Btrfs: fix em leak in find_first_block_group
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
48a3b636
ES
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
127 int rw;
128 int mirror_num;
c8b97818 129 unsigned long bio_flags;
eaf25d93
CM
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
8b712842 135 struct btrfs_work work;
79787eaa 136 int error;
44b8bd7e
CM
137};
138
85d4e461
CM
139/*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
4008c04a 149 *
85d4e461
CM
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 153 *
85d4e461
CM
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 157 *
85d4e461
CM
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
4008c04a
CM
161 */
162#ifdef CONFIG_DEBUG_LOCK_ALLOC
163# if BTRFS_MAX_LEVEL != 8
164# error
165# endif
85d4e461
CM
166
167static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172} btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 185 { .id = 0, .name_stem = "tree" },
4008c04a 186};
85d4e461
CM
187
188void __init btrfs_init_lockdep(void)
189{
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200}
201
202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204{
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216}
217
4008c04a
CM
218#endif
219
d352ac68
CM
220/*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
b2950863 224static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 225 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 226 int create)
7eccb903 227{
5f39d397
CM
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
234 if (em) {
235 em->bdev =
236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 237 read_unlock(&em_tree->lock);
5f39d397 238 goto out;
a061fc8d 239 }
890871be 240 read_unlock(&em_tree->lock);
7b13b7b1 241
172ddd60 242 em = alloc_extent_map();
5f39d397
CM
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
0afbaf8c 248 em->len = (u64)-1;
c8b97818 249 em->block_len = (u64)-1;
5f39d397 250 em->block_start = 0;
a061fc8d 251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 252
890871be 253 write_lock(&em_tree->lock);
09a2a8f9 254 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
255 if (ret == -EEXIST) {
256 free_extent_map(em);
7b13b7b1 257 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 258 if (!em)
0433f20d 259 em = ERR_PTR(-EIO);
5f39d397 260 } else if (ret) {
7b13b7b1 261 free_extent_map(em);
0433f20d 262 em = ERR_PTR(ret);
5f39d397 263 }
890871be 264 write_unlock(&em_tree->lock);
7b13b7b1 265
5f39d397
CM
266out:
267 return em;
7eccb903
CM
268}
269
b0496686 270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 271{
0b947aff 272 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
273}
274
275void btrfs_csum_final(u32 crc, char *result)
276{
7e75bf3f 277 put_unaligned_le32(~crc, result);
19c00ddc
CM
278}
279
d352ac68
CM
280/*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
01d58472
DD
284static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
19c00ddc
CM
286 int verify)
287{
01d58472 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 289 char *result = NULL;
19c00ddc
CM
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
607d432d 298 unsigned long inline_result;
19c00ddc
CM
299
300 len = buf->len - offset;
d397712b 301 while (len > 0) {
19c00ddc 302 err = map_private_extent_buffer(buf, offset, 32,
a6591715 303 &kaddr, &map_start, &map_len);
d397712b 304 if (err)
8bd98f0e 305 return err;
19c00ddc 306 cur_len = min(len, map_len - (offset - map_start));
b0496686 307 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
19c00ddc 311 }
607d432d 312 if (csum_size > sizeof(inline_result)) {
31e818fe 313 result = kzalloc(csum_size, GFP_NOFS);
607d432d 314 if (!result)
8bd98f0e 315 return -ENOMEM;
607d432d
JB
316 } else {
317 result = (char *)&inline_result;
318 }
319
19c00ddc
CM
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
607d432d 323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
324 u32 val;
325 u32 found = 0;
607d432d 326 memcpy(&found, result, csum_size);
e4204ded 327
607d432d 328 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
329 btrfs_warn_rl(fs_info,
330 "%s checksum verify failed on %llu wanted %X found %X "
331 "level %d",
01d58472 332 fs_info->sb->s_id, buf->start,
efe120a0 333 val, found, btrfs_header_level(buf));
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
8bd98f0e 336 return -EUCLEAN;
19c00ddc
CM
337 }
338 } else {
607d432d 339 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 340 }
607d432d
JB
341 if (result != (char *)&inline_result)
342 kfree(result);
19c00ddc
CM
343 return 0;
344}
345
d352ac68
CM
346/*
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
351 */
1259ab75 352static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
1259ab75 355{
2ac55d41 356 struct extent_state *cached_state = NULL;
1259ab75 357 int ret;
2755a0de 358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
359
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
362
b9fab919
CM
363 if (atomic)
364 return -EAGAIN;
365
a26e8c9f
JB
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 }
370
2ac55d41 371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 372 &cached_state);
0b32f4bb 373 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
377 }
94647322
DS
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
29549aec 381 parent_transid, btrfs_header_generation(eb));
1259ab75 382 ret = 1;
a26e8c9f
JB
383
384 /*
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
01327610 387 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
391 */
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
33958dc6 394out:
2ac55d41
JB
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
472b909f
JB
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
1259ab75 399 return ret;
1259ab75
CM
400}
401
1104a885
DS
402/*
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
405 */
406static int btrfs_check_super_csum(char *raw_disk_sb)
407{
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 421 * is filled with zeros and is included in the checksum.
1104a885
DS
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438}
439
d352ac68
CM
440/*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
f188591e
CM
444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 struct extent_buffer *eb,
ca7a79ad 446 u64 start, u64 parent_transid)
f188591e
CM
447{
448 struct extent_io_tree *io_tree;
ea466794 449 int failed = 0;
f188591e
CM
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
ea466794 453 int failed_mirror = 0;
f188591e 454
a826d6dc 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
bb82ab88
AJ
458 ret = read_extent_buffer_pages(io_tree, eb, start,
459 WAIT_COMPLETE,
f188591e 460 btree_get_extent, mirror_num);
256dd1bb
SB
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
b9fab919 463 parent_transid, 0))
256dd1bb
SB
464 break;
465 else
466 ret = -EIO;
467 }
d397712b 468
a826d6dc
JB
469 /*
470 * This buffer's crc is fine, but its contents are corrupted, so
471 * there is no reason to read the other copies, they won't be
472 * any less wrong.
