Btrfs: allow block group cache writeout outside critical section in commit
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
e8c9f186 57static const struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
01d58472
DD
277static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
19c00ddc
CM
279 int verify)
280{
01d58472 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 282 char *result = NULL;
19c00ddc
CM
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
607d432d 291 unsigned long inline_result;
19c00ddc
CM
292
293 len = buf->len - offset;
d397712b 294 while (len > 0) {
19c00ddc 295 err = map_private_extent_buffer(buf, offset, 32,
a6591715 296 &kaddr, &map_start, &map_len);
d397712b 297 if (err)
19c00ddc 298 return 1;
19c00ddc 299 cur_len = min(len, map_len - (offset - map_start));
b0496686 300 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
19c00ddc 304 }
607d432d 305 if (csum_size > sizeof(inline_result)) {
31e818fe 306 result = kzalloc(csum_size, GFP_NOFS);
607d432d
JB
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
19c00ddc
CM
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
607d432d 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
317 u32 val;
318 u32 found = 0;
607d432d 319 memcpy(&found, result, csum_size);
e4204ded 320
607d432d 321 read_extent_buffer(buf, &val, 0, csum_size);
f0954c66 322 printk_ratelimited(KERN_WARNING
efe120a0
FH
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 "level %d\n",
01d58472 325 fs_info->sb->s_id, buf->start,
efe120a0 326 val, found, btrfs_header_level(buf));
607d432d
JB
327 if (result != (char *)&inline_result)
328 kfree(result);
19c00ddc
CM
329 return 1;
330 }
331 } else {
607d432d 332 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 333 }
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
19c00ddc
CM
336 return 0;
337}
338
d352ac68
CM
339/*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
1259ab75 345static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
1259ab75 348{
2ac55d41 349 struct extent_state *cached_state = NULL;
1259ab75 350 int ret;
2755a0de 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
b9fab919
CM
356 if (atomic)
357 return -EAGAIN;
358
a26e8c9f
JB
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
2ac55d41 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 365 0, &cached_state);
0b32f4bb 366 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
68b663d1
DS
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
29549aec
WS
373 eb->fs_info->sb->s_id, eb->start,
374 parent_transid, btrfs_header_generation(eb));
1259ab75 375 ret = 1;
a26e8c9f
JB
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
33958dc6 387out:
2ac55d41
JB
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
472b909f
JB
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
1259ab75 392 return ret;
1259ab75
CM
393}
394
1104a885
DS
395/*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399static int btrfs_check_super_csum(char *raw_disk_sb)
400{
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431}
432
d352ac68
CM
433/*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
f188591e
CM
437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
ca7a79ad 439 u64 start, u64 parent_transid)
f188591e
CM
440{
441 struct extent_io_tree *io_tree;
ea466794 442 int failed = 0;
f188591e
CM
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
ea466794 446 int failed_mirror = 0;
f188591e 447
a826d6dc 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
bb82ab88
AJ
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
f188591e 453 btree_get_extent, mirror_num);
256dd1bb
SB
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
b9fab919 456 parent_transid, 0))
256dd1bb
SB
457 break;
458 else
459 ret = -EIO;
460 }
d397712b 461
a826d6dc
JB
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
468 break;
469
5d964051 470 num_copies = btrfs_num_copies(root->fs_info,
f188591e 471 eb->start, eb->len);
4235298e 472 if (num_copies == 1)
ea466794 473 break;
4235298e 474
5cf1ab56
JB
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
f188591e 480 mirror_num++;
ea466794
JB
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
4235298e 484 if (mirror_num > num_copies)
ea466794 485 break;
f188591e 486 }
ea466794 487
c0901581 488 if (failed && !ret && failed_mirror)
ea466794
JB
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
f188591e 492}
19c00ddc 493
d352ac68 494/*
d397712b
CM
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 497 */
d397712b 498
01d58472 499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 500{
4eee4fa4 501 u64 start = page_offset(page);
19c00ddc 502 u64 found_start;
19c00ddc 503 struct extent_buffer *eb;
f188591e 504
4f2de97a
JB
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
19c00ddc 508 found_start = btrfs_header_bytenr(eb);
fae7f21c 509 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 510 return 0;
01d58472 511 csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
512 return 0;
513}
514
01d58472 515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
516 struct extent_buffer *eb)
517{
01d58472 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
0a4e5586 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531}
532
a826d6dc 533#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
c1c9ff7c 536 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
537
538static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540{
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597}
598
facc8a22
MX
599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
ce9adaa5 602{
ce9adaa5
CM
603 u64 found_start;
604 int found_level;
ce9adaa5
CM
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 607 int ret = 0;
727011e0 608 int reads_done;
ce9adaa5 609
ce9adaa5
CM
610 if (!page->private)
611 goto out;
d397712b 612
4f2de97a 613 eb = (struct extent_buffer *)page->private;
d397712b 614
0b32f4bb
JB
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
621 if (!reads_done)
622 goto err;
f188591e 623
5cf1ab56 624 eb->read_mirror = mirror;
656f30db 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
626 ret = -EIO;
627 goto err;
628 }
629
ce9adaa5 630 found_start = btrfs_header_bytenr(eb);
727011e0 631 if (found_start != eb->start) {
68b663d1 632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
193f284d 633 "%llu %llu\n",
29549aec 634 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 635 ret = -EIO;
ce9adaa5
CM
636 goto err;
637 }
01d58472 638 if (check_tree_block_fsid(root->fs_info, eb)) {
68b663d1 639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
29549aec 640 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
641 ret = -EIO;
642 goto err;
643 }
ce9adaa5 644 found_level = btrfs_header_level(eb);
1c24c3ce 645 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 646 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
ce9adaa5 651
85d4e461
CM
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
4008c04a 654
01d58472 655 ret = csum_tree_block(root->fs_info, eb, 1);
a826d6dc 656 if (ret) {
f188591e 657 ret = -EIO;
a826d6dc
JB
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
ce9adaa5 670
0b32f4bb
JB
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
ce9adaa5 673err:
79fb65a1
JB
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 676 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 677
53b381b3
DW
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
0b32f4bb 685 clear_extent_buffer_uptodate(eb);
53b381b3 686 }
0b32f4bb 687 free_extent_buffer(eb);
ce9adaa5 688out:
f188591e 689 return ret;
ce9adaa5
CM
690}
691
ea466794 692static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 693{
4bb31e92
AJ
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
4f2de97a 697 eb = (struct extent_buffer *)page->private;
656f30db 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 699 eb->read_mirror = failed_mirror;
53b381b3 700 atomic_dec(&eb->io_pages);
ea466794 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 702 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
703 return -EIO; /* we fixed nothing */
704}
705
ce9adaa5 706static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5 707{
97eb6b69 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 709 struct btrfs_fs_info *fs_info;
9e0af237
LB
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
ce9adaa5 714 end_io_wq->error = err;
d20f7043 715
7b6d91da 716 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
d20f7043 730 } else {
8b110e39
MX
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
d20f7043 745 }
9e0af237
LB
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
749}
750
22c59948 751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 752 enum btrfs_wq_endio_type metadata)
0b86a832 753{
97eb6b69 754 struct btrfs_end_io_wq *end_io_wq;
8b110e39 755
97eb6b69 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
22c59948 762 end_io_wq->info = info;
ce9adaa5
CM
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
22c59948 765 end_io_wq->metadata = metadata;
ce9adaa5
CM
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
769 return 0;
770}
771
b64a2851 772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 773{
4854ddd0 774 unsigned long limit = min_t(unsigned long,
5cdc7ad3 775 info->thread_pool_size,
4854ddd0
CM
776 info->fs_devices->open_devices);
777 return 256 * limit;
778}
0986fe9e 779
4a69a410
CM
780static void run_one_async_start(struct btrfs_work *work)
781{
4a69a410 782 struct async_submit_bio *async;
79787eaa 783 int ret;
4a69a410
CM
784
785 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
4a69a410
CM
791}
792
793static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
794{
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
4854ddd0 797 int limit;
8b712842
CM
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 801
b64a2851 802 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
803 limit = limit * 2 / 3;
804
66657b31 805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 806 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
807 wake_up(&fs_info->async_submit_wait);
808
79787eaa
JM
809 /* If an error occured we just want to clean up the bio and move on */
810 if (async->error) {
811 bio_endio(async->bio, async->error);
812 return;
813 }
814
4a69a410 815 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
816 async->mirror_num, async->bio_flags,
817 async->bio_offset);
4a69a410
CM
818}
819
820static void run_one_async_free(struct btrfs_work *work)
821{
822 struct async_submit_bio *async;
823
824 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
825 kfree(async);
826}
827
44b8bd7e
CM
828int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829 int rw, struct bio *bio, int mirror_num,
c8b97818 830 unsigned long bio_flags,
eaf25d93 831 u64 bio_offset,
4a69a410
CM
832 extent_submit_bio_hook_t *submit_bio_start,
833 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
834{
835 struct async_submit_bio *async;
836
837 async = kmalloc(sizeof(*async), GFP_NOFS);
838 if (!async)
839 return -ENOMEM;
840
841 async->inode = inode;
842 async->rw = rw;
843 async->bio = bio;
844 async->mirror_num = mirror_num;
4a69a410
CM
845 async->submit_bio_start = submit_bio_start;
846 async->submit_bio_done = submit_bio_done;
847
9e0af237 848 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 849 run_one_async_done, run_one_async_free);
4a69a410 850
c8b97818 851 async->bio_flags = bio_flags;
eaf25d93 852 async->bio_offset = bio_offset;
8c8bee1d 853
79787eaa
JM
854 async->error = 0;
855
cb03c743 856 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 857
7b6d91da 858 if (rw & REQ_SYNC)
5cdc7ad3 859 btrfs_set_work_high_priority(&async->work);
d313d7a3 860
5cdc7ad3 861 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 862
d397712b 863 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
864 atomic_read(&fs_info->nr_async_submits)) {
865 wait_event(fs_info->async_submit_wait,
866 (atomic_read(&fs_info->nr_async_submits) == 0));
867 }
868
44b8bd7e
CM
869 return 0;
870}
871
ce3ed71a
CM
872static int btree_csum_one_bio(struct bio *bio)
873{
2c30c71b 874 struct bio_vec *bvec;
ce3ed71a 875 struct btrfs_root *root;
2c30c71b 876 int i, ret = 0;
ce3ed71a 877
2c30c71b 878 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 879 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 880 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
881 if (ret)
882 break;
ce3ed71a 883 }
2c30c71b 884
79787eaa 885 return ret;
ce3ed71a
CM
886}
887
4a69a410
CM
888static int __btree_submit_bio_start(struct inode *inode, int rw,
889 struct bio *bio, int mirror_num,
eaf25d93
CM
890 unsigned long bio_flags,
891 u64 bio_offset)
22c59948 892{
8b712842
CM
893 /*
894 * when we're called for a write, we're already in the async
5443be45 895 * submission context. Just jump into btrfs_map_bio
8b712842 896 */
79787eaa 897 return btree_csum_one_bio(bio);
4a69a410 898}
22c59948 899
4a69a410 900static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
901 int mirror_num, unsigned long bio_flags,
902 u64 bio_offset)
4a69a410 903{
61891923
SB
904 int ret;
905
8b712842 906 /*
4a69a410
CM
907 * when we're called for a write, we're already in the async
908 * submission context. Just jump into btrfs_map_bio
8b712842 909 */
61891923
SB
910 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911 if (ret)
912 bio_endio(bio, ret);
913 return ret;
0b86a832
CM
914}
915
de0022b9
JB
916static int check_async_write(struct inode *inode, unsigned long bio_flags)
917{
918 if (bio_flags & EXTENT_BIO_TREE_LOG)
919 return 0;
920#ifdef CONFIG_X86
921 if (cpu_has_xmm4_2)
922 return 0;
923#endif
924 return 1;
925}
926
44b8bd7e 927static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
928 int mirror_num, unsigned long bio_flags,
929 u64 bio_offset)
44b8bd7e 930{
de0022b9 931 int async = check_async_write(inode, bio_flags);
cad321ad
CM
932 int ret;
933
7b6d91da 934 if (!(rw & REQ_WRITE)) {
4a69a410
CM
935 /*
936 * called for a read, do the setup so that checksum validation
937 * can happen in the async kernel threads
938 */
f3f266ab 939 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 940 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 941 if (ret)
61891923
SB
942 goto out_w_error;
943 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
944 mirror_num, 0);
de0022b9
JB
945 } else if (!async) {
946 ret = btree_csum_one_bio(bio);
947 if (ret)
61891923
SB
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
951 } else {
952 /*
953 * kthread helpers are used to submit writes so that
954 * checksumming can happen in parallel across all CPUs
955 */
956 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
957 inode, rw, bio, mirror_num, 0,
958 bio_offset,
959 __btree_submit_bio_start,
960 __btree_submit_bio_done);
44b8bd7e 961 }
d313d7a3 962
61891923
SB
963 if (ret) {
964out_w_error:
965 bio_endio(bio, ret);
966 }
967 return ret;
44b8bd7e
CM
968}
969
3dd1462e 970#ifdef CONFIG_MIGRATION
784b4e29 971static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
972 struct page *newpage, struct page *page,
973 enum migrate_mode mode)
784b4e29
CM
974{
975 /*
976 * we can't safely write a btree page from here,
977 * we haven't done the locking hook
978 */
979 if (PageDirty(page))
980 return -EAGAIN;
981 /*
982 * Buffers may be managed in a filesystem specific way.
983 * We must have no buffers or drop them.
