Btrfs: added helper to create new trees
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
eb60ceac 48
d1310b2e 49static struct extent_io_ops btree_extent_io_ops;
8b712842 50static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 51static void free_fs_root(struct btrfs_root *root);
fcd1f065 52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 53 int read_only);
143bede5
JM
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
143bede5
JM
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
79787eaa 102 int error;
44b8bd7e
CM
103};
104
85d4e461
CM
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
4008c04a 115 *
85d4e461
CM
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 119 *
85d4e461
CM
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 123 *
85d4e461
CM
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
4008c04a
CM
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
85d4e461
CM
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
4008c04a 150};
85d4e461
CM
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
4008c04a
CM
182#endif
183
d352ac68
CM
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
b2950863 188static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 189 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 190 int create)
7eccb903 191{
5f39d397
CM
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
890871be 196 read_lock(&em_tree->lock);
d1310b2e 197 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 201 read_unlock(&em_tree->lock);
5f39d397 202 goto out;
a061fc8d 203 }
890871be 204 read_unlock(&em_tree->lock);
7b13b7b1 205
172ddd60 206 em = alloc_extent_map();
5f39d397
CM
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
0afbaf8c 212 em->len = (u64)-1;
c8b97818 213 em->block_len = (u64)-1;
5f39d397 214 em->block_start = 0;
a061fc8d 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 216
890871be 217 write_lock(&em_tree->lock);
5f39d397
CM
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
0afbaf8c
CM
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
5f39d397 223 free_extent_map(em);
7b13b7b1 224 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 225 if (em) {
7b13b7b1 226 ret = 0;
0afbaf8c
CM
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
7b13b7b1 230 ret = -EIO;
0afbaf8c 231 }
5f39d397 232 } else if (ret) {
7b13b7b1
CM
233 free_extent_map(em);
234 em = NULL;
5f39d397 235 }
890871be 236 write_unlock(&em_tree->lock);
7b13b7b1
CM
237
238 if (ret)
239 em = ERR_PTR(ret);
5f39d397
CM
240out:
241 return em;
7eccb903
CM
242}
243
19c00ddc
CM
244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245{
163e783e 246 return crc32c(seed, data, len);
19c00ddc
CM
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
7e75bf3f 251 put_unaligned_le32(~crc, result);
19c00ddc
CM
252}
253
d352ac68
CM
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
19c00ddc
CM
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
6c41761f 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 262 char *result = NULL;
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
607d432d 271 unsigned long inline_result;
19c00ddc
CM
272
273 len = buf->len - offset;
d397712b 274 while (len > 0) {
19c00ddc 275 err = map_private_extent_buffer(buf, offset, 32,
a6591715 276 &kaddr, &map_start, &map_len);
d397712b 277 if (err)
19c00ddc 278 return 1;
19c00ddc
CM
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
19c00ddc 284 }
607d432d
JB
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
19c00ddc
CM
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
607d432d 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
297 u32 val;
298 u32 found = 0;
607d432d 299 memcpy(&found, result, csum_size);
e4204ded 300
607d432d 301 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
1259ab75 351 ret = 1;
0b32f4bb 352 clear_extent_buffer_uptodate(eb);
33958dc6 353out:
2ac55d41
JB
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
1259ab75 356 return ret;
1259ab75
CM
357}
358
d352ac68
CM
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
f188591e
CM
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
ca7a79ad 365 u64 start, u64 parent_transid)
f188591e
CM
366{
367 struct extent_io_tree *io_tree;
ea466794 368 int failed = 0;
f188591e
CM
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
ea466794 372 int failed_mirror = 0;
f188591e 373
a826d6dc 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
bb82ab88
AJ
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
f188591e 379 btree_get_extent, mirror_num);
b9fab919
CM
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
ea466794 382 break;
d397712b 383
a826d6dc
JB
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
390 break;
391
f188591e
CM
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
4235298e 394 if (num_copies == 1)
ea466794 395 break;
4235298e 396
5cf1ab56
JB
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
f188591e 402 mirror_num++;
ea466794
JB
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
4235298e 406 if (mirror_num > num_copies)
ea466794 407 break;
f188591e 408 }
ea466794
JB
409
410 if (failed && !ret)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
f188591e 414}
19c00ddc 415
d352ac68 416/*
d397712b
CM
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 419 */
d397712b 420
b2950863 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 422{
d1310b2e 423 struct extent_io_tree *tree;
35ebb934 424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 425 u64 found_start;
19c00ddc 426 struct extent_buffer *eb;
f188591e 427
d1310b2e 428 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 429
4f2de97a
JB
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
19c00ddc
CM
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
55c69072 435 WARN_ON(1);
4f2de97a 436 return 0;
55c69072 437 }
727011e0 438 if (eb->pages[0] != page) {
55c69072 439 WARN_ON(1);
4f2de97a 440 return 0;
55c69072
CM
441 }
442 if (!PageUptodate(page)) {
55c69072 443 WARN_ON(1);
4f2de97a 444 return 0;
19c00ddc 445 }
19c00ddc 446 csum_tree_block(root, eb, 0);
19c00ddc
CM
447 return 0;
448}
449
2b82032c
YZ
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
a826d6dc
JB
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
727011e0
CM
536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538{
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569}
570
b2950863 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 572 struct extent_state *state, int mirror)
ce9adaa5
CM
573{
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
ce9adaa5
CM
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 579 int ret = 0;
727011e0 580 int reads_done;
ce9adaa5 581
ce9adaa5
CM
582 if (!page->private)
583 goto out;
d397712b 584
727011e0 585 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 586 eb = (struct extent_buffer *)page->private;
d397712b 587
0b32f4bb
JB
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
594 if (!reads_done)
595 goto err;
f188591e 596
5cf1ab56 597 eb->read_mirror = mirror;
ea466794
JB
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
ce9adaa5 603 found_start = btrfs_header_bytenr(eb);
727011e0 604 if (found_start != eb->start) {
7a36ddec 605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
f188591e 609 ret = -EIO;
ce9adaa5
CM
610 goto err;
611 }
2b82032c 612 if (check_tree_block_fsid(root, eb)) {
7a36ddec 613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 614 (unsigned long long)eb->start);
1259ab75
CM
615 ret = -EIO;
616 goto err;
617 }
ce9adaa5
CM
618 found_level = btrfs_header_level(eb);
619
85d4e461
CM
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
4008c04a 622
ce9adaa5 623 ret = csum_tree_block(root, eb, 1);
a826d6dc 624 if (ret) {
f188591e 625 ret = -EIO;
a826d6dc
JB
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
0b32f4bb
JB
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
ce9adaa5 641err:
4bb31e92
AJ
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
0b32f4bb
JB
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
ce9adaa5 650out:
f188591e 651 return ret;
ce9adaa5
CM
652}
653
ea466794 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 655{
4bb31e92
AJ
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
4f2de97a 659 eb = (struct extent_buffer *)page->private;
ea466794 660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 661 eb->read_mirror = failed_mirror;
ea466794 662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 663 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
664 return -EIO; /* we fixed nothing */
665}
666
ce9adaa5 667static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
668{
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
ce9adaa5 671
ce9adaa5 672 fs_info = end_io_wq->info;
ce9adaa5 673 end_io_wq->error = err;
8b712842
CM
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
d20f7043 676
7b6d91da 677 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 678 if (end_io_wq->metadata == 1)
cad321ad
CM
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
0cb59c99
JB
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
cad321ad
CM
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
d20f7043
CM
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
ce9adaa5
CM
695}
696
0cb59c99
JB
697/*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
22c59948
CM
704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
0b86a832 706{
ce9adaa5 707 struct end_io_wq *end_io_wq;
ce9adaa5
CM
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
22c59948 714 end_io_wq->info = info;
ce9adaa5
CM
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
22c59948 717 end_io_wq->metadata = metadata;
ce9adaa5
CM
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
721 return 0;
722}
723
b64a2851 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 725{
4854ddd0
CM
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730}
0986fe9e 731
4a69a410
CM
732static void run_one_async_start(struct btrfs_work *work)
733{
4a69a410 734 struct async_submit_bio *async;
79787eaa 735 int ret;
4a69a410
CM
736
737 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
4a69a410
CM
743}
744
745static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
746{
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
4854ddd0 749 int limit;
8b712842
CM
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 753
b64a2851 754 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
755 limit = limit * 2 / 3;
756
8b712842 757 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 758
b64a2851
CM
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
761 wake_up(&fs_info->async_submit_wait);
762
79787eaa
JM
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
4a69a410 769 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
4a69a410
CM
772}
773
774static void run_one_async_free(struct btrfs_work *work)
775{
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
779 kfree(async);
780}
781
44b8bd7e
CM
782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
c8b97818 784 unsigned long bio_flags,
eaf25d93 785 u64 bio_offset,
4a69a410
CM
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
788{
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
4a69a410
CM
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
8b712842 806 async->work.flags = 0;
c8b97818 807 async->bio_flags = bio_flags;
eaf25d93 808 async->bio_offset = bio_offset;
8c8bee1d 809
79787eaa
JM
810 async->error = 0;
811
cb03c743 812 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 813
7b6d91da 814 if (rw & REQ_SYNC)
d313d7a3
CM
815 btrfs_set_work_high_prio(&async->work);
816
8b712842 817 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 818
d397712b 819 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
44b8bd7e
CM
825 return 0;
826}
827
ce3ed71a
CM
828static int btree_csum_one_bio(struct bio *bio)
829{
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
79787eaa 833 int ret = 0;
ce3ed71a
CM
834
835 WARN_ON(bio->bi_vcnt <= 0);
d397712b 836 while (bio_index < bio->bi_vcnt) {
ce3ed71a 837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
ce3ed71a
CM
841 bio_index++;
842 bvec++;
843 }
79787eaa 844 return ret;
ce3ed71a
CM
845}
846
4a69a410
CM
847static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
eaf25d93
CM
849 unsigned long bio_flags,
850 u64 bio_offset)
22c59948 851{
8b712842
CM
852 /*
853 * when we're called for a write, we're already in the async
5443be45 854 * submission context. Just jump into btrfs_map_bio
8b712842 855 */
79787eaa 856 return btree_csum_one_bio(bio);
4a69a410 857}
22c59948 858
4a69a410 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
4a69a410 862{
8b712842 863 /*
4a69a410
CM
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
8b712842 866 */
8b712842 867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
868}
869
44b8bd7e 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
44b8bd7e 873{
cad321ad
CM
874 int ret;
875
7b6d91da 876 if (!(rw & REQ_WRITE)) {
f3f266ab 877
4a69a410
CM
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
f3f266ab
CM
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
1d4284bd
CM
884 if (ret)
885 return ret;
4a69a410 886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 887 mirror_num, 0);
44b8bd7e 888 }
d313d7a3 889
cad321ad
CM
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
44b8bd7e 894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 895 inode, rw, bio, mirror_num, 0,
eaf25d93 896 bio_offset,
4a69a410
CM
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
44b8bd7e
CM
899}
900
3dd1462e 901#ifdef CONFIG_MIGRATION
784b4e29 902static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
784b4e29
CM
905{
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
a6bc32b8 919 return migrate_page(mapping, newpage, page, mode);
784b4e29 920}
3dd1462e 921#endif
784b4e29 922
0da5468f
CM
923
924static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926{
d1310b2e
CM
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 929 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 931 u64 num_dirty;
24ab9cd8 932 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
933
934 if (wbc->for_kupdate)
935 return 0;
936
b9473439
CM
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 939 if (num_dirty < thresh)
793955bc 940 return 0;
793955bc 941 }
0b32f4bb 942 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
943}
944
b2950863 945static int btree_readpage(struct file *file, struct page *page)
5f39d397 946{
d1310b2e
CM
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 949 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 950}
22b0ebda 951
70dec807 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 953{
98509cfc 954 if (PageWriteback(page) || PageDirty(page))
d397712b 955 return 0;
0c4e538b
DS
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
3083ee2e 963 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
964}
965
5f39d397 966static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 967{
d1310b2e
CM
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 972 if (PagePrivate(page)) {
d397712b
CM
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
d98237b3
CM
979}
980
0b32f4bb
JB
981static int btree_set_page_dirty(struct page *page)
982{
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992}
993
7f09410b 994static const struct address_space_operations btree_aops = {
d98237b3 995 .readpage = btree_readpage,
0da5468f 996 .writepages = btree_writepages,
5f39d397
CM
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
5a92bc88 999#ifdef CONFIG_MIGRATION
784b4e29 1000 .migratepage = btree_migratepage,
5a92bc88 1001#endif
0b32f4bb 1002 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1003};
1004
ca7a79ad
CM
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
090d1875 1007{
5f39d397
CM
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1010 int ret = 0;
090d1875 1011
db94535d 1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1013 if (!buf)
