Btrfs: wire up the free space tree to the extent tree
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
e8c9f186 57static const struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
01d58472
DD
277static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
19c00ddc
CM
279 int verify)
280{
01d58472 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 282 char *result = NULL;
19c00ddc
CM
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
607d432d 291 unsigned long inline_result;
19c00ddc
CM
292
293 len = buf->len - offset;
d397712b 294 while (len > 0) {
19c00ddc 295 err = map_private_extent_buffer(buf, offset, 32,
a6591715 296 &kaddr, &map_start, &map_len);
d397712b 297 if (err)
19c00ddc 298 return 1;
19c00ddc 299 cur_len = min(len, map_len - (offset - map_start));
b0496686 300 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
19c00ddc 304 }
607d432d 305 if (csum_size > sizeof(inline_result)) {
31e818fe 306 result = kzalloc(csum_size, GFP_NOFS);
607d432d
JB
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
19c00ddc
CM
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
607d432d 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
317 u32 val;
318 u32 found = 0;
607d432d 319 memcpy(&found, result, csum_size);
e4204ded 320
607d432d 321 read_extent_buffer(buf, &val, 0, csum_size);
f0954c66 322 printk_ratelimited(KERN_WARNING
efe120a0
FH
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 "level %d\n",
01d58472 325 fs_info->sb->s_id, buf->start,
efe120a0 326 val, found, btrfs_header_level(buf));
607d432d
JB
327 if (result != (char *)&inline_result)
328 kfree(result);
19c00ddc
CM
329 return 1;
330 }
331 } else {
607d432d 332 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 333 }
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
19c00ddc
CM
336 return 0;
337}
338
d352ac68
CM
339/*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
1259ab75 345static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
1259ab75 348{
2ac55d41 349 struct extent_state *cached_state = NULL;
1259ab75 350 int ret;
2755a0de 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
b9fab919
CM
356 if (atomic)
357 return -EAGAIN;
358
a26e8c9f
JB
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
2ac55d41 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 365 0, &cached_state);
0b32f4bb 366 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
68b663d1
DS
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
29549aec
WS
373 eb->fs_info->sb->s_id, eb->start,
374 parent_transid, btrfs_header_generation(eb));
1259ab75 375 ret = 1;
a26e8c9f
JB
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
33958dc6 387out:
2ac55d41
JB
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
472b909f
JB
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
1259ab75 392 return ret;
1259ab75
CM
393}
394
1104a885
DS
395/*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399static int btrfs_check_super_csum(char *raw_disk_sb)
400{
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431}
432
d352ac68
CM
433/*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
f188591e
CM
437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
ca7a79ad 439 u64 start, u64 parent_transid)
f188591e
CM
440{
441 struct extent_io_tree *io_tree;
ea466794 442 int failed = 0;
f188591e
CM
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
ea466794 446 int failed_mirror = 0;
f188591e 447
a826d6dc 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
bb82ab88
AJ
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
f188591e 453 btree_get_extent, mirror_num);
256dd1bb
SB
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
b9fab919 456 parent_transid, 0))
256dd1bb
SB
457 break;
458 else
459 ret = -EIO;
460 }
d397712b 461
a826d6dc
JB
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
468 break;
469
5d964051 470 num_copies = btrfs_num_copies(root->fs_info,
f188591e 471 eb->start, eb->len);
4235298e 472 if (num_copies == 1)
ea466794 473 break;
4235298e 474
5cf1ab56
JB
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
f188591e 480 mirror_num++;
ea466794
JB
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
4235298e 484 if (mirror_num > num_copies)
ea466794 485 break;
f188591e 486 }
ea466794 487
c0901581 488 if (failed && !ret && failed_mirror)
ea466794
JB
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
f188591e 492}
19c00ddc 493
d352ac68 494/*
d397712b
CM
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 497 */
d397712b 498
01d58472 499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 500{
4eee4fa4 501 u64 start = page_offset(page);
19c00ddc 502 u64 found_start;
19c00ddc 503 struct extent_buffer *eb;
f188591e 504
4f2de97a
JB
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
19c00ddc 508 found_start = btrfs_header_bytenr(eb);
fae7f21c 509 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 510 return 0;
01d58472 511 csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
512 return 0;
513}
514
01d58472 515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
516 struct extent_buffer *eb)
517{
01d58472 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
0a4e5586 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531}
532
a826d6dc 533#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
c1c9ff7c 536 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
537
538static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540{
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597}
598
facc8a22
MX
599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
ce9adaa5 602{
ce9adaa5
CM
603 u64 found_start;
604 int found_level;
ce9adaa5
CM
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 607 int ret = 0;
727011e0 608 int reads_done;
ce9adaa5 609
ce9adaa5
CM
610 if (!page->private)
611 goto out;
d397712b 612
4f2de97a 613 eb = (struct extent_buffer *)page->private;
d397712b 614
0b32f4bb
JB
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
621 if (!reads_done)
622 goto err;
f188591e 623
5cf1ab56 624 eb->read_mirror = mirror;
656f30db 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
626 ret = -EIO;
627 goto err;
628 }
629
ce9adaa5 630 found_start = btrfs_header_bytenr(eb);
727011e0 631 if (found_start != eb->start) {
68b663d1 632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
193f284d 633 "%llu %llu\n",
29549aec 634 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 635 ret = -EIO;
ce9adaa5
CM
636 goto err;
637 }
01d58472 638 if (check_tree_block_fsid(root->fs_info, eb)) {
68b663d1 639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
29549aec 640 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
641 ret = -EIO;
642 goto err;
643 }
ce9adaa5 644 found_level = btrfs_header_level(eb);
1c24c3ce 645 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 646 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
ce9adaa5 651
85d4e461
CM
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
4008c04a 654
01d58472 655 ret = csum_tree_block(root->fs_info, eb, 1);
a826d6dc 656 if (ret) {
f188591e 657 ret = -EIO;
a826d6dc
JB
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
ce9adaa5 670
0b32f4bb
JB
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
ce9adaa5 673err:
79fb65a1
JB
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 676 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 677
53b381b3
DW
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
0b32f4bb 685 clear_extent_buffer_uptodate(eb);
53b381b3 686 }
0b32f4bb 687 free_extent_buffer(eb);
ce9adaa5 688out:
f188591e 689 return ret;
ce9adaa5
CM
690}
691
ea466794 692static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 693{
4bb31e92
AJ
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
4f2de97a 697 eb = (struct extent_buffer *)page->private;
656f30db 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 699 eb->read_mirror = failed_mirror;
53b381b3 700 atomic_dec(&eb->io_pages);
ea466794 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 702 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
703 return -EIO; /* we fixed nothing */
704}
705
4246a0b6 706static void end_workqueue_bio(struct bio *bio)
ce9adaa5 707{
97eb6b69 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 709 struct btrfs_fs_info *fs_info;
9e0af237
LB
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
4246a0b6 714 end_io_wq->error = bio->bi_error;
d20f7043 715
7b6d91da 716 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
d20f7043 730 } else {
8b110e39
MX
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
d20f7043 745 }
9e0af237
LB
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
749}
750
22c59948 751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 752 enum btrfs_wq_endio_type metadata)
0b86a832 753{
97eb6b69 754 struct btrfs_end_io_wq *end_io_wq;
8b110e39 755
97eb6b69 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
22c59948 762 end_io_wq->info = info;
ce9adaa5
CM
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
22c59948 765 end_io_wq->metadata = metadata;
ce9adaa5
CM
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
769 return 0;
770}
771
b64a2851 772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 773{
4854ddd0 774 unsigned long limit = min_t(unsigned long,
5cdc7ad3 775 info->thread_pool_size,
4854ddd0
CM
776 info->fs_devices->open_devices);
777 return 256 * limit;
778}
0986fe9e 779
4a69a410
CM
780static void run_one_async_start(struct btrfs_work *work)
781{
4a69a410 782 struct async_submit_bio *async;
79787eaa 783 int ret;
4a69a410
CM
784
785 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
4a69a410
CM
791}
792
793static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
794{
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
4854ddd0 797 int limit;
8b712842
CM
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 801
b64a2851 802 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
803 limit = limit * 2 / 3;
804
66657b31 805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 806 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
807 wake_up(&fs_info->async_submit_wait);
808
79787eaa
JM
809 /* If an error occured we just want to clean up the bio and move on */
810 if (async->error) {
4246a0b6
CH
811 async->bio->bi_error = async->error;
812 bio_endio(async->bio);
79787eaa
JM
813 return;
814 }
815
4a69a410 816 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
817 async->mirror_num, async->bio_flags,
818 async->bio_offset);
4a69a410
CM
819}
820
821static void run_one_async_free(struct btrfs_work *work)
822{
823 struct async_submit_bio *async;
824
825 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
826 kfree(async);
827}
828
44b8bd7e
CM
829int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
830 int rw, struct bio *bio, int mirror_num,
c8b97818 831 unsigned long bio_flags,
eaf25d93 832 u64 bio_offset,
4a69a410
CM
833 extent_submit_bio_hook_t *submit_bio_start,
834 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
835{
836 struct async_submit_bio *async;
837
838 async = kmalloc(sizeof(*async), GFP_NOFS);
839 if (!async)
840 return -ENOMEM;
841
842 async->inode = inode;
843 async->rw = rw;
844 async->bio = bio;
845 async->mirror_num = mirror_num;
4a69a410
CM
846 async->submit_bio_start = submit_bio_start;
847 async->submit_bio_done = submit_bio_done;
848
9e0af237 849 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 850 run_one_async_done, run_one_async_free);
4a69a410 851
c8b97818 852 async->bio_flags = bio_flags;
eaf25d93 853 async->bio_offset = bio_offset;
8c8bee1d 854
79787eaa
JM
855 async->error = 0;
856
cb03c743 857 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 858
7b6d91da 859 if (rw & REQ_SYNC)
5cdc7ad3 860 btrfs_set_work_high_priority(&async->work);
d313d7a3 861
5cdc7ad3 862 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 863
d397712b 864 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
865 atomic_read(&fs_info->nr_async_submits)) {
866 wait_event(fs_info->async_submit_wait,
867 (atomic_read(&fs_info->nr_async_submits) == 0));
868 }
869
44b8bd7e
CM
870 return 0;
871}
872
ce3ed71a
CM
873static int btree_csum_one_bio(struct bio *bio)
874{
2c30c71b 875 struct bio_vec *bvec;
ce3ed71a 876 struct btrfs_root *root;
2c30c71b 877 int i, ret = 0;
ce3ed71a 878
2c30c71b 879 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 880 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 881 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
882 if (ret)
883 break;
ce3ed71a 884 }
2c30c71b 885
79787eaa 886 return ret;
ce3ed71a
CM
887}
888
4a69a410
CM
889static int __btree_submit_bio_start(struct inode *inode, int rw,
890 struct bio *bio, int mirror_num,
eaf25d93
CM
891 unsigned long bio_flags,
892 u64 bio_offset)
22c59948 893{
8b712842
CM
894 /*
895 * when we're called for a write, we're already in the async
5443be45 896 * submission context. Just jump into btrfs_map_bio
8b712842 897 */
79787eaa 898 return btree_csum_one_bio(bio);
4a69a410 899}
22c59948 900
4a69a410 901static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
902 int mirror_num, unsigned long bio_flags,
903 u64 bio_offset)
4a69a410 904{
61891923
SB
905 int ret;
906
8b712842 907 /*
4a69a410
CM
908 * when we're called for a write, we're already in the async
909 * submission context. Just jump into btrfs_map_bio
8b712842 910 */
61891923 911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
912 if (ret) {
913 bio->bi_error = ret;
914 bio_endio(bio);
915 }
61891923 916 return ret;
0b86a832
CM
917}
918
de0022b9
JB
919static int check_async_write(struct inode *inode, unsigned long bio_flags)
920{
921 if (bio_flags & EXTENT_BIO_TREE_LOG)
922 return 0;
923#ifdef CONFIG_X86
924 if (cpu_has_xmm4_2)
925 return 0;
926#endif
927 return 1;
928}
929
44b8bd7e 930static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
931 int mirror_num, unsigned long bio_flags,
932 u64 bio_offset)
44b8bd7e 933{
de0022b9 934 int async = check_async_write(inode, bio_flags);
cad321ad
CM
935 int ret;
936
7b6d91da 937 if (!(rw & REQ_WRITE)) {
4a69a410
CM
938 /*
939 * called for a read, do the setup so that checksum validation
940 * can happen in the async kernel threads
941 */
f3f266ab 942 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 943 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 944 if (ret)
61891923
SB
945 goto out_w_error;
946 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
947 mirror_num, 0);
de0022b9
JB
948 } else if (!async) {
949 ret = btree_csum_one_bio(bio);
950 if (ret)
61891923
SB
951 goto out_w_error;
952 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
953 mirror_num, 0);
954 } else {
955 /*
956 * kthread helpers are used to submit writes so that
957 * checksumming can happen in parallel across all CPUs
958 */
959 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
960 inode, rw, bio, mirror_num, 0,
961 bio_offset,
962 __btree_submit_bio_start,
963 __btree_submit_bio_done);
44b8bd7e 964 }
d313d7a3 965
4246a0b6
CH
966 if (ret)
967 goto out_w_error;
968 return 0;
969
61891923 970out_w_error:
4246a0b6
CH
971 bio->bi_error = ret;
972 bio_endio(bio);
61891923 973 return ret;
44b8bd7e
CM
974}
975
3dd1462e 976#ifdef CONFIG_MIGRATION
784b4e29 977static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
978 struct page *newpage, struct page *page,
979 enum migrate_mode mode)
784b4e29
CM
980{
981 /*
982 * we can't safely write a btree page from here,
983 * we haven't done the locking hook
984 */
985 if (PageDirty(page))
986 return -EAGAIN;
987 /*
988 * Buffers may be managed in a filesystem specific way.
989 * We must have no buffers or drop them.