473 */
474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
475 break;
476
5d964051 477 num_copies = btrfs_num_copies(root->fs_info,
f188591e 478 eb->start, eb->len);
4235298e 479 if (num_copies == 1)
ea466794 480 break;
4235298e 481
5cf1ab56
JB
482 if (!failed_mirror) {
483 failed = 1;
484 failed_mirror = eb->read_mirror;
485 }
486
f188591e 487 mirror_num++;
ea466794
JB
488 if (mirror_num == failed_mirror)
489 mirror_num++;
490
4235298e 491 if (mirror_num > num_copies)
ea466794 492 break;
f188591e 493 }
ea466794 494
c0901581 495 if (failed && !ret && failed_mirror)
ea466794
JB
496 repair_eb_io_failure(root, eb, failed_mirror);
497
498 return ret;
f188591e 499}
19c00ddc 500
d352ac68 501/*
d397712b
CM
502 * checksum a dirty tree block before IO. This has extra checks to make sure
503 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 504 */
d397712b 505
01d58472 506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 507{
4eee4fa4 508 u64 start = page_offset(page);
19c00ddc 509 u64 found_start;
19c00ddc 510 struct extent_buffer *eb;
f188591e 511
4f2de97a
JB
512 eb = (struct extent_buffer *)page->private;
513 if (page != eb->pages[0])
514 return 0;
0f805531 515
19c00ddc 516 found_start = btrfs_header_bytenr(eb);
0f805531
AL
517 /*
518 * Please do not consolidate these warnings into a single if.
519 * It is useful to know what went wrong.
520 */
521 if (WARN_ON(found_start != start))
522 return -EUCLEAN;
523 if (WARN_ON(!PageUptodate(page)))
524 return -EUCLEAN;
525
526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
8bd98f0e 529 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
530}
531
01d58472 532static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
533 struct extent_buffer *eb)
534{
01d58472 535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
536 u8 fsid[BTRFS_UUID_SIZE];
537 int ret = 1;
538
0a4e5586 539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
540 while (fs_devices) {
541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 ret = 0;
543 break;
544 }
545 fs_devices = fs_devices->seed;
546 }
547 return ret;
548}
549
a826d6dc 550#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
552 "root=%llu, slot=%d", reason, \
c1c9ff7c 553 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
554
555static noinline int check_leaf(struct btrfs_root *root,
556 struct extent_buffer *leaf)
557{
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
563 if (nritems == 0)
564 return 0;
565
566 /* Check the 0 item */
567 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568 BTRFS_LEAF_DATA_SIZE(root)) {
569 CORRUPT("invalid item offset size pair", leaf, root, 0);
570 return -EIO;
571 }
572
573 /*
574 * Check to make sure each items keys are in the correct order and their
575 * offsets make sense. We only have to loop through nritems-1 because
576 * we check the current slot against the next slot, which verifies the
577 * next slot's offset+size makes sense and that the current's slot
578 * offset is correct.
579 */
580 for (slot = 0; slot < nritems - 1; slot++) {
581 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584 /* Make sure the keys are in the right order */
585 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586 CORRUPT("bad key order", leaf, root, slot);
587 return -EIO;
588 }
589
590 /*
591 * Make sure the offset and ends are right, remember that the
592 * item data starts at the end of the leaf and grows towards the
593 * front.
594 */
595 if (btrfs_item_offset_nr(leaf, slot) !=
596 btrfs_item_end_nr(leaf, slot + 1)) {
597 CORRUPT("slot offset bad", leaf, root, slot);
598 return -EIO;
599 }
600
601 /*
602 * Check to make sure that we don't point outside of the leaf,
01327610 603 * just in case all the items are consistent to each other, but
a826d6dc
JB
604 * all point outside of the leaf.
605 */
606 if (btrfs_item_end_nr(leaf, slot) >
607 BTRFS_LEAF_DATA_SIZE(root)) {
608 CORRUPT("slot end outside of leaf", leaf, root, slot);
609 return -EIO;
610 }
611 }
612
613 return 0;
614}
615
facc8a22
MX
616static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617 u64 phy_offset, struct page *page,
618 u64 start, u64 end, int mirror)
ce9adaa5 619{
ce9adaa5
CM
620 u64 found_start;
621 int found_level;
ce9adaa5
CM
622 struct extent_buffer *eb;
623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 624 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 625 int ret = 0;
727011e0 626 int reads_done;
ce9adaa5 627
ce9adaa5
CM
628 if (!page->private)
629 goto out;
d397712b 630
4f2de97a 631 eb = (struct extent_buffer *)page->private;
d397712b 632
0b32f4bb
JB
633 /* the pending IO might have been the only thing that kept this buffer
634 * in memory. Make sure we have a ref for all this other checks
635 */
636 extent_buffer_get(eb);
637
638 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
639 if (!reads_done)
640 goto err;
f188591e 641
5cf1ab56 642 eb->read_mirror = mirror;
656f30db 643 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
644 ret = -EIO;
645 goto err;
646 }
647
ce9adaa5 648 found_start = btrfs_header_bytenr(eb);
727011e0 649 if (found_start != eb->start) {
02873e43
ZL
650 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651 found_start, eb->start);
f188591e 652 ret = -EIO;
ce9adaa5
CM
653 goto err;
654 }
02873e43
ZL
655 if (check_tree_block_fsid(fs_info, eb)) {
656 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657 eb->start);
1259ab75
CM
658 ret = -EIO;
659 goto err;
660 }
ce9adaa5 661 found_level = btrfs_header_level(eb);
1c24c3ce 662 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
663 btrfs_err(fs_info, "bad tree block level %d",
664 (int)btrfs_header_level(eb));
1c24c3ce
JB
665 ret = -EIO;
666 goto err;
667 }
ce9adaa5 668
85d4e461
CM
669 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670 eb, found_level);
4008c04a 671
02873e43 672 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 673 if (ret)
a826d6dc 674 goto err;
a826d6dc
JB
675
676 /*
677 * If this is a leaf block and it is corrupt, set the corrupt bit so
678 * that we don't try and read the other copies of this block, just
679 * return -EIO.