090d1875 1014 return 0;
d1310b2e 1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1017 free_extent_buffer(buf);
de428b63 1018 return ret;
090d1875
CM
1019}
1020
ab0fff03
AJ
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023{
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
0b32f4bb 1045 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051}
1052
0999df54
CM
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055{
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1059 bytenr, blocksize);
0999df54
CM
1060 return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065{
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1070 bytenr, blocksize);
0999df54
CM
1071 return eb;
1072}
1073
1074
e02119d5
CM
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
727011e0 1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1078 buf->start + buf->len - 1);
e02119d5
CM
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
727011e0 1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1084 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1085}
1086
0999df54 1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1088 u32 blocksize, u64 parent_transid)
0999df54
CM
1089{
1090 struct extent_buffer *buf = NULL;
0999df54
CM
1091 int ret;
1092
0999df54
CM
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
0999df54 1096
ca7a79ad 1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1098 return buf;
ce9adaa5 1099
eb60ceac
CM
1100}
1101
d5c13f92
JM
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
ed2ff2cb 1104{
55c69072 1105 if (btrfs_header_generation(buf) ==
925baedd 1106 root->fs_info->running_transaction->transid) {
b9447ef8 1107 btrfs_assert_tree_locked(buf);
b4ce94de 1108
b9473439
CM
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
1117 " dirty_mdatadata_bytes (%lu)",
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
b9473439
CM
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
b4ce94de 1123
b9473439
CM
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
0b32f4bb 1126 clear_extent_buffer_dirty(buf);
925baedd 1127 }
5f39d397
CM
1128}
1129
143bede5
JM
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
d97e63b6 1134{
cfaa7295 1135 root->node = NULL;
a28ec197 1136 root->commit_root = NULL;
db94535d
CM
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
87ee04eb 1140 root->stripesize = stripesize;
123abc88 1141 root->ref_cows = 0;
0b86a832 1142 root->track_dirty = 0;
c71bf099 1143 root->in_radix = 0;
d68fc57b
YZ
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
0b86a832 1146
0f7d52f4
CM
1147 root->objectid = objectid;
1148 root->last_trans = 0;
13a8a7c8 1149 root->highest_objectid = 0;
58176a96 1150 root->name = NULL;
6bef4d31 1151 root->inode_tree = RB_ROOT;
16cdcec7 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1153 root->block_rsv = NULL;
d68fc57b 1154 root->orphan_block_rsv = NULL;
0b86a832
CM
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1157 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1158 spin_lock_init(&root->orphan_lock);
5d4f98a2 1159 spin_lock_init(&root->inode_lock);
f0486c68 1160 spin_lock_init(&root->accounting_lock);
a2135011 1161 mutex_init(&root->objectid_mutex);
e02119d5 1162 mutex_init(&root->log_mutex);
7237f183
YZ
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
8a35d95f 1169 atomic_set(&root->orphan_inodes, 0);
7237f183
YZ
1170 root->log_batch = 0;
1171 root->log_transid = 0;
257c62e1 1172 root->last_log_commit = 0;
d0c803c4 1173 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1174 fs_info->btree_inode->i_mapping);
017e5369 1175
3768f368
CM
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1180 root->defrag_trans_start = fs_info->generation;
58176a96 1181 init_completion(&root->kobj_unregister);
6702ed49 1182 root->defrag_running = 0;
4d775673 1183 root->root_key.objectid = objectid;
0ee5dc67 1184 root->anon_dev = 0;
3768f368
CM
1185}
1186
200a5c17
JM
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
3768f368
CM
1191{
1192 int ret;
db94535d 1193 u32 blocksize;
84234f3a 1194 u64 generation;
3768f368 1195
db94535d 1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
3768f368
CM
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
4df27c4d
YZ
1201 if (ret > 0)
1202 return -ENOENT;
200a5c17
JM
1203 else if (ret < 0)
1204 return ret;
3768f368 1205
84234f3a 1206 generation = btrfs_root_generation(&root->root_item);
db94535d 1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1208 root->commit_root = NULL;
db94535d 1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1210 blocksize, generation);
b9fab919 1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1212 free_extent_buffer(root->node);
af31f5e5 1213 root->node = NULL;
68433b73
CM
1214 return -EIO;
1215 }
4df27c4d 1216 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1217 return 0;
1218}
1219
f84a8bd6 1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1221{
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226}
1227
20897f5c
AJ
1228struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info,
1230 u64 objectid)
1231{
1232 struct extent_buffer *leaf;
1233 struct btrfs_root *tree_root = fs_info->tree_root;
1234 struct btrfs_root *root;
1235 struct btrfs_key key;
1236 int ret = 0;
1237 u64 bytenr;
1238
1239 root = btrfs_alloc_root(fs_info);
1240 if (!root)
1241 return ERR_PTR(-ENOMEM);
1242
1243 __setup_root(tree_root->nodesize, tree_root->leafsize,
1244 tree_root->sectorsize, tree_root->stripesize,
1245 root, fs_info, objectid);
1246 root->root_key.objectid = objectid;
1247 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1248 root->root_key.offset = 0;
1249
1250 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1251 0, objectid, NULL, 0, 0, 0);
1252 if (IS_ERR(leaf)) {
1253 ret = PTR_ERR(leaf);
1254 goto fail;
1255 }
1256
1257 bytenr = leaf->start;
1258 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1259 btrfs_set_header_bytenr(leaf, leaf->start);
1260 btrfs_set_header_generation(leaf, trans->transid);
1261 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1262 btrfs_set_header_owner(leaf, objectid);
1263 root->node = leaf;
1264
1265 write_extent_buffer(leaf, fs_info->fsid,
1266 (unsigned long)btrfs_header_fsid(leaf),
1267 BTRFS_FSID_SIZE);
1268 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1269 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1270 BTRFS_UUID_SIZE);
1271 btrfs_mark_buffer_dirty(leaf);
1272
1273 root->commit_root = btrfs_root_node(root);
1274 root->track_dirty = 1;
1275
1276
1277 root->root_item.flags = 0;
1278 root->root_item.byte_limit = 0;
1279 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1280 btrfs_set_root_generation(&root->root_item, trans->transid);
1281 btrfs_set_root_level(&root->root_item, 0);
1282 btrfs_set_root_refs(&root->root_item, 1);
1283 btrfs_set_root_used(&root->root_item, leaf->len);
1284 btrfs_set_root_last_snapshot(&root->root_item, 0);
1285 btrfs_set_root_dirid(&root->root_item, 0);
1286 root->root_item.drop_level = 0;
1287
1288 key.objectid = objectid;
1289 key.type = BTRFS_ROOT_ITEM_KEY;
1290 key.offset = 0;
1291 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292 if (ret)
1293 goto fail;
1294
1295 btrfs_tree_unlock(leaf);
1296
1297fail:
1298 if (ret)
1299 return ERR_PTR(ret);
1300
1301 return root;
1302}
1303
7237f183
YZ
1304static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1305 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1306{
1307 struct btrfs_root *root;
1308 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1309 struct extent_buffer *leaf;
e02119d5 1310
6f07e42e 1311 root = btrfs_alloc_root(fs_info);
e02119d5 1312 if (!root)
7237f183 1313 return ERR_PTR(-ENOMEM);
e02119d5
CM
1314
1315 __setup_root(tree_root->nodesize, tree_root->leafsize,
1316 tree_root->sectorsize, tree_root->stripesize,
1317 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1318
1319 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1320 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1322 /*
1323 * log trees do not get reference counted because they go away
1324 * before a real commit is actually done. They do store pointers
1325 * to file data extents, and those reference counts still get
1326 * updated (along with back refs to the log tree).
1327 */
e02119d5
CM
1328 root->ref_cows = 0;
1329
5d4f98a2 1330 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1331 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1332 0, 0, 0);
7237f183
YZ
1333 if (IS_ERR(leaf)) {
1334 kfree(root);
1335 return ERR_CAST(leaf);
1336 }
e02119d5 1337
5d4f98a2
YZ
1338 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339 btrfs_set_header_bytenr(leaf, leaf->start);
1340 btrfs_set_header_generation(leaf, trans->transid);
1341 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1343 root->node = leaf;
e02119d5
CM
1344
1345 write_extent_buffer(root->node, root->fs_info->fsid,
1346 (unsigned long)btrfs_header_fsid(root->node),
1347 BTRFS_FSID_SIZE);
1348 btrfs_mark_buffer_dirty(root->node);
1349 btrfs_tree_unlock(root->node);
7237f183
YZ
1350 return root;
1351}
1352
1353int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1354 struct btrfs_fs_info *fs_info)
1355{
1356 struct btrfs_root *log_root;
1357
1358 log_root = alloc_log_tree(trans, fs_info);
1359 if (IS_ERR(log_root))
1360 return PTR_ERR(log_root);
1361 WARN_ON(fs_info->log_root_tree);
1362 fs_info->log_root_tree = log_root;
1363 return 0;
1364}
1365
1366int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root)
1368{
1369 struct btrfs_root *log_root;
1370 struct btrfs_inode_item *inode_item;
1371
1372 log_root = alloc_log_tree(trans, root->fs_info);
1373 if (IS_ERR(log_root))
1374 return PTR_ERR(log_root);
1375
1376 log_root->last_trans = trans->transid;
1377 log_root->root_key.offset = root->root_key.objectid;
1378
1379 inode_item = &log_root->root_item.inode;
1380 inode_item->generation = cpu_to_le64(1);
1381 inode_item->size = cpu_to_le64(3);
1382 inode_item->nlink = cpu_to_le32(1);
1383 inode_item->nbytes = cpu_to_le64(root->leafsize);
1384 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1385
5d4f98a2 1386 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1387
1388 WARN_ON(root->log_root);
1389 root->log_root = log_root;
1390 root->log_transid = 0;
257c62e1 1391 root->last_log_commit = 0;
e02119d5
CM
1392 return 0;
1393}
1394
1395struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1396 struct btrfs_key *location)
1397{
1398 struct btrfs_root *root;
1399 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1400 struct btrfs_path *path;
5f39d397 1401 struct extent_buffer *l;
84234f3a 1402 u64 generation;
db94535d 1403 u32 blocksize;
0f7d52f4
CM
1404 int ret = 0;
1405
6f07e42e 1406 root = btrfs_alloc_root(fs_info);
0cf6c620 1407 if (!root)
0f7d52f4 1408 return ERR_PTR(-ENOMEM);
0f7d52f4 1409 if (location->offset == (u64)-1) {
db94535d 1410 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1411 location->objectid, root);
1412 if (ret) {
0f7d52f4
CM
1413 kfree(root);
1414 return ERR_PTR(ret);
1415 }
13a8a7c8 1416 goto out;
0f7d52f4
CM
1417 }
1418
db94535d 1419 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1420 tree_root->sectorsize, tree_root->stripesize,
1421 root, fs_info, location->objectid);
0f7d52f4
CM
1422
1423 path = btrfs_alloc_path();
db5b493a
TI
1424 if (!path) {
1425 kfree(root);
1426 return ERR_PTR(-ENOMEM);
1427 }
0f7d52f4 1428 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1429 if (ret == 0) {
1430 l = path->nodes[0];
1431 read_extent_buffer(l, &root->root_item,
1432 btrfs_item_ptr_offset(l, path->slots[0]),
1433 sizeof(root->root_item));
1434 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1435 }
0f7d52f4
CM
1436 btrfs_free_path(path);
1437 if (ret) {
5e540f77 1438 kfree(root);
13a8a7c8
YZ
1439 if (ret > 0)
1440 ret = -ENOENT;
0f7d52f4
CM
1441 return ERR_PTR(ret);
1442 }
13a8a7c8 1443
84234f3a 1444 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1445 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1446 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1447 blocksize, generation);
5d4f98a2 1448 root->commit_root = btrfs_root_node(root);
79787eaa 1449 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1450out:
08fe4db1 1451 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1452 root->ref_cows = 1;
08fe4db1
LZ
1453 btrfs_check_and_init_root_item(&root->root_item);
1454 }
13a8a7c8 1455
5eda7b5e
CM
1456 return root;
1457}
1458
edbd8d4e
CM
1459struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1460 struct btrfs_key *location)
5eda7b5e
CM
1461{
1462 struct btrfs_root *root;
1463 int ret;
1464
edbd8d4e
CM
1465 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1466 return fs_info->tree_root;
1467 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1468 return fs_info->extent_root;
8f18cf13
CM
1469 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1470 return fs_info->chunk_root;
1471 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1472 return fs_info->dev_root;
0403e47e
YZ
1473 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1474 return fs_info->csum_root;
4df27c4d
YZ
1475again:
1476 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1477 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1478 (unsigned long)location->objectid);
4df27c4d 1479 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1480 if (root)
1481 return root;
1482
e02119d5 1483 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1484 if (IS_ERR(root))
1485 return root;
3394e160 1486
581bb050 1487 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1488 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1489 GFP_NOFS);
35a30d7c
DS
1490 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1491 ret = -ENOMEM;
581bb050 1492 goto fail;
35a30d7c 1493 }
581bb050
LZ
1494
1495 btrfs_init_free_ino_ctl(root);
1496 mutex_init(&root->fs_commit_mutex);
1497 spin_lock_init(&root->cache_lock);
1498 init_waitqueue_head(&root->cache_wait);
1499
0ee5dc67 1500 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1501 if (ret)
1502 goto fail;
3394e160 1503
d68fc57b
YZ
1504 if (btrfs_root_refs(&root->root_item) == 0) {
1505 ret = -ENOENT;
1506 goto fail;
1507 }
1508
1509 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1510 if (ret < 0)
1511 goto fail;
1512 if (ret == 0)
1513 root->orphan_item_inserted = 1;
1514
4df27c4d
YZ
1515 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1516 if (ret)
1517 goto fail;
1518
1519 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1520 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1521 (unsigned long)root->root_key.objectid,
0f7d52f4 1522 root);
d68fc57b 1523 if (ret == 0)
4df27c4d 1524 root->in_radix = 1;
d68fc57b 1525
4df27c4d
YZ
1526 spin_unlock(&fs_info->fs_roots_radix_lock);
1527 radix_tree_preload_end();
0f7d52f4 1528 if (ret) {
4df27c4d
YZ
1529 if (ret == -EEXIST) {
1530 free_fs_root(root);
1531 goto again;
1532 }
1533 goto fail;
0f7d52f4 1534 }
4df27c4d
YZ
1535
1536 ret = btrfs_find_dead_roots(fs_info->tree_root,
1537 root->root_key.objectid);
1538 WARN_ON(ret);
edbd8d4e 1539 return root;
4df27c4d
YZ
1540fail:
1541 free_fs_root(root);
1542 return ERR_PTR(ret);
edbd8d4e
CM
1543}
1544
04160088
CM
1545static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1546{
1547 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1548 int ret = 0;
04160088
CM
1549 struct btrfs_device *device;
1550 struct backing_dev_info *bdi;
b7967db7 1551
1f78160c
XG
1552 rcu_read_lock();
1553 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1554 if (!device->bdev)
1555 continue;
04160088
CM
1556 bdi = blk_get_backing_dev_info(device->bdev);
1557 if (bdi && bdi_congested(bdi, bdi_bits)) {
1558 ret = 1;
1559 break;
1560 }
1561 }
1f78160c 1562 rcu_read_unlock();
04160088
CM
1563 return ret;
1564}
1565
ad081f14
JA
1566/*
1567 * If this fails, caller must call bdi_destroy() to get rid of the
1568 * bdi again.
