target: iblock_execute_sync_cache() should use bio_set_op_attrs()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
48a3b636
ES
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 127 int mirror_num;
c8b97818 128 unsigned long bio_flags;
eaf25d93
CM
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
8b712842 134 struct btrfs_work work;
79787eaa 135 int error;
44b8bd7e
CM
136};
137
85d4e461
CM
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
4008c04a 148 *
85d4e461
CM
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 152 *
85d4e461
CM
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 156 *
85d4e461
CM
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
4008c04a
CM
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
85d4e461
CM
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 184 { .id = 0, .name_stem = "tree" },
4008c04a 185};
85d4e461
CM
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
4008c04a
CM
217#endif
218
d352ac68
CM
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
b2950863 223static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 224 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 225 int create)
7eccb903 226{
5f39d397
CM
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
230
890871be 231 read_lock(&em_tree->lock);
d1310b2e 232 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 236 read_unlock(&em_tree->lock);
5f39d397 237 goto out;
a061fc8d 238 }
890871be 239 read_unlock(&em_tree->lock);
7b13b7b1 240
172ddd60 241 em = alloc_extent_map();
5f39d397
CM
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
0afbaf8c 247 em->len = (u64)-1;
c8b97818 248 em->block_len = (u64)-1;
5f39d397 249 em->block_start = 0;
a061fc8d 250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 251
890871be 252 write_lock(&em_tree->lock);
09a2a8f9 253 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
254 if (ret == -EEXIST) {
255 free_extent_map(em);
7b13b7b1 256 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 257 if (!em)
0433f20d 258 em = ERR_PTR(-EIO);
5f39d397 259 } else if (ret) {
7b13b7b1 260 free_extent_map(em);
0433f20d 261 em = ERR_PTR(ret);
5f39d397 262 }
890871be 263 write_unlock(&em_tree->lock);
7b13b7b1 264
5f39d397
CM
265out:
266 return em;
7eccb903
CM
267}
268
b0496686 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 270{
0b947aff 271 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
272}
273
274void btrfs_csum_final(u32 crc, char *result)
275{
7e75bf3f 276 put_unaligned_le32(~crc, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
01d58472
DD
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
19c00ddc
CM
285 int verify)
286{
01d58472 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 288 char *result = NULL;
19c00ddc
CM
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
607d432d 297 unsigned long inline_result;
19c00ddc
CM
298
299 len = buf->len - offset;
d397712b 300 while (len > 0) {
19c00ddc 301 err = map_private_extent_buffer(buf, offset, 32,
a6591715 302 &kaddr, &map_start, &map_len);
d397712b 303 if (err)
8bd98f0e 304 return err;
19c00ddc 305 cur_len = min(len, map_len - (offset - map_start));
b0496686 306 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
19c00ddc 310 }
607d432d 311 if (csum_size > sizeof(inline_result)) {
31e818fe 312 result = kzalloc(csum_size, GFP_NOFS);
607d432d 313 if (!result)
8bd98f0e 314 return -ENOMEM;
607d432d
JB
315 } else {
316 result = (char *)&inline_result;
317 }
318
19c00ddc
CM
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
607d432d 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
323 u32 val;
324 u32 found = 0;
607d432d 325 memcpy(&found, result, csum_size);
e4204ded 326
607d432d 327 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X "
330 "level %d",
01d58472 331 fs_info->sb->s_id, buf->start,
efe120a0 332 val, found, btrfs_header_level(buf));
607d432d
JB
333 if (result != (char *)&inline_result)
334 kfree(result);
8bd98f0e 335 return -EUCLEAN;
19c00ddc
CM
336 }
337 } else {
607d432d 338 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 339 }
607d432d
JB
340 if (result != (char *)&inline_result)
341 kfree(result);
19c00ddc
CM
342 return 0;
343}
344
d352ac68
CM
345/*
346 * we can't consider a given block up to date unless the transid of the
347 * block matches the transid in the parent node's pointer. This is how we
348 * detect blocks that either didn't get written at all or got written
349 * in the wrong place.
350 */
1259ab75 351static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
352 struct extent_buffer *eb, u64 parent_transid,
353 int atomic)
1259ab75 354{
2ac55d41 355 struct extent_state *cached_state = NULL;
1259ab75 356 int ret;
2755a0de 357 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
358
359 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 return 0;
361
b9fab919
CM
362 if (atomic)
363 return -EAGAIN;
364
a26e8c9f
JB
365 if (need_lock) {
366 btrfs_tree_read_lock(eb);
367 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 }
369
2ac55d41 370 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 371 &cached_state);
0b32f4bb 372 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
373 btrfs_header_generation(eb) == parent_transid) {
374 ret = 0;
375 goto out;
376 }
94647322
DS
377 btrfs_err_rl(eb->fs_info,
378 "parent transid verify failed on %llu wanted %llu found %llu",
379 eb->start,
29549aec 380 parent_transid, btrfs_header_generation(eb));
1259ab75 381 ret = 1;
a26e8c9f
JB
382
383 /*
384 * Things reading via commit roots that don't have normal protection,
385 * like send, can have a really old block in cache that may point at a
01327610 386 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
387 * if we find an eb that is under IO (dirty/writeback) because we could
388 * end up reading in the stale data and then writing it back out and
389 * making everybody very sad.
390 */
391 if (!extent_buffer_under_io(eb))
392 clear_extent_buffer_uptodate(eb);
33958dc6 393out:
2ac55d41
JB
394 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 &cached_state, GFP_NOFS);
472b909f
JB
396 if (need_lock)
397 btrfs_tree_read_unlock_blocking(eb);
1259ab75 398 return ret;
1259ab75
CM
399}
400
1104a885
DS
401/*
402 * Return 0 if the superblock checksum type matches the checksum value of that
403 * algorithm. Pass the raw disk superblock data.
404 */
405static int btrfs_check_super_csum(char *raw_disk_sb)
406{
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 420 * is filled with zeros and is included in the checksum.
1104a885
DS
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 431 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437}
438
d352ac68
CM
439/*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
f188591e
CM
443static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
ca7a79ad 445 u64 start, u64 parent_transid)
f188591e
CM
446{
447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
a826d6dc 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
bb82ab88
AJ
457 ret = read_extent_buffer_pages(io_tree, eb, start,
458 WAIT_COMPLETE,
f188591e 459 btree_get_extent, mirror_num);
256dd1bb
SB
460 if (!ret) {
461 if (!verify_parent_transid(io_tree, eb,
b9fab919 462 parent_transid, 0))
256dd1bb
SB
463 break;
464 else
465 ret = -EIO;
466 }
d397712b 467
a826d6dc
JB
468 /*
469 * This buffer's crc is fine, but its contents are corrupted, so
470 * there is no reason to read the other copies, they won't be
471 * any less wrong.
472 */
473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
474 break;
475
5d964051 476 num_copies = btrfs_num_copies(root->fs_info,
f188591e 477 eb->start, eb->len);
4235298e 478 if (num_copies == 1)
ea466794 479 break;
4235298e 480
5cf1ab56
JB
481 if (!failed_mirror) {
482 failed = 1;
483 failed_mirror = eb->read_mirror;
484 }
485
f188591e 486 mirror_num++;
ea466794
JB
487 if (mirror_num == failed_mirror)
488 mirror_num++;
489
4235298e 490 if (mirror_num > num_copies)
ea466794 491 break;
f188591e 492 }
ea466794 493
c0901581 494 if (failed && !ret && failed_mirror)
ea466794
JB
495 repair_eb_io_failure(root, eb, failed_mirror);
496
497 return ret;
f188591e 498}
19c00ddc 499
d352ac68 500/*
d397712b
CM
501 * checksum a dirty tree block before IO. This has extra checks to make sure
502 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 503 */
d397712b 504
01d58472 505static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 506{
4eee4fa4 507 u64 start = page_offset(page);
19c00ddc 508 u64 found_start;
19c00ddc 509 struct extent_buffer *eb;
f188591e 510
4f2de97a
JB
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
0f805531 514
19c00ddc 515 found_start = btrfs_header_bytenr(eb);
0f805531
AL
516 /*
517 * Please do not consolidate these warnings into a single if.
518 * It is useful to know what went wrong.
519 */
520 if (WARN_ON(found_start != start))
521 return -EUCLEAN;
522 if (WARN_ON(!PageUptodate(page)))
523 return -EUCLEAN;
524
525 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
8bd98f0e 528 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
529}
530
01d58472 531static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
532 struct extent_buffer *eb)
533{
01d58472 534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
535 u8 fsid[BTRFS_UUID_SIZE];
536 int ret = 1;
537
0a4e5586 538 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
539 while (fs_devices) {
540 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 ret = 0;
542 break;
543 }
544 fs_devices = fs_devices->seed;
545 }
546 return ret;
547}
548
a826d6dc 549#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
550 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
551 "root=%llu, slot=%d", reason, \
c1c9ff7c 552 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
553
554static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556{
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
562 if (nritems == 0)
563 return 0;
564
565 /* Check the 0 item */
566 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
567 BTRFS_LEAF_DATA_SIZE(root)) {
568 CORRUPT("invalid item offset size pair", leaf, root, 0);
569 return -EIO;
570 }
571
572 /*
573 * Check to make sure each items keys are in the correct order and their
574 * offsets make sense. We only have to loop through nritems-1 because
575 * we check the current slot against the next slot, which verifies the
576 * next slot's offset+size makes sense and that the current's slot
577 * offset is correct.
578 */
579 for (slot = 0; slot < nritems - 1; slot++) {
580 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
581 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
582
583 /* Make sure the keys are in the right order */
584 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
585 CORRUPT("bad key order", leaf, root, slot);
586 return -EIO;
587 }
588
589 /*
590 * Make sure the offset and ends are right, remember that the
591 * item data starts at the end of the leaf and grows towards the
592 * front.
593 */
594 if (btrfs_item_offset_nr(leaf, slot) !=
595 btrfs_item_end_nr(leaf, slot + 1)) {
596 CORRUPT("slot offset bad", leaf, root, slot);
597 return -EIO;
598 }
599
600 /*
601 * Check to make sure that we don't point outside of the leaf,
01327610 602 * just in case all the items are consistent to each other, but
a826d6dc
JB
603 * all point outside of the leaf.
604 */
605 if (btrfs_item_end_nr(leaf, slot) >
606 BTRFS_LEAF_DATA_SIZE(root)) {
607 CORRUPT("slot end outside of leaf", leaf, root, slot);
608 return -EIO;
609 }
610 }
611
612 return 0;
613}
614
facc8a22
MX
615static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
616 u64 phy_offset, struct page *page,
617 u64 start, u64 end, int mirror)
ce9adaa5 618{
ce9adaa5
CM
619 u64 found_start;
620 int found_level;
ce9adaa5
CM
621 struct extent_buffer *eb;
622 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 623 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 624 int ret = 0;
727011e0 625 int reads_done;
ce9adaa5 626
ce9adaa5
CM
627 if (!page->private)
628 goto out;
d397712b 629
4f2de97a 630 eb = (struct extent_buffer *)page->private;
d397712b 631
0b32f4bb
JB
632 /* the pending IO might have been the only thing that kept this buffer
633 * in memory. Make sure we have a ref for all this other checks
634 */
635 extent_buffer_get(eb);
636
637 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
638 if (!reads_done)
639 goto err;
f188591e 640
5cf1ab56 641 eb->read_mirror = mirror;
656f30db 642 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
643 ret = -EIO;
644 goto err;
645 }
646
ce9adaa5 647 found_start = btrfs_header_bytenr(eb);
727011e0 648 if (found_start != eb->start) {
02873e43
ZL
649 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
650 found_start, eb->start);
f188591e 651 ret = -EIO;
ce9adaa5
CM
652 goto err;
653 }
02873e43
ZL
654 if (check_tree_block_fsid(fs_info, eb)) {
655 btrfs_err_rl(fs_info, "bad fsid on block %llu",
656 eb->start);
1259ab75
CM
657 ret = -EIO;
658 goto err;
659 }
ce9adaa5 660 found_level = btrfs_header_level(eb);
1c24c3ce 661 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
662 btrfs_err(fs_info, "bad tree block level %d",
663 (int)btrfs_header_level(eb));
1c24c3ce
JB
664 ret = -EIO;
665 goto err;
666 }
ce9adaa5 667
85d4e461
CM
668 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
669 eb, found_level);
4008c04a 670
02873e43 671 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 672 if (ret)
a826d6dc 673 goto err;
a826d6dc
JB
674
675 /*
676 * If this is a leaf block and it is corrupt, set the corrupt bit so
677 * that we don't try and read the other copies of this block, just
678 * return -EIO.
