747 if (ret) {
efe120a0 2748 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2749 goto fail_block_groups;
2750 }
2751
733f4fbb
SB
2752 ret = btrfs_init_dev_stats(fs_info);
2753 if (ret) {
efe120a0 2754 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2755 ret);
2756 goto fail_block_groups;
2757 }
2758
8dabb742
SB
2759 ret = btrfs_init_dev_replace(fs_info);
2760 if (ret) {
efe120a0 2761 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2762 goto fail_block_groups;
2763 }
2764
2765 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2766
5ac1d209 2767 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2768 if (ret) {
efe120a0 2769 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2770 goto fail_block_groups;
2771 }
2772
c59021f8 2773 ret = btrfs_init_space_info(fs_info);
2774 if (ret) {
efe120a0 2775 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2776 goto fail_sysfs;
c59021f8 2777 }
2778
1b1d1f66
JB
2779 ret = btrfs_read_block_groups(extent_root);
2780 if (ret) {
efe120a0 2781 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2782 goto fail_sysfs;
1b1d1f66 2783 }
5af3e8cc
SB
2784 fs_info->num_tolerated_disk_barrier_failures =
2785 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2786 if (fs_info->fs_devices->missing_devices >
2787 fs_info->num_tolerated_disk_barrier_failures &&
2788 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2789 printk(KERN_WARNING "BTRFS: "
2790 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2791 goto fail_sysfs;
292fd7fc 2792 }
9078a3e1 2793
a74a4b97
CM
2794 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2795 "btrfs-cleaner");
57506d50 2796 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2797 goto fail_sysfs;
a74a4b97
CM
2798
2799 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2800 tree_root,
2801 "btrfs-transaction");
57506d50 2802 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2803 goto fail_cleaner;
a74a4b97 2804
c289811c
CM
2805 if (!btrfs_test_opt(tree_root, SSD) &&
2806 !btrfs_test_opt(tree_root, NOSSD) &&
2807 !fs_info->fs_devices->rotating) {
efe120a0 2808 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2809 "mode\n");
2810 btrfs_set_opt(fs_info->mount_opt, SSD);
2811 }
2812
3818aea2
QW
2813 /* Set the real inode map cache flag */
2814 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2815 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2816
21adbd5c
SB
2817#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2818 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2819 ret = btrfsic_mount(tree_root, fs_devices,
2820 btrfs_test_opt(tree_root,
2821 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2822 1 : 0,
2823 fs_info->check_integrity_print_mask);
2824 if (ret)
efe120a0 2825 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2826 " integrity check module %s\n", sb->s_id);
2827 }
2828#endif
bcef60f2
AJ
2829 ret = btrfs_read_qgroup_config(fs_info);
2830 if (ret)
2831 goto fail_trans_kthread;
21adbd5c 2832
acce952b 2833 /* do not make disk changes in broken FS */
68ce9682 2834 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2835 u64 bytenr = btrfs_super_log_root(disk_super);
2836
7c2ca468 2837 if (fs_devices->rw_devices == 0) {
efe120a0 2838 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2839 "on RO media\n");
7c2ca468 2840 err = -EIO;
bcef60f2 2841 goto fail_qgroup;
7c2ca468 2842 }
e02119d5
CM
2843 blocksize =
2844 btrfs_level_size(tree_root,
2845 btrfs_super_log_root_level(disk_super));
d18a2c44 2846
6f07e42e 2847 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2848 if (!log_tree_root) {
2849 err = -ENOMEM;
bcef60f2 2850 goto fail_qgroup;
676e4c86 2851 }
e02119d5
CM
2852
2853 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2854 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2855
2856 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2857 blocksize,
2858 generation + 1);
416bc658
JB
2859 if (!log_tree_root->node ||
2860 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2861 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2862 free_extent_buffer(log_tree_root->node);
2863 kfree(log_tree_root);
28c16cbb 2864 goto fail_qgroup;
416bc658 2865 }
79787eaa 2866 /* returns with log_tree_root freed on success */
e02119d5 2867 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2868 if (ret) {
2869 btrfs_error(tree_root->fs_info, ret,
2870 "Failed to recover log tree");
2871 free_extent_buffer(log_tree_root->node);
2872 kfree(log_tree_root);
28c16cbb 2873 goto fail_qgroup;
79787eaa 2874 }
e556ce2c
YZ
2875
2876 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2877 ret = btrfs_commit_super(tree_root);
2878 if (ret)
28c16cbb 2879 goto fail_qgroup;
e556ce2c 2880 }
e02119d5 2881 }
1a40e23b 2882
76dda93c 2883 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2884 if (ret)
28c16cbb 2885 goto fail_qgroup;
76dda93c 2886
7c2ca468 2887 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2888 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2889 if (ret)
28c16cbb 2890 goto fail_qgroup;
d68fc57b 2891
5d4f98a2 2892 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2893 if (ret < 0) {
2894 printk(KERN_WARNING
efe120a0 2895 "BTRFS: failed to recover relocation\n");
d7ce5843 2896 err = -EINVAL;
bcef60f2 2897 goto fail_qgroup;
d7ce5843 2898 }
7c2ca468 2899 }
1a40e23b 2900
3de4586c
CM
2901 location.objectid = BTRFS_FS_TREE_OBJECTID;
2902 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2903 location.offset = 0;
3de4586c 2904
3de4586c 2905 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2906 if (IS_ERR(fs_info->fs_root)) {
2907 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2908 goto fail_qgroup;
3140c9a3 2909 }
c289811c 2910
2b6ba629
ID
2911 if (sb->s_flags & MS_RDONLY)
2912 return 0;
59641015 2913
2b6ba629
ID
2914 down_read(&fs_info->cleanup_work_sem);