990 */
991 if (page_has_private(page) &&
992 !try_to_release_page(page, GFP_KERNEL))
993 return -EAGAIN;
a6bc32b8 994 return migrate_page(mapping, newpage, page, mode);
784b4e29 995}
3dd1462e 996#endif
784b4e29 997
0da5468f
CM
998
999static int btree_writepages(struct address_space *mapping,
1000 struct writeback_control *wbc)
1001{
e2d84521
MX
1002 struct btrfs_fs_info *fs_info;
1003 int ret;
1004
d8d5f3e1 1005 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1006
1007 if (wbc->for_kupdate)
1008 return 0;
1009
e2d84521 1010 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1011 /* this is a bit racy, but that's ok */
e2d84521
MX
1012 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1013 BTRFS_DIRTY_METADATA_THRESH);
1014 if (ret < 0)
793955bc 1015 return 0;
793955bc 1016 }
0b32f4bb 1017 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1018}
1019
b2950863 1020static int btree_readpage(struct file *file, struct page *page)
5f39d397 1021{
d1310b2e
CM
1022 struct extent_io_tree *tree;
1023 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1024 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1025}
22b0ebda 1026
70dec807 1027static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1028{
98509cfc 1029 if (PageWriteback(page) || PageDirty(page))
d397712b 1030 return 0;
0c4e538b 1031
f7a52a40 1032 return try_release_extent_buffer(page);
d98237b3
CM
1033}
1034
d47992f8
LC
1035static void btree_invalidatepage(struct page *page, unsigned int offset,
1036 unsigned int length)
d98237b3 1037{
d1310b2e
CM
1038 struct extent_io_tree *tree;
1039 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1040 extent_invalidatepage(tree, page, offset);
1041 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1042 if (PagePrivate(page)) {
efe120a0
FH
1043 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1044 "page private not zero on page %llu",
1045 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1046 ClearPagePrivate(page);
1047 set_page_private(page, 0);
1048 page_cache_release(page);
1049 }
d98237b3
CM
1050}
1051
0b32f4bb
JB
1052static int btree_set_page_dirty(struct page *page)
1053{
bb146eb2 1054#ifdef DEBUG
0b32f4bb
JB
1055 struct extent_buffer *eb;
1056
1057 BUG_ON(!PagePrivate(page));
1058 eb = (struct extent_buffer *)page->private;
1059 BUG_ON(!eb);
1060 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1061 BUG_ON(!atomic_read(&eb->refs));
1062 btrfs_assert_tree_locked(eb);
bb146eb2 1063#endif
0b32f4bb
JB
1064 return __set_page_dirty_nobuffers(page);
1065}
1066
7f09410b 1067static const struct address_space_operations btree_aops = {
d98237b3 1068 .readpage = btree_readpage,
0da5468f 1069 .writepages = btree_writepages,
5f39d397
CM
1070 .releasepage = btree_releasepage,
1071 .invalidatepage = btree_invalidatepage,
5a92bc88 1072#ifdef CONFIG_MIGRATION
784b4e29 1073 .migratepage = btree_migratepage,
5a92bc88 1074#endif
0b32f4bb 1075 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1076};
1077
d3e46fea 1078void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1079{
5f39d397
CM
1080 struct extent_buffer *buf = NULL;
1081 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1082
a83fffb7 1083 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1084 if (!buf)
6197d86e 1085 return;
d1310b2e 1086 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1087 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1088 free_extent_buffer(buf);
090d1875
CM
1089}
1090
c0dcaa4d 1091int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1092 int mirror_num, struct extent_buffer **eb)
1093{
1094 struct extent_buffer *buf = NULL;
1095 struct inode *btree_inode = root->fs_info->btree_inode;
1096 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1097 int ret;
1098
a83fffb7 1099 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1100 if (!buf)
1101 return 0;
1102
1103 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1104
1105 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1106 btree_get_extent, mirror_num);
1107 if (ret) {
1108 free_extent_buffer(buf);
1109 return ret;
1110 }
1111
1112 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1113 free_extent_buffer(buf);
1114 return -EIO;
0b32f4bb 1115 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1116 *eb = buf;
1117 } else {
1118 free_extent_buffer(buf);
1119 }
1120 return 0;
1121}
1122
01d58472 1123struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1124 u64 bytenr)
0999df54 1125{
01d58472 1126 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1127}
1128
1129struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1130 u64 bytenr)
0999df54 1131{
fccb84c9 1132 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1133 return alloc_test_extent_buffer(root->fs_info, bytenr);
1134 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1135}
1136
1137
e02119d5
CM
1138int btrfs_write_tree_block(struct extent_buffer *buf)
1139{
727011e0 1140 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1141 buf->start + buf->len - 1);
e02119d5
CM
1142}
1143
1144int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1145{
727011e0 1146 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1147 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1148}
1149
0999df54 1150struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1151 u64 parent_transid)
0999df54
CM
1152{
1153 struct extent_buffer *buf = NULL;
0999df54
CM
1154 int ret;
1155
a83fffb7 1156 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1157 if (!buf)
64c043de 1158 return ERR_PTR(-ENOMEM);
0999df54 1159
ca7a79ad 1160 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1161 if (ret) {
1162 free_extent_buffer(buf);
64c043de 1163 return ERR_PTR(ret);
0f0fe8f7 1164 }
5f39d397 1165 return buf;
ce9adaa5 1166
eb60ceac
CM
1167}
1168
01d58472
DD
1169void clean_tree_block(struct btrfs_trans_handle *trans,
1170 struct btrfs_fs_info *fs_info,
d5c13f92 1171 struct extent_buffer *buf)
ed2ff2cb 1172{
55c69072 1173 if (btrfs_header_generation(buf) ==
e2d84521 1174 fs_info->running_transaction->transid) {
b9447ef8 1175 btrfs_assert_tree_locked(buf);
b4ce94de 1176
b9473439 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 -buf->len,
1180 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 btrfs_set_lock_blocking(buf);
1183 clear_extent_buffer_dirty(buf);
1184 }
925baedd 1185 }
5f39d397
CM
1186}
1187
8257b2dc
MX
1188static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189{
1190 struct btrfs_subvolume_writers *writers;
1191 int ret;
1192
1193 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 if (!writers)
1195 return ERR_PTR(-ENOMEM);
1196
908c7f19 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1198 if (ret < 0) {
1199 kfree(writers);
1200 return ERR_PTR(ret);
1201 }
1202
1203 init_waitqueue_head(&writers->wait);
1204 return writers;
1205}
1206
1207static void
1208btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209{
1210 percpu_counter_destroy(&writers->counter);
1211 kfree(writers);
1212}
1213
707e8a07
DS
1214static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1216 u64 objectid)
d97e63b6 1217{
cfaa7295 1218 root->node = NULL;
a28ec197 1219 root->commit_root = NULL;
db94535d
CM
1220 root->sectorsize = sectorsize;
1221 root->nodesize = nodesize;
87ee04eb 1222 root->stripesize = stripesize;
27cdeb70 1223 root->state = 0;
d68fc57b 1224 root->orphan_cleanup_state = 0;
0b86a832 1225
0f7d52f4
CM
1226 root->objectid = objectid;
1227 root->last_trans = 0;
13a8a7c8 1228 root->highest_objectid = 0;
eb73c1b7 1229 root->nr_delalloc_inodes = 0;
199c2a9c 1230 root->nr_ordered_extents = 0;
58176a96 1231 root->name = NULL;
6bef4d31 1232 root->inode_tree = RB_ROOT;
16cdcec7 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1234 root->block_rsv = NULL;
d68fc57b 1235 root->orphan_block_rsv = NULL;
0b86a832
CM
1236
1237 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1238 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1239 INIT_LIST_HEAD(&root->delalloc_inodes);
1240 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1241 INIT_LIST_HEAD(&root->ordered_extents);
1242 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1243 INIT_LIST_HEAD(&root->logged_list[0]);
1244 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1245 spin_lock_init(&root->orphan_lock);
5d4f98a2 1246 spin_lock_init(&root->inode_lock);
eb73c1b7 1247 spin_lock_init(&root->delalloc_lock);
199c2a9c 1248 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1249 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1250 spin_lock_init(&root->log_extents_lock[0]);
1251 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1252 mutex_init(&root->objectid_mutex);
e02119d5 1253 mutex_init(&root->log_mutex);
31f3d255 1254 mutex_init(&root->ordered_extent_mutex);
573bfb72 1255 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1256 init_waitqueue_head(&root->log_writer_wait);
1257 init_waitqueue_head(&root->log_commit_wait[0]);
1258 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1259 INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1261 atomic_set(&root->log_commit[0], 0);
1262 atomic_set(&root->log_commit[1], 0);
1263 atomic_set(&root->log_writers, 0);
2ecb7923 1264 atomic_set(&root->log_batch, 0);
8a35d95f 1265 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1266 atomic_set(&root->refs, 1);
8257b2dc 1267 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1268 root->log_transid = 0;
d1433deb 1269 root->log_transid_committed = -1;
257c62e1 1270 root->last_log_commit = 0;
06ea65a3
JB
1271 if (fs_info)
1272 extent_io_tree_init(&root->dirty_log_pages,
1273 fs_info->btree_inode->i_mapping);
017e5369 1274
3768f368
CM
1275 memset(&root->root_key, 0, sizeof(root->root_key));
1276 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1278 if (fs_info)
1279 root->defrag_trans_start = fs_info->generation;
1280 else
1281 root->defrag_trans_start = 0;
4d775673 1282 root->root_key.objectid = objectid;
0ee5dc67 1283 root->anon_dev = 0;
8ea05e3a 1284
5f3ab90a 1285 spin_lock_init(&root->root_item_lock);
3768f368
CM
1286}
1287
f84a8bd6 1288static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1289{
1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291 if (root)
1292 root->fs_info = fs_info;
1293 return root;
1294}
1295
06ea65a3
JB
1296#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297/* Should only be used by the testing infrastructure */
1298struct btrfs_root *btrfs_alloc_dummy_root(void)
1299{
1300 struct btrfs_root *root;
1301
1302 root = btrfs_alloc_root(NULL);
1303 if (!root)
1304 return ERR_PTR(-ENOMEM);
707e8a07 1305 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1307 root->alloc_bytenr = 0;
06ea65a3
JB
1308
1309 return root;
1310}
1311#endif
1312
20897f5c
AJ
1313struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info,
1315 u64 objectid)
1316{
1317 struct extent_buffer *leaf;
1318 struct btrfs_root *tree_root = fs_info->tree_root;
1319 struct btrfs_root *root;
1320 struct btrfs_key key;
1321 int ret = 0;
6463fe58 1322 uuid_le uuid;
20897f5c
AJ
1323
1324 root = btrfs_alloc_root(fs_info);
1325 if (!root)
1326 return ERR_PTR(-ENOMEM);
1327
707e8a07
DS
1328 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1329 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1330 root->root_key.objectid = objectid;
1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332 root->root_key.offset = 0;
1333
4d75f8a9 1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1335 if (IS_ERR(leaf)) {
1336 ret = PTR_ERR(leaf);
1dd05682 1337 leaf = NULL;
20897f5c
AJ
1338 goto fail;
1339 }
1340
20897f5c
AJ
1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342 btrfs_set_header_bytenr(leaf, leaf->start);
1343 btrfs_set_header_generation(leaf, trans->transid);
1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345 btrfs_set_header_owner(leaf, objectid);
1346 root->node = leaf;
1347
0a4e5586 1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1349 BTRFS_FSID_SIZE);
1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1351 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1352 BTRFS_UUID_SIZE);
1353 btrfs_mark_buffer_dirty(leaf);
1354
1355 root->commit_root = btrfs_root_node(root);
27cdeb70 1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1357
1358 root->root_item.flags = 0;
1359 root->root_item.byte_limit = 0;
1360 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361 btrfs_set_root_generation(&root->root_item, trans->transid);
1362 btrfs_set_root_level(&root->root_item, 0);
1363 btrfs_set_root_refs(&root->root_item, 1);
1364 btrfs_set_root_used(&root->root_item, leaf->len);
1365 btrfs_set_root_last_snapshot(&root->root_item, 0);
1366 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1367 uuid_le_gen(&uuid);
1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1369 root->root_item.drop_level = 0;
1370
1371 key.objectid = objectid;
1372 key.type = BTRFS_ROOT_ITEM_KEY;
1373 key.offset = 0;
1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 if (ret)
1376 goto fail;
1377
1378 btrfs_tree_unlock(leaf);
1379
1dd05682
TI
1380 return root;
1381
20897f5c 1382fail:
1dd05682
TI
1383 if (leaf) {
1384 btrfs_tree_unlock(leaf);
59885b39 1385 free_extent_buffer(root->commit_root);
1dd05682
TI
1386 free_extent_buffer(leaf);
1387 }
1388 kfree(root);
20897f5c 1389
1dd05682 1390 return ERR_PTR(ret);
20897f5c
AJ
1391}
1392
7237f183
YZ
1393static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1395{
1396 struct btrfs_root *root;
1397 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1398 struct extent_buffer *leaf;
e02119d5 1399
6f07e42e 1400 root = btrfs_alloc_root(fs_info);
e02119d5 1401 if (!root)
7237f183 1402 return ERR_PTR(-ENOMEM);
e02119d5 1403
707e8a07
DS
1404 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1405 tree_root->stripesize, root, fs_info,
1406 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1407
1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1411
7237f183 1412 /*
27cdeb70
MX
1413 * DON'T set REF_COWS for log trees
1414 *
7237f183
YZ
1415 * log trees do not get reference counted because they go away
1416 * before a real commit is actually done. They do store pointers
1417 * to file data extents, and those reference counts still get
1418 * updated (along with back refs to the log tree).