679 */
680 if (found_level == 0 && check_leaf(root, eb)) {
681 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
682 ret = -EIO;
683 }
ce9adaa5 684
0b32f4bb
JB
685 if (!ret)
686 set_extent_buffer_uptodate(eb);
ce9adaa5 687err:
79fb65a1
JB
688 if (reads_done &&
689 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 690 btree_readahead_hook(fs_info, eb, eb->start, ret);
4bb31e92 691
53b381b3
DW
692 if (ret) {
693 /*
694 * our io error hook is going to dec the io pages
695 * again, we have to make sure it has something
696 * to decrement
697 */
698 atomic_inc(&eb->io_pages);
0b32f4bb 699 clear_extent_buffer_uptodate(eb);
53b381b3 700 }
0b32f4bb 701 free_extent_buffer(eb);
ce9adaa5 702out:
f188591e 703 return ret;
ce9adaa5
CM
704}
705
ea466794 706static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 707{
4bb31e92 708 struct extent_buffer *eb;
4bb31e92 709
4f2de97a 710 eb = (struct extent_buffer *)page->private;
656f30db 711 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 712 eb->read_mirror = failed_mirror;
53b381b3 713 atomic_dec(&eb->io_pages);
ea466794 714 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 715 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
4bb31e92
AJ
716 return -EIO; /* we fixed nothing */
717}
718
4246a0b6 719static void end_workqueue_bio(struct bio *bio)
ce9adaa5 720{
97eb6b69 721 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 722 struct btrfs_fs_info *fs_info;
9e0af237
LB
723 struct btrfs_workqueue *wq;
724 btrfs_work_func_t func;
ce9adaa5 725
ce9adaa5 726 fs_info = end_io_wq->info;
4246a0b6 727 end_io_wq->error = bio->bi_error;
d20f7043 728
37226b21 729 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
730 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
731 wq = fs_info->endio_meta_write_workers;
732 func = btrfs_endio_meta_write_helper;
733 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
734 wq = fs_info->endio_freespace_worker;
735 func = btrfs_freespace_write_helper;
736 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
737 wq = fs_info->endio_raid56_workers;
738 func = btrfs_endio_raid56_helper;
739 } else {
740 wq = fs_info->endio_write_workers;
741 func = btrfs_endio_write_helper;
742 }
d20f7043 743 } else {
8b110e39
MX
744 if (unlikely(end_io_wq->metadata ==
745 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
746 wq = fs_info->endio_repair_workers;
747 func = btrfs_endio_repair_helper;
748 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
749 wq = fs_info->endio_raid56_workers;
750 func = btrfs_endio_raid56_helper;
751 } else if (end_io_wq->metadata) {
752 wq = fs_info->endio_meta_workers;
753 func = btrfs_endio_meta_helper;
754 } else {
755 wq = fs_info->endio_workers;
756 func = btrfs_endio_helper;
757 }
d20f7043 758 }
9e0af237
LB
759
760 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
761 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
762}
763
22c59948 764int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 765 enum btrfs_wq_endio_type metadata)
0b86a832 766{
97eb6b69 767 struct btrfs_end_io_wq *end_io_wq;
8b110e39 768
97eb6b69 769 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
770 if (!end_io_wq)
771 return -ENOMEM;
772
773 end_io_wq->private = bio->bi_private;
774 end_io_wq->end_io = bio->bi_end_io;
22c59948 775 end_io_wq->info = info;
ce9adaa5
CM
776 end_io_wq->error = 0;
777 end_io_wq->bio = bio;
22c59948 778 end_io_wq->metadata = metadata;
ce9adaa5
CM
779
780 bio->bi_private = end_io_wq;
781 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
782 return 0;
783}
784
b64a2851 785unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 786{
4854ddd0 787 unsigned long limit = min_t(unsigned long,
5cdc7ad3 788 info->thread_pool_size,
4854ddd0
CM
789 info->fs_devices->open_devices);
790 return 256 * limit;
791}
0986fe9e 792
4a69a410
CM
793static void run_one_async_start(struct btrfs_work *work)
794{
4a69a410 795 struct async_submit_bio *async;
79787eaa 796 int ret;
4a69a410
CM
797
798 async = container_of(work, struct async_submit_bio, work);
81a75f67 799 ret = async->submit_bio_start(async->inode, async->bio,
79787eaa
JM
800 async->mirror_num, async->bio_flags,
801 async->bio_offset);
802 if (ret)
803 async->error = ret;
4a69a410
CM
804}
805
806static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
807{
808 struct btrfs_fs_info *fs_info;
809 struct async_submit_bio *async;
4854ddd0 810 int limit;
8b712842
CM
811
812 async = container_of(work, struct async_submit_bio, work);
813 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 814
b64a2851 815 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
816 limit = limit * 2 / 3;
817
ee863954
DS
818 /*
819 * atomic_dec_return implies a barrier for waitqueue_active
820 */
66657b31 821 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 822 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
823 wake_up(&fs_info->async_submit_wait);
824
bb7ab3b9 825 /* If an error occurred we just want to clean up the bio and move on */
79787eaa 826 if (async->error) {
4246a0b6
CH
827 async->bio->bi_error = async->error;
828 bio_endio(async->bio);
79787eaa
JM
829 return;
830 }
831
81a75f67
MC
832 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
833 async->bio_flags, async->bio_offset);
4a69a410
CM
834}
835
836static void run_one_async_free(struct btrfs_work *work)
837{
838 struct async_submit_bio *async;
839
840 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
841 kfree(async);
842}
843
44b8bd7e 844int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
81a75f67 845 struct bio *bio, int mirror_num,
c8b97818 846 unsigned long bio_flags,
eaf25d93 847 u64 bio_offset,
4a69a410
CM
848 extent_submit_bio_hook_t *submit_bio_start,
849 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
850{
851 struct async_submit_bio *async;
852
853 async = kmalloc(sizeof(*async), GFP_NOFS);
854 if (!async)
855 return -ENOMEM;
856
857 async->inode = inode;
44b8bd7e
CM
858 async->bio = bio;
859 async->mirror_num = mirror_num;
4a69a410
CM
860 async->submit_bio_start = submit_bio_start;
861 async->submit_bio_done = submit_bio_done;
862
9e0af237 863 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 864 run_one_async_done, run_one_async_free);
4a69a410 865
c8b97818 866 async->bio_flags = bio_flags;
eaf25d93 867 async->bio_offset = bio_offset;
8c8bee1d 868
79787eaa
JM
869 async->error = 0;
870
cb03c743 871 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 872
37226b21 873 if (bio->bi_rw & REQ_SYNC)
5cdc7ad3 874 btrfs_set_work_high_priority(&async->work);
d313d7a3 875
5cdc7ad3 876 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 877
d397712b 878 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
879 atomic_read(&fs_info->nr_async_submits)) {
880 wait_event(fs_info->async_submit_wait,
881 (atomic_read(&fs_info->nr_async_submits) == 0));
882 }
883
44b8bd7e
CM
884 return 0;
885}
886
ce3ed71a
CM
887static int btree_csum_one_bio(struct bio *bio)
888{
2c30c71b 889 struct bio_vec *bvec;
ce3ed71a 890 struct btrfs_root *root;
2c30c71b 891 int i, ret = 0;
ce3ed71a 892
2c30c71b 893 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 894 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 895 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
896 if (ret)
897 break;
ce3ed71a 898 }
2c30c71b 899
79787eaa 900 return ret;
ce3ed71a
CM
901}
902
81a75f67
MC
903static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
904 int mirror_num, unsigned long bio_flags,
eaf25d93 905 u64 bio_offset)
22c59948 906{
8b712842
CM
907 /*
908 * when we're called for a write, we're already in the async
5443be45 909 * submission context. Just jump into btrfs_map_bio
8b712842 910 */
79787eaa 911 return btree_csum_one_bio(bio);
4a69a410 912}
22c59948 913
81a75f67 914static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
915 int mirror_num, unsigned long bio_flags,
916 u64 bio_offset)
4a69a410 917{
61891923
SB
918 int ret;
919
8b712842 920 /*
4a69a410
CM
921 * when we're called for a write, we're already in the async
922 * submission context. Just jump into btrfs_map_bio
8b712842 923 */
81a75f67 924 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
4246a0b6
CH
925 if (ret) {
926 bio->bi_error = ret;
927 bio_endio(bio);
928 }
61891923 929 return ret;
0b86a832
CM
930}
931
de0022b9
JB
932static int check_async_write(struct inode *inode, unsigned long bio_flags)
933{
934 if (bio_flags & EXTENT_BIO_TREE_LOG)
935 return 0;
936#ifdef CONFIG_X86
bc696ca0 937 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
938 return 0;
939#endif
940 return 1;
941}
942
81a75f67 943static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
944 int mirror_num, unsigned long bio_flags,
945 u64 bio_offset)
44b8bd7e 946{
de0022b9 947 int async = check_async_write(inode, bio_flags);
cad321ad
CM
948 int ret;
949
37226b21 950 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
951 /*
952 * called for a read, do the setup so that checksum validation
953 * can happen in the async kernel threads
954 */
f3f266ab 955 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 956 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 957 if (ret)
61891923 958 goto out_w_error;
81a75f67 959 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
de0022b9
JB
960 } else if (!async) {
961 ret = btree_csum_one_bio(bio);
962 if (ret)
61891923 963 goto out_w_error;
81a75f67 964 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
61891923
SB
965 } else {
966 /*
967 * kthread helpers are used to submit writes so that
968 * checksumming can happen in parallel across all CPUs
969 */
970 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
81a75f67 971 inode, bio, mirror_num, 0,
61891923
SB
972 bio_offset,
973 __btree_submit_bio_start,
974 __btree_submit_bio_done);
44b8bd7e 975 }
d313d7a3 976
4246a0b6
CH
977 if (ret)
978 goto out_w_error;
979 return 0;
980
61891923 981out_w_error:
4246a0b6
CH
982 bio->bi_error = ret;
983 bio_endio(bio);
61891923 984 return ret;
44b8bd7e
CM
985}
986
3dd1462e 987#ifdef CONFIG_MIGRATION
784b4e29 988static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
989 struct page *newpage, struct page *page,
990 enum migrate_mode mode)
784b4e29
CM
991{
992 /*
993 * we can't safely write a btree page from here,
994 * we haven't done the locking hook
995 */
996 if (PageDirty(page))
997 return -EAGAIN;
998 /*
999 * Buffers may be managed in a filesystem specific way.
1000 * We must have no buffers or drop them.
1001 */
1002 if (page_has_private(page) &&
1003 !try_to_release_page(page, GFP_KERNEL))
1004 return -EAGAIN;
a6bc32b8 1005 return migrate_page(mapping, newpage, page, mode);
784b4e29 1006}
3dd1462e 1007#endif
784b4e29 1008
0da5468f
CM
1009
1010static int btree_writepages(struct address_space *mapping,
1011 struct writeback_control *wbc)
1012{
e2d84521
MX
1013 struct btrfs_fs_info *fs_info;
1014 int ret;
1015
d8d5f3e1 1016 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1017
1018 if (wbc->for_kupdate)
1019 return 0;
1020
e2d84521 1021 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1022 /* this is a bit racy, but that's ok */
e2d84521
MX
1023 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1024 BTRFS_DIRTY_METADATA_THRESH);
1025 if (ret < 0)
793955bc 1026 return 0;
793955bc 1027 }
0b32f4bb 1028 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1029}
1030
b2950863 1031static int btree_readpage(struct file *file, struct page *page)
5f39d397 1032{
d1310b2e
CM
1033 struct extent_io_tree *tree;
1034 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1035 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1036}
22b0ebda 1037
70dec807 1038static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1039{
98509cfc 1040 if (PageWriteback(page) || PageDirty(page))
d397712b 1041 return 0;
0c4e538b 1042
f7a52a40 1043 return try_release_extent_buffer(page);
d98237b3
CM
1044}
1045
d47992f8
LC
1046static void btree_invalidatepage(struct page *page, unsigned int offset,
1047 unsigned int length)
d98237b3 1048{
d1310b2e
CM
1049 struct extent_io_tree *tree;
1050 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1051 extent_invalidatepage(tree, page, offset);
1052 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1053 if (PagePrivate(page)) {
efe120a0
FH
1054 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1055 "page private not zero on page %llu",
1056 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1057 ClearPagePrivate(page);
1058 set_page_private(page, 0);
09cbfeaf 1059 put_page(page);
9ad6b7bc 1060 }
d98237b3
CM
1061}
1062
0b32f4bb
JB
1063static int btree_set_page_dirty(struct page *page)
1064{
bb146eb2 1065#ifdef DEBUG
0b32f4bb
JB
1066 struct extent_buffer *eb;
1067
1068 BUG_ON(!PagePrivate(page));
1069 eb = (struct extent_buffer *)page->private;
1070 BUG_ON(!eb);
1071 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1072 BUG_ON(!atomic_read(&eb->refs));
1073 btrfs_assert_tree_locked(eb);
bb146eb2 1074#endif
0b32f4bb
JB
1075 return __set_page_dirty_nobuffers(page);
1076}
1077
7f09410b 1078static const struct address_space_operations btree_aops = {
d98237b3 1079 .readpage = btree_readpage,
0da5468f 1080 .writepages = btree_writepages,
5f39d397
CM
1081 .releasepage = btree_releasepage,
1082 .invalidatepage = btree_invalidatepage,
5a92bc88 1083#ifdef CONFIG_MIGRATION
784b4e29 1084 .migratepage = btree_migratepage,
5a92bc88 1085#endif
0b32f4bb 1086 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1087};
1088
d3e46fea 1089void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1090{
5f39d397
CM
1091 struct extent_buffer *buf = NULL;
1092 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1093
a83fffb7 1094 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1095 if (IS_ERR(buf))
6197d86e 1096 return;
d1310b2e 1097 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1098 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1099 free_extent_buffer(buf);
090d1875
CM
1100}
1101
c0dcaa4d 1102int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1103 int mirror_num, struct extent_buffer **eb)
1104{
1105 struct extent_buffer *buf = NULL;
1106 struct inode *btree_inode = root->fs_info->btree_inode;
1107 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1108 int ret;
1109
a83fffb7 1110 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1111 if (IS_ERR(buf))
ab0fff03
AJ
1112 return 0;
1113
1114 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1115
1116 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1117 btree_get_extent, mirror_num);
1118 if (ret) {
1119 free_extent_buffer(buf);
1120 return ret;
1121 }
1122
1123 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1124 free_extent_buffer(buf);
1125 return -EIO;
0b32f4bb 1126 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1127 *eb = buf;
1128 } else {
1129 free_extent_buffer(buf);
1130 }
1131 return 0;
1132}
1133
01d58472 1134struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1135 u64 bytenr)
0999df54 1136{
01d58472 1137 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1138}
1139
1140struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1141 u64 bytenr)
0999df54 1142{
f5ee5c9a 1143 if (btrfs_is_testing(root->fs_info))
b9ef22de
FX
1144 return alloc_test_extent_buffer(root->fs_info, bytenr,
1145 root->nodesize);
ce3e6984 1146 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1147}
1148
1149
e02119d5
CM
1150int btrfs_write_tree_block(struct extent_buffer *buf)
1151{
727011e0 1152 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1153 buf->start + buf->len - 1);
e02119d5
CM
1154}
1155
1156int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1157{
727011e0 1158 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1159 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1160}
1161
0999df54 1162struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1163 u64 parent_transid)
0999df54
CM
1164{
1165 struct extent_buffer *buf = NULL;
0999df54
CM
1166 int ret;
1167
a83fffb7 1168 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
1169 if (IS_ERR(buf))
1170 return buf;
0999df54 1171
ca7a79ad 1172 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1173 if (ret) {
1174 free_extent_buffer(buf);
64c043de 1175 return ERR_PTR(ret);
0f0fe8f7 1176 }
5f39d397 1177 return buf;
ce9adaa5 1178
eb60ceac
CM
1179}
1180
01d58472
DD
1181void clean_tree_block(struct btrfs_trans_handle *trans,
1182 struct btrfs_fs_info *fs_info,
d5c13f92 1183 struct extent_buffer *buf)
ed2ff2cb 1184{
55c69072 1185 if (btrfs_header_generation(buf) ==
e2d84521 1186 fs_info->running_transaction->transid) {
b9447ef8 1187 btrfs_assert_tree_locked(buf);
b4ce94de 1188
b9473439 1189 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1190 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1191 -buf->len,
1192 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1193 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1194 btrfs_set_lock_blocking(buf);
1195 clear_extent_buffer_dirty(buf);
1196 }
925baedd 1197 }
5f39d397
CM
1198}
1199
8257b2dc
MX
1200static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1201{
1202 struct btrfs_subvolume_writers *writers;
1203 int ret;
1204
1205 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1206 if (!writers)
1207 return ERR_PTR(-ENOMEM);
1208
908c7f19 1209 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1210 if (ret < 0) {
1211 kfree(writers);
1212 return ERR_PTR(ret);
1213 }
1214
1215 init_waitqueue_head(&writers->wait);
1216 return writers;
1217}
1218
1219static void
1220btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1221{
1222 percpu_counter_destroy(&writers->counter);
1223 kfree(writers);
1224}
1225
707e8a07
DS
1226static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1227 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1228 u64 objectid)
d97e63b6 1229{
7c0260ee 1230 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1231 root->node = NULL;
a28ec197 1232 root->commit_root = NULL;
db94535d
CM
1233 root->sectorsize = sectorsize;
1234 root->nodesize = nodesize;
87ee04eb 1235 root->stripesize = stripesize;
27cdeb70 1236 root->state = 0;
d68fc57b 1237 root->orphan_cleanup_state = 0;
0b86a832 1238
0f7d52f4
CM
1239 root->objectid = objectid;
1240 root->last_trans = 0;
13a8a7c8 1241 root->highest_objectid = 0;
eb73c1b7 1242 root->nr_delalloc_inodes = 0;
199c2a9c 1243 root->nr_ordered_extents = 0;
58176a96 1244 root->name = NULL;
6bef4d31 1245 root->inode_tree = RB_ROOT;
16cdcec7 1246 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1247 root->block_rsv = NULL;
d68fc57b 1248 root->orphan_block_rsv = NULL;
0b86a832
CM
1249
1250 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1251 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1252 INIT_LIST_HEAD(&root->delalloc_inodes);
1253 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1254 INIT_LIST_HEAD(&root->ordered_extents);
1255 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1256 INIT_LIST_HEAD(&root->logged_list[0]);
1257 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1258 spin_lock_init(&root->orphan_lock);
5d4f98a2 1259 spin_lock_init(&root->inode_lock);
eb73c1b7 1260 spin_lock_init(&root->delalloc_lock);
199c2a9c 1261 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1262 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1263 spin_lock_init(&root->log_extents_lock[0]);
1264 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1265 mutex_init(&root->objectid_mutex);
e02119d5 1266 mutex_init(&root->log_mutex);
31f3d255 1267 mutex_init(&root->ordered_extent_mutex);
573bfb72 1268 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1269 init_waitqueue_head(&root->log_writer_wait);
1270 init_waitqueue_head(&root->log_commit_wait[0]);
1271 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1272 INIT_LIST_HEAD(&root->log_ctxs[0]);
1273 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1274 atomic_set(&root->log_commit[0], 0);
1275 atomic_set(&root->log_commit[1], 0);
1276 atomic_set(&root->log_writers, 0);
2ecb7923 1277 atomic_set(&root->log_batch, 0);
8a35d95f 1278 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1279 atomic_set(&root->refs, 1);
8257b2dc 1280 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1281 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1282 root->log_transid = 0;
d1433deb 1283 root->log_transid_committed = -1;
257c62e1 1284 root->last_log_commit = 0;
7c0260ee 1285 if (!dummy)
06ea65a3
JB
1286 extent_io_tree_init(&root->dirty_log_pages,
1287 fs_info->btree_inode->i_mapping);
017e5369 1288
3768f368
CM
1289 memset(&root->root_key, 0, sizeof(root->root_key));
1290 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1291 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1292 if (!dummy)
06ea65a3
JB
1293 root->defrag_trans_start = fs_info->generation;
1294 else
1295 root->defrag_trans_start = 0;
4d775673 1296 root->root_key.objectid = objectid;
0ee5dc67 1297 root->anon_dev = 0;
8ea05e3a 1298
5f3ab90a 1299 spin_lock_init(&root->root_item_lock);
3768f368
CM
1300}
1301
74e4d827
DS
1302static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1303 gfp_t flags)
6f07e42e 1304{
74e4d827 1305 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1306 if (root)
1307 root->fs_info = fs_info;
1308 return root;
1309}
1310
06ea65a3
JB
1311#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1312/* Should only be used by the testing infrastructure */
7c0260ee
JM
1313struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1314 u32 sectorsize, u32 nodesize)
06ea65a3
JB
1315{
1316 struct btrfs_root *root;
1317
7c0260ee
JM
1318 if (!fs_info)
1319 return ERR_PTR(-EINVAL);
1320
1321 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1322 if (!root)
1323 return ERR_PTR(-ENOMEM);
b9ef22de 1324 /* We don't use the stripesize in selftest, set it as sectorsize */
7c0260ee 1325 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
ef9f2db3 1326 BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1327 root->alloc_bytenr = 0;
06ea65a3
JB
1328
1329 return root;
1330}
1331#endif
1332
20897f5c
AJ
1333struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1334 struct btrfs_fs_info *fs_info,
1335 u64 objectid)
1336{
1337 struct extent_buffer *leaf;
1338 struct btrfs_root *tree_root = fs_info->tree_root;
1339 struct btrfs_root *root;
1340 struct btrfs_key key;
1341 int ret = 0;
6463fe58 1342 uuid_le uuid;
20897f5c 1343
74e4d827 1344 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1345 if (!root)
1346 return ERR_PTR(-ENOMEM);
1347
707e8a07
DS
1348 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1349 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1350 root->root_key.objectid = objectid;
1351 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1352 root->root_key.offset = 0;
1353
4d75f8a9 1354 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1355 if (IS_ERR(leaf)) {
1356 ret = PTR_ERR(leaf);
1dd05682 1357 leaf = NULL;
20897f5c
AJ
1358 goto fail;
1359 }
1360
20897f5c
AJ
1361 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1362 btrfs_set_header_bytenr(leaf, leaf->start);
1363 btrfs_set_header_generation(leaf, trans->transid);
1364 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1365 btrfs_set_header_owner(leaf, objectid);
1366 root->node = leaf;
1367
0a4e5586 1368 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1369 BTRFS_FSID_SIZE);
1370 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1371 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1372 BTRFS_UUID_SIZE);
1373 btrfs_mark_buffer_dirty(leaf);
1374
1375 root->commit_root = btrfs_root_node(root);
27cdeb70 1376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1377
1378 root->root_item.flags = 0;
1379 root->root_item.byte_limit = 0;
1380 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1381 btrfs_set_root_generation(&root->root_item, trans->transid);
1382 btrfs_set_root_level(&root->root_item, 0);
1383 btrfs_set_root_refs(&root->root_item, 1);
1384 btrfs_set_root_used(&root->root_item, leaf->len);
1385 btrfs_set_root_last_snapshot(&root->root_item, 0);
1386 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1387 uuid_le_gen(&uuid);
1388 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1389 root->root_item.drop_level = 0;
1390
1391 key.objectid = objectid;
1392 key.type = BTRFS_ROOT_ITEM_KEY;
1393 key.offset = 0;
1394 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1395 if (ret)
1396 goto fail;
1397
1398 btrfs_tree_unlock(leaf);
1399
1dd05682
TI
1400 return root;
1401
20897f5c 1402fail:
1dd05682
TI
1403 if (leaf) {
1404 btrfs_tree_unlock(leaf);
59885b39 1405 free_extent_buffer(root->commit_root);
1dd05682
TI
1406 free_extent_buffer(leaf);
1407 }
1408 kfree(root);
20897f5c 1409
1dd05682 1410 return ERR_PTR(ret);
20897f5c
AJ
1411}
1412
7237f183
YZ
1413static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1414 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1415{
1416 struct btrfs_root *root;
1417 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1418 struct extent_buffer *leaf;
e02119d5 1419
74e4d827 1420 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1421 if (!root)
7237f183 1422 return ERR_PTR(-ENOMEM);
e02119d5 1423
707e8a07
DS
1424 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1425 tree_root->stripesize, root, fs_info,
1426 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1427
1428 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1429 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1430 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1431
7237f183 1432 /*
27cdeb70
MX
1433 * DON'T set REF_COWS for log trees
1434 *
7237f183
YZ
1435 * log trees do not get reference counted because they go away
1436 * before a real commit is actually done. They do store pointers
1437 * to file data extents, and those reference counts still get
1438 * updated (along with back refs to the log tree).