680 */
681 if (found_level == 0 && check_leaf(root, eb)) {
682 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683 ret = -EIO;
684 }
ce9adaa5 685
0b32f4bb
JB
686 if (!ret)
687 set_extent_buffer_uptodate(eb);
ce9adaa5 688err:
79fb65a1
JB
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 691 btree_readahead_hook(fs_info, eb, eb->start, ret);
4bb31e92 692
53b381b3
DW
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
0b32f4bb 700 clear_extent_buffer_uptodate(eb);
53b381b3 701 }
0b32f4bb 702 free_extent_buffer(eb);
ce9adaa5 703out:
f188591e 704 return ret;
ce9adaa5
CM
705}
706
ea466794 707static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 708{
4bb31e92 709 struct extent_buffer *eb;
4bb31e92 710
4f2de97a 711 eb = (struct extent_buffer *)page->private;
656f30db 712 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 713 eb->read_mirror = failed_mirror;
53b381b3 714 atomic_dec(&eb->io_pages);
ea466794 715 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 716 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
4bb31e92
AJ
717 return -EIO; /* we fixed nothing */
718}
719
4246a0b6 720static void end_workqueue_bio(struct bio *bio)
ce9adaa5 721{
97eb6b69 722 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 723 struct btrfs_fs_info *fs_info;
9e0af237
LB
724 struct btrfs_workqueue *wq;
725 btrfs_work_func_t func;
ce9adaa5 726
ce9adaa5 727 fs_info = end_io_wq->info;
4246a0b6 728 end_io_wq->error = bio->bi_error;
d20f7043 729
7b6d91da 730 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
731 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732 wq = fs_info->endio_meta_write_workers;
733 func = btrfs_endio_meta_write_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735 wq = fs_info->endio_freespace_worker;
736 func = btrfs_freespace_write_helper;
737 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738 wq = fs_info->endio_raid56_workers;
739 func = btrfs_endio_raid56_helper;
740 } else {
741 wq = fs_info->endio_write_workers;
742 func = btrfs_endio_write_helper;
743 }
d20f7043 744 } else {
8b110e39
MX
745 if (unlikely(end_io_wq->metadata ==
746 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747 wq = fs_info->endio_repair_workers;
748 func = btrfs_endio_repair_helper;
749 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
750 wq = fs_info->endio_raid56_workers;
751 func = btrfs_endio_raid56_helper;
752 } else if (end_io_wq->metadata) {
753 wq = fs_info->endio_meta_workers;
754 func = btrfs_endio_meta_helper;
755 } else {
756 wq = fs_info->endio_workers;
757 func = btrfs_endio_helper;
758 }
d20f7043 759 }
9e0af237
LB
760
761 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
763}
764
22c59948 765int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 766 enum btrfs_wq_endio_type metadata)
0b86a832 767{
97eb6b69 768 struct btrfs_end_io_wq *end_io_wq;
8b110e39 769
97eb6b69 770 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
771 if (!end_io_wq)
772 return -ENOMEM;
773
774 end_io_wq->private = bio->bi_private;
775 end_io_wq->end_io = bio->bi_end_io;
22c59948 776 end_io_wq->info = info;
ce9adaa5
CM
777 end_io_wq->error = 0;
778 end_io_wq->bio = bio;
22c59948 779 end_io_wq->metadata = metadata;
ce9adaa5
CM
780
781 bio->bi_private = end_io_wq;
782 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
783 return 0;
784}
785
b64a2851 786unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 787{
4854ddd0 788 unsigned long limit = min_t(unsigned long,
5cdc7ad3 789 info->thread_pool_size,
4854ddd0
CM
790 info->fs_devices->open_devices);
791 return 256 * limit;
792}
0986fe9e 793
4a69a410
CM
794static void run_one_async_start(struct btrfs_work *work)
795{
4a69a410 796 struct async_submit_bio *async;
79787eaa 797 int ret;
4a69a410
CM
798
799 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
800 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801 async->mirror_num, async->bio_flags,
802 async->bio_offset);
803 if (ret)
804 async->error = ret;
4a69a410
CM
805}
806
807static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
808{
809 struct btrfs_fs_info *fs_info;
810 struct async_submit_bio *async;
4854ddd0 811 int limit;
8b712842
CM
812
813 async = container_of(work, struct async_submit_bio, work);
814 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 815
b64a2851 816 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
817 limit = limit * 2 / 3;
818
ee863954
DS
819 /*
820 * atomic_dec_return implies a barrier for waitqueue_active
821 */
66657b31 822 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 823 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
824 wake_up(&fs_info->async_submit_wait);
825
bb7ab3b9 826 /* If an error occurred we just want to clean up the bio and move on */
79787eaa 827 if (async->error) {
4246a0b6
CH
828 async->bio->bi_error = async->error;
829 bio_endio(async->bio);
79787eaa
JM
830 return;
831 }
832
4a69a410 833 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
834 async->mirror_num, async->bio_flags,
835 async->bio_offset);
4a69a410
CM
836}
837
838static void run_one_async_free(struct btrfs_work *work)
839{
840 struct async_submit_bio *async;
841
842 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
843 kfree(async);
844}
845
44b8bd7e
CM
846int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847 int rw, struct bio *bio, int mirror_num,
c8b97818 848 unsigned long bio_flags,
eaf25d93 849 u64 bio_offset,
4a69a410
CM
850 extent_submit_bio_hook_t *submit_bio_start,
851 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
852{
853 struct async_submit_bio *async;
854
855 async = kmalloc(sizeof(*async), GFP_NOFS);
856 if (!async)
857 return -ENOMEM;
858
859 async->inode = inode;
860 async->rw = rw;
861 async->bio = bio;
862 async->mirror_num = mirror_num;
4a69a410
CM
863 async->submit_bio_start = submit_bio_start;
864 async->submit_bio_done = submit_bio_done;
865
9e0af237 866 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 867 run_one_async_done, run_one_async_free);
4a69a410 868
c8b97818 869 async->bio_flags = bio_flags;
eaf25d93 870 async->bio_offset = bio_offset;
8c8bee1d 871
79787eaa
JM
872 async->error = 0;
873
cb03c743 874 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 875
7b6d91da 876 if (rw & REQ_SYNC)
5cdc7ad3 877 btrfs_set_work_high_priority(&async->work);
d313d7a3 878
5cdc7ad3 879 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 880
