btrfs: delayed_ref: release and free qgroup reserved at proper timing
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
e8c9f186 57static const struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
01d58472
DD
277static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
19c00ddc
CM
279 int verify)
280{
01d58472 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 282 char *result = NULL;
19c00ddc
CM
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
607d432d 291 unsigned long inline_result;
19c00ddc
CM
292
293 len = buf->len - offset;
d397712b 294 while (len > 0) {
19c00ddc 295 err = map_private_extent_buffer(buf, offset, 32,
a6591715 296 &kaddr, &map_start, &map_len);
d397712b 297 if (err)
19c00ddc 298 return 1;
19c00ddc 299 cur_len = min(len, map_len - (offset - map_start));
b0496686 300 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
19c00ddc 304 }
607d432d 305 if (csum_size > sizeof(inline_result)) {
31e818fe 306 result = kzalloc(csum_size, GFP_NOFS);
607d432d
JB
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
19c00ddc
CM
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
607d432d 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
317 u32 val;
318 u32 found = 0;
607d432d 319 memcpy(&found, result, csum_size);
e4204ded 320
607d432d 321 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
322 btrfs_warn_rl(fs_info,
323 "%s checksum verify failed on %llu wanted %X found %X "
324 "level %d",
01d58472 325 fs_info->sb->s_id, buf->start,
efe120a0 326 val, found, btrfs_header_level(buf));
607d432d
JB
327 if (result != (char *)&inline_result)
328 kfree(result);
19c00ddc
CM
329 return 1;
330 }
331 } else {
607d432d 332 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 333 }
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
19c00ddc
CM
336 return 0;
337}
338
d352ac68
CM
339/*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
1259ab75 345static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
1259ab75 348{
2ac55d41 349 struct extent_state *cached_state = NULL;
1259ab75 350 int ret;
2755a0de 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
b9fab919
CM
356 if (atomic)
357 return -EAGAIN;
358
a26e8c9f
JB
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
2ac55d41 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 365 0, &cached_state);
0b32f4bb 366 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
94647322
DS
371 btrfs_err_rl(eb->fs_info,
372 "parent transid verify failed on %llu wanted %llu found %llu",
373 eb->start,
29549aec 374 parent_transid, btrfs_header_generation(eb));
1259ab75 375 ret = 1;
a26e8c9f
JB
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
33958dc6 387out:
2ac55d41
JB
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
472b909f
JB
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
1259ab75 392 return ret;
1259ab75
CM
393}
394
1104a885
DS
395/*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399static int btrfs_check_super_csum(char *raw_disk_sb)
400{
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431}
432
d352ac68
CM
433/*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
f188591e
CM
437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
ca7a79ad 439 u64 start, u64 parent_transid)
f188591e
CM
440{
441 struct extent_io_tree *io_tree;
ea466794 442 int failed = 0;
f188591e
CM
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
ea466794 446 int failed_mirror = 0;
f188591e 447
a826d6dc 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
bb82ab88
AJ
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
f188591e 453 btree_get_extent, mirror_num);
256dd1bb
SB
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
b9fab919 456 parent_transid, 0))
256dd1bb
SB
457 break;
458 else
459 ret = -EIO;
460 }
d397712b 461
a826d6dc
JB
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
468 break;
469
5d964051 470 num_copies = btrfs_num_copies(root->fs_info,
f188591e 471 eb->start, eb->len);
4235298e 472 if (num_copies == 1)
ea466794 473 break;
4235298e 474
5cf1ab56
JB
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
f188591e 480 mirror_num++;
ea466794
JB
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
4235298e 484 if (mirror_num > num_copies)
ea466794 485 break;
f188591e 486 }
ea466794 487
c0901581 488 if (failed && !ret && failed_mirror)
ea466794
JB
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
f188591e 492}
19c00ddc 493
d352ac68 494/*
d397712b
CM
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 497 */
d397712b 498
01d58472 499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 500{
4eee4fa4 501 u64 start = page_offset(page);
19c00ddc 502 u64 found_start;
19c00ddc 503 struct extent_buffer *eb;
f188591e 504
4f2de97a
JB
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
19c00ddc 508 found_start = btrfs_header_bytenr(eb);
fae7f21c 509 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 510 return 0;
01d58472 511 csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
512 return 0;
513}
514
01d58472 515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
516 struct extent_buffer *eb)
517{
01d58472 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
0a4e5586 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531}
532
a826d6dc 533#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
c1c9ff7c 536 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
537
538static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540{
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597}
598
facc8a22
MX
599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
ce9adaa5 602{
ce9adaa5
CM
603 u64 found_start;
604 int found_level;
ce9adaa5
CM
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 607 int ret = 0;
727011e0 608 int reads_done;
ce9adaa5 609
ce9adaa5
CM
610 if (!page->private)
611 goto out;
d397712b 612
4f2de97a 613 eb = (struct extent_buffer *)page->private;
d397712b 614
0b32f4bb
JB
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
621 if (!reads_done)
622 goto err;
f188591e 623
5cf1ab56 624 eb->read_mirror = mirror;
656f30db 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
626 ret = -EIO;
627 goto err;
628 }
629
ce9adaa5 630 found_start = btrfs_header_bytenr(eb);
727011e0 631 if (found_start != eb->start) {
94647322
DS
632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633 found_start, eb->start);
f188591e 634 ret = -EIO;
ce9adaa5
CM
635 goto err;
636 }
01d58472 637 if (check_tree_block_fsid(root->fs_info, eb)) {
94647322
DS
638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639 eb->start);
1259ab75
CM
640 ret = -EIO;
641 goto err;
642 }
ce9adaa5 643 found_level = btrfs_header_level(eb);
1c24c3ce 644 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 645 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
646 (int)btrfs_header_level(eb));
647 ret = -EIO;
648 goto err;
649 }
ce9adaa5 650
85d4e461
CM
651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652 eb, found_level);
4008c04a 653
01d58472 654 ret = csum_tree_block(root->fs_info, eb, 1);
a826d6dc 655 if (ret) {
f188591e 656 ret = -EIO;
a826d6dc
JB
657 goto err;
658 }
659
660 /*
661 * If this is a leaf block and it is corrupt, set the corrupt bit so
662 * that we don't try and read the other copies of this block, just
663 * return -EIO.
664 */
665 if (found_level == 0 && check_leaf(root, eb)) {
666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667 ret = -EIO;
668 }
ce9adaa5 669
0b32f4bb
JB
670 if (!ret)
671 set_extent_buffer_uptodate(eb);
ce9adaa5 672err:
79fb65a1
JB
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 675 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 676
53b381b3
DW
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
0b32f4bb 684 clear_extent_buffer_uptodate(eb);
53b381b3 685 }
0b32f4bb 686 free_extent_buffer(eb);
ce9adaa5 687out:
f188591e 688 return ret;
ce9adaa5
CM
689}
690
ea466794 691static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 692{
4bb31e92
AJ
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
4f2de97a 696 eb = (struct extent_buffer *)page->private;
656f30db 697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 698 eb->read_mirror = failed_mirror;
53b381b3 699 atomic_dec(&eb->io_pages);
ea466794 700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 701 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
702 return -EIO; /* we fixed nothing */
703}
704
4246a0b6 705static void end_workqueue_bio(struct bio *bio)
ce9adaa5 706{
97eb6b69 707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 708 struct btrfs_fs_info *fs_info;
9e0af237
LB
709 struct btrfs_workqueue *wq;
710 btrfs_work_func_t func;
ce9adaa5 711
ce9adaa5 712 fs_info = end_io_wq->info;
4246a0b6 713 end_io_wq->error = bio->bi_error;
d20f7043 714
7b6d91da 715 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 wq = fs_info->endio_meta_write_workers;
718 func = btrfs_endio_meta_write_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 wq = fs_info->endio_freespace_worker;
721 func = btrfs_freespace_write_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else {
726 wq = fs_info->endio_write_workers;
727 func = btrfs_endio_write_helper;
728 }
d20f7043 729 } else {
8b110e39
MX
730 if (unlikely(end_io_wq->metadata ==
731 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 wq = fs_info->endio_repair_workers;
733 func = btrfs_endio_repair_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
735 wq = fs_info->endio_raid56_workers;
736 func = btrfs_endio_raid56_helper;
737 } else if (end_io_wq->metadata) {
738 wq = fs_info->endio_meta_workers;
739 func = btrfs_endio_meta_helper;
740 } else {
741 wq = fs_info->endio_workers;
742 func = btrfs_endio_helper;
743 }
d20f7043 744 }
9e0af237
LB
745
746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
748}
749
22c59948 750int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 751 enum btrfs_wq_endio_type metadata)
0b86a832 752{
97eb6b69 753 struct btrfs_end_io_wq *end_io_wq;
8b110e39 754
97eb6b69 755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
756 if (!end_io_wq)
757 return -ENOMEM;
758
759 end_io_wq->private = bio->bi_private;
760 end_io_wq->end_io = bio->bi_end_io;
22c59948 761 end_io_wq->info = info;
ce9adaa5
CM
762 end_io_wq->error = 0;
763 end_io_wq->bio = bio;
22c59948 764 end_io_wq->metadata = metadata;
ce9adaa5
CM
765
766 bio->bi_private = end_io_wq;
767 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
768 return 0;
769}
770
b64a2851 771unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 772{
4854ddd0 773 unsigned long limit = min_t(unsigned long,
5cdc7ad3 774 info->thread_pool_size,
4854ddd0
CM
775 info->fs_devices->open_devices);
776 return 256 * limit;
777}
0986fe9e 778
4a69a410
CM
779static void run_one_async_start(struct btrfs_work *work)
780{
4a69a410 781 struct async_submit_bio *async;
79787eaa 782 int ret;
4a69a410
CM
783
784 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
785 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
788 if (ret)
789 async->error = ret;
4a69a410
CM
790}
791
792static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
793{
794 struct btrfs_fs_info *fs_info;
795 struct async_submit_bio *async;
4854ddd0 796 int limit;
8b712842
CM
797
798 async = container_of(work, struct async_submit_bio, work);
799 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 800
b64a2851 801 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
802 limit = limit * 2 / 3;
803
ee863954
DS
804 /*
805 * atomic_dec_return implies a barrier for waitqueue_active
806 */
66657b31 807 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 808 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
809 wake_up(&fs_info->async_submit_wait);
810
79787eaa
JM
811 /* If an error occured we just want to clean up the bio and move on */
812 if (async->error) {
4246a0b6
CH
813 async->bio->bi_error = async->error;
814 bio_endio(async->bio);
79787eaa
JM
815 return;
816 }
817
4a69a410 818 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
819 async->mirror_num, async->bio_flags,
820 async->bio_offset);
4a69a410
CM
821}
822
823static void run_one_async_free(struct btrfs_work *work)
824{
825 struct async_submit_bio *async;
826
827 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
828 kfree(async);
829}
830
44b8bd7e
CM
831int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832 int rw, struct bio *bio, int mirror_num,
c8b97818 833 unsigned long bio_flags,
eaf25d93 834 u64 bio_offset,
4a69a410
CM
835 extent_submit_bio_hook_t *submit_bio_start,
836 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
837{
838 struct async_submit_bio *async;
839
840 async = kmalloc(sizeof(*async), GFP_NOFS);
841 if (!async)
842 return -ENOMEM;
843
844 async->inode = inode;
845 async->rw = rw;
846 async->bio = bio;
847 async->mirror_num = mirror_num;
4a69a410
CM
848 async->submit_bio_start = submit_bio_start;
849 async->submit_bio_done = submit_bio_done;
850
9e0af237 851 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 852 run_one_async_done, run_one_async_free);
4a69a410 853
c8b97818 854 async->bio_flags = bio_flags;
eaf25d93 855 async->bio_offset = bio_offset;
8c8bee1d 856
79787eaa
JM
857 async->error = 0;
858
cb03c743 859 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 860
7b6d91da 861 if (rw & REQ_SYNC)
5cdc7ad3 862 btrfs_set_work_high_priority(&async->work);
d313d7a3 863
5cdc7ad3 864 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 865
d397712b 866 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
867 atomic_read(&fs_info->nr_async_submits)) {
868 wait_event(fs_info->async_submit_wait,
869 (atomic_read(&fs_info->nr_async_submits) == 0));
870 }
871
44b8bd7e
CM
872 return 0;
873}
874
ce3ed71a
CM
875static int btree_csum_one_bio(struct bio *bio)
876{
2c30c71b 877 struct bio_vec *bvec;
ce3ed71a 878 struct btrfs_root *root;
2c30c71b 879 int i, ret = 0;
ce3ed71a 880
2c30c71b 881 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 882 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 883 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
884 if (ret)
885 break;
ce3ed71a 886 }
2c30c71b 887
79787eaa 888 return ret;
ce3ed71a
CM
889}
890
4a69a410
CM
891static int __btree_submit_bio_start(struct inode *inode, int rw,
892 struct bio *bio, int mirror_num,
eaf25d93
CM
893 unsigned long bio_flags,
894 u64 bio_offset)
22c59948 895{
8b712842
CM
896 /*
897 * when we're called for a write, we're already in the async
5443be45 898 * submission context. Just jump into btrfs_map_bio
8b712842 899 */
79787eaa 900 return btree_csum_one_bio(bio);
4a69a410 901}
22c59948 902
4a69a410 903static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
904 int mirror_num, unsigned long bio_flags,
905 u64 bio_offset)
4a69a410 906{
61891923
SB
907 int ret;
908
8b712842 909 /*
4a69a410
CM
910 * when we're called for a write, we're already in the async
911 * submission context. Just jump into btrfs_map_bio
8b712842 912 */
61891923 913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
914 if (ret) {
915 bio->bi_error = ret;
916 bio_endio(bio);
917 }
61891923 918 return ret;
0b86a832
CM
919}
920
de0022b9
JB
921static int check_async_write(struct inode *inode, unsigned long bio_flags)
922{
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925#ifdef CONFIG_X86
926 if (cpu_has_xmm4_2)
927 return 0;
928#endif
929 return 1;
930}
931
44b8bd7e 932static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
44b8bd7e 935{
de0022b9 936 int async = check_async_write(inode, bio_flags);
cad321ad
CM
937 int ret;
938
7b6d91da 939 if (!(rw & REQ_WRITE)) {
4a69a410
CM
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
f3f266ab 944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 945 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 946 if (ret)
61891923
SB
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
de0022b9
JB
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
61891923
SB
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
957 /*
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
960 */
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
44b8bd7e 966 }
d313d7a3 967
4246a0b6
CH
968 if (ret)
969 goto out_w_error;
970 return 0;
971
61891923 972out_w_error:
4246a0b6
CH
973 bio->bi_error = ret;
974 bio_endio(bio);
61891923 975 return ret;
44b8bd7e
CM
976}
977
3dd1462e 978#ifdef CONFIG_MIGRATION
784b4e29 979static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
980 struct page *newpage, struct page *page,
981 enum migrate_mode mode)
784b4e29
CM
982{
983 /*
984 * we can't safely write a btree page from here,
985 * we haven't done the locking hook
986 */
987 if (PageDirty(page))
988 return -EAGAIN;
989 /*
990 * Buffers may be managed in a filesystem specific way.
991 * We must have no buffers or drop them.