1419 */
e02119d5 1420
4d75f8a9
DS
1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422 NULL, 0, 0, 0);
7237f183
YZ
1423 if (IS_ERR(leaf)) {
1424 kfree(root);
1425 return ERR_CAST(leaf);
1426 }
e02119d5 1427
5d4f98a2
YZ
1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429 btrfs_set_header_bytenr(leaf, leaf->start);
1430 btrfs_set_header_generation(leaf, trans->transid);
1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1433 root->node = leaf;
e02119d5
CM
1434
1435 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1436 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1437 btrfs_mark_buffer_dirty(root->node);
1438 btrfs_tree_unlock(root->node);
7237f183
YZ
1439 return root;
1440}
1441
1442int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_fs_info *fs_info)
1444{
1445 struct btrfs_root *log_root;
1446
1447 log_root = alloc_log_tree(trans, fs_info);
1448 if (IS_ERR(log_root))
1449 return PTR_ERR(log_root);
1450 WARN_ON(fs_info->log_root_tree);
1451 fs_info->log_root_tree = log_root;
1452 return 0;
1453}
1454
1455int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root)
1457{
1458 struct btrfs_root *log_root;
1459 struct btrfs_inode_item *inode_item;
1460
1461 log_root = alloc_log_tree(trans, root->fs_info);
1462 if (IS_ERR(log_root))
1463 return PTR_ERR(log_root);
1464
1465 log_root->last_trans = trans->transid;
1466 log_root->root_key.offset = root->root_key.objectid;
1467
1468 inode_item = &log_root->root_item.inode;
3cae210f
QW
1469 btrfs_set_stack_inode_generation(inode_item, 1);
1470 btrfs_set_stack_inode_size(inode_item, 3);
1471 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1474
5d4f98a2 1475 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1476
1477 WARN_ON(root->log_root);
1478 root->log_root = log_root;
1479 root->log_transid = 0;
d1433deb 1480 root->log_transid_committed = -1;
257c62e1 1481 root->last_log_commit = 0;
e02119d5
CM
1482 return 0;
1483}
1484
35a3621b
SB
1485static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486 struct btrfs_key *key)
e02119d5
CM
1487{
1488 struct btrfs_root *root;
1489 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1490 struct btrfs_path *path;
84234f3a 1491 u64 generation;
cb517eab 1492 int ret;
0f7d52f4 1493
cb517eab
MX
1494 path = btrfs_alloc_path();
1495 if (!path)
0f7d52f4 1496 return ERR_PTR(-ENOMEM);
cb517eab
MX
1497
1498 root = btrfs_alloc_root(fs_info);
1499 if (!root) {
1500 ret = -ENOMEM;
1501 goto alloc_fail;
0f7d52f4
CM
1502 }
1503
707e8a07
DS
1504 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1505 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1506
cb517eab
MX
1507 ret = btrfs_find_root(tree_root, key, path,
1508 &root->root_item, &root->root_key);
0f7d52f4 1509 if (ret) {
13a8a7c8
YZ
1510 if (ret > 0)
1511 ret = -ENOENT;
cb517eab 1512 goto find_fail;
0f7d52f4 1513 }
13a8a7c8 1514
84234f3a 1515 generation = btrfs_root_generation(&root->root_item);
db94535d 1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1517 generation);
64c043de
LB
1518 if (IS_ERR(root->node)) {
1519 ret = PTR_ERR(root->node);
cb517eab
MX
1520 goto find_fail;
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 ret = -EIO;
64c043de
LB
1523 free_extent_buffer(root->node);
1524 goto find_fail;
416bc658 1525 }
5d4f98a2 1526 root->commit_root = btrfs_root_node(root);
13a8a7c8 1527out:
cb517eab
MX
1528 btrfs_free_path(path);
1529 return root;
1530
cb517eab
MX
1531find_fail:
1532 kfree(root);
1533alloc_fail:
1534 root = ERR_PTR(ret);
1535 goto out;
1536}
1537
1538struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1539 struct btrfs_key *location)
1540{
1541 struct btrfs_root *root;
1542
1543 root = btrfs_read_tree_root(tree_root, location);
1544 if (IS_ERR(root))
1545 return root;
1546
1547 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1548 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1549 btrfs_check_and_init_root_item(&root->root_item);
1550 }
13a8a7c8 1551
5eda7b5e
CM
1552 return root;
1553}
1554
cb517eab
MX
1555int btrfs_init_fs_root(struct btrfs_root *root)
1556{
1557 int ret;
8257b2dc 1558 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1559
1560 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1561 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1562 GFP_NOFS);
1563 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1564 ret = -ENOMEM;
1565 goto fail;
1566 }
1567
8257b2dc
MX
1568 writers = btrfs_alloc_subvolume_writers();
1569 if (IS_ERR(writers)) {
1570 ret = PTR_ERR(writers);
1571 goto fail;
1572 }
1573 root->subv_writers = writers;
1574
cb517eab 1575 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1576 spin_lock_init(&root->ino_cache_lock);
1577 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1578
1579 ret = get_anon_bdev(&root->anon_dev);
1580 if (ret)
8257b2dc 1581 goto free_writers;
cb517eab 1582 return 0;
8257b2dc
MX
1583
1584free_writers:
1585 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1586fail:
1587 kfree(root->free_ino_ctl);
1588 kfree(root->free_ino_pinned);
1589 return ret;
1590}
1591
171170c1
ST
1592static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1593 u64 root_id)
cb517eab
MX
1594{
1595 struct btrfs_root *root;
1596
1597 spin_lock(&fs_info->fs_roots_radix_lock);
1598 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1599 (unsigned long)root_id);
1600 spin_unlock(&fs_info->fs_roots_radix_lock);
1601 return root;
1602}
1603
1604int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1605 struct btrfs_root *root)
1606{
1607 int ret;
1608
1609 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1610 if (ret)
1611 return ret;
1612
1613 spin_lock(&fs_info->fs_roots_radix_lock);
1614 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1615 (unsigned long)root->root_key.objectid,
1616 root);
1617 if (ret == 0)
27cdeb70 1618 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 radix_tree_preload_end();
1621
1622 return ret;
1623}
1624
c00869f1
MX
1625struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626 struct btrfs_key *location,
1627 bool check_ref)
5eda7b5e
CM
1628{
1629 struct btrfs_root *root;
381cf658 1630 struct btrfs_path *path;
1d4c08e0 1631 struct btrfs_key key;
5eda7b5e
CM
1632 int ret;
1633
edbd8d4e
CM
1634 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1635 return fs_info->tree_root;
1636 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1637 return fs_info->extent_root;
8f18cf13
CM
1638 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1639 return fs_info->chunk_root;
1640 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1641 return fs_info->dev_root;
0403e47e
YZ
1642 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1643 return fs_info->csum_root;
bcef60f2
AJ
1644 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1645 return fs_info->quota_root ? fs_info->quota_root :
1646 ERR_PTR(-ENOENT);
f7a81ea4
SB
1647 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1648 return fs_info->uuid_root ? fs_info->uuid_root :
1649 ERR_PTR(-ENOENT);
4df27c4d 1650again:
cb517eab 1651 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1652 if (root) {
c00869f1 1653 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1654 return ERR_PTR(-ENOENT);
5eda7b5e 1655 return root;
48475471 1656 }
5eda7b5e 1657
cb517eab 1658 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1659 if (IS_ERR(root))
1660 return root;
3394e160 1661
c00869f1 1662 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1663 ret = -ENOENT;
581bb050 1664 goto fail;
35a30d7c 1665 }
581bb050 1666
cb517eab 1667 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1668 if (ret)
1669 goto fail;
3394e160 1670
381cf658
DS
1671 path = btrfs_alloc_path();
1672 if (!path) {
1673 ret = -ENOMEM;
1674 goto fail;
1675 }
1d4c08e0
DS
1676 key.objectid = BTRFS_ORPHAN_OBJECTID;
1677 key.type = BTRFS_ORPHAN_ITEM_KEY;
1678 key.offset = location->objectid;
1679
1680 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1681 btrfs_free_path(path);
d68fc57b
YZ
1682 if (ret < 0)
1683 goto fail;
1684 if (ret == 0)
27cdeb70 1685 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1686
cb517eab 1687 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1688 if (ret) {
4df27c4d
YZ
1689 if (ret == -EEXIST) {
1690 free_fs_root(root);
1691 goto again;
1692 }
1693 goto fail;
0f7d52f4 1694 }
edbd8d4e 1695 return root;
4df27c4d
YZ
1696fail:
1697 free_fs_root(root);
1698 return ERR_PTR(ret);
edbd8d4e
CM
1699}
1700
04160088
CM
1701static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1702{
1703 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1704 int ret = 0;
04160088
CM
1705 struct btrfs_device *device;
1706 struct backing_dev_info *bdi;
b7967db7 1707
1f78160c
XG
1708 rcu_read_lock();
1709 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1710 if (!device->bdev)
1711 continue;
04160088 1712 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1713 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1714 ret = 1;
1715 break;
1716 }
1717 }
1f78160c 1718 rcu_read_unlock();
04160088
CM
1719 return ret;
1720}
1721
04160088
CM
1722static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1723{
ad081f14
JA
1724 int err;
1725
b4caecd4 1726 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1727 if (err)
1728 return err;
1729
df0ce26c 1730 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1731 bdi->congested_fn = btrfs_congested_fn;
1732 bdi->congested_data = info;
da2f0f74 1733 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1734 return 0;
1735}
1736
8b712842
CM
1737/*
1738 * called by the kthread helper functions to finally call the bio end_io
1739 * functions. This is where read checksum verification actually happens
1740 */
1741static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1742{
ce9adaa5 1743 struct bio *bio;
97eb6b69 1744 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1745
97eb6b69 1746 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1747 bio = end_io_wq->bio;
ce9adaa5 1748
4246a0b6 1749 bio->bi_error = end_io_wq->error;
8b712842
CM
1750 bio->bi_private = end_io_wq->private;
1751 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1752 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1753 bio_endio(bio);
44b8bd7e
CM
1754}
1755
a74a4b97
CM
1756static int cleaner_kthread(void *arg)
1757{
1758 struct btrfs_root *root = arg;
d0278245 1759 int again;
da288d28 1760 struct btrfs_trans_handle *trans;
a74a4b97
CM
1761
1762 do {
d0278245 1763 again = 0;
a74a4b97 1764
d0278245 1765 /* Make the cleaner go to sleep early. */
babbf170 1766 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1767 goto sleep;
1768
1769 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1770 goto sleep;
1771
dc7f370c
MX
1772 /*
1773 * Avoid the problem that we change the status of the fs
1774 * during the above check and trylock.
1775 */
babbf170 1776 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1777 mutex_unlock(&root->fs_info->cleaner_mutex);
1778 goto sleep;
76dda93c 1779 }
a74a4b97 1780
d0278245
MX
1781 btrfs_run_delayed_iputs(root);
1782 again = btrfs_clean_one_deleted_snapshot(root);
1783 mutex_unlock(&root->fs_info->cleaner_mutex);
1784
1785 /*
05323cd1
MX
1786 * The defragger has dealt with the R/O remount and umount,
1787 * needn't do anything special here.
d0278245
MX
1788 */
1789 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1790
1791 /*
1792 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1793 * with relocation (btrfs_relocate_chunk) and relocation
1794 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1795 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1796 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1797 * unused block groups.
1798 */
1799 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1800sleep:
9d1a2a3a 1801 if (!try_to_freeze() && !again) {
a74a4b97 1802 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1803 if (!kthread_should_stop())
1804 schedule();
a74a4b97
CM
1805 __set_current_state(TASK_RUNNING);
1806 }
1807 } while (!kthread_should_stop());
da288d28
FM
1808
1809 /*
1810 * Transaction kthread is stopped before us and wakes us up.
1811 * However we might have started a new transaction and COWed some
1812 * tree blocks when deleting unused block groups for example. So
1813 * make sure we commit the transaction we started to have a clean
1814 * shutdown when evicting the btree inode - if it has dirty pages
1815 * when we do the final iput() on it, eviction will trigger a
1816 * writeback for it which will fail with null pointer dereferences
1817 * since work queues and other resources were already released and
1818 * destroyed by the time the iput/eviction/writeback is made.
1819 */
1820 trans = btrfs_attach_transaction(root);
1821 if (IS_ERR(trans)) {
1822 if (PTR_ERR(trans) != -ENOENT)
1823 btrfs_err(root->fs_info,
1824 "cleaner transaction attach returned %ld",
1825 PTR_ERR(trans));
1826 } else {
1827 int ret;
1828
1829 ret = btrfs_commit_transaction(trans, root);
1830 if (ret)
1831 btrfs_err(root->fs_info,
1832 "cleaner open transaction commit returned %d",
1833 ret);
1834 }
1835
a74a4b97
CM
1836 return 0;
1837}
1838
1839static int transaction_kthread(void *arg)
1840{
1841 struct btrfs_root *root = arg;
1842 struct btrfs_trans_handle *trans;
1843 struct btrfs_transaction *cur;
8929ecfa 1844 u64 transid;
a74a4b97
CM
1845 unsigned long now;
1846 unsigned long delay;
914b2007 1847 bool cannot_commit;
a74a4b97
CM
1848
1849 do {
914b2007 1850 cannot_commit = false;
8b87dc17 1851 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1852 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1853
a4abeea4 1854 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1855 cur = root->fs_info->running_transaction;
1856 if (!cur) {
a4abeea4 1857 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1858 goto sleep;
1859 }
31153d81 1860
a74a4b97 1861 now = get_seconds();
4a9d8bde 1862 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1863 (now < cur->start_time ||
1864 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1865 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1866 delay = HZ * 5;
1867 goto sleep;
1868 }
8929ecfa 1869 transid = cur->transid;
a4abeea4 1870 spin_unlock(&root->fs_info->trans_lock);
56bec294 1871
79787eaa 1872 /* If the file system is aborted, this will always fail. */
354aa0fb 1873 trans = btrfs_attach_transaction(root);
914b2007 1874 if (IS_ERR(trans)) {
354aa0fb
MX
1875 if (PTR_ERR(trans) != -ENOENT)
1876 cannot_commit = true;
79787eaa 1877 goto sleep;
914b2007 1878 }
8929ecfa 1879 if (transid == trans->transid) {
79787eaa 1880 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1881 } else {
1882 btrfs_end_transaction(trans, root);
1883 }
a74a4b97
CM
1884sleep:
1885 wake_up_process(root->fs_info->cleaner_kthread);
1886 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1887
4e121c06
JB
1888 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1889 &root->fs_info->fs_state)))
1890 btrfs_cleanup_transaction(root);
a0acae0e 1891 if (!try_to_freeze()) {
a74a4b97 1892 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1893 if (!kthread_should_stop() &&
914b2007
JK
1894 (!btrfs_transaction_blocked(root->fs_info) ||
1895 cannot_commit))
8929ecfa 1896 schedule_timeout(delay);
a74a4b97
CM
1897 __set_current_state(TASK_RUNNING);
1898 }
1899 } while (!kthread_should_stop());
1900 return 0;
1901}
1902
af31f5e5
CM
1903/*
1904 * this will find the highest generation in the array of
1905 * root backups. The index of the highest array is returned,
1906 * or -1 if we can't find anything.
1907 *
1908 * We check to make sure the array is valid by comparing the
1909 * generation of the latest root in the array with the generation
1910 * in the super block. If they don't match we pitch it.
1911 */
1912static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1913{
1914 u64 cur;
1915 int newest_index = -1;
1916 struct btrfs_root_backup *root_backup;
1917 int i;
1918
1919 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1920 root_backup = info->super_copy->super_roots + i;
1921 cur = btrfs_backup_tree_root_gen(root_backup);
1922 if (cur == newest_gen)
1923 newest_index = i;
1924 }
1925
1926 /* check to see if we actually wrapped around */
1927 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1928 root_backup = info->super_copy->super_roots;
1929 cur = btrfs_backup_tree_root_gen(root_backup);
1930 if (cur == newest_gen)
1931 newest_index = 0;
1932 }
1933 return newest_index;
1934}
1935
1936
1937/*
1938 * find the oldest backup so we know where to store new entries
1939 * in the backup array. This will set the backup_root_index
1940 * field in the fs_info struct
1941 */
1942static void find_oldest_super_backup(struct btrfs_fs_info *info,
1943 u64 newest_gen)
1944{
1945 int newest_index = -1;
1946
1947 newest_index = find_newest_super_backup(info, newest_gen);
1948 /* if there was garbage in there, just move along */
1949 if (newest_index == -1) {
1950 info->backup_root_index = 0;
1951 } else {
1952 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1953 }
1954}
1955
1956/*
1957 * copy all the root pointers into the super backup array.
1958 * this will bump the backup pointer by one when it is
1959 * done
1960 */
1961static void backup_super_roots(struct btrfs_fs_info *info)
1962{
1963 int next_backup;
1964 struct btrfs_root_backup *root_backup;
1965 int last_backup;
1966
1967 next_backup = info->backup_root_index;
1968 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1969 BTRFS_NUM_BACKUP_ROOTS;
1970
1971 /*
1972 * just overwrite the last backup if we're at the same generation
1973 * this happens only at umount
1974 */
1975 root_backup = info->super_for_commit->super_roots + last_backup;
1976 if (btrfs_backup_tree_root_gen(root_backup) ==
1977 btrfs_header_generation(info->tree_root->node))
1978 next_backup = last_backup;
1979
1980 root_backup = info->super_for_commit->super_roots + next_backup;
1981
1982 /*
1983 * make sure all of our padding and empty slots get zero filled
1984 * regardless of which ones we use today
1985 */
1986 memset(root_backup, 0, sizeof(*root_backup));
1987
1988 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1989
1990 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1991 btrfs_set_backup_tree_root_gen(root_backup,
1992 btrfs_header_generation(info->tree_root->node));
1993
1994 btrfs_set_backup_tree_root_level(root_backup,
1995 btrfs_header_level(info->tree_root->node));
1996
1997 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1998 btrfs_set_backup_chunk_root_gen(root_backup,
1999 btrfs_header_generation(info->chunk_root->node));
2000 btrfs_set_backup_chunk_root_level(root_backup,
2001 btrfs_header_level(info->chunk_root->node));
2002
2003 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2004 btrfs_set_backup_extent_root_gen(root_backup,
2005 btrfs_header_generation(info->extent_root->node));
2006 btrfs_set_backup_extent_root_level(root_backup,
2007 btrfs_header_level(info->extent_root->node));
2008
7c7e82a7
CM
2009 /*
2010 * we might commit during log recovery, which happens before we set
2011 * the fs_root. Make sure it is valid before we fill it in.