1439 */
e02119d5 1440
4d75f8a9
DS
1441 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1442 NULL, 0, 0, 0);
7237f183
YZ
1443 if (IS_ERR(leaf)) {
1444 kfree(root);
1445 return ERR_CAST(leaf);
1446 }
e02119d5 1447
5d4f98a2
YZ
1448 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1449 btrfs_set_header_bytenr(leaf, leaf->start);
1450 btrfs_set_header_generation(leaf, trans->transid);
1451 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1452 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1453 root->node = leaf;
e02119d5
CM
1454
1455 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1456 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1457 btrfs_mark_buffer_dirty(root->node);
1458 btrfs_tree_unlock(root->node);
7237f183
YZ
1459 return root;
1460}
1461
1462int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1463 struct btrfs_fs_info *fs_info)
1464{
1465 struct btrfs_root *log_root;
1466
1467 log_root = alloc_log_tree(trans, fs_info);
1468 if (IS_ERR(log_root))
1469 return PTR_ERR(log_root);
1470 WARN_ON(fs_info->log_root_tree);
1471 fs_info->log_root_tree = log_root;
1472 return 0;
1473}
1474
1475int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1476 struct btrfs_root *root)
1477{
1478 struct btrfs_root *log_root;
1479 struct btrfs_inode_item *inode_item;
1480
1481 log_root = alloc_log_tree(trans, root->fs_info);
1482 if (IS_ERR(log_root))
1483 return PTR_ERR(log_root);
1484
1485 log_root->last_trans = trans->transid;
1486 log_root->root_key.offset = root->root_key.objectid;
1487
1488 inode_item = &log_root->root_item.inode;
3cae210f
QW
1489 btrfs_set_stack_inode_generation(inode_item, 1);
1490 btrfs_set_stack_inode_size(inode_item, 3);
1491 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1492 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1493 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1494
5d4f98a2 1495 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1496
1497 WARN_ON(root->log_root);
1498 root->log_root = log_root;
1499 root->log_transid = 0;
d1433deb 1500 root->log_transid_committed = -1;
257c62e1 1501 root->last_log_commit = 0;
e02119d5
CM
1502 return 0;
1503}
1504
35a3621b
SB
1505static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1506 struct btrfs_key *key)
e02119d5
CM
1507{
1508 struct btrfs_root *root;
1509 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1510 struct btrfs_path *path;
84234f3a 1511 u64 generation;
cb517eab 1512 int ret;
0f7d52f4 1513
cb517eab
MX
1514 path = btrfs_alloc_path();
1515 if (!path)
0f7d52f4 1516 return ERR_PTR(-ENOMEM);
cb517eab 1517
74e4d827 1518 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1519 if (!root) {
1520 ret = -ENOMEM;
1521 goto alloc_fail;
0f7d52f4
CM
1522 }
1523
707e8a07
DS
1524 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1525 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1526
cb517eab
MX
1527 ret = btrfs_find_root(tree_root, key, path,
1528 &root->root_item, &root->root_key);
0f7d52f4 1529 if (ret) {
13a8a7c8
YZ
1530 if (ret > 0)
1531 ret = -ENOENT;
cb517eab 1532 goto find_fail;
0f7d52f4 1533 }
13a8a7c8 1534
84234f3a 1535 generation = btrfs_root_generation(&root->root_item);
db94535d 1536 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1537 generation);
64c043de
LB
1538 if (IS_ERR(root->node)) {
1539 ret = PTR_ERR(root->node);
cb517eab
MX
1540 goto find_fail;
1541 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1542 ret = -EIO;
64c043de
LB
1543 free_extent_buffer(root->node);
1544 goto find_fail;
416bc658 1545 }
5d4f98a2 1546 root->commit_root = btrfs_root_node(root);
13a8a7c8 1547out:
cb517eab
MX
1548 btrfs_free_path(path);
1549 return root;
1550
cb517eab
MX
1551find_fail:
1552 kfree(root);
1553alloc_fail:
1554 root = ERR_PTR(ret);
1555 goto out;
1556}
1557
1558struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1559 struct btrfs_key *location)
1560{
1561 struct btrfs_root *root;
1562
1563 root = btrfs_read_tree_root(tree_root, location);
1564 if (IS_ERR(root))
1565 return root;
1566
1567 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1568 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1569 btrfs_check_and_init_root_item(&root->root_item);
1570 }
13a8a7c8 1571
5eda7b5e
CM
1572 return root;
1573}
1574
cb517eab
MX
1575int btrfs_init_fs_root(struct btrfs_root *root)
1576{
1577 int ret;
8257b2dc 1578 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1579
1580 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1581 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1582 GFP_NOFS);
1583 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1584 ret = -ENOMEM;
1585 goto fail;
1586 }
1587
8257b2dc
MX
1588 writers = btrfs_alloc_subvolume_writers();
1589 if (IS_ERR(writers)) {
1590 ret = PTR_ERR(writers);
1591 goto fail;
1592 }
1593 root->subv_writers = writers;
1594
cb517eab 1595 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1596 spin_lock_init(&root->ino_cache_lock);
1597 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1598
1599 ret = get_anon_bdev(&root->anon_dev);
1600 if (ret)
876d2cf1 1601 goto fail;
f32e48e9
CR
1602
1603 mutex_lock(&root->objectid_mutex);
1604 ret = btrfs_find_highest_objectid(root,
1605 &root->highest_objectid);
1606 if (ret) {
1607 mutex_unlock(&root->objectid_mutex);
876d2cf1 1608 goto fail;
f32e48e9
CR
1609 }
1610
1611 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1612
1613 mutex_unlock(&root->objectid_mutex);
1614
cb517eab
MX
1615 return 0;
1616fail:
876d2cf1 1617 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1618 return ret;
1619}
1620
171170c1
ST
1621static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1622 u64 root_id)
cb517eab
MX
1623{
1624 struct btrfs_root *root;
1625
1626 spin_lock(&fs_info->fs_roots_radix_lock);
1627 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1628 (unsigned long)root_id);
1629 spin_unlock(&fs_info->fs_roots_radix_lock);
1630 return root;
1631}
1632
1633int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1634 struct btrfs_root *root)
1635{
1636 int ret;
1637
e1860a77 1638 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1639 if (ret)
1640 return ret;
1641
1642 spin_lock(&fs_info->fs_roots_radix_lock);
1643 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1644 (unsigned long)root->root_key.objectid,
1645 root);
1646 if (ret == 0)
27cdeb70 1647 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1648 spin_unlock(&fs_info->fs_roots_radix_lock);
1649 radix_tree_preload_end();
1650
1651 return ret;
1652}
1653
c00869f1
MX
1654struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1655 struct btrfs_key *location,
1656 bool check_ref)
5eda7b5e
CM
1657{
1658 struct btrfs_root *root;
381cf658 1659 struct btrfs_path *path;
1d4c08e0 1660 struct btrfs_key key;
5eda7b5e
CM
1661 int ret;
1662
edbd8d4e
CM
1663 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1664 return fs_info->tree_root;
1665 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1666 return fs_info->extent_root;
8f18cf13
CM
1667 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1668 return fs_info->chunk_root;
1669 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1670 return fs_info->dev_root;
0403e47e
YZ
1671 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1672 return fs_info->csum_root;
bcef60f2
AJ
1673 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1674 return fs_info->quota_root ? fs_info->quota_root :
1675 ERR_PTR(-ENOENT);
f7a81ea4
SB
1676 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1677 return fs_info->uuid_root ? fs_info->uuid_root :
1678 ERR_PTR(-ENOENT);
70f6d82e
OS
1679 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1680 return fs_info->free_space_root ? fs_info->free_space_root :
1681 ERR_PTR(-ENOENT);
4df27c4d 1682again:
cb517eab 1683 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1684 if (root) {
c00869f1 1685 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1686 return ERR_PTR(-ENOENT);
5eda7b5e 1687 return root;
48475471 1688 }
5eda7b5e 1689
cb517eab 1690 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1691 if (IS_ERR(root))
1692 return root;
3394e160 1693
c00869f1 1694 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1695 ret = -ENOENT;
581bb050 1696 goto fail;
35a30d7c 1697 }
581bb050 1698
cb517eab 1699 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1700 if (ret)
1701 goto fail;
3394e160 1702
381cf658
DS
1703 path = btrfs_alloc_path();
1704 if (!path) {
1705 ret = -ENOMEM;
1706 goto fail;
1707 }
1d4c08e0
DS
1708 key.objectid = BTRFS_ORPHAN_OBJECTID;
1709 key.type = BTRFS_ORPHAN_ITEM_KEY;
1710 key.offset = location->objectid;
1711
1712 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1713 btrfs_free_path(path);
d68fc57b
YZ
1714 if (ret < 0)
1715 goto fail;
1716 if (ret == 0)
27cdeb70 1717 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1718
cb517eab 1719 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1720 if (ret) {
4df27c4d
YZ
1721 if (ret == -EEXIST) {
1722 free_fs_root(root);
1723 goto again;
1724 }
1725 goto fail;
0f7d52f4 1726 }
edbd8d4e 1727 return root;
4df27c4d
YZ
1728fail:
1729 free_fs_root(root);
1730 return ERR_PTR(ret);
edbd8d4e
CM
1731}
1732
04160088
CM
1733static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1734{
1735 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1736 int ret = 0;
04160088
CM
1737 struct btrfs_device *device;
1738 struct backing_dev_info *bdi;
b7967db7 1739
1f78160c
XG
1740 rcu_read_lock();
1741 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1742 if (!device->bdev)
1743 continue;
04160088 1744 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1745 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1746 ret = 1;
1747 break;
1748 }
1749 }
1f78160c 1750 rcu_read_unlock();
04160088
CM
1751 return ret;
1752}
1753
04160088
CM
1754static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1755{
ad081f14
JA
1756 int err;
1757
b4caecd4 1758 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1759 if (err)
1760 return err;
1761
09cbfeaf 1762 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
04160088
CM
1763 bdi->congested_fn = btrfs_congested_fn;
1764 bdi->congested_data = info;
da2f0f74 1765 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1766 return 0;
1767}
1768
8b712842
CM
1769/*
1770 * called by the kthread helper functions to finally call the bio end_io
1771 * functions. This is where read checksum verification actually happens
1772 */
1773static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1774{
ce9adaa5 1775 struct bio *bio;
97eb6b69 1776 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1777
97eb6b69 1778 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1779 bio = end_io_wq->bio;
ce9adaa5 1780
4246a0b6 1781 bio->bi_error = end_io_wq->error;
8b712842
CM
1782 bio->bi_private = end_io_wq->private;
1783 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1784 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1785 bio_endio(bio);
44b8bd7e
CM
1786}
1787
a74a4b97
CM
1788static int cleaner_kthread(void *arg)
1789{
1790 struct btrfs_root *root = arg;
d0278245 1791 int again;
da288d28 1792 struct btrfs_trans_handle *trans;
a74a4b97
CM
1793
1794 do {
d0278245 1795 again = 0;
a74a4b97 1796
d0278245 1797 /* Make the cleaner go to sleep early. */
babbf170 1798 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1799 goto sleep;
1800
90c711ab
ZB
1801 /*
1802 * Do not do anything if we might cause open_ctree() to block
1803 * before we have finished mounting the filesystem.
1804 */
1805 if (!root->fs_info->open)
1806 goto sleep;
1807
d0278245
MX
1808 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1809 goto sleep;
1810
dc7f370c
MX
1811 /*
1812 * Avoid the problem that we change the status of the fs
1813 * during the above check and trylock.
1814 */
babbf170 1815 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1816 mutex_unlock(&root->fs_info->cleaner_mutex);
1817 goto sleep;
76dda93c 1818 }
a74a4b97 1819
c2d6cb16 1820 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
d0278245 1821 btrfs_run_delayed_iputs(root);
c2d6cb16
FM
1822 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1823
d0278245
MX
1824 again = btrfs_clean_one_deleted_snapshot(root);
1825 mutex_unlock(&root->fs_info->cleaner_mutex);
1826
1827 /*
05323cd1
MX
1828 * The defragger has dealt with the R/O remount and umount,
1829 * needn't do anything special here.
d0278245
MX
1830 */
1831 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1832
1833 /*
1834 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1835 * with relocation (btrfs_relocate_chunk) and relocation
1836 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1837 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1838 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1839 * unused block groups.
1840 */
1841 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1842sleep:
838fe188 1843 if (!again) {
a74a4b97 1844 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1845 if (!kthread_should_stop())
1846 schedule();
a74a4b97
CM
1847 __set_current_state(TASK_RUNNING);
1848 }
1849 } while (!kthread_should_stop());
da288d28
FM
1850
1851 /*
1852 * Transaction kthread is stopped before us and wakes us up.
1853 * However we might have started a new transaction and COWed some
1854 * tree blocks when deleting unused block groups for example. So
1855 * make sure we commit the transaction we started to have a clean
1856 * shutdown when evicting the btree inode - if it has dirty pages
1857 * when we do the final iput() on it, eviction will trigger a
1858 * writeback for it which will fail with null pointer dereferences
1859 * since work queues and other resources were already released and
1860 * destroyed by the time the iput/eviction/writeback is made.