d397712b 881 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
882 atomic_read(&fs_info->nr_async_submits)) {
883 wait_event(fs_info->async_submit_wait,
884 (atomic_read(&fs_info->nr_async_submits) == 0));
885 }
886
44b8bd7e
CM
887 return 0;
888}
889
ce3ed71a
CM
890static int btree_csum_one_bio(struct bio *bio)
891{
2c30c71b 892 struct bio_vec *bvec;
ce3ed71a 893 struct btrfs_root *root;
2c30c71b 894 int i, ret = 0;
ce3ed71a 895
2c30c71b 896 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 897 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 898 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
899 if (ret)
900 break;
ce3ed71a 901 }
2c30c71b 902
79787eaa 903 return ret;
ce3ed71a
CM
904}
905
4a69a410
CM
906static int __btree_submit_bio_start(struct inode *inode, int rw,
907 struct bio *bio, int mirror_num,
eaf25d93
CM
908 unsigned long bio_flags,
909 u64 bio_offset)
22c59948 910{
8b712842
CM
911 /*
912 * when we're called for a write, we're already in the async
5443be45 913 * submission context. Just jump into btrfs_map_bio
8b712842 914 */
79787eaa 915 return btree_csum_one_bio(bio);
4a69a410 916}
22c59948 917
4a69a410 918static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset)
4a69a410 921{
61891923
SB
922 int ret;
923
8b712842 924 /*
4a69a410
CM
925 * when we're called for a write, we're already in the async
926 * submission context. Just jump into btrfs_map_bio
8b712842 927 */
61891923 928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
929 if (ret) {
930 bio->bi_error = ret;
931 bio_endio(bio);
932 }
61891923 933 return ret;
0b86a832
CM
934}
935
de0022b9
JB
936static int check_async_write(struct inode *inode, unsigned long bio_flags)
937{
938 if (bio_flags & EXTENT_BIO_TREE_LOG)
939 return 0;
940#ifdef CONFIG_X86
bc696ca0 941 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
942 return 0;
943#endif
944 return 1;
945}
946
44b8bd7e 947static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
948 int mirror_num, unsigned long bio_flags,
949 u64 bio_offset)
44b8bd7e 950{
de0022b9 951 int async = check_async_write(inode, bio_flags);
cad321ad
CM
952 int ret;
953
7b6d91da 954 if (!(rw & REQ_WRITE)) {
4a69a410
CM
955 /*
956 * called for a read, do the setup so that checksum validation
957 * can happen in the async kernel threads
958 */
f3f266ab 959 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 960 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 961 if (ret)
61891923
SB
962 goto out_w_error;
963 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964 mirror_num, 0);
de0022b9
JB
965 } else if (!async) {
966 ret = btree_csum_one_bio(bio);
967 if (ret)
61891923
SB
968 goto out_w_error;
969 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970 mirror_num, 0);
971 } else {
972 /*
973 * kthread helpers are used to submit writes so that
974 * checksumming can happen in parallel across all CPUs
975 */
976 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977 inode, rw, bio, mirror_num, 0,
978 bio_offset,
979 __btree_submit_bio_start,
980 __btree_submit_bio_done);
44b8bd7e 981 }
d313d7a3 982
4246a0b6
CH
983 if (ret)
984 goto out_w_error;
985 return 0;
986
61891923 987out_w_error:
4246a0b6
CH
988 bio->bi_error = ret;
989 bio_endio(bio);
61891923 990 return ret;
44b8bd7e
CM
991}
992
3dd1462e 993#ifdef CONFIG_MIGRATION
784b4e29 994static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
995 struct page *newpage, struct page *page,
996 enum migrate_mode mode)
784b4e29
CM
997{
998 /*
999 * we can't safely write a btree page from here,
1000 * we haven't done the locking hook
1001 */
1002 if (PageDirty(page))
1003 return -EAGAIN;
1004 /*
1005 * Buffers may be managed in a filesystem specific way.
1006 * We must have no buffers or drop them.
1007 */
1008 if (page_has_private(page) &&
1009 !try_to_release_page(page, GFP_KERNEL))
1010 return -EAGAIN;
a6bc32b8 1011 return migrate_page(mapping, newpage, page, mode);
784b4e29 1012}
3dd1462e 1013#endif
784b4e29 1014
0da5468f
CM
1015
1016static int btree_writepages(struct address_space *mapping,
1017 struct writeback_control *wbc)
1018{
e2d84521
MX
1019 struct btrfs_fs_info *fs_info;
1020 int ret;
1021
d8d5f3e1 1022 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1023
1024 if (wbc->for_kupdate)
1025 return 0;
1026
e2d84521 1027 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1028 /* this is a bit racy, but that's ok */
e2d84521
MX
1029 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030 BTRFS_DIRTY_METADATA_THRESH);
1031 if (ret < 0)
793955bc 1032 return 0;
793955bc 1033 }
0b32f4bb 1034 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1035}
1036
b2950863 1037static int btree_readpage(struct file *file, struct page *page)
5f39d397 1038{
d1310b2e
CM
1039 struct extent_io_tree *tree;
1040 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1041 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1042}
22b0ebda 1043
70dec807 1044static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1045{
98509cfc 1046 if (PageWriteback(page) || PageDirty(page))
d397712b 1047 return 0;
0c4e538b 1048
f7a52a40 1049 return try_release_extent_buffer(page);
d98237b3
CM
1050}
1051
d47992f8
LC
1052static void btree_invalidatepage(struct page *page, unsigned int offset,
1053 unsigned int length)
d98237b3 1054{
d1310b2e
CM
1055 struct extent_io_tree *tree;
1056 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1057 extent_invalidatepage(tree, page, offset);
1058 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1059 if (PagePrivate(page)) {
efe120a0
FH
1060 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061 "page private not zero on page %llu",
1062 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1063 ClearPagePrivate(page);
1064 set_page_private(page, 0);
09cbfeaf 1065 put_page(page);
9ad6b7bc 1066 }
d98237b3
CM
1067}
1068
0b32f4bb
JB
1069static int btree_set_page_dirty(struct page *page)
1070{
bb146eb2 1071#ifdef DEBUG
0b32f4bb
JB
1072 struct extent_buffer *eb;
1073
1074 BUG_ON(!PagePrivate(page));
1075 eb = (struct extent_buffer *)page->private;
1076 BUG_ON(!eb);
1077 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078 BUG_ON(!atomic_read(&eb->refs));
1079 btrfs_assert_tree_locked(eb);
bb146eb2 1080#endif
0b32f4bb
JB
1081 return __set_page_dirty_nobuffers(page);
1082}
1083