2012 */
2013 if (info->fs_root && info->fs_root->node) {
2014 btrfs_set_backup_fs_root(root_backup,
2015 info->fs_root->node->start);
2016 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2017 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2018 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2019 btrfs_header_level(info->fs_root->node));
7c7e82a7 2020 }
af31f5e5
CM
2021
2022 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2023 btrfs_set_backup_dev_root_gen(root_backup,
2024 btrfs_header_generation(info->dev_root->node));
2025 btrfs_set_backup_dev_root_level(root_backup,
2026 btrfs_header_level(info->dev_root->node));
2027
2028 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2029 btrfs_set_backup_csum_root_gen(root_backup,
2030 btrfs_header_generation(info->csum_root->node));
2031 btrfs_set_backup_csum_root_level(root_backup,
2032 btrfs_header_level(info->csum_root->node));
2033
2034 btrfs_set_backup_total_bytes(root_backup,
2035 btrfs_super_total_bytes(info->super_copy));
2036 btrfs_set_backup_bytes_used(root_backup,
2037 btrfs_super_bytes_used(info->super_copy));
2038 btrfs_set_backup_num_devices(root_backup,
2039 btrfs_super_num_devices(info->super_copy));
2040
2041 /*
2042 * if we don't copy this out to the super_copy, it won't get remembered
2043 * for the next commit
2044 */
2045 memcpy(&info->super_copy->super_roots,
2046 &info->super_for_commit->super_roots,
2047 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2048}
2049
2050/*
2051 * this copies info out of the root backup array and back into
2052 * the in-memory super block. It is meant to help iterate through
2053 * the array, so you send it the number of backups you've already
2054 * tried and the last backup index you used.
2055 *
2056 * this returns -1 when it has tried all the backups
2057 */
2058static noinline int next_root_backup(struct btrfs_fs_info *info,
2059 struct btrfs_super_block *super,
2060 int *num_backups_tried, int *backup_index)
2061{
2062 struct btrfs_root_backup *root_backup;
2063 int newest = *backup_index;
2064
2065 if (*num_backups_tried == 0) {
2066 u64 gen = btrfs_super_generation(super);
2067
2068 newest = find_newest_super_backup(info, gen);
2069 if (newest == -1)
2070 return -1;
2071
2072 *backup_index = newest;
2073 *num_backups_tried = 1;
2074 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2075 /* we've tried all the backups, all done */
2076 return -1;
2077 } else {
2078 /* jump to the next oldest backup */
2079 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2080 BTRFS_NUM_BACKUP_ROOTS;
2081 *backup_index = newest;
2082 *num_backups_tried += 1;
2083 }
2084 root_backup = super->super_roots + newest;
2085
2086 btrfs_set_super_generation(super,
2087 btrfs_backup_tree_root_gen(root_backup));
2088 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2089 btrfs_set_super_root_level(super,
2090 btrfs_backup_tree_root_level(root_backup));
2091 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2092
2093 /*
2094 * fixme: the total bytes and num_devices need to match or we should
2095 * need a fsck
2096 */
2097 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2098 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2099 return 0;
2100}
2101
7abadb64
LB
2102/* helper to cleanup workers */
2103static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2104{
dc6e3209 2105 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2106 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2107 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2108 btrfs_destroy_workqueue(fs_info->endio_workers);
2109 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2110 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2111 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2112 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2113 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2114 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2115 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2116 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2117 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2118 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2119 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2120 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2121 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2122 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2123}
2124
2e9f5954
R
2125static void free_root_extent_buffers(struct btrfs_root *root)
2126{
2127 if (root) {
2128 free_extent_buffer(root->node);
2129 free_extent_buffer(root->commit_root);
2130 root->node = NULL;
2131 root->commit_root = NULL;
2132 }
2133}
2134
af31f5e5
CM
2135/* helper to cleanup tree roots */
2136static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2137{
2e9f5954 2138 free_root_extent_buffers(info->tree_root);
655b09fe 2139
2e9f5954
R
2140 free_root_extent_buffers(info->dev_root);
2141 free_root_extent_buffers(info->extent_root);
2142 free_root_extent_buffers(info->csum_root);
2143 free_root_extent_buffers(info->quota_root);
2144 free_root_extent_buffers(info->uuid_root);
2145 if (chunk_root)
2146 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2147}
2148
faa2dbf0 2149void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2150{
2151 int ret;
2152 struct btrfs_root *gang[8];
2153 int i;
2154
2155 while (!list_empty(&fs_info->dead_roots)) {
2156 gang[0] = list_entry(fs_info->dead_roots.next,
2157 struct btrfs_root, root_list);
2158 list_del(&gang[0]->root_list);
2159
27cdeb70 2160 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2161 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2162 } else {
2163 free_extent_buffer(gang[0]->node);
2164 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2165 btrfs_put_fs_root(gang[0]);
171f6537
JB
2166 }
2167 }
2168
2169 while (1) {
2170 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2171 (void **)gang, 0,
2172 ARRAY_SIZE(gang));
2173 if (!ret)
2174 break;
2175 for (i = 0; i < ret; i++)
cb517eab 2176 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2177 }
1a4319cc
LB
2178
2179 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2180 btrfs_free_log_root_tree(NULL, fs_info);
2181 btrfs_destroy_pinned_extent(fs_info->tree_root,
2182 fs_info->pinned_extents);
2183 }
171f6537 2184}
af31f5e5 2185
638aa7ed
ES
2186static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2187{
2188 mutex_init(&fs_info->scrub_lock);
2189 atomic_set(&fs_info->scrubs_running, 0);
2190 atomic_set(&fs_info->scrub_pause_req, 0);
2191 atomic_set(&fs_info->scrubs_paused, 0);
2192 atomic_set(&fs_info->scrub_cancel_req, 0);
2193 init_waitqueue_head(&fs_info->scrub_pause_wait);
2194 fs_info->scrub_workers_refcnt = 0;
2195}
2196
779a65a4
ES
2197static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2198{
2199 spin_lock_init(&fs_info->balance_lock);
2200 mutex_init(&fs_info->balance_mutex);
2201 atomic_set(&fs_info->balance_running, 0);
2202 atomic_set(&fs_info->balance_pause_req, 0);
2203 atomic_set(&fs_info->balance_cancel_req, 0);
2204 fs_info->balance_ctl = NULL;
2205 init_waitqueue_head(&fs_info->balance_wait_q);
2206}
2207
f37938e0
ES
2208static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2209 struct btrfs_root *tree_root)
2210{
2211 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2212 set_nlink(fs_info->btree_inode, 1);
2213 /*
2214 * we set the i_size on the btree inode to the max possible int.
2215 * the real end of the address space is determined by all of
2216 * the devices in the system
2217 */
2218 fs_info->btree_inode->i_size = OFFSET_MAX;
2219 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2220
2221 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2222 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2223 fs_info->btree_inode->i_mapping);
2224 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2225 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2226
2227 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2228
2229 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2230 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2231 sizeof(struct btrfs_key));
2232 set_bit(BTRFS_INODE_DUMMY,
2233 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2234 btrfs_insert_inode_hash(fs_info->btree_inode);
2235}
2236
ad618368
ES
2237static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2238{
2239 fs_info->dev_replace.lock_owner = 0;
2240 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2241 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2242 mutex_init(&fs_info->dev_replace.lock_management_lock);
2243 mutex_init(&fs_info->dev_replace.lock);
2244 init_waitqueue_head(&fs_info->replace_wait);
2245}
2246
f9e92e40
ES
2247static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2248{
2249 spin_lock_init(&fs_info->qgroup_lock);
2250 mutex_init(&fs_info->qgroup_ioctl_lock);
2251 fs_info->qgroup_tree = RB_ROOT;
2252 fs_info->qgroup_op_tree = RB_ROOT;
2253 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2254 fs_info->qgroup_seq = 1;
2255 fs_info->quota_enabled = 0;
2256 fs_info->pending_quota_state = 0;
2257 fs_info->qgroup_ulist = NULL;
2258 mutex_init(&fs_info->qgroup_rescan_lock);
2259}
2260
2a458198
ES
2261static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2262 struct btrfs_fs_devices *fs_devices)
2263{
2264 int max_active = fs_info->thread_pool_size;
6f011058 2265 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2266
2267 fs_info->workers =
2268 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2269 max_active, 16);
2270
2271 fs_info->delalloc_workers =
2272 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2273
2274 fs_info->flush_workers =
2275 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2276
2277 fs_info->caching_workers =
2278 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2279
2280 /*
2281 * a higher idle thresh on the submit workers makes it much more
2282 * likely that bios will be send down in a sane order to the
2283 * devices
2284 */
2285 fs_info->submit_workers =
2286 btrfs_alloc_workqueue("submit", flags,
2287 min_t(u64, fs_devices->num_devices,
2288 max_active), 64);
2289
2290 fs_info->fixup_workers =
2291 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2292
2293 /*
2294 * endios are largely parallel and should have a very
2295 * low idle thresh
2296 */
2297 fs_info->endio_workers =
2298 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2299 fs_info->endio_meta_workers =
2300 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2301 fs_info->endio_meta_write_workers =
2302 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2303 fs_info->endio_raid56_workers =
2304 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2305 fs_info->endio_repair_workers =
2306 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2307 fs_info->rmw_workers =
2308 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2309 fs_info->endio_write_workers =
2310 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2311 fs_info->endio_freespace_worker =
2312 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2313 fs_info->delayed_workers =
2314 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2315 fs_info->readahead_workers =
2316 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2317 fs_info->qgroup_rescan_workers =
2318 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2319 fs_info->extent_workers =
2320 btrfs_alloc_workqueue("extent-refs", flags,
2321 min_t(u64, fs_devices->num_devices,
2322 max_active), 8);
2323
2324 if (!(fs_info->workers && fs_info->delalloc_workers &&
2325 fs_info->submit_workers && fs_info->flush_workers &&
2326 fs_info->endio_workers && fs_info->endio_meta_workers &&
2327 fs_info->endio_meta_write_workers &&
2328 fs_info->endio_repair_workers &&
2329 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2330 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2331 fs_info->caching_workers && fs_info->readahead_workers &&
2332 fs_info->fixup_workers && fs_info->delayed_workers &&
2333 fs_info->extent_workers &&
2334 fs_info->qgroup_rescan_workers)) {
2335 return -ENOMEM;
2336 }
2337
2338 return 0;
2339}
2340
63443bf5
ES
2341static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2342 struct btrfs_fs_devices *fs_devices)
2343{
2344 int ret;
2345 struct btrfs_root *tree_root = fs_info->tree_root;
2346 struct btrfs_root *log_tree_root;
2347 struct btrfs_super_block *disk_super = fs_info->super_copy;
2348 u64 bytenr = btrfs_super_log_root(disk_super);
2349
2350 if (fs_devices->rw_devices == 0) {
2351 printk(KERN_WARNING "BTRFS: log replay required "
2352 "on RO media\n");
2353 return -EIO;
2354 }
2355
2356 log_tree_root = btrfs_alloc_root(fs_info);
2357 if (!log_tree_root)
2358 return -ENOMEM;
2359
2360 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2361 tree_root->stripesize, log_tree_root, fs_info,
2362 BTRFS_TREE_LOG_OBJECTID);
2363
2364 log_tree_root->node = read_tree_block(tree_root, bytenr,
2365 fs_info->generation + 1);
64c043de
LB
2366 if (IS_ERR(log_tree_root->node)) {
2367 printk(KERN_ERR "BTRFS: failed to read log tree\n");
0eeff236 2368 ret = PTR_ERR(log_tree_root->node);
64c043de 2369 kfree(log_tree_root);
0eeff236 2370 return ret;
64c043de 2371 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
63443bf5
ES
2372 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2373 free_extent_buffer(log_tree_root->node);
2374 kfree(log_tree_root);
2375 return -EIO;
2376 }
2377 /* returns with log_tree_root freed on success */
2378 ret = btrfs_recover_log_trees(log_tree_root);
2379 if (ret) {
2380 btrfs_error(tree_root->fs_info, ret,
2381 "Failed to recover log tree");
2382 free_extent_buffer(log_tree_root->node);
2383 kfree(log_tree_root);
2384 return ret;
2385 }
2386
2387 if (fs_info->sb->s_flags & MS_RDONLY) {
2388 ret = btrfs_commit_super(tree_root);
2389 if (ret)
2390 return ret;
2391 }
2392
2393 return 0;
2394}
2395
4bbcaa64
ES
2396static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2397 struct btrfs_root *tree_root)
2398{
a4f3d2c4 2399 struct btrfs_root *root;
4bbcaa64
ES
2400 struct btrfs_key location;
2401 int ret;
2402
2403 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2404 location.type = BTRFS_ROOT_ITEM_KEY;
2405 location.offset = 0;
2406
a4f3d2c4
DS
2407 root = btrfs_read_tree_root(tree_root, &location);
2408 if (IS_ERR(root))
2409 return PTR_ERR(root);
2410 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2411 fs_info->extent_root = root;
4bbcaa64
ES
2412
2413 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2414 root = btrfs_read_tree_root(tree_root, &location);
2415 if (IS_ERR(root))
2416 return PTR_ERR(root);
2417 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2418 fs_info->dev_root = root;
4bbcaa64
ES
2419 btrfs_init_devices_late(fs_info);
2420
2421 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2422 root = btrfs_read_tree_root(tree_root, &location);
2423 if (IS_ERR(root))
2424 return PTR_ERR(root);
2425 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2426 fs_info->csum_root = root;
4bbcaa64
ES
2427
2428 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2429 root = btrfs_read_tree_root(tree_root, &location);
2430 if (!IS_ERR(root)) {
2431 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2432 fs_info->quota_enabled = 1;
2433 fs_info->pending_quota_state = 1;
a4f3d2c4 2434 fs_info->quota_root = root;
4bbcaa64
ES
2435 }
2436
2437 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2438 root = btrfs_read_tree_root(tree_root, &location);
2439 if (IS_ERR(root)) {
2440 ret = PTR_ERR(root);
4bbcaa64
ES
2441 if (ret != -ENOENT)
2442 return ret;
2443 } else {
a4f3d2c4
DS
2444 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2445 fs_info->uuid_root = root;
4bbcaa64
ES
2446 }
2447
2448 return 0;
2449}
2450
ad2b2c80
AV
2451int open_ctree(struct super_block *sb,