1861 */
1862 trans = btrfs_attach_transaction(root);
1863 if (IS_ERR(trans)) {
1864 if (PTR_ERR(trans) != -ENOENT)
1865 btrfs_err(root->fs_info,
1866 "cleaner transaction attach returned %ld",
1867 PTR_ERR(trans));
1868 } else {
1869 int ret;
1870
1871 ret = btrfs_commit_transaction(trans, root);
1872 if (ret)
1873 btrfs_err(root->fs_info,
1874 "cleaner open transaction commit returned %d",
1875 ret);
1876 }
1877
a74a4b97
CM
1878 return 0;
1879}
1880
1881static int transaction_kthread(void *arg)
1882{
1883 struct btrfs_root *root = arg;
1884 struct btrfs_trans_handle *trans;
1885 struct btrfs_transaction *cur;
8929ecfa 1886 u64 transid;
a74a4b97
CM
1887 unsigned long now;
1888 unsigned long delay;
914b2007 1889 bool cannot_commit;
a74a4b97
CM
1890
1891 do {
914b2007 1892 cannot_commit = false;
8b87dc17 1893 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1894 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1895
a4abeea4 1896 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1897 cur = root->fs_info->running_transaction;
1898 if (!cur) {
a4abeea4 1899 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1900 goto sleep;
1901 }
31153d81 1902
a74a4b97 1903 now = get_seconds();
4a9d8bde 1904 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1905 (now < cur->start_time ||
1906 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1907 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1908 delay = HZ * 5;
1909 goto sleep;
1910 }
8929ecfa 1911 transid = cur->transid;
a4abeea4 1912 spin_unlock(&root->fs_info->trans_lock);
56bec294 1913
79787eaa 1914 /* If the file system is aborted, this will always fail. */
354aa0fb 1915 trans = btrfs_attach_transaction(root);
914b2007 1916 if (IS_ERR(trans)) {
354aa0fb
MX
1917 if (PTR_ERR(trans) != -ENOENT)
1918 cannot_commit = true;
79787eaa 1919 goto sleep;
914b2007 1920 }
8929ecfa 1921 if (transid == trans->transid) {
79787eaa 1922 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1923 } else {
1924 btrfs_end_transaction(trans, root);
1925 }
a74a4b97
CM
1926sleep:
1927 wake_up_process(root->fs_info->cleaner_kthread);
1928 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1929
4e121c06
JB
1930 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1931 &root->fs_info->fs_state)))
1932 btrfs_cleanup_transaction(root);
ce63f891
JK
1933 set_current_state(TASK_INTERRUPTIBLE);
1934 if (!kthread_should_stop() &&
1935 (!btrfs_transaction_blocked(root->fs_info) ||
1936 cannot_commit))
1937 schedule_timeout(delay);
1938 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1939 } while (!kthread_should_stop());
1940 return 0;
1941}
1942
af31f5e5
CM
1943/*
1944 * this will find the highest generation in the array of
1945 * root backups. The index of the highest array is returned,
1946 * or -1 if we can't find anything.
1947 *
1948 * We check to make sure the array is valid by comparing the
1949 * generation of the latest root in the array with the generation
1950 * in the super block. If they don't match we pitch it.
1951 */
1952static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1953{
1954 u64 cur;
1955 int newest_index = -1;
1956 struct btrfs_root_backup *root_backup;
1957 int i;
1958
1959 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1960 root_backup = info->super_copy->super_roots + i;
1961 cur = btrfs_backup_tree_root_gen(root_backup);
1962 if (cur == newest_gen)
1963 newest_index = i;
1964 }
1965
1966 /* check to see if we actually wrapped around */
1967 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1968 root_backup = info->super_copy->super_roots;
1969 cur = btrfs_backup_tree_root_gen(root_backup);
1970 if (cur == newest_gen)
1971 newest_index = 0;
1972 }
1973 return newest_index;
1974}
1975
1976
1977/*
1978 * find the oldest backup so we know where to store new entries
1979 * in the backup array. This will set the backup_root_index
1980 * field in the fs_info struct
1981 */
1982static void find_oldest_super_backup(struct btrfs_fs_info *info,
1983 u64 newest_gen)
1984{
1985 int newest_index = -1;
1986
1987 newest_index = find_newest_super_backup(info, newest_gen);
1988 /* if there was garbage in there, just move along */
1989 if (newest_index == -1) {
1990 info->backup_root_index = 0;
1991 } else {
1992 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1993 }
1994}
1995
1996/*
1997 * copy all the root pointers into the super backup array.
1998 * this will bump the backup pointer by one when it is
1999 * done
2000 */
2001static void backup_super_roots(struct btrfs_fs_info *info)
2002{
2003 int next_backup;
2004 struct btrfs_root_backup *root_backup;
2005 int last_backup;
2006
2007 next_backup = info->backup_root_index;
2008 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2009 BTRFS_NUM_BACKUP_ROOTS;
2010
2011 /*
2012 * just overwrite the last backup if we're at the same generation
2013 * this happens only at umount
2014 */
2015 root_backup = info->super_for_commit->super_roots + last_backup;
2016 if (btrfs_backup_tree_root_gen(root_backup) ==
2017 btrfs_header_generation(info->tree_root->node))
2018 next_backup = last_backup;
2019
2020 root_backup = info->super_for_commit->super_roots + next_backup;
2021
2022 /*
2023 * make sure all of our padding and empty slots get zero filled
2024 * regardless of which ones we use today
2025 */
2026 memset(root_backup, 0, sizeof(*root_backup));
2027
2028 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2029
2030 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2031 btrfs_set_backup_tree_root_gen(root_backup,
2032 btrfs_header_generation(info->tree_root->node));
2033
2034 btrfs_set_backup_tree_root_level(root_backup,
2035 btrfs_header_level(info->tree_root->node));
2036
2037 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2038 btrfs_set_backup_chunk_root_gen(root_backup,
2039 btrfs_header_generation(info->chunk_root->node));
2040 btrfs_set_backup_chunk_root_level(root_backup,
2041 btrfs_header_level(info->chunk_root->node));
2042
2043 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2044 btrfs_set_backup_extent_root_gen(root_backup,
2045 btrfs_header_generation(info->extent_root->node));
2046 btrfs_set_backup_extent_root_level(root_backup,
2047 btrfs_header_level(info->extent_root->node));
2048
7c7e82a7
CM
2049 /*
2050 * we might commit during log recovery, which happens before we set
2051 * the fs_root. Make sure it is valid before we fill it in.
2052 */
2053 if (info->fs_root && info->fs_root->node) {
2054 btrfs_set_backup_fs_root(root_backup,
2055 info->fs_root->node->start);
2056 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2057 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2058 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2059 btrfs_header_level(info->fs_root->node));
7c7e82a7 2060 }
af31f5e5
CM
2061
2062 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2063 btrfs_set_backup_dev_root_gen(root_backup,
2064 btrfs_header_generation(info->dev_root->node));
2065 btrfs_set_backup_dev_root_level(root_backup,
2066 btrfs_header_level(info->dev_root->node));
2067
2068 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2069 btrfs_set_backup_csum_root_gen(root_backup,
2070 btrfs_header_generation(info->csum_root->node));
2071 btrfs_set_backup_csum_root_level(root_backup,
2072 btrfs_header_level(info->csum_root->node));
2073
2074 btrfs_set_backup_total_bytes(root_backup,
2075 btrfs_super_total_bytes(info->super_copy));
2076 btrfs_set_backup_bytes_used(root_backup,
2077 btrfs_super_bytes_used(info->super_copy));
2078 btrfs_set_backup_num_devices(root_backup,
2079 btrfs_super_num_devices(info->super_copy));
2080
2081 /*
2082 * if we don't copy this out to the super_copy, it won't get remembered
2083 * for the next commit
2084 */
2085 memcpy(&info->super_copy->super_roots,
2086 &info->super_for_commit->super_roots,
2087 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2088}
2089
2090/*
2091 * this copies info out of the root backup array and back into
2092 * the in-memory super block. It is meant to help iterate through
2093 * the array, so you send it the number of backups you've already
2094 * tried and the last backup index you used.
2095 *
2096 * this returns -1 when it has tried all the backups
2097 */
2098static noinline int next_root_backup(struct btrfs_fs_info *info,
2099 struct btrfs_super_block *super,
2100 int *num_backups_tried, int *backup_index)
2101{
2102 struct btrfs_root_backup *root_backup;
2103 int newest = *backup_index;
2104
2105 if (*num_backups_tried == 0) {
2106 u64 gen = btrfs_super_generation(super);
2107
2108 newest = find_newest_super_backup(info, gen);
2109 if (newest == -1)
2110 return -1;
2111
2112 *backup_index = newest;
2113 *num_backups_tried = 1;
2114 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2115 /* we've tried all the backups, all done */
2116 return -1;
2117 } else {
2118 /* jump to the next oldest backup */
2119 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2120 BTRFS_NUM_BACKUP_ROOTS;
2121 *backup_index = newest;
2122 *num_backups_tried += 1;
2123 }
2124 root_backup = super->super_roots + newest;
2125
2126 btrfs_set_super_generation(super,
2127 btrfs_backup_tree_root_gen(root_backup));
2128 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2129 btrfs_set_super_root_level(super,
2130 btrfs_backup_tree_root_level(root_backup));
2131 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2132
2133 /*
2134 * fixme: the total bytes and num_devices need to match or we should
2135 * need a fsck
2136 */
2137 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2138 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2139 return 0;
2140}
2141
7abadb64
LB
2142/* helper to cleanup workers */
2143static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2144{
dc6e3209 2145 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2146 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2147 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2148 btrfs_destroy_workqueue(fs_info->endio_workers);
2149 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2150 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2151 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2152 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2153 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2154 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2155 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2156 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2157 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2158 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2159 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2160 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2161 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2162 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2163}
2164
2e9f5954
R
2165static void free_root_extent_buffers(struct btrfs_root *root)
2166{
2167 if (root) {
2168 free_extent_buffer(root->node);
2169 free_extent_buffer(root->commit_root);
2170 root->node = NULL;
2171 root->commit_root = NULL;
2172 }
2173}
2174
af31f5e5
CM
2175/* helper to cleanup tree roots */
2176static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2177{
2e9f5954 2178 free_root_extent_buffers(info->tree_root);
655b09fe 2179
2e9f5954
R
2180 free_root_extent_buffers(info->dev_root);
2181 free_root_extent_buffers(info->extent_root);
2182 free_root_extent_buffers(info->csum_root);
2183 free_root_extent_buffers(info->quota_root);
2184 free_root_extent_buffers(info->uuid_root);
2185 if (chunk_root)
2186 free_root_extent_buffers(info->chunk_root);
70f6d82e 2187 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2188}
2189
faa2dbf0 2190void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2191{
2192 int ret;
2193 struct btrfs_root *gang[8];
2194 int i;
2195
2196 while (!list_empty(&fs_info->dead_roots)) {
2197 gang[0] = list_entry(fs_info->dead_roots.next,
2198 struct btrfs_root, root_list);
2199 list_del(&gang[0]->root_list);
2200
27cdeb70 2201 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2202 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2203 } else {
2204 free_extent_buffer(gang[0]->node);
2205 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2206 btrfs_put_fs_root(gang[0]);
171f6537
JB
2207 }
2208 }
2209
2210 while (1) {
2211 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2212 (void **)gang, 0,
2213 ARRAY_SIZE(gang));
2214 if (!ret)
2215 break;
2216 for (i = 0; i < ret; i++)
cb517eab 2217 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2218 }
1a4319cc
LB
2219
2220 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2221 btrfs_free_log_root_tree(NULL, fs_info);
2222 btrfs_destroy_pinned_extent(fs_info->tree_root,
2223 fs_info->pinned_extents);
2224 }
171f6537 2225}
af31f5e5 2226
638aa7ed
ES
2227static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2228{
2229 mutex_init(&fs_info->scrub_lock);
2230 atomic_set(&fs_info->scrubs_running, 0);
2231 atomic_set(&fs_info->scrub_pause_req, 0);
2232 atomic_set(&fs_info->scrubs_paused, 0);
2233 atomic_set(&fs_info->scrub_cancel_req, 0);
2234 init_waitqueue_head(&fs_info->scrub_pause_wait);
2235 fs_info->scrub_workers_refcnt = 0;
2236}
2237
779a65a4
ES
2238static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2239{
2240 spin_lock_init(&fs_info->balance_lock);
2241 mutex_init(&fs_info->balance_mutex);
2242 atomic_set(&fs_info->balance_running, 0);
2243 atomic_set(&fs_info->balance_pause_req, 0);
2244 atomic_set(&fs_info->balance_cancel_req, 0);
2245 fs_info->balance_ctl = NULL;
2246 init_waitqueue_head(&fs_info->balance_wait_q);
2247}
2248
f37938e0
ES
2249static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2250 struct btrfs_root *tree_root)
2251{
2252 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2253 set_nlink(fs_info->btree_inode, 1);
2254 /*
2255 * we set the i_size on the btree inode to the max possible int.