992 */
993 if (page_has_private(page) &&
994 !try_to_release_page(page, GFP_KERNEL))
995 return -EAGAIN;
a6bc32b8 996 return migrate_page(mapping, newpage, page, mode);
784b4e29 997}
3dd1462e 998#endif
784b4e29 999
0da5468f
CM
1000
1001static int btree_writepages(struct address_space *mapping,
1002 struct writeback_control *wbc)
1003{
e2d84521
MX
1004 struct btrfs_fs_info *fs_info;
1005 int ret;
1006
d8d5f3e1 1007 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1008
1009 if (wbc->for_kupdate)
1010 return 0;
1011
e2d84521 1012 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1013 /* this is a bit racy, but that's ok */
e2d84521
MX
1014 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015 BTRFS_DIRTY_METADATA_THRESH);
1016 if (ret < 0)
793955bc 1017 return 0;
793955bc 1018 }
0b32f4bb 1019 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1020}
1021
b2950863 1022static int btree_readpage(struct file *file, struct page *page)
5f39d397 1023{
d1310b2e
CM
1024 struct extent_io_tree *tree;
1025 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1026 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1027}
22b0ebda 1028
70dec807 1029static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1030{
98509cfc 1031 if (PageWriteback(page) || PageDirty(page))
d397712b 1032 return 0;
0c4e538b 1033
f7a52a40 1034 return try_release_extent_buffer(page);
d98237b3
CM
1035}
1036
d47992f8
LC
1037static void btree_invalidatepage(struct page *page, unsigned int offset,
1038 unsigned int length)
d98237b3 1039{
d1310b2e
CM
1040 struct extent_io_tree *tree;
1041 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1042 extent_invalidatepage(tree, page, offset);
1043 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1044 if (PagePrivate(page)) {
efe120a0
FH
1045 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046 "page private not zero on page %llu",
1047 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1048 ClearPagePrivate(page);
1049 set_page_private(page, 0);
1050 page_cache_release(page);
1051 }
d98237b3
CM
1052}
1053
0b32f4bb
JB
1054static int btree_set_page_dirty(struct page *page)
1055{
bb146eb2 1056#ifdef DEBUG
0b32f4bb
JB
1057 struct extent_buffer *eb;
1058
1059 BUG_ON(!PagePrivate(page));
1060 eb = (struct extent_buffer *)page->private;
1061 BUG_ON(!eb);
1062 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 BUG_ON(!atomic_read(&eb->refs));
1064 btrfs_assert_tree_locked(eb);
bb146eb2 1065#endif
0b32f4bb
JB
1066 return __set_page_dirty_nobuffers(page);
1067}
1068
7f09410b 1069static const struct address_space_operations btree_aops = {
d98237b3 1070 .readpage = btree_readpage,
0da5468f 1071 .writepages = btree_writepages,
5f39d397
CM
1072 .releasepage = btree_releasepage,
1073 .invalidatepage = btree_invalidatepage,
5a92bc88 1074#ifdef CONFIG_MIGRATION
784b4e29 1075 .migratepage = btree_migratepage,
5a92bc88 1076#endif
0b32f4bb 1077 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1078};
1079
d3e46fea 1080void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1081{
5f39d397
CM
1082 struct extent_buffer *buf = NULL;
1083 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1084
a83fffb7 1085 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1086 if (!buf)
6197d86e 1087 return;
d1310b2e 1088 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1089 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1090 free_extent_buffer(buf);
090d1875
CM
1091}
1092
c0dcaa4d 1093int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1094 int mirror_num, struct extent_buffer **eb)
1095{
1096 struct extent_buffer *buf = NULL;
1097 struct inode *btree_inode = root->fs_info->btree_inode;
1098 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099 int ret;
1100
a83fffb7 1101 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1102 if (!buf)
1103 return 0;
1104
1105 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108 btree_get_extent, mirror_num);
1109 if (ret) {
1110 free_extent_buffer(buf);
1111 return ret;
1112 }
1113
1114 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115 free_extent_buffer(buf);
1116 return -EIO;
0b32f4bb 1117 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1118 *eb = buf;
1119 } else {
1120 free_extent_buffer(buf);
1121 }
1122 return 0;
1123}
1124
01d58472 1125struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1126 u64 bytenr)
0999df54 1127{
01d58472 1128 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1129}
1130
1131struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1132 u64 bytenr)
0999df54 1133{
fccb84c9 1134 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1135 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1137}
1138
1139
e02119d5
CM
1140int btrfs_write_tree_block(struct extent_buffer *buf)
1141{
727011e0 1142 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1143 buf->start + buf->len - 1);
e02119d5
CM
1144}
1145
1146int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147{
727011e0 1148 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1149 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1150}
1151
0999df54 1152struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1153 u64 parent_transid)
0999df54
CM
1154{
1155 struct extent_buffer *buf = NULL;
0999df54
CM
1156 int ret;
1157
a83fffb7 1158 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1159 if (!buf)
64c043de 1160 return ERR_PTR(-ENOMEM);
0999df54 1161
ca7a79ad 1162 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1163 if (ret) {
1164 free_extent_buffer(buf);
64c043de 1165 return ERR_PTR(ret);
0f0fe8f7 1166 }
5f39d397 1167 return buf;
ce9adaa5 1168
eb60ceac
CM
1169}
1170
01d58472
DD
1171void clean_tree_block(struct btrfs_trans_handle *trans,
1172 struct btrfs_fs_info *fs_info,
d5c13f92 1173 struct extent_buffer *buf)
ed2ff2cb 1174{
55c69072 1175 if (btrfs_header_generation(buf) ==
e2d84521 1176 fs_info->running_transaction->transid) {
b9447ef8 1177 btrfs_assert_tree_locked(buf);
b4ce94de 1178
b9473439 1179 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1180 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181 -buf->len,
1182 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1183 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184 btrfs_set_lock_blocking(buf);
1185 clear_extent_buffer_dirty(buf);
1186 }
925baedd 1187 }
5f39d397
CM
1188}
1189
8257b2dc
MX
1190static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191{
1192 struct btrfs_subvolume_writers *writers;
1193 int ret;
1194
1195 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196 if (!writers)
1197 return ERR_PTR(-ENOMEM);
1198
908c7f19 1199 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1200 if (ret < 0) {
1201 kfree(writers);
1202 return ERR_PTR(ret);
1203 }
1204
1205 init_waitqueue_head(&writers->wait);
1206 return writers;
1207}
1208
1209static void
1210btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211{
1212 percpu_counter_destroy(&writers->counter);
1213 kfree(writers);
1214}
1215
707e8a07
DS
1216static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1218 u64 objectid)
d97e63b6 1219{
cfaa7295 1220 root->node = NULL;
a28ec197 1221 root->commit_root = NULL;
db94535d
CM
1222 root->sectorsize = sectorsize;
1223 root->nodesize = nodesize;
87ee04eb 1224 root->stripesize = stripesize;
27cdeb70 1225 root->state = 0;
d68fc57b 1226 root->orphan_cleanup_state = 0;
0b86a832 1227
0f7d52f4
CM
1228 root->objectid = objectid;
1229 root->last_trans = 0;
13a8a7c8 1230 root->highest_objectid = 0;
eb73c1b7 1231 root->nr_delalloc_inodes = 0;
199c2a9c 1232 root->nr_ordered_extents = 0;
58176a96 1233 root->name = NULL;
6bef4d31 1234 root->inode_tree = RB_ROOT;
16cdcec7 1235 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1236 root->block_rsv = NULL;
d68fc57b 1237 root->orphan_block_rsv = NULL;
0b86a832
CM
1238
1239 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1240 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1241 INIT_LIST_HEAD(&root->delalloc_inodes);
1242 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1243 INIT_LIST_HEAD(&root->ordered_extents);
1244 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1245 INIT_LIST_HEAD(&root->logged_list[0]);
1246 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1247 spin_lock_init(&root->orphan_lock);
5d4f98a2 1248 spin_lock_init(&root->inode_lock);
eb73c1b7 1249 spin_lock_init(&root->delalloc_lock);
199c2a9c 1250 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1251 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1252 spin_lock_init(&root->log_extents_lock[0]);
1253 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1254 mutex_init(&root->objectid_mutex);
e02119d5 1255 mutex_init(&root->log_mutex);
31f3d255 1256 mutex_init(&root->ordered_extent_mutex);
573bfb72 1257 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1258 init_waitqueue_head(&root->log_writer_wait);
1259 init_waitqueue_head(&root->log_commit_wait[0]);
1260 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1261 INIT_LIST_HEAD(&root->log_ctxs[0]);
1262 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1263 atomic_set(&root->log_commit[0], 0);
1264 atomic_set(&root->log_commit[1], 0);
1265 atomic_set(&root->log_writers, 0);
2ecb7923 1266 atomic_set(&root->log_batch, 0);
8a35d95f 1267 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1268 atomic_set(&root->refs, 1);
8257b2dc 1269 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1270 root->log_transid = 0;
d1433deb 1271 root->log_transid_committed = -1;
257c62e1 1272 root->last_log_commit = 0;
06ea65a3
JB
1273 if (fs_info)
1274 extent_io_tree_init(&root->dirty_log_pages,
1275 fs_info->btree_inode->i_mapping);
017e5369 1276
3768f368
CM
1277 memset(&root->root_key, 0, sizeof(root->root_key));
1278 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1279 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1280 if (fs_info)
1281 root->defrag_trans_start = fs_info->generation;
1282 else
1283 root->defrag_trans_start = 0;
4d775673 1284 root->root_key.objectid = objectid;
0ee5dc67 1285 root->anon_dev = 0;
8ea05e3a 1286
5f3ab90a 1287 spin_lock_init(&root->root_item_lock);
3768f368
CM
1288}
1289
f84a8bd6 1290static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1291{
1292 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1293 if (root)
1294 root->fs_info = fs_info;
1295 return root;
1296}
1297
06ea65a3
JB
1298#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1299/* Should only be used by the testing infrastructure */
1300struct btrfs_root *btrfs_alloc_dummy_root(void)
1301{
1302 struct btrfs_root *root;
1303
1304 root = btrfs_alloc_root(NULL);
1305 if (!root)
1306 return ERR_PTR(-ENOMEM);
707e8a07 1307 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1308 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1309 root->alloc_bytenr = 0;
06ea65a3
JB
1310
1311 return root;
1312}
1313#endif
1314
20897f5c
AJ
1315struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1316 struct btrfs_fs_info *fs_info,
1317 u64 objectid)
1318{
1319 struct extent_buffer *leaf;
1320 struct btrfs_root *tree_root = fs_info->tree_root;
1321 struct btrfs_root *root;
1322 struct btrfs_key key;
1323 int ret = 0;
6463fe58 1324 uuid_le uuid;
20897f5c
AJ
1325
1326 root = btrfs_alloc_root(fs_info);
1327 if (!root)
1328 return ERR_PTR(-ENOMEM);
1329
707e8a07
DS
1330 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1331 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1332 root->root_key.objectid = objectid;
1333 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1334 root->root_key.offset = 0;
1335
4d75f8a9 1336 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1337 if (IS_ERR(leaf)) {
1338 ret = PTR_ERR(leaf);
1dd05682 1339 leaf = NULL;
20897f5c
AJ
1340 goto fail;
1341 }
1342
20897f5c
AJ
1343 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1344 btrfs_set_header_bytenr(leaf, leaf->start);
1345 btrfs_set_header_generation(leaf, trans->transid);
1346 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1347 btrfs_set_header_owner(leaf, objectid);
1348 root->node = leaf;
1349
0a4e5586 1350 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1351 BTRFS_FSID_SIZE);
1352 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1353 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1354 BTRFS_UUID_SIZE);
1355 btrfs_mark_buffer_dirty(leaf);
1356
1357 root->commit_root = btrfs_root_node(root);
27cdeb70 1358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1359
1360 root->root_item.flags = 0;
1361 root->root_item.byte_limit = 0;
1362 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1363 btrfs_set_root_generation(&root->root_item, trans->transid);
1364 btrfs_set_root_level(&root->root_item, 0);
1365 btrfs_set_root_refs(&root->root_item, 1);
1366 btrfs_set_root_used(&root->root_item, leaf->len);
1367 btrfs_set_root_last_snapshot(&root->root_item, 0);
1368 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1369 uuid_le_gen(&uuid);
1370 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1371 root->root_item.drop_level = 0;
1372
1373 key.objectid = objectid;
1374 key.type = BTRFS_ROOT_ITEM_KEY;
1375 key.offset = 0;
1376 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1377 if (ret)
1378 goto fail;
1379
1380 btrfs_tree_unlock(leaf);
1381
1dd05682
TI
1382 return root;
1383
20897f5c 1384fail:
1dd05682
TI
1385 if (leaf) {
1386 btrfs_tree_unlock(leaf);
59885b39 1387 free_extent_buffer(root->commit_root);
1dd05682
TI
1388 free_extent_buffer(leaf);
1389 }
1390 kfree(root);
20897f5c 1391
1dd05682 1392 return ERR_PTR(ret);
20897f5c
AJ
1393}
1394
7237f183
YZ
1395static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1397{
1398 struct btrfs_root *root;
1399 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1400 struct extent_buffer *leaf;
e02119d5 1401
6f07e42e 1402 root = btrfs_alloc_root(fs_info);
e02119d5 1403 if (!root)
7237f183 1404 return ERR_PTR(-ENOMEM);
e02119d5 1405
707e8a07
DS
1406 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1407 tree_root->stripesize, root, fs_info,
1408 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1409
1410 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1413
7237f183 1414 /*
27cdeb70
MX
1415 * DON'T set REF_COWS for log trees
1416 *
7237f183
YZ
1417 * log trees do not get reference counted because they go away
1418 * before a real commit is actually done. They do store pointers
1419 * to file data extents, and those reference counts still get
1420 * updated (along with back refs to the log tree).