2452 struct btrfs_fs_devices *fs_devices,
2453 char *options)
2e635a27 2454{
db94535d
CM
2455 u32 sectorsize;
2456 u32 nodesize;
87ee04eb 2457 u32 stripesize;
84234f3a 2458 u64 generation;
f2b636e8 2459 u64 features;
3de4586c 2460 struct btrfs_key location;
a061fc8d 2461 struct buffer_head *bh;
4d34b278 2462 struct btrfs_super_block *disk_super;
815745cf 2463 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2464 struct btrfs_root *tree_root;
4d34b278 2465 struct btrfs_root *chunk_root;
eb60ceac 2466 int ret;
e58ca020 2467 int err = -EINVAL;
af31f5e5
CM
2468 int num_backups_tried = 0;
2469 int backup_index = 0;
5cdc7ad3 2470 int max_active;
4543df7e 2471
f84a8bd6 2472 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2473 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2474 if (!tree_root || !chunk_root) {
39279cc3
CM
2475 err = -ENOMEM;
2476 goto fail;
2477 }
76dda93c
YZ
2478
2479 ret = init_srcu_struct(&fs_info->subvol_srcu);
2480 if (ret) {
2481 err = ret;
2482 goto fail;
2483 }
2484
2485 ret = setup_bdi(fs_info, &fs_info->bdi);
2486 if (ret) {
2487 err = ret;
2488 goto fail_srcu;
2489 }
2490
908c7f19 2491 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2492 if (ret) {
2493 err = ret;
2494 goto fail_bdi;
2495 }
2496 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2497 (1 + ilog2(nr_cpu_ids));
2498
908c7f19 2499 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2500 if (ret) {
2501 err = ret;
2502 goto fail_dirty_metadata_bytes;
2503 }
2504
908c7f19 2505 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2506 if (ret) {
2507 err = ret;
2508 goto fail_delalloc_bytes;
2509 }
2510
76dda93c
YZ
2511 fs_info->btree_inode = new_inode(sb);
2512 if (!fs_info->btree_inode) {
2513 err = -ENOMEM;
c404e0dc 2514 goto fail_bio_counter;
76dda93c
YZ
2515 }
2516
a6591715 2517 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2518
76dda93c 2519 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2520 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2521 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2522 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2523 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2524 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2525 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2526 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2527 spin_lock_init(&fs_info->trans_lock);
76dda93c 2528 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2529 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2530 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2531 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2532 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2533 spin_lock_init(&fs_info->super_lock);
fcebe456 2534 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2535 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2536 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2537 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2538 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2539 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2540 mutex_init(&fs_info->reloc_mutex);
573bfb72 2541 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2542 seqlock_init(&fs_info->profiles_lock);
d7c15171 2543 init_rwsem(&fs_info->delayed_iput_sem);
19c00ddc 2544
0b86a832 2545 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2546 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2547 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2548 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2549 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2550 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2551 BTRFS_BLOCK_RSV_GLOBAL);
2552 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2553 BTRFS_BLOCK_RSV_DELALLOC);
2554 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2555 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2556 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2557 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2558 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2559 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2560 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2561 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2562 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2563 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2564 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2565 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2566 fs_info->sb = sb;
95ac567a 2567 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2568 fs_info->metadata_ratio = 0;
4cb5300b 2569 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2570 fs_info->free_chunk_space = 0;
f29021b2 2571 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2572 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2573 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66
AJ
2574 /* readahead state */
2575 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2576 spin_lock_init(&fs_info->reada_lock);
c8b97818 2577
b34b086c
CM
2578 fs_info->thread_pool_size = min_t(unsigned long,
2579 num_online_cpus() + 2, 8);
0afbaf8c 2580
199c2a9c
MX
2581 INIT_LIST_HEAD(&fs_info->ordered_roots);
2582 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2583 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2584 GFP_NOFS);
2585 if (!fs_info->delayed_root) {
2586 err = -ENOMEM;
2587 goto fail_iput;
2588 }
2589 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2590
638aa7ed 2591 btrfs_init_scrub(fs_info);
21adbd5c
SB
2592#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2593 fs_info->check_integrity_print_mask = 0;
2594#endif
779a65a4 2595 btrfs_init_balance(fs_info);
21c7e756 2596 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2597
a061fc8d
CM
2598 sb->s_blocksize = 4096;
2599 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2600 sb->s_bdi = &fs_info->bdi;
a061fc8d 2601
f37938e0 2602 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2603
0f9dd46c 2604 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2605 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2606 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2607
11833d66 2608 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2609 fs_info->btree_inode->i_mapping);
11833d66 2610 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2611 fs_info->btree_inode->i_mapping);
11833d66 2612 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2613 fs_info->do_barriers = 1;
e18e4809 2614
39279cc3 2615
5a3f23d5 2616 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2617 mutex_init(&fs_info->tree_log_mutex);
925baedd 2618 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2619 mutex_init(&fs_info->transaction_kthread_mutex);
2620 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2621 mutex_init(&fs_info->volume_mutex);
1bbc621e 2622 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2623 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2624 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2625 init_rwsem(&fs_info->subvol_sem);
803b2f54 2626 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2627
ad618368 2628 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2629 btrfs_init_qgroup(fs_info);
416ac51d 2630
fa9c0d79
CM
2631 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2632 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2633
e6dcd2dc 2634 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2635 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2636 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2637 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2638
04216820
FM
2639 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2640
53b381b3
DW
2641 ret = btrfs_alloc_stripe_hash_table(fs_info);
2642 if (ret) {
83c8266a 2643 err = ret;
53b381b3
DW
2644 goto fail_alloc;
2645 }
2646
707e8a07 2647 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2648 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2649
3c4bb26b 2650 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2651
2652 /*
2653 * Read super block and check the signature bytes only
2654 */
a512bbf8 2655 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2656 if (!bh) {
2657 err = -EINVAL;
16cdcec7 2658 goto fail_alloc;
20b45077 2659 }
39279cc3 2660
1104a885
DS
2661 /*
2662 * We want to check superblock checksum, the type is stored inside.
2663 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2664 */
2665 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2666 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2667 err = -EINVAL;
2668 goto fail_alloc;
2669 }
2670
2671 /*
2672 * super_copy is zeroed at allocation time and we never touch the
2673 * following bytes up to INFO_SIZE, the checksum is calculated from
2674 * the whole block of INFO_SIZE
2675 */
6c41761f
DS
2676 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2677 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2678 sizeof(*fs_info->super_for_commit));
a061fc8d 2679 brelse(bh);
5f39d397 2680
6c41761f 2681 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2682
1104a885
DS
2683 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2684 if (ret) {
efe120a0 2685 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2686 err = -EINVAL;
2687 goto fail_alloc;
2688 }
2689
6c41761f 2690 disk_super = fs_info->super_copy;
0f7d52f4 2691 if (!btrfs_super_root(disk_super))
16cdcec7 2692 goto fail_alloc;
0f7d52f4 2693
acce952b 2694 /* check FS state, whether FS is broken. */
87533c47
MX
2695 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2696 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2697
af31f5e5
CM
2698 /*
2699 * run through our array of backup supers and setup
2700 * our ring pointer to the oldest one
2701 */
2702 generation = btrfs_super_generation(disk_super);
2703 find_oldest_super_backup(fs_info, generation);
2704
75e7cb7f
LB
2705 /*
2706 * In the long term, we'll store the compression type in the super
2707 * block, and it'll be used for per file compression control.
2708 */
2709 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2710
2b82032c
YZ
2711 ret = btrfs_parse_options(tree_root, options);
2712 if (ret) {
2713 err = ret;
16cdcec7 2714 goto fail_alloc;
2b82032c 2715 }
dfe25020 2716
f2b636e8
JB
2717 features = btrfs_super_incompat_flags(disk_super) &
2718 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2719 if (features) {
2720 printk(KERN_ERR "BTRFS: couldn't mount because of "
2721 "unsupported optional features (%Lx).\n",
c1c9ff7c 2722 features);
f2b636e8 2723 err = -EINVAL;
16cdcec7 2724 goto fail_alloc;
f2b636e8
JB
2725 }
2726
707e8a07
DS
2727 /*
2728 * Leafsize and nodesize were always equal, this is only a sanity check.
2729 */
2730 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2731 btrfs_super_nodesize(disk_super)) {
2732 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2733 "blocksizes don't match. node %d leaf %d\n",
2734 btrfs_super_nodesize(disk_super),
707e8a07 2735 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2736 err = -EINVAL;
2737 goto fail_alloc;
2738 }
707e8a07 2739 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2740 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2741 "blocksize (%d) was too large\n",
707e8a07 2742 btrfs_super_nodesize(disk_super));
727011e0
CM
2743 err = -EINVAL;
2744 goto fail_alloc;
2745 }
2746
5d4f98a2 2747 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2748 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2749 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2750 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2751
3173a18f 2752 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2753 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2754
727011e0
CM
2755 /*
2756 * flag our filesystem as having big metadata blocks if
2757 * they are bigger than the page size
2758 */
707e8a07 2759 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2760 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2761 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2762 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2763 }
2764
bc3f116f 2765 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2766 sectorsize = btrfs_super_sectorsize(disk_super);
2767 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2768 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2769 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2770
2771 /*
2772 * mixed block groups end up with duplicate but slightly offset
2773 * extent buffers for the same range. It leads to corruptions
2774 */
2775 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2776 (sectorsize != nodesize)) {
aa8ee312 2777 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2778 "are not allowed for mixed block groups on %s\n",
2779 sb->s_id);
2780 goto fail_alloc;
2781 }
2782
ceda0864
MX
2783 /*
2784 * Needn't use the lock because there is no other task which will
2785 * update the flag.
2786 */
a6fa6fae 2787 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2788
f2b636e8
JB
2789 features = btrfs_super_compat_ro_flags(disk_super) &
2790 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2791 if (!(sb->s_flags & MS_RDONLY) && features) {
2792 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2793 "unsupported option features (%Lx).\n",
c1c9ff7c 2794 features);
f2b636e8 2795 err = -EINVAL;
16cdcec7 2796 goto fail_alloc;
f2b636e8 2797 }
61d92c32 2798
5cdc7ad3 2799 max_active = fs_info->thread_pool_size;
61d92c32 2800
2a458198
ES
2801 ret = btrfs_init_workqueues(fs_info, fs_devices);
2802 if (ret) {
2803 err = ret;
0dc3b84a
JB
2804 goto fail_sb_buffer;
2805 }
4543df7e 2806
4575c9cc 2807 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2808 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2809 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2810
db94535d 2811 tree_root->nodesize = nodesize;
db94535d 2812 tree_root->sectorsize = sectorsize;
87ee04eb 2813 tree_root->stripesize = stripesize;
a061fc8d
CM
2814
2815 sb->s_blocksize = sectorsize;
2816 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2817
3cae210f 2818 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2819 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2820 goto fail_sb_buffer;
2821 }
19c00ddc 2822
8d082fb7 2823 if (sectorsize != PAGE_SIZE) {
aa8ee312 2824 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2825 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2826 goto fail_sb_buffer;
2827 }
2828
925baedd 2829 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2830 ret = btrfs_read_sys_array(tree_root);
925baedd 2831 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2832 if (ret) {
aa8ee312 2833 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2834 "array on %s\n", sb->s_id);
5d4f98a2 2835 goto fail_sb_buffer;
84eed90f 2836 }
0b86a832 2837
84234f3a 2838 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2839
707e8a07
DS
2840 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2841 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2842
2843 chunk_root->node = read_tree_block(chunk_root,
2844 btrfs_super_chunk_root(disk_super),
ce86cd59 2845 generation);
64c043de
LB
2846 if (IS_ERR(chunk_root->node) ||
2847 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2848 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2849 sb->s_id);
e5fffbac 2850 if (!IS_ERR(chunk_root->node))
2851 free_extent_buffer(chunk_root->node);
95ab1f64 2852 chunk_root->node = NULL;
af31f5e5 2853 goto fail_tree_roots;
83121942 2854 }
5d4f98a2
YZ
2855 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2856 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2857
e17cade2 2858 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2859 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2860
0b86a832 2861 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2862 if (ret) {