2256 * the real end of the address space is determined by all of
2257 * the devices in the system
2258 */
2259 fs_info->btree_inode->i_size = OFFSET_MAX;
2260 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2261
2262 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2263 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2264 fs_info->btree_inode->i_mapping);
2265 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2266 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2267
2268 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2269
2270 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2271 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2272 sizeof(struct btrfs_key));
2273 set_bit(BTRFS_INODE_DUMMY,
2274 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2275 btrfs_insert_inode_hash(fs_info->btree_inode);
2276}
2277
ad618368
ES
2278static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2279{
2280 fs_info->dev_replace.lock_owner = 0;
2281 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2282 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2283 rwlock_init(&fs_info->dev_replace.lock);
2284 atomic_set(&fs_info->dev_replace.read_locks, 0);
2285 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2286 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2287 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2288}
2289
f9e92e40
ES
2290static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2291{
2292 spin_lock_init(&fs_info->qgroup_lock);
2293 mutex_init(&fs_info->qgroup_ioctl_lock);
2294 fs_info->qgroup_tree = RB_ROOT;
2295 fs_info->qgroup_op_tree = RB_ROOT;
2296 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2297 fs_info->qgroup_seq = 1;
2298 fs_info->quota_enabled = 0;
2299 fs_info->pending_quota_state = 0;
2300 fs_info->qgroup_ulist = NULL;
2301 mutex_init(&fs_info->qgroup_rescan_lock);
2302}
2303
2a458198
ES
2304static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2305 struct btrfs_fs_devices *fs_devices)
2306{
2307 int max_active = fs_info->thread_pool_size;
6f011058 2308 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2309
2310 fs_info->workers =
cb001095
JM
2311 btrfs_alloc_workqueue(fs_info, "worker",
2312 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2313
2314 fs_info->delalloc_workers =
cb001095
JM
2315 btrfs_alloc_workqueue(fs_info, "delalloc",
2316 flags, max_active, 2);
2a458198
ES
2317
2318 fs_info->flush_workers =
cb001095
JM
2319 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2320 flags, max_active, 0);
2a458198
ES
2321
2322 fs_info->caching_workers =
cb001095 2323 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2324
2325 /*
2326 * a higher idle thresh on the submit workers makes it much more
2327 * likely that bios will be send down in a sane order to the
2328 * devices
2329 */
2330 fs_info->submit_workers =
cb001095 2331 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2332 min_t(u64, fs_devices->num_devices,
2333 max_active), 64);
2334
2335 fs_info->fixup_workers =
cb001095 2336 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2337
2338 /*
2339 * endios are largely parallel and should have a very
2340 * low idle thresh
2341 */
2342 fs_info->endio_workers =
cb001095 2343 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2344 fs_info->endio_meta_workers =
cb001095
JM
2345 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2346 max_active, 4);
2a458198 2347 fs_info->endio_meta_write_workers =
cb001095
JM
2348 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2349 max_active, 2);
2a458198 2350 fs_info->endio_raid56_workers =
cb001095
JM
2351 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2352 max_active, 4);
2a458198 2353 fs_info->endio_repair_workers =
cb001095 2354 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2355 fs_info->rmw_workers =
cb001095 2356 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2357 fs_info->endio_write_workers =
cb001095
JM
2358 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2359 max_active, 2);
2a458198 2360 fs_info->endio_freespace_worker =
cb001095
JM
2361 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2362 max_active, 0);
2a458198 2363 fs_info->delayed_workers =
cb001095
JM
2364 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2365 max_active, 0);
2a458198 2366 fs_info->readahead_workers =
cb001095
JM
2367 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2368 max_active, 2);
2a458198 2369 fs_info->qgroup_rescan_workers =
cb001095 2370 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2371 fs_info->extent_workers =
cb001095 2372 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2373 min_t(u64, fs_devices->num_devices,
2374 max_active), 8);
2375
2376 if (!(fs_info->workers && fs_info->delalloc_workers &&
2377 fs_info->submit_workers && fs_info->flush_workers &&
2378 fs_info->endio_workers && fs_info->endio_meta_workers &&
2379 fs_info->endio_meta_write_workers &&
2380 fs_info->endio_repair_workers &&
2381 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2382 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2383 fs_info->caching_workers && fs_info->readahead_workers &&
2384 fs_info->fixup_workers && fs_info->delayed_workers &&
2385 fs_info->extent_workers &&
2386 fs_info->qgroup_rescan_workers)) {
2387 return -ENOMEM;
2388 }
2389
2390 return 0;
2391}
2392
63443bf5
ES
2393static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2394 struct btrfs_fs_devices *fs_devices)
2395{
2396 int ret;
2397 struct btrfs_root *tree_root = fs_info->tree_root;
2398 struct btrfs_root *log_tree_root;
2399 struct btrfs_super_block *disk_super = fs_info->super_copy;
2400 u64 bytenr = btrfs_super_log_root(disk_super);
2401
2402 if (fs_devices->rw_devices == 0) {
f14d104d 2403 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2404 return -EIO;
2405 }
2406
74e4d827 2407 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2408 if (!log_tree_root)
2409 return -ENOMEM;
2410
2411 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2412 tree_root->stripesize, log_tree_root, fs_info,
2413 BTRFS_TREE_LOG_OBJECTID);
2414
2415 log_tree_root->node = read_tree_block(tree_root, bytenr,
2416 fs_info->generation + 1);
64c043de 2417 if (IS_ERR(log_tree_root->node)) {
f14d104d 2418 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2419 ret = PTR_ERR(log_tree_root->node);
64c043de 2420 kfree(log_tree_root);
0eeff236 2421 return ret;
64c043de 2422 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2423 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2424 free_extent_buffer(log_tree_root->node);
2425 kfree(log_tree_root);
2426 return -EIO;
2427 }
2428 /* returns with log_tree_root freed on success */
2429 ret = btrfs_recover_log_trees(log_tree_root);
2430 if (ret) {
34d97007 2431 btrfs_handle_fs_error(tree_root->fs_info, ret,
63443bf5
ES
2432 "Failed to recover log tree");
2433 free_extent_buffer(log_tree_root->node);
2434 kfree(log_tree_root);
2435 return ret;
2436 }
2437
2438 if (fs_info->sb->s_flags & MS_RDONLY) {
2439 ret = btrfs_commit_super(tree_root);
2440 if (ret)
2441 return ret;
2442 }
2443
2444 return 0;
2445}
2446
4bbcaa64
ES
2447static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2448 struct btrfs_root *tree_root)
2449{
a4f3d2c4 2450 struct btrfs_root *root;
4bbcaa64
ES
2451 struct btrfs_key location;
2452 int ret;
2453
2454 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2455 location.type = BTRFS_ROOT_ITEM_KEY;
2456 location.offset = 0;
2457
a4f3d2c4
DS
2458 root = btrfs_read_tree_root(tree_root, &location);
2459 if (IS_ERR(root))
2460 return PTR_ERR(root);
2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 fs_info->extent_root = root;
4bbcaa64
ES
2463
2464 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2465 root = btrfs_read_tree_root(tree_root, &location);
2466 if (IS_ERR(root))
2467 return PTR_ERR(root);
2468 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 fs_info->dev_root = root;
4bbcaa64
ES
2470 btrfs_init_devices_late(fs_info);
2471
2472 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2473 root = btrfs_read_tree_root(tree_root, &location);
2474 if (IS_ERR(root))
2475 return PTR_ERR(root);
2476 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2477 fs_info->csum_root = root;
4bbcaa64
ES
2478
2479 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2480 root = btrfs_read_tree_root(tree_root, &location);
2481 if (!IS_ERR(root)) {
2482 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2483 fs_info->quota_enabled = 1;
2484 fs_info->pending_quota_state = 1;
a4f3d2c4 2485 fs_info->quota_root = root;
4bbcaa64
ES
2486 }
2487
2488 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2489 root = btrfs_read_tree_root(tree_root, &location);
2490 if (IS_ERR(root)) {
2491 ret = PTR_ERR(root);
4bbcaa64
ES
2492 if (ret != -ENOENT)
2493 return ret;
2494 } else {
a4f3d2c4
DS
2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496 fs_info->uuid_root = root;
4bbcaa64
ES
2497 }
2498
70f6d82e
OS
2499 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2500 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2501 root = btrfs_read_tree_root(tree_root, &location);
2502 if (IS_ERR(root))
2503 return PTR_ERR(root);
2504 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2505 fs_info->free_space_root = root;
2506 }
2507
4bbcaa64
ES
2508 return 0;
2509}
2510
ad2b2c80
AV
2511int open_ctree(struct super_block *sb,
2512 struct btrfs_fs_devices *fs_devices,
2513 char *options)
2e635a27 2514{
db94535d
CM
2515 u32 sectorsize;
2516 u32 nodesize;
87ee04eb 2517 u32 stripesize;
84234f3a 2518 u64 generation;
f2b636e8 2519 u64 features;
3de4586c 2520 struct btrfs_key location;
a061fc8d 2521 struct buffer_head *bh;
4d34b278 2522 struct btrfs_super_block *disk_super;
815745cf 2523 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2524 struct btrfs_root *tree_root;
4d34b278 2525 struct btrfs_root *chunk_root;
eb60ceac 2526 int ret;
e58ca020 2527 int err = -EINVAL;
af31f5e5
CM
2528 int num_backups_tried = 0;
2529 int backup_index = 0;
5cdc7ad3 2530 int max_active;
4543df7e 2531
74e4d827
DS
2532 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2533 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2534 if (!tree_root || !chunk_root) {
39279cc3
CM
2535 err = -ENOMEM;
2536 goto fail;
2537 }
76dda93c
YZ
2538
2539 ret = init_srcu_struct(&fs_info->subvol_srcu);
2540 if (ret) {
2541 err = ret;
2542 goto fail;
2543 }
2544
2545 ret = setup_bdi(fs_info, &fs_info->bdi);
2546 if (ret) {
2547 err = ret;
2548 goto fail_srcu;
2549 }
2550
908c7f19 2551 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2552 if (ret) {
2553 err = ret;
2554 goto fail_bdi;
2555 }
09cbfeaf 2556 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2557 (1 + ilog2(nr_cpu_ids));
2558
908c7f19 2559 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2560 if (ret) {
2561 err = ret;
2562 goto fail_dirty_metadata_bytes;
2563 }
2564
908c7f19 2565 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2566 if (ret) {
2567 err = ret;
2568 goto fail_delalloc_bytes;
2569 }
2570
76dda93c
YZ
2571 fs_info->btree_inode = new_inode(sb);
2572 if (!fs_info->btree_inode) {
2573 err = -ENOMEM;
c404e0dc 2574 goto fail_bio_counter;
76dda93c
YZ
2575 }
2576
a6591715 2577 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2578
76dda93c 2579 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2580 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2581 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2582 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2583 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2584 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2585 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2586 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2587 spin_lock_init(&fs_info->trans_lock);
76dda93c 2588 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2589 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2590 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2591 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2592 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2593 spin_lock_init(&fs_info->super_lock);
fcebe456 2594 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2595 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2596 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2597 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2598 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2599 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2600 mutex_init(&fs_info->reloc_mutex);
573bfb72 2601 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2602 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2603 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2604
0b86a832 2605 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2606 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2607 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2608 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2609 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2610 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2611 BTRFS_BLOCK_RSV_GLOBAL);
2612 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2613 BTRFS_BLOCK_RSV_DELALLOC);
2614 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2615 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2616 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2617 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2618 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2619 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2620 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2621 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2622 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2623 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2624 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2625 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2626 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2627 fs_info->sb = sb;
95ac567a 2628 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2629 fs_info->metadata_ratio = 0;
4cb5300b 2630 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2631 fs_info->free_chunk_space = 0;
f29021b2 2632 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2633 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2634 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2635 /* readahead state */
d0164adc 2636 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2637 spin_lock_init(&fs_info->reada_lock);
c8b97818 2638
b34b086c
CM
2639 fs_info->thread_pool_size = min_t(unsigned long,
2640 num_online_cpus() + 2, 8);
0afbaf8c 2641
199c2a9c
MX
2642 INIT_LIST_HEAD(&fs_info->ordered_roots);
2643 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2644 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2645 GFP_KERNEL);
16cdcec7
MX
2646 if (!fs_info->delayed_root) {
2647 err = -ENOMEM;
2648 goto fail_iput;
2649 }
2650 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2651
638aa7ed 2652 btrfs_init_scrub(fs_info);
21adbd5c
SB
2653#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2654 fs_info->check_integrity_print_mask = 0;
2655#endif
779a65a4 2656 btrfs_init_balance(fs_info);
21c7e756 2657 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2658
a061fc8d
CM
2659 sb->s_blocksize = 4096;
2660 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2661 sb->s_bdi = &fs_info->bdi;
a061fc8d 2662
f37938e0 2663 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2664
0f9dd46c 2665 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2666 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2667 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2668
11833d66 2669 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2670 fs_info->btree_inode->i_mapping);
11833d66 2671 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2672 fs_info->btree_inode->i_mapping);
11833d66 2673 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2674 fs_info->do_barriers = 1;
e18e4809 2675
39279cc3 2676
5a3f23d5 2677 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2678 mutex_init(&fs_info->tree_log_mutex);
925baedd 2679 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2680 mutex_init(&fs_info->transaction_kthread_mutex);
2681 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2682 mutex_init(&fs_info->volume_mutex);
1bbc621e 2683 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2684 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2685 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2686 init_rwsem(&fs_info->subvol_sem);
803b2f54 2687 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2688
ad618368 2689 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2690 btrfs_init_qgroup(fs_info);
416ac51d 2691
fa9c0d79
CM
2692 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2693 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2694
e6dcd2dc 2695 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2696 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2697 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2698 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2699
04216820
FM
2700 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2701
53b381b3
DW
2702 ret = btrfs_alloc_stripe_hash_table(fs_info);
2703 if (ret) {
83c8266a 2704 err = ret;
53b381b3
DW
2705 goto fail_alloc;
2706 }
2707
707e8a07 2708 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2709 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2710
3c4bb26b 2711 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2712
2713 /*
2714 * Read super block and check the signature bytes only
2715 */
a512bbf8 2716 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2717 if (IS_ERR(bh)) {
2718 err = PTR_ERR(bh);
16cdcec7 2719 goto fail_alloc;
20b45077 2720 }
39279cc3 2721
1104a885
DS
2722 /*
2723 * We want to check superblock checksum, the type is stored inside.
2724 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2725 */
2726 if (btrfs_check_super_csum(bh->b_data)) {
05135f59 2727 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2728 err = -EINVAL;
b2acdddf 2729 brelse(bh);
1104a885
DS
2730 goto fail_alloc;
2731 }
2732
2733 /*
2734 * super_copy is zeroed at allocation time and we never touch the
2735 * following bytes up to INFO_SIZE, the checksum is calculated from
2736 * the whole block of INFO_SIZE
2737 */
6c41761f
DS
2738 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2739 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2740 sizeof(*fs_info->super_for_commit));
a061fc8d 2741 brelse(bh);
5f39d397 2742
6c41761f 2743 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2744
1104a885
DS
2745 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2746 if (ret) {
05135f59 2747 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2748 err = -EINVAL;
2749 goto fail_alloc;
2750 }
2751
6c41761f 2752 disk_super = fs_info->super_copy;
0f7d52f4 2753 if (!btrfs_super_root(disk_super))
16cdcec7 2754 goto fail_alloc;
0f7d52f4 2755
acce952b 2756 /* check FS state, whether FS is broken. */
87533c47
MX
2757 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2758 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2759
af31f5e5
CM
2760 /*
2761 * run through our array of backup supers and setup
2762 * our ring pointer to the oldest one
2763 */
2764 generation = btrfs_super_generation(disk_super);
2765 find_oldest_super_backup(fs_info, generation);
2766
75e7cb7f
LB
2767 /*
2768 * In the long term, we'll store the compression type in the super
2769 * block, and it'll be used for per file compression control.
2770 */
2771 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2772
96da0919 2773 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2b82032c
YZ
2774 if (ret) {
2775 err = ret;
16cdcec7 2776 goto fail_alloc;
2b82032c 2777 }
dfe25020 2778
f2b636e8
JB
2779 features = btrfs_super_incompat_flags(disk_super) &
2780 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2781 if (features) {
05135f59
DS
2782 btrfs_err(fs_info,
2783 "cannot mount because of unsupported optional features (%llx)",
2784 features);
f2b636e8 2785 err = -EINVAL;
16cdcec7 2786 goto fail_alloc;
f2b636e8
JB
2787 }
2788
5d4f98a2 2789 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2790 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2791 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2792 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2793
3173a18f 2794 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2795 btrfs_info(fs_info, "has skinny extents");
3173a18f 2796
727011e0
CM
2797 /*
2798 * flag our filesystem as having big metadata blocks if
2799 * they are bigger than the page size
2800 */
09cbfeaf 2801 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2802 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2803 btrfs_info(fs_info,
2804 "flagging fs with big metadata feature");
727011e0
CM
2805 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2806 }
2807
bc3f116f 2808 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2809 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2810 stripesize = sectorsize;
707e8a07 2811 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2812 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2813
2814 /*
2815 * mixed block groups end up with duplicate but slightly offset
2816 * extent buffers for the same range. It leads to corruptions
2817 */
2818 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2819 (sectorsize != nodesize)) {
05135f59
DS
2820 btrfs_err(fs_info,
2821"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2822 nodesize, sectorsize);
bc3f116f
CM
2823 goto fail_alloc;
2824 }
2825
ceda0864
MX
2826 /*
2827 * Needn't use the lock because there is no other task which will
2828 * update the flag.