1421 */
e02119d5 1422
4d75f8a9
DS
1423 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1424 NULL, 0, 0, 0);
7237f183
YZ
1425 if (IS_ERR(leaf)) {
1426 kfree(root);
1427 return ERR_CAST(leaf);
1428 }
e02119d5 1429
5d4f98a2
YZ
1430 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1431 btrfs_set_header_bytenr(leaf, leaf->start);
1432 btrfs_set_header_generation(leaf, trans->transid);
1433 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1434 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1435 root->node = leaf;
e02119d5
CM
1436
1437 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1438 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1439 btrfs_mark_buffer_dirty(root->node);
1440 btrfs_tree_unlock(root->node);
7237f183
YZ
1441 return root;
1442}
1443
1444int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1445 struct btrfs_fs_info *fs_info)
1446{
1447 struct btrfs_root *log_root;
1448
1449 log_root = alloc_log_tree(trans, fs_info);
1450 if (IS_ERR(log_root))
1451 return PTR_ERR(log_root);
1452 WARN_ON(fs_info->log_root_tree);
1453 fs_info->log_root_tree = log_root;
1454 return 0;
1455}
1456
1457int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root)
1459{
1460 struct btrfs_root *log_root;
1461 struct btrfs_inode_item *inode_item;
1462
1463 log_root = alloc_log_tree(trans, root->fs_info);
1464 if (IS_ERR(log_root))
1465 return PTR_ERR(log_root);
1466
1467 log_root->last_trans = trans->transid;
1468 log_root->root_key.offset = root->root_key.objectid;
1469
1470 inode_item = &log_root->root_item.inode;
3cae210f
QW
1471 btrfs_set_stack_inode_generation(inode_item, 1);
1472 btrfs_set_stack_inode_size(inode_item, 3);
1473 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1474 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1475 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1476
5d4f98a2 1477 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1478
1479 WARN_ON(root->log_root);
1480 root->log_root = log_root;
1481 root->log_transid = 0;
d1433deb 1482 root->log_transid_committed = -1;
257c62e1 1483 root->last_log_commit = 0;
e02119d5
CM
1484 return 0;
1485}
1486
35a3621b
SB
1487static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1488 struct btrfs_key *key)
e02119d5
CM
1489{
1490 struct btrfs_root *root;
1491 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1492 struct btrfs_path *path;
84234f3a 1493 u64 generation;
cb517eab 1494 int ret;
0f7d52f4 1495
cb517eab
MX
1496 path = btrfs_alloc_path();
1497 if (!path)
0f7d52f4 1498 return ERR_PTR(-ENOMEM);
cb517eab
MX
1499
1500 root = btrfs_alloc_root(fs_info);
1501 if (!root) {
1502 ret = -ENOMEM;
1503 goto alloc_fail;
0f7d52f4
CM
1504 }
1505
707e8a07
DS
1506 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1507 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1508
cb517eab
MX
1509 ret = btrfs_find_root(tree_root, key, path,
1510 &root->root_item, &root->root_key);
0f7d52f4 1511 if (ret) {
13a8a7c8
YZ
1512 if (ret > 0)
1513 ret = -ENOENT;
cb517eab 1514 goto find_fail;
0f7d52f4 1515 }
13a8a7c8 1516
84234f3a 1517 generation = btrfs_root_generation(&root->root_item);
db94535d 1518 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1519 generation);
64c043de
LB
1520 if (IS_ERR(root->node)) {
1521 ret = PTR_ERR(root->node);
cb517eab
MX
1522 goto find_fail;
1523 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1524 ret = -EIO;
64c043de
LB
1525 free_extent_buffer(root->node);
1526 goto find_fail;
416bc658 1527 }
5d4f98a2 1528 root->commit_root = btrfs_root_node(root);
13a8a7c8 1529out:
cb517eab
MX
1530 btrfs_free_path(path);
1531 return root;
1532
cb517eab
MX
1533find_fail:
1534 kfree(root);
1535alloc_fail:
1536 root = ERR_PTR(ret);
1537 goto out;
1538}
1539
1540struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1541 struct btrfs_key *location)
1542{
1543 struct btrfs_root *root;
1544
1545 root = btrfs_read_tree_root(tree_root, location);
1546 if (IS_ERR(root))
1547 return root;
1548
1549 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1550 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1551 btrfs_check_and_init_root_item(&root->root_item);
1552 }
13a8a7c8 1553
5eda7b5e
CM
1554 return root;
1555}
1556
cb517eab
MX
1557int btrfs_init_fs_root(struct btrfs_root *root)
1558{
1559 int ret;
8257b2dc 1560 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1561
1562 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1563 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1564 GFP_NOFS);
1565 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1566 ret = -ENOMEM;
1567 goto fail;
1568 }
1569
8257b2dc
MX
1570 writers = btrfs_alloc_subvolume_writers();
1571 if (IS_ERR(writers)) {
1572 ret = PTR_ERR(writers);
1573 goto fail;
1574 }
1575 root->subv_writers = writers;
1576
cb517eab 1577 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1578 spin_lock_init(&root->ino_cache_lock);
1579 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1580
1581 ret = get_anon_bdev(&root->anon_dev);
1582 if (ret)
8257b2dc 1583 goto free_writers;
cb517eab 1584 return 0;
8257b2dc
MX
1585
1586free_writers:
1587 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1588fail:
1589 kfree(root->free_ino_ctl);
1590 kfree(root->free_ino_pinned);
1591 return ret;
1592}
1593
171170c1
ST
1594static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1595 u64 root_id)
cb517eab
MX
1596{
1597 struct btrfs_root *root;
1598
1599 spin_lock(&fs_info->fs_roots_radix_lock);
1600 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1601 (unsigned long)root_id);
1602 spin_unlock(&fs_info->fs_roots_radix_lock);
1603 return root;
1604}
1605
1606int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1607 struct btrfs_root *root)
1608{
1609 int ret;
1610
1611 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1612 if (ret)
1613 return ret;
1614
1615 spin_lock(&fs_info->fs_roots_radix_lock);
1616 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1617 (unsigned long)root->root_key.objectid,
1618 root);
1619 if (ret == 0)
27cdeb70 1620 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1621 spin_unlock(&fs_info->fs_roots_radix_lock);
1622 radix_tree_preload_end();
1623
1624 return ret;
1625}
1626
c00869f1
MX
1627struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1628 struct btrfs_key *location,
1629 bool check_ref)
5eda7b5e
CM
1630{
1631 struct btrfs_root *root;
381cf658 1632 struct btrfs_path *path;
1d4c08e0 1633 struct btrfs_key key;
5eda7b5e
CM
1634 int ret;
1635
edbd8d4e
CM
1636 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1637 return fs_info->tree_root;
1638 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1639 return fs_info->extent_root;
8f18cf13
CM
1640 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1641 return fs_info->chunk_root;
1642 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1643 return fs_info->dev_root;
0403e47e
YZ
1644 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1645 return fs_info->csum_root;
bcef60f2
AJ
1646 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1647 return fs_info->quota_root ? fs_info->quota_root :
1648 ERR_PTR(-ENOENT);
f7a81ea4
SB
1649 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1650 return fs_info->uuid_root ? fs_info->uuid_root :
1651 ERR_PTR(-ENOENT);
4df27c4d 1652again:
cb517eab 1653 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1654 if (root) {
c00869f1 1655 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1656 return ERR_PTR(-ENOENT);
5eda7b5e 1657 return root;
48475471 1658 }
5eda7b5e 1659
cb517eab 1660 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1661 if (IS_ERR(root))
1662 return root;
3394e160 1663
c00869f1 1664 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1665 ret = -ENOENT;
581bb050 1666 goto fail;
35a30d7c 1667 }
581bb050 1668
cb517eab 1669 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1670 if (ret)
1671 goto fail;
3394e160 1672
381cf658
DS
1673 path = btrfs_alloc_path();
1674 if (!path) {
1675 ret = -ENOMEM;
1676 goto fail;
1677 }
1d4c08e0
DS
1678 key.objectid = BTRFS_ORPHAN_OBJECTID;
1679 key.type = BTRFS_ORPHAN_ITEM_KEY;
1680 key.offset = location->objectid;
1681
1682 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1683 btrfs_free_path(path);
d68fc57b
YZ
1684 if (ret < 0)
1685 goto fail;
1686 if (ret == 0)
27cdeb70 1687 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1688
cb517eab 1689 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1690 if (ret) {
4df27c4d
YZ
1691 if (ret == -EEXIST) {
1692 free_fs_root(root);
1693 goto again;
1694 }
1695 goto fail;
0f7d52f4 1696 }
edbd8d4e 1697 return root;
4df27c4d
YZ
1698fail:
1699 free_fs_root(root);
1700 return ERR_PTR(ret);
edbd8d4e
CM
1701}
1702
04160088
CM
1703static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1704{
1705 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1706 int ret = 0;
04160088
CM
1707 struct btrfs_device *device;
1708 struct backing_dev_info *bdi;
b7967db7 1709
1f78160c
XG
1710 rcu_read_lock();
1711 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1712 if (!device->bdev)
1713 continue;
04160088 1714 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1715 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1716 ret = 1;
1717 break;
1718 }
1719 }
1f78160c 1720 rcu_read_unlock();
04160088
CM
1721 return ret;
1722}
1723
04160088
CM
1724static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1725{
ad081f14
JA
1726 int err;
1727
b4caecd4 1728 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1729 if (err)
1730 return err;
1731
df0ce26c 1732 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1733 bdi->congested_fn = btrfs_congested_fn;
1734 bdi->congested_data = info;
da2f0f74 1735 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1736 return 0;
1737}
1738
8b712842
CM
1739/*
1740 * called by the kthread helper functions to finally call the bio end_io
1741 * functions. This is where read checksum verification actually happens
1742 */
1743static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1744{
ce9adaa5 1745 struct bio *bio;
97eb6b69 1746 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1747
97eb6b69 1748 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1749 bio = end_io_wq->bio;
ce9adaa5 1750
4246a0b6 1751 bio->bi_error = end_io_wq->error;
8b712842
CM
1752 bio->bi_private = end_io_wq->private;
1753 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1754 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1755 bio_endio(bio);
44b8bd7e
CM
1756}
1757
a74a4b97
CM
1758static int cleaner_kthread(void *arg)
1759{
1760 struct btrfs_root *root = arg;
d0278245 1761 int again;
da288d28 1762 struct btrfs_trans_handle *trans;
a74a4b97
CM
1763
1764 do {
d0278245 1765 again = 0;
a74a4b97 1766
d0278245 1767 /* Make the cleaner go to sleep early. */
babbf170 1768 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1769 goto sleep;
1770
1771 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1772 goto sleep;
1773
dc7f370c
MX
1774 /*
1775 * Avoid the problem that we change the status of the fs
1776 * during the above check and trylock.
1777 */
babbf170 1778 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1779 mutex_unlock(&root->fs_info->cleaner_mutex);
1780 goto sleep;
76dda93c 1781 }
a74a4b97 1782
d0278245
MX
1783 btrfs_run_delayed_iputs(root);
1784 again = btrfs_clean_one_deleted_snapshot(root);
1785 mutex_unlock(&root->fs_info->cleaner_mutex);
1786
1787 /*
05323cd1
MX
1788 * The defragger has dealt with the R/O remount and umount,
1789 * needn't do anything special here.
d0278245
MX
1790 */
1791 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1792
1793 /*
1794 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1795 * with relocation (btrfs_relocate_chunk) and relocation
1796 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1797 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1798 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1799 * unused block groups.
1800 */
1801 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1802sleep:
9d1a2a3a 1803 if (!try_to_freeze() && !again) {
a74a4b97 1804 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1805 if (!kthread_should_stop())
1806 schedule();
a74a4b97
CM
1807 __set_current_state(TASK_RUNNING);
1808 }
1809 } while (!kthread_should_stop());
da288d28
FM
1810
1811 /*
1812 * Transaction kthread is stopped before us and wakes us up.
1813 * However we might have started a new transaction and COWed some
1814 * tree blocks when deleting unused block groups for example. So
1815 * make sure we commit the transaction we started to have a clean
1816 * shutdown when evicting the btree inode - if it has dirty pages
1817 * when we do the final iput() on it, eviction will trigger a
1818 * writeback for it which will fail with null pointer dereferences
1819 * since work queues and other resources were already released and
1820 * destroyed by the time the iput/eviction/writeback is made.
1821 */
1822 trans = btrfs_attach_transaction(root);
1823 if (IS_ERR(trans)) {
1824 if (PTR_ERR(trans) != -ENOENT)
1825 btrfs_err(root->fs_info,
1826 "cleaner transaction attach returned %ld",
1827 PTR_ERR(trans));
1828 } else {
1829 int ret;
1830
1831 ret = btrfs_commit_transaction(trans, root);
1832 if (ret)
1833 btrfs_err(root->fs_info,
1834 "cleaner open transaction commit returned %d",
1835 ret);
1836 }
1837
a74a4b97
CM
1838 return 0;
1839}
1840
1841static int transaction_kthread(void *arg)
1842{
1843 struct btrfs_root *root = arg;
1844 struct btrfs_trans_handle *trans;
1845 struct btrfs_transaction *cur;
8929ecfa 1846 u64 transid;
a74a4b97
CM
1847 unsigned long now;
1848 unsigned long delay;
914b2007 1849 bool cannot_commit;
a74a4b97
CM
1850
1851 do {
914b2007 1852 cannot_commit = false;
8b87dc17 1853 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1854 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1855
a4abeea4 1856 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1857 cur = root->fs_info->running_transaction;
1858 if (!cur) {
a4abeea4 1859 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1860 goto sleep;
1861 }
31153d81 1862
a74a4b97 1863 now = get_seconds();
4a9d8bde 1864 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1865 (now < cur->start_time ||
1866 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1867 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1868 delay = HZ * 5;
1869 goto sleep;
1870 }
8929ecfa 1871 transid = cur->transid;
a4abeea4 1872 spin_unlock(&root->fs_info->trans_lock);
56bec294 1873
79787eaa 1874 /* If the file system is aborted, this will always fail. */
354aa0fb 1875 trans = btrfs_attach_transaction(root);
914b2007 1876 if (IS_ERR(trans)) {
354aa0fb
MX
1877 if (PTR_ERR(trans) != -ENOENT)
1878 cannot_commit = true;
79787eaa 1879 goto sleep;
914b2007 1880 }
8929ecfa 1881 if (transid == trans->transid) {
79787eaa 1882 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1883 } else {
1884 btrfs_end_transaction(trans, root);
1885 }
a74a4b97
CM
1886sleep:
1887 wake_up_process(root->fs_info->cleaner_kthread);
1888 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1889
4e121c06
JB
1890 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1891 &root->fs_info->fs_state)))
1892 btrfs_cleanup_transaction(root);
a0acae0e 1893 if (!try_to_freeze()) {
a74a4b97 1894 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1895 if (!kthread_should_stop() &&
914b2007
JK
1896 (!btrfs_transaction_blocked(root->fs_info) ||
1897 cannot_commit))
8929ecfa 1898 schedule_timeout(delay);
a74a4b97
CM
1899 __set_current_state(TASK_RUNNING);
1900 }
1901 } while (!kthread_should_stop());
1902 return 0;
1903}
1904
af31f5e5
CM
1905/*
1906 * this will find the highest generation in the array of
1907 * root backups. The index of the highest array is returned,
1908 * or -1 if we can't find anything.
1909 *
1910 * We check to make sure the array is valid by comparing the
1911 * generation of the latest root in the array with the generation
1912 * in the super block. If they don't match we pitch it.
1913 */
1914static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1915{
1916 u64 cur;
1917 int newest_index = -1;
1918 struct btrfs_root_backup *root_backup;
1919 int i;
1920
1921 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1922 root_backup = info->super_copy->super_roots + i;
1923 cur = btrfs_backup_tree_root_gen(root_backup);
1924 if (cur == newest_gen)
1925 newest_index = i;
1926 }
1927
1928 /* check to see if we actually wrapped around */
1929 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1930 root_backup = info->super_copy->super_roots;
1931 cur = btrfs_backup_tree_root_gen(root_backup);
1932 if (cur == newest_gen)
1933 newest_index = 0;
1934 }
1935 return newest_index;
1936}
1937
1938
1939/*
1940 * find the oldest backup so we know where to store new entries
1941 * in the backup array. This will set the backup_root_index
1942 * field in the fs_info struct
1943 */
1944static void find_oldest_super_backup(struct btrfs_fs_info *info,
1945 u64 newest_gen)
1946{
1947 int newest_index = -1;
1948
1949 newest_index = find_newest_super_backup(info, newest_gen);
1950 /* if there was garbage in there, just move along */
1951 if (newest_index == -1) {
1952 info->backup_root_index = 0;
1953 } else {
1954 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1955 }
1956}
1957
1958/*
1959 * copy all the root pointers into the super backup array.