aa8ee312 2863 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2864 sb->s_id);
af31f5e5 2865 goto fail_tree_roots;
2b82032c 2866 }
0b86a832 2867
8dabb742
SB
2868 /*
2869 * keep the device that is marked to be the target device for the
2870 * dev_replace procedure
2871 */
9eaed21e 2872 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2873
a6b0d5c8 2874 if (!fs_devices->latest_bdev) {
aa8ee312 2875 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2876 sb->s_id);
2877 goto fail_tree_roots;
2878 }
2879
af31f5e5 2880retry_root_backup:
84234f3a 2881 generation = btrfs_super_generation(disk_super);
0b86a832 2882
e20d96d6 2883 tree_root->node = read_tree_block(tree_root,
db94535d 2884 btrfs_super_root(disk_super),
ce86cd59 2885 generation);
64c043de
LB
2886 if (IS_ERR(tree_root->node) ||
2887 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2888 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2889 sb->s_id);
e5fffbac 2890 if (!IS_ERR(tree_root->node))
2891 free_extent_buffer(tree_root->node);
95ab1f64 2892 tree_root->node = NULL;
af31f5e5 2893 goto recovery_tree_root;
83121942 2894 }
af31f5e5 2895
5d4f98a2
YZ
2896 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2897 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2898 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2899
4bbcaa64
ES
2900 ret = btrfs_read_roots(fs_info, tree_root);
2901 if (ret)
af31f5e5 2902 goto recovery_tree_root;
f7a81ea4 2903
8929ecfa
YZ
2904 fs_info->generation = generation;
2905 fs_info->last_trans_committed = generation;
8929ecfa 2906
68310a5e
ID
2907 ret = btrfs_recover_balance(fs_info);
2908 if (ret) {
aa8ee312 2909 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2910 goto fail_block_groups;
2911 }
2912
733f4fbb
SB
2913 ret = btrfs_init_dev_stats(fs_info);
2914 if (ret) {
efe120a0 2915 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2916 ret);
2917 goto fail_block_groups;
2918 }
2919
8dabb742
SB
2920 ret = btrfs_init_dev_replace(fs_info);
2921 if (ret) {
efe120a0 2922 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2923 goto fail_block_groups;
2924 }
2925
9eaed21e 2926 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2927
b7c35e81
AJ
2928 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2929 if (ret) {
2930 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2931 goto fail_block_groups;
2932 }
2933
2934 ret = btrfs_sysfs_add_device(fs_devices);
2935 if (ret) {
2936 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2937 goto fail_fsdev_sysfs;
2938 }
2939
5ac1d209 2940 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2941 if (ret) {
efe120a0 2942 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2943 goto fail_fsdev_sysfs;
c59021f8 2944 }
2945
c59021f8 2946 ret = btrfs_init_space_info(fs_info);
2947 if (ret) {
efe120a0 2948 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2949 goto fail_sysfs;
c59021f8 2950 }
2951
4bbcaa64 2952 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2953 if (ret) {
efe120a0 2954 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2955 goto fail_sysfs;
1b1d1f66 2956 }
5af3e8cc
SB
2957 fs_info->num_tolerated_disk_barrier_failures =
2958 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2959 if (fs_info->fs_devices->missing_devices >
2960 fs_info->num_tolerated_disk_barrier_failures &&
2961 !(sb->s_flags & MS_RDONLY)) {
78fa1770
ZL
2962 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2963 fs_info->fs_devices->missing_devices,
2964 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 2965 goto fail_sysfs;
292fd7fc 2966 }
9078a3e1 2967
a74a4b97
CM
2968 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2969 "btrfs-cleaner");
57506d50 2970 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2971 goto fail_sysfs;
a74a4b97
CM
2972
2973 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2974 tree_root,
2975 "btrfs-transaction");
57506d50 2976 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2977 goto fail_cleaner;
a74a4b97 2978
c289811c
CM
2979 if (!btrfs_test_opt(tree_root, SSD) &&
2980 !btrfs_test_opt(tree_root, NOSSD) &&
2981 !fs_info->fs_devices->rotating) {
efe120a0 2982 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2983 "mode\n");
2984 btrfs_set_opt(fs_info->mount_opt, SSD);
2985 }
2986
572d9ab7
DS
2987 /*
2988 * Mount does not set all options immediatelly, we can do it now and do
2989 * not have to wait for transaction commit
2990 */
2991 btrfs_apply_pending_changes(fs_info);
3818aea2 2992
21adbd5c
SB
2993#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2994 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2995 ret = btrfsic_mount(tree_root, fs_devices,
2996 btrfs_test_opt(tree_root,
2997 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2998 1 : 0,
2999 fs_info->check_integrity_print_mask);
3000 if (ret)
efe120a0 3001 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
3002 " integrity check module %s\n", sb->s_id);
3003 }
3004#endif
bcef60f2
AJ
3005 ret = btrfs_read_qgroup_config(fs_info);
3006 if (ret)
3007 goto fail_trans_kthread;
21adbd5c 3008
acce952b 3009 /* do not make disk changes in broken FS */
68ce9682 3010 if (btrfs_super_log_root(disk_super) != 0) {
63443bf5 3011 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3012 if (ret) {
63443bf5 3013 err = ret;
28c16cbb 3014 goto fail_qgroup;
79787eaa 3015 }
e02119d5 3016 }
1a40e23b 3017
76dda93c 3018 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3019 if (ret)
28c16cbb 3020 goto fail_qgroup;
76dda93c 3021
7c2ca468 3022 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3023 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3024 if (ret)
28c16cbb 3025 goto fail_qgroup;
d68fc57b 3026
5f316481 3027 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3028 ret = btrfs_recover_relocation(tree_root);
5f316481 3029 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
3030 if (ret < 0) {
3031 printk(KERN_WARNING
efe120a0 3032 "BTRFS: failed to recover relocation\n");
d7ce5843 3033 err = -EINVAL;
bcef60f2 3034 goto fail_qgroup;
d7ce5843 3035 }
7c2ca468 3036 }
1a40e23b 3037
3de4586c
CM
3038 location.objectid = BTRFS_FS_TREE_OBJECTID;
3039 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3040 location.offset = 0;
3de4586c 3041
3de4586c 3042 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3043 if (IS_ERR(fs_info->fs_root)) {
3044 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3045 goto fail_qgroup;
3140c9a3 3046 }
c289811c 3047
2b6ba629
ID
3048 if (sb->s_flags & MS_RDONLY)
3049 return 0;
59641015 3050
2b6ba629
ID
3051 down_read(&fs_info->cleanup_work_sem);
3052 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3053 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3054 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3055 close_ctree(tree_root);
3056 return ret;
3057 }
3058 up_read(&fs_info->cleanup_work_sem);
59641015 3059
2b6ba629
ID
3060 ret = btrfs_resume_balance_async(fs_info);
3061 if (ret) {
efe120a0 3062 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3063 close_ctree(tree_root);
3064 return ret;
e3acc2a6
JB
3065 }
3066
8dabb742
SB
3067 ret = btrfs_resume_dev_replace_async(fs_info);
3068 if (ret) {
efe120a0 3069 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3070 close_ctree(tree_root);
3071 return ret;
3072 }
3073
b382a324
JS
3074 btrfs_qgroup_rescan_resume(fs_info);
3075
4bbcaa64 3076 if (!fs_info->uuid_root) {
efe120a0 3077 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3078 ret = btrfs_create_uuid_tree(fs_info);
3079 if (ret) {
efe120a0 3080 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3081 ret);
3082 close_ctree(tree_root);
3083 return ret;
3084 }
4bbcaa64
ES
3085 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3086 fs_info->generation !=
3087 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3088 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3089 ret = btrfs_check_uuid_tree(fs_info);
3090 if (ret) {
efe120a0 3091 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3092 ret);
3093 close_ctree(tree_root);
3094 return ret;
3095 }
3096 } else {
3097 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3098 }
3099
47ab2a6c
JB
3100 fs_info->open = 1;
3101
ad2b2c80 3102 return 0;
39279cc3 3103
bcef60f2
AJ
3104fail_qgroup:
3105 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3106fail_trans_kthread:
3107 kthread_stop(fs_info->transaction_kthread);
54067ae9 3108 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3109 btrfs_free_fs_roots(fs_info);
3f157a2f 3110fail_cleaner:
a74a4b97 3111 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3112
3113 /*
3114 * make sure we're done with the btree inode before we stop our
3115 * kthreads
3116 */
3117 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3118
2365dd3c
AJ
3119fail_sysfs:
3120 btrfs_sysfs_remove_one(fs_info);
3121
b7c35e81
AJ
3122fail_fsdev_sysfs:
3123 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3124
1b1d1f66 3125fail_block_groups:
54067ae9 3126 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3127 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3128
3129fail_tree_roots:
3130 free_root_pointers(fs_info, 1);
2b8195bb 3131 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3132
39279cc3 3133fail_sb_buffer:
7abadb64 3134 btrfs_stop_all_workers(fs_info);
16cdcec7 3135fail_alloc:
4543df7e 3136fail_iput:
586e46e2
ID
3137 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3138
4543df7e 3139 iput(fs_info->btree_inode);
c404e0dc
MX
3140fail_bio_counter:
3141 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3142fail_delalloc_bytes:
3143 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3144fail_dirty_metadata_bytes:
3145 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3146fail_bdi:
7e662854 3147 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3148fail_srcu:
3149 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3150fail:
53b381b3 3151 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3152 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3153 return err;
af31f5e5
CM
3154
3155recovery_tree_root:
af31f5e5
CM
3156 if (!btrfs_test_opt(tree_root, RECOVERY))
3157 goto fail_tree_roots;
3158
3159 free_root_pointers(fs_info, 0);
3160
3161 /* don't use the log in recovery mode, it won't be valid */
3162 btrfs_set_super_log_root(disk_super, 0);
3163
3164 /* we can't trust the free space cache either */
3165 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3166
3167 ret = next_root_backup(fs_info, fs_info->super_copy,
3168 &num_backups_tried, &backup_index);
3169 if (ret == -1)
3170 goto fail_block_groups;
3171 goto retry_root_backup;
eb60ceac
CM
3172}
3173
f2984462
CM
3174static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3175{
f2984462
CM
3176 if (uptodate) {
3177 set_buffer_uptodate(bh);
3178 } else {
442a4f63
SB
3179 struct btrfs_device *device = (struct btrfs_device *)
3180 bh->b_private;
3181
efe120a0 3182 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3183 "I/O error on %s\n",
3184 rcu_str_deref(device->name));
1259ab75
CM
3185 /* note, we dont' set_buffer_write_io_error because we have
3186 * our own ways of dealing with the IO errors
3187 */
f2984462 3188 clear_buffer_uptodate(bh);
442a4f63 3189 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3190 }
3191 unlock_buffer(bh);
3192 put_bh(bh);
3193}
3194
a512bbf8
YZ
3195struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3196{
3197 struct buffer_head *bh;
3198 struct buffer_head *latest = NULL;
3199 struct btrfs_super_block *super;
3200 int i;
3201 u64 transid = 0;
3202 u64 bytenr;
3203
3204 /* we would like to check all the supers, but that would make
3205 * a btrfs mount succeed after a mkfs from a different FS.
3206 * So, we need to add a special mount option to scan for
3207 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3208 */
3209 for (i = 0; i < 1; i++) {
3210 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3211 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3212 i_size_read(bdev->bd_inode))
a512bbf8 3213 break;
8068a47e
AJ
3214 bh = __bread(bdev, bytenr / 4096,
3215 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3216 if (!bh)
3217 continue;
3218
3219 super = (struct btrfs_super_block *)bh->b_data;
3220 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3221 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3222 brelse(bh);
3223 continue;
3224 }
3225
3226 if (!latest || btrfs_super_generation(super) > transid) {
3227 brelse(latest);
3228 latest = bh;
3229 transid = btrfs_super_generation(super);
3230 } else {
3231 brelse(bh);
3232 }
3233 }
3234 return latest;
3235}
3236
4eedeb75
HH
3237/*
3238 * this should be called twice, once with wait == 0 and
3239 * once with wait == 1. When wait == 0 is done, all the buffer heads
3240 * we write are pinned.
3241 *
3242 * They are released when wait == 1 is done.
3243 * max_mirrors must be the same for both runs, and it indicates how
3244 * many supers on this one device should be written.
3245 *
3246 * max_mirrors == 0 means to write them all.
3247 */
a512bbf8
YZ
3248static int write_dev_supers(struct btrfs_device *device,
3249 struct btrfs_super_block *sb,
3250 int do_barriers, int wait, int max_mirrors)
3251{
3252 struct buffer_head *bh;
3253 int i;
3254 int ret;
3255 int errors = 0;
3256 u32 crc;
3257 u64 bytenr;
a512bbf8
YZ
3258
3259 if (max_mirrors == 0)
3260 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3261
a512bbf8
YZ
3262 for (i = 0; i < max_mirrors; i++) {
3263 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3264 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3265 device->commit_total_bytes)
a512bbf8
YZ
3266 break;
3267
3268 if (wait) {
3269 bh = __find_get_block(device->bdev, bytenr / 4096,
3270 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3271 if (!bh) {
3272 errors++;
3273 continue;
3274 }
a512bbf8 3275 wait_on_buffer(bh);
4eedeb75
HH
3276 if (!buffer_uptodate(bh))
3277 errors++;
3278
3279 /* drop our reference */
3280 brelse(bh);
3281
3282 /* drop the reference from the wait == 0 run */
3283 brelse(bh);
3284 continue;
a512bbf8
YZ
3285 } else {
3286 btrfs_set_super_bytenr(sb, bytenr);
3287
3288 crc = ~(u32)0;
b0496686 3289 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3290 BTRFS_CSUM_SIZE, crc,
3291 BTRFS_SUPER_INFO_SIZE -
3292 BTRFS_CSUM_SIZE);
3293 btrfs_csum_final(crc, sb->csum);
3294
4eedeb75
HH
3295 /*
3296 * one reference for us, and we leave it for the
3297 * caller
3298 */
a512bbf8
YZ
3299 bh = __getblk(device->bdev, bytenr / 4096,
3300 BTRFS_SUPER_INFO_SIZE);
634554dc 3301 if (!bh) {
efe120a0 3302 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3303 "buffer head for bytenr %Lu\n", bytenr);
3304 errors++;
3305 continue;
3306 }
3307
a512bbf8
YZ
3308 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3309
4eedeb75 3310 /* one reference for submit_bh */
a512bbf8 3311 get_bh(bh);
4eedeb75
HH
3312
3313 set_buffer_uptodate(bh);
a512bbf8
YZ
3314 lock_buffer(bh);
3315 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3316 bh->b_private = device;
a512bbf8
YZ
3317 }
3318
387125fc
CM
3319 /*
3320 * we fua the first super. The others we allow
3321 * to go down lazy.
3322 */
e8117c26
WS
3323 if (i == 0)
3324 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3325 else
3326 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3327 if (ret)
a512bbf8 3328 errors++;
a512bbf8
YZ
3329 }
3330 return errors < i ? 0 : -1;
3331}
3332
387125fc
CM
3333/*
3334 * endio for the write_dev_flush, this will wake anyone waiting
3335 * for the barrier when it is done
3336 */
4246a0b6 3337static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3338{
387125fc
CM
3339 if (bio->bi_private)
3340 complete(bio->bi_private);
3341 bio_put(bio);
3342}
3343
3344/*
3345 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3346 * sent down. With wait == 1, it waits for the previous flush.