1569 */
04160088
CM
1570static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1571{
ad081f14
JA
1572 int err;
1573
1574 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1575 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1576 if (err)
1577 return err;
1578
4575c9cc 1579 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1580 bdi->congested_fn = btrfs_congested_fn;
1581 bdi->congested_data = info;
1582 return 0;
1583}
1584
8b712842
CM
1585/*
1586 * called by the kthread helper functions to finally call the bio end_io
1587 * functions. This is where read checksum verification actually happens
1588 */
1589static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1590{
ce9adaa5 1591 struct bio *bio;
8b712842
CM
1592 struct end_io_wq *end_io_wq;
1593 struct btrfs_fs_info *fs_info;
ce9adaa5 1594 int error;
ce9adaa5 1595
8b712842
CM
1596 end_io_wq = container_of(work, struct end_io_wq, work);
1597 bio = end_io_wq->bio;
1598 fs_info = end_io_wq->info;
ce9adaa5 1599
8b712842
CM
1600 error = end_io_wq->error;
1601 bio->bi_private = end_io_wq->private;
1602 bio->bi_end_io = end_io_wq->end_io;
1603 kfree(end_io_wq);
8b712842 1604 bio_endio(bio, error);
44b8bd7e
CM
1605}
1606
a74a4b97
CM
1607static int cleaner_kthread(void *arg)
1608{
1609 struct btrfs_root *root = arg;
1610
1611 do {
a74a4b97 1612 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1613
1614 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1615 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1616 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1617 btrfs_clean_old_snapshots(root);
1618 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1619 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1620 }
a74a4b97 1621
a0acae0e 1622 if (!try_to_freeze()) {
a74a4b97 1623 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1624 if (!kthread_should_stop())
1625 schedule();
a74a4b97
CM
1626 __set_current_state(TASK_RUNNING);
1627 }
1628 } while (!kthread_should_stop());
1629 return 0;
1630}
1631
1632static int transaction_kthread(void *arg)
1633{
1634 struct btrfs_root *root = arg;
1635 struct btrfs_trans_handle *trans;
1636 struct btrfs_transaction *cur;
8929ecfa 1637 u64 transid;
a74a4b97
CM
1638 unsigned long now;
1639 unsigned long delay;
914b2007 1640 bool cannot_commit;
a74a4b97
CM
1641
1642 do {
914b2007 1643 cannot_commit = false;
a74a4b97
CM
1644 delay = HZ * 30;
1645 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1646 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1647
a4abeea4 1648 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1649 cur = root->fs_info->running_transaction;
1650 if (!cur) {
a4abeea4 1651 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1652 goto sleep;
1653 }
31153d81 1654
a74a4b97 1655 now = get_seconds();
8929ecfa
YZ
1656 if (!cur->blocked &&
1657 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1658 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1659 delay = HZ * 5;
1660 goto sleep;
1661 }
8929ecfa 1662 transid = cur->transid;
a4abeea4 1663 spin_unlock(&root->fs_info->trans_lock);
56bec294 1664
79787eaa 1665 /* If the file system is aborted, this will always fail. */
7a7eaa40 1666 trans = btrfs_join_transaction(root);
914b2007
JK
1667 if (IS_ERR(trans)) {
1668 cannot_commit = true;
79787eaa 1669 goto sleep;
914b2007 1670 }
8929ecfa 1671 if (transid == trans->transid) {
79787eaa 1672 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1673 } else {
1674 btrfs_end_transaction(trans, root);
1675 }
a74a4b97
CM
1676sleep:
1677 wake_up_process(root->fs_info->cleaner_kthread);
1678 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1679
a0acae0e 1680 if (!try_to_freeze()) {
a74a4b97 1681 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1682 if (!kthread_should_stop() &&
914b2007
JK
1683 (!btrfs_transaction_blocked(root->fs_info) ||
1684 cannot_commit))
8929ecfa 1685 schedule_timeout(delay);
a74a4b97
CM
1686 __set_current_state(TASK_RUNNING);
1687 }
1688 } while (!kthread_should_stop());
1689 return 0;
1690}
1691
af31f5e5
CM
1692/*
1693 * this will find the highest generation in the array of
1694 * root backups. The index of the highest array is returned,
1695 * or -1 if we can't find anything.
1696 *
1697 * We check to make sure the array is valid by comparing the
1698 * generation of the latest root in the array with the generation
1699 * in the super block. If they don't match we pitch it.
1700 */
1701static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1702{
1703 u64 cur;
1704 int newest_index = -1;
1705 struct btrfs_root_backup *root_backup;
1706 int i;
1707
1708 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1709 root_backup = info->super_copy->super_roots + i;
1710 cur = btrfs_backup_tree_root_gen(root_backup);
1711 if (cur == newest_gen)
1712 newest_index = i;
1713 }
1714
1715 /* check to see if we actually wrapped around */
1716 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1717 root_backup = info->super_copy->super_roots;
1718 cur = btrfs_backup_tree_root_gen(root_backup);
1719 if (cur == newest_gen)
1720 newest_index = 0;
1721 }
1722 return newest_index;
1723}
1724
1725
1726/*
1727 * find the oldest backup so we know where to store new entries
1728 * in the backup array. This will set the backup_root_index
1729 * field in the fs_info struct
1730 */
1731static void find_oldest_super_backup(struct btrfs_fs_info *info,
1732 u64 newest_gen)
1733{
1734 int newest_index = -1;
1735
1736 newest_index = find_newest_super_backup(info, newest_gen);
1737 /* if there was garbage in there, just move along */
1738 if (newest_index == -1) {
1739 info->backup_root_index = 0;
1740 } else {
1741 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1742 }
1743}
1744
1745/*
1746 * copy all the root pointers into the super backup array.
1747 * this will bump the backup pointer by one when it is
1748 * done
1749 */
1750static void backup_super_roots(struct btrfs_fs_info *info)
1751{
1752 int next_backup;
1753 struct btrfs_root_backup *root_backup;
1754 int last_backup;
1755
1756 next_backup = info->backup_root_index;
1757 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1758 BTRFS_NUM_BACKUP_ROOTS;
1759
1760 /*
1761 * just overwrite the last backup if we're at the same generation
1762 * this happens only at umount
1763 */
1764 root_backup = info->super_for_commit->super_roots + last_backup;
1765 if (btrfs_backup_tree_root_gen(root_backup) ==
1766 btrfs_header_generation(info->tree_root->node))
1767 next_backup = last_backup;
1768
1769 root_backup = info->super_for_commit->super_roots + next_backup;
1770
1771 /*
1772 * make sure all of our padding and empty slots get zero filled
1773 * regardless of which ones we use today
1774 */
1775 memset(root_backup, 0, sizeof(*root_backup));
1776
1777 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1778
1779 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1780 btrfs_set_backup_tree_root_gen(root_backup,
1781 btrfs_header_generation(info->tree_root->node));
1782
1783 btrfs_set_backup_tree_root_level(root_backup,
1784 btrfs_header_level(info->tree_root->node));
1785
1786 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1787 btrfs_set_backup_chunk_root_gen(root_backup,
1788 btrfs_header_generation(info->chunk_root->node));
1789 btrfs_set_backup_chunk_root_level(root_backup,
1790 btrfs_header_level(info->chunk_root->node));
1791
1792 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1793 btrfs_set_backup_extent_root_gen(root_backup,
1794 btrfs_header_generation(info->extent_root->node));
1795 btrfs_set_backup_extent_root_level(root_backup,
1796 btrfs_header_level(info->extent_root->node));
1797
7c7e82a7
CM
1798 /*
1799 * we might commit during log recovery, which happens before we set
1800 * the fs_root. Make sure it is valid before we fill it in.
1801 */
1802 if (info->fs_root && info->fs_root->node) {
1803 btrfs_set_backup_fs_root(root_backup,
1804 info->fs_root->node->start);
1805 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1806 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1807 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1808 btrfs_header_level(info->fs_root->node));
7c7e82a7 1809 }
af31f5e5
CM
1810
1811 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1812 btrfs_set_backup_dev_root_gen(root_backup,
1813 btrfs_header_generation(info->dev_root->node));
1814 btrfs_set_backup_dev_root_level(root_backup,
1815 btrfs_header_level(info->dev_root->node));
1816
1817 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1818 btrfs_set_backup_csum_root_gen(root_backup,
1819 btrfs_header_generation(info->csum_root->node));
1820 btrfs_set_backup_csum_root_level(root_backup,
1821 btrfs_header_level(info->csum_root->node));
1822
1823 btrfs_set_backup_total_bytes(root_backup,
1824 btrfs_super_total_bytes(info->super_copy));
1825 btrfs_set_backup_bytes_used(root_backup,
1826 btrfs_super_bytes_used(info->super_copy));
1827 btrfs_set_backup_num_devices(root_backup,
1828 btrfs_super_num_devices(info->super_copy));
1829
1830 /*
1831 * if we don't copy this out to the super_copy, it won't get remembered
1832 * for the next commit
1833 */
1834 memcpy(&info->super_copy->super_roots,
1835 &info->super_for_commit->super_roots,
1836 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1837}
1838
1839/*
1840 * this copies info out of the root backup array and back into
1841 * the in-memory super block. It is meant to help iterate through
1842 * the array, so you send it the number of backups you've already
1843 * tried and the last backup index you used.