984 */
985 if (page_has_private(page) &&
986 !try_to_release_page(page, GFP_KERNEL))
987 return -EAGAIN;
a6bc32b8 988 return migrate_page(mapping, newpage, page, mode);
784b4e29 989}
3dd1462e 990#endif
784b4e29 991
0da5468f
CM
992
993static int btree_writepages(struct address_space *mapping,
994 struct writeback_control *wbc)
995{
e2d84521
MX
996 struct btrfs_fs_info *fs_info;
997 int ret;
998
d8d5f3e1 999 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1000
1001 if (wbc->for_kupdate)
1002 return 0;
1003
e2d84521 1004 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1005 /* this is a bit racy, but that's ok */
e2d84521
MX
1006 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007 BTRFS_DIRTY_METADATA_THRESH);
1008 if (ret < 0)
793955bc 1009 return 0;
793955bc 1010 }
0b32f4bb 1011 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1012}
1013
b2950863 1014static int btree_readpage(struct file *file, struct page *page)
5f39d397 1015{
d1310b2e
CM
1016 struct extent_io_tree *tree;
1017 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1018 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1019}
22b0ebda 1020
70dec807 1021static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1022{
98509cfc 1023 if (PageWriteback(page) || PageDirty(page))
d397712b 1024 return 0;
0c4e538b 1025
f7a52a40 1026 return try_release_extent_buffer(page);
d98237b3
CM
1027}
1028
d47992f8
LC
1029static void btree_invalidatepage(struct page *page, unsigned int offset,
1030 unsigned int length)
d98237b3 1031{
d1310b2e
CM
1032 struct extent_io_tree *tree;
1033 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1034 extent_invalidatepage(tree, page, offset);
1035 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1036 if (PagePrivate(page)) {
efe120a0
FH
1037 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038 "page private not zero on page %llu",
1039 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1040 ClearPagePrivate(page);
1041 set_page_private(page, 0);
1042 page_cache_release(page);
1043 }
d98237b3
CM
1044}
1045
0b32f4bb
JB
1046static int btree_set_page_dirty(struct page *page)
1047{
bb146eb2 1048#ifdef DEBUG
0b32f4bb
JB
1049 struct extent_buffer *eb;
1050
1051 BUG_ON(!PagePrivate(page));
1052 eb = (struct extent_buffer *)page->private;
1053 BUG_ON(!eb);
1054 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055 BUG_ON(!atomic_read(&eb->refs));
1056 btrfs_assert_tree_locked(eb);
bb146eb2 1057#endif
0b32f4bb
JB
1058 return __set_page_dirty_nobuffers(page);
1059}
1060
7f09410b 1061static const struct address_space_operations btree_aops = {
d98237b3 1062 .readpage = btree_readpage,
0da5468f 1063 .writepages = btree_writepages,
5f39d397
CM
1064 .releasepage = btree_releasepage,
1065 .invalidatepage = btree_invalidatepage,
5a92bc88 1066#ifdef CONFIG_MIGRATION
784b4e29 1067 .migratepage = btree_migratepage,
5a92bc88 1068#endif
0b32f4bb 1069 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1070};
1071
d3e46fea 1072void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1073{
5f39d397
CM
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1076
a83fffb7 1077 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1078 if (!buf)
6197d86e 1079 return;
d1310b2e 1080 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1081 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1082 free_extent_buffer(buf);
090d1875
CM
1083}
1084
c0dcaa4d 1085int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1086 int mirror_num, struct extent_buffer **eb)
1087{
1088 struct extent_buffer *buf = NULL;
1089 struct inode *btree_inode = root->fs_info->btree_inode;
1090 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091 int ret;
1092
a83fffb7 1093 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1094 if (!buf)
1095 return 0;
1096
1097 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098
1099 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100 btree_get_extent, mirror_num);
1101 if (ret) {
1102 free_extent_buffer(buf);
1103 return ret;
1104 }
1105
1106 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107 free_extent_buffer(buf);
1108 return -EIO;
0b32f4bb 1109 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1110 *eb = buf;
1111 } else {
1112 free_extent_buffer(buf);
1113 }
1114 return 0;
1115}
1116
01d58472 1117struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1118 u64 bytenr)
0999df54 1119{
01d58472 1120 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1121}
1122
1123struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1124 u64 bytenr)
0999df54 1125{
fccb84c9 1126 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1127 return alloc_test_extent_buffer(root->fs_info, bytenr);
1128 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1129}
1130
1131
e02119d5
CM
1132int btrfs_write_tree_block(struct extent_buffer *buf)
1133{
727011e0 1134 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1135 buf->start + buf->len - 1);
e02119d5
CM
1136}
1137
1138int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139{
727011e0 1140 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1141 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1142}
1143
0999df54 1144struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1145 u64 parent_transid)
0999df54
CM
1146{
1147 struct extent_buffer *buf = NULL;
0999df54
CM
1148 int ret;
1149
a83fffb7 1150 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54
CM
1151 if (!buf)
1152 return NULL;
0999df54 1153
ca7a79ad 1154 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1155 if (ret) {
1156 free_extent_buffer(buf);
1157 return NULL;
1158 }
5f39d397 1159 return buf;
ce9adaa5 1160
eb60ceac
CM
1161}
1162
01d58472
DD
1163void clean_tree_block(struct btrfs_trans_handle *trans,
1164 struct btrfs_fs_info *fs_info,
d5c13f92 1165 struct extent_buffer *buf)
ed2ff2cb 1166{
55c69072 1167 if (btrfs_header_generation(buf) ==
e2d84521 1168 fs_info->running_transaction->transid) {
b9447ef8 1169 btrfs_assert_tree_locked(buf);
b4ce94de 1170
b9473439 1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 -buf->len,
1174 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 btrfs_set_lock_blocking(buf);
1177 clear_extent_buffer_dirty(buf);
1178 }
925baedd 1179 }
5f39d397
CM
1180}
1181
8257b2dc
MX
1182static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183{
1184 struct btrfs_subvolume_writers *writers;
1185 int ret;
1186
1187 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 if (!writers)
1189 return ERR_PTR(-ENOMEM);
1190
908c7f19 1191 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1192 if (ret < 0) {
1193 kfree(writers);
1194 return ERR_PTR(ret);
1195 }
1196
1197 init_waitqueue_head(&writers->wait);
1198 return writers;
1199}
1200
1201static void
1202btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203{
1204 percpu_counter_destroy(&writers->counter);
1205 kfree(writers);
1206}
1207
707e8a07
DS
1208static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1210 u64 objectid)
d97e63b6 1211{
cfaa7295 1212 root->node = NULL;
a28ec197 1213 root->commit_root = NULL;
db94535d
CM
1214 root->sectorsize = sectorsize;
1215 root->nodesize = nodesize;
87ee04eb 1216 root->stripesize = stripesize;
27cdeb70 1217 root->state = 0;
d68fc57b 1218 root->orphan_cleanup_state = 0;
0b86a832 1219
0f7d52f4
CM
1220 root->objectid = objectid;
1221 root->last_trans = 0;
13a8a7c8 1222 root->highest_objectid = 0;
eb73c1b7 1223 root->nr_delalloc_inodes = 0;
199c2a9c 1224 root->nr_ordered_extents = 0;
58176a96 1225 root->name = NULL;
6bef4d31 1226 root->inode_tree = RB_ROOT;
16cdcec7 1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1228 root->block_rsv = NULL;
d68fc57b 1229 root->orphan_block_rsv = NULL;
0b86a832
CM
1230
1231 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1232 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1233 INIT_LIST_HEAD(&root->delalloc_inodes);
1234 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1235 INIT_LIST_HEAD(&root->ordered_extents);
1236 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1237 INIT_LIST_HEAD(&root->logged_list[0]);
1238 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1239 spin_lock_init(&root->orphan_lock);
5d4f98a2 1240 spin_lock_init(&root->inode_lock);
eb73c1b7 1241 spin_lock_init(&root->delalloc_lock);
199c2a9c 1242 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1243 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1244 spin_lock_init(&root->log_extents_lock[0]);
1245 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1246 mutex_init(&root->objectid_mutex);
e02119d5 1247 mutex_init(&root->log_mutex);
31f3d255 1248 mutex_init(&root->ordered_extent_mutex);
573bfb72 1249 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1250 init_waitqueue_head(&root->log_writer_wait);
1251 init_waitqueue_head(&root->log_commit_wait[0]);
1252 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1253 INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1255 atomic_set(&root->log_commit[0], 0);
1256 atomic_set(&root->log_commit[1], 0);
1257 atomic_set(&root->log_writers, 0);
2ecb7923 1258 atomic_set(&root->log_batch, 0);
8a35d95f 1259 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1260 atomic_set(&root->refs, 1);
8257b2dc 1261 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1262 root->log_transid = 0;
d1433deb 1263 root->log_transid_committed = -1;
257c62e1 1264 root->last_log_commit = 0;
06ea65a3
JB
1265 if (fs_info)
1266 extent_io_tree_init(&root->dirty_log_pages,
1267 fs_info->btree_inode->i_mapping);
017e5369 1268
3768f368
CM
1269 memset(&root->root_key, 0, sizeof(root->root_key));
1270 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1272 if (fs_info)
1273 root->defrag_trans_start = fs_info->generation;
1274 else
1275 root->defrag_trans_start = 0;
4d775673 1276 root->root_key.objectid = objectid;
0ee5dc67 1277 root->anon_dev = 0;
8ea05e3a 1278
5f3ab90a 1279 spin_lock_init(&root->root_item_lock);
3768f368
CM
1280}
1281
f84a8bd6 1282static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1283{
1284 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285 if (root)
1286 root->fs_info = fs_info;
1287 return root;
1288}
1289
06ea65a3
JB
1290#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291/* Should only be used by the testing infrastructure */
1292struct btrfs_root *btrfs_alloc_dummy_root(void)
1293{
1294 struct btrfs_root *root;
1295
1296 root = btrfs_alloc_root(NULL);
1297 if (!root)
1298 return ERR_PTR(-ENOMEM);
707e8a07 1299 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1300 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1301 root->alloc_bytenr = 0;
06ea65a3
JB
1302
1303 return root;
1304}
1305#endif
1306
20897f5c
AJ
1307struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308 struct btrfs_fs_info *fs_info,
1309 u64 objectid)
1310{
1311 struct extent_buffer *leaf;
1312 struct btrfs_root *tree_root = fs_info->tree_root;
1313 struct btrfs_root *root;
1314 struct btrfs_key key;
1315 int ret = 0;
6463fe58 1316 uuid_le uuid;
20897f5c
AJ
1317
1318 root = btrfs_alloc_root(fs_info);
1319 if (!root)
1320 return ERR_PTR(-ENOMEM);
1321
707e8a07
DS
1322 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1323 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1324 root->root_key.objectid = objectid;
1325 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 root->root_key.offset = 0;
1327
4d75f8a9 1328 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1329 if (IS_ERR(leaf)) {
1330 ret = PTR_ERR(leaf);
1dd05682 1331 leaf = NULL;
20897f5c
AJ
1332 goto fail;
1333 }
1334
20897f5c
AJ
1335 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336 btrfs_set_header_bytenr(leaf, leaf->start);
1337 btrfs_set_header_generation(leaf, trans->transid);
1338 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339 btrfs_set_header_owner(leaf, objectid);
1340 root->node = leaf;
1341
0a4e5586 1342 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1343 BTRFS_FSID_SIZE);
1344 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1345 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1346 BTRFS_UUID_SIZE);
1347 btrfs_mark_buffer_dirty(leaf);
1348
1349 root->commit_root = btrfs_root_node(root);
27cdeb70 1350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1351
1352 root->root_item.flags = 0;
1353 root->root_item.byte_limit = 0;
1354 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355 btrfs_set_root_generation(&root->root_item, trans->transid);
1356 btrfs_set_root_level(&root->root_item, 0);
1357 btrfs_set_root_refs(&root->root_item, 1);
1358 btrfs_set_root_used(&root->root_item, leaf->len);
1359 btrfs_set_root_last_snapshot(&root->root_item, 0);
1360 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1361 uuid_le_gen(&uuid);
1362 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1363 root->root_item.drop_level = 0;
1364
1365 key.objectid = objectid;
1366 key.type = BTRFS_ROOT_ITEM_KEY;
1367 key.offset = 0;
1368 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369 if (ret)
1370 goto fail;
1371
1372 btrfs_tree_unlock(leaf);
1373
1dd05682
TI
1374 return root;
1375
20897f5c 1376fail:
1dd05682
TI
1377 if (leaf) {
1378 btrfs_tree_unlock(leaf);
59885b39 1379 free_extent_buffer(root->commit_root);
1dd05682
TI
1380 free_extent_buffer(leaf);
1381 }
1382 kfree(root);
20897f5c 1383
1dd05682 1384 return ERR_PTR(ret);
20897f5c
AJ
1385}
1386
7237f183
YZ
1387static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1389{
1390 struct btrfs_root *root;
1391 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1392 struct extent_buffer *leaf;
e02119d5 1393
6f07e42e 1394 root = btrfs_alloc_root(fs_info);
e02119d5 1395 if (!root)
7237f183 1396 return ERR_PTR(-ENOMEM);
e02119d5 1397
707e8a07
DS
1398 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1399 tree_root->stripesize, root, fs_info,
1400 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1401
1402 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1405
7237f183 1406 /*
27cdeb70
MX
1407 * DON'T set REF_COWS for log trees
1408 *
7237f183
YZ
1409 * log trees do not get reference counted because they go away
1410 * before a real commit is actually done. They do store pointers
1411 * to file data extents, and those reference counts still get
1412 * updated (along with back refs to the log tree).