3347 *
3348 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3349 * capable
3350 */
3351static int write_dev_flush(struct btrfs_device *device, int wait)
3352{
3353 struct bio *bio;
3354 int ret = 0;
3355
3356 if (device->nobarriers)
3357 return 0;
3358
3359 if (wait) {
3360 bio = device->flush_bio;
3361 if (!bio)
3362 return 0;
3363
3364 wait_for_completion(&device->flush_wait);
3365
4246a0b6
CH
3366 if (bio->bi_error) {
3367 ret = bio->bi_error;
5af3e8cc
SB
3368 btrfs_dev_stat_inc_and_print(device,
3369 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3370 }
3371
3372 /* drop the reference from the wait == 0 run */
3373 bio_put(bio);
3374 device->flush_bio = NULL;
3375
3376 return ret;
3377 }
3378
3379 /*
3380 * one reference for us, and we leave it for the
3381 * caller
3382 */
9c017abc 3383 device->flush_bio = NULL;
9be3395b 3384 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3385 if (!bio)
3386 return -ENOMEM;
3387
3388 bio->bi_end_io = btrfs_end_empty_barrier;
3389 bio->bi_bdev = device->bdev;
3390 init_completion(&device->flush_wait);
3391 bio->bi_private = &device->flush_wait;
3392 device->flush_bio = bio;
3393
3394 bio_get(bio);
21adbd5c 3395 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3396
3397 return 0;
3398}
3399
3400/*
3401 * send an empty flush down to each device in parallel,
3402 * then wait for them
3403 */
3404static int barrier_all_devices(struct btrfs_fs_info *info)
3405{
3406 struct list_head *head;
3407 struct btrfs_device *dev;
5af3e8cc
SB
3408 int errors_send = 0;
3409 int errors_wait = 0;
387125fc
CM
3410 int ret;
3411
3412 /* send down all the barriers */
3413 head = &info->fs_devices->devices;
3414 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3415 if (dev->missing)
3416 continue;
387125fc 3417 if (!dev->bdev) {
5af3e8cc 3418 errors_send++;
387125fc
CM
3419 continue;
3420 }
3421 if (!dev->in_fs_metadata || !dev->writeable)
3422 continue;
3423
3424 ret = write_dev_flush(dev, 0);
3425 if (ret)
5af3e8cc 3426 errors_send++;
387125fc
CM
3427 }
3428
3429 /* wait for all the barriers */
3430 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3431 if (dev->missing)
3432 continue;
387125fc 3433 if (!dev->bdev) {
5af3e8cc 3434 errors_wait++;
387125fc
CM
3435 continue;
3436 }
3437 if (!dev->in_fs_metadata || !dev->writeable)
3438 continue;
3439
3440 ret = write_dev_flush(dev, 1);
3441 if (ret)
5af3e8cc 3442 errors_wait++;
387125fc 3443 }
5af3e8cc
SB
3444 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3445 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3446 return -EIO;
3447 return 0;
3448}
3449
943c6e99
ZL
3450int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3451{
3452 if ((flags & (BTRFS_BLOCK_GROUP_DUP |
3453 BTRFS_BLOCK_GROUP_RAID0 |
3454 BTRFS_AVAIL_ALLOC_BIT_SINGLE)) ||
3455 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0))
3456 return 0;
3457
3458 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3459 BTRFS_BLOCK_GROUP_RAID5 |
3460 BTRFS_BLOCK_GROUP_RAID10))
3461 return 1;
3462
3463 if (flags & BTRFS_BLOCK_GROUP_RAID6)
3464 return 2;
3465
3466 pr_warn("BTRFS: unknown raid type: %llu\n", flags);
3467 return 0;
3468}
3469
5af3e8cc
SB
3470int btrfs_calc_num_tolerated_disk_barrier_failures(
3471 struct btrfs_fs_info *fs_info)
3472{
3473 struct btrfs_ioctl_space_info space;
3474 struct btrfs_space_info *sinfo;
3475 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3476 BTRFS_BLOCK_GROUP_SYSTEM,
3477 BTRFS_BLOCK_GROUP_METADATA,
3478 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3479 int i;
3480 int c;
3481 int num_tolerated_disk_barrier_failures =
3482 (int)fs_info->fs_devices->num_devices;
3483
2c458045 3484 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3485 struct btrfs_space_info *tmp;
3486
3487 sinfo = NULL;
3488 rcu_read_lock();
3489 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3490 if (tmp->flags == types[i]) {
3491 sinfo = tmp;
3492 break;
3493 }
3494 }
3495 rcu_read_unlock();
3496
3497 if (!sinfo)
3498 continue;
3499
3500 down_read(&sinfo->groups_sem);
3501 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3502 u64 flags;
3503
3504 if (list_empty(&sinfo->block_groups[c]))
3505 continue;
3506
3507 btrfs_get_block_group_info(&sinfo->block_groups[c],
3508 &space);
3509 if (space.total_bytes == 0 || space.used_bytes == 0)
3510 continue;
3511 flags = space.flags;
943c6e99
ZL
3512
3513 num_tolerated_disk_barrier_failures = min(
3514 num_tolerated_disk_barrier_failures,
3515 btrfs_get_num_tolerated_disk_barrier_failures(
3516 flags));
5af3e8cc
SB
3517 }
3518 up_read(&sinfo->groups_sem);
3519 }
3520
3521 return num_tolerated_disk_barrier_failures;
3522}
3523
48a3b636 3524static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3525{
e5e9a520 3526 struct list_head *head;
f2984462 3527 struct btrfs_device *dev;
a061fc8d 3528 struct btrfs_super_block *sb;
f2984462 3529 struct btrfs_dev_item *dev_item;
f2984462
CM
3530 int ret;
3531 int do_barriers;
a236aed1
CM
3532 int max_errors;
3533 int total_errors = 0;
a061fc8d 3534 u64 flags;
f2984462
CM
3535
3536 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3537 backup_super_roots(root->fs_info);
f2984462 3538
6c41761f 3539 sb = root->fs_info->super_for_commit;
a061fc8d 3540 dev_item = &sb->dev_item;
e5e9a520 3541
174ba509 3542 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3543 head = &root->fs_info->fs_devices->devices;
d7306801 3544 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3545
5af3e8cc
SB
3546 if (do_barriers) {
3547 ret = barrier_all_devices(root->fs_info);
3548 if (ret) {
3549 mutex_unlock(
3550 &root->fs_info->fs_devices->device_list_mutex);
3551 btrfs_error(root->fs_info, ret,
3552 "errors while submitting device barriers.");
3553 return ret;
3554 }
3555 }
387125fc 3556
1f78160c 3557 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3558 if (!dev->bdev) {
3559 total_errors++;
3560 continue;
3561 }
2b82032c 3562 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3563 continue;
3564
2b82032c 3565 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3566 btrfs_set_stack_device_type(dev_item, dev->type);
3567 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3568 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3569 dev->commit_total_bytes);
ce7213c7
MX
3570 btrfs_set_stack_device_bytes_used(dev_item,
3571 dev->commit_bytes_used);
a061fc8d
CM
3572 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3573 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3574 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3575 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3576 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3577
a061fc8d
CM
3578 flags = btrfs_super_flags(sb);
3579 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3580
a512bbf8 3581 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3582 if (ret)
3583 total_errors++;
f2984462 3584 }
a236aed1 3585 if (total_errors > max_errors) {
efe120a0 3586 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3587 total_errors);
a724b436 3588 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3589
9d565ba4
SB
3590 /* FUA is masked off if unsupported and can't be the reason */
3591 btrfs_error(root->fs_info, -EIO,
3592 "%d errors while writing supers", total_errors);
3593 return -EIO;
a236aed1 3594 }
f2984462 3595
a512bbf8 3596 total_errors = 0;
1f78160c 3597 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3598 if (!dev->bdev)
3599 continue;
2b82032c 3600 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3601 continue;
3602
a512bbf8
YZ
3603 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3604 if (ret)
3605 total_errors++;
f2984462 3606 }
174ba509 3607 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3608 if (total_errors > max_errors) {
79787eaa
JM
3609 btrfs_error(root->fs_info, -EIO,
3610 "%d errors while writing supers", total_errors);
3611 return -EIO;
a236aed1 3612 }
f2984462
CM
3613 return 0;
3614}
3615
a512bbf8
YZ
3616int write_ctree_super(struct btrfs_trans_handle *trans,
3617 struct btrfs_root *root, int max_mirrors)
eb60ceac 3618{
f570e757 3619 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3620}
3621
cb517eab
MX
3622/* Drop a fs root from the radix tree and free it. */
3623void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3624 struct btrfs_root *root)
2619ba1f 3625{
4df27c4d 3626 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3627 radix_tree_delete(&fs_info->fs_roots_radix,
3628 (unsigned long)root->root_key.objectid);
4df27c4d 3629 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3630
3631 if (btrfs_root_refs(&root->root_item) == 0)
3632 synchronize_srcu(&fs_info->subvol_srcu);
3633
1a4319cc 3634 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3635 btrfs_free_log(NULL, root);
3321719e 3636
faa2dbf0
JB
3637 if (root->free_ino_pinned)
3638 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3639 if (root->free_ino_ctl)
3640 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3641 free_fs_root(root);
4df27c4d
YZ
3642}
3643
3644static void free_fs_root(struct btrfs_root *root)
3645{
57cdc8db 3646 iput(root->ino_cache_inode);
4df27c4d 3647 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3648 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3649 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3650 if (root->anon_dev)
3651 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3652 if (root->subv_writers)
3653 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3654 free_extent_buffer(root->node);
3655 free_extent_buffer(root->commit_root);
581bb050
LZ
3656 kfree(root->free_ino_ctl);
3657 kfree(root->free_ino_pinned);
d397712b 3658 kfree(root->name);
b0feb9d9 3659 btrfs_put_fs_root(root);
2619ba1f
CM
3660}
3661
cb517eab
MX
3662void btrfs_free_fs_root(struct btrfs_root *root)
3663{
3664 free_fs_root(root);
2619ba1f
CM
3665}
3666
c146afad 3667int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3668{
c146afad
YZ
3669 u64 root_objectid = 0;
3670 struct btrfs_root *gang[8];
65d33fd7
QW
3671 int i = 0;
3672 int err = 0;
3673 unsigned int ret = 0;
3674 int index;
e089f05c 3675
c146afad 3676 while (1) {
65d33fd7 3677 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3678 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3679 (void **)gang, root_objectid,
3680 ARRAY_SIZE(gang));
65d33fd7
QW
3681 if (!ret) {
3682 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3683 break;
65d33fd7 3684 }
5d4f98a2 3685 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3686
c146afad 3687 for (i = 0; i < ret; i++) {
65d33fd7
QW
3688 /* Avoid to grab roots in dead_roots */
3689 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3690 gang[i] = NULL;
3691 continue;
3692 }
3693 /* grab all the search result for later use */
3694 gang[i] = btrfs_grab_fs_root(gang[i]);
3695 }
3696 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3697
65d33fd7
QW
3698 for (i = 0; i < ret; i++) {
3699 if (!gang[i])
3700 continue;
c146afad 3701 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3702 err = btrfs_orphan_cleanup(gang[i]);
3703 if (err)
65d33fd7
QW
3704 break;
3705 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3706 }
3707 root_objectid++;
3708 }
65d33fd7
QW
3709
3710 /* release the uncleaned roots due to error */
3711 for (; i < ret; i++) {
3712 if (gang[i])
3713 btrfs_put_fs_root(gang[i]);
3714 }
3715 return err;
c146afad 3716}
a2135011 3717
c146afad
YZ
3718int btrfs_commit_super(struct btrfs_root *root)
3719{
3720 struct btrfs_trans_handle *trans;
a74a4b97 3721
c146afad 3722 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3723 btrfs_run_delayed_iputs(root);
c146afad 3724 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3725 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3726
3727 /* wait until ongoing cleanup work done */
3728 down_write(&root->fs_info->cleanup_work_sem);
3729 up_write(&root->fs_info->cleanup_work_sem);
3730
7a7eaa40 3731 trans = btrfs_join_transaction(root);
3612b495
TI
3732 if (IS_ERR(trans))
3733 return PTR_ERR(trans);
d52c1bcc 3734 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3735}
3736
3abdbd78 3737void close_ctree(struct btrfs_root *root)
c146afad
YZ
3738{
3739 struct btrfs_fs_info *fs_info = root->fs_info;
3740 int ret;
3741
3742 fs_info->closing = 1;
3743 smp_mb();
3744
803b2f54
SB
3745 /* wait for the uuid_scan task to finish */
3746 down(&fs_info->uuid_tree_rescan_sem);
3747 /* avoid complains from lockdep et al., set sem back to initial state */
3748 up(&fs_info->uuid_tree_rescan_sem);
3749
837d5b6e 3750 /* pause restriper - we want to resume on mount */
aa1b8cd4 3751 btrfs_pause_balance(fs_info);
837d5b6e 3752
8dabb742
SB
3753 btrfs_dev_replace_suspend_for_unmount(fs_info);
3754
aa1b8cd4 3755 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3756
3757 /* wait for any defraggers to finish */
3758 wait_event(fs_info->transaction_wait,
3759 (atomic_read(&fs_info->defrag_running) == 0));
3760
3761 /* clear out the rbtree of defraggable inodes */
26176e7c 3762 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3763
21c7e756
MX
3764 cancel_work_sync(&fs_info->async_reclaim_work);
3765
c146afad 3766 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3767 /*
3768 * If the cleaner thread is stopped and there are
3769 * block groups queued for removal, the deletion will be
3770 * skipped when we quit the cleaner thread.
3771 */
e44163e1 3772 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3773
acce952b 3774 ret = btrfs_commit_super(root);
3775 if (ret)
04892340 3776 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3777 }
3778
87533c47 3779 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3780 btrfs_error_commit_super(root);
0f7d52f4 3781
e3029d9f
AV
3782 kthread_stop(fs_info->transaction_kthread);
3783 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3784
f25784b3
YZ
3785 fs_info->closing = 2;
3786 smp_mb();
3787
04892340 3788 btrfs_free_qgroup_config(fs_info);
bcef60f2 3789
963d678b 3790 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3791 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3792 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3793 }
bcc63abb 3794
5ac1d209 3795 btrfs_sysfs_remove_one(fs_info);
b7c35e81 3796 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3797
faa2dbf0 3798 btrfs_free_fs_roots(fs_info);
d10c5f31 3799
1a4319cc
LB
3800 btrfs_put_block_group_cache(fs_info);
3801
2b1360da
JB
3802 btrfs_free_block_groups(fs_info);
3803
de348ee0
WS
3804 /*
3805 * we must make sure there is not any read request to
3806 * submit after we stopping all workers.
3807 */
3808 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3809 btrfs_stop_all_workers(fs_info);
3810
47ab2a6c 3811 fs_info->open = 0;
13e6c37b 3812 free_root_pointers(fs_info, 1);
9ad6b7bc 3813
13e6c37b 3814 iput(fs_info->btree_inode);
d6bfde87 3815
21adbd5c
SB
3816#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3817 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3818 btrfsic_unmount(root, fs_info->fs_devices);
3819#endif
3820
dfe25020 3821 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3822 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3823
e2d84521 3824 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3825 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3826 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3827 bdi_destroy(&fs_info->bdi);
76dda93c 3828 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3829
53b381b3
DW
3830 btrfs_free_stripe_hash_table(fs_info);
3831
cdfb080e 3832 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3833 root->orphan_block_rsv = NULL;
04216820
FM
3834
3835 lock_chunks(root);
3836 while (!list_empty(&fs_info->pinned_chunks)) {
3837 struct extent_map *em;
3838
3839 em = list_first_entry(&fs_info->pinned_chunks,
3840 struct extent_map, list);
3841 list_del_init(&em->list);
3842 free_extent_map(em);
3843 }
3844 unlock_chunks(root);
eb60ceac
CM
3845}
3846
b9fab919
CM
3847int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3848 int atomic)
5f39d397 3849{
1259ab75 3850 int ret;
727011e0 3851 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3852
0b32f4bb 3853 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3854 if (!ret)
3855 return ret;
3856
3857 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3858 parent_transid, atomic);
3859 if (ret == -EAGAIN)
3860 return ret;
1259ab75 3861 return !ret;
5f39d397
CM
3862}
3863
3864int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3865{
0b32f4bb 3866 return set_extent_buffer_uptodate(buf);
5f39d397 3867}
6702ed49 3868
5f39d397
CM
3869void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3870{
06ea65a3 3871 struct btrfs_root *root;
5f39d397 3872 u64 transid = btrfs_header_generation(buf);
b9473439 3873 int was_dirty;
b4ce94de 3874
06ea65a3
JB
3875#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3876 /*
3877 * This is a fast path so only do this check if we have sanity tests
3878 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3879 * outside of the sanity tests.
3880 */
3881 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3882 return;
3883#endif
3884 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3885 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3886 if (transid != root->fs_info->generation)
3887 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3888 "found %llu running %llu\n",
c1c9ff7c 3889 buf->start, transid, root->fs_info->generation);
0b32f4bb 3890 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3891 if (!was_dirty)
3892 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3893 buf->len,
3894 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3895#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3896 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3897 btrfs_print_leaf(root, buf);
3898 ASSERT(0);
3899 }
3900#endif
eb60ceac
CM
3901}
3902
b53d3f5d
LB
3903static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3904 int flush_delayed)
16cdcec7
MX
3905{
3906 /*
3907 * looks as though older kernels can get into trouble with
3908 * this code, they end up stuck in balance_dirty_pages forever
3909 */
e2d84521 3910 int ret;
16cdcec7
MX
3911
3912 if (current->flags & PF_MEMALLOC)
3913 return;
3914
b53d3f5d
LB
3915 if (flush_delayed)
3916 btrfs_balance_delayed_items(root);
16cdcec7 3917
e2d84521
MX
3918 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3919 BTRFS_DIRTY_METADATA_THRESH);
3920 if (ret > 0) {
d0e1d66b
NJ
3921 balance_dirty_pages_ratelimited(
3922 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3923 }
3924 return;
3925}
3926
b53d3f5d 3927void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3928{
b53d3f5d
LB
3929 __btrfs_btree_balance_dirty(root, 1);
3930}
585ad2c3 3931
b53d3f5d
LB
3932void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3933{
3934 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3935}
6b80053d 3936
ca7a79ad 3937int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3938{
727011e0 3939 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3940 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3941}
0da5468f 3942
fcd1f065 3943static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3944 int read_only)
3945{
c926093e
DS
3946 struct btrfs_super_block *sb = fs_info->super_copy;
3947 int ret = 0;
3948
21e7626b
DS
3949 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3950 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3951 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3952 ret = -EINVAL;
3953 }
21e7626b
DS
3954 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3955 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3956 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3957 ret = -EINVAL;
3958 }
21e7626b
DS
3959 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3960 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3961 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3962 ret = -EINVAL;
3963 }
3964
1104a885 3965 /*
c926093e
DS
3966 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3967 * items yet, they'll be verified later. Issue just a warning.