7f09410b 1084static const struct address_space_operations btree_aops = {
d98237b3 1085 .readpage = btree_readpage,
0da5468f 1086 .writepages = btree_writepages,
5f39d397
CM
1087 .releasepage = btree_releasepage,
1088 .invalidatepage = btree_invalidatepage,
5a92bc88 1089#ifdef CONFIG_MIGRATION
784b4e29 1090 .migratepage = btree_migratepage,
5a92bc88 1091#endif
0b32f4bb 1092 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1093};
1094
d3e46fea 1095void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1096{
5f39d397
CM
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1099
a83fffb7 1100 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1101 if (IS_ERR(buf))
6197d86e 1102 return;
d1310b2e 1103 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1104 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1105 free_extent_buffer(buf);
090d1875
CM
1106}
1107
c0dcaa4d 1108int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1109 int mirror_num, struct extent_buffer **eb)
1110{
1111 struct extent_buffer *buf = NULL;
1112 struct inode *btree_inode = root->fs_info->btree_inode;
1113 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114 int ret;
1115
a83fffb7 1116 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1117 if (IS_ERR(buf))
ab0fff03
AJ
1118 return 0;
1119
1120 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123 btree_get_extent, mirror_num);
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return ret;
1127 }
1128
1129 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130 free_extent_buffer(buf);
1131 return -EIO;
0b32f4bb 1132 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1133 *eb = buf;
1134 } else {
1135 free_extent_buffer(buf);
1136 }
1137 return 0;
1138}
1139
01d58472 1140struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1141 u64 bytenr)
0999df54 1142{
01d58472 1143 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1144}
1145
1146struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1147 u64 bytenr)
0999df54 1148{
f5ee5c9a 1149 if (btrfs_is_testing(root->fs_info))
b9ef22de
FX
1150 return alloc_test_extent_buffer(root->fs_info, bytenr,
1151 root->nodesize);
ce3e6984 1152 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1153}
1154
1155
e02119d5
CM
1156int btrfs_write_tree_block(struct extent_buffer *buf)
1157{
727011e0 1158 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1159 buf->start + buf->len - 1);
e02119d5
CM
1160}
1161
1162int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1163{
727011e0 1164 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1165 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1166}
1167
0999df54 1168struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1169 u64 parent_transid)
0999df54
CM
1170{
1171 struct extent_buffer *buf = NULL;
0999df54
CM
1172 int ret;
1173
a83fffb7 1174 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
1175 if (IS_ERR(buf))
1176 return buf;
0999df54 1177
ca7a79ad 1178 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1179 if (ret) {
1180 free_extent_buffer(buf);
64c043de 1181 return ERR_PTR(ret);
0f0fe8f7 1182 }
5f39d397 1183 return buf;
ce9adaa5 1184
eb60ceac
CM
1185}
1186
01d58472
DD
1187void clean_tree_block(struct btrfs_trans_handle *trans,
1188 struct btrfs_fs_info *fs_info,
d5c13f92 1189 struct extent_buffer *buf)
ed2ff2cb 1190{
55c69072 1191 if (btrfs_header_generation(buf) ==
e2d84521 1192 fs_info->running_transaction->transid) {
b9447ef8 1193 btrfs_assert_tree_locked(buf);
b4ce94de 1194
b9473439 1195 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1196 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1197 -buf->len,
1198 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1199 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1200 btrfs_set_lock_blocking(buf);
1201 clear_extent_buffer_dirty(buf);
1202 }
925baedd 1203 }
5f39d397
CM
1204}
1205
8257b2dc
MX
1206static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1207{
1208 struct btrfs_subvolume_writers *writers;
1209 int ret;
1210
1211 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1212 if (!writers)
1213 return ERR_PTR(-ENOMEM);
1214
908c7f19 1215 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1216 if (ret < 0) {
1217 kfree(writers);
1218 return ERR_PTR(ret);
1219 }
1220
1221 init_waitqueue_head(&writers->wait);
1222 return writers;
1223}
1224
1225static void
1226btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1227{
1228 percpu_counter_destroy(&writers->counter);
1229 kfree(writers);
1230}
1231
707e8a07
DS
1232static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1233 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1234 u64 objectid)
d97e63b6 1235{
7c0260ee 1236 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1237 root->node = NULL;
a28ec197 1238 root->commit_root = NULL;
db94535d
CM
1239 root->sectorsize = sectorsize;
1240 root->nodesize = nodesize;
87ee04eb 1241 root->stripesize = stripesize;
27cdeb70 1242 root->state = 0;
d68fc57b 1243 root->orphan_cleanup_state = 0;
0b86a832 1244
0f7d52f4
CM
1245 root->objectid = objectid;
1246 root->last_trans = 0;
13a8a7c8 1247 root->highest_objectid = 0;
eb73c1b7 1248 root->nr_delalloc_inodes = 0;
199c2a9c 1249 root->nr_ordered_extents = 0;
58176a96 1250 root->name = NULL;
6bef4d31 1251 root->inode_tree = RB_ROOT;
16cdcec7 1252 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1253 root->block_rsv = NULL;
d68fc57b 1254 root->orphan_block_rsv = NULL;
0b86a832
CM
1255
1256 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1257 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1258 INIT_LIST_HEAD(&root->delalloc_inodes);
1259 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1260 INIT_LIST_HEAD(&root->ordered_extents);
1261 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1262 INIT_LIST_HEAD(&root->logged_list[0]);
1263 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1264 spin_lock_init(&root->orphan_lock);
5d4f98a2 1265 spin_lock_init(&root->inode_lock);
eb73c1b7 1266 spin_lock_init(&root->delalloc_lock);
199c2a9c 1267 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1268 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1269 spin_lock_init(&root->log_extents_lock[0]);
1270 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1271 mutex_init(&root->objectid_mutex);
e02119d5 1272 mutex_init(&root->log_mutex);