1844 *
1845 * this returns -1 when it has tried all the backups
1846 */
1847static noinline int next_root_backup(struct btrfs_fs_info *info,
1848 struct btrfs_super_block *super,
1849 int *num_backups_tried, int *backup_index)
1850{
1851 struct btrfs_root_backup *root_backup;
1852 int newest = *backup_index;
1853
1854 if (*num_backups_tried == 0) {
1855 u64 gen = btrfs_super_generation(super);
1856
1857 newest = find_newest_super_backup(info, gen);
1858 if (newest == -1)
1859 return -1;
1860
1861 *backup_index = newest;
1862 *num_backups_tried = 1;
1863 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1864 /* we've tried all the backups, all done */
1865 return -1;
1866 } else {
1867 /* jump to the next oldest backup */
1868 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1869 BTRFS_NUM_BACKUP_ROOTS;
1870 *backup_index = newest;
1871 *num_backups_tried += 1;
1872 }
1873 root_backup = super->super_roots + newest;
1874
1875 btrfs_set_super_generation(super,
1876 btrfs_backup_tree_root_gen(root_backup));
1877 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1878 btrfs_set_super_root_level(super,
1879 btrfs_backup_tree_root_level(root_backup));
1880 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1881
1882 /*
1883 * fixme: the total bytes and num_devices need to match or we should
1884 * need a fsck
1885 */
1886 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1887 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1888 return 0;
1889}
1890
1891/* helper to cleanup tree roots */
1892static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1893{
1894 free_extent_buffer(info->tree_root->node);
1895 free_extent_buffer(info->tree_root->commit_root);
1896 free_extent_buffer(info->dev_root->node);
1897 free_extent_buffer(info->dev_root->commit_root);
1898 free_extent_buffer(info->extent_root->node);
1899 free_extent_buffer(info->extent_root->commit_root);
1900 free_extent_buffer(info->csum_root->node);
1901 free_extent_buffer(info->csum_root->commit_root);
1902
1903 info->tree_root->node = NULL;
1904 info->tree_root->commit_root = NULL;
1905 info->dev_root->node = NULL;
1906 info->dev_root->commit_root = NULL;
1907 info->extent_root->node = NULL;
1908 info->extent_root->commit_root = NULL;
1909 info->csum_root->node = NULL;
1910 info->csum_root->commit_root = NULL;
1911
1912 if (chunk_root) {
1913 free_extent_buffer(info->chunk_root->node);
1914 free_extent_buffer(info->chunk_root->commit_root);
1915 info->chunk_root->node = NULL;
1916 info->chunk_root->commit_root = NULL;
1917 }
1918}
1919
1920
ad2b2c80
AV
1921int open_ctree(struct super_block *sb,
1922 struct btrfs_fs_devices *fs_devices,
1923 char *options)
2e635a27 1924{
db94535d
CM
1925 u32 sectorsize;
1926 u32 nodesize;
1927 u32 leafsize;
1928 u32 blocksize;
87ee04eb 1929 u32 stripesize;
84234f3a 1930 u64 generation;
f2b636e8 1931 u64 features;
3de4586c 1932 struct btrfs_key location;
a061fc8d 1933 struct buffer_head *bh;
4d34b278 1934 struct btrfs_super_block *disk_super;
815745cf 1935 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1936 struct btrfs_root *tree_root;
4d34b278
ID
1937 struct btrfs_root *extent_root;
1938 struct btrfs_root *csum_root;
1939 struct btrfs_root *chunk_root;
1940 struct btrfs_root *dev_root;
e02119d5 1941 struct btrfs_root *log_tree_root;
eb60ceac 1942 int ret;
e58ca020 1943 int err = -EINVAL;
af31f5e5
CM
1944 int num_backups_tried = 0;
1945 int backup_index = 0;
4543df7e 1946
f84a8bd6 1947 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1948 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1949 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1950 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1951 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1952
f84a8bd6
AV
1953 if (!tree_root || !extent_root || !csum_root ||
1954 !chunk_root || !dev_root) {
39279cc3
CM
1955 err = -ENOMEM;
1956 goto fail;
1957 }
76dda93c
YZ
1958
1959 ret = init_srcu_struct(&fs_info->subvol_srcu);
1960 if (ret) {
1961 err = ret;
1962 goto fail;
1963 }
1964
1965 ret = setup_bdi(fs_info, &fs_info->bdi);
1966 if (ret) {
1967 err = ret;
1968 goto fail_srcu;
1969 }
1970
1971 fs_info->btree_inode = new_inode(sb);
1972 if (!fs_info->btree_inode) {
1973 err = -ENOMEM;
1974 goto fail_bdi;
1975 }
1976
a6591715 1977 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1978
76dda93c 1979 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1980 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1981 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1982 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1983 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1984 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1985 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1986 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1987 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1988 spin_lock_init(&fs_info->trans_lock);
31153d81 1989 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1990 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1991 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1992 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1993 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
1994 spin_lock_init(&fs_info->tree_mod_seq_lock);
1995 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 1996 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1997
58176a96 1998 init_completion(&fs_info->kobj_unregister);
0b86a832 1999 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2000 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2001 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2002 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
2003 btrfs_init_block_rsv(&fs_info->global_block_rsv);
2004 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2005 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2006 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2007 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 2008 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 2009 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2010 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2011 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2012 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2013 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2014 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2015 fs_info->sb = sb;
6f568d35 2016 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2017 fs_info->metadata_ratio = 0;
4cb5300b 2018 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2019 fs_info->trans_no_join = 0;
2bf64758 2020 fs_info->free_chunk_space = 0;
f29021b2 2021 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2022
097b8a7c
JS
2023 init_waitqueue_head(&fs_info->tree_mod_seq_wait);
2024
90519d66
AJ
2025 /* readahead state */
2026 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2027 spin_lock_init(&fs_info->reada_lock);
c8b97818 2028
b34b086c
CM
2029 fs_info->thread_pool_size = min_t(unsigned long,
2030 num_online_cpus() + 2, 8);
0afbaf8c 2031
3eaa2885
CM
2032 INIT_LIST_HEAD(&fs_info->ordered_extents);
2033 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2034 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2035 GFP_NOFS);
2036 if (!fs_info->delayed_root) {
2037 err = -ENOMEM;
2038 goto fail_iput;
2039 }
2040 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2041
a2de733c
AJ
2042 mutex_init(&fs_info->scrub_lock);
2043 atomic_set(&fs_info->scrubs_running, 0);
2044 atomic_set(&fs_info->scrub_pause_req, 0);
2045 atomic_set(&fs_info->scrubs_paused, 0);
2046 atomic_set(&fs_info->scrub_cancel_req, 0);
2047 init_waitqueue_head(&fs_info->scrub_pause_wait);
2048 init_rwsem(&fs_info->scrub_super_lock);
2049 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2050#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2051 fs_info->check_integrity_print_mask = 0;
2052#endif
a2de733c 2053
c9e9f97b
ID
2054 spin_lock_init(&fs_info->balance_lock);
2055 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2056 atomic_set(&fs_info->balance_running, 0);
2057 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2058 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2059 fs_info->balance_ctl = NULL;
837d5b6e 2060 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2061
a061fc8d
CM
2062 sb->s_blocksize = 4096;
2063 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2064 sb->s_bdi = &fs_info->bdi;
a061fc8d 2065
76dda93c 2066 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2067 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2068 /*
2069 * we set the i_size on the btree inode to the max possible int.
2070 * the real end of the address space is determined by all of
2071 * the devices in the system
2072 */
2073 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2074 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2075 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2076
5d4f98a2 2077 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2078 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2079 fs_info->btree_inode->i_mapping);
0b32f4bb 2080 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2081 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2082
2083 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2084
76dda93c
YZ
2085 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2086 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2087 sizeof(struct btrfs_key));
72ac3c0d
JB
2088 set_bit(BTRFS_INODE_DUMMY,
2089 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2090 insert_inode_hash(fs_info->btree_inode);
76dda93c 2091
0f9dd46c 2092 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2093 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2094
11833d66 2095 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2096 fs_info->btree_inode->i_mapping);
11833d66 2097 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2098 fs_info->btree_inode->i_mapping);
11833d66 2099 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2100 fs_info->do_barriers = 1;
e18e4809 2101
39279cc3 2102
5a3f23d5 2103 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2104 mutex_init(&fs_info->tree_log_mutex);
925baedd 2105 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2106 mutex_init(&fs_info->transaction_kthread_mutex);
2107 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2108 mutex_init(&fs_info->volume_mutex);
276e680d 2109 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2110 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2111 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2112
2113 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2114 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2115
e6dcd2dc 2116 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2117 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2118 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2119 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2120
0b86a832 2121 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2122 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2123
3c4bb26b 2124 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2125 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2126 if (!bh) {
2127 err = -EINVAL;
16cdcec7 2128 goto fail_alloc;
20b45077 2129 }
39279cc3 2130
6c41761f
DS
2131 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2132 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2133 sizeof(*fs_info->super_for_commit));
a061fc8d 2134 brelse(bh);
5f39d397 2135
6c41761f 2136 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2137
6c41761f 2138 disk_super = fs_info->super_copy;
0f7d52f4 2139 if (!btrfs_super_root(disk_super))
16cdcec7 2140 goto fail_alloc;
0f7d52f4 2141
acce952b 2142 /* check FS state, whether FS is broken. */
2143 fs_info->fs_state |= btrfs_super_flags(disk_super);
2144
fcd1f065
DS
2145 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2146 if (ret) {
2147 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2148 err = ret;
2149 goto fail_alloc;
2150 }
acce952b 2151
af31f5e5
CM
2152 /*
2153 * run through our array of backup supers and setup
2154 * our ring pointer to the oldest one
2155 */
2156 generation = btrfs_super_generation(disk_super);
2157 find_oldest_super_backup(fs_info, generation);
2158
75e7cb7f
LB
2159 /*
2160 * In the long term, we'll store the compression type in the super
2161 * block, and it'll be used for per file compression control.