1104a885 3968 */
21e7626b 3969 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 3970 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 3971 btrfs_super_root(sb));
21e7626b 3972 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
3973 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3974 btrfs_super_chunk_root(sb));
21e7626b 3975 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 3976 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 3977 btrfs_super_log_root(sb));
c926093e 3978
75d6ad38
DS
3979 /*
3980 * Check the lower bound, the alignment and other constraints are
3981 * checked later.
3982 */
3983 if (btrfs_super_nodesize(sb) < 4096) {
3984 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3985 btrfs_super_nodesize(sb));
3986 ret = -EINVAL;
3987 }
3988 if (btrfs_super_sectorsize(sb) < 4096) {
3989 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3990 btrfs_super_sectorsize(sb));
3991 ret = -EINVAL;
3992 }
3993
c926093e
DS
3994 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3995 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3996 fs_info->fsid, sb->dev_item.fsid);
3997 ret = -EINVAL;
3998 }
3999
4000 /*
4001 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4002 * done later
4003 */
21e7626b 4004 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4005 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4006 btrfs_super_num_devices(sb));
75d6ad38
DS
4007 if (btrfs_super_num_devices(sb) == 0) {
4008 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4009 ret = -EINVAL;
4010 }
c926093e 4011
21e7626b 4012 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4013 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4014 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4015 ret = -EINVAL;
4016 }
4017
ce7fca5f
DS
4018 /*
4019 * Obvious sys_chunk_array corruptions, it must hold at least one key
4020 * and one chunk
4021 */
4022 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4023 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4024 btrfs_super_sys_array_size(sb),
4025 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4026 ret = -EINVAL;
4027 }
4028 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4029 + sizeof(struct btrfs_chunk)) {
d2207129 4030 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4031 btrfs_super_sys_array_size(sb),
4032 sizeof(struct btrfs_disk_key)
4033 + sizeof(struct btrfs_chunk));
4034 ret = -EINVAL;
4035 }
4036
c926093e
DS
4037 /*
4038 * The generation is a global counter, we'll trust it more than the others
4039 * but it's still possible that it's the one that's wrong.
4040 */
21e7626b 4041 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4042 printk(KERN_WARNING
4043 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4044 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4045 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4046 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4047 printk(KERN_WARNING
4048 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4049 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4050
4051 return ret;
acce952b 4052}
4053
48a3b636 4054static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4055{
acce952b 4056 mutex_lock(&root->fs_info->cleaner_mutex);
4057 btrfs_run_delayed_iputs(root);
4058 mutex_unlock(&root->fs_info->cleaner_mutex);
4059
4060 down_write(&root->fs_info->cleanup_work_sem);
4061 up_write(&root->fs_info->cleanup_work_sem);
4062
4063 /* cleanup FS via transaction */
4064 btrfs_cleanup_transaction(root);
acce952b 4065}
4066
143bede5 4067static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4068{
acce952b 4069 struct btrfs_ordered_extent *ordered;
acce952b 4070
199c2a9c 4071 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4072 /*
4073 * This will just short circuit the ordered completion stuff which will
4074 * make sure the ordered extent gets properly cleaned up.
4075 */
199c2a9c 4076 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4077 root_extent_list)
4078 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4079 spin_unlock(&root->ordered_extent_lock);
4080}
4081
4082static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4083{
4084 struct btrfs_root *root;
4085 struct list_head splice;
4086
4087 INIT_LIST_HEAD(&splice);
4088
4089 spin_lock(&fs_info->ordered_root_lock);
4090 list_splice_init(&fs_info->ordered_roots, &splice);
4091 while (!list_empty(&splice)) {
4092 root = list_first_entry(&splice, struct btrfs_root,
4093 ordered_root);
1de2cfde
JB
4094 list_move_tail(&root->ordered_root,
4095 &fs_info->ordered_roots);
199c2a9c 4096
2a85d9ca 4097 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4098 btrfs_destroy_ordered_extents(root);
4099
2a85d9ca
LB
4100 cond_resched();
4101 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4102 }
4103 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4104}
4105
35a3621b
SB
4106static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4107 struct btrfs_root *root)
acce952b 4108{
4109 struct rb_node *node;
4110 struct btrfs_delayed_ref_root *delayed_refs;
4111 struct btrfs_delayed_ref_node *ref;
4112 int ret = 0;
4113
4114 delayed_refs = &trans->delayed_refs;
4115
4116 spin_lock(&delayed_refs->lock);
d7df2c79 4117 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4118 spin_unlock(&delayed_refs->lock);
efe120a0 4119 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4120 return ret;
4121 }
4122
d7df2c79
JB
4123 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4124 struct btrfs_delayed_ref_head *head;
c6fc2454 4125 struct btrfs_delayed_ref_node *tmp;
e78417d1 4126 bool pin_bytes = false;
acce952b 4127
d7df2c79
JB
4128 head = rb_entry(node, struct btrfs_delayed_ref_head,
4129 href_node);
4130 if (!mutex_trylock(&head->mutex)) {
4131 atomic_inc(&head->node.refs);
4132 spin_unlock(&delayed_refs->lock);
eb12db69 4133
d7df2c79 4134 mutex_lock(&head->mutex);
e78417d1 4135 mutex_unlock(&head->mutex);
d7df2c79
JB
4136 btrfs_put_delayed_ref(&head->node);
4137 spin_lock(&delayed_refs->lock);
4138 continue;
4139 }
4140 spin_lock(&head->lock);
c6fc2454
QW
4141 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4142 list) {
d7df2c79 4143 ref->in_tree = 0;
c6fc2454 4144 list_del(&ref->list);
d7df2c79
JB
4145 atomic_dec(&delayed_refs->num_entries);
4146 btrfs_put_delayed_ref(ref);
e78417d1 4147 }
d7df2c79
JB
4148 if (head->must_insert_reserved)
4149 pin_bytes = true;
4150 btrfs_free_delayed_extent_op(head->extent_op);
4151 delayed_refs->num_heads--;
4152 if (head->processing == 0)
4153 delayed_refs->num_heads_ready--;
4154 atomic_dec(&delayed_refs->num_entries);
4155 head->node.in_tree = 0;
4156 rb_erase(&head->href_node, &delayed_refs->href_root);
4157 spin_unlock(&head->lock);
4158 spin_unlock(&delayed_refs->lock);
4159 mutex_unlock(&head->mutex);
acce952b 4160
d7df2c79
JB
4161 if (pin_bytes)
4162 btrfs_pin_extent(root, head->node.bytenr,
4163 head->node.num_bytes, 1);
4164 btrfs_put_delayed_ref(&head->node);
acce952b 4165 cond_resched();
4166 spin_lock(&delayed_refs->lock);
4167 }
4168
4169 spin_unlock(&delayed_refs->lock);
4170
4171 return ret;
4172}
4173
143bede5 4174static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4175{
4176 struct btrfs_inode *btrfs_inode;
4177 struct list_head splice;
4178
4179 INIT_LIST_HEAD(&splice);
4180
eb73c1b7
MX
4181 spin_lock(&root->delalloc_lock);
4182 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4183
4184 while (!list_empty(&splice)) {
eb73c1b7
MX
4185 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4186 delalloc_inodes);
acce952b 4187
4188 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4189 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4190 &btrfs_inode->runtime_flags);
eb73c1b7 4191 spin_unlock(&root->delalloc_lock);
acce952b 4192
4193 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4194
eb73c1b7 4195 spin_lock(&root->delalloc_lock);
acce952b 4196 }
4197
eb73c1b7
MX
4198 spin_unlock(&root->delalloc_lock);
4199}
4200
4201static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4202{
4203 struct btrfs_root *root;
4204 struct list_head splice;
4205
4206 INIT_LIST_HEAD(&splice);
4207
4208 spin_lock(&fs_info->delalloc_root_lock);
4209 list_splice_init(&fs_info->delalloc_roots, &splice);
4210 while (!list_empty(&splice)) {
4211 root = list_first_entry(&splice, struct btrfs_root,
4212 delalloc_root);
4213 list_del_init(&root->delalloc_root);
4214 root = btrfs_grab_fs_root(root);
4215 BUG_ON(!root);
4216 spin_unlock(&fs_info->delalloc_root_lock);
4217
4218 btrfs_destroy_delalloc_inodes(root);
4219 btrfs_put_fs_root(root);
4220
4221 spin_lock(&fs_info->delalloc_root_lock);
4222 }
4223 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4224}
4225
4226static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4227 struct extent_io_tree *dirty_pages,
4228 int mark)
4229{
4230 int ret;
acce952b 4231 struct extent_buffer *eb;
4232 u64 start = 0;
4233 u64 end;
acce952b 4234
4235 while (1) {
4236 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4237 mark, NULL);
acce952b 4238 if (ret)
4239 break;
4240
4241 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4242 while (start <= end) {
01d58472 4243 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4244 start += root->nodesize;
fd8b2b61 4245 if (!eb)
acce952b 4246 continue;
fd8b2b61 4247 wait_on_extent_buffer_writeback(eb);
acce952b 4248
fd8b2b61
JB
4249 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4250 &eb->bflags))
4251 clear_extent_buffer_dirty(eb);
4252 free_extent_buffer_stale(eb);
acce952b 4253 }
4254 }
4255
4256 return ret;
4257}
4258
4259static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4260 struct extent_io_tree *pinned_extents)
4261{
4262 struct extent_io_tree *unpin;
4263 u64 start;
4264 u64 end;
4265 int ret;
ed0eaa14 4266 bool loop = true;
acce952b 4267
4268 unpin = pinned_extents;
ed0eaa14 4269again:
acce952b 4270 while (1) {
4271 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4272 EXTENT_DIRTY, NULL);
acce952b 4273 if (ret)
4274 break;
4275
acce952b 4276 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4277 btrfs_error_unpin_extent_range(root, start, end);
4278 cond_resched();
4279 }
4280
ed0eaa14
LB
4281 if (loop) {
4282 if (unpin == &root->fs_info->freed_extents[0])
4283 unpin = &root->fs_info->freed_extents[1];
4284 else
4285 unpin = &root->fs_info->freed_extents[0];
4286 loop = false;
4287 goto again;
4288 }
4289
acce952b 4290 return 0;
4291}
4292
50d9aa99
JB
4293static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4294 struct btrfs_fs_info *fs_info)
4295{
4296 struct btrfs_ordered_extent *ordered;
4297
4298 spin_lock(&fs_info->trans_lock);
4299 while (!list_empty(&cur_trans->pending_ordered)) {
4300 ordered = list_first_entry(&cur_trans->pending_ordered,
4301 struct btrfs_ordered_extent,
4302 trans_list);
4303 list_del_init(&ordered->trans_list);
4304 spin_unlock(&fs_info->trans_lock);
4305
4306 btrfs_put_ordered_extent(ordered);
4307 spin_lock(&fs_info->trans_lock);
4308 }
4309 spin_unlock(&fs_info->trans_lock);
4310}
4311
49b25e05
JM
4312void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4313 struct btrfs_root *root)
4314{
4315 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4316
4a9d8bde 4317 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4318 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4319
4a9d8bde 4320 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4321 wake_up(&root->fs_info->transaction_wait);
49b25e05 4322
50d9aa99 4323 btrfs_free_pending_ordered(cur_trans, root->fs_info);
67cde344
MX
4324 btrfs_destroy_delayed_inodes(root);
4325 btrfs_assert_delayed_root_empty(root);
49b25e05 4326
49b25e05
JM
4327 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4328 EXTENT_DIRTY);
6e841e32
LB
4329 btrfs_destroy_pinned_extent(root,
4330 root->fs_info->pinned_extents);
49b25e05 4331
4a9d8bde
MX
4332 cur_trans->state =TRANS_STATE_COMPLETED;
4333 wake_up(&cur_trans->commit_wait);
4334
49b25e05
JM
4335 /*
4336 memset(cur_trans, 0, sizeof(*cur_trans));
4337 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4338 */
4339}
4340
48a3b636 4341static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4342{
4343 struct btrfs_transaction *t;
acce952b 4344
acce952b 4345 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4346
a4abeea4 4347 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4348 while (!list_empty(&root->fs_info->trans_list)) {
4349 t = list_first_entry(&root->fs_info->trans_list,
4350 struct btrfs_transaction, list);
4351 if (t->state >= TRANS_STATE_COMMIT_START) {
4352 atomic_inc(&t->use_count);
4353 spin_unlock(&root->fs_info->trans_lock);
4354 btrfs_wait_for_commit(root, t->transid);
4355 btrfs_put_transaction(t);
4356 spin_lock(&root->fs_info->trans_lock);
4357 continue;
4358 }
4359 if (t == root->fs_info->running_transaction) {
4360 t->state = TRANS_STATE_COMMIT_DOING;
4361 spin_unlock(&root->fs_info->trans_lock);
4362 /*
4363 * We wait for 0 num_writers since we don't hold a trans
4364 * handle open currently for this transaction.
4365 */
4366 wait_event(t->writer_wait,
4367 atomic_read(&t->num_writers) == 0);
4368 } else {
4369 spin_unlock(&root->fs_info->trans_lock);
4370 }
4371 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4372
724e2315
JB
4373 spin_lock(&root->fs_info->trans_lock);
4374 if (t == root->fs_info->running_transaction)
4375 root->fs_info->running_transaction = NULL;
acce952b 4376 list_del_init(&t->list);
724e2315 4377 spin_unlock(&root->fs_info->trans_lock);
acce952b 4378
724e2315
JB
4379 btrfs_put_transaction(t);
4380 trace_btrfs_transaction_commit(root);
4381 spin_lock(&root->fs_info->trans_lock);
4382 }
4383 spin_unlock(&root->fs_info->trans_lock);
4384 btrfs_destroy_all_ordered_extents(root->fs_info);
4385 btrfs_destroy_delayed_inodes(root);
4386 btrfs_assert_delayed_root_empty(root);
4387 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4388 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4389 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4390
4391 return 0;
4392}
4393
e8c9f186 4394static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4395 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4396 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4397 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4398 /* note we're sharing with inode.c for the merge bio hook */
4399 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4400};