31f3d255 1273 mutex_init(&root->ordered_extent_mutex);
573bfb72 1274 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1275 init_waitqueue_head(&root->log_writer_wait);
1276 init_waitqueue_head(&root->log_commit_wait[0]);
1277 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1278 INIT_LIST_HEAD(&root->log_ctxs[0]);
1279 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1280 atomic_set(&root->log_commit[0], 0);
1281 atomic_set(&root->log_commit[1], 0);
1282 atomic_set(&root->log_writers, 0);
2ecb7923 1283 atomic_set(&root->log_batch, 0);
8a35d95f 1284 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1285 atomic_set(&root->refs, 1);
8257b2dc 1286 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1287 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1288 root->log_transid = 0;
d1433deb 1289 root->log_transid_committed = -1;
257c62e1 1290 root->last_log_commit = 0;
7c0260ee 1291 if (!dummy)
06ea65a3
JB
1292 extent_io_tree_init(&root->dirty_log_pages,
1293 fs_info->btree_inode->i_mapping);
017e5369 1294
3768f368
CM
1295 memset(&root->root_key, 0, sizeof(root->root_key));
1296 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1297 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1298 if (!dummy)
06ea65a3
JB
1299 root->defrag_trans_start = fs_info->generation;
1300 else
1301 root->defrag_trans_start = 0;
4d775673 1302 root->root_key.objectid = objectid;
0ee5dc67 1303 root->anon_dev = 0;
8ea05e3a 1304
5f3ab90a 1305 spin_lock_init(&root->root_item_lock);
3768f368
CM
1306}
1307
74e4d827
DS
1308static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1309 gfp_t flags)
6f07e42e 1310{
74e4d827 1311 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1312 if (root)
1313 root->fs_info = fs_info;
1314 return root;
1315}
1316
06ea65a3
JB
1317#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1318/* Should only be used by the testing infrastructure */
7c0260ee
JM
1319struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1320 u32 sectorsize, u32 nodesize)
06ea65a3
JB
1321{
1322 struct btrfs_root *root;
1323
7c0260ee
JM
1324 if (!fs_info)
1325 return ERR_PTR(-EINVAL);
1326
1327 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1328 if (!root)
1329 return ERR_PTR(-ENOMEM);
b9ef22de 1330 /* We don't use the stripesize in selftest, set it as sectorsize */
7c0260ee 1331 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
ef9f2db3 1332 BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1333 root->alloc_bytenr = 0;
06ea65a3
JB
1334
1335 return root;
1336}
1337#endif
1338
20897f5c
AJ
1339struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1340 struct btrfs_fs_info *fs_info,
1341 u64 objectid)
1342{
1343 struct extent_buffer *leaf;
1344 struct btrfs_root *tree_root = fs_info->tree_root;
1345 struct btrfs_root *root;
1346 struct btrfs_key key;
1347 int ret = 0;
6463fe58 1348 uuid_le uuid;
20897f5c 1349
74e4d827 1350 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1351 if (!root)
1352 return ERR_PTR(-ENOMEM);
1353
707e8a07
DS
1354 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1355 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1356 root->root_key.objectid = objectid;
1357 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1358 root->root_key.offset = 0;
1359
4d75f8a9 1360 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1361 if (IS_ERR(leaf)) {
1362 ret = PTR_ERR(leaf);
1dd05682 1363 leaf = NULL;
20897f5c
AJ
1364 goto fail;
1365 }
1366
20897f5c
AJ
1367 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1368 btrfs_set_header_bytenr(leaf, leaf->start);
1369 btrfs_set_header_generation(leaf, trans->transid);
1370 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1371 btrfs_set_header_owner(leaf, objectid);
1372 root->node = leaf;
1373
0a4e5586 1374 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1375 BTRFS_FSID_SIZE);
1376 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1377 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1378 BTRFS_UUID_SIZE);
1379 btrfs_mark_buffer_dirty(leaf);
1380
1381 root->commit_root = btrfs_root_node(root);
27cdeb70 1382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1383
1384 root->root_item.flags = 0;
1385 root->root_item.byte_limit = 0;
1386 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1387 btrfs_set_root_generation(&root->root_item, trans->transid);
1388 btrfs_set_root_level(&root->root_item, 0);
1389 btrfs_set_root_refs(&root->root_item, 1);
1390 btrfs_set_root_used(&root->root_item, leaf->len);
1391 btrfs_set_root_last_snapshot(&root->root_item, 0);
1392 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1393 uuid_le_gen(&uuid);
1394 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1395 root->root_item.drop_level = 0;
1396
1397 key.objectid = objectid;
1398 key.type = BTRFS_ROOT_ITEM_KEY;
1399 key.offset = 0;
1400 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1401 if (ret)
1402 goto fail;
1403
1404 btrfs_tree_unlock(leaf);
1405
1dd05682
TI
1406 return root;
1407
20897f5c 1408fail:
1dd05682
TI
1409 if (leaf) {
1410 btrfs_tree_unlock(leaf);
59885b39 1411 free_extent_buffer(root->commit_root);
1dd05682
TI
1412 free_extent_buffer(leaf);
1413 }
1414 kfree(root);
20897f5c 1415
1dd05682 1416 return ERR_PTR(ret);
20897f5c
AJ
1417}
1418
7237f183
YZ
1419static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1420 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1421{
1422 struct btrfs_root *root;
1423 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1424 struct extent_buffer *leaf;
e02119d5 1425
74e4d827 1426 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1427 if (!root)
7237f183 1428 return ERR_PTR(-ENOMEM);
e02119d5 1429
707e8a07
DS
1430 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1431 tree_root->stripesize, root, fs_info,
1432 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1433
1434 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1435 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1436 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1437
7237f183 1438 /*
27cdeb70
MX
1439 * DON'T set REF_COWS for log trees
1440 *
7237f183
YZ
1441 * log trees do not get reference counted because they go away
1442 * before a real commit is actually done. They do store pointers
1443 * to file data extents, and those reference counts still get
1444 * updated (along with back refs to the log tree).