2162 */
2163 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2164
2b82032c
YZ
2165 ret = btrfs_parse_options(tree_root, options);
2166 if (ret) {
2167 err = ret;
16cdcec7 2168 goto fail_alloc;
2b82032c 2169 }
dfe25020 2170
f2b636e8
JB
2171 features = btrfs_super_incompat_flags(disk_super) &
2172 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2173 if (features) {
2174 printk(KERN_ERR "BTRFS: couldn't mount because of "
2175 "unsupported optional features (%Lx).\n",
21380931 2176 (unsigned long long)features);
f2b636e8 2177 err = -EINVAL;
16cdcec7 2178 goto fail_alloc;
f2b636e8
JB
2179 }
2180
727011e0
CM
2181 if (btrfs_super_leafsize(disk_super) !=
2182 btrfs_super_nodesize(disk_super)) {
2183 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2184 "blocksizes don't match. node %d leaf %d\n",
2185 btrfs_super_nodesize(disk_super),
2186 btrfs_super_leafsize(disk_super));
2187 err = -EINVAL;
2188 goto fail_alloc;
2189 }
2190 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2191 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2192 "blocksize (%d) was too large\n",
2193 btrfs_super_leafsize(disk_super));
2194 err = -EINVAL;
2195 goto fail_alloc;
2196 }
2197
5d4f98a2 2198 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2199 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2200 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2201 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2202
2203 /*
2204 * flag our filesystem as having big metadata blocks if
2205 * they are bigger than the page size
2206 */
2207 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2208 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2209 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2210 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2211 }
2212
bc3f116f
CM
2213 nodesize = btrfs_super_nodesize(disk_super);
2214 leafsize = btrfs_super_leafsize(disk_super);
2215 sectorsize = btrfs_super_sectorsize(disk_super);
2216 stripesize = btrfs_super_stripesize(disk_super);
2217
2218 /*
2219 * mixed block groups end up with duplicate but slightly offset
2220 * extent buffers for the same range. It leads to corruptions
2221 */
2222 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2223 (sectorsize != leafsize)) {
2224 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2225 "are not allowed for mixed block groups on %s\n",
2226 sb->s_id);
2227 goto fail_alloc;
2228 }
2229
a6fa6fae 2230 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2231
f2b636e8
JB
2232 features = btrfs_super_compat_ro_flags(disk_super) &
2233 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2234 if (!(sb->s_flags & MS_RDONLY) && features) {
2235 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2236 "unsupported option features (%Lx).\n",
21380931 2237 (unsigned long long)features);
f2b636e8 2238 err = -EINVAL;
16cdcec7 2239 goto fail_alloc;
f2b636e8 2240 }
61d92c32
CM
2241
2242 btrfs_init_workers(&fs_info->generic_worker,
2243 "genwork", 1, NULL);
2244
5443be45 2245 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2246 fs_info->thread_pool_size,
2247 &fs_info->generic_worker);
c8b97818 2248
771ed689 2249 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2250 fs_info->thread_pool_size,
2251 &fs_info->generic_worker);
771ed689 2252
5443be45 2253 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2254 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2255 fs_info->thread_pool_size),
2256 &fs_info->generic_worker);
61b49440 2257
bab39bf9
JB
2258 btrfs_init_workers(&fs_info->caching_workers, "cache",
2259 2, &fs_info->generic_worker);
2260
61b49440
CM
2261 /* a higher idle thresh on the submit workers makes it much more
2262 * likely that bios will be send down in a sane order to the
2263 * devices
2264 */
2265 fs_info->submit_workers.idle_thresh = 64;
53863232 2266
771ed689 2267 fs_info->workers.idle_thresh = 16;
4a69a410 2268 fs_info->workers.ordered = 1;
61b49440 2269
771ed689
CM
2270 fs_info->delalloc_workers.idle_thresh = 2;
2271 fs_info->delalloc_workers.ordered = 1;
2272
61d92c32
CM
2273 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2274 &fs_info->generic_worker);
5443be45 2275 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2276 fs_info->thread_pool_size,
2277 &fs_info->generic_worker);
d20f7043 2278 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2279 fs_info->thread_pool_size,
2280 &fs_info->generic_worker);
cad321ad 2281 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2282 "endio-meta-write", fs_info->thread_pool_size,
2283 &fs_info->generic_worker);
5443be45 2284 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2285 fs_info->thread_pool_size,
2286 &fs_info->generic_worker);
0cb59c99
JB
2287 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2288 1, &fs_info->generic_worker);
16cdcec7
MX
2289 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2290 fs_info->thread_pool_size,
2291 &fs_info->generic_worker);
90519d66
AJ
2292 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2293 fs_info->thread_pool_size,
2294 &fs_info->generic_worker);
61b49440
CM
2295
2296 /*
2297 * endios are largely parallel and should have a very
2298 * low idle thresh
2299 */
2300 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2301 fs_info->endio_meta_workers.idle_thresh = 4;
2302
9042846b
CM
2303 fs_info->endio_write_workers.idle_thresh = 2;
2304 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2305 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2306
0dc3b84a
JB
2307 /*
2308 * btrfs_start_workers can really only fail because of ENOMEM so just
2309 * return -ENOMEM if any of these fail.
2310 */
2311 ret = btrfs_start_workers(&fs_info->workers);
2312 ret |= btrfs_start_workers(&fs_info->generic_worker);
2313 ret |= btrfs_start_workers(&fs_info->submit_workers);
2314 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2315 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2316 ret |= btrfs_start_workers(&fs_info->endio_workers);
2317 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2318 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2319 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2320 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2321 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2322 ret |= btrfs_start_workers(&fs_info->caching_workers);
2323 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2324 if (ret) {
2325 ret = -ENOMEM;
2326 goto fail_sb_buffer;
2327 }
4543df7e 2328
4575c9cc 2329 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2330 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2331 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2332
db94535d
CM
2333 tree_root->nodesize = nodesize;
2334 tree_root->leafsize = leafsize;
2335 tree_root->sectorsize = sectorsize;
87ee04eb 2336 tree_root->stripesize = stripesize;
a061fc8d
CM
2337
2338 sb->s_blocksize = sectorsize;
2339 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2340
39279cc3
CM
2341 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2342 sizeof(disk_super->magic))) {
d397712b 2343 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2344 goto fail_sb_buffer;
2345 }
19c00ddc 2346
8d082fb7
LB
2347 if (sectorsize != PAGE_SIZE) {
2348 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2349 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2350 goto fail_sb_buffer;
2351 }
2352
925baedd 2353 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2354 ret = btrfs_read_sys_array(tree_root);
925baedd 2355 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2356 if (ret) {
d397712b
CM
2357 printk(KERN_WARNING "btrfs: failed to read the system "
2358 "array on %s\n", sb->s_id);
5d4f98a2 2359 goto fail_sb_buffer;
84eed90f 2360 }
0b86a832
CM
2361
2362 blocksize = btrfs_level_size(tree_root,
2363 btrfs_super_chunk_root_level(disk_super));
84234f3a 2364 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2365
2366 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2367 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2368
2369 chunk_root->node = read_tree_block(chunk_root,
2370 btrfs_super_chunk_root(disk_super),
84234f3a 2371 blocksize, generation);
79787eaa 2372 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2373 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2374 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2375 sb->s_id);
af31f5e5 2376 goto fail_tree_roots;
83121942 2377 }
5d4f98a2
YZ
2378 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2379 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2380
e17cade2 2381 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2382 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2383 BTRFS_UUID_SIZE);
e17cade2 2384
0b86a832 2385 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2386 if (ret) {
d397712b
CM
2387 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2388 sb->s_id);
af31f5e5 2389 goto fail_tree_roots;
2b82032c 2390 }
0b86a832 2391
dfe25020
CM
2392 btrfs_close_extra_devices(fs_devices);
2393
a6b0d5c8
CM
2394 if (!fs_devices->latest_bdev) {
2395 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2396 sb->s_id);
2397 goto fail_tree_roots;
2398 }
2399
af31f5e5 2400retry_root_backup:
db94535d
CM
2401 blocksize = btrfs_level_size(tree_root,
2402 btrfs_super_root_level(disk_super));
84234f3a 2403 generation = btrfs_super_generation(disk_super);
0b86a832 2404
e20d96d6 2405 tree_root->node = read_tree_block(tree_root,
db94535d 2406 btrfs_super_root(disk_super),
84234f3a 2407 blocksize, generation);
af31f5e5
CM
2408 if (!tree_root->node ||
2409 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2410 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2411 sb->s_id);
af31f5e5
CM
2412
2413 goto recovery_tree_root;
83121942 2414 }
af31f5e5 2415
5d4f98a2
YZ
2416 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2417 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2418
2419 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2420 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2421 if (ret)
af31f5e5 2422 goto recovery_tree_root;
0b86a832
CM
2423 extent_root->track_dirty = 1;
2424
2425 ret = find_and_setup_root(tree_root, fs_info,
2426 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2427 if (ret)
af31f5e5 2428 goto recovery_tree_root;
5d4f98a2 2429 dev_root->track_dirty = 1;
3768f368 2430
d20f7043
CM
2431 ret = find_and_setup_root(tree_root, fs_info,
2432 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2433 if (ret)
af31f5e5 2434 goto recovery_tree_root;
d20f7043
CM
2435 csum_root->track_dirty = 1;
2436
8929ecfa
YZ
2437 fs_info->generation = generation;
2438 fs_info->last_trans_committed = generation;
8929ecfa 2439
68310a5e
ID
2440 ret = btrfs_recover_balance(fs_info);
2441 if (ret) {
2442 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2443 goto fail_block_groups;
2444 }
2445
733f4fbb
SB
2446 ret = btrfs_init_dev_stats(fs_info);
2447 if (ret) {
2448 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2449 ret);
2450 goto fail_block_groups;
2451 }
2452
c59021f8 2453 ret = btrfs_init_space_info(fs_info);
2454 if (ret) {
2455 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2456 goto fail_block_groups;
2457 }
2458
1b1d1f66
JB
2459 ret = btrfs_read_block_groups(extent_root);
2460 if (ret) {
2461 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2462 goto fail_block_groups;
2463 }
9078a3e1 2464
a74a4b97
CM
2465 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2466 "btrfs-cleaner");
57506d50 2467 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2468 goto fail_block_groups;
a74a4b97
CM
2469
2470 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2471 tree_root,
2472 "btrfs-transaction");
57506d50 2473 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2474 goto fail_cleaner;
a74a4b97 2475
c289811c
CM
2476 if (!btrfs_test_opt(tree_root, SSD) &&
2477 !btrfs_test_opt(tree_root, NOSSD) &&
2478 !fs_info->fs_devices->rotating) {
2479 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2480 "mode\n");
2481 btrfs_set_opt(fs_info->mount_opt, SSD);
2482 }
2483
21adbd5c
SB
2484#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2485 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2486 ret = btrfsic_mount(tree_root, fs_devices,
2487 btrfs_test_opt(tree_root,
2488 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2489 1 : 0,
2490 fs_info->check_integrity_print_mask);
2491 if (ret)
2492 printk(KERN_WARNING "btrfs: failed to initialize"
2493 " integrity check module %s\n", sb->s_id);
2494 }
2495#endif
2496
acce952b 2497 /* do not make disk changes in broken FS */
2498 if (btrfs_super_log_root(disk_super) != 0 &&
2499 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2500 u64 bytenr = btrfs_super_log_root(disk_super);
2501
7c2ca468 2502 if (fs_devices->rw_devices == 0) {
d397712b
CM
2503 printk(KERN_WARNING "Btrfs log replay required "
2504 "on RO media\n");
7c2ca468
CM
2505 err = -EIO;
2506 goto fail_trans_kthread;
2507 }
e02119d5
CM
2508 blocksize =
2509 btrfs_level_size(tree_root,
2510 btrfs_super_log_root_level(disk_super));
d18a2c44 2511
6f07e42e 2512 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2513 if (!log_tree_root) {
2514 err = -ENOMEM;
2515 goto fail_trans_kthread;
2516 }
e02119d5
CM
2517
2518 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2519 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2520
2521 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2522 blocksize,
2523 generation + 1);
79787eaa 2524 /* returns with log_tree_root freed on success */
e02119d5 2525 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2526 if (ret) {
2527 btrfs_error(tree_root->fs_info, ret,
2528 "Failed to recover log tree");
2529 free_extent_buffer(log_tree_root->node);
2530 kfree(log_tree_root);
2531 goto fail_trans_kthread;
2532 }
e556ce2c
YZ
2533
2534 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2535 ret = btrfs_commit_super(tree_root);
2536 if (ret)
2537 goto fail_trans_kthread;
e556ce2c 2538 }
e02119d5 2539 }
1a40e23b 2540
76dda93c 2541 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2542 if (ret)
2543 goto fail_trans_kthread;
76dda93c 2544
7c2ca468 2545 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2546 ret = btrfs_cleanup_fs_roots(fs_info);
79787eaa
JM
2547 if (ret) {
2548 }
d68fc57b 2549
5d4f98a2 2550 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2551 if (ret < 0) {
2552 printk(KERN_WARNING
2553 "btrfs: failed to recover relocation\n");
2554 err = -EINVAL;
2555 goto fail_trans_kthread;
2556 }
7c2ca468 2557 }
1a40e23b 2558
3de4586c
CM
2559 location.objectid = BTRFS_FS_TREE_OBJECTID;
2560 location.type = BTRFS_ROOT_ITEM_KEY;
2561 location.offset = (u64)-1;
2562
3de4586c
CM
2563 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2564 if (!fs_info->fs_root)
7c2ca468 2565 goto fail_trans_kthread;
3140c9a3
DC
2566 if (IS_ERR(fs_info->fs_root)) {
2567 err = PTR_ERR(fs_info->fs_root);
2568 goto fail_trans_kthread;
2569 }
c289811c 2570
2b6ba629
ID
2571 if (sb->s_flags & MS_RDONLY)
2572 return 0;
2573
2574 down_read(&fs_info->cleanup_work_sem);
2575 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2576 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2577 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2578 close_ctree(tree_root);
2579 return ret;
2580 }
2581 up_read(&fs_info->cleanup_work_sem);
59641015 2582
2b6ba629
ID
2583 ret = btrfs_resume_balance_async(fs_info);
2584 if (ret) {
2585 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2586 close_ctree(tree_root);
2587 return ret;
e3acc2a6
JB
2588 }
2589
ad2b2c80 2590 return 0;
39279cc3 2591
7c2ca468
CM
2592fail_trans_kthread:
2593 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2594fail_cleaner:
a74a4b97 2595 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2596
2597 /*
2598 * make sure we're done with the btree inode before we stop our
2599 * kthreads
2600 */
2601 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2602 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2603
1b1d1f66
JB
2604fail_block_groups:
2605 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2606
2607fail_tree_roots:
2608 free_root_pointers(fs_info, 1);
2609
39279cc3 2610fail_sb_buffer:
61d92c32 2611 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2612 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2613 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2614 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2615 btrfs_stop_workers(&fs_info->workers);
2616 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2617 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2618 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2619 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2620 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2621 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2622 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2623 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2624fail_alloc:
4543df7e 2625fail_iput:
586e46e2
ID
2626 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2627
7c2ca468 2628 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2629 iput(fs_info->btree_inode);
ad081f14 2630fail_bdi:
7e662854 2631 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2632fail_srcu:
2633 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2634fail:
586e46e2 2635 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2636 return err;
af31f5e5
CM
2637
2638recovery_tree_root:
af31f5e5
CM
2639 if (!btrfs_test_opt(tree_root, RECOVERY))
2640 goto fail_tree_roots;
2641
2642 free_root_pointers(fs_info, 0);
2643
2644 /* don't use the log in recovery mode, it won't be valid */
2645 btrfs_set_super_log_root(disk_super, 0);
2646
2647 /* we can't trust the free space cache either */
2648 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2649
2650 ret = next_root_backup(fs_info, fs_info->super_copy,
2651 &num_backups_tried, &backup_index);
2652 if (ret == -1)
2653 goto fail_block_groups;
2654 goto retry_root_backup;
eb60ceac
CM
2655}
2656
f2984462
CM
2657static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2658{
f2984462
CM
2659 if (uptodate) {
2660 set_buffer_uptodate(bh);
2661 } else {
442a4f63
SB
2662 struct btrfs_device *device = (struct btrfs_device *)
2663 bh->b_private;
2664
606686ee
JB
2665 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2666 "I/O error on %s\n",
2667 rcu_str_deref(device->name));
1259ab75
CM
2668 /* note, we dont' set_buffer_write_io_error because we have
2669 * our own ways of dealing with the IO errors
2670 */
f2984462 2671 clear_buffer_uptodate(bh);
442a4f63 2672 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2673 }
2674 unlock_buffer(bh);
2675 put_bh(bh);
2676}
2677
a512bbf8
YZ
2678struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2679{
2680 struct buffer_head *bh;
2681 struct buffer_head *latest = NULL;
2682 struct btrfs_super_block *super;
2683 int i;
2684 u64 transid = 0;
2685 u64 bytenr;
2686
2687 /* we would like to check all the supers, but that would make
2688 * a btrfs mount succeed after a mkfs from a different FS.