1413 */
e02119d5 1414
4d75f8a9
DS
1415 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416 NULL, 0, 0, 0);
7237f183
YZ
1417 if (IS_ERR(leaf)) {
1418 kfree(root);
1419 return ERR_CAST(leaf);
1420 }
e02119d5 1421
5d4f98a2
YZ
1422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423 btrfs_set_header_bytenr(leaf, leaf->start);
1424 btrfs_set_header_generation(leaf, trans->transid);
1425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1427 root->node = leaf;
e02119d5
CM
1428
1429 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1430 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1431 btrfs_mark_buffer_dirty(root->node);
1432 btrfs_tree_unlock(root->node);
7237f183
YZ
1433 return root;
1434}
1435
1436int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437 struct btrfs_fs_info *fs_info)
1438{
1439 struct btrfs_root *log_root;
1440
1441 log_root = alloc_log_tree(trans, fs_info);
1442 if (IS_ERR(log_root))
1443 return PTR_ERR(log_root);
1444 WARN_ON(fs_info->log_root_tree);
1445 fs_info->log_root_tree = log_root;
1446 return 0;
1447}
1448
1449int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root)
1451{
1452 struct btrfs_root *log_root;
1453 struct btrfs_inode_item *inode_item;
1454
1455 log_root = alloc_log_tree(trans, root->fs_info);
1456 if (IS_ERR(log_root))
1457 return PTR_ERR(log_root);
1458
1459 log_root->last_trans = trans->transid;
1460 log_root->root_key.offset = root->root_key.objectid;
1461
1462 inode_item = &log_root->root_item.inode;
3cae210f
QW
1463 btrfs_set_stack_inode_generation(inode_item, 1);
1464 btrfs_set_stack_inode_size(inode_item, 3);
1465 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1466 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1467 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1468
5d4f98a2 1469 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1470
1471 WARN_ON(root->log_root);
1472 root->log_root = log_root;
1473 root->log_transid = 0;
d1433deb 1474 root->log_transid_committed = -1;
257c62e1 1475 root->last_log_commit = 0;
e02119d5
CM
1476 return 0;
1477}
1478
35a3621b
SB
1479static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480 struct btrfs_key *key)
e02119d5
CM
1481{
1482 struct btrfs_root *root;
1483 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1484 struct btrfs_path *path;
84234f3a 1485 u64 generation;
cb517eab 1486 int ret;
0f7d52f4 1487
cb517eab
MX
1488 path = btrfs_alloc_path();
1489 if (!path)
0f7d52f4 1490 return ERR_PTR(-ENOMEM);
cb517eab
MX
1491
1492 root = btrfs_alloc_root(fs_info);
1493 if (!root) {
1494 ret = -ENOMEM;
1495 goto alloc_fail;
0f7d52f4
CM
1496 }
1497
707e8a07
DS
1498 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1499 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1500
cb517eab
MX
1501 ret = btrfs_find_root(tree_root, key, path,
1502 &root->root_item, &root->root_key);
0f7d52f4 1503 if (ret) {
13a8a7c8
YZ
1504 if (ret > 0)
1505 ret = -ENOENT;
cb517eab 1506 goto find_fail;
0f7d52f4 1507 }
13a8a7c8 1508
84234f3a 1509 generation = btrfs_root_generation(&root->root_item);
db94535d 1510 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1511 generation);
cb517eab
MX
1512 if (!root->node) {
1513 ret = -ENOMEM;
1514 goto find_fail;
1515 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516 ret = -EIO;
1517 goto read_fail;
416bc658 1518 }
5d4f98a2 1519 root->commit_root = btrfs_root_node(root);
13a8a7c8 1520out:
cb517eab
MX
1521 btrfs_free_path(path);
1522 return root;
1523
1524read_fail:
1525 free_extent_buffer(root->node);
1526find_fail:
1527 kfree(root);
1528alloc_fail:
1529 root = ERR_PTR(ret);
1530 goto out;
1531}
1532
1533struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1534 struct btrfs_key *location)
1535{
1536 struct btrfs_root *root;
1537
1538 root = btrfs_read_tree_root(tree_root, location);
1539 if (IS_ERR(root))
1540 return root;
1541
1542 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1543 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1544 btrfs_check_and_init_root_item(&root->root_item);
1545 }
13a8a7c8 1546
5eda7b5e
CM
1547 return root;
1548}
1549
cb517eab
MX
1550int btrfs_init_fs_root(struct btrfs_root *root)
1551{
1552 int ret;
8257b2dc 1553 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1554
1555 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1556 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1557 GFP_NOFS);
1558 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1559 ret = -ENOMEM;
1560 goto fail;
1561 }
1562
8257b2dc
MX
1563 writers = btrfs_alloc_subvolume_writers();
1564 if (IS_ERR(writers)) {
1565 ret = PTR_ERR(writers);
1566 goto fail;
1567 }
1568 root->subv_writers = writers;
1569
cb517eab 1570 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1571 spin_lock_init(&root->ino_cache_lock);
1572 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1573
1574 ret = get_anon_bdev(&root->anon_dev);
1575 if (ret)
8257b2dc 1576 goto free_writers;
cb517eab 1577 return 0;
8257b2dc
MX
1578
1579free_writers:
1580 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1581fail:
1582 kfree(root->free_ino_ctl);
1583 kfree(root->free_ino_pinned);
1584 return ret;
1585}
1586
171170c1
ST
1587static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1588 u64 root_id)
cb517eab
MX
1589{
1590 struct btrfs_root *root;
1591
1592 spin_lock(&fs_info->fs_roots_radix_lock);
1593 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1594 (unsigned long)root_id);
1595 spin_unlock(&fs_info->fs_roots_radix_lock);
1596 return root;
1597}
1598
1599int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1600 struct btrfs_root *root)
1601{
1602 int ret;
1603
1604 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1605 if (ret)
1606 return ret;
1607
1608 spin_lock(&fs_info->fs_roots_radix_lock);
1609 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1610 (unsigned long)root->root_key.objectid,
1611 root);
1612 if (ret == 0)
27cdeb70 1613 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1614 spin_unlock(&fs_info->fs_roots_radix_lock);
1615 radix_tree_preload_end();
1616
1617 return ret;
1618}
1619
c00869f1
MX
1620struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1621 struct btrfs_key *location,
1622 bool check_ref)
5eda7b5e
CM
1623{
1624 struct btrfs_root *root;
381cf658 1625 struct btrfs_path *path;
1d4c08e0 1626 struct btrfs_key key;
5eda7b5e
CM
1627 int ret;
1628
edbd8d4e
CM
1629 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1630 return fs_info->tree_root;
1631 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1632 return fs_info->extent_root;
8f18cf13
CM
1633 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1634 return fs_info->chunk_root;
1635 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1636 return fs_info->dev_root;
0403e47e
YZ
1637 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1638 return fs_info->csum_root;
bcef60f2
AJ
1639 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1640 return fs_info->quota_root ? fs_info->quota_root :
1641 ERR_PTR(-ENOENT);
f7a81ea4
SB
1642 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1643 return fs_info->uuid_root ? fs_info->uuid_root :
1644 ERR_PTR(-ENOENT);
4df27c4d 1645again:
cb517eab 1646 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1647 if (root) {
c00869f1 1648 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1649 return ERR_PTR(-ENOENT);
5eda7b5e 1650 return root;
48475471 1651 }
5eda7b5e 1652
cb517eab 1653 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1654 if (IS_ERR(root))
1655 return root;
3394e160 1656
c00869f1 1657 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1658 ret = -ENOENT;
581bb050 1659 goto fail;
35a30d7c 1660 }
581bb050 1661
cb517eab 1662 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1663 if (ret)
1664 goto fail;
3394e160 1665
381cf658
DS
1666 path = btrfs_alloc_path();
1667 if (!path) {
1668 ret = -ENOMEM;
1669 goto fail;
1670 }
1d4c08e0
DS
1671 key.objectid = BTRFS_ORPHAN_OBJECTID;
1672 key.type = BTRFS_ORPHAN_ITEM_KEY;
1673 key.offset = location->objectid;
1674
1675 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1676 btrfs_free_path(path);
d68fc57b
YZ
1677 if (ret < 0)
1678 goto fail;
1679 if (ret == 0)
27cdeb70 1680 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1681
cb517eab 1682 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1683 if (ret) {
4df27c4d
YZ
1684 if (ret == -EEXIST) {
1685 free_fs_root(root);
1686 goto again;
1687 }
1688 goto fail;
0f7d52f4 1689 }
edbd8d4e 1690 return root;
4df27c4d
YZ
1691fail:
1692 free_fs_root(root);
1693 return ERR_PTR(ret);
edbd8d4e
CM
1694}
1695
04160088
CM
1696static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1697{
1698 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1699 int ret = 0;
04160088
CM
1700 struct btrfs_device *device;
1701 struct backing_dev_info *bdi;
b7967db7 1702
1f78160c
XG
1703 rcu_read_lock();
1704 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1705 if (!device->bdev)
1706 continue;
04160088 1707 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1708 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1709 ret = 1;
1710 break;
1711 }
1712 }
1f78160c 1713 rcu_read_unlock();
04160088
CM
1714 return ret;
1715}
1716
04160088
CM
1717static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1718{
ad081f14
JA
1719 int err;
1720
b4caecd4 1721 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1722 if (err)
1723 return err;
1724
df0ce26c 1725 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1726 bdi->congested_fn = btrfs_congested_fn;
1727 bdi->congested_data = info;
1728 return 0;
1729}
1730
8b712842
CM
1731/*
1732 * called by the kthread helper functions to finally call the bio end_io
1733 * functions. This is where read checksum verification actually happens
1734 */
1735static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1736{
ce9adaa5 1737 struct bio *bio;
97eb6b69 1738 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1739 int error;
ce9adaa5 1740
97eb6b69 1741 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1742 bio = end_io_wq->bio;
ce9adaa5 1743
8b712842
CM
1744 error = end_io_wq->error;
1745 bio->bi_private = end_io_wq->private;
1746 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1747 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
bc1e79ac 1748 bio_endio_nodec(bio, error);
44b8bd7e
CM
1749}
1750
a74a4b97
CM
1751static int cleaner_kthread(void *arg)
1752{
1753 struct btrfs_root *root = arg;
d0278245 1754 int again;
a74a4b97
CM
1755
1756 do {
d0278245 1757 again = 0;
a74a4b97 1758
d0278245 1759 /* Make the cleaner go to sleep early. */
babbf170 1760 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1761 goto sleep;
1762
1763 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1764 goto sleep;
1765
dc7f370c
MX
1766 /*
1767 * Avoid the problem that we change the status of the fs
1768 * during the above check and trylock.
1769 */
babbf170 1770 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1771 mutex_unlock(&root->fs_info->cleaner_mutex);
1772 goto sleep;
76dda93c 1773 }
a74a4b97 1774
d0278245 1775 btrfs_run_delayed_iputs(root);
47ab2a6c 1776 btrfs_delete_unused_bgs(root->fs_info);
d0278245
MX
1777 again = btrfs_clean_one_deleted_snapshot(root);
1778 mutex_unlock(&root->fs_info->cleaner_mutex);
1779
1780 /*
05323cd1
MX
1781 * The defragger has dealt with the R/O remount and umount,
1782 * needn't do anything special here.
d0278245
MX
1783 */
1784 btrfs_run_defrag_inodes(root->fs_info);
1785sleep:
9d1a2a3a 1786 if (!try_to_freeze() && !again) {
a74a4b97 1787 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1788 if (!kthread_should_stop())
1789 schedule();
a74a4b97
CM
1790 __set_current_state(TASK_RUNNING);
1791 }
1792 } while (!kthread_should_stop());
1793 return 0;
1794}
1795
1796static int transaction_kthread(void *arg)
1797{
1798 struct btrfs_root *root = arg;
1799 struct btrfs_trans_handle *trans;
1800 struct btrfs_transaction *cur;
8929ecfa 1801 u64 transid;
a74a4b97
CM
1802 unsigned long now;
1803 unsigned long delay;
914b2007 1804 bool cannot_commit;
a74a4b97
CM
1805
1806 do {
914b2007 1807 cannot_commit = false;
8b87dc17 1808 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1809 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1810
a4abeea4 1811 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1812 cur = root->fs_info->running_transaction;
1813 if (!cur) {
a4abeea4 1814 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1815 goto sleep;
1816 }
31153d81 1817
a74a4b97 1818 now = get_seconds();
4a9d8bde 1819 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1820 (now < cur->start_time ||
1821 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1822 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1823 delay = HZ * 5;
1824 goto sleep;
1825 }
8929ecfa 1826 transid = cur->transid;
a4abeea4 1827 spin_unlock(&root->fs_info->trans_lock);
56bec294 1828
79787eaa 1829 /* If the file system is aborted, this will always fail. */
354aa0fb 1830 trans = btrfs_attach_transaction(root);
914b2007 1831 if (IS_ERR(trans)) {
354aa0fb
MX
1832 if (PTR_ERR(trans) != -ENOENT)
1833 cannot_commit = true;
79787eaa 1834 goto sleep;
914b2007 1835 }
8929ecfa 1836 if (transid == trans->transid) {
79787eaa 1837 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1838 } else {
1839 btrfs_end_transaction(trans, root);
1840 }
a74a4b97
CM
1841sleep:
1842 wake_up_process(root->fs_info->cleaner_kthread);
1843 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1844
4e121c06
JB
1845 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1846 &root->fs_info->fs_state)))
1847 btrfs_cleanup_transaction(root);
a0acae0e 1848 if (!try_to_freeze()) {
a74a4b97 1849 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1850 if (!kthread_should_stop() &&
914b2007
JK
1851 (!btrfs_transaction_blocked(root->fs_info) ||
1852 cannot_commit))
8929ecfa 1853 schedule_timeout(delay);
a74a4b97
CM
1854 __set_current_state(TASK_RUNNING);
1855 }
1856 } while (!kthread_should_stop());
1857 return 0;
1858}
1859
af31f5e5
CM
1860/*
1861 * this will find the highest generation in the array of
1862 * root backups. The index of the highest array is returned,
1863 * or -1 if we can't find anything.
1864 *
1865 * We check to make sure the array is valid by comparing the
1866 * generation of the latest root in the array with the generation
1867 * in the super block. If they don't match we pitch it.
1868 */
1869static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1870{
1871 u64 cur;
1872 int newest_index = -1;
1873 struct btrfs_root_backup *root_backup;
1874 int i;
1875
1876 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1877 root_backup = info->super_copy->super_roots + i;
1878 cur = btrfs_backup_tree_root_gen(root_backup);
1879 if (cur == newest_gen)
1880 newest_index = i;
1881 }
1882
1883 /* check to see if we actually wrapped around */
1884 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1885 root_backup = info->super_copy->super_roots;
1886 cur = btrfs_backup_tree_root_gen(root_backup);
1887 if (cur == newest_gen)
1888 newest_index = 0;
1889 }
1890 return newest_index;
1891}
1892
1893
1894/*
1895 * find the oldest backup so we know where to store new entries
1896 * in the backup array. This will set the backup_root_index
1897 * field in the fs_info struct
1898 */
1899static void find_oldest_super_backup(struct btrfs_fs_info *info,
1900 u64 newest_gen)
1901{
1902 int newest_index = -1;
1903
1904 newest_index = find_newest_super_backup(info, newest_gen);
1905 /* if there was garbage in there, just move along */
1906 if (newest_index == -1) {
1907 info->backup_root_index = 0;
1908 } else {
1909 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1910 }
1911}
1912
1913/*
1914 * copy all the root pointers into the super backup array.
1915 * this will bump the backup pointer by one when it is
1916 * done
1917 */
1918static void backup_super_roots(struct btrfs_fs_info *info)
1919{
1920 int next_backup;
1921 struct btrfs_root_backup *root_backup;
1922 int last_backup;
1923
1924 next_backup = info->backup_root_index;
1925 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1926 BTRFS_NUM_BACKUP_ROOTS;
1927
1928 /*
1929 * just overwrite the last backup if we're at the same generation
1930 * this happens only at umount
1931 */
1932 root_backup = info->super_for_commit->super_roots + last_backup;
1933 if (btrfs_backup_tree_root_gen(root_backup) ==
1934 btrfs_header_generation(info->tree_root->node))
1935 next_backup = last_backup;
1936
1937 root_backup = info->super_for_commit->super_roots + next_backup;
1938
1939 /*
1940 * make sure all of our padding and empty slots get zero filled
1941 * regardless of which ones we use today
1942 */
1943 memset(root_backup, 0, sizeof(*root_backup));
1944
1945 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1946
1947 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1948 btrfs_set_backup_tree_root_gen(root_backup,
1949 btrfs_header_generation(info->tree_root->node));
1950
1951 btrfs_set_backup_tree_root_level(root_backup,
1952 btrfs_header_level(info->tree_root->node));
1953
1954 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1955 btrfs_set_backup_chunk_root_gen(root_backup,
1956 btrfs_header_generation(info->chunk_root->node));
1957 btrfs_set_backup_chunk_root_level(root_backup,
1958 btrfs_header_level(info->chunk_root->node));
1959
1960 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1961 btrfs_set_backup_extent_root_gen(root_backup,
1962 btrfs_header_generation(info->extent_root->node));
1963 btrfs_set_backup_extent_root_level(root_backup,
1964 btrfs_header_level(info->extent_root->node));
1965
7c7e82a7
CM
1966 /*
1967 * we might commit during log recovery, which happens before we set
1968 * the fs_root. Make sure it is valid before we fill it in.