1445 */
e02119d5 1446
4d75f8a9
DS
1447 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1448 NULL, 0, 0, 0);
7237f183
YZ
1449 if (IS_ERR(leaf)) {
1450 kfree(root);
1451 return ERR_CAST(leaf);
1452 }
e02119d5 1453
5d4f98a2
YZ
1454 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1455 btrfs_set_header_bytenr(leaf, leaf->start);
1456 btrfs_set_header_generation(leaf, trans->transid);
1457 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1458 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1459 root->node = leaf;
e02119d5
CM
1460
1461 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1462 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1463 btrfs_mark_buffer_dirty(root->node);
1464 btrfs_tree_unlock(root->node);
7237f183
YZ
1465 return root;
1466}
1467
1468int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1469 struct btrfs_fs_info *fs_info)
1470{
1471 struct btrfs_root *log_root;
1472
1473 log_root = alloc_log_tree(trans, fs_info);
1474 if (IS_ERR(log_root))
1475 return PTR_ERR(log_root);
1476 WARN_ON(fs_info->log_root_tree);
1477 fs_info->log_root_tree = log_root;
1478 return 0;
1479}
1480
1481int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1482 struct btrfs_root *root)
1483{
1484 struct btrfs_root *log_root;
1485 struct btrfs_inode_item *inode_item;
1486
1487 log_root = alloc_log_tree(trans, root->fs_info);
1488 if (IS_ERR(log_root))
1489 return PTR_ERR(log_root);
1490
1491 log_root->last_trans = trans->transid;
1492 log_root->root_key.offset = root->root_key.objectid;
1493
1494 inode_item = &log_root->root_item.inode;
3cae210f
QW
1495 btrfs_set_stack_inode_generation(inode_item, 1);
1496 btrfs_set_stack_inode_size(inode_item, 3);
1497 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1498 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1499 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1500
5d4f98a2 1501 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1502
1503 WARN_ON(root->log_root);
1504 root->log_root = log_root;
1505 root->log_transid = 0;
d1433deb 1506 root->log_transid_committed = -1;
257c62e1 1507 root->last_log_commit = 0;
e02119d5
CM
1508 return 0;
1509}
1510
35a3621b
SB
1511static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1512 struct btrfs_key *key)
e02119d5
CM
1513{
1514 struct btrfs_root *root;
1515 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1516 struct btrfs_path *path;
84234f3a 1517 u64 generation;
cb517eab 1518 int ret;
0f7d52f4 1519
cb517eab
MX
1520 path = btrfs_alloc_path();
1521 if (!path)
0f7d52f4 1522 return ERR_PTR(-ENOMEM);
cb517eab 1523
74e4d827 1524 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1525 if (!root) {
1526 ret = -ENOMEM;
1527 goto alloc_fail;
0f7d52f4
CM
1528 }
1529
707e8a07
DS
1530 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1531 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1532
cb517eab
MX
1533 ret = btrfs_find_root(tree_root, key, path,
1534 &root->root_item, &root->root_key);
0f7d52f4 1535 if (ret) {
13a8a7c8
YZ
1536 if (ret > 0)
1537 ret = -ENOENT;
cb517eab 1538 goto find_fail;
0f7d52f4 1539 }
13a8a7c8 1540
84234f3a 1541 generation = btrfs_root_generation(&root->root_item);
db94535d 1542 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1543 generation);
64c043de
LB
1544 if (IS_ERR(root->node)) {
1545 ret = PTR_ERR(root->node);
cb517eab
MX
1546 goto find_fail;
1547 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1548 ret = -EIO;
64c043de
LB
1549 free_extent_buffer(root->node);
1550 goto find_fail;
416bc658 1551 }
5d4f98a2 1552 root->commit_root = btrfs_root_node(root);
13a8a7c8 1553out:
cb517eab
MX
1554 btrfs_free_path(path);
1555 return root;
1556
cb517eab
MX
1557find_fail:
1558 kfree(root);
1559alloc_fail:
1560 root = ERR_PTR(ret);
1561 goto out;
1562}
1563
1564struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1565 struct btrfs_key *location)
1566{
1567 struct btrfs_root *root;
1568
1569 root = btrfs_read_tree_root(tree_root, location);
1570 if (IS_ERR(root))
1571 return root;
1572
1573 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1574 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1575 btrfs_check_and_init_root_item(&root->root_item);
1576 }
13a8a7c8 1577
5eda7b5e
CM
1578 return root;
1579}
1580
cb517eab
MX
1581int btrfs_init_fs_root(struct btrfs_root *root)
1582{
1583 int ret;
8257b2dc 1584 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1585
1586 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1587 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1588 GFP_NOFS);
1589 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1590 ret = -ENOMEM;
1591 goto fail;
1592 }
1593
8257b2dc
MX
1594 writers = btrfs_alloc_subvolume_writers();
1595 if (IS_ERR(writers)) {
1596 ret = PTR_ERR(writers);
1597 goto fail;
1598 }
1599 root->subv_writers = writers;
1600
cb517eab 1601 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1602 spin_lock_init(&root->ino_cache_lock);
1603 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1604
1605 ret = get_anon_bdev(&root->anon_dev);
1606 if (ret)
876d2cf1 1607 goto fail;
f32e48e9
CR
1608
1609 mutex_lock(&root->objectid_mutex);
1610 ret = btrfs_find_highest_objectid(root,
1611 &root->highest_objectid);
1612 if (ret) {
1613 mutex_unlock(&root->objectid_mutex);
876d2cf1 1614 goto fail;
f32e48e9
CR
1615 }
1616
1617 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1618
1619 mutex_unlock(&root->objectid_mutex);
1620
cb517eab
MX
1621 return 0;
1622fail:
876d2cf1 1623 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1624 return ret;
1625}
1626
171170c1
ST
1627static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1628 u64 root_id)
cb517eab
MX
1629{
1630 struct btrfs_root *root;
1631
1632 spin_lock(&fs_info->fs_roots_radix_lock);
1633 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1634 (unsigned long)root_id);
1635 spin_unlock(&fs_info->fs_roots_radix_lock);
1636 return root;
1637}
1638
1639int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1640 struct btrfs_root *root)
1641{
1642 int ret;
1643
e1860a77 1644 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1645 if (ret)
1646 return ret;
1647
1648 spin_lock(&fs_info->fs_roots_radix_lock);
1649 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1650 (unsigned long)root->root_key.objectid,
1651 root);
1652 if (ret == 0)
27cdeb70 1653 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1654 spin_unlock(&fs_info->fs_roots_radix_lock);
1655 radix_tree_preload_end();
1656
1657 return ret;
1658}
1659
c00869f1
MX
1660struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1661 struct btrfs_key *location,
1662 bool check_ref)
5eda7b5e
CM
1663{
1664 struct btrfs_root *root;
381cf658 1665 struct btrfs_path *path;
1d4c08e0 1666 struct btrfs_key key;
5eda7b5e
CM
1667 int ret;
1668
edbd8d4e
CM
1669 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1670 return fs_info->tree_root;
1671 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1672 return fs_info->extent_root;
8f18cf13
CM
1673 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1674 return fs_info->chunk_root;