2689 * So, we need to add a special mount option to scan for
2690 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2691 */
2692 for (i = 0; i < 1; i++) {
2693 bytenr = btrfs_sb_offset(i);
2694 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2695 break;
2696 bh = __bread(bdev, bytenr / 4096, 4096);
2697 if (!bh)
2698 continue;
2699
2700 super = (struct btrfs_super_block *)bh->b_data;
2701 if (btrfs_super_bytenr(super) != bytenr ||
2702 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2703 sizeof(super->magic))) {
2704 brelse(bh);
2705 continue;
2706 }
2707
2708 if (!latest || btrfs_super_generation(super) > transid) {
2709 brelse(latest);
2710 latest = bh;
2711 transid = btrfs_super_generation(super);
2712 } else {
2713 brelse(bh);
2714 }
2715 }
2716 return latest;
2717}
2718
4eedeb75
HH
2719/*
2720 * this should be called twice, once with wait == 0 and
2721 * once with wait == 1. When wait == 0 is done, all the buffer heads
2722 * we write are pinned.
2723 *
2724 * They are released when wait == 1 is done.
2725 * max_mirrors must be the same for both runs, and it indicates how
2726 * many supers on this one device should be written.
2727 *
2728 * max_mirrors == 0 means to write them all.
2729 */
a512bbf8
YZ
2730static int write_dev_supers(struct btrfs_device *device,
2731 struct btrfs_super_block *sb,
2732 int do_barriers, int wait, int max_mirrors)
2733{
2734 struct buffer_head *bh;
2735 int i;
2736 int ret;
2737 int errors = 0;
2738 u32 crc;
2739 u64 bytenr;
a512bbf8
YZ
2740
2741 if (max_mirrors == 0)
2742 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2743
a512bbf8
YZ
2744 for (i = 0; i < max_mirrors; i++) {
2745 bytenr = btrfs_sb_offset(i);
2746 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2747 break;
2748
2749 if (wait) {
2750 bh = __find_get_block(device->bdev, bytenr / 4096,
2751 BTRFS_SUPER_INFO_SIZE);
2752 BUG_ON(!bh);
a512bbf8 2753 wait_on_buffer(bh);
4eedeb75
HH
2754 if (!buffer_uptodate(bh))
2755 errors++;
2756
2757 /* drop our reference */
2758 brelse(bh);
2759
2760 /* drop the reference from the wait == 0 run */
2761 brelse(bh);
2762 continue;
a512bbf8
YZ
2763 } else {
2764 btrfs_set_super_bytenr(sb, bytenr);
2765
2766 crc = ~(u32)0;
2767 crc = btrfs_csum_data(NULL, (char *)sb +
2768 BTRFS_CSUM_SIZE, crc,
2769 BTRFS_SUPER_INFO_SIZE -
2770 BTRFS_CSUM_SIZE);
2771 btrfs_csum_final(crc, sb->csum);
2772
4eedeb75
HH
2773 /*
2774 * one reference for us, and we leave it for the
2775 * caller
2776 */
a512bbf8
YZ
2777 bh = __getblk(device->bdev, bytenr / 4096,
2778 BTRFS_SUPER_INFO_SIZE);
2779 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2780
4eedeb75 2781 /* one reference for submit_bh */
a512bbf8 2782 get_bh(bh);
4eedeb75
HH
2783
2784 set_buffer_uptodate(bh);
a512bbf8
YZ
2785 lock_buffer(bh);
2786 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2787 bh->b_private = device;
a512bbf8
YZ
2788 }
2789
387125fc
CM
2790 /*
2791 * we fua the first super. The others we allow
2792 * to go down lazy.
2793 */
21adbd5c 2794 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2795 if (ret)
a512bbf8 2796 errors++;
a512bbf8
YZ
2797 }
2798 return errors < i ? 0 : -1;
2799}
2800
387125fc
CM
2801/*
2802 * endio for the write_dev_flush, this will wake anyone waiting
2803 * for the barrier when it is done
2804 */
2805static void btrfs_end_empty_barrier(struct bio *bio, int err)
2806{
2807 if (err) {
2808 if (err == -EOPNOTSUPP)
2809 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2810 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2811 }
2812 if (bio->bi_private)
2813 complete(bio->bi_private);
2814 bio_put(bio);
2815}
2816
2817/*
2818 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2819 * sent down. With wait == 1, it waits for the previous flush.
2820 *
2821 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2822 * capable
2823 */
2824static int write_dev_flush(struct btrfs_device *device, int wait)
2825{
2826 struct bio *bio;
2827 int ret = 0;
2828
2829 if (device->nobarriers)
2830 return 0;
2831
2832 if (wait) {
2833 bio = device->flush_bio;
2834 if (!bio)
2835 return 0;
2836
2837 wait_for_completion(&device->flush_wait);
2838
2839 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2840 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2841 rcu_str_deref(device->name));
387125fc
CM
2842 device->nobarriers = 1;
2843 }
2844 if (!bio_flagged(bio, BIO_UPTODATE)) {
2845 ret = -EIO;
442a4f63
SB
2846 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2847 btrfs_dev_stat_inc_and_print(device,
2848 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2849 }
2850
2851 /* drop the reference from the wait == 0 run */
2852 bio_put(bio);
2853 device->flush_bio = NULL;
2854
2855 return ret;
2856 }
2857
2858 /*
2859 * one reference for us, and we leave it for the
2860 * caller
2861 */
2862 device->flush_bio = NULL;;
2863 bio = bio_alloc(GFP_NOFS, 0);
2864 if (!bio)
2865 return -ENOMEM;
2866
2867 bio->bi_end_io = btrfs_end_empty_barrier;
2868 bio->bi_bdev = device->bdev;
2869 init_completion(&device->flush_wait);
2870 bio->bi_private = &device->flush_wait;
2871 device->flush_bio = bio;
2872
2873 bio_get(bio);
21adbd5c 2874 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2875
2876 return 0;
2877}
2878
2879/*
2880 * send an empty flush down to each device in parallel,
2881 * then wait for them
2882 */
2883static int barrier_all_devices(struct btrfs_fs_info *info)
2884{
2885 struct list_head *head;
2886 struct btrfs_device *dev;
2887 int errors = 0;
2888 int ret;
2889
2890 /* send down all the barriers */
2891 head = &info->fs_devices->devices;
2892 list_for_each_entry_rcu(dev, head, dev_list) {
2893 if (!dev->bdev) {
2894 errors++;
2895 continue;
2896 }
2897 if (!dev->in_fs_metadata || !dev->writeable)
2898 continue;
2899
2900 ret = write_dev_flush(dev, 0);
2901 if (ret)
2902 errors++;
2903 }
2904
2905 /* wait for all the barriers */
2906 list_for_each_entry_rcu(dev, head, dev_list) {
2907 if (!dev->bdev) {
2908 errors++;
2909 continue;
2910 }
2911 if (!dev->in_fs_metadata || !dev->writeable)
2912 continue;
2913
2914 ret = write_dev_flush(dev, 1);
2915 if (ret)
2916 errors++;
2917 }
2918 if (errors)
2919 return -EIO;
2920 return 0;
2921}
2922
a512bbf8 2923int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2924{
e5e9a520 2925 struct list_head *head;
f2984462 2926 struct btrfs_device *dev;
a061fc8d 2927 struct btrfs_super_block *sb;
f2984462 2928 struct btrfs_dev_item *dev_item;
f2984462
CM
2929 int ret;
2930 int do_barriers;
a236aed1
CM
2931 int max_errors;
2932 int total_errors = 0;
a061fc8d 2933 u64 flags;
f2984462 2934
6c41761f 2935 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2936 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2937 backup_super_roots(root->fs_info);
f2984462 2938
6c41761f 2939 sb = root->fs_info->super_for_commit;
a061fc8d 2940 dev_item = &sb->dev_item;
e5e9a520 2941
174ba509 2942 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2943 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2944
2945 if (do_barriers)
2946 barrier_all_devices(root->fs_info);
2947
1f78160c 2948 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2949 if (!dev->bdev) {
2950 total_errors++;
2951 continue;
2952 }
2b82032c 2953 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2954 continue;
2955
2b82032c 2956 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2957 btrfs_set_stack_device_type(dev_item, dev->type);
2958 btrfs_set_stack_device_id(dev_item, dev->devid);
2959 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2960 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2961 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2962 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2963 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2964 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2965 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2966
a061fc8d
CM
2967 flags = btrfs_super_flags(sb);
2968 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2969
a512bbf8 2970 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2971 if (ret)
2972 total_errors++;
f2984462 2973 }
a236aed1 2974 if (total_errors > max_errors) {
d397712b
CM
2975 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2976 total_errors);
79787eaa
JM
2977
2978 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
2979 BUG();
2980 }
f2984462 2981
a512bbf8 2982 total_errors = 0;
1f78160c 2983 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2984 if (!dev->bdev)
2985 continue;
2b82032c 2986 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2987 continue;
2988
a512bbf8
YZ
2989 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2990 if (ret)
2991 total_errors++;
f2984462 2992 }
174ba509 2993 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2994 if (total_errors > max_errors) {
79787eaa
JM
2995 btrfs_error(root->fs_info, -EIO,
2996 "%d errors while writing supers", total_errors);
2997 return -EIO;
a236aed1 2998 }
f2984462
CM
2999 return 0;
3000}
3001
a512bbf8
YZ
3002int write_ctree_super(struct btrfs_trans_handle *trans,
3003 struct btrfs_root *root, int max_mirrors)
eb60ceac 3004{
e66f709b 3005 int ret;
5f39d397 3006
a512bbf8 3007 ret = write_all_supers(root, max_mirrors);
5f39d397 3008 return ret;
cfaa7295
CM
3009}
3010
143bede5 3011void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3012{
4df27c4d 3013 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3014 radix_tree_delete(&fs_info->fs_roots_radix,
3015 (unsigned long)root->root_key.objectid);
4df27c4d 3016 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3017
3018 if (btrfs_root_refs(&root->root_item) == 0)
3019 synchronize_srcu(&fs_info->subvol_srcu);
3020
581bb050
LZ
3021 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3022 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3023 free_fs_root(root);
4df27c4d
YZ
3024}
3025
3026static void free_fs_root(struct btrfs_root *root)
3027{
82d5902d 3028 iput(root->cache_inode);
4df27c4d 3029 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3030 if (root->anon_dev)
3031 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3032 free_extent_buffer(root->node);
3033 free_extent_buffer(root->commit_root);
581bb050
LZ
3034 kfree(root->free_ino_ctl);
3035 kfree(root->free_ino_pinned);
d397712b 3036 kfree(root->name);
2619ba1f 3037 kfree(root);
2619ba1f
CM
3038}
3039
143bede5 3040static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3041{