1969 */
1970 if (info->fs_root && info->fs_root->node) {
1971 btrfs_set_backup_fs_root(root_backup,
1972 info->fs_root->node->start);
1973 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1974 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1975 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1976 btrfs_header_level(info->fs_root->node));
7c7e82a7 1977 }
af31f5e5
CM
1978
1979 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1980 btrfs_set_backup_dev_root_gen(root_backup,
1981 btrfs_header_generation(info->dev_root->node));
1982 btrfs_set_backup_dev_root_level(root_backup,
1983 btrfs_header_level(info->dev_root->node));
1984
1985 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1986 btrfs_set_backup_csum_root_gen(root_backup,
1987 btrfs_header_generation(info->csum_root->node));
1988 btrfs_set_backup_csum_root_level(root_backup,
1989 btrfs_header_level(info->csum_root->node));
1990
1991 btrfs_set_backup_total_bytes(root_backup,
1992 btrfs_super_total_bytes(info->super_copy));
1993 btrfs_set_backup_bytes_used(root_backup,
1994 btrfs_super_bytes_used(info->super_copy));
1995 btrfs_set_backup_num_devices(root_backup,
1996 btrfs_super_num_devices(info->super_copy));
1997
1998 /*
1999 * if we don't copy this out to the super_copy, it won't get remembered
2000 * for the next commit
2001 */
2002 memcpy(&info->super_copy->super_roots,
2003 &info->super_for_commit->super_roots,
2004 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2005}
2006
2007/*
2008 * this copies info out of the root backup array and back into
2009 * the in-memory super block. It is meant to help iterate through
2010 * the array, so you send it the number of backups you've already
2011 * tried and the last backup index you used.
2012 *
2013 * this returns -1 when it has tried all the backups
2014 */
2015static noinline int next_root_backup(struct btrfs_fs_info *info,
2016 struct btrfs_super_block *super,
2017 int *num_backups_tried, int *backup_index)
2018{
2019 struct btrfs_root_backup *root_backup;
2020 int newest = *backup_index;
2021
2022 if (*num_backups_tried == 0) {
2023 u64 gen = btrfs_super_generation(super);
2024
2025 newest = find_newest_super_backup(info, gen);
2026 if (newest == -1)
2027 return -1;
2028
2029 *backup_index = newest;
2030 *num_backups_tried = 1;
2031 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2032 /* we've tried all the backups, all done */
2033 return -1;
2034 } else {
2035 /* jump to the next oldest backup */
2036 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2037 BTRFS_NUM_BACKUP_ROOTS;
2038 *backup_index = newest;
2039 *num_backups_tried += 1;
2040 }
2041 root_backup = super->super_roots + newest;
2042
2043 btrfs_set_super_generation(super,
2044 btrfs_backup_tree_root_gen(root_backup));
2045 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2046 btrfs_set_super_root_level(super,
2047 btrfs_backup_tree_root_level(root_backup));
2048 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2049
2050 /*
2051 * fixme: the total bytes and num_devices need to match or we should
2052 * need a fsck
2053 */
2054 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2055 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2056 return 0;
2057}
2058
7abadb64
LB
2059/* helper to cleanup workers */
2060static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2061{
dc6e3209 2062 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2063 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2064 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2065 btrfs_destroy_workqueue(fs_info->endio_workers);
2066 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2067 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2068 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2069 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2070 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2071 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2072 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2073 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2074 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2075 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2076 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2077 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2078 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2079 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2080}
2081
2e9f5954
R
2082static void free_root_extent_buffers(struct btrfs_root *root)
2083{
2084 if (root) {
2085 free_extent_buffer(root->node);
2086 free_extent_buffer(root->commit_root);
2087 root->node = NULL;
2088 root->commit_root = NULL;
2089 }
2090}
2091
af31f5e5
CM
2092/* helper to cleanup tree roots */
2093static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2094{
2e9f5954 2095 free_root_extent_buffers(info->tree_root);
655b09fe 2096
2e9f5954
R
2097 free_root_extent_buffers(info->dev_root);
2098 free_root_extent_buffers(info->extent_root);
2099 free_root_extent_buffers(info->csum_root);
2100 free_root_extent_buffers(info->quota_root);
2101 free_root_extent_buffers(info->uuid_root);
2102 if (chunk_root)
2103 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2104}
2105
faa2dbf0 2106void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2107{
2108 int ret;
2109 struct btrfs_root *gang[8];
2110 int i;
2111
2112 while (!list_empty(&fs_info->dead_roots)) {
2113 gang[0] = list_entry(fs_info->dead_roots.next,
2114 struct btrfs_root, root_list);
2115 list_del(&gang[0]->root_list);
2116
27cdeb70 2117 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2118 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2119 } else {
2120 free_extent_buffer(gang[0]->node);
2121 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2122 btrfs_put_fs_root(gang[0]);
171f6537
JB
2123 }
2124 }
2125
2126 while (1) {
2127 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2128 (void **)gang, 0,
2129 ARRAY_SIZE(gang));
2130 if (!ret)
2131 break;
2132 for (i = 0; i < ret; i++)
cb517eab 2133 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2134 }
1a4319cc
LB
2135
2136 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2137 btrfs_free_log_root_tree(NULL, fs_info);
2138 btrfs_destroy_pinned_extent(fs_info->tree_root,
2139 fs_info->pinned_extents);
2140 }
171f6537 2141}
af31f5e5 2142
638aa7ed
ES
2143static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2144{
2145 mutex_init(&fs_info->scrub_lock);
2146 atomic_set(&fs_info->scrubs_running, 0);
2147 atomic_set(&fs_info->scrub_pause_req, 0);
2148 atomic_set(&fs_info->scrubs_paused, 0);
2149 atomic_set(&fs_info->scrub_cancel_req, 0);
2150 init_waitqueue_head(&fs_info->scrub_pause_wait);
2151 fs_info->scrub_workers_refcnt = 0;
2152}
2153
779a65a4
ES
2154static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2155{
2156 spin_lock_init(&fs_info->balance_lock);
2157 mutex_init(&fs_info->balance_mutex);
2158 atomic_set(&fs_info->balance_running, 0);
2159 atomic_set(&fs_info->balance_pause_req, 0);
2160 atomic_set(&fs_info->balance_cancel_req, 0);
2161 fs_info->balance_ctl = NULL;
2162 init_waitqueue_head(&fs_info->balance_wait_q);
2163}
2164
f37938e0
ES
2165static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2166 struct btrfs_root *tree_root)
2167{
2168 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2169 set_nlink(fs_info->btree_inode, 1);
2170 /*
2171 * we set the i_size on the btree inode to the max possible int.
2172 * the real end of the address space is determined by all of
2173 * the devices in the system
2174 */
2175 fs_info->btree_inode->i_size = OFFSET_MAX;
2176 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2177
2178 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2179 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2180 fs_info->btree_inode->i_mapping);
2181 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2182 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2183
2184 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2185
2186 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2187 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2188 sizeof(struct btrfs_key));
2189 set_bit(BTRFS_INODE_DUMMY,
2190 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2191 btrfs_insert_inode_hash(fs_info->btree_inode);
2192}
2193
ad618368
ES
2194static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2195{
2196 fs_info->dev_replace.lock_owner = 0;
2197 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2198 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2199 mutex_init(&fs_info->dev_replace.lock_management_lock);
2200 mutex_init(&fs_info->dev_replace.lock);
2201 init_waitqueue_head(&fs_info->replace_wait);
2202}
2203
f9e92e40
ES
2204static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2205{
2206 spin_lock_init(&fs_info->qgroup_lock);
2207 mutex_init(&fs_info->qgroup_ioctl_lock);
2208 fs_info->qgroup_tree = RB_ROOT;
2209 fs_info->qgroup_op_tree = RB_ROOT;
2210 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2211 fs_info->qgroup_seq = 1;
2212 fs_info->quota_enabled = 0;
2213 fs_info->pending_quota_state = 0;
2214 fs_info->qgroup_ulist = NULL;
2215 mutex_init(&fs_info->qgroup_rescan_lock);
2216}
2217
2a458198
ES
2218static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2219 struct btrfs_fs_devices *fs_devices)
2220{
2221 int max_active = fs_info->thread_pool_size;
6f011058 2222 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2223
2224 fs_info->workers =
2225 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2226 max_active, 16);
2227
2228 fs_info->delalloc_workers =
2229 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2230
2231 fs_info->flush_workers =
2232 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2233
2234 fs_info->caching_workers =
2235 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2236
2237 /*
2238 * a higher idle thresh on the submit workers makes it much more
2239 * likely that bios will be send down in a sane order to the
2240 * devices
2241 */
2242 fs_info->submit_workers =
2243 btrfs_alloc_workqueue("submit", flags,
2244 min_t(u64, fs_devices->num_devices,
2245 max_active), 64);
2246
2247 fs_info->fixup_workers =
2248 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2249
2250 /*
2251 * endios are largely parallel and should have a very
2252 * low idle thresh
2253 */
2254 fs_info->endio_workers =
2255 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2256 fs_info->endio_meta_workers =
2257 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2258 fs_info->endio_meta_write_workers =
2259 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2260 fs_info->endio_raid56_workers =
2261 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2262 fs_info->endio_repair_workers =
2263 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2264 fs_info->rmw_workers =
2265 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2266 fs_info->endio_write_workers =
2267 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2268 fs_info->endio_freespace_worker =
2269 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2270 fs_info->delayed_workers =
2271 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2272 fs_info->readahead_workers =
2273 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2274 fs_info->qgroup_rescan_workers =
2275 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2276 fs_info->extent_workers =
2277 btrfs_alloc_workqueue("extent-refs", flags,
2278 min_t(u64, fs_devices->num_devices,
2279 max_active), 8);
2280
2281 if (!(fs_info->workers && fs_info->delalloc_workers &&
2282 fs_info->submit_workers && fs_info->flush_workers &&
2283 fs_info->endio_workers && fs_info->endio_meta_workers &&
2284 fs_info->endio_meta_write_workers &&
2285 fs_info->endio_repair_workers &&
2286 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2287 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2288 fs_info->caching_workers && fs_info->readahead_workers &&
2289 fs_info->fixup_workers && fs_info->delayed_workers &&
2290 fs_info->extent_workers &&
2291 fs_info->qgroup_rescan_workers)) {
2292 return -ENOMEM;
2293 }
2294
2295 return 0;
2296}
2297
63443bf5
ES
2298static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2299 struct btrfs_fs_devices *fs_devices)
2300{
2301 int ret;
2302 struct btrfs_root *tree_root = fs_info->tree_root;
2303 struct btrfs_root *log_tree_root;
2304 struct btrfs_super_block *disk_super = fs_info->super_copy;
2305 u64 bytenr = btrfs_super_log_root(disk_super);
2306
2307 if (fs_devices->rw_devices == 0) {
2308 printk(KERN_WARNING "BTRFS: log replay required "
2309 "on RO media\n");
2310 return -EIO;
2311 }
2312
2313 log_tree_root = btrfs_alloc_root(fs_info);
2314 if (!log_tree_root)
2315 return -ENOMEM;
2316
2317 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2318 tree_root->stripesize, log_tree_root, fs_info,
2319 BTRFS_TREE_LOG_OBJECTID);
2320
2321 log_tree_root->node = read_tree_block(tree_root, bytenr,
2322 fs_info->generation + 1);
2323 if (!log_tree_root->node ||
2324 !extent_buffer_uptodate(log_tree_root->node)) {
2325 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2326 free_extent_buffer(log_tree_root->node);
2327 kfree(log_tree_root);
2328 return -EIO;
2329 }
2330 /* returns with log_tree_root freed on success */
2331 ret = btrfs_recover_log_trees(log_tree_root);
2332 if (ret) {
2333 btrfs_error(tree_root->fs_info, ret,
2334 "Failed to recover log tree");
2335 free_extent_buffer(log_tree_root->node);
2336 kfree(log_tree_root);
2337 return ret;
2338 }
2339
2340 if (fs_info->sb->s_flags & MS_RDONLY) {
2341 ret = btrfs_commit_super(tree_root);
2342 if (ret)
2343 return ret;
2344 }
2345
2346 return 0;
2347}
2348
4bbcaa64
ES
2349static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2350 struct btrfs_root *tree_root)
2351{
a4f3d2c4 2352 struct btrfs_root *root;
4bbcaa64
ES
2353 struct btrfs_key location;
2354 int ret;
2355
2356 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2357 location.type = BTRFS_ROOT_ITEM_KEY;
2358 location.offset = 0;
2359
a4f3d2c4
DS
2360 root = btrfs_read_tree_root(tree_root, &location);
2361 if (IS_ERR(root))
2362 return PTR_ERR(root);
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 fs_info->extent_root = root;
4bbcaa64
ES
2365
2366 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2367 root = btrfs_read_tree_root(tree_root, &location);
2368 if (IS_ERR(root))
2369 return PTR_ERR(root);
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 fs_info->dev_root = root;
4bbcaa64
ES
2372 btrfs_init_devices_late(fs_info);
2373
2374 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2375 root = btrfs_read_tree_root(tree_root, &location);
2376 if (IS_ERR(root))
2377 return PTR_ERR(root);
2378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2379 fs_info->csum_root = root;
4bbcaa64
ES
2380
2381 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2382 root = btrfs_read_tree_root(tree_root, &location);
2383 if (!IS_ERR(root)) {
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2385 fs_info->quota_enabled = 1;
2386 fs_info->pending_quota_state = 1;
a4f3d2c4 2387 fs_info->quota_root = root;
4bbcaa64
ES
2388 }
2389
2390 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2391 root = btrfs_read_tree_root(tree_root, &location);
2392 if (IS_ERR(root)) {
2393 ret = PTR_ERR(root);
4bbcaa64
ES
2394 if (ret != -ENOENT)
2395 return ret;
2396 } else {
a4f3d2c4
DS
2397 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2398 fs_info->uuid_root = root;
4bbcaa64
ES
2399 }
2400
2401 return 0;
2402}
2403
ad2b2c80
AV
2404int open_ctree(struct super_block *sb,
2405 struct btrfs_fs_devices *fs_devices,
2406 char *options)
2e635a27 2407{
db94535d
CM
2408 u32 sectorsize;
2409 u32 nodesize;
87ee04eb 2410 u32 stripesize;
84234f3a 2411 u64 generation;
f2b636e8 2412 u64 features;
3de4586c 2413 struct btrfs_key location;
a061fc8d 2414 struct buffer_head *bh;
4d34b278 2415 struct btrfs_super_block *disk_super;
815745cf 2416 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2417 struct btrfs_root *tree_root;
4d34b278 2418 struct btrfs_root *chunk_root;
eb60ceac 2419 int ret;
e58ca020 2420 int err = -EINVAL;
af31f5e5
CM
2421 int num_backups_tried = 0;
2422 int backup_index = 0;
5cdc7ad3 2423 int max_active;
4543df7e 2424
f84a8bd6 2425 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2426 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2427 if (!tree_root || !chunk_root) {
39279cc3
CM
2428 err = -ENOMEM;
2429 goto fail;
2430 }
76dda93c
YZ
2431
2432 ret = init_srcu_struct(&fs_info->subvol_srcu);
2433 if (ret) {
2434 err = ret;
2435 goto fail;
2436 }
2437
2438 ret = setup_bdi(fs_info, &fs_info->bdi);
2439 if (ret) {
2440 err = ret;
2441 goto fail_srcu;
2442 }
2443
908c7f19 2444 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2445 if (ret) {
2446 err = ret;
2447 goto fail_bdi;
2448 }
2449 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2450 (1 + ilog2(nr_cpu_ids));
2451
908c7f19 2452 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2453 if (ret) {