2829 */
a6fa6fae 2830 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2831
f2b636e8
JB
2832 features = btrfs_super_compat_ro_flags(disk_super) &
2833 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2834 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2835 btrfs_err(fs_info,
2836 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2837 features);
f2b636e8 2838 err = -EINVAL;
16cdcec7 2839 goto fail_alloc;
f2b636e8 2840 }
61d92c32 2841
5cdc7ad3 2842 max_active = fs_info->thread_pool_size;
61d92c32 2843
2a458198
ES
2844 ret = btrfs_init_workqueues(fs_info, fs_devices);
2845 if (ret) {
2846 err = ret;
0dc3b84a
JB
2847 goto fail_sb_buffer;
2848 }
4543df7e 2849
4575c9cc 2850 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2851 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
09cbfeaf 2852 SZ_4M / PAGE_SIZE);
4575c9cc 2853
db94535d 2854 tree_root->nodesize = nodesize;
db94535d 2855 tree_root->sectorsize = sectorsize;
87ee04eb 2856 tree_root->stripesize = stripesize;
a061fc8d
CM
2857
2858 sb->s_blocksize = sectorsize;
2859 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2860
925baedd 2861 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2862 ret = btrfs_read_sys_array(tree_root);
925baedd 2863 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2864 if (ret) {
05135f59 2865 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2866 goto fail_sb_buffer;
84eed90f 2867 }
0b86a832 2868
84234f3a 2869 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2870
707e8a07
DS
2871 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2872 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2873
2874 chunk_root->node = read_tree_block(chunk_root,
2875 btrfs_super_chunk_root(disk_super),
ce86cd59 2876 generation);
64c043de
LB
2877 if (IS_ERR(chunk_root->node) ||
2878 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2879 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2880 if (!IS_ERR(chunk_root->node))
2881 free_extent_buffer(chunk_root->node);
95ab1f64 2882 chunk_root->node = NULL;
af31f5e5 2883 goto fail_tree_roots;
83121942 2884 }
5d4f98a2
YZ
2885 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2886 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2887
e17cade2 2888 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2889 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2890
0b86a832 2891 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2892 if (ret) {
05135f59 2893 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2894 goto fail_tree_roots;
2b82032c 2895 }
0b86a832 2896
8dabb742
SB
2897 /*
2898 * keep the device that is marked to be the target device for the
2899 * dev_replace procedure
2900 */
9eaed21e 2901 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2902
a6b0d5c8 2903 if (!fs_devices->latest_bdev) {
05135f59 2904 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2905 goto fail_tree_roots;
2906 }
2907
af31f5e5 2908retry_root_backup:
84234f3a 2909 generation = btrfs_super_generation(disk_super);
0b86a832 2910
e20d96d6 2911 tree_root->node = read_tree_block(tree_root,
db94535d 2912 btrfs_super_root(disk_super),
ce86cd59 2913 generation);
64c043de
LB
2914 if (IS_ERR(tree_root->node) ||
2915 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2916 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2917 if (!IS_ERR(tree_root->node))
2918 free_extent_buffer(tree_root->node);
95ab1f64 2919 tree_root->node = NULL;
af31f5e5 2920 goto recovery_tree_root;
83121942 2921 }
af31f5e5 2922
5d4f98a2
YZ
2923 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2924 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2925 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2926
f32e48e9
CR
2927 mutex_lock(&tree_root->objectid_mutex);
2928 ret = btrfs_find_highest_objectid(tree_root,
2929 &tree_root->highest_objectid);
2930 if (ret) {
2931 mutex_unlock(&tree_root->objectid_mutex);
2932 goto recovery_tree_root;
2933 }
2934
2935 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2936
2937 mutex_unlock(&tree_root->objectid_mutex);
2938
4bbcaa64
ES
2939 ret = btrfs_read_roots(fs_info, tree_root);
2940 if (ret)
af31f5e5 2941 goto recovery_tree_root;
f7a81ea4 2942
8929ecfa
YZ
2943 fs_info->generation = generation;
2944 fs_info->last_trans_committed = generation;
8929ecfa 2945
68310a5e
ID
2946 ret = btrfs_recover_balance(fs_info);
2947 if (ret) {
05135f59 2948 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2949 goto fail_block_groups;
2950 }
2951
733f4fbb
SB
2952 ret = btrfs_init_dev_stats(fs_info);
2953 if (ret) {
05135f59 2954 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
2955 goto fail_block_groups;
2956 }
2957
8dabb742
SB
2958 ret = btrfs_init_dev_replace(fs_info);
2959 if (ret) {
05135f59 2960 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
2961 goto fail_block_groups;
2962 }
2963
9eaed21e 2964 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2965
b7c35e81
AJ
2966 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2967 if (ret) {
05135f59
DS
2968 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2969 ret);
b7c35e81
AJ
2970 goto fail_block_groups;
2971 }
2972
2973 ret = btrfs_sysfs_add_device(fs_devices);
2974 if (ret) {
05135f59
DS
2975 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2976 ret);
b7c35e81
AJ
2977 goto fail_fsdev_sysfs;
2978 }
2979
96f3136e 2980 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2981 if (ret) {
05135f59 2982 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 2983 goto fail_fsdev_sysfs;
c59021f8 2984 }
2985
c59021f8 2986 ret = btrfs_init_space_info(fs_info);
2987 if (ret) {
05135f59 2988 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 2989 goto fail_sysfs;
c59021f8 2990 }
2991
4bbcaa64 2992 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2993 if (ret) {
05135f59 2994 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 2995 goto fail_sysfs;
1b1d1f66 2996 }
5af3e8cc
SB
2997 fs_info->num_tolerated_disk_barrier_failures =
2998 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2999 if (fs_info->fs_devices->missing_devices >
3000 fs_info->num_tolerated_disk_barrier_failures &&
3001 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3002 btrfs_warn(fs_info,
3003"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3004 fs_info->fs_devices->missing_devices,
3005 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3006 goto fail_sysfs;
292fd7fc 3007 }
9078a3e1 3008
a74a4b97
CM
3009 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3010 "btrfs-cleaner");
57506d50 3011 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3012 goto fail_sysfs;
a74a4b97
CM
3013
3014 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3015 tree_root,
3016 "btrfs-transaction");
57506d50 3017 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3018 goto fail_cleaner;
a74a4b97 3019
3cdde224
JM
3020 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3021 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
c289811c 3022 !fs_info->fs_devices->rotating) {
05135f59 3023 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3024 btrfs_set_opt(fs_info->mount_opt, SSD);
3025 }
3026
572d9ab7 3027 /*
01327610 3028 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3029 * not have to wait for transaction commit
3030 */
3031 btrfs_apply_pending_changes(fs_info);
3818aea2 3032
21adbd5c 3033#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 3034 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
21adbd5c 3035 ret = btrfsic_mount(tree_root, fs_devices,
3cdde224 3036 btrfs_test_opt(tree_root->fs_info,
21adbd5c
SB
3037 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3038 1 : 0,
3039 fs_info->check_integrity_print_mask);
3040 if (ret)
05135f59
DS
3041 btrfs_warn(fs_info,
3042 "failed to initialize integrity check module: %d",
3043 ret);
21adbd5c
SB
3044 }
3045#endif
bcef60f2
AJ
3046 ret = btrfs_read_qgroup_config(fs_info);
3047 if (ret)
3048 goto fail_trans_kthread;
21adbd5c 3049
96da0919
QW
3050 /* do not make disk changes in broken FS or nologreplay is given */
3051 if (btrfs_super_log_root(disk_super) != 0 &&
3cdde224 3052 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
63443bf5 3053 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3054 if (ret) {
63443bf5 3055 err = ret;
28c16cbb 3056 goto fail_qgroup;
79787eaa 3057 }
e02119d5 3058 }
1a40e23b 3059
76dda93c 3060 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3061 if (ret)
28c16cbb 3062 goto fail_qgroup;
76dda93c 3063
7c2ca468 3064 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3065 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3066 if (ret)
28c16cbb 3067 goto fail_qgroup;
90c711ab
ZB
3068
3069 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3070 ret = btrfs_recover_relocation(tree_root);
90c711ab 3071 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3072 if (ret < 0) {
05135f59
DS
3073 btrfs_warn(fs_info, "failed to recover relocation: %d",
3074 ret);
d7ce5843 3075 err = -EINVAL;
bcef60f2 3076 goto fail_qgroup;
d7ce5843 3077 }
7c2ca468 3078 }
1a40e23b 3079
3de4586c
CM
3080 location.objectid = BTRFS_FS_TREE_OBJECTID;
3081 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3082 location.offset = 0;
3de4586c 3083
3de4586c 3084 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3085 if (IS_ERR(fs_info->fs_root)) {
3086 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3087 goto fail_qgroup;
3140c9a3 3088 }
c289811c 3089
2b6ba629
ID
3090 if (sb->s_flags & MS_RDONLY)
3091 return 0;
59641015 3092
3cdde224 3093 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
511711af 3094 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3095 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3096 ret = btrfs_create_free_space_tree(fs_info);
3097 if (ret) {
05135f59
DS
3098 btrfs_warn(fs_info,
3099 "failed to create free space tree: %d", ret);
511711af
CM
3100 close_ctree(tree_root);
3101 return ret;
3102 }
3103 }
3104
2b6ba629
ID
3105 down_read(&fs_info->cleanup_work_sem);
3106 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3107 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3108 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3109 close_ctree(tree_root);
3110 return ret;
3111 }
3112 up_read(&fs_info->cleanup_work_sem);
59641015 3113
2b6ba629
ID
3114 ret = btrfs_resume_balance_async(fs_info);
3115 if (ret) {
05135f59 3116 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
2b6ba629
ID
3117 close_ctree(tree_root);
3118 return ret;
e3acc2a6
JB
3119 }
3120
8dabb742
SB
3121 ret = btrfs_resume_dev_replace_async(fs_info);
3122 if (ret) {
05135f59 3123 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
8dabb742
SB
3124 close_ctree(tree_root);
3125 return ret;
3126 }
3127
b382a324
JS
3128 btrfs_qgroup_rescan_resume(fs_info);
3129
3cdde224 3130 if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
70f6d82e 3131 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3132 btrfs_info(fs_info, "clearing free space tree");
70f6d82e
OS
3133 ret = btrfs_clear_free_space_tree(fs_info);
3134 if (ret) {
05135f59
DS
3135 btrfs_warn(fs_info,
3136 "failed to clear free space tree: %d", ret);
70f6d82e
OS
3137 close_ctree(tree_root);
3138 return ret;
3139 }
3140 }
3141
4bbcaa64 3142 if (!fs_info->uuid_root) {
05135f59 3143 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3144 ret = btrfs_create_uuid_tree(fs_info);
3145 if (ret) {
05135f59
DS
3146 btrfs_warn(fs_info,
3147 "failed to create the UUID tree: %d", ret);
f7a81ea4
SB
3148 close_ctree(tree_root);
3149 return ret;
3150 }
3cdde224 3151 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3152 fs_info->generation !=
3153 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3154 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3155 ret = btrfs_check_uuid_tree(fs_info);
3156 if (ret) {
05135f59
DS
3157 btrfs_warn(fs_info,
3158 "failed to check the UUID tree: %d", ret);
70f80175
SB
3159 close_ctree(tree_root);
3160 return ret;
3161 }
3162 } else {
3163 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3164 }
3165
47ab2a6c
JB
3166 fs_info->open = 1;
3167
8dcddfa0
QW
3168 /*
3169 * backuproot only affect mount behavior, and if open_ctree succeeded,
3170 * no need to keep the flag
3171 */
3172 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3173
ad2b2c80 3174 return 0;
39279cc3 3175
bcef60f2
AJ
3176fail_qgroup:
3177 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3178fail_trans_kthread:
3179 kthread_stop(fs_info->transaction_kthread);
54067ae9 3180 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3181 btrfs_free_fs_roots(fs_info);
3f157a2f 3182fail_cleaner:
a74a4b97 3183 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3184
3185 /*
3186 * make sure we're done with the btree inode before we stop our
3187 * kthreads
3188 */
3189 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3190
2365dd3c 3191fail_sysfs:
6618a59b 3192 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3193
b7c35e81
AJ
3194fail_fsdev_sysfs:
3195 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3196
1b1d1f66 3197fail_block_groups:
54067ae9 3198 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3199 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3200
3201fail_tree_roots:
3202 free_root_pointers(fs_info, 1);
2b8195bb 3203 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3204
39279cc3 3205fail_sb_buffer:
7abadb64 3206 btrfs_stop_all_workers(fs_info);
16cdcec7 3207fail_alloc:
4543df7e 3208fail_iput:
586e46e2
ID
3209 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3210
4543df7e 3211 iput(fs_info->btree_inode);
c404e0dc
MX
3212fail_bio_counter:
3213 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3214fail_delalloc_bytes:
3215 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3216fail_dirty_metadata_bytes:
3217 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3218fail_bdi:
7e662854 3219 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3220fail_srcu:
3221 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3222fail:
53b381b3 3223 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3224 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3225 return err;
af31f5e5
CM
3226
3227recovery_tree_root:
3cdde224 3228 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
af31f5e5
CM
3229 goto fail_tree_roots;
3230
3231 free_root_pointers(fs_info, 0);
3232
3233 /* don't use the log in recovery mode, it won't be valid */
3234 btrfs_set_super_log_root(disk_super, 0);
3235
3236 /* we can't trust the free space cache either */
3237 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3238
3239 ret = next_root_backup(fs_info, fs_info->super_copy,
3240 &num_backups_tried, &backup_index);
3241 if (ret == -1)
3242 goto fail_block_groups;
3243 goto retry_root_backup;
eb60ceac
CM
3244}
3245
f2984462
CM
3246static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3247{
f2984462
CM
3248 if (uptodate) {
3249 set_buffer_uptodate(bh);
3250 } else {
442a4f63
SB
3251 struct btrfs_device *device = (struct btrfs_device *)
3252 bh->b_private;
3253
b14af3b4
DS
3254 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3255 "lost page write due to IO error on %s",
606686ee 3256 rcu_str_deref(device->name));
01327610 3257 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3258 * our own ways of dealing with the IO errors
3259 */
f2984462 3260 clear_buffer_uptodate(bh);
442a4f63 3261 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3262 }
3263 unlock_buffer(bh);
3264 put_bh(bh);
3265}
3266
29c36d72
AJ
3267int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3268 struct buffer_head **bh_ret)
3269{
3270 struct buffer_head *bh;
3271 struct btrfs_super_block *super;
3272 u64 bytenr;
3273
3274 bytenr = btrfs_sb_offset(copy_num);
3275 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3276 return -EINVAL;
3277
3278 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3279 /*
3280 * If we fail to read from the underlying devices, as of now
3281 * the best option we have is to mark it EIO.
3282 */
3283 if (!bh)
3284 return -EIO;
3285
3286 super = (struct btrfs_super_block *)bh->b_data;
3287 if (btrfs_super_bytenr(super) != bytenr ||
3288 btrfs_super_magic(super) != BTRFS_MAGIC) {
3289 brelse(bh);
3290 return -EINVAL;
3291 }
3292
3293 *bh_ret = bh;
3294 return 0;
3295}
3296
3297
a512bbf8
YZ
3298struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3299{
3300 struct buffer_head *bh;
3301 struct buffer_head *latest = NULL;
3302 struct btrfs_super_block *super;
3303 int i;
3304 u64 transid = 0;
92fc03fb 3305 int ret = -EINVAL;
a512bbf8
YZ
3306
3307 /* we would like to check all the supers, but that would make
3308 * a btrfs mount succeed after a mkfs from a different FS.
3309 * So, we need to add a special mount option to scan for
3310 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3311 */
3312 for (i = 0; i < 1; i++) {
29c36d72
AJ
3313 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3314 if (ret)
a512bbf8
YZ
3315 continue;
3316
3317 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3318
3319 if (!latest || btrfs_super_generation(super) > transid) {
3320 brelse(latest);
3321 latest = bh;
3322 transid = btrfs_super_generation(super);
3323 } else {
3324 brelse(bh);
3325 }
3326 }
92fc03fb
AJ
3327
3328 if (!latest)
3329 return ERR_PTR(ret);
3330
a512bbf8
YZ
3331 return latest;
3332}
3333
4eedeb75
HH
3334/*
3335 * this should be called twice, once with wait == 0 and
3336 * once with wait == 1. When wait == 0 is done, all the buffer heads
3337 * we write are pinned.
3338 *
3339 * They are released when wait == 1 is done.
3340 * max_mirrors must be the same for both runs, and it indicates how
3341 * many supers on this one device should be written.
3342 *
3343 * max_mirrors == 0 means to write them all.
3344 */
a512bbf8
YZ
3345static int write_dev_supers(struct btrfs_device *device,
3346 struct btrfs_super_block *sb,
3347 int do_barriers, int wait, int max_mirrors)
3348{
3349 struct buffer_head *bh;
3350 int i;
3351 int ret;
3352 int errors = 0;
3353 u32 crc;
3354 u64 bytenr;
a512bbf8
YZ
3355
3356 if (max_mirrors == 0)
3357 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3358
a512bbf8
YZ
3359 for (i = 0; i < max_mirrors; i++) {
3360 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3361 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3362 device->commit_total_bytes)
a512bbf8
YZ
3363 break;
3364
3365 if (wait) {
3366 bh = __find_get_block(device->bdev, bytenr / 4096,
3367 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3368 if (!bh) {
3369 errors++;
3370 continue;
3371 }
a512bbf8 3372 wait_on_buffer(bh);
4eedeb75
HH
3373 if (!buffer_uptodate(bh))
3374 errors++;
3375
3376 /* drop our reference */
3377 brelse(bh);
3378
3379 /* drop the reference from the wait == 0 run */
3380 brelse(bh);
3381 continue;
a512bbf8
YZ
3382 } else {
3383 btrfs_set_super_bytenr(sb, bytenr);
3384
3385 crc = ~(u32)0;
b0496686 3386 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3387 BTRFS_CSUM_SIZE, crc,
3388 BTRFS_SUPER_INFO_SIZE -
3389 BTRFS_CSUM_SIZE);
3390 btrfs_csum_final(crc, sb->csum);
3391
4eedeb75
HH
3392 /*
3393 * one reference for us, and we leave it for the
3394 * caller
3395 */
a512bbf8
YZ
3396 bh = __getblk(device->bdev, bytenr / 4096,
3397 BTRFS_SUPER_INFO_SIZE);
634554dc 3398 if (!bh) {
f14d104d
DS
3399 btrfs_err(device->dev_root->fs_info,
3400 "couldn't get super buffer head for bytenr %llu",
3401 bytenr);
634554dc
JB
3402 errors++;
3403 continue;
3404 }
3405
a512bbf8
YZ
3406 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3407
4eedeb75 3408 /* one reference for submit_bh */
a512bbf8 3409 get_bh(bh);
4eedeb75
HH
3410
3411 set_buffer_uptodate(bh);
a512bbf8
YZ
3412 lock_buffer(bh);
3413 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3414 bh->b_private = device;
a512bbf8
YZ
3415 }
3416
387125fc
CM
3417 /*
3418 * we fua the first super. The others we allow
3419 * to go down lazy.
3420 */
e8117c26 3421 if (i == 0)
2a222ca9 3422 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
e8117c26 3423 else
2a222ca9 3424 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
4eedeb75 3425 if (ret)
a512bbf8 3426 errors++;
a512bbf8
YZ
3427 }
3428 return errors < i ? 0 : -1;
3429}
3430
387125fc
CM
3431/*
3432 * endio for the write_dev_flush, this will wake anyone waiting
3433 * for the barrier when it is done
3434 */
4246a0b6 3435static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3436{
387125fc
CM
3437 if (bio->bi_private)
3438 complete(bio->bi_private);
3439 bio_put(bio);
3440}
3441
3442/*
3443 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3444 * sent down. With wait == 1, it waits for the previous flush.