2915 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2916 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2917 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2918 close_ctree(tree_root);
2919 return ret;
2920 }
2921 up_read(&fs_info->cleanup_work_sem);
59641015 2922
2b6ba629
ID
2923 ret = btrfs_resume_balance_async(fs_info);
2924 if (ret) {
efe120a0 2925 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2926 close_ctree(tree_root);
2927 return ret;
e3acc2a6
JB
2928 }
2929
8dabb742
SB
2930 ret = btrfs_resume_dev_replace_async(fs_info);
2931 if (ret) {
efe120a0 2932 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2933 close_ctree(tree_root);
2934 return ret;
2935 }
2936
b382a324
JS
2937 btrfs_qgroup_rescan_resume(fs_info);
2938
f7a81ea4 2939 if (create_uuid_tree) {
efe120a0 2940 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2941 ret = btrfs_create_uuid_tree(fs_info);
2942 if (ret) {
efe120a0 2943 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2944 ret);
2945 close_ctree(tree_root);
2946 return ret;
2947 }
f420ee1e
SB
2948 } else if (check_uuid_tree ||
2949 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2950 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2951 ret = btrfs_check_uuid_tree(fs_info);
2952 if (ret) {
efe120a0 2953 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2954 ret);
2955 close_ctree(tree_root);
2956 return ret;
2957 }
2958 } else {
2959 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2960 }
2961
ad2b2c80 2962 return 0;
39279cc3 2963
bcef60f2
AJ
2964fail_qgroup:
2965 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2966fail_trans_kthread:
2967 kthread_stop(fs_info->transaction_kthread);
54067ae9 2968 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2969 del_fs_roots(fs_info);
3f157a2f 2970fail_cleaner:
a74a4b97 2971 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2972
2973 /*
2974 * make sure we're done with the btree inode before we stop our
2975 * kthreads
2976 */
2977 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2978
2365dd3c
AJ
2979fail_sysfs:
2980 btrfs_sysfs_remove_one(fs_info);
2981
1b1d1f66 2982fail_block_groups:
54067ae9 2983 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2984 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2985
2986fail_tree_roots:
2987 free_root_pointers(fs_info, 1);
2b8195bb 2988 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2989
39279cc3 2990fail_sb_buffer:
7abadb64 2991 btrfs_stop_all_workers(fs_info);
16cdcec7 2992fail_alloc:
4543df7e 2993fail_iput:
586e46e2
ID
2994 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2995
4543df7e 2996 iput(fs_info->btree_inode);
c404e0dc
MX
2997fail_bio_counter:
2998 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
2999fail_delalloc_bytes:
3000 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3001fail_dirty_metadata_bytes:
3002 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3003fail_bdi:
7e662854 3004 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3005fail_srcu:
3006 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3007fail:
53b381b3 3008 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3009 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3010 return err;
af31f5e5
CM
3011
3012recovery_tree_root:
af31f5e5
CM
3013 if (!btrfs_test_opt(tree_root, RECOVERY))
3014 goto fail_tree_roots;
3015
3016 free_root_pointers(fs_info, 0);
3017
3018 /* don't use the log in recovery mode, it won't be valid */
3019 btrfs_set_super_log_root(disk_super, 0);
3020
3021 /* we can't trust the free space cache either */
3022 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3023
3024 ret = next_root_backup(fs_info, fs_info->super_copy,
3025 &num_backups_tried, &backup_index);
3026 if (ret == -1)
3027 goto fail_block_groups;
3028 goto retry_root_backup;
eb60ceac
CM
3029}
3030
f2984462
CM
3031static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3032{
f2984462
CM
3033 if (uptodate) {
3034 set_buffer_uptodate(bh);
3035 } else {
442a4f63
SB
3036 struct btrfs_device *device = (struct btrfs_device *)
3037 bh->b_private;
3038
efe120a0 3039 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3040 "I/O error on %s\n",
3041 rcu_str_deref(device->name));
1259ab75
CM
3042 /* note, we dont' set_buffer_write_io_error because we have
3043 * our own ways of dealing with the IO errors
3044 */
f2984462 3045 clear_buffer_uptodate(bh);
442a4f63 3046 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3047 }
3048 unlock_buffer(bh);
3049 put_bh(bh);
3050}
3051
a512bbf8
YZ
3052struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3053{
3054 struct buffer_head *bh;
3055 struct buffer_head *latest = NULL;
3056 struct btrfs_super_block *super;
3057 int i;
3058 u64 transid = 0;
3059 u64 bytenr;
3060
3061 /* we would like to check all the supers, but that would make
3062 * a btrfs mount succeed after a mkfs from a different FS.
3063 * So, we need to add a special mount option to scan for
3064 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3065 */
3066 for (i = 0; i < 1; i++) {
3067 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3068 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3069 i_size_read(bdev->bd_inode))
a512bbf8 3070 break;
8068a47e
AJ
3071 bh = __bread(bdev, bytenr / 4096,
3072 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3073 if (!bh)
3074 continue;
3075
3076 super = (struct btrfs_super_block *)bh->b_data;
3077 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3078 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3079 brelse(bh);
3080 continue;
3081 }
3082
3083 if (!latest || btrfs_super_generation(super) > transid) {
3084 brelse(latest);
3085 latest = bh;
3086 transid = btrfs_super_generation(super);
3087 } else {
3088 brelse(bh);
3089 }
3090 }
3091 return latest;
3092}
3093
4eedeb75
HH
3094/*
3095 * this should be called twice, once with wait == 0 and
3096 * once with wait == 1. When wait == 0 is done, all the buffer heads
3097 * we write are pinned.