2454 err = ret;
2455 goto fail_dirty_metadata_bytes;
2456 }
2457
908c7f19 2458 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2459 if (ret) {
2460 err = ret;
2461 goto fail_delalloc_bytes;
2462 }
2463
76dda93c
YZ
2464 fs_info->btree_inode = new_inode(sb);
2465 if (!fs_info->btree_inode) {
2466 err = -ENOMEM;
c404e0dc 2467 goto fail_bio_counter;
76dda93c
YZ
2468 }
2469
a6591715 2470 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2471
76dda93c 2472 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2473 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2474 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2475 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2476 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2477 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2478 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2479 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2480 spin_lock_init(&fs_info->trans_lock);
76dda93c 2481 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2482 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2483 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2484 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2485 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2486 spin_lock_init(&fs_info->super_lock);
fcebe456 2487 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2488 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2489 spin_lock_init(&fs_info->unused_bgs_lock);
d4b450cd 2490 mutex_init(&fs_info->unused_bg_unpin_mutex);
f29021b2 2491 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2492 mutex_init(&fs_info->reloc_mutex);
573bfb72 2493 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2494 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2495
58176a96 2496 init_completion(&fs_info->kobj_unregister);
0b86a832 2497 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2498 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2499 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2500 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2501 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2502 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2503 BTRFS_BLOCK_RSV_GLOBAL);
2504 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2505 BTRFS_BLOCK_RSV_DELALLOC);
2506 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2507 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2508 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2509 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2510 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2511 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2512 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2513 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2514 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2515 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2516 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2517 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2518 fs_info->sb = sb;
95ac567a 2519 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2520 fs_info->metadata_ratio = 0;
4cb5300b 2521 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2522 fs_info->free_chunk_space = 0;
f29021b2 2523 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2524 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2525 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66
AJ
2526 /* readahead state */
2527 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2528 spin_lock_init(&fs_info->reada_lock);
c8b97818 2529
b34b086c
CM
2530 fs_info->thread_pool_size = min_t(unsigned long,
2531 num_online_cpus() + 2, 8);
0afbaf8c 2532
199c2a9c
MX
2533 INIT_LIST_HEAD(&fs_info->ordered_roots);
2534 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2535 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2536 GFP_NOFS);
2537 if (!fs_info->delayed_root) {
2538 err = -ENOMEM;
2539 goto fail_iput;
2540 }
2541 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2542
638aa7ed 2543 btrfs_init_scrub(fs_info);
21adbd5c
SB
2544#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2545 fs_info->check_integrity_print_mask = 0;
2546#endif
779a65a4 2547 btrfs_init_balance(fs_info);
21c7e756 2548 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2549
a061fc8d
CM
2550 sb->s_blocksize = 4096;
2551 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2552 sb->s_bdi = &fs_info->bdi;
a061fc8d 2553
f37938e0 2554 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2555
0f9dd46c 2556 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2557 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2558 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2559
11833d66 2560 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2561 fs_info->btree_inode->i_mapping);
11833d66 2562 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2563 fs_info->btree_inode->i_mapping);
11833d66 2564 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2565 fs_info->do_barriers = 1;
e18e4809 2566
39279cc3 2567
5a3f23d5 2568 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2569 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2570 mutex_init(&fs_info->tree_log_mutex);
925baedd 2571 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2572 mutex_init(&fs_info->transaction_kthread_mutex);
2573 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2574 mutex_init(&fs_info->volume_mutex);
1bbc621e 2575 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2576 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2577 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2578 init_rwsem(&fs_info->subvol_sem);
803b2f54 2579 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2580
ad618368 2581 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2582 btrfs_init_qgroup(fs_info);
416ac51d 2583
fa9c0d79
CM
2584 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2585 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2586
e6dcd2dc 2587 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2588 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2589 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2590 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2591
04216820
FM
2592 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2593
53b381b3
DW
2594 ret = btrfs_alloc_stripe_hash_table(fs_info);
2595 if (ret) {
83c8266a 2596 err = ret;
53b381b3
DW
2597 goto fail_alloc;
2598 }
2599
707e8a07 2600 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2601 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2602
3c4bb26b 2603 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2604
2605 /*
2606 * Read super block and check the signature bytes only
2607 */
a512bbf8 2608 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2609 if (!bh) {
2610 err = -EINVAL;
16cdcec7 2611 goto fail_alloc;
20b45077 2612 }
39279cc3 2613
1104a885
DS
2614 /*
2615 * We want to check superblock checksum, the type is stored inside.
2616 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2617 */
2618 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2619 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2620 err = -EINVAL;
2621 goto fail_alloc;
2622 }
2623
2624 /*
2625 * super_copy is zeroed at allocation time and we never touch the
2626 * following bytes up to INFO_SIZE, the checksum is calculated from
2627 * the whole block of INFO_SIZE
2628 */
6c41761f
DS
2629 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2630 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2631 sizeof(*fs_info->super_for_commit));
a061fc8d 2632 brelse(bh);
5f39d397 2633
6c41761f 2634 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2635
1104a885
DS
2636 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2637 if (ret) {
efe120a0 2638 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2639 err = -EINVAL;
2640 goto fail_alloc;
2641 }
2642
6c41761f 2643 disk_super = fs_info->super_copy;
0f7d52f4 2644 if (!btrfs_super_root(disk_super))
16cdcec7 2645 goto fail_alloc;
0f7d52f4 2646
acce952b 2647 /* check FS state, whether FS is broken. */
87533c47
MX
2648 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2649 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2650
af31f5e5
CM
2651 /*
2652 * run through our array of backup supers and setup
2653 * our ring pointer to the oldest one
2654 */
2655 generation = btrfs_super_generation(disk_super);
2656 find_oldest_super_backup(fs_info, generation);
2657
75e7cb7f
LB
2658 /*
2659 * In the long term, we'll store the compression type in the super
2660 * block, and it'll be used for per file compression control.
2661 */
2662 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2663
2b82032c
YZ
2664 ret = btrfs_parse_options(tree_root, options);
2665 if (ret) {
2666 err = ret;
16cdcec7 2667 goto fail_alloc;
2b82032c 2668 }
dfe25020 2669
f2b636e8
JB
2670 features = btrfs_super_incompat_flags(disk_super) &
2671 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2672 if (features) {
2673 printk(KERN_ERR "BTRFS: couldn't mount because of "
2674 "unsupported optional features (%Lx).\n",
c1c9ff7c 2675 features);
f2b636e8 2676 err = -EINVAL;
16cdcec7 2677 goto fail_alloc;
f2b636e8
JB
2678 }
2679
707e8a07
DS
2680 /*
2681 * Leafsize and nodesize were always equal, this is only a sanity check.
2682 */
2683 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2684 btrfs_super_nodesize(disk_super)) {
2685 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2686 "blocksizes don't match. node %d leaf %d\n",
2687 btrfs_super_nodesize(disk_super),
707e8a07 2688 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2689 err = -EINVAL;
2690 goto fail_alloc;
2691 }
707e8a07 2692 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2693 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2694 "blocksize (%d) was too large\n",
707e8a07 2695 btrfs_super_nodesize(disk_super));
727011e0
CM
2696 err = -EINVAL;
2697 goto fail_alloc;
2698 }
2699
5d4f98a2 2700 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2701 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2702 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2703 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2704
3173a18f 2705 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2706 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2707
727011e0
CM
2708 /*
2709 * flag our filesystem as having big metadata blocks if
2710 * they are bigger than the page size
2711 */
707e8a07 2712 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2713 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2714 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2715 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2716 }
2717
bc3f116f 2718 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2719 sectorsize = btrfs_super_sectorsize(disk_super);
2720 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2721 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2722 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2723
2724 /*
2725 * mixed block groups end up with duplicate but slightly offset
2726 * extent buffers for the same range. It leads to corruptions
2727 */
2728 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2729 (sectorsize != nodesize)) {
aa8ee312 2730 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2731 "are not allowed for mixed block groups on %s\n",
2732 sb->s_id);
2733 goto fail_alloc;
2734 }
2735
ceda0864
MX
2736 /*
2737 * Needn't use the lock because there is no other task which will
2738 * update the flag.
2739 */
a6fa6fae 2740 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2741
f2b636e8
JB
2742 features = btrfs_super_compat_ro_flags(disk_super) &
2743 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2744 if (!(sb->s_flags & MS_RDONLY) && features) {
2745 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2746 "unsupported option features (%Lx).\n",
c1c9ff7c 2747 features);
f2b636e8 2748 err = -EINVAL;
16cdcec7 2749 goto fail_alloc;
f2b636e8 2750 }
61d92c32 2751
5cdc7ad3 2752 max_active = fs_info->thread_pool_size;
61d92c32 2753
2a458198
ES
2754 ret = btrfs_init_workqueues(fs_info, fs_devices);
2755 if (ret) {
2756 err = ret;
0dc3b84a
JB
2757 goto fail_sb_buffer;
2758 }
4543df7e 2759
4575c9cc 2760 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2761 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2762 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2763
db94535d 2764 tree_root->nodesize = nodesize;
db94535d 2765 tree_root->sectorsize = sectorsize;
87ee04eb 2766 tree_root->stripesize = stripesize;
a061fc8d
CM
2767
2768 sb->s_blocksize = sectorsize;
2769 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2770
3cae210f 2771 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2772 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2773 goto fail_sb_buffer;
2774 }
19c00ddc 2775
8d082fb7 2776 if (sectorsize != PAGE_SIZE) {
aa8ee312 2777 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2778 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2779 goto fail_sb_buffer;
2780 }
2781
925baedd 2782 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2783 ret = btrfs_read_sys_array(tree_root);
925baedd 2784 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2785 if (ret) {
aa8ee312 2786 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2787 "array on %s\n", sb->s_id);
5d4f98a2 2788 goto fail_sb_buffer;
84eed90f 2789 }
0b86a832 2790
84234f3a 2791 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2792
707e8a07
DS
2793 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2794 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2795
2796 chunk_root->node = read_tree_block(chunk_root,
2797 btrfs_super_chunk_root(disk_super),
ce86cd59 2798 generation);
416bc658
JB
2799 if (!chunk_root->node ||
2800 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
aa8ee312 2801 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2802 sb->s_id);
af31f5e5 2803 goto fail_tree_roots;
83121942 2804 }
5d4f98a2
YZ
2805 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2806 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2807
e17cade2 2808 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2809 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2810
0b86a832 2811 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2812 if (ret) {
aa8ee312 2813 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2814 sb->s_id);
af31f5e5 2815 goto fail_tree_roots;
2b82032c 2816 }
0b86a832 2817
8dabb742
SB
2818 /*
2819 * keep the device that is marked to be the target device for the
2820 * dev_replace procedure
2821 */
9eaed21e 2822 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2823
a6b0d5c8 2824 if (!fs_devices->latest_bdev) {
aa8ee312 2825 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2826 sb->s_id);
2827 goto fail_tree_roots;
2828 }
2829
af31f5e5 2830retry_root_backup:
84234f3a 2831 generation = btrfs_super_generation(disk_super);
0b86a832 2832
e20d96d6 2833 tree_root->node = read_tree_block(tree_root,
db94535d 2834 btrfs_super_root(disk_super),
ce86cd59 2835 generation);
af31f5e5
CM
2836 if (!tree_root->node ||
2837 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2838 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2839 sb->s_id);
af31f5e5
CM
2840
2841 goto recovery_tree_root;
83121942 2842 }
af31f5e5 2843
5d4f98a2
YZ
2844 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2845 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2846 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2847
4bbcaa64
ES
2848 ret = btrfs_read_roots(fs_info, tree_root);
2849 if (ret)
af31f5e5 2850 goto recovery_tree_root;
f7a81ea4 2851
8929ecfa
YZ
2852 fs_info->generation = generation;
2853 fs_info->last_trans_committed = generation;
8929ecfa 2854
68310a5e
ID
2855 ret = btrfs_recover_balance(fs_info);
2856 if (ret) {
aa8ee312 2857 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2858 goto fail_block_groups;
2859 }
2860
733f4fbb
SB
2861 ret = btrfs_init_dev_stats(fs_info);
2862 if (ret) {
efe120a0 2863 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2864 ret);
2865 goto fail_block_groups;
2866 }
2867
8dabb742
SB
2868 ret = btrfs_init_dev_replace(fs_info);
2869 if (ret) {
efe120a0 2870 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2871 goto fail_block_groups;
2872 }
2873
9eaed21e 2874 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2875
5ac1d209 2876 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2877 if (ret) {
efe120a0 2878 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2879 goto fail_block_groups;
2880 }
2881
c59021f8 2882 ret = btrfs_init_space_info(fs_info);
2883 if (ret) {
efe120a0 2884 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2885 goto fail_sysfs;
c59021f8 2886 }
2887
4bbcaa64 2888 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2889 if (ret) {
efe120a0 2890 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2891 goto fail_sysfs;
1b1d1f66 2892 }
5af3e8cc
SB
2893 fs_info->num_tolerated_disk_barrier_failures =