3042 int ret;
3043 struct btrfs_root *gang[8];
3044 int i;
3045
76dda93c
YZ
3046 while (!list_empty(&fs_info->dead_roots)) {
3047 gang[0] = list_entry(fs_info->dead_roots.next,
3048 struct btrfs_root, root_list);
3049 list_del(&gang[0]->root_list);
3050
3051 if (gang[0]->in_radix) {
3052 btrfs_free_fs_root(fs_info, gang[0]);
3053 } else {
3054 free_extent_buffer(gang[0]->node);
3055 free_extent_buffer(gang[0]->commit_root);
3056 kfree(gang[0]);
3057 }
3058 }
3059
d397712b 3060 while (1) {
0f7d52f4
CM
3061 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3062 (void **)gang, 0,
3063 ARRAY_SIZE(gang));
3064 if (!ret)
3065 break;
2619ba1f 3066 for (i = 0; i < ret; i++)
5eda7b5e 3067 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3068 }
0f7d52f4 3069}
b4100d64 3070
c146afad 3071int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3072{
c146afad
YZ
3073 u64 root_objectid = 0;
3074 struct btrfs_root *gang[8];
3075 int i;
3768f368 3076 int ret;
e089f05c 3077
c146afad
YZ
3078 while (1) {
3079 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3080 (void **)gang, root_objectid,
3081 ARRAY_SIZE(gang));
3082 if (!ret)
3083 break;
5d4f98a2
YZ
3084
3085 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3086 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3087 int err;
3088
c146afad 3089 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3090 err = btrfs_orphan_cleanup(gang[i]);
3091 if (err)
3092 return err;
c146afad
YZ
3093 }
3094 root_objectid++;
3095 }
3096 return 0;
3097}
a2135011 3098
c146afad
YZ
3099int btrfs_commit_super(struct btrfs_root *root)
3100{
3101 struct btrfs_trans_handle *trans;
3102 int ret;
a74a4b97 3103
c146afad 3104 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3105 btrfs_run_delayed_iputs(root);
a74a4b97 3106 btrfs_clean_old_snapshots(root);
c146afad 3107 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3108
3109 /* wait until ongoing cleanup work done */
3110 down_write(&root->fs_info->cleanup_work_sem);
3111 up_write(&root->fs_info->cleanup_work_sem);
3112
7a7eaa40 3113 trans = btrfs_join_transaction(root);
3612b495
TI
3114 if (IS_ERR(trans))
3115 return PTR_ERR(trans);
54aa1f4d 3116 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3117 if (ret)
3118 return ret;
c146afad 3119 /* run commit again to drop the original snapshot */
7a7eaa40 3120 trans = btrfs_join_transaction(root);
3612b495
TI
3121 if (IS_ERR(trans))
3122 return PTR_ERR(trans);
79787eaa
JM
3123 ret = btrfs_commit_transaction(trans, root);
3124 if (ret)
3125 return ret;
79154b1b 3126 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3127 if (ret) {
3128 btrfs_error(root->fs_info, ret,
3129 "Failed to sync btree inode to disk.");
3130 return ret;
3131 }
d6bfde87 3132
a512bbf8 3133 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3134 return ret;
3135}
3136
3137int close_ctree(struct btrfs_root *root)
3138{
3139 struct btrfs_fs_info *fs_info = root->fs_info;
3140 int ret;
3141
3142 fs_info->closing = 1;
3143 smp_mb();
3144
837d5b6e
ID
3145 /* pause restriper - we want to resume on mount */
3146 btrfs_pause_balance(root->fs_info);
3147
a2de733c 3148 btrfs_scrub_cancel(root);
4cb5300b
CM
3149
3150 /* wait for any defraggers to finish */
3151 wait_event(fs_info->transaction_wait,
3152 (atomic_read(&fs_info->defrag_running) == 0));
3153
3154 /* clear out the rbtree of defraggable inodes */
e3029d9f 3155 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3156
acce952b 3157 /*
3158 * Here come 2 situations when btrfs is broken to flip readonly:
3159 *
3160 * 1. when btrfs flips readonly somewhere else before
3161 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3162 * and btrfs will skip to write sb directly to keep
3163 * ERROR state on disk.
3164 *
3165 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3166 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3167 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3168 * btrfs will cleanup all FS resources first and write sb then.
3169 */
c146afad 3170 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3171 ret = btrfs_commit_super(root);
3172 if (ret)
3173 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3174 }
3175
3176 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3177 ret = btrfs_error_commit_super(root);
d397712b
CM
3178 if (ret)
3179 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3180 }
0f7d52f4 3181
300e4f8a
JB
3182 btrfs_put_block_group_cache(fs_info);
3183
e3029d9f
AV
3184 kthread_stop(fs_info->transaction_kthread);
3185 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3186
f25784b3
YZ
3187 fs_info->closing = 2;
3188 smp_mb();
3189
b0c68f8b 3190 if (fs_info->delalloc_bytes) {
d397712b 3191 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3192 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3193 }
31153d81 3194 if (fs_info->total_ref_cache_size) {
d397712b
CM
3195 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3196 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3197 }
bcc63abb 3198
5d4f98a2
YZ
3199 free_extent_buffer(fs_info->extent_root->node);
3200 free_extent_buffer(fs_info->extent_root->commit_root);
3201 free_extent_buffer(fs_info->tree_root->node);
3202 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3203 free_extent_buffer(fs_info->chunk_root->node);
3204 free_extent_buffer(fs_info->chunk_root->commit_root);
3205 free_extent_buffer(fs_info->dev_root->node);
3206 free_extent_buffer(fs_info->dev_root->commit_root);
3207 free_extent_buffer(fs_info->csum_root->node);
3208 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3209
e3029d9f 3210 btrfs_free_block_groups(fs_info);
d10c5f31 3211
c146afad 3212 del_fs_roots(fs_info);
d10c5f31 3213
c146afad 3214 iput(fs_info->btree_inode);
9ad6b7bc 3215
61d92c32 3216 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3217 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3218 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3219 btrfs_stop_workers(&fs_info->workers);
3220 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3221 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3222 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3223 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3224 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3225 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3226 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3227 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3228 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3229
21adbd5c
SB
3230#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3231 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3232 btrfsic_unmount(root, fs_info->fs_devices);
3233#endif
3234
dfe25020 3235 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3236 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3237
04160088 3238 bdi_destroy(&fs_info->bdi);
76dda93c 3239 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3240
eb60ceac
CM
3241 return 0;
3242}
3243
b9fab919
CM
3244int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3245 int atomic)
5f39d397 3246{
1259ab75 3247 int ret;
727011e0 3248 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3249
0b32f4bb 3250 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3251 if (!ret)
3252 return ret;
3253
3254 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3255 parent_transid, atomic);
3256 if (ret == -EAGAIN)
3257 return ret;
1259ab75 3258 return !ret;
5f39d397
CM
3259}
3260
3261int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3262{
0b32f4bb 3263 return set_extent_buffer_uptodate(buf);
5f39d397 3264}
6702ed49 3265
5f39d397
CM
3266void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3267{
727011e0 3268 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3269 u64 transid = btrfs_header_generation(buf);
b9473439 3270 int was_dirty;
b4ce94de 3271
b9447ef8 3272 btrfs_assert_tree_locked(buf);
ccd467d6 3273 if (transid != root->fs_info->generation) {
d397712b
CM
3274 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3275 "found %llu running %llu\n",
db94535d 3276 (unsigned long long)buf->start,
d397712b
CM
3277 (unsigned long long)transid,
3278 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3279 WARN_ON(1);
3280 }
0b32f4bb 3281 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3282 if (!was_dirty) {
3283 spin_lock(&root->fs_info->delalloc_lock);
3284 root->fs_info->dirty_metadata_bytes += buf->len;
3285 spin_unlock(&root->fs_info->delalloc_lock);
3286 }
eb60ceac
CM
3287}
3288
d3c2fdcf 3289void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3290{
3291 /*
3292 * looks as though older kernels can get into trouble with
3293 * this code, they end up stuck in balance_dirty_pages forever
3294 */
3295 u64 num_dirty;
3296 unsigned long thresh = 32 * 1024 * 1024;
3297
3298 if (current->flags & PF_MEMALLOC)
3299 return;
3300
3301 btrfs_balance_delayed_items(root);
3302
3303 num_dirty = root->fs_info->dirty_metadata_bytes;
3304
3305 if (num_dirty > thresh) {
3306 balance_dirty_pages_ratelimited_nr(
3307 root->fs_info->btree_inode->i_mapping, 1);
3308 }
3309 return;
3310}
3311
3312void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3313{
188de649
CM
3314 /*
3315 * looks as though older kernels can get into trouble with
3316 * this code, they end up stuck in balance_dirty_pages forever
3317 */
d6bfde87 3318 u64 num_dirty;
771ed689 3319 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3320
6933c02e 3321 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3322 return;
3323
585ad2c3
CM
3324 num_dirty = root->fs_info->dirty_metadata_bytes;
3325
d6bfde87
CM
3326 if (num_dirty > thresh) {
3327 balance_dirty_pages_ratelimited_nr(
d7fc640e 3328 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3329 }
188de649 3330 return;
35b7e476 3331}
6b80053d 3332
ca7a79ad 3333int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3334{
727011e0 3335 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3336 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3337}
0da5468f 3338
20897f5c 3339int btree_lock_page_hook(struct page *page, void *data,
01d658f2 3340 void (*flush_fn)(void *))
4bef0848
CM
3341{
3342 struct inode *inode = page->mapping->host;
b9473439 3343 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3344 struct extent_buffer *eb;
4bef0848 3345
4f2de97a
JB
3346 /*
3347 * We culled this eb but the page is still hanging out on the mapping,
3348 * carry on.