1960 * this will bump the backup pointer by one when it is
1961 * done
1962 */
1963static void backup_super_roots(struct btrfs_fs_info *info)
1964{
1965 int next_backup;
1966 struct btrfs_root_backup *root_backup;
1967 int last_backup;
1968
1969 next_backup = info->backup_root_index;
1970 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971 BTRFS_NUM_BACKUP_ROOTS;
1972
1973 /*
1974 * just overwrite the last backup if we're at the same generation
1975 * this happens only at umount
1976 */
1977 root_backup = info->super_for_commit->super_roots + last_backup;
1978 if (btrfs_backup_tree_root_gen(root_backup) ==
1979 btrfs_header_generation(info->tree_root->node))
1980 next_backup = last_backup;
1981
1982 root_backup = info->super_for_commit->super_roots + next_backup;
1983
1984 /*
1985 * make sure all of our padding and empty slots get zero filled
1986 * regardless of which ones we use today
1987 */
1988 memset(root_backup, 0, sizeof(*root_backup));
1989
1990 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991
1992 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1993 btrfs_set_backup_tree_root_gen(root_backup,
1994 btrfs_header_generation(info->tree_root->node));
1995
1996 btrfs_set_backup_tree_root_level(root_backup,
1997 btrfs_header_level(info->tree_root->node));
1998
1999 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2000 btrfs_set_backup_chunk_root_gen(root_backup,
2001 btrfs_header_generation(info->chunk_root->node));
2002 btrfs_set_backup_chunk_root_level(root_backup,
2003 btrfs_header_level(info->chunk_root->node));
2004
2005 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2006 btrfs_set_backup_extent_root_gen(root_backup,
2007 btrfs_header_generation(info->extent_root->node));
2008 btrfs_set_backup_extent_root_level(root_backup,
2009 btrfs_header_level(info->extent_root->node));
2010
7c7e82a7
CM
2011 /*
2012 * we might commit during log recovery, which happens before we set
2013 * the fs_root. Make sure it is valid before we fill it in.
2014 */
2015 if (info->fs_root && info->fs_root->node) {
2016 btrfs_set_backup_fs_root(root_backup,
2017 info->fs_root->node->start);
2018 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2019 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2020 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2021 btrfs_header_level(info->fs_root->node));
7c7e82a7 2022 }
af31f5e5
CM
2023
2024 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2025 btrfs_set_backup_dev_root_gen(root_backup,
2026 btrfs_header_generation(info->dev_root->node));
2027 btrfs_set_backup_dev_root_level(root_backup,
2028 btrfs_header_level(info->dev_root->node));
2029
2030 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2031 btrfs_set_backup_csum_root_gen(root_backup,
2032 btrfs_header_generation(info->csum_root->node));
2033 btrfs_set_backup_csum_root_level(root_backup,
2034 btrfs_header_level(info->csum_root->node));
2035
2036 btrfs_set_backup_total_bytes(root_backup,
2037 btrfs_super_total_bytes(info->super_copy));
2038 btrfs_set_backup_bytes_used(root_backup,
2039 btrfs_super_bytes_used(info->super_copy));
2040 btrfs_set_backup_num_devices(root_backup,
2041 btrfs_super_num_devices(info->super_copy));
2042
2043 /*
2044 * if we don't copy this out to the super_copy, it won't get remembered
2045 * for the next commit
2046 */
2047 memcpy(&info->super_copy->super_roots,
2048 &info->super_for_commit->super_roots,
2049 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2050}
2051
2052/*
2053 * this copies info out of the root backup array and back into
2054 * the in-memory super block. It is meant to help iterate through
2055 * the array, so you send it the number of backups you've already
2056 * tried and the last backup index you used.
2057 *
2058 * this returns -1 when it has tried all the backups
2059 */
2060static noinline int next_root_backup(struct btrfs_fs_info *info,
2061 struct btrfs_super_block *super,
2062 int *num_backups_tried, int *backup_index)
2063{
2064 struct btrfs_root_backup *root_backup;
2065 int newest = *backup_index;
2066
2067 if (*num_backups_tried == 0) {
2068 u64 gen = btrfs_super_generation(super);
2069
2070 newest = find_newest_super_backup(info, gen);
2071 if (newest == -1)
2072 return -1;
2073
2074 *backup_index = newest;
2075 *num_backups_tried = 1;
2076 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2077 /* we've tried all the backups, all done */
2078 return -1;
2079 } else {
2080 /* jump to the next oldest backup */
2081 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2082 BTRFS_NUM_BACKUP_ROOTS;
2083 *backup_index = newest;
2084 *num_backups_tried += 1;
2085 }
2086 root_backup = super->super_roots + newest;
2087
2088 btrfs_set_super_generation(super,
2089 btrfs_backup_tree_root_gen(root_backup));
2090 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2091 btrfs_set_super_root_level(super,
2092 btrfs_backup_tree_root_level(root_backup));
2093 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2094
2095 /*
2096 * fixme: the total bytes and num_devices need to match or we should
2097 * need a fsck
2098 */
2099 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2100 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2101 return 0;
2102}
2103
7abadb64
LB
2104/* helper to cleanup workers */
2105static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2106{
dc6e3209 2107 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2108 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2109 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2110 btrfs_destroy_workqueue(fs_info->endio_workers);
2111 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2112 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2113 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2114 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2115 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2116 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2117 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2118 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2119 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2120 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2121 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2122 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2123 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2124 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2125}
2126
2e9f5954
R
2127static void free_root_extent_buffers(struct btrfs_root *root)
2128{
2129 if (root) {
2130 free_extent_buffer(root->node);
2131 free_extent_buffer(root->commit_root);
2132 root->node = NULL;
2133 root->commit_root = NULL;
2134 }
2135}
2136
af31f5e5
CM
2137/* helper to cleanup tree roots */
2138static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2139{
2e9f5954 2140 free_root_extent_buffers(info->tree_root);
655b09fe 2141
2e9f5954
R
2142 free_root_extent_buffers(info->dev_root);
2143 free_root_extent_buffers(info->extent_root);
2144 free_root_extent_buffers(info->csum_root);
2145 free_root_extent_buffers(info->quota_root);
2146 free_root_extent_buffers(info->uuid_root);
2147 if (chunk_root)
2148 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2149}
2150
faa2dbf0 2151void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2152{
2153 int ret;
2154 struct btrfs_root *gang[8];
2155 int i;
2156
2157 while (!list_empty(&fs_info->dead_roots)) {
2158 gang[0] = list_entry(fs_info->dead_roots.next,
2159 struct btrfs_root, root_list);
2160 list_del(&gang[0]->root_list);
2161
27cdeb70 2162 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2163 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2164 } else {
2165 free_extent_buffer(gang[0]->node);
2166 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2167 btrfs_put_fs_root(gang[0]);
171f6537
JB
2168 }
2169 }
2170
2171 while (1) {
2172 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2173 (void **)gang, 0,
2174 ARRAY_SIZE(gang));
2175 if (!ret)
2176 break;
2177 for (i = 0; i < ret; i++)
cb517eab 2178 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2179 }
1a4319cc
LB
2180
2181 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2182 btrfs_free_log_root_tree(NULL, fs_info);
2183 btrfs_destroy_pinned_extent(fs_info->tree_root,
2184 fs_info->pinned_extents);
2185 }
171f6537 2186}
af31f5e5 2187
638aa7ed
ES
2188static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2189{
2190 mutex_init(&fs_info->scrub_lock);
2191 atomic_set(&fs_info->scrubs_running, 0);
2192 atomic_set(&fs_info->scrub_pause_req, 0);
2193 atomic_set(&fs_info->scrubs_paused, 0);
2194 atomic_set(&fs_info->scrub_cancel_req, 0);
2195 init_waitqueue_head(&fs_info->scrub_pause_wait);
2196 fs_info->scrub_workers_refcnt = 0;
2197}
2198
779a65a4
ES
2199static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2200{
2201 spin_lock_init(&fs_info->balance_lock);
2202 mutex_init(&fs_info->balance_mutex);
2203 atomic_set(&fs_info->balance_running, 0);
2204 atomic_set(&fs_info->balance_pause_req, 0);
2205 atomic_set(&fs_info->balance_cancel_req, 0);
2206 fs_info->balance_ctl = NULL;
2207 init_waitqueue_head(&fs_info->balance_wait_q);
2208}
2209
f37938e0
ES
2210static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2211 struct btrfs_root *tree_root)
2212{
2213 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2214 set_nlink(fs_info->btree_inode, 1);
2215 /*
2216 * we set the i_size on the btree inode to the max possible int.
2217 * the real end of the address space is determined by all of
2218 * the devices in the system
2219 */
2220 fs_info->btree_inode->i_size = OFFSET_MAX;
2221 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2222
2223 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2224 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2225 fs_info->btree_inode->i_mapping);
2226 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2227 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2228
2229 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2230
2231 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2232 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2233 sizeof(struct btrfs_key));
2234 set_bit(BTRFS_INODE_DUMMY,
2235 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2236 btrfs_insert_inode_hash(fs_info->btree_inode);
2237}
2238
ad618368
ES
2239static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2240{
2241 fs_info->dev_replace.lock_owner = 0;
2242 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2243 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2244 mutex_init(&fs_info->dev_replace.lock_management_lock);
2245 mutex_init(&fs_info->dev_replace.lock);
2246 init_waitqueue_head(&fs_info->replace_wait);
2247}
2248
f9e92e40
ES
2249static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2250{
2251 spin_lock_init(&fs_info->qgroup_lock);
2252 mutex_init(&fs_info->qgroup_ioctl_lock);
2253 fs_info->qgroup_tree = RB_ROOT;
2254 fs_info->qgroup_op_tree = RB_ROOT;
2255 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2256 fs_info->qgroup_seq = 1;
2257 fs_info->quota_enabled = 0;
2258 fs_info->pending_quota_state = 0;
2259 fs_info->qgroup_ulist = NULL;
2260 mutex_init(&fs_info->qgroup_rescan_lock);
2261}
2262
2a458198
ES
2263static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2264 struct btrfs_fs_devices *fs_devices)
2265{
2266 int max_active = fs_info->thread_pool_size;
6f011058 2267 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2268
2269 fs_info->workers =
2270 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2271 max_active, 16);
2272
2273 fs_info->delalloc_workers =
2274 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2275
2276 fs_info->flush_workers =
2277 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2278
2279 fs_info->caching_workers =
2280 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2281
2282 /*
2283 * a higher idle thresh on the submit workers makes it much more
2284 * likely that bios will be send down in a sane order to the
2285 * devices
2286 */
2287 fs_info->submit_workers =
2288 btrfs_alloc_workqueue("submit", flags,
2289 min_t(u64, fs_devices->num_devices,
2290 max_active), 64);
2291
2292 fs_info->fixup_workers =
2293 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2294
2295 /*
2296 * endios are largely parallel and should have a very
2297 * low idle thresh
2298 */
2299 fs_info->endio_workers =
2300 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2301 fs_info->endio_meta_workers =
2302 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2303 fs_info->endio_meta_write_workers =
2304 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2305 fs_info->endio_raid56_workers =
2306 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2307 fs_info->endio_repair_workers =
2308 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2309 fs_info->rmw_workers =
2310 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2311 fs_info->endio_write_workers =
2312 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2313 fs_info->endio_freespace_worker =
2314 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2315 fs_info->delayed_workers =
2316 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2317 fs_info->readahead_workers =
2318 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2319 fs_info->qgroup_rescan_workers =
2320 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2321 fs_info->extent_workers =
2322 btrfs_alloc_workqueue("extent-refs", flags,
2323 min_t(u64, fs_devices->num_devices,
2324 max_active), 8);
2325
2326 if (!(fs_info->workers && fs_info->delalloc_workers &&
2327 fs_info->submit_workers && fs_info->flush_workers &&
2328 fs_info->endio_workers && fs_info->endio_meta_workers &&
2329 fs_info->endio_meta_write_workers &&
2330 fs_info->endio_repair_workers &&
2331 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2332 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2333 fs_info->caching_workers && fs_info->readahead_workers &&
2334 fs_info->fixup_workers && fs_info->delayed_workers &&
2335 fs_info->extent_workers &&
2336 fs_info->qgroup_rescan_workers)) {
2337 return -ENOMEM;
2338 }
2339
2340 return 0;
2341}
2342
63443bf5
ES
2343static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2344 struct btrfs_fs_devices *fs_devices)
2345{
2346 int ret;
2347 struct btrfs_root *tree_root = fs_info->tree_root;
2348 struct btrfs_root *log_tree_root;
2349 struct btrfs_super_block *disk_super = fs_info->super_copy;
2350 u64 bytenr = btrfs_super_log_root(disk_super);
2351
2352 if (fs_devices->rw_devices == 0) {
f14d104d 2353 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2354 return -EIO;
2355 }
2356
2357 log_tree_root = btrfs_alloc_root(fs_info);
2358 if (!log_tree_root)
2359 return -ENOMEM;
2360
2361 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2362 tree_root->stripesize, log_tree_root, fs_info,
2363 BTRFS_TREE_LOG_OBJECTID);
2364
2365 log_tree_root->node = read_tree_block(tree_root, bytenr,
2366 fs_info->generation + 1);
64c043de 2367 if (IS_ERR(log_tree_root->node)) {
f14d104d 2368 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2369 ret = PTR_ERR(log_tree_root->node);
64c043de 2370 kfree(log_tree_root);
0eeff236 2371 return ret;
64c043de 2372 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2373 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2374 free_extent_buffer(log_tree_root->node);
2375 kfree(log_tree_root);
2376 return -EIO;
2377 }
2378 /* returns with log_tree_root freed on success */
2379 ret = btrfs_recover_log_trees(log_tree_root);
2380 if (ret) {
a4553fef 2381 btrfs_std_error(tree_root->fs_info, ret,
63443bf5
ES
2382 "Failed to recover log tree");
2383 free_extent_buffer(log_tree_root->node);
2384 kfree(log_tree_root);
2385 return ret;
2386 }
2387
2388 if (fs_info->sb->s_flags & MS_RDONLY) {
2389 ret = btrfs_commit_super(tree_root);
2390 if (ret)
2391 return ret;
2392 }
2393
2394 return 0;
2395}
2396
4bbcaa64
ES
2397static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2398 struct btrfs_root *tree_root)
2399{
a4f3d2c4 2400 struct btrfs_root *root;
4bbcaa64
ES
2401 struct btrfs_key location;
2402 int ret;
2403
2404 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2405 location.type = BTRFS_ROOT_ITEM_KEY;
2406 location.offset = 0;
2407
a4f3d2c4
DS
2408 root = btrfs_read_tree_root(tree_root, &location);
2409 if (IS_ERR(root))
2410 return PTR_ERR(root);
2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412 fs_info->extent_root = root;
4bbcaa64
ES
2413
2414 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2415 root = btrfs_read_tree_root(tree_root, &location);
2416 if (IS_ERR(root))
2417 return PTR_ERR(root);
2418 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2419 fs_info->dev_root = root;
4bbcaa64
ES
2420 btrfs_init_devices_late(fs_info);
2421
2422 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2423 root = btrfs_read_tree_root(tree_root, &location);
2424 if (IS_ERR(root))
2425 return PTR_ERR(root);
2426 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2427 fs_info->csum_root = root;
4bbcaa64
ES
2428
2429 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2430 root = btrfs_read_tree_root(tree_root, &location);
2431 if (!IS_ERR(root)) {
2432 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2433 fs_info->quota_enabled = 1;
2434 fs_info->pending_quota_state = 1;
a4f3d2c4 2435 fs_info->quota_root = root;
4bbcaa64
ES
2436 }
2437
2438 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2439 root = btrfs_read_tree_root(tree_root, &location);
2440 if (IS_ERR(root)) {
2441 ret = PTR_ERR(root);
4bbcaa64
ES
2442 if (ret != -ENOENT)
2443 return ret;
2444 } else {
a4f3d2c4
DS
2445 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2446 fs_info->uuid_root = root;