3098 *
3099 * They are released when wait == 1 is done.
3100 * max_mirrors must be the same for both runs, and it indicates how
3101 * many supers on this one device should be written.
3102 *
3103 * max_mirrors == 0 means to write them all.
3104 */
a512bbf8
YZ
3105static int write_dev_supers(struct btrfs_device *device,
3106 struct btrfs_super_block *sb,
3107 int do_barriers, int wait, int max_mirrors)
3108{
3109 struct buffer_head *bh;
3110 int i;
3111 int ret;
3112 int errors = 0;
3113 u32 crc;
3114 u64 bytenr;
a512bbf8
YZ
3115
3116 if (max_mirrors == 0)
3117 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3118
a512bbf8
YZ
3119 for (i = 0; i < max_mirrors; i++) {
3120 bytenr = btrfs_sb_offset(i);
3121 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3122 break;
3123
3124 if (wait) {
3125 bh = __find_get_block(device->bdev, bytenr / 4096,
3126 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3127 if (!bh) {
3128 errors++;
3129 continue;
3130 }
a512bbf8 3131 wait_on_buffer(bh);
4eedeb75
HH
3132 if (!buffer_uptodate(bh))
3133 errors++;
3134
3135 /* drop our reference */
3136 brelse(bh);
3137
3138 /* drop the reference from the wait == 0 run */
3139 brelse(bh);
3140 continue;
a512bbf8
YZ
3141 } else {
3142 btrfs_set_super_bytenr(sb, bytenr);
3143
3144 crc = ~(u32)0;
b0496686 3145 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3146 BTRFS_CSUM_SIZE, crc,
3147 BTRFS_SUPER_INFO_SIZE -
3148 BTRFS_CSUM_SIZE);
3149 btrfs_csum_final(crc, sb->csum);
3150
4eedeb75
HH
3151 /*
3152 * one reference for us, and we leave it for the
3153 * caller
3154 */
a512bbf8
YZ
3155 bh = __getblk(device->bdev, bytenr / 4096,
3156 BTRFS_SUPER_INFO_SIZE);
634554dc 3157 if (!bh) {
efe120a0 3158 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3159 "buffer head for bytenr %Lu\n", bytenr);
3160 errors++;
3161 continue;
3162 }
3163
a512bbf8
YZ
3164 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3165
4eedeb75 3166 /* one reference for submit_bh */
a512bbf8 3167 get_bh(bh);
4eedeb75
HH
3168
3169 set_buffer_uptodate(bh);
a512bbf8
YZ
3170 lock_buffer(bh);
3171 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3172 bh->b_private = device;
a512bbf8
YZ
3173 }
3174
387125fc
CM
3175 /*
3176 * we fua the first super. The others we allow
3177 * to go down lazy.
3178 */
e8117c26
WS
3179 if (i == 0)
3180 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3181 else
3182 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3183 if (ret)
a512bbf8 3184 errors++;
a512bbf8
YZ
3185 }
3186 return errors < i ? 0 : -1;
3187}
3188
387125fc
CM
3189/*
3190 * endio for the write_dev_flush, this will wake anyone waiting
3191 * for the barrier when it is done
3192 */
3193static void btrfs_end_empty_barrier(struct bio *bio, int err)
3194{
3195 if (err) {
3196 if (err == -EOPNOTSUPP)
3197 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3198 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3199 }
3200 if (bio->bi_private)
3201 complete(bio->bi_private);
3202 bio_put(bio);
3203}
3204
3205/*
3206 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3207 * sent down. With wait == 1, it waits for the previous flush.
3208 *
3209 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3210 * capable
3211 */
3212static int write_dev_flush(struct btrfs_device *device, int wait)
3213{
3214 struct bio *bio;
3215 int ret = 0;
3216
3217 if (device->nobarriers)
3218 return 0;
3219
3220 if (wait) {
3221 bio = device->flush_bio;
3222 if (!bio)
3223 return 0;
3224
3225 wait_for_completion(&device->flush_wait);
3226
3227 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3228 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3229 rcu_str_deref(device->name));
387125fc 3230 device->nobarriers = 1;
5af3e8cc 3231 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3232 ret = -EIO;
5af3e8cc
SB
3233 btrfs_dev_stat_inc_and_print(device,
3234 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3235 }
3236
3237 /* drop the reference from the wait == 0 run */
3238 bio_put(bio);
3239 device->flush_bio = NULL;
3240
3241 return ret;
3242 }
3243
3244 /*
3245 * one reference for us, and we leave it for the
3246 * caller
3247 */
9c017abc 3248 device->flush_bio = NULL;
9be3395b 3249 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3250 if (!bio)
3251 return -ENOMEM;
3252
3253 bio->bi_end_io = btrfs_end_empty_barrier;
3254 bio->bi_bdev = device->bdev;
3255 init_completion(&device->flush_wait);
3256 bio->bi_private = &device->flush_wait;
3257 device->flush_bio = bio;
3258
3259 bio_get(bio);
21adbd5c 3260 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3261
3262 return 0;
3263}
3264
3265/*
3266 * send an empty flush down to each device in parallel,
3267 * then wait for them
3268 */
3269static int barrier_all_devices(struct btrfs_fs_info *info)
3270{
3271 struct list_head *head;
3272 struct btrfs_device *dev;
5af3e8cc
SB
3273 int errors_send = 0;
3274 int errors_wait = 0;
387125fc
CM
3275 int ret;
3276
3277 /* send down all the barriers */
3278 head = &info->fs_devices->devices;
3279 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3280 if (dev->missing)
3281 continue;
387125fc 3282 if (!dev->bdev) {
5af3e8cc 3283 errors_send++;
387125fc
CM
3284 continue;
3285 }
3286 if (!dev->in_fs_metadata || !dev->writeable)
3287 continue;
3288
3289 ret = write_dev_flush(dev, 0);
3290 if (ret)
5af3e8cc 3291 errors_send++;
387125fc
CM
3292 }
3293
3294 /* wait for all the barriers */
3295 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3296 if (dev->missing)
3297 continue;
387125fc 3298 if (!dev->bdev) {
5af3e8cc 3299 errors_wait++;
387125fc
CM
3300 continue;
3301 }
3302 if (!dev->in_fs_metadata || !dev->writeable)