3349 */
3350 if (!PagePrivate(page))
4bef0848
CM
3351 goto out;
3352
4f2de97a
JB
3353 eb = (struct extent_buffer *)page->private;
3354 if (!eb) {
3355 WARN_ON(1);
3356 goto out;
3357 }
3358 if (page != eb->pages[0])
4bef0848
CM
3359 goto out;
3360
01d658f2
CM
3361 if (!btrfs_try_tree_write_lock(eb)) {
3362 flush_fn(data);
3363 btrfs_tree_lock(eb);
3364 }
4bef0848 3365 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3366
3367 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3368 spin_lock(&root->fs_info->delalloc_lock);
3369 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3370 root->fs_info->dirty_metadata_bytes -= eb->len;
3371 else
3372 WARN_ON(1);
3373 spin_unlock(&root->fs_info->delalloc_lock);
3374 }
3375
4bef0848 3376 btrfs_tree_unlock(eb);
4bef0848 3377out:
01d658f2
CM
3378 if (!trylock_page(page)) {
3379 flush_fn(data);
3380 lock_page(page);
3381 }
4bef0848
CM
3382 return 0;
3383}
3384
fcd1f065 3385static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3386 int read_only)
3387{
fcd1f065
DS
3388 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3389 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3390 return -EINVAL;
3391 }
3392
acce952b 3393 if (read_only)
fcd1f065 3394 return 0;
acce952b 3395
fcd1f065 3396 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
acce952b 3397 printk(KERN_WARNING "warning: mount fs with errors, "
3398 "running btrfsck is recommended\n");
fcd1f065
DS
3399 }
3400
3401 return 0;
acce952b 3402}
3403
3404int btrfs_error_commit_super(struct btrfs_root *root)
3405{
3406 int ret;
3407
3408 mutex_lock(&root->fs_info->cleaner_mutex);
3409 btrfs_run_delayed_iputs(root);
3410 mutex_unlock(&root->fs_info->cleaner_mutex);
3411
3412 down_write(&root->fs_info->cleanup_work_sem);
3413 up_write(&root->fs_info->cleanup_work_sem);
3414
3415 /* cleanup FS via transaction */
3416 btrfs_cleanup_transaction(root);
3417
3418 ret = write_ctree_super(NULL, root, 0);
3419
3420 return ret;
3421}
3422
143bede5 3423static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3424{
3425 struct btrfs_inode *btrfs_inode;
3426 struct list_head splice;
3427
3428 INIT_LIST_HEAD(&splice);
3429
3430 mutex_lock(&root->fs_info->ordered_operations_mutex);
3431 spin_lock(&root->fs_info->ordered_extent_lock);
3432
3433 list_splice_init(&root->fs_info->ordered_operations, &splice);
3434 while (!list_empty(&splice)) {
3435 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3436 ordered_operations);
3437
3438 list_del_init(&btrfs_inode->ordered_operations);
3439
3440 btrfs_invalidate_inodes(btrfs_inode->root);
3441 }
3442
3443 spin_unlock(&root->fs_info->ordered_extent_lock);
3444 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3445}
3446
143bede5 3447static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3448{
3449 struct list_head splice;
3450 struct btrfs_ordered_extent *ordered;
3451 struct inode *inode;
3452
3453 INIT_LIST_HEAD(&splice);
3454
3455 spin_lock(&root->fs_info->ordered_extent_lock);
3456
3457 list_splice_init(&root->fs_info->ordered_extents, &splice);
3458 while (!list_empty(&splice)) {
3459 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3460 root_extent_list);
3461
3462 list_del_init(&ordered->root_extent_list);
3463 atomic_inc(&ordered->refs);
3464
3465 /* the inode may be getting freed (in sys_unlink path). */
3466 inode = igrab(ordered->inode);
3467
3468 spin_unlock(&root->fs_info->ordered_extent_lock);
3469 if (inode)
3470 iput(inode);
3471
3472 atomic_set(&ordered->refs, 1);
3473 btrfs_put_ordered_extent(ordered);
3474
3475 spin_lock(&root->fs_info->ordered_extent_lock);
3476 }
3477
3478 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3479}
3480
79787eaa
JM
3481int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3482 struct btrfs_root *root)
acce952b 3483{
3484 struct rb_node *node;
3485 struct btrfs_delayed_ref_root *delayed_refs;
3486 struct btrfs_delayed_ref_node *ref;
3487 int ret = 0;
3488
3489 delayed_refs = &trans->delayed_refs;
3490
3491 spin_lock(&delayed_refs->lock);
3492 if (delayed_refs->num_entries == 0) {
cfece4db 3493 spin_unlock(&delayed_refs->lock);
acce952b 3494 printk(KERN_INFO "delayed_refs has NO entry\n");
3495 return ret;
3496 }
3497
b939d1ab 3498 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3499 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3500
3501 atomic_set(&ref->refs, 1);
3502 if (btrfs_delayed_ref_is_head(ref)) {
3503 struct btrfs_delayed_ref_head *head;
3504
3505 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3506 if (!mutex_trylock(&head->mutex)) {
3507 atomic_inc(&ref->refs);
3508 spin_unlock(&delayed_refs->lock);
3509
3510 /* Need to wait for the delayed ref to run */
3511 mutex_lock(&head->mutex);
3512 mutex_unlock(&head->mutex);
3513 btrfs_put_delayed_ref(ref);
3514
e18fca73 3515 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3516 continue;
3517 }
3518
acce952b 3519 kfree(head->extent_op);
3520 delayed_refs->num_heads--;
3521 if (list_empty(&head->cluster))
3522 delayed_refs->num_heads_ready--;
3523 list_del_init(&head->cluster);
acce952b 3524 }
b939d1ab
JB
3525 ref->in_tree = 0;
3526 rb_erase(&ref->rb_node, &delayed_refs->root);
3527 delayed_refs->num_entries--;
3528
acce952b 3529 spin_unlock(&delayed_refs->lock);
3530 btrfs_put_delayed_ref(ref);
3531
3532 cond_resched();
3533 spin_lock(&delayed_refs->lock);
3534 }
3535
3536 spin_unlock(&delayed_refs->lock);
3537
3538 return ret;
3539}
3540
143bede5 3541static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3542{
3543 struct btrfs_pending_snapshot *snapshot;
3544 struct list_head splice;
3545
3546 INIT_LIST_HEAD(&splice);
3547
3548 list_splice_init(&t->pending_snapshots, &splice);
3549
3550 while (!list_empty(&splice)) {
3551 snapshot = list_entry(splice.next,
3552 struct btrfs_pending_snapshot,
3553 list);
3554
3555 list_del_init(&snapshot->list);
3556
3557 kfree(snapshot);
3558 }
acce952b 3559}
3560
143bede5 3561static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3562{
3563 struct btrfs_inode *btrfs_inode;
3564 struct list_head splice;
3565
3566 INIT_LIST_HEAD(&splice);
3567
acce952b 3568 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3569 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3570
3571 while (!list_empty(&splice)) {
3572 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3573 delalloc_inodes);
3574
3575 list_del_init(&btrfs_inode->delalloc_inodes);
3576
3577 btrfs_invalidate_inodes(btrfs_inode->root);
3578 }
3579
3580 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3581}
3582
3583static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3584 struct extent_io_tree *dirty_pages,
3585 int mark)
3586{
3587 int ret;
3588 struct page *page;
3589 struct inode *btree_inode = root->fs_info->btree_inode;
3590 struct extent_buffer *eb;
3591 u64 start = 0;
3592 u64 end;
3593 u64 offset;
3594 unsigned long index;
3595
3596 while (1) {
3597 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3598 mark);
3599 if (ret)
3600 break;
3601
3602 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3603 while (start <= end) {
3604 index = start >> PAGE_CACHE_SHIFT;
3605 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3606 page = find_get_page(btree_inode->i_mapping, index);
3607 if (!page)
3608 continue;
3609 offset = page_offset(page);
3610
3611 spin_lock(&dirty_pages->buffer_lock);
3612 eb = radix_tree_lookup(
3613 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3614 offset >> PAGE_CACHE_SHIFT);
3615 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3616 if (eb)
acce952b 3617 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3618 &eb->bflags);
acce952b 3619 if (PageWriteback(page))
3620 end_page_writeback(page);
3621
3622 lock_page(page);
3623 if (PageDirty(page)) {
3624 clear_page_dirty_for_io(page);
3625 spin_lock_irq(&page->mapping->tree_lock);
3626 radix_tree_tag_clear(&page->mapping->page_tree,
3627 page_index(page),
3628 PAGECACHE_TAG_DIRTY);
3629 spin_unlock_irq(&page->mapping->tree_lock);
3630 }
3631
acce952b 3632 unlock_page(page);
ee670f0a 3633 page_cache_release(page);
acce952b 3634 }
3635 }
3636
3637 return ret;
3638}
3639
3640static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3641 struct extent_io_tree *pinned_extents)
3642{
3643 struct extent_io_tree *unpin;
3644 u64 start;
3645 u64 end;
3646 int ret;
ed0eaa14 3647 bool loop = true;
acce952b 3648
3649 unpin = pinned_extents;
ed0eaa14 3650again:
acce952b 3651 while (1) {
3652 ret = find_first_extent_bit(unpin, 0, &start, &end,
3653 EXTENT_DIRTY);
3654 if (ret)
3655 break;
3656
3657 /* opt_discard */
5378e607
LD
3658 if (btrfs_test_opt(root, DISCARD))
3659 ret = btrfs_error_discard_extent(root, start,
3660 end + 1 - start,
3661 NULL);
acce952b 3662
3663 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3664 btrfs_error_unpin_extent_range(root, start, end);
3665 cond_resched();
3666 }
3667
ed0eaa14
LB
3668 if (loop) {
3669 if (unpin == &root->fs_info->freed_extents[0])
3670 unpin = &root->fs_info->freed_extents[1];
3671 else
3672 unpin = &root->fs_info->freed_extents[0];
3673 loop = false;
3674 goto again;
3675 }
3676
acce952b 3677 return 0;
3678}
3679
49b25e05
JM
3680void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3681 struct btrfs_root *root)
3682{
3683 btrfs_destroy_delayed_refs(cur_trans, root);
3684 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3685 cur_trans->dirty_pages.dirty_bytes);
3686
3687 /* FIXME: cleanup wait for commit */
3688 cur_trans->in_commit = 1;
3689 cur_trans->blocked = 1;
d7096fc3 3690 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3691
3692 cur_trans->blocked = 0;
d7096fc3 3693 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3694
3695 cur_trans->commit_done = 1;
d7096fc3 3696 wake_up(&cur_trans->commit_wait);
49b25e05 3697
67cde344
MX
3698 btrfs_destroy_delayed_inodes(root);
3699 btrfs_assert_delayed_root_empty(root);
3700
49b25e05
JM
3701 btrfs_destroy_pending_snapshots(cur_trans);
3702
3703 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3704 EXTENT_DIRTY);
6e841e32
LB
3705 btrfs_destroy_pinned_extent(root,
3706 root->fs_info->pinned_extents);
49b25e05
JM
3707
3708 /*
3709 memset(cur_trans, 0, sizeof(*cur_trans));
3710 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3711 */
3712}
3713
3714int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3715{
3716 struct btrfs_transaction *t;
3717 LIST_HEAD(list);
3718
acce952b 3719 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3720
a4abeea4 3721 spin_lock(&root->fs_info->trans_lock);
acce952b 3722 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3723 root->fs_info->trans_no_join = 1;
3724 spin_unlock(&root->fs_info->trans_lock);
3725
acce952b 3726 while (!list_empty(&list)) {
3727 t = list_entry(list.next, struct btrfs_transaction, list);
3728 if (!t)
3729 break;
3730
3731 btrfs_destroy_ordered_operations(root);
3732
3733 btrfs_destroy_ordered_extents(root);
3734
3735 btrfs_destroy_delayed_refs(t, root);
3736
3737 btrfs_block_rsv_release(root,
3738 &root->fs_info->trans_block_rsv,
3739 t->dirty_pages.dirty_bytes);
3740
3741 /* FIXME: cleanup wait for commit */
3742 t->in_commit = 1;
3743 t->blocked = 1;
3744 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3745 wake_up(&root->fs_info->transaction_blocked_wait);
3746
3747 t->blocked = 0;
3748 if (waitqueue_active(&root->fs_info->transaction_wait))
3749 wake_up(&root->fs_info->transaction_wait);
acce952b 3750
acce952b 3751 t->commit_done = 1;
3752 if (waitqueue_active(&t->commit_wait))
3753 wake_up(&t->commit_wait);
acce952b 3754
67cde344
MX
3755 btrfs_destroy_delayed_inodes(root);
3756 btrfs_assert_delayed_root_empty(root);
3757
acce952b 3758 btrfs_destroy_pending_snapshots(t);
3759
3760 btrfs_destroy_delalloc_inodes(root);
3761
a4abeea4 3762 spin_lock(&root->fs_info->trans_lock);
acce952b 3763 root->fs_info->running_transaction = NULL;
a4abeea4 3764 spin_unlock(&root->fs_info->trans_lock);
acce952b 3765
3766 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3767 EXTENT_DIRTY);
3768
3769 btrfs_destroy_pinned_extent(root,
3770 root->fs_info->pinned_extents);
3771
13c5a93e 3772 atomic_set(&t->use_count, 0);
acce952b 3773 list_del_init(&t->list);
3774 memset(t, 0, sizeof(*t));
3775 kmem_cache_free(btrfs_transaction_cachep, t);
3776 }
3777
a4abeea4
JB
3778 spin_lock(&root->fs_info->trans_lock);
3779 root->fs_info->trans_no_join = 0;
3780 spin_unlock(&root->fs_info->trans_lock);
acce952b 3781 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3782
3783 return 0;
3784}
3785
d1310b2e 3786static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3787 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3788 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3789 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3790 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3791 /* note we're sharing with inode.c for the merge bio hook */
3792 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3793};