4bbcaa64
ES
2447 }
2448
2449 return 0;
2450}
2451
ad2b2c80
AV
2452int open_ctree(struct super_block *sb,
2453 struct btrfs_fs_devices *fs_devices,
2454 char *options)
2e635a27 2455{
db94535d
CM
2456 u32 sectorsize;
2457 u32 nodesize;
87ee04eb 2458 u32 stripesize;
84234f3a 2459 u64 generation;
f2b636e8 2460 u64 features;
3de4586c 2461 struct btrfs_key location;
a061fc8d 2462 struct buffer_head *bh;
4d34b278 2463 struct btrfs_super_block *disk_super;
815745cf 2464 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2465 struct btrfs_root *tree_root;
4d34b278 2466 struct btrfs_root *chunk_root;
eb60ceac 2467 int ret;
e58ca020 2468 int err = -EINVAL;
af31f5e5
CM
2469 int num_backups_tried = 0;
2470 int backup_index = 0;
5cdc7ad3 2471 int max_active;
4543df7e 2472
f84a8bd6 2473 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2474 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2475 if (!tree_root || !chunk_root) {
39279cc3
CM
2476 err = -ENOMEM;
2477 goto fail;
2478 }
76dda93c
YZ
2479
2480 ret = init_srcu_struct(&fs_info->subvol_srcu);
2481 if (ret) {
2482 err = ret;
2483 goto fail;
2484 }
2485
2486 ret = setup_bdi(fs_info, &fs_info->bdi);
2487 if (ret) {
2488 err = ret;
2489 goto fail_srcu;
2490 }
2491
908c7f19 2492 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2493 if (ret) {
2494 err = ret;
2495 goto fail_bdi;
2496 }
2497 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2498 (1 + ilog2(nr_cpu_ids));
2499
908c7f19 2500 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2501 if (ret) {
2502 err = ret;
2503 goto fail_dirty_metadata_bytes;
2504 }
2505
908c7f19 2506 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2507 if (ret) {
2508 err = ret;
2509 goto fail_delalloc_bytes;
2510 }
2511
76dda93c
YZ
2512 fs_info->btree_inode = new_inode(sb);
2513 if (!fs_info->btree_inode) {
2514 err = -ENOMEM;
c404e0dc 2515 goto fail_bio_counter;
76dda93c
YZ
2516 }
2517
a6591715 2518 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2519
76dda93c 2520 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2521 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2522 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2523 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2524 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2525 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2526 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2527 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2528 spin_lock_init(&fs_info->trans_lock);
76dda93c 2529 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2530 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2531 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2532 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2533 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2534 spin_lock_init(&fs_info->super_lock);
fcebe456 2535 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2536 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2537 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2538 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2539 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2540 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2541 mutex_init(&fs_info->reloc_mutex);
573bfb72 2542 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2543 seqlock_init(&fs_info->profiles_lock);
d7c15171 2544 init_rwsem(&fs_info->delayed_iput_sem);
19c00ddc 2545
0b86a832 2546 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2547 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2548 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2549 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2550 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2551 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2552 BTRFS_BLOCK_RSV_GLOBAL);
2553 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2554 BTRFS_BLOCK_RSV_DELALLOC);
2555 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2556 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2557 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2558 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2559 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2560 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2561 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2562 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2563 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2564 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2565 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2566 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2567 fs_info->sb = sb;
95ac567a 2568 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2569 fs_info->metadata_ratio = 0;
4cb5300b 2570 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2571 fs_info->free_chunk_space = 0;
f29021b2 2572 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2573 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2574 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66
AJ
2575 /* readahead state */
2576 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2577 spin_lock_init(&fs_info->reada_lock);
c8b97818 2578
b34b086c
CM
2579 fs_info->thread_pool_size = min_t(unsigned long,
2580 num_online_cpus() + 2, 8);
0afbaf8c 2581
199c2a9c
MX
2582 INIT_LIST_HEAD(&fs_info->ordered_roots);
2583 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2584 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2585 GFP_NOFS);
2586 if (!fs_info->delayed_root) {
2587 err = -ENOMEM;
2588 goto fail_iput;
2589 }
2590 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2591
638aa7ed 2592 btrfs_init_scrub(fs_info);
21adbd5c
SB
2593#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2594 fs_info->check_integrity_print_mask = 0;
2595#endif
779a65a4 2596 btrfs_init_balance(fs_info);
21c7e756 2597 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2598
a061fc8d
CM
2599 sb->s_blocksize = 4096;
2600 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2601 sb->s_bdi = &fs_info->bdi;
a061fc8d 2602
f37938e0 2603 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2604
0f9dd46c 2605 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2606 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2607 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2608
11833d66 2609 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2610 fs_info->btree_inode->i_mapping);
11833d66 2611 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2612 fs_info->btree_inode->i_mapping);
11833d66 2613 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2614 fs_info->do_barriers = 1;
e18e4809 2615
39279cc3 2616
5a3f23d5 2617 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2618 mutex_init(&fs_info->tree_log_mutex);
925baedd 2619 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2620 mutex_init(&fs_info->transaction_kthread_mutex);
2621 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2622 mutex_init(&fs_info->volume_mutex);
1bbc621e 2623 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2624 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2625 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2626 init_rwsem(&fs_info->subvol_sem);
803b2f54 2627 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2628
ad618368 2629 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2630 btrfs_init_qgroup(fs_info);
416ac51d 2631
fa9c0d79
CM
2632 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2633 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2634
e6dcd2dc 2635 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2636 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2637 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2638 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2639
04216820
FM
2640 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2641
53b381b3
DW
2642 ret = btrfs_alloc_stripe_hash_table(fs_info);
2643 if (ret) {
83c8266a 2644 err = ret;
53b381b3
DW
2645 goto fail_alloc;
2646 }
2647
707e8a07 2648 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2649 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2650
3c4bb26b 2651 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2652
2653 /*
2654 * Read super block and check the signature bytes only
2655 */
a512bbf8 2656 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2657 if (IS_ERR(bh)) {
2658 err = PTR_ERR(bh);
16cdcec7 2659 goto fail_alloc;
20b45077 2660 }
39279cc3 2661
1104a885
DS
2662 /*
2663 * We want to check superblock checksum, the type is stored inside.
2664 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2665 */
2666 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2667 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2668 err = -EINVAL;
2669 goto fail_alloc;
2670 }
2671
2672 /*
2673 * super_copy is zeroed at allocation time and we never touch the
2674 * following bytes up to INFO_SIZE, the checksum is calculated from
2675 * the whole block of INFO_SIZE
2676 */
6c41761f
DS
2677 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2678 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2679 sizeof(*fs_info->super_for_commit));
a061fc8d 2680 brelse(bh);
5f39d397 2681
6c41761f 2682 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2683
1104a885
DS
2684 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2685 if (ret) {
efe120a0 2686 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2687 err = -EINVAL;
2688 goto fail_alloc;
2689 }
2690
6c41761f 2691 disk_super = fs_info->super_copy;
0f7d52f4 2692 if (!btrfs_super_root(disk_super))
16cdcec7 2693 goto fail_alloc;
0f7d52f4 2694
acce952b 2695 /* check FS state, whether FS is broken. */
87533c47
MX
2696 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2697 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2698
af31f5e5
CM
2699 /*
2700 * run through our array of backup supers and setup
2701 * our ring pointer to the oldest one
2702 */
2703 generation = btrfs_super_generation(disk_super);
2704 find_oldest_super_backup(fs_info, generation);
2705
75e7cb7f
LB
2706 /*
2707 * In the long term, we'll store the compression type in the super
2708 * block, and it'll be used for per file compression control.
2709 */
2710 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2711
2b82032c
YZ
2712 ret = btrfs_parse_options(tree_root, options);
2713 if (ret) {
2714 err = ret;
16cdcec7 2715 goto fail_alloc;
2b82032c 2716 }
dfe25020 2717
f2b636e8
JB
2718 features = btrfs_super_incompat_flags(disk_super) &
2719 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2720 if (features) {
2721 printk(KERN_ERR "BTRFS: couldn't mount because of "
2722 "unsupported optional features (%Lx).\n",
c1c9ff7c 2723 features);
f2b636e8 2724 err = -EINVAL;
16cdcec7 2725 goto fail_alloc;
f2b636e8
JB
2726 }
2727
707e8a07
DS
2728 /*
2729 * Leafsize and nodesize were always equal, this is only a sanity check.
2730 */
2731 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2732 btrfs_super_nodesize(disk_super)) {
2733 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2734 "blocksizes don't match. node %d leaf %d\n",
2735 btrfs_super_nodesize(disk_super),
707e8a07 2736 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2737 err = -EINVAL;
2738 goto fail_alloc;
2739 }
707e8a07 2740 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2741 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2742 "blocksize (%d) was too large\n",
707e8a07 2743 btrfs_super_nodesize(disk_super));
727011e0
CM
2744 err = -EINVAL;
2745 goto fail_alloc;
2746 }
2747
5d4f98a2 2748 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2749 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2750 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2751 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2752
3173a18f 2753 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2754 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2755
727011e0
CM
2756 /*
2757 * flag our filesystem as having big metadata blocks if
2758 * they are bigger than the page size
2759 */
707e8a07 2760 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2761 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2762 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2763 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2764 }
2765
bc3f116f 2766 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2767 sectorsize = btrfs_super_sectorsize(disk_super);
2768 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2769 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2770 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2771
2772 /*
2773 * mixed block groups end up with duplicate but slightly offset
2774 * extent buffers for the same range. It leads to corruptions
2775 */
2776 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2777 (sectorsize != nodesize)) {
aa8ee312 2778 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2779 "are not allowed for mixed block groups on %s\n",
2780 sb->s_id);
2781 goto fail_alloc;
2782 }
2783
ceda0864
MX
2784 /*
2785 * Needn't use the lock because there is no other task which will
2786 * update the flag.
2787 */
a6fa6fae 2788 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2789
f2b636e8
JB
2790 features = btrfs_super_compat_ro_flags(disk_super) &
2791 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2792 if (!(sb->s_flags & MS_RDONLY) && features) {
2793 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2794 "unsupported option features (%Lx).\n",
c1c9ff7c 2795 features);
f2b636e8 2796 err = -EINVAL;
16cdcec7 2797 goto fail_alloc;
f2b636e8 2798 }
61d92c32 2799
5cdc7ad3 2800 max_active = fs_info->thread_pool_size;
61d92c32 2801
2a458198
ES
2802 ret = btrfs_init_workqueues(fs_info, fs_devices);
2803 if (ret) {
2804 err = ret;
0dc3b84a
JB
2805 goto fail_sb_buffer;
2806 }
4543df7e 2807
4575c9cc 2808 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2809 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2810 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2811
db94535d 2812 tree_root->nodesize = nodesize;
db94535d 2813 tree_root->sectorsize = sectorsize;
87ee04eb 2814 tree_root->stripesize = stripesize;
a061fc8d
CM
2815
2816 sb->s_blocksize = sectorsize;
2817 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2818
3cae210f 2819 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2820 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2821 goto fail_sb_buffer;
2822 }
19c00ddc 2823
8d082fb7 2824 if (sectorsize != PAGE_SIZE) {
aa8ee312 2825 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2826 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2827 goto fail_sb_buffer;
2828 }
2829
925baedd 2830 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2831 ret = btrfs_read_sys_array(tree_root);
925baedd 2832 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2833 if (ret) {
aa8ee312 2834 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2835 "array on %s\n", sb->s_id);
5d4f98a2 2836 goto fail_sb_buffer;
84eed90f 2837 }
0b86a832 2838
84234f3a 2839 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2840
707e8a07
DS
2841 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2842 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2843
2844 chunk_root->node = read_tree_block(chunk_root,
2845 btrfs_super_chunk_root(disk_super),
ce86cd59 2846 generation);
64c043de
LB
2847 if (IS_ERR(chunk_root->node) ||
2848 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2849 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2850 sb->s_id);
e5fffbac 2851 if (!IS_ERR(chunk_root->node))
2852 free_extent_buffer(chunk_root->node);
95ab1f64 2853 chunk_root->node = NULL;
af31f5e5 2854 goto fail_tree_roots;
83121942 2855 }
5d4f98a2
YZ
2856 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2857 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2858
e17cade2 2859 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2860 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2861
0b86a832 2862 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2863 if (ret) {
aa8ee312 2864 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2865 sb->s_id);
af31f5e5 2866 goto fail_tree_roots;
2b82032c 2867 }
0b86a832 2868
8dabb742
SB
2869 /*
2870 * keep the device that is marked to be the target device for the
2871 * dev_replace procedure
2872 */
9eaed21e 2873 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2874
a6b0d5c8 2875 if (!fs_devices->latest_bdev) {
aa8ee312 2876 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2877 sb->s_id);
2878 goto fail_tree_roots;
2879 }
2880
af31f5e5 2881retry_root_backup:
84234f3a 2882 generation = btrfs_super_generation(disk_super);
0b86a832 2883
e20d96d6 2884 tree_root->node = read_tree_block(tree_root,
db94535d 2885 btrfs_super_root(disk_super),
ce86cd59 2886 generation);
64c043de
LB
2887 if (IS_ERR(tree_root->node) ||
2888 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2889 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2890 sb->s_id);
e5fffbac 2891 if (!IS_ERR(tree_root->node))
2892 free_extent_buffer(tree_root->node);
95ab1f64 2893 tree_root->node = NULL;
af31f5e5 2894 goto recovery_tree_root;
83121942 2895 }
af31f5e5 2896
5d4f98a2
YZ
2897 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2898 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2899 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2900
4bbcaa64
ES
2901 ret = btrfs_read_roots(fs_info, tree_root);
2902 if (ret)
af31f5e5 2903 goto recovery_tree_root;
f7a81ea4 2904
8929ecfa
YZ
2905 fs_info->generation = generation;
2906 fs_info->last_trans_committed = generation;
8929ecfa 2907
68310a5e
ID
2908 ret = btrfs_recover_balance(fs_info);
2909 if (ret) {
aa8ee312 2910 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2911 goto fail_block_groups;