3303 continue;
3304
3305 ret = write_dev_flush(dev, 1);
3306 if (ret)
5af3e8cc 3307 errors_wait++;
387125fc 3308 }
5af3e8cc
SB
3309 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3310 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3311 return -EIO;
3312 return 0;
3313}
3314
5af3e8cc
SB
3315int btrfs_calc_num_tolerated_disk_barrier_failures(
3316 struct btrfs_fs_info *fs_info)
3317{
3318 struct btrfs_ioctl_space_info space;
3319 struct btrfs_space_info *sinfo;
3320 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3321 BTRFS_BLOCK_GROUP_SYSTEM,
3322 BTRFS_BLOCK_GROUP_METADATA,
3323 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3324 int num_types = 4;
3325 int i;
3326 int c;
3327 int num_tolerated_disk_barrier_failures =
3328 (int)fs_info->fs_devices->num_devices;
3329
3330 for (i = 0; i < num_types; i++) {
3331 struct btrfs_space_info *tmp;
3332
3333 sinfo = NULL;
3334 rcu_read_lock();
3335 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3336 if (tmp->flags == types[i]) {
3337 sinfo = tmp;
3338 break;
3339 }
3340 }
3341 rcu_read_unlock();
3342
3343 if (!sinfo)
3344 continue;
3345
3346 down_read(&sinfo->groups_sem);
3347 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3348 if (!list_empty(&sinfo->block_groups[c])) {
3349 u64 flags;
3350
3351 btrfs_get_block_group_info(
3352 &sinfo->block_groups[c], &space);
3353 if (space.total_bytes == 0 ||
3354 space.used_bytes == 0)
3355 continue;
3356 flags = space.flags;
3357 /*
3358 * return
3359 * 0: if dup, single or RAID0 is configured for
3360 * any of metadata, system or data, else
3361 * 1: if RAID5 is configured, or if RAID1 or
3362 * RAID10 is configured and only two mirrors
3363 * are used, else
3364 * 2: if RAID6 is configured, else
3365 * num_mirrors - 1: if RAID1 or RAID10 is
3366 * configured and more than
3367 * 2 mirrors are used.
3368 */
3369 if (num_tolerated_disk_barrier_failures > 0 &&
3370 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3371 BTRFS_BLOCK_GROUP_RAID0)) ||
3372 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3373 == 0)))
3374 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3375 else if (num_tolerated_disk_barrier_failures > 1) {
3376 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3377 BTRFS_BLOCK_GROUP_RAID5 |
3378 BTRFS_BLOCK_GROUP_RAID10)) {
3379 num_tolerated_disk_barrier_failures = 1;
3380 } else if (flags &
15b0a89d 3381 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3382 num_tolerated_disk_barrier_failures = 2;
3383 }
3384 }
5af3e8cc
SB
3385 }
3386 }
3387 up_read(&sinfo->groups_sem);
3388 }
3389
3390 return num_tolerated_disk_barrier_failures;
3391}
3392
48a3b636 3393static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3394{
e5e9a520 3395 struct list_head *head;
f2984462 3396 struct btrfs_device *dev;
a061fc8d 3397 struct btrfs_super_block *sb;
f2984462 3398 struct btrfs_dev_item *dev_item;
f2984462
CM
3399 int ret;
3400 int do_barriers;
a236aed1
CM
3401 int max_errors;
3402 int total_errors = 0;
a061fc8d 3403 u64 flags;
f2984462
CM
3404
3405 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3406 backup_super_roots(root->fs_info);
f2984462 3407
6c41761f 3408 sb = root->fs_info->super_for_commit;
a061fc8d 3409 dev_item = &sb->dev_item;
e5e9a520 3410
174ba509 3411 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3412 head = &root->fs_info->fs_devices->devices;
d7306801 3413 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3414
5af3e8cc
SB
3415 if (do_barriers) {
3416 ret = barrier_all_devices(root->fs_info);
3417 if (ret) {
3418 mutex_unlock(
3419 &root->fs_info->fs_devices->device_list_mutex);
3420 btrfs_error(root->fs_info, ret,
3421 "errors while submitting device barriers.");
3422 return ret;
3423 }
3424 }
387125fc 3425
1f78160c 3426 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3427 if (!dev->bdev) {
3428 total_errors++;
3429 continue;
3430 }
2b82032c 3431 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3432 continue;
3433
2b82032c 3434 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3435 btrfs_set_stack_device_type(dev_item, dev->type);
3436 btrfs_set_stack_device_id(dev_item, dev->devid);
3437 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3438 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3439 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3440 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3441 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3442 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3443 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3444
a061fc8d
CM
3445 flags = btrfs_super_flags(sb);
3446 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3447
a512bbf8 3448 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3449 if (ret)
3450 total_errors++;
f2984462 3451 }
a236aed1 3452 if (total_errors > max_errors) {
efe120a0 3453 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3454 total_errors);
a724b436 3455 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3456
9d565ba4
SB
3457 /* FUA is masked off if unsupported and can't be the reason */
3458 btrfs_error(root->fs_info, -EIO,
3459 "%d errors while writing supers", total_errors);
3460 return -EIO;
a236aed1 3461 }
f2984462 3462
a512bbf8 3463 total_errors = 0;
1f78160c 3464 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3465 if (!dev->bdev)
3466 continue;
2b82032c 3467 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3468 continue;
3469
a512bbf8
YZ
3470 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3471 if (ret)
3472 total_errors++;
f2984462 3473 }
174ba509 3474 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3475 if (total_errors > max_errors) {