3445 *
3446 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3447 * capable
3448 */
3449static int write_dev_flush(struct btrfs_device *device, int wait)
3450{
3451 struct bio *bio;
3452 int ret = 0;
3453
3454 if (device->nobarriers)
3455 return 0;
3456
3457 if (wait) {
3458 bio = device->flush_bio;
3459 if (!bio)
3460 return 0;
3461
3462 wait_for_completion(&device->flush_wait);
3463
4246a0b6
CH
3464 if (bio->bi_error) {
3465 ret = bio->bi_error;
5af3e8cc
SB
3466 btrfs_dev_stat_inc_and_print(device,
3467 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3468 }
3469
3470 /* drop the reference from the wait == 0 run */
3471 bio_put(bio);
3472 device->flush_bio = NULL;
3473
3474 return ret;
3475 }
3476
3477 /*
3478 * one reference for us, and we leave it for the
3479 * caller
3480 */
9c017abc 3481 device->flush_bio = NULL;
9be3395b 3482 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3483 if (!bio)
3484 return -ENOMEM;
3485
3486 bio->bi_end_io = btrfs_end_empty_barrier;
3487 bio->bi_bdev = device->bdev;
37226b21 3488 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
387125fc
CM
3489 init_completion(&device->flush_wait);
3490 bio->bi_private = &device->flush_wait;
3491 device->flush_bio = bio;
3492
3493 bio_get(bio);
4e49ea4a 3494 btrfsic_submit_bio(bio);
387125fc
CM
3495
3496 return 0;
3497}
3498
3499/*
3500 * send an empty flush down to each device in parallel,
3501 * then wait for them
3502 */
3503static int barrier_all_devices(struct btrfs_fs_info *info)
3504{
3505 struct list_head *head;
3506 struct btrfs_device *dev;
5af3e8cc
SB
3507 int errors_send = 0;
3508 int errors_wait = 0;
387125fc
CM
3509 int ret;
3510
3511 /* send down all the barriers */
3512 head = &info->fs_devices->devices;
3513 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3514 if (dev->missing)
3515 continue;
387125fc 3516 if (!dev->bdev) {
5af3e8cc 3517 errors_send++;
387125fc
CM
3518 continue;
3519 }
3520 if (!dev->in_fs_metadata || !dev->writeable)
3521 continue;
3522
3523 ret = write_dev_flush(dev, 0);
3524 if (ret)
5af3e8cc 3525 errors_send++;
387125fc
CM
3526 }
3527
3528 /* wait for all the barriers */
3529 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3530 if (dev->missing)
3531 continue;
387125fc 3532 if (!dev->bdev) {
5af3e8cc 3533 errors_wait++;
387125fc
CM
3534 continue;
3535 }
3536 if (!dev->in_fs_metadata || !dev->writeable)
3537 continue;
3538
3539 ret = write_dev_flush(dev, 1);
3540 if (ret)
5af3e8cc 3541 errors_wait++;
387125fc 3542 }
5af3e8cc
SB
3543 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3544 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3545 return -EIO;
3546 return 0;
3547}
3548
943c6e99
ZL
3549int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3550{
8789f4fe
ZL
3551 int raid_type;
3552 int min_tolerated = INT_MAX;
943c6e99 3553
8789f4fe
ZL
3554 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3555 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3556 min_tolerated = min(min_tolerated,
3557 btrfs_raid_array[BTRFS_RAID_SINGLE].
3558 tolerated_failures);
943c6e99 3559
8789f4fe
ZL
3560 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3561 if (raid_type == BTRFS_RAID_SINGLE)
3562 continue;
3563 if (!(flags & btrfs_raid_group[raid_type]))
3564 continue;
3565 min_tolerated = min(min_tolerated,
3566 btrfs_raid_array[raid_type].
3567 tolerated_failures);
3568 }
943c6e99 3569
8789f4fe
ZL
3570 if (min_tolerated == INT_MAX) {
3571 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3572 min_tolerated = 0;
3573 }
3574
3575 return min_tolerated;
943c6e99
ZL
3576}
3577
5af3e8cc
SB
3578int btrfs_calc_num_tolerated_disk_barrier_failures(
3579 struct btrfs_fs_info *fs_info)
3580{
3581 struct btrfs_ioctl_space_info space;
3582 struct btrfs_space_info *sinfo;
3583 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3584 BTRFS_BLOCK_GROUP_SYSTEM,
3585 BTRFS_BLOCK_GROUP_METADATA,
3586 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3587 int i;
3588 int c;
3589 int num_tolerated_disk_barrier_failures =
3590 (int)fs_info->fs_devices->num_devices;
3591
2c458045 3592 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3593 struct btrfs_space_info *tmp;
3594
3595 sinfo = NULL;
3596 rcu_read_lock();
3597 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3598 if (tmp->flags == types[i]) {
3599 sinfo = tmp;
3600 break;
3601 }
3602 }
3603 rcu_read_unlock();
3604
3605 if (!sinfo)
3606 continue;
3607
3608 down_read(&sinfo->groups_sem);
3609 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3610 u64 flags;
3611
3612 if (list_empty(&sinfo->block_groups[c]))
3613 continue;
3614
3615 btrfs_get_block_group_info(&sinfo->block_groups[c],
3616 &space);
3617 if (space.total_bytes == 0 || space.used_bytes == 0)
3618 continue;
3619 flags = space.flags;
943c6e99
ZL
3620
3621 num_tolerated_disk_barrier_failures = min(
3622 num_tolerated_disk_barrier_failures,
3623 btrfs_get_num_tolerated_disk_barrier_failures(
3624 flags));
5af3e8cc
SB
3625 }
3626 up_read(&sinfo->groups_sem);
3627 }
3628
3629 return num_tolerated_disk_barrier_failures;
3630}
3631
48a3b636 3632static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3633{
e5e9a520 3634 struct list_head *head;
f2984462 3635 struct btrfs_device *dev;
a061fc8d 3636 struct btrfs_super_block *sb;
f2984462 3637 struct btrfs_dev_item *dev_item;
f2984462
CM
3638 int ret;
3639 int do_barriers;
a236aed1
CM
3640 int max_errors;
3641 int total_errors = 0;
a061fc8d 3642 u64 flags;
f2984462 3643
3cdde224 3644 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
af31f5e5 3645 backup_super_roots(root->fs_info);
f2984462 3646
6c41761f 3647 sb = root->fs_info->super_for_commit;
a061fc8d 3648 dev_item = &sb->dev_item;
e5e9a520 3649
174ba509 3650 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3651 head = &root->fs_info->fs_devices->devices;
d7306801 3652 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3653
5af3e8cc
SB
3654 if (do_barriers) {
3655 ret = barrier_all_devices(root->fs_info);
3656 if (ret) {
3657 mutex_unlock(
3658 &root->fs_info->fs_devices->device_list_mutex);
34d97007 3659 btrfs_handle_fs_error(root->fs_info, ret,
5af3e8cc
SB
3660 "errors while submitting device barriers.");
3661 return ret;
3662 }
3663 }
387125fc 3664
1f78160c 3665 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3666 if (!dev->bdev) {
3667 total_errors++;
3668 continue;
3669 }
2b82032c 3670 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3671 continue;
3672
2b82032c 3673 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3674 btrfs_set_stack_device_type(dev_item, dev->type);
3675 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3676 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3677 dev->commit_total_bytes);
ce7213c7
MX
3678 btrfs_set_stack_device_bytes_used(dev_item,
3679 dev->commit_bytes_used);
a061fc8d
CM
3680 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3681 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3682 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3683 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3684 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3685
a061fc8d
CM
3686 flags = btrfs_super_flags(sb);
3687 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3688
a512bbf8 3689 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3690 if (ret)
3691 total_errors++;
f2984462 3692 }
a236aed1 3693 if (total_errors > max_errors) {
efe120a0 3694 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3695 total_errors);
a724b436 3696 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3697
9d565ba4 3698 /* FUA is masked off if unsupported and can't be the reason */
34d97007 3699 btrfs_handle_fs_error(root->fs_info, -EIO,
9d565ba4
SB
3700 "%d errors while writing supers", total_errors);
3701 return -EIO;
a236aed1 3702 }
f2984462 3703
a512bbf8 3704 total_errors = 0;
1f78160c 3705 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3706 if (!dev->bdev)
3707 continue;
2b82032c 3708 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3709 continue;
3710
a512bbf8
YZ
3711 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3712 if (ret)
3713 total_errors++;
f2984462 3714 }
174ba509 3715 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3716 if (total_errors > max_errors) {
34d97007 3717 btrfs_handle_fs_error(root->fs_info, -EIO,
79787eaa
JM
3718 "%d errors while writing supers", total_errors);
3719 return -EIO;
a236aed1 3720 }
f2984462
CM
3721 return 0;
3722}
3723
a512bbf8
YZ
3724int write_ctree_super(struct btrfs_trans_handle *trans,
3725 struct btrfs_root *root, int max_mirrors)
eb60ceac 3726{
f570e757 3727 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3728}
3729
cb517eab
MX
3730/* Drop a fs root from the radix tree and free it. */
3731void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3732 struct btrfs_root *root)
2619ba1f 3733{
4df27c4d 3734 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3735 radix_tree_delete(&fs_info->fs_roots_radix,
3736 (unsigned long)root->root_key.objectid);
4df27c4d 3737 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3738
3739 if (btrfs_root_refs(&root->root_item) == 0)
3740 synchronize_srcu(&fs_info->subvol_srcu);
3741
1a4319cc 3742 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3743 btrfs_free_log(NULL, root);
3321719e 3744
faa2dbf0
JB
3745 if (root->free_ino_pinned)
3746 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3747 if (root->free_ino_ctl)
3748 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3749 free_fs_root(root);
4df27c4d
YZ
3750}
3751
3752static void free_fs_root(struct btrfs_root *root)
3753{
57cdc8db 3754 iput(root->ino_cache_inode);
4df27c4d 3755 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3756 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3757 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3758 if (root->anon_dev)
3759 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3760 if (root->subv_writers)
3761 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3762 free_extent_buffer(root->node);
3763 free_extent_buffer(root->commit_root);
581bb050
LZ
3764 kfree(root->free_ino_ctl);
3765 kfree(root->free_ino_pinned);
d397712b 3766 kfree(root->name);
b0feb9d9 3767 btrfs_put_fs_root(root);
2619ba1f
CM
3768}
3769
cb517eab
MX
3770void btrfs_free_fs_root(struct btrfs_root *root)
3771{
3772 free_fs_root(root);
2619ba1f
CM
3773}
3774
c146afad 3775int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3776{
c146afad
YZ
3777 u64 root_objectid = 0;
3778 struct btrfs_root *gang[8];
65d33fd7
QW
3779 int i = 0;
3780 int err = 0;
3781 unsigned int ret = 0;
3782 int index;
e089f05c 3783
c146afad 3784 while (1) {
65d33fd7 3785 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3786 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3787 (void **)gang, root_objectid,
3788 ARRAY_SIZE(gang));
65d33fd7
QW
3789 if (!ret) {
3790 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3791 break;
65d33fd7 3792 }
5d4f98a2 3793 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3794
c146afad 3795 for (i = 0; i < ret; i++) {
65d33fd7
QW
3796 /* Avoid to grab roots in dead_roots */
3797 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3798 gang[i] = NULL;
3799 continue;
3800 }
3801 /* grab all the search result for later use */
3802 gang[i] = btrfs_grab_fs_root(gang[i]);
3803 }
3804 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3805
65d33fd7
QW
3806 for (i = 0; i < ret; i++) {
3807 if (!gang[i])
3808 continue;
c146afad 3809 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3810 err = btrfs_orphan_cleanup(gang[i]);
3811 if (err)
65d33fd7
QW
3812 break;
3813 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3814 }
3815 root_objectid++;
3816 }
65d33fd7
QW
3817
3818 /* release the uncleaned roots due to error */
3819 for (; i < ret; i++) {
3820 if (gang[i])
3821 btrfs_put_fs_root(gang[i]);
3822 }
3823 return err;
c146afad 3824}
a2135011 3825
c146afad
YZ
3826int btrfs_commit_super(struct btrfs_root *root)
3827{
3828 struct btrfs_trans_handle *trans;
a74a4b97 3829
c146afad 3830 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3831 btrfs_run_delayed_iputs(root);
c146afad 3832 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3833 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3834
3835 /* wait until ongoing cleanup work done */
3836 down_write(&root->fs_info->cleanup_work_sem);
3837 up_write(&root->fs_info->cleanup_work_sem);
3838
7a7eaa40 3839 trans = btrfs_join_transaction(root);
3612b495
TI
3840 if (IS_ERR(trans))
3841 return PTR_ERR(trans);
d52c1bcc 3842 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3843}
3844
3abdbd78 3845void close_ctree(struct btrfs_root *root)
c146afad
YZ
3846{
3847 struct btrfs_fs_info *fs_info = root->fs_info;
3848 int ret;
3849
3850 fs_info->closing = 1;
3851 smp_mb();
3852
7343dd61
JM
3853 /* wait for the qgroup rescan worker to stop */
3854 btrfs_qgroup_wait_for_completion(fs_info);
3855
803b2f54
SB
3856 /* wait for the uuid_scan task to finish */
3857 down(&fs_info->uuid_tree_rescan_sem);
3858 /* avoid complains from lockdep et al., set sem back to initial state */
3859 up(&fs_info->uuid_tree_rescan_sem);
3860
837d5b6e 3861 /* pause restriper - we want to resume on mount */
aa1b8cd4 3862 btrfs_pause_balance(fs_info);
837d5b6e 3863
8dabb742
SB
3864 btrfs_dev_replace_suspend_for_unmount(fs_info);
3865
aa1b8cd4 3866 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3867
3868 /* wait for any defraggers to finish */
3869 wait_event(fs_info->transaction_wait,
3870 (atomic_read(&fs_info->defrag_running) == 0));
3871
3872 /* clear out the rbtree of defraggable inodes */
26176e7c 3873 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3874
21c7e756
MX
3875 cancel_work_sync(&fs_info->async_reclaim_work);
3876
c146afad 3877 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3878 /*
3879 * If the cleaner thread is stopped and there are
3880 * block groups queued for removal, the deletion will be
3881 * skipped when we quit the cleaner thread.
3882 */
e44163e1 3883 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3884
acce952b 3885 ret = btrfs_commit_super(root);
3886 if (ret)
04892340 3887 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3888 }
3889
87533c47 3890 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3891 btrfs_error_commit_super(root);
0f7d52f4 3892
e3029d9f
AV
3893 kthread_stop(fs_info->transaction_kthread);
3894 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3895
f25784b3
YZ
3896 fs_info->closing = 2;
3897 smp_mb();
3898
04892340 3899 btrfs_free_qgroup_config(fs_info);
bcef60f2 3900
963d678b 3901 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3902 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3903 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3904 }
bcc63abb 3905
6618a59b 3906 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3907 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3908
faa2dbf0 3909 btrfs_free_fs_roots(fs_info);
d10c5f31 3910
1a4319cc
LB
3911 btrfs_put_block_group_cache(fs_info);
3912
2b1360da
JB
3913 btrfs_free_block_groups(fs_info);
3914
de348ee0
WS
3915 /*
3916 * we must make sure there is not any read request to
3917 * submit after we stopping all workers.
3918 */
3919 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3920 btrfs_stop_all_workers(fs_info);
3921
47ab2a6c 3922 fs_info->open = 0;
13e6c37b 3923 free_root_pointers(fs_info, 1);
9ad6b7bc 3924
13e6c37b 3925 iput(fs_info->btree_inode);
d6bfde87 3926
21adbd5c 3927#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 3928 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
21adbd5c
SB
3929 btrfsic_unmount(root, fs_info->fs_devices);
3930#endif
3931
dfe25020 3932 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3933 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3934
e2d84521 3935 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3936 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3937 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3938 bdi_destroy(&fs_info->bdi);
76dda93c 3939 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3940
53b381b3
DW
3941 btrfs_free_stripe_hash_table(fs_info);
3942
cdfb080e 3943 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3944 root->orphan_block_rsv = NULL;
04216820
FM
3945
3946 lock_chunks(root);
3947 while (!list_empty(&fs_info->pinned_chunks)) {
3948 struct extent_map *em;
3949
3950 em = list_first_entry(&fs_info->pinned_chunks,
3951 struct extent_map, list);
3952 list_del_init(&em->list);
3953 free_extent_map(em);
3954 }
3955 unlock_chunks(root);
eb60ceac
CM
3956}
3957
b9fab919
CM
3958int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3959 int atomic)
5f39d397 3960{
1259ab75 3961 int ret;
727011e0 3962 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3963
0b32f4bb 3964 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3965 if (!ret)
3966 return ret;
3967
3968 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3969 parent_transid, atomic);
3970 if (ret == -EAGAIN)
3971 return ret;
1259ab75 3972 return !ret;
5f39d397
CM
3973}
3974
5f39d397
CM
3975void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3976{
06ea65a3 3977 struct btrfs_root *root;
5f39d397 3978 u64 transid = btrfs_header_generation(buf);
b9473439 3979 int was_dirty;
b4ce94de 3980
06ea65a3
JB
3981#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3982 /*
3983 * This is a fast path so only do this check if we have sanity tests
3984 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3985 * outside of the sanity tests.