2912 }
2913
733f4fbb
SB
2914 ret = btrfs_init_dev_stats(fs_info);
2915 if (ret) {
efe120a0 2916 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2917 ret);
2918 goto fail_block_groups;
2919 }
2920
8dabb742
SB
2921 ret = btrfs_init_dev_replace(fs_info);
2922 if (ret) {
efe120a0 2923 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2924 goto fail_block_groups;
2925 }
2926
9eaed21e 2927 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2928
b7c35e81
AJ
2929 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2930 if (ret) {
2931 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2932 goto fail_block_groups;
2933 }
2934
2935 ret = btrfs_sysfs_add_device(fs_devices);
2936 if (ret) {
2937 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2938 goto fail_fsdev_sysfs;
2939 }
2940
96f3136e 2941 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2942 if (ret) {
efe120a0 2943 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2944 goto fail_fsdev_sysfs;
c59021f8 2945 }
2946
c59021f8 2947 ret = btrfs_init_space_info(fs_info);
2948 if (ret) {
efe120a0 2949 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2950 goto fail_sysfs;
c59021f8 2951 }
2952
4bbcaa64 2953 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2954 if (ret) {
efe120a0 2955 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2956 goto fail_sysfs;
1b1d1f66 2957 }
5af3e8cc
SB
2958 fs_info->num_tolerated_disk_barrier_failures =
2959 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2960 if (fs_info->fs_devices->missing_devices >
2961 fs_info->num_tolerated_disk_barrier_failures &&
2962 !(sb->s_flags & MS_RDONLY)) {
78fa1770
ZL
2963 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2964 fs_info->fs_devices->missing_devices,
2965 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 2966 goto fail_sysfs;
292fd7fc 2967 }
9078a3e1 2968
a74a4b97
CM
2969 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2970 "btrfs-cleaner");
57506d50 2971 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2972 goto fail_sysfs;
a74a4b97
CM
2973
2974 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2975 tree_root,
2976 "btrfs-transaction");
57506d50 2977 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2978 goto fail_cleaner;
a74a4b97 2979
c289811c
CM
2980 if (!btrfs_test_opt(tree_root, SSD) &&
2981 !btrfs_test_opt(tree_root, NOSSD) &&
2982 !fs_info->fs_devices->rotating) {
efe120a0 2983 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2984 "mode\n");
2985 btrfs_set_opt(fs_info->mount_opt, SSD);
2986 }
2987
572d9ab7
DS
2988 /*
2989 * Mount does not set all options immediatelly, we can do it now and do
2990 * not have to wait for transaction commit
2991 */
2992 btrfs_apply_pending_changes(fs_info);
3818aea2 2993
21adbd5c
SB
2994#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2995 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2996 ret = btrfsic_mount(tree_root, fs_devices,
2997 btrfs_test_opt(tree_root,
2998 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2999 1 : 0,
3000 fs_info->check_integrity_print_mask);
3001 if (ret)
efe120a0 3002 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
3003 " integrity check module %s\n", sb->s_id);
3004 }
3005#endif
bcef60f2
AJ
3006 ret = btrfs_read_qgroup_config(fs_info);
3007 if (ret)
3008 goto fail_trans_kthread;
21adbd5c 3009
acce952b 3010 /* do not make disk changes in broken FS */
68ce9682 3011 if (btrfs_super_log_root(disk_super) != 0) {
63443bf5 3012 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3013 if (ret) {
63443bf5 3014 err = ret;
28c16cbb 3015 goto fail_qgroup;
79787eaa 3016 }
e02119d5 3017 }
1a40e23b 3018
76dda93c 3019 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3020 if (ret)
28c16cbb 3021 goto fail_qgroup;
76dda93c 3022
7c2ca468 3023 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3024 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3025 if (ret)
28c16cbb 3026 goto fail_qgroup;
d68fc57b 3027
5f316481 3028 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3029 ret = btrfs_recover_relocation(tree_root);
5f316481 3030 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
3031 if (ret < 0) {
3032 printk(KERN_WARNING
efe120a0 3033 "BTRFS: failed to recover relocation\n");
d7ce5843 3034 err = -EINVAL;
bcef60f2 3035 goto fail_qgroup;
d7ce5843 3036 }
7c2ca468 3037 }
1a40e23b 3038
3de4586c
CM
3039 location.objectid = BTRFS_FS_TREE_OBJECTID;
3040 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3041 location.offset = 0;
3de4586c 3042
3de4586c 3043 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3044 if (IS_ERR(fs_info->fs_root)) {
3045 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3046 goto fail_qgroup;
3140c9a3 3047 }
c289811c 3048
2b6ba629
ID
3049 if (sb->s_flags & MS_RDONLY)
3050 return 0;
59641015 3051
2b6ba629
ID
3052 down_read(&fs_info->cleanup_work_sem);
3053 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3054 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3055 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3056 close_ctree(tree_root);
3057 return ret;
3058 }
3059 up_read(&fs_info->cleanup_work_sem);
59641015 3060
2b6ba629
ID
3061 ret = btrfs_resume_balance_async(fs_info);
3062 if (ret) {
efe120a0 3063 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3064 close_ctree(tree_root);
3065 return ret;
e3acc2a6
JB
3066 }
3067
8dabb742
SB
3068 ret = btrfs_resume_dev_replace_async(fs_info);
3069 if (ret) {
efe120a0 3070 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3071 close_ctree(tree_root);
3072 return ret;
3073 }
3074
b382a324
JS
3075 btrfs_qgroup_rescan_resume(fs_info);
3076
4bbcaa64 3077 if (!fs_info->uuid_root) {
efe120a0 3078 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3079 ret = btrfs_create_uuid_tree(fs_info);
3080 if (ret) {
efe120a0 3081 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3082 ret);
3083 close_ctree(tree_root);
3084 return ret;
3085 }
4bbcaa64
ES
3086 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3087 fs_info->generation !=
3088 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3089 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3090 ret = btrfs_check_uuid_tree(fs_info);
3091 if (ret) {
efe120a0 3092 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3093 ret);
3094 close_ctree(tree_root);
3095 return ret;
3096 }
3097 } else {
3098 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3099 }
3100
47ab2a6c
JB
3101 fs_info->open = 1;
3102
ad2b2c80 3103 return 0;
39279cc3 3104
bcef60f2
AJ
3105fail_qgroup:
3106 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3107fail_trans_kthread:
3108 kthread_stop(fs_info->transaction_kthread);
54067ae9 3109 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3110 btrfs_free_fs_roots(fs_info);
3f157a2f 3111fail_cleaner:
a74a4b97 3112 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3113
3114 /*
3115 * make sure we're done with the btree inode before we stop our
3116 * kthreads
3117 */
3118 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3119
2365dd3c 3120fail_sysfs:
6618a59b 3121 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3122
b7c35e81
AJ
3123fail_fsdev_sysfs:
3124 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3125
1b1d1f66 3126fail_block_groups:
54067ae9 3127 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3128 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3129
3130fail_tree_roots:
3131 free_root_pointers(fs_info, 1);
2b8195bb 3132 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3133
39279cc3 3134fail_sb_buffer:
7abadb64 3135 btrfs_stop_all_workers(fs_info);
16cdcec7 3136fail_alloc:
4543df7e 3137fail_iput:
586e46e2
ID
3138 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3139
4543df7e 3140 iput(fs_info->btree_inode);
c404e0dc
MX
3141fail_bio_counter:
3142 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3143fail_delalloc_bytes:
3144 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3145fail_dirty_metadata_bytes:
3146 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3147fail_bdi:
7e662854 3148 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3149fail_srcu:
3150 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3151fail:
53b381b3 3152 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3153 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3154 return err;
af31f5e5
CM
3155
3156recovery_tree_root:
af31f5e5
CM
3157 if (!btrfs_test_opt(tree_root, RECOVERY))
3158 goto fail_tree_roots;
3159
3160 free_root_pointers(fs_info, 0);
3161
3162 /* don't use the log in recovery mode, it won't be valid */
3163 btrfs_set_super_log_root(disk_super, 0);
3164
3165 /* we can't trust the free space cache either */
3166 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3167
3168 ret = next_root_backup(fs_info, fs_info->super_copy,
3169 &num_backups_tried, &backup_index);
3170 if (ret == -1)
3171 goto fail_block_groups;
3172 goto retry_root_backup;
eb60ceac
CM
3173}
3174
f2984462
CM
3175static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3176{
f2984462
CM
3177 if (uptodate) {
3178 set_buffer_uptodate(bh);
3179 } else {
442a4f63
SB
3180 struct btrfs_device *device = (struct btrfs_device *)
3181 bh->b_private;
3182
b14af3b4
DS
3183 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3184 "lost page write due to IO error on %s",
606686ee 3185 rcu_str_deref(device->name));
1259ab75
CM
3186 /* note, we dont' set_buffer_write_io_error because we have
3187 * our own ways of dealing with the IO errors
3188 */
f2984462 3189 clear_buffer_uptodate(bh);
442a4f63 3190 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3191 }
3192 unlock_buffer(bh);
3193 put_bh(bh);
3194}
3195
29c36d72
AJ
3196int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3197 struct buffer_head **bh_ret)
3198{
3199 struct buffer_head *bh;
3200 struct btrfs_super_block *super;
3201 u64 bytenr;
3202
3203 bytenr = btrfs_sb_offset(copy_num);
3204 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3205 return -EINVAL;
3206
3207 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3208 /*
3209 * If we fail to read from the underlying devices, as of now
3210 * the best option we have is to mark it EIO.
3211 */
3212 if (!bh)
3213 return -EIO;
3214
3215 super = (struct btrfs_super_block *)bh->b_data;
3216 if (btrfs_super_bytenr(super) != bytenr ||
3217 btrfs_super_magic(super) != BTRFS_MAGIC) {
3218 brelse(bh);
3219 return -EINVAL;
3220 }
3221
3222 *bh_ret = bh;
3223 return 0;
3224}
3225
3226
a512bbf8
YZ
3227struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3228{
3229 struct buffer_head *bh;
3230 struct buffer_head *latest = NULL;
3231 struct btrfs_super_block *super;
3232 int i;
3233 u64 transid = 0;
92fc03fb 3234 int ret = -EINVAL;
a512bbf8
YZ
3235
3236 /* we would like to check all the supers, but that would make
3237 * a btrfs mount succeed after a mkfs from a different FS.
3238 * So, we need to add a special mount option to scan for
3239 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3240 */
3241 for (i = 0; i < 1; i++) {
29c36d72
AJ
3242 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3243 if (ret)
a512bbf8
YZ
3244 continue;
3245
3246 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3247
3248 if (!latest || btrfs_super_generation(super) > transid) {
3249 brelse(latest);
3250 latest = bh;
3251 transid = btrfs_super_generation(super);
3252 } else {
3253 brelse(bh);
3254 }
3255 }
92fc03fb
AJ
3256
3257 if (!latest)
3258 return ERR_PTR(ret);
3259
a512bbf8
YZ
3260 return latest;
3261}
3262
4eedeb75
HH
3263/*
3264 * this should be called twice, once with wait == 0 and
3265 * once with wait == 1. When wait == 0 is done, all the buffer heads
3266 * we write are pinned.
3267 *
3268 * They are released when wait == 1 is done.
3269 * max_mirrors must be the same for both runs, and it indicates how
3270 * many supers on this one device should be written.
3271 *
3272 * max_mirrors == 0 means to write them all.
3273 */
a512bbf8
YZ
3274static int write_dev_supers(struct btrfs_device *device,
3275 struct btrfs_super_block *sb,
3276 int do_barriers, int wait, int max_mirrors)
3277{
3278 struct buffer_head *bh;
3279 int i;
3280 int ret;
3281 int errors = 0;
3282 u32 crc;
3283 u64 bytenr;
a512bbf8
YZ
3284
3285 if (max_mirrors == 0)
3286 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3287
a512bbf8
YZ
3288 for (i = 0; i < max_mirrors; i++) {
3289 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3290 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3291 device->commit_total_bytes)
a512bbf8
YZ
3292 break;
3293
3294 if (wait) {
3295 bh = __find_get_block(device->bdev, bytenr / 4096,
3296 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3297 if (!bh) {
3298 errors++;
3299 continue;
3300 }
a512bbf8 3301 wait_on_buffer(bh);
4eedeb75
HH
3302 if (!buffer_uptodate(bh))
3303 errors++;
3304
3305 /* drop our reference */
3306 brelse(bh);
3307
3308 /* drop the reference from the wait == 0 run */
3309 brelse(bh);
3310 continue;
a512bbf8
YZ
3311 } else {
3312 btrfs_set_super_bytenr(sb, bytenr);
3313
3314 crc = ~(u32)0;
b0496686 3315 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3316 BTRFS_CSUM_SIZE, crc,
3317 BTRFS_SUPER_INFO_SIZE -
3318 BTRFS_CSUM_SIZE);
3319 btrfs_csum_final(crc, sb->csum);
3320
4eedeb75
HH
3321 /*
3322 * one reference for us, and we leave it for the
3323 * caller
3324 */
a512bbf8
YZ
3325 bh = __getblk(device->bdev, bytenr / 4096,
3326 BTRFS_SUPER_INFO_SIZE);
634554dc 3327 if (!bh) {
f14d104d
DS
3328 btrfs_err(device->dev_root->fs_info,
3329 "couldn't get super buffer head for bytenr %llu",
3330 bytenr);
634554dc
JB
3331 errors++;
3332 continue;
3333 }
3334
a512bbf8
YZ
3335 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3336
4eedeb75 3337 /* one reference for submit_bh */
a512bbf8 3338 get_bh(bh);
4eedeb75
HH
3339
3340 set_buffer_uptodate(bh);
a512bbf8
YZ
3341 lock_buffer(bh);
3342 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3343 bh->b_private = device;
a512bbf8
YZ
3344 }
3345
387125fc
CM
3346 /*
3347 * we fua the first super. The others we allow
3348 * to go down lazy.
3349 */
e8117c26
WS
3350 if (i == 0)
3351 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3352 else
3353 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3354 if (ret)
a512bbf8 3355 errors++;
a512bbf8
YZ
3356 }
3357 return errors < i ? 0 : -1;
3358}
3359
387125fc
CM
3360/*
3361 * endio for the write_dev_flush, this will wake anyone waiting
3362 * for the barrier when it is done
3363 */
4246a0b6 3364static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3365{
387125fc
CM
3366 if (bio->bi_private)
3367 complete(bio->bi_private);
3368 bio_put(bio);
3369}
3370
3371/*
3372 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3373 * sent down. With wait == 1, it waits for the previous flush.
3374 *
3375 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3376 * capable
3377 */
3378static int write_dev_flush(struct btrfs_device *device, int wait)
3379{
3380 struct bio *bio;
3381 int ret = 0;
3382
3383 if (device->nobarriers)
3384 return 0;
3385
3386 if (wait) {
3387 bio = device->flush_bio;
3388 if (!bio)
3389 return 0;
3390
3391 wait_for_completion(&device->flush_wait);
3392
4246a0b6
CH
3393 if (bio->bi_error) {
3394 ret = bio->bi_error;
5af3e8cc
SB
3395 btrfs_dev_stat_inc_and_print(device,
3396 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3397 }
3398
3399 /* drop the reference from the wait == 0 run */
3400 bio_put(bio);
3401 device->flush_bio = NULL;
3402
3403 return ret;
3404 }
3405
3406 /*
3407 * one reference for us, and we leave it for the
3408 * caller
3409 */
9c017abc 3410 device->flush_bio = NULL;
9be3395b 3411 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3412 if (!bio)
3413 return -ENOMEM;
3414
3415 bio->bi_end_io = btrfs_end_empty_barrier;
3416 bio->bi_bdev = device->bdev;
3417 init_completion(&device->flush_wait);
3418 bio->bi_private = &device->flush_wait;
3419 device->flush_bio = bio;
3420
3421 bio_get(bio);
21adbd5c 3422 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3423
3424 return 0;
3425}
3426
3427/*
3428 * send an empty flush down to each device in parallel,
3429 * then wait for them
3430 */
3431static int barrier_all_devices(struct btrfs_fs_info *info)
3432{
3433 struct list_head *head;
3434 struct btrfs_device *dev;
5af3e8cc
SB
3435 int errors_send = 0;
3436 int errors_wait = 0;
387125fc
CM
3437 int ret;
3438
3439 /* send down all the barriers */
3440 head = &info->fs_devices->devices;
3441 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3442 if (dev->missing)
3443 continue;
387125fc 3444 if (!dev->bdev) {
5af3e8cc 3445 errors_send++;
387125fc
CM
3446 continue;
3447 }
3448 if (!dev->in_fs_metadata || !dev->writeable)
3449 continue;
3450
3451 ret = write_dev_flush(dev, 0);
3452 if (ret)
5af3e8cc 3453 errors_send++;
387125fc
CM
3454 }
3455
3456 /* wait for all the barriers */
3457 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3458 if (dev->missing)
3459 continue;
387125fc 3460 if (!dev->bdev) {
5af3e8cc 3461 errors_wait++;
387125fc
CM
3462 continue;
3463 }
3464 if (!dev->in_fs_metadata || !dev->writeable)
3465 continue;
3466
3467 ret = write_dev_flush(dev, 1);
3468 if (ret)
5af3e8cc 3469 errors_wait++;
387125fc 3470 }
5af3e8cc
SB
3471 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3472 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3473 return -EIO;
3474 return 0;
3475}
3476
943c6e99
ZL
3477int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3478{
8789f4fe
ZL
3479 int raid_type;
3480 int min_tolerated = INT_MAX;
943c6e99 3481
8789f4fe
ZL
3482 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3483 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3484 min_tolerated = min(min_tolerated,
3485 btrfs_raid_array[BTRFS_RAID_SINGLE].