2894 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2895 if (fs_info->fs_devices->missing_devices >
2896 fs_info->num_tolerated_disk_barrier_failures &&
2897 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2898 printk(KERN_WARNING "BTRFS: "
2899 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2900 goto fail_sysfs;
292fd7fc 2901 }
9078a3e1 2902
a74a4b97
CM
2903 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2904 "btrfs-cleaner");
57506d50 2905 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2906 goto fail_sysfs;
a74a4b97
CM
2907
2908 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2909 tree_root,
2910 "btrfs-transaction");
57506d50 2911 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2912 goto fail_cleaner;
a74a4b97 2913
c289811c
CM
2914 if (!btrfs_test_opt(tree_root, SSD) &&
2915 !btrfs_test_opt(tree_root, NOSSD) &&
2916 !fs_info->fs_devices->rotating) {
efe120a0 2917 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2918 "mode\n");
2919 btrfs_set_opt(fs_info->mount_opt, SSD);
2920 }
2921
572d9ab7
DS
2922 /*
2923 * Mount does not set all options immediatelly, we can do it now and do
2924 * not have to wait for transaction commit
2925 */
2926 btrfs_apply_pending_changes(fs_info);
3818aea2 2927
21adbd5c
SB
2928#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2929 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2930 ret = btrfsic_mount(tree_root, fs_devices,
2931 btrfs_test_opt(tree_root,
2932 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2933 1 : 0,
2934 fs_info->check_integrity_print_mask);
2935 if (ret)
efe120a0 2936 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2937 " integrity check module %s\n", sb->s_id);
2938 }
2939#endif
bcef60f2
AJ
2940 ret = btrfs_read_qgroup_config(fs_info);
2941 if (ret)
2942 goto fail_trans_kthread;
21adbd5c 2943
acce952b 2944 /* do not make disk changes in broken FS */
68ce9682 2945 if (btrfs_super_log_root(disk_super) != 0) {
63443bf5 2946 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 2947 if (ret) {
63443bf5 2948 err = ret;
28c16cbb 2949 goto fail_qgroup;
79787eaa 2950 }
e02119d5 2951 }
1a40e23b 2952
76dda93c 2953 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2954 if (ret)
28c16cbb 2955 goto fail_qgroup;
76dda93c 2956
7c2ca468 2957 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2958 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2959 if (ret)
28c16cbb 2960 goto fail_qgroup;
d68fc57b 2961
5f316481 2962 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2963 ret = btrfs_recover_relocation(tree_root);
5f316481 2964 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2965 if (ret < 0) {
2966 printk(KERN_WARNING
efe120a0 2967 "BTRFS: failed to recover relocation\n");
d7ce5843 2968 err = -EINVAL;
bcef60f2 2969 goto fail_qgroup;
d7ce5843 2970 }
7c2ca468 2971 }
1a40e23b 2972
3de4586c
CM
2973 location.objectid = BTRFS_FS_TREE_OBJECTID;
2974 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2975 location.offset = 0;
3de4586c 2976
3de4586c 2977 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2978 if (IS_ERR(fs_info->fs_root)) {
2979 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2980 goto fail_qgroup;
3140c9a3 2981 }
c289811c 2982
2b6ba629
ID
2983 if (sb->s_flags & MS_RDONLY)
2984 return 0;
59641015 2985
2b6ba629
ID
2986 down_read(&fs_info->cleanup_work_sem);
2987 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2988 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2989 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2990 close_ctree(tree_root);
2991 return ret;
2992 }
2993 up_read(&fs_info->cleanup_work_sem);
59641015 2994
2b6ba629
ID
2995 ret = btrfs_resume_balance_async(fs_info);
2996 if (ret) {
efe120a0 2997 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2998 close_ctree(tree_root);
2999 return ret;
e3acc2a6
JB
3000 }
3001
8dabb742
SB
3002 ret = btrfs_resume_dev_replace_async(fs_info);
3003 if (ret) {
efe120a0 3004 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3005 close_ctree(tree_root);
3006 return ret;
3007 }
3008
b382a324
JS
3009 btrfs_qgroup_rescan_resume(fs_info);
3010
4bbcaa64 3011 if (!fs_info->uuid_root) {
efe120a0 3012 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3013 ret = btrfs_create_uuid_tree(fs_info);
3014 if (ret) {
efe120a0 3015 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3016 ret);
3017 close_ctree(tree_root);
3018 return ret;
3019 }
4bbcaa64
ES
3020 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3021 fs_info->generation !=
3022 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3023 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3024 ret = btrfs_check_uuid_tree(fs_info);
3025 if (ret) {
efe120a0 3026 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3027 ret);
3028 close_ctree(tree_root);
3029 return ret;
3030 }
3031 } else {
3032 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3033 }
3034
47ab2a6c
JB
3035 fs_info->open = 1;
3036
ad2b2c80 3037 return 0;
39279cc3 3038
bcef60f2
AJ
3039fail_qgroup:
3040 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3041fail_trans_kthread:
3042 kthread_stop(fs_info->transaction_kthread);
54067ae9 3043 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3044 btrfs_free_fs_roots(fs_info);
3f157a2f 3045fail_cleaner:
a74a4b97 3046 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3047
3048 /*
3049 * make sure we're done with the btree inode before we stop our
3050 * kthreads
3051 */
3052 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3053
2365dd3c
AJ
3054fail_sysfs:
3055 btrfs_sysfs_remove_one(fs_info);
3056
1b1d1f66 3057fail_block_groups:
54067ae9 3058 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3059 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3060
3061fail_tree_roots:
3062 free_root_pointers(fs_info, 1);
2b8195bb 3063 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3064
39279cc3 3065fail_sb_buffer:
7abadb64 3066 btrfs_stop_all_workers(fs_info);
16cdcec7 3067fail_alloc:
4543df7e 3068fail_iput:
586e46e2
ID
3069 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3070
4543df7e 3071 iput(fs_info->btree_inode);
c404e0dc
MX
3072fail_bio_counter:
3073 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3074fail_delalloc_bytes:
3075 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3076fail_dirty_metadata_bytes:
3077 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3078fail_bdi:
7e662854 3079 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3080fail_srcu:
3081 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3082fail:
53b381b3 3083 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3084 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3085 return err;
af31f5e5
CM
3086
3087recovery_tree_root:
af31f5e5
CM
3088 if (!btrfs_test_opt(tree_root, RECOVERY))
3089 goto fail_tree_roots;
3090
3091 free_root_pointers(fs_info, 0);
3092
3093 /* don't use the log in recovery mode, it won't be valid */
3094 btrfs_set_super_log_root(disk_super, 0);
3095
3096 /* we can't trust the free space cache either */
3097 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3098
3099 ret = next_root_backup(fs_info, fs_info->super_copy,
3100 &num_backups_tried, &backup_index);
3101 if (ret == -1)
3102 goto fail_block_groups;
3103 goto retry_root_backup;
eb60ceac
CM
3104}
3105
f2984462
CM
3106static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3107{
f2984462
CM
3108 if (uptodate) {
3109 set_buffer_uptodate(bh);
3110 } else {
442a4f63
SB
3111 struct btrfs_device *device = (struct btrfs_device *)
3112 bh->b_private;
3113
efe120a0 3114 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3115 "I/O error on %s\n",
3116 rcu_str_deref(device->name));
1259ab75
CM
3117 /* note, we dont' set_buffer_write_io_error because we have
3118 * our own ways of dealing with the IO errors
3119 */
f2984462 3120 clear_buffer_uptodate(bh);
442a4f63 3121 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3122 }
3123 unlock_buffer(bh);
3124 put_bh(bh);
3125}
3126
a512bbf8
YZ
3127struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3128{
3129 struct buffer_head *bh;
3130 struct buffer_head *latest = NULL;
3131 struct btrfs_super_block *super;
3132 int i;
3133 u64 transid = 0;
3134 u64 bytenr;
3135
3136 /* we would like to check all the supers, but that would make
3137 * a btrfs mount succeed after a mkfs from a different FS.
3138 * So, we need to add a special mount option to scan for
3139 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3140 */
3141 for (i = 0; i < 1; i++) {
3142 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3143 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3144 i_size_read(bdev->bd_inode))
a512bbf8 3145 break;
8068a47e
AJ
3146 bh = __bread(bdev, bytenr / 4096,
3147 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3148 if (!bh)
3149 continue;
3150
3151 super = (struct btrfs_super_block *)bh->b_data;
3152 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3153 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3154 brelse(bh);
3155 continue;
3156 }
3157
3158 if (!latest || btrfs_super_generation(super) > transid) {
3159 brelse(latest);
3160 latest = bh;
3161 transid = btrfs_super_generation(super);
3162 } else {
3163 brelse(bh);
3164 }
3165 }
3166 return latest;
3167}
3168
4eedeb75
HH
3169/*
3170 * this should be called twice, once with wait == 0 and
3171 * once with wait == 1. When wait == 0 is done, all the buffer heads
3172 * we write are pinned.
3173 *
3174 * They are released when wait == 1 is done.
3175 * max_mirrors must be the same for both runs, and it indicates how
3176 * many supers on this one device should be written.
3177 *
3178 * max_mirrors == 0 means to write them all.
3179 */
a512bbf8
YZ
3180static int write_dev_supers(struct btrfs_device *device,
3181 struct btrfs_super_block *sb,
3182 int do_barriers, int wait, int max_mirrors)
3183{
3184 struct buffer_head *bh;
3185 int i;
3186 int ret;
3187 int errors = 0;
3188 u32 crc;
3189 u64 bytenr;
a512bbf8
YZ
3190
3191 if (max_mirrors == 0)
3192 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3193
a512bbf8
YZ
3194 for (i = 0; i < max_mirrors; i++) {
3195 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3196 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3197 device->commit_total_bytes)
a512bbf8
YZ
3198 break;
3199
3200 if (wait) {
3201 bh = __find_get_block(device->bdev, bytenr / 4096,
3202 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3203 if (!bh) {
3204 errors++;
3205 continue;
3206 }
a512bbf8 3207 wait_on_buffer(bh);
4eedeb75
HH
3208 if (!buffer_uptodate(bh))
3209 errors++;
3210
3211 /* drop our reference */
3212 brelse(bh);
3213
3214 /* drop the reference from the wait == 0 run */
3215 brelse(bh);
3216 continue;
a512bbf8
YZ
3217 } else {
3218 btrfs_set_super_bytenr(sb, bytenr);
3219
3220 crc = ~(u32)0;
b0496686 3221 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3222 BTRFS_CSUM_SIZE, crc,
3223 BTRFS_SUPER_INFO_SIZE -
3224 BTRFS_CSUM_SIZE);
3225 btrfs_csum_final(crc, sb->csum);
3226
4eedeb75
HH
3227 /*
3228 * one reference for us, and we leave it for the
3229 * caller
3230 */
a512bbf8
YZ
3231 bh = __getblk(device->bdev, bytenr / 4096,
3232 BTRFS_SUPER_INFO_SIZE);
634554dc 3233 if (!bh) {
efe120a0 3234 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3235 "buffer head for bytenr %Lu\n", bytenr);
3236 errors++;
3237 continue;
3238 }
3239
a512bbf8
YZ
3240 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3241
4eedeb75 3242 /* one reference for submit_bh */
a512bbf8 3243 get_bh(bh);
4eedeb75
HH
3244
3245 set_buffer_uptodate(bh);
a512bbf8
YZ
3246 lock_buffer(bh);
3247 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3248 bh->b_private = device;
a512bbf8
YZ
3249 }
3250
387125fc
CM
3251 /*
3252 * we fua the first super. The others we allow
3253 * to go down lazy.
3254 */
e8117c26
WS
3255 if (i == 0)
3256 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3257 else
3258 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3259 if (ret)
a512bbf8 3260 errors++;
a512bbf8
YZ
3261 }
3262 return errors < i ? 0 : -1;
3263}
3264
387125fc
CM
3265/*
3266 * endio for the write_dev_flush, this will wake anyone waiting
3267 * for the barrier when it is done
3268 */
3269static void btrfs_end_empty_barrier(struct bio *bio, int err)
3270{
3271 if (err) {
3272 if (err == -EOPNOTSUPP)
3273 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3274 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3275 }
3276 if (bio->bi_private)
3277 complete(bio->bi_private);
3278 bio_put(bio);
3279}
3280
3281/*
3282 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3283 * sent down. With wait == 1, it waits for the previous flush.
3284 *
3285 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3286 * capable
3287 */
3288static int write_dev_flush(struct btrfs_device *device, int wait)
3289{
3290 struct bio *bio;
3291 int ret = 0;
3292
3293 if (device->nobarriers)
3294 return 0;
3295
3296 if (wait) {
3297 bio = device->flush_bio;
3298 if (!bio)
3299 return 0;
3300
3301 wait_for_completion(&device->flush_wait);
3302
3303 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3304 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3305 rcu_str_deref(device->name));
387125fc 3306 device->nobarriers = 1;
5af3e8cc 3307 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3308 ret = -EIO;
5af3e8cc
SB
3309 btrfs_dev_stat_inc_and_print(device,
3310 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3311 }
3312
3313 /* drop the reference from the wait == 0 run */
3314 bio_put(bio);
3315 device->flush_bio = NULL;
3316
3317 return ret;
3318 }
3319
3320 /*
3321 * one reference for us, and we leave it for the
3322 * caller
3323 */
9c017abc 3324 device->flush_bio = NULL;
9be3395b 3325 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3326 if (!bio)
3327 return -ENOMEM;
3328
3329 bio->bi_end_io = btrfs_end_empty_barrier;
3330 bio->bi_bdev = device->bdev;
3331 init_completion(&device->flush_wait);
3332 bio->bi_private = &device->flush_wait;
3333 device->flush_bio = bio;
3334
3335 bio_get(bio);
21adbd5c 3336 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3337
3338 return 0;
3339}
3340
3341/*
3342 * send an empty flush down to each device in parallel,
3343 * then wait for them
3344 */
3345static int barrier_all_devices(struct btrfs_fs_info *info)
3346{
3347 struct list_head *head;
3348 struct btrfs_device *dev;
5af3e8cc
SB
3349 int errors_send = 0;
3350 int errors_wait = 0;
387125fc
CM
3351 int ret;
3352
3353 /* send down all the barriers */
3354 head = &info->fs_devices->devices;
3355 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3356 if (dev->missing)
3357 continue;
387125fc 3358 if (!dev->bdev) {
5af3e8cc 3359 errors_send++;
387125fc
CM
3360 continue;
3361 }
3362 if (!dev->in_fs_metadata || !dev->writeable)
3363 continue;
3364
3365 ret = write_dev_flush(dev, 0);
3366 if (ret)
5af3e8cc 3367 errors_send++;
387125fc
CM
3368 }
3369
3370 /* wait for all the barriers */
3371 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3372 if (dev->missing)
3373 continue;
387125fc 3374 if (!dev->bdev) {
5af3e8cc 3375 errors_wait++;
387125fc
CM
3376 continue;
3377 }
3378 if (!dev->in_fs_metadata || !dev->writeable)
3379 continue;
3380
3381 ret = write_dev_flush(dev, 1);
3382 if (ret)
5af3e8cc 3383 errors_wait++;
387125fc 3384 }
5af3e8cc
SB
3385 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3386 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3387 return -EIO;
3388 return 0;
3389}
3390
5af3e8cc
SB
3391int btrfs_calc_num_tolerated_disk_barrier_failures(
3392 struct btrfs_fs_info *fs_info)
3393{
3394 struct btrfs_ioctl_space_info space;
3395 struct btrfs_space_info *sinfo;
3396 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3397 BTRFS_BLOCK_GROUP_SYSTEM,
3398 BTRFS_BLOCK_GROUP_METADATA,
3399 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3400 int num_types = 4;
3401 int i;
3402 int c;
3403 int num_tolerated_disk_barrier_failures =
3404 (int)fs_info->fs_devices->num_devices;
3405
3406 for (i = 0; i < num_types; i++) {
3407 struct btrfs_space_info *tmp;
3408
3409 sinfo = NULL;
3410 rcu_read_lock();
3411 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3412 if (tmp->flags == types[i]) {
3413 sinfo = tmp;
3414 break;
3415 }
3416 }
3417 rcu_read_unlock();
3418
3419 if (!sinfo)
3420 continue;
3421
3422 down_read(&sinfo->groups_sem);
3423 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3424 if (!list_empty(&sinfo->block_groups[c])) {
3425 u64 flags;
3426
3427 btrfs_get_block_group_info(
3428 &sinfo->block_groups[c], &space);
3429 if (space.total_bytes == 0 ||
3430 space.used_bytes == 0)
3431 continue;
3432 flags = space.flags;
3433 /*
3434 * return
3435 * 0: if dup, single or RAID0 is configured for
3436 * any of metadata, system or data, else
3437 * 1: if RAID5 is configured, or if RAID1 or
3438 * RAID10 is configured and only two mirrors
3439 * are used, else
3440 * 2: if RAID6 is configured, else
3441 * num_mirrors - 1: if RAID1 or RAID10 is
3442 * configured and more than
3443 * 2 mirrors are used.