79787eaa
JM
3476 btrfs_error(root->fs_info, -EIO,
3477 "%d errors while writing supers", total_errors);
3478 return -EIO;
a236aed1 3479 }
f2984462
CM
3480 return 0;
3481}
3482
a512bbf8
YZ
3483int write_ctree_super(struct btrfs_trans_handle *trans,
3484 struct btrfs_root *root, int max_mirrors)
eb60ceac 3485{
f570e757 3486 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3487}
3488
cb517eab
MX
3489/* Drop a fs root from the radix tree and free it. */
3490void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3491 struct btrfs_root *root)
2619ba1f 3492{
4df27c4d 3493 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3494 radix_tree_delete(&fs_info->fs_roots_radix,
3495 (unsigned long)root->root_key.objectid);
4df27c4d 3496 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3497
3498 if (btrfs_root_refs(&root->root_item) == 0)
3499 synchronize_srcu(&fs_info->subvol_srcu);
3500
1a4319cc 3501 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3502 btrfs_free_log(NULL, root);
3321719e 3503
581bb050
LZ
3504 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3505 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3506 free_fs_root(root);
4df27c4d
YZ
3507}
3508
3509static void free_fs_root(struct btrfs_root *root)
3510{
82d5902d 3511 iput(root->cache_inode);
4df27c4d 3512 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3513 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3514 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3515 if (root->anon_dev)
3516 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3517 if (root->subv_writers)
3518 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3519 free_extent_buffer(root->node);
3520 free_extent_buffer(root->commit_root);
581bb050
LZ
3521 kfree(root->free_ino_ctl);
3522 kfree(root->free_ino_pinned);
d397712b 3523 kfree(root->name);
b0feb9d9 3524 btrfs_put_fs_root(root);
2619ba1f
CM
3525}
3526
cb517eab
MX
3527void btrfs_free_fs_root(struct btrfs_root *root)
3528{
3529 free_fs_root(root);
2619ba1f
CM
3530}
3531
c146afad 3532int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3533{
c146afad
YZ
3534 u64 root_objectid = 0;
3535 struct btrfs_root *gang[8];
3536 int i;
3768f368 3537 int ret;
e089f05c 3538
c146afad
YZ
3539 while (1) {
3540 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3541 (void **)gang, root_objectid,
3542 ARRAY_SIZE(gang));
3543 if (!ret)
3544 break;
5d4f98a2
YZ
3545
3546 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3547 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3548 int err;
3549
c146afad 3550 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3551 err = btrfs_orphan_cleanup(gang[i]);
3552 if (err)
3553 return err;
c146afad
YZ
3554 }
3555 root_objectid++;
3556 }
3557 return 0;
3558}
a2135011 3559
c146afad
YZ
3560int btrfs_commit_super(struct btrfs_root *root)
3561{
3562 struct btrfs_trans_handle *trans;
a74a4b97 3563
c146afad 3564 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3565 btrfs_run_delayed_iputs(root);
c146afad 3566 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3567 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3568
3569 /* wait until ongoing cleanup work done */
3570 down_write(&root->fs_info->cleanup_work_sem);
3571 up_write(&root->fs_info->cleanup_work_sem);
3572
7a7eaa40 3573 trans = btrfs_join_transaction(root);
3612b495
TI
3574 if (IS_ERR(trans))
3575 return PTR_ERR(trans);
d52c1bcc 3576 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3577}
3578
3579int close_ctree(struct btrfs_root *root)
3580{
3581 struct btrfs_fs_info *fs_info = root->fs_info;
3582 int ret;
3583
3584 fs_info->closing = 1;
3585 smp_mb();
3586
803b2f54
SB
3587 /* wait for the uuid_scan task to finish */
3588 down(&fs_info->uuid_tree_rescan_sem);
3589 /* avoid complains from lockdep et al., set sem back to initial state */
3590 up(&fs_info->uuid_tree_rescan_sem);
3591
837d5b6e 3592 /* pause restriper - we want to resume on mount */
aa1b8cd4 3593 btrfs_pause_balance(fs_info);
837d5b6e 3594
8dabb742
SB
3595 btrfs_dev_replace_suspend_for_unmount(fs_info);
3596
aa1b8cd4 3597 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3598
3599 /* wait for any defraggers to finish */
3600 wait_event(fs_info->transaction_wait,
3601 (atomic_read(&fs_info->defrag_running) == 0));
3602
3603 /* clear out the rbtree of defraggable inodes */
26176e7c 3604 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3605
c146afad 3606 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3607 ret = btrfs_commit_super(root);
3608 if (ret)
efe120a0 3609 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3610 }
3611
87533c47 3612 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3613 btrfs_error_commit_super(root);
0f7d52f4 3614
e3029d9f
AV
3615 kthread_stop(fs_info->transaction_kthread);
3616 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3617
f25784b3
YZ
3618 fs_info->closing = 2;
3619 smp_mb();
3620
bcef60f2
AJ
3621 btrfs_free_qgroup_config(root->fs_info);
3622
963d678b 3623 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3624 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3625 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3626 }
bcc63abb 3627
5ac1d209
JM
3628 btrfs_sysfs_remove_one(fs_info);
3629
c146afad 3630 del_fs_roots(fs_info);
d10c5f31 3631
1a4319cc
LB
3632 btrfs_put_block_group_cache(fs_info);
3633
2b1360da
JB
3634 btrfs_free_block_groups(fs_info);
3635
96192499
JB
3636 btrfs_stop_all_workers(fs_info);
3637
13e6c37b 3638 free_root_pointers(fs_info, 1);
9ad6b7bc 3639
13e6c37b 3640 iput(fs_info->btree_inode);
d6bfde87 3641
21adbd5c
SB