3486 tolerated_failures);
943c6e99 3487
8789f4fe
ZL
3488 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3489 if (raid_type == BTRFS_RAID_SINGLE)
3490 continue;
3491 if (!(flags & btrfs_raid_group[raid_type]))
3492 continue;
3493 min_tolerated = min(min_tolerated,
3494 btrfs_raid_array[raid_type].
3495 tolerated_failures);
3496 }
943c6e99 3497
8789f4fe
ZL
3498 if (min_tolerated == INT_MAX) {
3499 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3500 min_tolerated = 0;
3501 }
3502
3503 return min_tolerated;
943c6e99
ZL
3504}
3505
5af3e8cc
SB
3506int btrfs_calc_num_tolerated_disk_barrier_failures(
3507 struct btrfs_fs_info *fs_info)
3508{
3509 struct btrfs_ioctl_space_info space;
3510 struct btrfs_space_info *sinfo;
3511 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3512 BTRFS_BLOCK_GROUP_SYSTEM,
3513 BTRFS_BLOCK_GROUP_METADATA,
3514 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3515 int i;
3516 int c;
3517 int num_tolerated_disk_barrier_failures =
3518 (int)fs_info->fs_devices->num_devices;
3519
2c458045 3520 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3521 struct btrfs_space_info *tmp;
3522
3523 sinfo = NULL;
3524 rcu_read_lock();
3525 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3526 if (tmp->flags == types[i]) {
3527 sinfo = tmp;
3528 break;
3529 }
3530 }
3531 rcu_read_unlock();
3532
3533 if (!sinfo)
3534 continue;
3535
3536 down_read(&sinfo->groups_sem);
3537 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3538 u64 flags;
3539
3540 if (list_empty(&sinfo->block_groups[c]))
3541 continue;
3542
3543 btrfs_get_block_group_info(&sinfo->block_groups[c],
3544 &space);
3545 if (space.total_bytes == 0 || space.used_bytes == 0)
3546 continue;
3547 flags = space.flags;
943c6e99
ZL
3548
3549 num_tolerated_disk_barrier_failures = min(
3550 num_tolerated_disk_barrier_failures,
3551 btrfs_get_num_tolerated_disk_barrier_failures(
3552 flags));
5af3e8cc
SB
3553 }
3554 up_read(&sinfo->groups_sem);
3555 }
3556
3557 return num_tolerated_disk_barrier_failures;
3558}
3559
48a3b636 3560static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3561{
e5e9a520 3562 struct list_head *head;
f2984462 3563 struct btrfs_device *dev;
a061fc8d 3564 struct btrfs_super_block *sb;
f2984462 3565 struct btrfs_dev_item *dev_item;
f2984462
CM
3566 int ret;
3567 int do_barriers;
a236aed1
CM
3568 int max_errors;
3569 int total_errors = 0;
a061fc8d 3570 u64 flags;
f2984462
CM
3571
3572 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3573 backup_super_roots(root->fs_info);
f2984462 3574
6c41761f 3575 sb = root->fs_info->super_for_commit;
a061fc8d 3576 dev_item = &sb->dev_item;
e5e9a520 3577
174ba509 3578 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3579 head = &root->fs_info->fs_devices->devices;
d7306801 3580 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3581
5af3e8cc
SB
3582 if (do_barriers) {
3583 ret = barrier_all_devices(root->fs_info);
3584 if (ret) {
3585 mutex_unlock(
3586 &root->fs_info->fs_devices->device_list_mutex);
a4553fef 3587 btrfs_std_error(root->fs_info, ret,
5af3e8cc
SB
3588 "errors while submitting device barriers.");
3589 return ret;
3590 }
3591 }
387125fc 3592
1f78160c 3593 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3594 if (!dev->bdev) {
3595 total_errors++;
3596 continue;
3597 }
2b82032c 3598 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3599 continue;
3600
2b82032c 3601 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3602 btrfs_set_stack_device_type(dev_item, dev->type);
3603 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3604 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3605 dev->commit_total_bytes);
ce7213c7
MX
3606 btrfs_set_stack_device_bytes_used(dev_item,
3607 dev->commit_bytes_used);
a061fc8d
CM
3608 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3609 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3610 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3611 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3612 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3613
a061fc8d
CM
3614 flags = btrfs_super_flags(sb);
3615 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3616
a512bbf8 3617 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3618 if (ret)
3619 total_errors++;
f2984462 3620 }
a236aed1 3621 if (total_errors > max_errors) {
efe120a0 3622 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3623 total_errors);
a724b436 3624 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3625
9d565ba4 3626 /* FUA is masked off if unsupported and can't be the reason */
a4553fef 3627 btrfs_std_error(root->fs_info, -EIO,
9d565ba4
SB
3628 "%d errors while writing supers", total_errors);
3629 return -EIO;
a236aed1 3630 }
f2984462 3631
a512bbf8 3632 total_errors = 0;
1f78160c 3633 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3634 if (!dev->bdev)
3635 continue;
2b82032c 3636 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3637 continue;
3638
a512bbf8
YZ
3639 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3640 if (ret)
3641 total_errors++;
f2984462 3642 }
174ba509 3643 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3644 if (total_errors > max_errors) {
a4553fef 3645 btrfs_std_error(root->fs_info, -EIO,
79787eaa
JM
3646 "%d errors while writing supers", total_errors);
3647 return -EIO;
a236aed1 3648 }
f2984462
CM
3649 return 0;
3650}
3651
a512bbf8
YZ
3652int write_ctree_super(struct btrfs_trans_handle *trans,
3653 struct btrfs_root *root, int max_mirrors)
eb60ceac 3654{
f570e757 3655 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3656}
3657
cb517eab
MX
3658/* Drop a fs root from the radix tree and free it. */
3659void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3660 struct btrfs_root *root)
2619ba1f 3661{
4df27c4d 3662 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3663 radix_tree_delete(&fs_info->fs_roots_radix,
3664 (unsigned long)root->root_key.objectid);
4df27c4d 3665 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3666
3667 if (btrfs_root_refs(&root->root_item) == 0)
3668 synchronize_srcu(&fs_info->subvol_srcu);
3669
1a4319cc 3670 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3671 btrfs_free_log(NULL, root);
3321719e 3672
faa2dbf0
JB
3673 if (root->free_ino_pinned)
3674 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3675 if (root->free_ino_ctl)
3676 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3677 free_fs_root(root);
4df27c4d
YZ
3678}
3679
3680static void free_fs_root(struct btrfs_root *root)
3681{
57cdc8db 3682 iput(root->ino_cache_inode);
4df27c4d 3683 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3684 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3685 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3686 if (root->anon_dev)
3687 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3688 if (root->subv_writers)
3689 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3690 free_extent_buffer(root->node);
3691 free_extent_buffer(root->commit_root);
581bb050
LZ
3692 kfree(root->free_ino_ctl);
3693 kfree(root->free_ino_pinned);
d397712b 3694 kfree(root->name);
b0feb9d9 3695 btrfs_put_fs_root(root);
2619ba1f
CM
3696}
3697
cb517eab
MX
3698void btrfs_free_fs_root(struct btrfs_root *root)
3699{
3700 free_fs_root(root);
2619ba1f
CM
3701}
3702
c146afad 3703int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3704{
c146afad
YZ
3705 u64 root_objectid = 0;
3706 struct btrfs_root *gang[8];
65d33fd7
QW
3707 int i = 0;
3708 int err = 0;
3709 unsigned int ret = 0;
3710 int index;
e089f05c 3711
c146afad 3712 while (1) {
65d33fd7 3713 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3714 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3715 (void **)gang, root_objectid,
3716 ARRAY_SIZE(gang));
65d33fd7
QW
3717 if (!ret) {
3718 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3719 break;
65d33fd7 3720 }
5d4f98a2 3721 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3722
c146afad 3723 for (i = 0; i < ret; i++) {
65d33fd7
QW
3724 /* Avoid to grab roots in dead_roots */
3725 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3726 gang[i] = NULL;
3727 continue;
3728 }
3729 /* grab all the search result for later use */
3730 gang[i] = btrfs_grab_fs_root(gang[i]);
3731 }
3732 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3733
65d33fd7
QW
3734 for (i = 0; i < ret; i++) {
3735 if (!gang[i])
3736 continue;
c146afad 3737 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3738 err = btrfs_orphan_cleanup(gang[i]);
3739 if (err)
65d33fd7
QW
3740 break;
3741 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3742 }
3743 root_objectid++;
3744 }
65d33fd7
QW
3745
3746 /* release the uncleaned roots due to error */
3747 for (; i < ret; i++) {
3748 if (gang[i])
3749 btrfs_put_fs_root(gang[i]);
3750 }
3751 return err;
c146afad 3752}
a2135011 3753
c146afad
YZ
3754int btrfs_commit_super(struct btrfs_root *root)
3755{
3756 struct btrfs_trans_handle *trans;
a74a4b97 3757
c146afad 3758 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3759 btrfs_run_delayed_iputs(root);
c146afad 3760 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3761 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3762
3763 /* wait until ongoing cleanup work done */
3764 down_write(&root->fs_info->cleanup_work_sem);
3765 up_write(&root->fs_info->cleanup_work_sem);
3766
7a7eaa40 3767 trans = btrfs_join_transaction(root);
3612b495
TI
3768 if (IS_ERR(trans))
3769 return PTR_ERR(trans);
d52c1bcc 3770 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3771}
3772
3abdbd78 3773void close_ctree(struct btrfs_root *root)
c146afad
YZ
3774{
3775 struct btrfs_fs_info *fs_info = root->fs_info;
3776 int ret;
3777
3778 fs_info->closing = 1;
3779 smp_mb();
3780
803b2f54
SB
3781 /* wait for the uuid_scan task to finish */
3782 down(&fs_info->uuid_tree_rescan_sem);
3783 /* avoid complains from lockdep et al., set sem back to initial state */
3784 up(&fs_info->uuid_tree_rescan_sem);
3785
837d5b6e 3786 /* pause restriper - we want to resume on mount */
aa1b8cd4 3787 btrfs_pause_balance(fs_info);
837d5b6e 3788
8dabb742
SB
3789 btrfs_dev_replace_suspend_for_unmount(fs_info);
3790
aa1b8cd4 3791 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3792
3793 /* wait for any defraggers to finish */
3794 wait_event(fs_info->transaction_wait,
3795 (atomic_read(&fs_info->defrag_running) == 0));
3796
3797 /* clear out the rbtree of defraggable inodes */
26176e7c 3798 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3799
21c7e756
MX
3800 cancel_work_sync(&fs_info->async_reclaim_work);
3801
c146afad 3802 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3803 /*
3804 * If the cleaner thread is stopped and there are
3805 * block groups queued for removal, the deletion will be
3806 * skipped when we quit the cleaner thread.
3807 */
e44163e1 3808 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3809
acce952b 3810 ret = btrfs_commit_super(root);
3811 if (ret)
04892340 3812 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3813 }
3814
87533c47 3815 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3816 btrfs_error_commit_super(root);
0f7d52f4 3817
e3029d9f
AV
3818 kthread_stop(fs_info->transaction_kthread);
3819 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3820
f25784b3
YZ
3821 fs_info->closing = 2;
3822 smp_mb();
3823
04892340 3824 btrfs_free_qgroup_config(fs_info);
bcef60f2 3825
963d678b 3826 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3827 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3828 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3829 }
bcc63abb 3830
6618a59b 3831 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3832 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3833
faa2dbf0 3834 btrfs_free_fs_roots(fs_info);
d10c5f31 3835
1a4319cc
LB
3836 btrfs_put_block_group_cache(fs_info);
3837
2b1360da
JB
3838 btrfs_free_block_groups(fs_info);
3839
de348ee0
WS
3840 /*
3841 * we must make sure there is not any read request to
3842 * submit after we stopping all workers.
3843 */
3844 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3845 btrfs_stop_all_workers(fs_info);
3846
47ab2a6c 3847 fs_info->open = 0;
13e6c37b 3848 free_root_pointers(fs_info, 1);
9ad6b7bc 3849
13e6c37b 3850 iput(fs_info->btree_inode);
d6bfde87 3851
21adbd5c
SB
3852#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3853 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3854 btrfsic_unmount(root, fs_info->fs_devices);
3855#endif
3856
dfe25020 3857 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3858 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3859
e2d84521 3860 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3861 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3862 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3863 bdi_destroy(&fs_info->bdi);
76dda93c 3864 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3865
53b381b3
DW
3866 btrfs_free_stripe_hash_table(fs_info);
3867
cdfb080e 3868 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3869 root->orphan_block_rsv = NULL;
04216820
FM
3870
3871 lock_chunks(root);
3872 while (!list_empty(&fs_info->pinned_chunks)) {
3873 struct extent_map *em;
3874
3875 em = list_first_entry(&fs_info->pinned_chunks,
3876 struct extent_map, list);
3877 list_del_init(&em->list);
3878 free_extent_map(em);
3879 }
3880 unlock_chunks(root);
eb60ceac
CM
3881}
3882
b9fab919
CM
3883int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3884 int atomic)
5f39d397 3885{
1259ab75 3886 int ret;
727011e0 3887 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3888
0b32f4bb 3889 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3890 if (!ret)
3891 return ret;
3892
3893 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3894 parent_transid, atomic);
3895 if (ret == -EAGAIN)
3896 return ret;
1259ab75 3897 return !ret;
5f39d397
CM
3898}
3899
3900int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3901{
0b32f4bb 3902 return set_extent_buffer_uptodate(buf);
5f39d397 3903}
6702ed49 3904
5f39d397
CM
3905void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3906{
06ea65a3 3907 struct btrfs_root *root;
5f39d397 3908 u64 transid = btrfs_header_generation(buf);
b9473439 3909 int was_dirty;
b4ce94de 3910
06ea65a3
JB
3911#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3912 /*
3913 * This is a fast path so only do this check if we have sanity tests
3914 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3915 * outside of the sanity tests.