3444 */
3445 if (num_tolerated_disk_barrier_failures > 0 &&
3446 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3447 BTRFS_BLOCK_GROUP_RAID0)) ||
3448 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3449 == 0)))
3450 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3451 else if (num_tolerated_disk_barrier_failures > 1) {
3452 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3453 BTRFS_BLOCK_GROUP_RAID5 |
3454 BTRFS_BLOCK_GROUP_RAID10)) {
3455 num_tolerated_disk_barrier_failures = 1;
3456 } else if (flags &
15b0a89d 3457 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3458 num_tolerated_disk_barrier_failures = 2;
3459 }
3460 }
5af3e8cc
SB
3461 }
3462 }
3463 up_read(&sinfo->groups_sem);
3464 }
3465
3466 return num_tolerated_disk_barrier_failures;
3467}
3468
48a3b636 3469static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3470{
e5e9a520 3471 struct list_head *head;
f2984462 3472 struct btrfs_device *dev;
a061fc8d 3473 struct btrfs_super_block *sb;
f2984462 3474 struct btrfs_dev_item *dev_item;
f2984462
CM
3475 int ret;
3476 int do_barriers;
a236aed1
CM
3477 int max_errors;
3478 int total_errors = 0;
a061fc8d 3479 u64 flags;
f2984462
CM
3480
3481 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3482 backup_super_roots(root->fs_info);
f2984462 3483
6c41761f 3484 sb = root->fs_info->super_for_commit;
a061fc8d 3485 dev_item = &sb->dev_item;
e5e9a520 3486
174ba509 3487 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3488 head = &root->fs_info->fs_devices->devices;
d7306801 3489 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3490
5af3e8cc
SB
3491 if (do_barriers) {
3492 ret = barrier_all_devices(root->fs_info);
3493 if (ret) {
3494 mutex_unlock(
3495 &root->fs_info->fs_devices->device_list_mutex);
3496 btrfs_error(root->fs_info, ret,
3497 "errors while submitting device barriers.");
3498 return ret;
3499 }
3500 }
387125fc 3501
1f78160c 3502 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3503 if (!dev->bdev) {
3504 total_errors++;
3505 continue;
3506 }
2b82032c 3507 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3508 continue;
3509
2b82032c 3510 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3511 btrfs_set_stack_device_type(dev_item, dev->type);
3512 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3513 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3514 dev->commit_total_bytes);
ce7213c7
MX
3515 btrfs_set_stack_device_bytes_used(dev_item,
3516 dev->commit_bytes_used);
a061fc8d
CM
3517 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3518 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3519 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3520 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3521 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3522
a061fc8d
CM
3523 flags = btrfs_super_flags(sb);
3524 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3525
a512bbf8 3526 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3527 if (ret)
3528 total_errors++;
f2984462 3529 }
a236aed1 3530 if (total_errors > max_errors) {
efe120a0 3531 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3532 total_errors);
a724b436 3533 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3534
9d565ba4
SB
3535 /* FUA is masked off if unsupported and can't be the reason */
3536 btrfs_error(root->fs_info, -EIO,
3537 "%d errors while writing supers", total_errors);
3538 return -EIO;
a236aed1 3539 }
f2984462 3540
a512bbf8 3541 total_errors = 0;
1f78160c 3542 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3543 if (!dev->bdev)
3544 continue;
2b82032c 3545 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3546 continue;
3547
a512bbf8
YZ
3548 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3549 if (ret)
3550 total_errors++;
f2984462 3551 }
174ba509 3552 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3553 if (total_errors > max_errors) {
79787eaa
JM
3554 btrfs_error(root->fs_info, -EIO,
3555 "%d errors while writing supers", total_errors);
3556 return -EIO;
a236aed1 3557 }
f2984462
CM
3558 return 0;
3559}
3560
a512bbf8
YZ
3561int write_ctree_super(struct btrfs_trans_handle *trans,
3562 struct btrfs_root *root, int max_mirrors)
eb60ceac 3563{
f570e757 3564 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3565}
3566
cb517eab
MX
3567/* Drop a fs root from the radix tree and free it. */
3568void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3569 struct btrfs_root *root)
2619ba1f 3570{
4df27c4d 3571 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3572 radix_tree_delete(&fs_info->fs_roots_radix,
3573 (unsigned long)root->root_key.objectid);
4df27c4d 3574 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3575
3576 if (btrfs_root_refs(&root->root_item) == 0)
3577 synchronize_srcu(&fs_info->subvol_srcu);
3578
1a4319cc 3579 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3580 btrfs_free_log(NULL, root);
3321719e 3581
faa2dbf0
JB
3582 if (root->free_ino_pinned)
3583 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3584 if (root->free_ino_ctl)
3585 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3586 free_fs_root(root);
4df27c4d
YZ
3587}
3588
3589static void free_fs_root(struct btrfs_root *root)
3590{
57cdc8db 3591 iput(root->ino_cache_inode);
4df27c4d 3592 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3593 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3594 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3595 if (root->anon_dev)
3596 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3597 if (root->subv_writers)
3598 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3599 free_extent_buffer(root->node);
3600 free_extent_buffer(root->commit_root);
581bb050
LZ
3601 kfree(root->free_ino_ctl);
3602 kfree(root->free_ino_pinned);
d397712b 3603 kfree(root->name);
b0feb9d9 3604 btrfs_put_fs_root(root);
2619ba1f
CM
3605}
3606
cb517eab
MX
3607void btrfs_free_fs_root(struct btrfs_root *root)
3608{
3609 free_fs_root(root);
2619ba1f
CM
3610}
3611
c146afad 3612int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3613{
c146afad
YZ
3614 u64 root_objectid = 0;
3615 struct btrfs_root *gang[8];
65d33fd7
QW
3616 int i = 0;
3617 int err = 0;
3618 unsigned int ret = 0;
3619 int index;
e089f05c 3620
c146afad 3621 while (1) {
65d33fd7 3622 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3623 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3624 (void **)gang, root_objectid,
3625 ARRAY_SIZE(gang));
65d33fd7
QW
3626 if (!ret) {
3627 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3628 break;
65d33fd7 3629 }
5d4f98a2 3630 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3631
c146afad 3632 for (i = 0; i < ret; i++) {
65d33fd7
QW
3633 /* Avoid to grab roots in dead_roots */
3634 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3635 gang[i] = NULL;
3636 continue;
3637 }
3638 /* grab all the search result for later use */
3639 gang[i] = btrfs_grab_fs_root(gang[i]);
3640 }
3641 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3642
65d33fd7
QW
3643 for (i = 0; i < ret; i++) {
3644 if (!gang[i])
3645 continue;
c146afad 3646 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3647 err = btrfs_orphan_cleanup(gang[i]);
3648 if (err)
65d33fd7
QW
3649 break;
3650 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3651 }
3652 root_objectid++;
3653 }
65d33fd7
QW
3654
3655 /* release the uncleaned roots due to error */
3656 for (; i < ret; i++) {
3657 if (gang[i])
3658 btrfs_put_fs_root(gang[i]);
3659 }
3660 return err;
c146afad 3661}
a2135011 3662
c146afad
YZ
3663int btrfs_commit_super(struct btrfs_root *root)
3664{
3665 struct btrfs_trans_handle *trans;
a74a4b97 3666
c146afad 3667 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3668 btrfs_run_delayed_iputs(root);
c146afad 3669 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3670 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3671
3672 /* wait until ongoing cleanup work done */
3673 down_write(&root->fs_info->cleanup_work_sem);
3674 up_write(&root->fs_info->cleanup_work_sem);
3675
7a7eaa40 3676 trans = btrfs_join_transaction(root);
3612b495
TI
3677 if (IS_ERR(trans))
3678 return PTR_ERR(trans);
d52c1bcc 3679 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3680}
3681
3abdbd78 3682void close_ctree(struct btrfs_root *root)
c146afad
YZ
3683{
3684 struct btrfs_fs_info *fs_info = root->fs_info;
3685 int ret;
3686
3687 fs_info->closing = 1;
3688 smp_mb();
3689
803b2f54
SB
3690 /* wait for the uuid_scan task to finish */
3691 down(&fs_info->uuid_tree_rescan_sem);
3692 /* avoid complains from lockdep et al., set sem back to initial state */
3693 up(&fs_info->uuid_tree_rescan_sem);
3694
837d5b6e 3695 /* pause restriper - we want to resume on mount */
aa1b8cd4 3696 btrfs_pause_balance(fs_info);
837d5b6e 3697
8dabb742
SB
3698 btrfs_dev_replace_suspend_for_unmount(fs_info);
3699
aa1b8cd4 3700 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3701
3702 /* wait for any defraggers to finish */
3703 wait_event(fs_info->transaction_wait,
3704 (atomic_read(&fs_info->defrag_running) == 0));
3705
3706 /* clear out the rbtree of defraggable inodes */
26176e7c 3707 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3708
21c7e756
MX
3709 cancel_work_sync(&fs_info->async_reclaim_work);
3710
c146afad 3711 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3712 ret = btrfs_commit_super(root);
3713 if (ret)
04892340 3714 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3715 }
3716
87533c47 3717 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3718 btrfs_error_commit_super(root);
0f7d52f4 3719
e3029d9f
AV
3720 kthread_stop(fs_info->transaction_kthread);
3721 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3722
f25784b3
YZ
3723 fs_info->closing = 2;
3724 smp_mb();
3725
04892340 3726 btrfs_free_qgroup_config(fs_info);
bcef60f2 3727
963d678b 3728 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3729 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3730 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3731 }
bcc63abb 3732
5ac1d209
JM
3733 btrfs_sysfs_remove_one(fs_info);
3734
faa2dbf0 3735 btrfs_free_fs_roots(fs_info);
d10c5f31 3736
1a4319cc
LB
3737 btrfs_put_block_group_cache(fs_info);
3738
2b1360da
JB
3739 btrfs_free_block_groups(fs_info);
3740
de348ee0
WS
3741 /*
3742 * we must make sure there is not any read request to
3743 * submit after we stopping all workers.
3744 */
3745 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3746 btrfs_stop_all_workers(fs_info);
3747
47ab2a6c 3748 fs_info->open = 0;
13e6c37b 3749 free_root_pointers(fs_info, 1);
9ad6b7bc 3750
13e6c37b 3751 iput(fs_info->btree_inode);
d6bfde87 3752
21adbd5c
SB
3753#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3754 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3755 btrfsic_unmount(root, fs_info->fs_devices);
3756#endif
3757
dfe25020 3758 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3759 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3760
e2d84521 3761 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3762 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3763 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3764 bdi_destroy(&fs_info->bdi);
76dda93c 3765 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3766
53b381b3
DW
3767 btrfs_free_stripe_hash_table(fs_info);
3768
1cb048f5
FDBM
3769 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3770 root->orphan_block_rsv = NULL;
04216820
FM
3771
3772 lock_chunks(root);
3773 while (!list_empty(&fs_info->pinned_chunks)) {
3774 struct extent_map *em;
3775
3776 em = list_first_entry(&fs_info->pinned_chunks,
3777 struct extent_map, list);
3778 list_del_init(&em->list);
3779 free_extent_map(em);
3780 }
3781 unlock_chunks(root);
eb60ceac
CM
3782}
3783
b9fab919
CM
3784int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3785 int atomic)
5f39d397 3786{
1259ab75 3787 int ret;
727011e0 3788 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3789
0b32f4bb 3790 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3791 if (!ret)
3792 return ret;
3793
3794 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3795 parent_transid, atomic);
3796 if (ret == -EAGAIN)
3797 return ret;
1259ab75 3798 return !ret;
5f39d397
CM
3799}
3800
3801int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3802{
0b32f4bb 3803 return set_extent_buffer_uptodate(buf);
5f39d397 3804}
6702ed49 3805
5f39d397
CM
3806void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3807{
06ea65a3 3808 struct btrfs_root *root;
5f39d397 3809 u64 transid = btrfs_header_generation(buf);
b9473439 3810 int was_dirty;
b4ce94de 3811
06ea65a3
JB
3812#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3813 /*
3814 * This is a fast path so only do this check if we have sanity tests
3815 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3816 * outside of the sanity tests.
3817 */
3818 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3819 return;
3820#endif
3821 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3822 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3823 if (transid != root->fs_info->generation)
3824 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3825 "found %llu running %llu\n",
c1c9ff7c 3826 buf->start, transid, root->fs_info->generation);
0b32f4bb 3827 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3828 if (!was_dirty)
3829 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3830 buf->len,
3831 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3832#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3833 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3834 btrfs_print_leaf(root, buf);
3835 ASSERT(0);
3836 }
3837#endif
eb60ceac
CM
3838}
3839
b53d3f5d
LB
3840static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3841 int flush_delayed)
16cdcec7
MX
3842{
3843 /*
3844 * looks as though older kernels can get into trouble with
3845 * this code, they end up stuck in balance_dirty_pages forever
3846 */
e2d84521 3847 int ret;
16cdcec7
MX
3848
3849 if (current->flags & PF_MEMALLOC)
3850 return;
3851
b53d3f5d
LB
3852 if (flush_delayed)
3853 btrfs_balance_delayed_items(root);
16cdcec7 3854
e2d84521
MX
3855 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3856 BTRFS_DIRTY_METADATA_THRESH);
3857 if (ret > 0) {
d0e1d66b
NJ
3858 balance_dirty_pages_ratelimited(
3859 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3860 }
3861 return;
3862}
3863
b53d3f5d 3864void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3865{
b53d3f5d
LB
3866 __btrfs_btree_balance_dirty(root, 1);
3867}
585ad2c3 3868
b53d3f5d
LB
3869void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3870{
3871 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3872}
6b80053d 3873
ca7a79ad 3874int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3875{
727011e0 3876 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3877 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3878}
0da5468f 3879
fcd1f065 3880static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3881 int read_only)
3882{
c926093e
DS
3883 struct btrfs_super_block *sb = fs_info->super_copy;
3884 int ret = 0;
3885
21e7626b
DS
3886 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3887 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3888 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3889 ret = -EINVAL;
3890 }
21e7626b
DS
3891 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3892 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3893 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3894 ret = -EINVAL;
3895 }
21e7626b
DS
3896 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3897 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3898 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3899 ret = -EINVAL;
3900 }
3901
1104a885 3902 /*
c926093e
DS
3903 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3904 * items yet, they'll be verified later. Issue just a warning.