3642#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3643 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3644 btrfsic_unmount(root, fs_info->fs_devices);
3645#endif
3646
dfe25020 3647 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3648 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3649
e2d84521 3650 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3651 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3652 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3653 bdi_destroy(&fs_info->bdi);
76dda93c 3654 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3655
53b381b3
DW
3656 btrfs_free_stripe_hash_table(fs_info);
3657
1cb048f5
FDBM
3658 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3659 root->orphan_block_rsv = NULL;
3660
eb60ceac
CM
3661 return 0;
3662}
3663
b9fab919
CM
3664int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3665 int atomic)
5f39d397 3666{
1259ab75 3667 int ret;
727011e0 3668 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3669
0b32f4bb 3670 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3671 if (!ret)
3672 return ret;
3673
3674 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3675 parent_transid, atomic);
3676 if (ret == -EAGAIN)
3677 return ret;
1259ab75 3678 return !ret;
5f39d397
CM
3679}
3680
3681int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3682{
0b32f4bb 3683 return set_extent_buffer_uptodate(buf);
5f39d397 3684}
6702ed49 3685
5f39d397
CM
3686void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3687{
06ea65a3 3688 struct btrfs_root *root;
5f39d397 3689 u64 transid = btrfs_header_generation(buf);
b9473439 3690 int was_dirty;
b4ce94de 3691
06ea65a3
JB
3692#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3693 /*
3694 * This is a fast path so only do this check if we have sanity tests
3695 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3696 * outside of the sanity tests.
3697 */
3698 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3699 return;
3700#endif
3701 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3702 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3703 if (transid != root->fs_info->generation)
3704 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3705 "found %llu running %llu\n",
c1c9ff7c 3706 buf->start, transid, root->fs_info->generation);
0b32f4bb 3707 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3708 if (!was_dirty)
3709 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3710 buf->len,
3711 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3712}
3713
b53d3f5d
LB
3714static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3715 int flush_delayed)
16cdcec7
MX
3716{
3717 /*
3718 * looks as though older kernels can get into trouble with
3719 * this code, they end up stuck in balance_dirty_pages forever
3720 */
e2d84521 3721 int ret;
16cdcec7
MX
3722
3723 if (current->flags & PF_MEMALLOC)
3724 return;
3725
b53d3f5d
LB
3726 if (flush_delayed)
3727 btrfs_balance_delayed_items(root);
16cdcec7 3728
e2d84521
MX
3729 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3730 BTRFS_DIRTY_METADATA_THRESH);
3731 if (ret > 0) {
d0e1d66b
NJ
3732 balance_dirty_pages_ratelimited(
3733 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3734 }
3735 return;
3736}
3737
b53d3f5d 3738void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3739{
b53d3f5d
LB
3740 __btrfs_btree_balance_dirty(root, 1);
3741}
585ad2c3 3742
b53d3f5d
LB
3743void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3744{
3745 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3746}
6b80053d 3747
ca7a79ad 3748int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3749{
727011e0 3750 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3751 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3752}
0da5468f 3753
fcd1f065 3754static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3755 int read_only)
3756{
1104a885
DS
3757 /*
3758 * Placeholder for checks
3759 */
fcd1f065 3760 return 0;
acce952b 3761}
3762
48a3b636 3763static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3764{
acce952b 3765 mutex_lock(&root->fs_info->cleaner_mutex);
3766 btrfs_run_delayed_iputs(root);
3767 mutex_unlock(&root->fs_info->cleaner_mutex);
3768
3769 down_write(&root->fs_info->cleanup_work_sem);
3770 up_write(&root->fs_info->cleanup_work_sem);
3771
3772 /* cleanup FS via transaction */
3773 btrfs_cleanup_transaction(root);
acce952b 3774}
3775
569e0f35
JB
3776static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3777 struct btrfs_root *root)
acce952b 3778{
3779 struct btrfs_inode *btrfs_inode;
3780 struct list_head splice;
3781
3782 INIT_LIST_HEAD(&splice);
3783
3784 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3785 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3786
569e0f35 3787 list_splice_init(&t->ordered_operations, &splice);
acce952b 3788 while (!list_empty(&splice)) {
3789 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3790 ordered_operations);
3791
3792 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3793 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3794
3795 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3796
199c2a9c 3797 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3798 }
3799
199c2a9c 3800 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3801 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3802}
3803
143bede5 3804static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3805{
acce952b 3806 struct btrfs_ordered_extent *ordered;
acce952b 3807
199c2a9c 3808 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3809 /*
3810 * This will just short circuit the ordered completion stuff which will
3811 * make sure the ordered extent gets properly cleaned up.