3916 */
3917 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3918 return;
3919#endif
3920 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3921 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3922 if (transid != root->fs_info->generation)
3923 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3924 "found %llu running %llu\n",
c1c9ff7c 3925 buf->start, transid, root->fs_info->generation);
0b32f4bb 3926 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3927 if (!was_dirty)
3928 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3929 buf->len,
3930 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3931#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3932 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3933 btrfs_print_leaf(root, buf);
3934 ASSERT(0);
3935 }
3936#endif
eb60ceac
CM
3937}
3938
b53d3f5d
LB
3939static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3940 int flush_delayed)
16cdcec7
MX
3941{
3942 /*
3943 * looks as though older kernels can get into trouble with
3944 * this code, they end up stuck in balance_dirty_pages forever
3945 */
e2d84521 3946 int ret;
16cdcec7
MX
3947
3948 if (current->flags & PF_MEMALLOC)
3949 return;
3950
b53d3f5d
LB
3951 if (flush_delayed)
3952 btrfs_balance_delayed_items(root);
16cdcec7 3953
e2d84521
MX
3954 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3955 BTRFS_DIRTY_METADATA_THRESH);
3956 if (ret > 0) {
d0e1d66b
NJ
3957 balance_dirty_pages_ratelimited(
3958 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3959 }
3960 return;
3961}
3962
b53d3f5d 3963void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3964{
b53d3f5d
LB
3965 __btrfs_btree_balance_dirty(root, 1);
3966}
585ad2c3 3967
b53d3f5d
LB
3968void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3969{
3970 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3971}
6b80053d 3972
ca7a79ad 3973int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3974{
727011e0 3975 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3976 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3977}
0da5468f 3978
fcd1f065 3979static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3980 int read_only)
3981{
c926093e
DS
3982 struct btrfs_super_block *sb = fs_info->super_copy;
3983 int ret = 0;
3984
21e7626b
DS
3985 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3986 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3987 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3988 ret = -EINVAL;
3989 }
21e7626b
DS
3990 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3991 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3992 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3993 ret = -EINVAL;
3994 }
21e7626b
DS
3995 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3996 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3997 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3998 ret = -EINVAL;
3999 }
4000
1104a885 4001 /*
c926093e
DS
4002 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4003 * items yet, they'll be verified later. Issue just a warning.
1104a885 4004 */
21e7626b 4005 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 4006 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4007 btrfs_super_root(sb));
21e7626b 4008 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
4009 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4010 btrfs_super_chunk_root(sb));
21e7626b 4011 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 4012 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 4013 btrfs_super_log_root(sb));
c926093e 4014
75d6ad38
DS
4015 /*
4016 * Check the lower bound, the alignment and other constraints are
4017 * checked later.
4018 */
4019 if (btrfs_super_nodesize(sb) < 4096) {
4020 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4021 btrfs_super_nodesize(sb));
4022 ret = -EINVAL;
4023 }
4024 if (btrfs_super_sectorsize(sb) < 4096) {
4025 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4026 btrfs_super_sectorsize(sb));
4027 ret = -EINVAL;
4028 }
4029
c926093e
DS
4030 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4031 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4032 fs_info->fsid, sb->dev_item.fsid);
4033 ret = -EINVAL;
4034 }
4035
4036 /*
4037 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4038 * done later
4039 */
21e7626b 4040 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4041 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4042 btrfs_super_num_devices(sb));
75d6ad38
DS
4043 if (btrfs_super_num_devices(sb) == 0) {
4044 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4045 ret = -EINVAL;
4046 }
c926093e 4047
21e7626b 4048 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4049 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4050 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4051 ret = -EINVAL;
4052 }
4053
ce7fca5f
DS
4054 /*
4055 * Obvious sys_chunk_array corruptions, it must hold at least one key
4056 * and one chunk
4057 */
4058 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4059 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4060 btrfs_super_sys_array_size(sb),
4061 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4062 ret = -EINVAL;
4063 }
4064 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4065 + sizeof(struct btrfs_chunk)) {
d2207129 4066 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4067 btrfs_super_sys_array_size(sb),
4068 sizeof(struct btrfs_disk_key)
4069 + sizeof(struct btrfs_chunk));
4070 ret = -EINVAL;
4071 }
4072
c926093e
DS
4073 /*
4074 * The generation is a global counter, we'll trust it more than the others
4075 * but it's still possible that it's the one that's wrong.
4076 */
21e7626b 4077 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4078 printk(KERN_WARNING
4079 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4080 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4081 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4082 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4083 printk(KERN_WARNING
4084 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4085 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4086
4087 return ret;
acce952b 4088}
4089
48a3b636 4090static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4091{
acce952b 4092 mutex_lock(&root->fs_info->cleaner_mutex);
4093 btrfs_run_delayed_iputs(root);
4094 mutex_unlock(&root->fs_info->cleaner_mutex);
4095
4096 down_write(&root->fs_info->cleanup_work_sem);
4097 up_write(&root->fs_info->cleanup_work_sem);
4098
4099 /* cleanup FS via transaction */
4100 btrfs_cleanup_transaction(root);
acce952b 4101}
4102
143bede5 4103static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4104{
acce952b 4105 struct btrfs_ordered_extent *ordered;
acce952b 4106
199c2a9c 4107 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4108 /*
4109 * This will just short circuit the ordered completion stuff which will
4110 * make sure the ordered extent gets properly cleaned up.
4111 */
199c2a9c 4112 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4113 root_extent_list)
4114 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4115 spin_unlock(&root->ordered_extent_lock);
4116}
4117
4118static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4119{
4120 struct btrfs_root *root;
4121 struct list_head splice;
4122
4123 INIT_LIST_HEAD(&splice);
4124
4125 spin_lock(&fs_info->ordered_root_lock);
4126 list_splice_init(&fs_info->ordered_roots, &splice);
4127 while (!list_empty(&splice)) {
4128 root = list_first_entry(&splice, struct btrfs_root,
4129 ordered_root);
1de2cfde
JB
4130 list_move_tail(&root->ordered_root,
4131 &fs_info->ordered_roots);
199c2a9c 4132
2a85d9ca 4133 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4134 btrfs_destroy_ordered_extents(root);
4135
2a85d9ca
LB
4136 cond_resched();
4137 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4138 }
4139 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4140}
4141
35a3621b
SB
4142static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4143 struct btrfs_root *root)
acce952b 4144{
4145 struct rb_node *node;
4146 struct btrfs_delayed_ref_root *delayed_refs;
4147 struct btrfs_delayed_ref_node *ref;
4148 int ret = 0;
4149
4150 delayed_refs = &trans->delayed_refs;
4151
4152 spin_lock(&delayed_refs->lock);
d7df2c79 4153 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4154 spin_unlock(&delayed_refs->lock);
efe120a0 4155 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4156 return ret;
4157 }
4158
d7df2c79
JB
4159 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4160 struct btrfs_delayed_ref_head *head;
c6fc2454 4161 struct btrfs_delayed_ref_node *tmp;
e78417d1 4162 bool pin_bytes = false;
acce952b 4163
d7df2c79
JB
4164 head = rb_entry(node, struct btrfs_delayed_ref_head,
4165 href_node);
4166 if (!mutex_trylock(&head->mutex)) {
4167 atomic_inc(&head->node.refs);
4168 spin_unlock(&delayed_refs->lock);
eb12db69 4169
d7df2c79 4170 mutex_lock(&head->mutex);
e78417d1 4171 mutex_unlock(&head->mutex);
d7df2c79
JB
4172 btrfs_put_delayed_ref(&head->node);
4173 spin_lock(&delayed_refs->lock);
4174 continue;
4175 }
4176 spin_lock(&head->lock);
c6fc2454
QW
4177 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4178 list) {
d7df2c79 4179 ref->in_tree = 0;
c6fc2454 4180 list_del(&ref->list);
d7df2c79
JB
4181 atomic_dec(&delayed_refs->num_entries);
4182 btrfs_put_delayed_ref(ref);
e78417d1 4183 }
d7df2c79
JB
4184 if (head->must_insert_reserved)
4185 pin_bytes = true;
4186 btrfs_free_delayed_extent_op(head->extent_op);
4187 delayed_refs->num_heads--;
4188 if (head->processing == 0)
4189 delayed_refs->num_heads_ready--;
4190 atomic_dec(&delayed_refs->num_entries);
4191 head->node.in_tree = 0;
4192 rb_erase(&head->href_node, &delayed_refs->href_root);
4193 spin_unlock(&head->lock);
4194 spin_unlock(&delayed_refs->lock);
4195 mutex_unlock(&head->mutex);
acce952b 4196
d7df2c79
JB
4197 if (pin_bytes)
4198 btrfs_pin_extent(root, head->node.bytenr,
4199 head->node.num_bytes, 1);
4200 btrfs_put_delayed_ref(&head->node);
acce952b 4201 cond_resched();
4202 spin_lock(&delayed_refs->lock);
4203 }
4204
4205 spin_unlock(&delayed_refs->lock);
4206
4207 return ret;
4208}
4209
143bede5 4210static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4211{
4212 struct btrfs_inode *btrfs_inode;
4213 struct list_head splice;
4214
4215 INIT_LIST_HEAD(&splice);
4216
eb73c1b7
MX
4217 spin_lock(&root->delalloc_lock);
4218 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4219
4220 while (!list_empty(&splice)) {
eb73c1b7
MX
4221 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4222 delalloc_inodes);
acce952b 4223
4224 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4225 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4226 &btrfs_inode->runtime_flags);
eb73c1b7 4227 spin_unlock(&root->delalloc_lock);
acce952b 4228
4229 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4230
eb73c1b7 4231 spin_lock(&root->delalloc_lock);
acce952b 4232 }
4233
eb73c1b7
MX
4234 spin_unlock(&root->delalloc_lock);
4235}
4236
4237static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4238{
4239 struct btrfs_root *root;
4240 struct list_head splice;
4241
4242 INIT_LIST_HEAD(&splice);
4243
4244 spin_lock(&fs_info->delalloc_root_lock);
4245 list_splice_init(&fs_info->delalloc_roots, &splice);
4246 while (!list_empty(&splice)) {
4247 root = list_first_entry(&splice, struct btrfs_root,
4248 delalloc_root);
4249 list_del_init(&root->delalloc_root);
4250 root = btrfs_grab_fs_root(root);
4251 BUG_ON(!root);
4252 spin_unlock(&fs_info->delalloc_root_lock);
4253
4254 btrfs_destroy_delalloc_inodes(root);
4255 btrfs_put_fs_root(root);
4256
4257 spin_lock(&fs_info->delalloc_root_lock);
4258 }
4259 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4260}
4261
4262static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4263 struct extent_io_tree *dirty_pages,
4264 int mark)
4265{
4266 int ret;
acce952b 4267 struct extent_buffer *eb;
4268 u64 start = 0;
4269 u64 end;
acce952b 4270
4271 while (1) {
4272 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4273 mark, NULL);
acce952b 4274 if (ret)
4275 break;
4276
4277 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4278 while (start <= end) {
01d58472 4279 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4280 start += root->nodesize;
fd8b2b61 4281 if (!eb)
acce952b 4282 continue;
fd8b2b61 4283 wait_on_extent_buffer_writeback(eb);
acce952b 4284
fd8b2b61
JB
4285 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4286 &eb->bflags))
4287 clear_extent_buffer_dirty(eb);
4288 free_extent_buffer_stale(eb);
acce952b 4289 }
4290 }
4291
4292 return ret;
4293}
4294
4295static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4296 struct extent_io_tree *pinned_extents)
4297{
4298 struct extent_io_tree *unpin;
4299 u64 start;
4300 u64 end;
4301 int ret;
ed0eaa14 4302 bool loop = true;
acce952b 4303
4304 unpin = pinned_extents;
ed0eaa14 4305again:
acce952b 4306 while (1) {
4307 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4308 EXTENT_DIRTY, NULL);
acce952b 4309 if (ret)
4310 break;
4311
acce952b 4312 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4313 btrfs_error_unpin_extent_range(root, start, end);
4314 cond_resched();
4315 }
4316
ed0eaa14
LB
4317 if (loop) {
4318 if (unpin == &root->fs_info->freed_extents[0])
4319 unpin = &root->fs_info->freed_extents[1];
4320 else
4321 unpin = &root->fs_info->freed_extents[0];
4322 loop = false;
4323 goto again;
4324 }
4325
acce952b 4326 return 0;
4327}
4328
50d9aa99
JB
4329static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4330 struct btrfs_fs_info *fs_info)
4331{
4332 struct btrfs_ordered_extent *ordered;
4333
4334 spin_lock(&fs_info->trans_lock);
4335 while (!list_empty(&cur_trans->pending_ordered)) {
4336 ordered = list_first_entry(&cur_trans->pending_ordered,
4337 struct btrfs_ordered_extent,
4338 trans_list);
4339 list_del_init(&ordered->trans_list);
4340 spin_unlock(&fs_info->trans_lock);
4341
4342 btrfs_put_ordered_extent(ordered);
4343 spin_lock(&fs_info->trans_lock);
4344 }
4345 spin_unlock(&fs_info->trans_lock);
4346}
4347
49b25e05
JM
4348void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4349 struct btrfs_root *root)
4350{
4351 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4352
4a9d8bde 4353 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4354 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4355
4a9d8bde 4356 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4357 wake_up(&root->fs_info->transaction_wait);
49b25e05 4358
50d9aa99 4359 btrfs_free_pending_ordered(cur_trans, root->fs_info);
67cde344
MX
4360 btrfs_destroy_delayed_inodes(root);
4361 btrfs_assert_delayed_root_empty(root);
49b25e05 4362
49b25e05
JM
4363 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4364 EXTENT_DIRTY);
6e841e32
LB
4365 btrfs_destroy_pinned_extent(root,
4366 root->fs_info->pinned_extents);
49b25e05 4367
4a9d8bde
MX
4368 cur_trans->state =TRANS_STATE_COMPLETED;
4369 wake_up(&cur_trans->commit_wait);
4370
49b25e05
JM
4371 /*
4372 memset(cur_trans, 0, sizeof(*cur_trans));
4373 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4374 */
4375}
4376
48a3b636 4377static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4378{
4379 struct btrfs_transaction *t;
acce952b 4380
acce952b 4381 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4382
a4abeea4 4383 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4384 while (!list_empty(&root->fs_info->trans_list)) {
4385 t = list_first_entry(&root->fs_info->trans_list,
4386 struct btrfs_transaction, list);
4387 if (t->state >= TRANS_STATE_COMMIT_START) {
4388 atomic_inc(&t->use_count);
4389 spin_unlock(&root->fs_info->trans_lock);
4390 btrfs_wait_for_commit(root, t->transid);
4391 btrfs_put_transaction(t);
4392 spin_lock(&root->fs_info->trans_lock);
4393 continue;
4394 }
4395 if (t == root->fs_info->running_transaction) {
4396 t->state = TRANS_STATE_COMMIT_DOING;
4397 spin_unlock(&root->fs_info->trans_lock);
4398 /*
4399 * We wait for 0 num_writers since we don't hold a trans
4400 * handle open currently for this transaction.
4401 */
4402 wait_event(t->writer_wait,
4403 atomic_read(&t->num_writers) == 0);
4404 } else {
4405 spin_unlock(&root->fs_info->trans_lock);
4406 }
4407 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4408
724e2315
JB
4409 spin_lock(&root->fs_info->trans_lock);
4410 if (t == root->fs_info->running_transaction)
4411 root->fs_info->running_transaction = NULL;
acce952b 4412 list_del_init(&t->list);
724e2315 4413 spin_unlock(&root->fs_info->trans_lock);
acce952b 4414
724e2315
JB
4415 btrfs_put_transaction(t);
4416 trace_btrfs_transaction_commit(root);
4417 spin_lock(&root->fs_info->trans_lock);
4418 }
4419 spin_unlock(&root->fs_info->trans_lock);
4420 btrfs_destroy_all_ordered_extents(root->fs_info);
4421 btrfs_destroy_delayed_inodes(root);
4422 btrfs_assert_delayed_root_empty(root);
4423 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4424 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4425 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4426
4427 return 0;
4428}
4429
e8c9f186 4430static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4431 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4432 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4433 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4434 /* note we're sharing with inode.c for the merge bio hook */
4435 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4436};