3986 */
3987 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3988 return;
3989#endif
3990 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3991 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3992 if (transid != root->fs_info->generation)
3993 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3994 "found %llu running %llu\n",
c1c9ff7c 3995 buf->start, transid, root->fs_info->generation);
0b32f4bb 3996 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3997 if (!was_dirty)
3998 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3999 buf->len,
4000 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
4001#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4002 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4003 btrfs_print_leaf(root, buf);
4004 ASSERT(0);
4005 }
4006#endif
eb60ceac
CM
4007}
4008
b53d3f5d
LB
4009static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4010 int flush_delayed)
16cdcec7
MX
4011{
4012 /*
4013 * looks as though older kernels can get into trouble with
4014 * this code, they end up stuck in balance_dirty_pages forever
4015 */
e2d84521 4016 int ret;
16cdcec7
MX
4017
4018 if (current->flags & PF_MEMALLOC)
4019 return;
4020
b53d3f5d
LB
4021 if (flush_delayed)
4022 btrfs_balance_delayed_items(root);
16cdcec7 4023
e2d84521
MX
4024 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4025 BTRFS_DIRTY_METADATA_THRESH);
4026 if (ret > 0) {
d0e1d66b
NJ
4027 balance_dirty_pages_ratelimited(
4028 root->fs_info->btree_inode->i_mapping);
16cdcec7 4029 }
16cdcec7
MX
4030}
4031
b53d3f5d 4032void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4033{
b53d3f5d
LB
4034 __btrfs_btree_balance_dirty(root, 1);
4035}
585ad2c3 4036
b53d3f5d
LB
4037void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4038{
4039 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4040}
6b80053d 4041
ca7a79ad 4042int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4043{
727011e0 4044 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 4045 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 4046}
0da5468f 4047
fcd1f065 4048static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4049 int read_only)
4050{
c926093e 4051 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4052 u64 nodesize = btrfs_super_nodesize(sb);
4053 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4054 int ret = 0;
4055
319e4d06
QW
4056 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4057 printk(KERN_ERR "BTRFS: no valid FS found\n");
4058 ret = -EINVAL;
4059 }
4060 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4061 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4062 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b
DS
4063 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4065 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4066 ret = -EINVAL;
4067 }
21e7626b
DS
4068 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4069 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4070 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4071 ret = -EINVAL;
4072 }
21e7626b
DS
4073 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4074 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4075 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4076 ret = -EINVAL;
4077 }
4078
1104a885 4079 /*
319e4d06
QW
4080 * Check sectorsize and nodesize first, other check will need it.
4081 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4082 */
319e4d06
QW
4083 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4084 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4085 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4086 ret = -EINVAL;
4087 }
4088 /* Only PAGE SIZE is supported yet */
09cbfeaf 4089 if (sectorsize != PAGE_SIZE) {
319e4d06 4090 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
09cbfeaf 4091 sectorsize, PAGE_SIZE);
319e4d06
QW
4092 ret = -EINVAL;
4093 }
4094 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4095 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4096 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4097 ret = -EINVAL;
4098 }
4099 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4100 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4101 le32_to_cpu(sb->__unused_leafsize),
4102 nodesize);
4103 ret = -EINVAL;
4104 }
4105
4106 /* Root alignment check */
4107 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
c926093e 4108 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4109 btrfs_super_root(sb));
319e4d06
QW
4110 ret = -EINVAL;
4111 }
4112 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
cd743fac
DS
4113 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4114 btrfs_super_chunk_root(sb));
75d6ad38
DS
4115 ret = -EINVAL;
4116 }
319e4d06
QW
4117 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4118 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4119 btrfs_super_log_root(sb));
75d6ad38
DS
4120 ret = -EINVAL;
4121 }
4122
c926093e
DS
4123 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4124 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4125 fs_info->fsid, sb->dev_item.fsid);
4126 ret = -EINVAL;
4127 }
4128
4129 /*
4130 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4131 * done later
4132 */
99e3ecfc
LB
4133 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4134 btrfs_err(fs_info, "bytes_used is too small %llu",
4135 btrfs_super_bytes_used(sb));
4136 ret = -EINVAL;
4137 }
b7f67055 4138 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc
LB
4139 btrfs_err(fs_info, "invalid stripesize %u",
4140 btrfs_super_stripesize(sb));
4141 ret = -EINVAL;
4142 }
21e7626b 4143 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4144 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4145 btrfs_super_num_devices(sb));
75d6ad38
DS
4146 if (btrfs_super_num_devices(sb) == 0) {
4147 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4148 ret = -EINVAL;
4149 }
c926093e 4150
21e7626b 4151 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4152 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4153 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4154 ret = -EINVAL;
4155 }
4156
ce7fca5f
DS
4157 /*
4158 * Obvious sys_chunk_array corruptions, it must hold at least one key
4159 * and one chunk
4160 */
4161 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4162 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4163 btrfs_super_sys_array_size(sb),
4164 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4165 ret = -EINVAL;
4166 }
4167 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4168 + sizeof(struct btrfs_chunk)) {
d2207129 4169 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4170 btrfs_super_sys_array_size(sb),
4171 sizeof(struct btrfs_disk_key)
4172 + sizeof(struct btrfs_chunk));
4173 ret = -EINVAL;
4174 }
4175
c926093e
DS
4176 /*
4177 * The generation is a global counter, we'll trust it more than the others
4178 * but it's still possible that it's the one that's wrong.
4179 */
21e7626b 4180 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4181 printk(KERN_WARNING
4182 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4183 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4184 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4185 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4186 printk(KERN_WARNING
4187 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4188 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4189
4190 return ret;
acce952b 4191}
4192
48a3b636 4193static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4194{
acce952b 4195 mutex_lock(&root->fs_info->cleaner_mutex);
4196 btrfs_run_delayed_iputs(root);
4197 mutex_unlock(&root->fs_info->cleaner_mutex);
4198
4199 down_write(&root->fs_info->cleanup_work_sem);
4200 up_write(&root->fs_info->cleanup_work_sem);
4201
4202 /* cleanup FS via transaction */
4203 btrfs_cleanup_transaction(root);
acce952b 4204}
4205
143bede5 4206static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4207{
acce952b 4208 struct btrfs_ordered_extent *ordered;
acce952b 4209
199c2a9c 4210 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4211 /*
4212 * This will just short circuit the ordered completion stuff which will
4213 * make sure the ordered extent gets properly cleaned up.
4214 */
199c2a9c 4215 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4216 root_extent_list)
4217 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4218 spin_unlock(&root->ordered_extent_lock);
4219}
4220
4221static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4222{
4223 struct btrfs_root *root;
4224 struct list_head splice;
4225
4226 INIT_LIST_HEAD(&splice);
4227
4228 spin_lock(&fs_info->ordered_root_lock);
4229 list_splice_init(&fs_info->ordered_roots, &splice);
4230 while (!list_empty(&splice)) {
4231 root = list_first_entry(&splice, struct btrfs_root,
4232 ordered_root);
1de2cfde
JB
4233 list_move_tail(&root->ordered_root,
4234 &fs_info->ordered_roots);
199c2a9c 4235
2a85d9ca 4236 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4237 btrfs_destroy_ordered_extents(root);
4238
2a85d9ca
LB
4239 cond_resched();
4240 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4241 }
4242 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4243}
4244
35a3621b
SB
4245static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4246 struct btrfs_root *root)
acce952b 4247{
4248 struct rb_node *node;
4249 struct btrfs_delayed_ref_root *delayed_refs;
4250 struct btrfs_delayed_ref_node *ref;
4251 int ret = 0;
4252
4253 delayed_refs = &trans->delayed_refs;
4254
4255 spin_lock(&delayed_refs->lock);
d7df2c79 4256 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4257 spin_unlock(&delayed_refs->lock);
efe120a0 4258 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4259 return ret;
4260 }
4261
d7df2c79
JB
4262 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4263 struct btrfs_delayed_ref_head *head;
c6fc2454 4264 struct btrfs_delayed_ref_node *tmp;
e78417d1 4265 bool pin_bytes = false;
acce952b 4266
d7df2c79
JB
4267 head = rb_entry(node, struct btrfs_delayed_ref_head,
4268 href_node);
4269 if (!mutex_trylock(&head->mutex)) {
4270 atomic_inc(&head->node.refs);
4271 spin_unlock(&delayed_refs->lock);
eb12db69 4272
d7df2c79 4273 mutex_lock(&head->mutex);
e78417d1 4274 mutex_unlock(&head->mutex);
d7df2c79
JB
4275 btrfs_put_delayed_ref(&head->node);
4276 spin_lock(&delayed_refs->lock);
4277 continue;
4278 }
4279 spin_lock(&head->lock);
c6fc2454
QW
4280 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4281 list) {
d7df2c79 4282 ref->in_tree = 0;
c6fc2454 4283 list_del(&ref->list);
d7df2c79
JB
4284 atomic_dec(&delayed_refs->num_entries);
4285 btrfs_put_delayed_ref(ref);
e78417d1 4286 }
d7df2c79
JB
4287 if (head->must_insert_reserved)
4288 pin_bytes = true;
4289 btrfs_free_delayed_extent_op(head->extent_op);
4290 delayed_refs->num_heads--;
4291 if (head->processing == 0)
4292 delayed_refs->num_heads_ready--;
4293 atomic_dec(&delayed_refs->num_entries);
4294 head->node.in_tree = 0;
4295 rb_erase(&head->href_node, &delayed_refs->href_root);
4296 spin_unlock(&head->lock);
4297 spin_unlock(&delayed_refs->lock);
4298 mutex_unlock(&head->mutex);
acce952b 4299
d7df2c79
JB
4300 if (pin_bytes)
4301 btrfs_pin_extent(root, head->node.bytenr,
4302 head->node.num_bytes, 1);
4303 btrfs_put_delayed_ref(&head->node);
acce952b 4304 cond_resched();
4305 spin_lock(&delayed_refs->lock);
4306 }
4307
4308 spin_unlock(&delayed_refs->lock);
4309
4310 return ret;
4311}
4312
143bede5 4313static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4314{
4315 struct btrfs_inode *btrfs_inode;
4316 struct list_head splice;
4317
4318 INIT_LIST_HEAD(&splice);
4319
eb73c1b7
MX
4320 spin_lock(&root->delalloc_lock);
4321 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4322
4323 while (!list_empty(&splice)) {
eb73c1b7
MX
4324 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4325 delalloc_inodes);
acce952b 4326
4327 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4328 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4329 &btrfs_inode->runtime_flags);
eb73c1b7 4330 spin_unlock(&root->delalloc_lock);
acce952b 4331
4332 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4333
eb73c1b7 4334 spin_lock(&root->delalloc_lock);
acce952b 4335 }
4336
eb73c1b7
MX
4337 spin_unlock(&root->delalloc_lock);
4338}
4339
4340static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4341{
4342 struct btrfs_root *root;
4343 struct list_head splice;
4344
4345 INIT_LIST_HEAD(&splice);
4346
4347 spin_lock(&fs_info->delalloc_root_lock);
4348 list_splice_init(&fs_info->delalloc_roots, &splice);
4349 while (!list_empty(&splice)) {
4350 root = list_first_entry(&splice, struct btrfs_root,
4351 delalloc_root);
4352 list_del_init(&root->delalloc_root);
4353 root = btrfs_grab_fs_root(root);
4354 BUG_ON(!root);
4355 spin_unlock(&fs_info->delalloc_root_lock);
4356
4357 btrfs_destroy_delalloc_inodes(root);
4358 btrfs_put_fs_root(root);
4359
4360 spin_lock(&fs_info->delalloc_root_lock);
4361 }
4362 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4363}
4364
4365static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4366 struct extent_io_tree *dirty_pages,
4367 int mark)
4368{
4369 int ret;
acce952b 4370 struct extent_buffer *eb;
4371 u64 start = 0;
4372 u64 end;
acce952b 4373
4374 while (1) {
4375 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4376 mark, NULL);
acce952b 4377 if (ret)
4378 break;
4379
91166212 4380 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4381 while (start <= end) {
01d58472 4382 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4383 start += root->nodesize;
fd8b2b61 4384 if (!eb)
acce952b 4385 continue;
fd8b2b61 4386 wait_on_extent_buffer_writeback(eb);
acce952b 4387
fd8b2b61
JB
4388 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4389 &eb->bflags))
4390 clear_extent_buffer_dirty(eb);
4391 free_extent_buffer_stale(eb);
acce952b 4392 }
4393 }
4394
4395 return ret;
4396}
4397
4398static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4399 struct extent_io_tree *pinned_extents)
4400{
4401 struct extent_io_tree *unpin;
4402 u64 start;
4403 u64 end;
4404 int ret;
ed0eaa14 4405 bool loop = true;
acce952b 4406
4407 unpin = pinned_extents;
ed0eaa14 4408again:
acce952b 4409 while (1) {
4410 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4411 EXTENT_DIRTY, NULL);
acce952b 4412 if (ret)
4413 break;
4414
af6f8f60 4415 clear_extent_dirty(unpin, start, end);
acce952b 4416 btrfs_error_unpin_extent_range(root, start, end);
4417 cond_resched();
4418 }
4419
ed0eaa14
LB
4420 if (loop) {
4421 if (unpin == &root->fs_info->freed_extents[0])
4422 unpin = &root->fs_info->freed_extents[1];
4423 else
4424 unpin = &root->fs_info->freed_extents[0];
4425 loop = false;
4426 goto again;
4427 }
4428
acce952b 4429 return 0;
4430}
4431
49b25e05
JM
4432void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4433 struct btrfs_root *root)
4434{
4435 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4436
4a9d8bde 4437 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4438 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4439
4a9d8bde 4440 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4441 wake_up(&root->fs_info->transaction_wait);
49b25e05 4442
67cde344
MX
4443 btrfs_destroy_delayed_inodes(root);
4444 btrfs_assert_delayed_root_empty(root);
49b25e05 4445
49b25e05
JM
4446 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4447 EXTENT_DIRTY);
6e841e32
LB
4448 btrfs_destroy_pinned_extent(root,
4449 root->fs_info->pinned_extents);
49b25e05 4450
4a9d8bde
MX
4451 cur_trans->state =TRANS_STATE_COMPLETED;
4452 wake_up(&cur_trans->commit_wait);
4453
49b25e05
JM
4454 /*
4455 memset(cur_trans, 0, sizeof(*cur_trans));
4456 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4457 */
4458}
4459
48a3b636 4460static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4461{
4462 struct btrfs_transaction *t;
acce952b 4463
acce952b 4464 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4465
a4abeea4 4466 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4467 while (!list_empty(&root->fs_info->trans_list)) {
4468 t = list_first_entry(&root->fs_info->trans_list,
4469 struct btrfs_transaction, list);
4470 if (t->state >= TRANS_STATE_COMMIT_START) {
4471 atomic_inc(&t->use_count);
4472 spin_unlock(&root->fs_info->trans_lock);
4473 btrfs_wait_for_commit(root, t->transid);
4474 btrfs_put_transaction(t);
4475 spin_lock(&root->fs_info->trans_lock);
4476 continue;
4477 }
4478 if (t == root->fs_info->running_transaction) {
4479 t->state = TRANS_STATE_COMMIT_DOING;
4480 spin_unlock(&root->fs_info->trans_lock);
4481 /*
4482 * We wait for 0 num_writers since we don't hold a trans
4483 * handle open currently for this transaction.
4484 */
4485 wait_event(t->writer_wait,
4486 atomic_read(&t->num_writers) == 0);
4487 } else {
4488 spin_unlock(&root->fs_info->trans_lock);
4489 }
4490 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4491
724e2315
JB
4492 spin_lock(&root->fs_info->trans_lock);
4493 if (t == root->fs_info->running_transaction)
4494 root->fs_info->running_transaction = NULL;
acce952b 4495 list_del_init(&t->list);
724e2315 4496 spin_unlock(&root->fs_info->trans_lock);
acce952b 4497
724e2315
JB
4498 btrfs_put_transaction(t);
4499 trace_btrfs_transaction_commit(root);
4500 spin_lock(&root->fs_info->trans_lock);
4501 }
4502 spin_unlock(&root->fs_info->trans_lock);
4503 btrfs_destroy_all_ordered_extents(root->fs_info);
4504 btrfs_destroy_delayed_inodes(root);
4505 btrfs_assert_delayed_root_empty(root);
4506 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4507 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4508 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4509
4510 return 0;
4511}
4512
e8c9f186 4513static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4514 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4515 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4516 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4517 /* note we're sharing with inode.c for the merge bio hook */
4518 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4519};