3812 */
199c2a9c 3813 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3814 root_extent_list)
3815 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3816 spin_unlock(&root->ordered_extent_lock);
3817}
3818
3819static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3820{
3821 struct btrfs_root *root;
3822 struct list_head splice;
3823
3824 INIT_LIST_HEAD(&splice);
3825
3826 spin_lock(&fs_info->ordered_root_lock);
3827 list_splice_init(&fs_info->ordered_roots, &splice);
3828 while (!list_empty(&splice)) {
3829 root = list_first_entry(&splice, struct btrfs_root,
3830 ordered_root);
1de2cfde
JB
3831 list_move_tail(&root->ordered_root,
3832 &fs_info->ordered_roots);
199c2a9c 3833
2a85d9ca 3834 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3835 btrfs_destroy_ordered_extents(root);
3836
2a85d9ca
LB
3837 cond_resched();
3838 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3839 }
3840 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3841}
3842
35a3621b
SB
3843static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3844 struct btrfs_root *root)
acce952b 3845{
3846 struct rb_node *node;
3847 struct btrfs_delayed_ref_root *delayed_refs;
3848 struct btrfs_delayed_ref_node *ref;
3849 int ret = 0;
3850
3851 delayed_refs = &trans->delayed_refs;
3852
3853 spin_lock(&delayed_refs->lock);
d7df2c79 3854 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3855 spin_unlock(&delayed_refs->lock);
efe120a0 3856 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3857 return ret;
3858 }
3859
d7df2c79
JB
3860 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3861 struct btrfs_delayed_ref_head *head;
e78417d1 3862 bool pin_bytes = false;
acce952b 3863
d7df2c79
JB
3864 head = rb_entry(node, struct btrfs_delayed_ref_head,
3865 href_node);
3866 if (!mutex_trylock(&head->mutex)) {
3867 atomic_inc(&head->node.refs);
3868 spin_unlock(&delayed_refs->lock);
eb12db69 3869
d7df2c79 3870 mutex_lock(&head->mutex);
e78417d1 3871 mutex_unlock(&head->mutex);
d7df2c79
JB
3872 btrfs_put_delayed_ref(&head->node);
3873 spin_lock(&delayed_refs->lock);
3874 continue;
3875 }
3876 spin_lock(&head->lock);
3877 while ((node = rb_first(&head->ref_root)) != NULL) {
3878 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3879 rb_node);
3880 ref->in_tree = 0;
3881 rb_erase(&ref->rb_node, &head->ref_root);
3882 atomic_dec(&delayed_refs->num_entries);
3883 btrfs_put_delayed_ref(ref);
e78417d1 3884 }
d7df2c79
JB
3885 if (head->must_insert_reserved)
3886 pin_bytes = true;
3887 btrfs_free_delayed_extent_op(head->extent_op);
3888 delayed_refs->num_heads--;
3889 if (head->processing == 0)
3890 delayed_refs->num_heads_ready--;
3891 atomic_dec(&delayed_refs->num_entries);
3892 head->node.in_tree = 0;
3893 rb_erase(&head->href_node, &delayed_refs->href_root);
3894 spin_unlock(&head->lock);
3895 spin_unlock(&delayed_refs->lock);
3896 mutex_unlock(&head->mutex);
acce952b 3897
d7df2c79
JB
3898 if (pin_bytes)
3899 btrfs_pin_extent(root, head->node.bytenr,
3900 head->node.num_bytes, 1);
3901 btrfs_put_delayed_ref(&head->node);
acce952b 3902 cond_resched();
3903 spin_lock(&delayed_refs->lock);
3904 }
3905
3906 spin_unlock(&delayed_refs->lock);
3907
3908 return ret;
3909}
3910
143bede5 3911static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3912{
3913 struct btrfs_inode *btrfs_inode;
3914 struct list_head splice;
3915
3916 INIT_LIST_HEAD(&splice);
3917
eb73c1b7
MX
3918 spin_lock(&root->delalloc_lock);
3919 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3920
3921 while (!list_empty(&splice)) {
eb73c1b7
MX
3922 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3923 delalloc_inodes);
acce952b 3924
3925 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3926 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3927 &btrfs_inode->runtime_flags);
eb73c1b7 3928 spin_unlock(&root->delalloc_lock);
acce952b 3929
3930 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3931
eb73c1b7 3932 spin_lock(&root->delalloc_lock);
acce952b 3933 }
3934
eb73c1b7
MX
3935 spin_unlock(&root->delalloc_lock);
3936}
3937
3938static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3939{
3940 struct btrfs_root *root;
3941 struct list_head splice;
3942
3943 INIT_LIST_HEAD(&splice);
3944
3945 spin_lock(&fs_info->delalloc_root_lock);
3946 list_splice_init(&fs_info->delalloc_roots, &splice);
3947 while (!list_empty(&splice)) {
3948 root = list_first_entry(&splice, struct btrfs_root,
3949 delalloc_root);
3950 list_del_init(&root->delalloc_root);
3951 root = btrfs_grab_fs_root(root);
3952 BUG_ON(!root);
3953 spin_unlock(&fs_info->delalloc_root_lock);
3954
3955 btrfs_destroy_delalloc_inodes(root);
3956 btrfs_put_fs_root(root);
3957
3958 spin_lock(&fs_info->delalloc_root_lock);
3959 }
3960 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3961}
3962
3963static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3964 struct extent_io_tree *dirty_pages,
3965 int mark)
3966{
3967 int ret;
acce952b 3968 struct extent_buffer *eb;
3969 u64 start = 0;
3970 u64 end;
acce952b 3971
3972 while (1) {