1104a885 3905 */
21e7626b 3906 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 3907 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 3908 btrfs_super_root(sb));
21e7626b 3909 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
3910 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3911 btrfs_super_chunk_root(sb));
21e7626b 3912 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 3913 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 3914 btrfs_super_log_root(sb));
c926093e 3915
75d6ad38
DS
3916 /*
3917 * Check the lower bound, the alignment and other constraints are
3918 * checked later.
3919 */
3920 if (btrfs_super_nodesize(sb) < 4096) {
3921 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3922 btrfs_super_nodesize(sb));
3923 ret = -EINVAL;
3924 }
3925 if (btrfs_super_sectorsize(sb) < 4096) {
3926 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3927 btrfs_super_sectorsize(sb));
3928 ret = -EINVAL;
3929 }
3930
c926093e
DS
3931 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3932 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3933 fs_info->fsid, sb->dev_item.fsid);
3934 ret = -EINVAL;
3935 }
3936
3937 /*
3938 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3939 * done later
3940 */
21e7626b 3941 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 3942 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 3943 btrfs_super_num_devices(sb));
75d6ad38
DS
3944 if (btrfs_super_num_devices(sb) == 0) {
3945 printk(KERN_ERR "BTRFS: number of devices is 0\n");
3946 ret = -EINVAL;
3947 }
c926093e 3948
21e7626b 3949 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 3950 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 3951 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
3952 ret = -EINVAL;
3953 }
3954
ce7fca5f
DS
3955 /*
3956 * Obvious sys_chunk_array corruptions, it must hold at least one key
3957 * and one chunk
3958 */
3959 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3960 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3961 btrfs_super_sys_array_size(sb),
3962 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3963 ret = -EINVAL;
3964 }
3965 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3966 + sizeof(struct btrfs_chunk)) {
d2207129 3967 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
3968 btrfs_super_sys_array_size(sb),
3969 sizeof(struct btrfs_disk_key)
3970 + sizeof(struct btrfs_chunk));
3971 ret = -EINVAL;
3972 }
3973
c926093e
DS
3974 /*
3975 * The generation is a global counter, we'll trust it more than the others
3976 * but it's still possible that it's the one that's wrong.
3977 */
21e7626b 3978 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
3979 printk(KERN_WARNING
3980 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
3981 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3982 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3983 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
3984 printk(KERN_WARNING
3985 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 3986 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
3987
3988 return ret;
acce952b 3989}
3990
48a3b636 3991static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3992{
acce952b 3993 mutex_lock(&root->fs_info->cleaner_mutex);
3994 btrfs_run_delayed_iputs(root);
3995 mutex_unlock(&root->fs_info->cleaner_mutex);
3996
3997 down_write(&root->fs_info->cleanup_work_sem);
3998 up_write(&root->fs_info->cleanup_work_sem);
3999
4000 /* cleanup FS via transaction */
4001 btrfs_cleanup_transaction(root);
acce952b 4002}
4003
143bede5 4004static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4005{
acce952b 4006 struct btrfs_ordered_extent *ordered;
acce952b 4007
199c2a9c 4008 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4009 /*
4010 * This will just short circuit the ordered completion stuff which will
4011 * make sure the ordered extent gets properly cleaned up.
4012 */
199c2a9c 4013 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4014 root_extent_list)
4015 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4016 spin_unlock(&root->ordered_extent_lock);
4017}
4018
4019static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4020{
4021 struct btrfs_root *root;
4022 struct list_head splice;
4023
4024 INIT_LIST_HEAD(&splice);
4025
4026 spin_lock(&fs_info->ordered_root_lock);
4027 list_splice_init(&fs_info->ordered_roots, &splice);
4028 while (!list_empty(&splice)) {
4029 root = list_first_entry(&splice, struct btrfs_root,
4030 ordered_root);
1de2cfde
JB
4031 list_move_tail(&root->ordered_root,
4032 &fs_info->ordered_roots);
199c2a9c 4033
2a85d9ca 4034 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4035 btrfs_destroy_ordered_extents(root);
4036
2a85d9ca
LB
4037 cond_resched();
4038 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4039 }
4040 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4041}
4042
35a3621b
SB
4043static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4044 struct btrfs_root *root)
acce952b 4045{
4046 struct rb_node *node;
4047 struct btrfs_delayed_ref_root *delayed_refs;
4048 struct btrfs_delayed_ref_node *ref;
4049 int ret = 0;
4050
4051 delayed_refs = &trans->delayed_refs;
4052
4053 spin_lock(&delayed_refs->lock);
d7df2c79 4054 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4055 spin_unlock(&delayed_refs->lock);
efe120a0 4056 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4057 return ret;
4058 }
4059
d7df2c79
JB
4060 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4061 struct btrfs_delayed_ref_head *head;
e78417d1 4062 bool pin_bytes = false;
acce952b 4063
d7df2c79
JB
4064 head = rb_entry(node, struct btrfs_delayed_ref_head,
4065 href_node);
4066 if (!mutex_trylock(&head->mutex)) {
4067 atomic_inc(&head->node.refs);
4068 spin_unlock(&delayed_refs->lock);
eb12db69 4069
d7df2c79 4070 mutex_lock(&head->mutex);
e78417d1 4071 mutex_unlock(&head->mutex);
d7df2c79
JB
4072 btrfs_put_delayed_ref(&head->node);
4073 spin_lock(&delayed_refs->lock);
4074 continue;
4075 }
4076 spin_lock(&head->lock);
4077 while ((node = rb_first(&head->ref_root)) != NULL) {
4078 ref = rb_entry(node, struct btrfs_delayed_ref_node,
4079 rb_node);
4080 ref->in_tree = 0;
4081 rb_erase(&ref->rb_node, &head->ref_root);
4082 atomic_dec(&delayed_refs->num_entries);
4083 btrfs_put_delayed_ref(ref);
e78417d1 4084 }
d7df2c79
JB
4085 if (head->must_insert_reserved)
4086 pin_bytes = true;
4087 btrfs_free_delayed_extent_op(head->extent_op);
4088 delayed_refs->num_heads--;
4089 if (head->processing == 0)
4090 delayed_refs->num_heads_ready--;
4091 atomic_dec(&delayed_refs->num_entries);
4092 head->node.in_tree = 0;
4093 rb_erase(&head->href_node, &delayed_refs->href_root);
4094 spin_unlock(&head->lock);
4095 spin_unlock(&delayed_refs->lock);
4096 mutex_unlock(&head->mutex);
acce952b 4097
d7df2c79
JB
4098 if (pin_bytes)
4099 btrfs_pin_extent(root, head->node.bytenr,
4100 head->node.num_bytes, 1);
4101 btrfs_put_delayed_ref(&head->node);
acce952b 4102 cond_resched();
4103 spin_lock(&delayed_refs->lock);
4104 }
4105
4106 spin_unlock(&delayed_refs->lock);
4107
4108 return ret;
4109}
4110
143bede5 4111static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4112{
4113 struct btrfs_inode *btrfs_inode;
4114 struct list_head splice;
4115
4116 INIT_LIST_HEAD(&splice);
4117
eb73c1b7
MX
4118 spin_lock(&root->delalloc_lock);
4119 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4120
4121 while (!list_empty(&splice)) {
eb73c1b7
MX
4122 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4123 delalloc_inodes);
acce952b 4124
4125 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4126 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4127 &btrfs_inode->runtime_flags);
eb73c1b7 4128 spin_unlock(&root->delalloc_lock);
acce952b 4129
4130 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4131
eb73c1b7 4132 spin_lock(&root->delalloc_lock);
acce952b 4133 }
4134
eb73c1b7
MX
4135 spin_unlock(&root->delalloc_lock);
4136}
4137
4138static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4139{
4140 struct btrfs_root *root;
4141 struct list_head splice;
4142
4143 INIT_LIST_HEAD(&splice);
4144
4145 spin_lock(&fs_info->delalloc_root_lock);
4146 list_splice_init(&fs_info->delalloc_roots, &splice);
4147 while (!list_empty(&splice)) {
4148 root = list_first_entry(&splice, struct btrfs_root,
4149 delalloc_root);
4150 list_del_init(&root->delalloc_root);
4151 root = btrfs_grab_fs_root(root);
4152 BUG_ON(!root);
4153 spin_unlock(&fs_info->delalloc_root_lock);
4154
4155 btrfs_destroy_delalloc_inodes(root);
4156 btrfs_put_fs_root(root);
4157
4158 spin_lock(&fs_info->delalloc_root_lock);
4159 }
4160 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4161}
4162
4163static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4164 struct extent_io_tree *dirty_pages,
4165 int mark)
4166{
4167 int ret;
acce952b 4168 struct extent_buffer *eb;
4169 u64 start = 0;
4170 u64 end;
acce952b 4171
4172 while (1) {
4173 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4174 mark, NULL);
acce952b 4175 if (ret)
4176 break;
4177
4178 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4179 while (start <= end) {
01d58472 4180 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4181 start += root->nodesize;
fd8b2b61 4182 if (!eb)
acce952b 4183 continue;
fd8b2b61 4184 wait_on_extent_buffer_writeback(eb);
acce952b 4185
fd8b2b61
JB
4186 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4187 &eb->bflags))
4188 clear_extent_buffer_dirty(eb);
4189 free_extent_buffer_stale(eb);
acce952b 4190 }
4191 }
4192
4193 return ret;
4194}
4195
4196static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4197 struct extent_io_tree *pinned_extents)
4198{
4199 struct extent_io_tree *unpin;
4200 u64 start;
4201 u64 end;
4202 int ret;
ed0eaa14 4203 bool loop = true;
acce952b 4204
4205 unpin = pinned_extents;
ed0eaa14 4206again:
acce952b 4207 while (1) {
4208 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4209 EXTENT_DIRTY, NULL);
acce952b 4210 if (ret)
4211 break;
4212
acce952b 4213 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4214 btrfs_error_unpin_extent_range(root, start, end);
4215 cond_resched();
4216 }
4217
ed0eaa14
LB
4218 if (loop) {
4219 if (unpin == &root->fs_info->freed_extents[0])
4220 unpin = &root->fs_info->freed_extents[1];
4221 else
4222 unpin = &root->fs_info->freed_extents[0];
4223 loop = false;
4224 goto again;
4225 }
4226
acce952b 4227 return 0;
4228}
4229
50d9aa99
JB
4230static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4231 struct btrfs_fs_info *fs_info)
4232{
4233 struct btrfs_ordered_extent *ordered;
4234
4235 spin_lock(&fs_info->trans_lock);
4236 while (!list_empty(&cur_trans->pending_ordered)) {
4237 ordered = list_first_entry(&cur_trans->pending_ordered,
4238 struct btrfs_ordered_extent,
4239 trans_list);
4240 list_del_init(&ordered->trans_list);
4241 spin_unlock(&fs_info->trans_lock);
4242
4243 btrfs_put_ordered_extent(ordered);
4244 spin_lock(&fs_info->trans_lock);
4245 }
4246 spin_unlock(&fs_info->trans_lock);
4247}
4248
49b25e05
JM
4249void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4250 struct btrfs_root *root)
4251{
4252 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4253
4a9d8bde 4254 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4255 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4256
4a9d8bde 4257 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4258 wake_up(&root->fs_info->transaction_wait);
49b25e05 4259
50d9aa99 4260 btrfs_free_pending_ordered(cur_trans, root->fs_info);
67cde344
MX
4261 btrfs_destroy_delayed_inodes(root);
4262 btrfs_assert_delayed_root_empty(root);
49b25e05 4263
49b25e05
JM
4264 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4265 EXTENT_DIRTY);
6e841e32
LB
4266 btrfs_destroy_pinned_extent(root,
4267 root->fs_info->pinned_extents);
49b25e05 4268
4a9d8bde
MX
4269 cur_trans->state =TRANS_STATE_COMPLETED;
4270 wake_up(&cur_trans->commit_wait);
4271
49b25e05
JM
4272 /*
4273 memset(cur_trans, 0, sizeof(*cur_trans));
4274 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4275 */
4276}
4277
48a3b636 4278static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4279{
4280 struct btrfs_transaction *t;
acce952b 4281
acce952b 4282 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4283
a4abeea4 4284 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4285 while (!list_empty(&root->fs_info->trans_list)) {
4286 t = list_first_entry(&root->fs_info->trans_list,
4287 struct btrfs_transaction, list);
4288 if (t->state >= TRANS_STATE_COMMIT_START) {
4289 atomic_inc(&t->use_count);
4290 spin_unlock(&root->fs_info->trans_lock);
4291 btrfs_wait_for_commit(root, t->transid);
4292 btrfs_put_transaction(t);
4293 spin_lock(&root->fs_info->trans_lock);
4294 continue;
4295 }
4296 if (t == root->fs_info->running_transaction) {
4297 t->state = TRANS_STATE_COMMIT_DOING;
4298 spin_unlock(&root->fs_info->trans_lock);
4299 /*
4300 * We wait for 0 num_writers since we don't hold a trans
4301 * handle open currently for this transaction.
4302 */
4303 wait_event(t->writer_wait,
4304 atomic_read(&t->num_writers) == 0);
4305 } else {
4306 spin_unlock(&root->fs_info->trans_lock);
4307 }
4308 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4309
724e2315
JB
4310 spin_lock(&root->fs_info->trans_lock);
4311 if (t == root->fs_info->running_transaction)
4312 root->fs_info->running_transaction = NULL;
acce952b 4313 list_del_init(&t->list);
724e2315 4314 spin_unlock(&root->fs_info->trans_lock);
acce952b 4315
724e2315
JB
4316 btrfs_put_transaction(t);
4317 trace_btrfs_transaction_commit(root);
4318 spin_lock(&root->fs_info->trans_lock);
4319 }
4320 spin_unlock(&root->fs_info->trans_lock);
4321 btrfs_destroy_all_ordered_extents(root->fs_info);
4322 btrfs_destroy_delayed_inodes(root);
4323 btrfs_assert_delayed_root_empty(root);
4324 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4325 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4326 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4327
4328 return 0;
4329}
4330
e8c9f186 4331static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4332 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4333 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4334 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4335 /* note we're sharing with inode.c for the merge bio hook */
4336 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4337};