3973 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3974 mark, NULL);
acce952b 3975 if (ret)
3976 break;
3977
3978 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3979 while (start <= end) {
fd8b2b61
JB
3980 eb = btrfs_find_tree_block(root, start,
3981 root->leafsize);
69a85bd8 3982 start += root->leafsize;
fd8b2b61 3983 if (!eb)
acce952b 3984 continue;
fd8b2b61 3985 wait_on_extent_buffer_writeback(eb);
acce952b 3986
fd8b2b61
JB
3987 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3988 &eb->bflags))
3989 clear_extent_buffer_dirty(eb);
3990 free_extent_buffer_stale(eb);
acce952b 3991 }
3992 }
3993
3994 return ret;
3995}
3996
3997static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3998 struct extent_io_tree *pinned_extents)
3999{
4000 struct extent_io_tree *unpin;
4001 u64 start;
4002 u64 end;
4003 int ret;
ed0eaa14 4004 bool loop = true;
acce952b 4005
4006 unpin = pinned_extents;
ed0eaa14 4007again:
acce952b 4008 while (1) {
4009 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4010 EXTENT_DIRTY, NULL);
acce952b 4011 if (ret)
4012 break;
4013
4014 /* opt_discard */
5378e607
LD
4015 if (btrfs_test_opt(root, DISCARD))
4016 ret = btrfs_error_discard_extent(root, start,
4017 end + 1 - start,
4018 NULL);
acce952b 4019
4020 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4021 btrfs_error_unpin_extent_range(root, start, end);
4022 cond_resched();
4023 }
4024
ed0eaa14
LB
4025 if (loop) {
4026 if (unpin == &root->fs_info->freed_extents[0])
4027 unpin = &root->fs_info->freed_extents[1];
4028 else
4029 unpin = &root->fs_info->freed_extents[0];
4030 loop = false;
4031 goto again;
4032 }
4033
acce952b 4034 return 0;
4035}
4036
49b25e05
JM
4037void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4038 struct btrfs_root *root)
4039{
724e2315
JB
4040 btrfs_destroy_ordered_operations(cur_trans, root);
4041
49b25e05 4042 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4043
4a9d8bde 4044 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4045 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4046
4a9d8bde 4047 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4048 wake_up(&root->fs_info->transaction_wait);
49b25e05 4049
67cde344
MX
4050 btrfs_destroy_delayed_inodes(root);
4051 btrfs_assert_delayed_root_empty(root);
49b25e05 4052
49b25e05
JM
4053 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4054 EXTENT_DIRTY);
6e841e32
LB
4055 btrfs_destroy_pinned_extent(root,
4056 root->fs_info->pinned_extents);
49b25e05 4057
4a9d8bde
MX
4058 cur_trans->state =TRANS_STATE_COMPLETED;
4059 wake_up(&cur_trans->commit_wait);
4060
49b25e05
JM
4061 /*
4062 memset(cur_trans, 0, sizeof(*cur_trans));
4063 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4064 */
4065}
4066
48a3b636 4067static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4068{
4069 struct btrfs_transaction *t;
acce952b 4070
acce952b 4071 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4072
a4abeea4 4073 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4074 while (!list_empty(&root->fs_info->trans_list)) {
4075 t = list_first_entry(&root->fs_info->trans_list,
4076 struct btrfs_transaction, list);
4077 if (t->state >= TRANS_STATE_COMMIT_START) {
4078 atomic_inc(&t->use_count);
4079 spin_unlock(&root->fs_info->trans_lock);
4080 btrfs_wait_for_commit(root, t->transid);
4081 btrfs_put_transaction(t);
4082 spin_lock(&root->fs_info->trans_lock);
4083 continue;
4084 }
4085 if (t == root->fs_info->running_transaction) {
4086 t->state = TRANS_STATE_COMMIT_DOING;
4087 spin_unlock(&root->fs_info->trans_lock);
4088 /*
4089 * We wait for 0 num_writers since we don't hold a trans
4090 * handle open currently for this transaction.
4091 */
4092 wait_event(t->writer_wait,
4093 atomic_read(&t->num_writers) == 0);
4094 } else {
4095 spin_unlock(&root->fs_info->trans_lock);
4096 }
4097 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4098
724e2315
JB
4099 spin_lock(&root->fs_info->trans_lock);
4100 if (t == root->fs_info->running_transaction)
4101 root->fs_info->running_transaction = NULL;
acce952b 4102 list_del_init(&t->list);
724e2315 4103 spin_unlock(&root->fs_info->trans_lock);
acce952b 4104
724e2315
JB
4105 btrfs_put_transaction(t);
4106 trace_btrfs_transaction_commit(root);
4107 spin_lock(&root->fs_info->trans_lock);
4108 }
4109 spin_unlock(&root->fs_info->trans_lock);
4110 btrfs_destroy_all_ordered_extents(root->fs_info);
4111 btrfs_destroy_delayed_inodes(root);
4112 btrfs_assert_delayed_root_empty(root);
4113 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4114 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4115 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4116
4117 return 0;
4118}
4119
d1310b2e 4120static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4121 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4122 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4123 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4124 /* note we're sharing with inode.c for the merge bio hook */
4125 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4126};