1675 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1676 return fs_info->dev_root;
0403e47e
YZ
1677 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1678 return fs_info->csum_root;
bcef60f2
AJ
1679 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1680 return fs_info->quota_root ? fs_info->quota_root :
1681 ERR_PTR(-ENOENT);
f7a81ea4
SB
1682 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1683 return fs_info->uuid_root ? fs_info->uuid_root :
1684 ERR_PTR(-ENOENT);
70f6d82e
OS
1685 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1686 return fs_info->free_space_root ? fs_info->free_space_root :
1687 ERR_PTR(-ENOENT);
4df27c4d 1688again:
cb517eab 1689 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1690 if (root) {
c00869f1 1691 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1692 return ERR_PTR(-ENOENT);
5eda7b5e 1693 return root;
48475471 1694 }
5eda7b5e 1695
cb517eab 1696 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1697 if (IS_ERR(root))
1698 return root;
3394e160 1699
c00869f1 1700 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1701 ret = -ENOENT;
581bb050 1702 goto fail;
35a30d7c 1703 }
581bb050 1704
cb517eab 1705 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1706 if (ret)
1707 goto fail;
3394e160 1708
381cf658
DS
1709 path = btrfs_alloc_path();
1710 if (!path) {
1711 ret = -ENOMEM;
1712 goto fail;
1713 }
1d4c08e0
DS
1714 key.objectid = BTRFS_ORPHAN_OBJECTID;
1715 key.type = BTRFS_ORPHAN_ITEM_KEY;
1716 key.offset = location->objectid;
1717
1718 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1719 btrfs_free_path(path);
d68fc57b
YZ
1720 if (ret < 0)
1721 goto fail;
1722 if (ret == 0)
27cdeb70 1723 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1724
cb517eab 1725 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1726 if (ret) {
4df27c4d
YZ
1727 if (ret == -EEXIST) {
1728 free_fs_root(root);
1729 goto again;
1730 }
1731 goto fail;
0f7d52f4 1732 }
edbd8d4e 1733 return root;
4df27c4d
YZ
1734fail:
1735 free_fs_root(root);
1736 return ERR_PTR(ret);
edbd8d4e
CM
1737}
1738
04160088
CM
1739static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1740{
1741 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1742 int ret = 0;
04160088
CM
1743 struct btrfs_device *device;
1744 struct backing_dev_info *bdi;
b7967db7 1745
1f78160c
XG
1746 rcu_read_lock();
1747 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1748 if (!device->bdev)
1749 continue;
04160088 1750 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1751 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1752 ret = 1;
1753 break;
1754 }
1755 }
1f78160c 1756 rcu_read_unlock();
04160088
CM
1757 return ret;
1758}
1759
04160088
CM
1760static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1761{
ad081f14
JA
1762 int err;
1763
b4caecd4 1764 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1765 if (err)
1766 return err;
1767
09cbfeaf 1768 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
04160088
CM
1769 bdi->congested_fn = btrfs_congested_fn;
1770 bdi->congested_data = info;
da2f0f74 1771 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1772 return 0;
1773}
1774
8b712842
CM
1775/*
1776 * called by the kthread helper functions to finally call the bio end_io
1777 * functions. This is where read checksum verification actually happens
1778 */
1779static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1780{
ce9adaa5 1781 struct bio *bio;
97eb6b69 1782 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1783
97eb6b69 1784 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1785 bio = end_io_wq->bio;
ce9adaa5 1786
4246a0b6 1787 bio->bi_error = end_io_wq->error;
8b712842
CM
1788 bio->bi_private = end_io_wq->private;
1789 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1790 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1791 bio_endio(bio);
44b8bd7e
CM
1792}
1793
a74a4b97
CM
1794static int cleaner_kthread(void *arg)
1795{
1796 struct btrfs_root *root = arg;
d0278245 1797 int again;
da288d28 1798 struct btrfs_trans_handle *trans;
a74a4b97
CM
1799
1800 do {
d0278245 1801 again = 0;
a74a4b97 1802
d0278245 1803 /* Make the cleaner go to sleep early. */
babbf170 1804 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1805 goto sleep;
1806
90c711ab
ZB
1807 /*
1808 * Do not do anything if we might cause open_ctree() to block
1809 * before we have finished mounting the filesystem.
1810 */
1811 if (!root->fs_info->open)
1812 goto sleep;
1813
d0278245
MX
1814 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1815 goto sleep;
1816
dc7f370c
MX
1817 /*
1818 * Avoid the problem that we change the status of the fs
1819 * during the above check and trylock.
1820 */
babbf170 1821 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1822 mutex_unlock(&root->fs_info->cleaner_mutex);
1823 goto sleep;
76dda93c 1824 }
a74a4b97 1825
c2d6cb16 1826 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
d0278245 1827 btrfs_run_delayed_iputs(root);
c2d6cb16
FM
1828 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1829
d0278245
MX
1830 again = btrfs_clean_one_deleted_snapshot(root);
1831 mutex_unlock(&root->fs_info->cleaner_mutex);
1832
1833 /*
05323cd1
MX
1834 * The defragger has dealt with the R/O remount and umount,
1835 * needn't do anything special here.
d0278245
MX
1836 */
1837 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1838
1839 /*
1840 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1841 * with relocation (btrfs_relocate_chunk) and relocation
1842 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1843 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1844 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1845 * unused block groups.
1846 */
1847 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1848sleep:
838fe188 1849 if (!again) {
a74a4b97 1850 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1851 if (!kthread_should_stop())
1852 schedule();
a74a4b97
CM
1853 __set_current_state(TASK_RUNNING);
1854 }
1855 } while (!kthread_should_stop());
da288d28
FM
1856
1857 /*
1858 * Transaction kthread is stopped before us and wakes us up.
1859 * However we might have started a new transaction and COWed some
1860 * tree blocks when deleting unused block groups for example. So
1861 * make sure we commit the transaction we started to have a clean
1862 * shutdown when evicting the btree inode - if it has dirty pages
1863 * when we do the final iput() on it, eviction will trigger a
1864 * writeback for it which will fail with null pointer dereferences
1865 * since work queues and other resources were already released and
1866 * destroyed by the time the iput/eviction/writeback is made.
1867 */
1868 trans = btrfs_attach_transaction(root);
1869 if (IS_ERR(trans)) {
1870 if (PTR_ERR(trans) != -ENOENT)
1871 btrfs_err(root->fs_info,
1872 "cleaner transaction attach returned %ld",
1873 PTR_ERR(trans));
1874 } else {
1875 int ret;
1876
1877 ret = btrfs_commit_transaction(trans, root);
1878 if (ret)
1879 btrfs_err(root->fs_info,
1880 "cleaner open transaction commit returned %d",
1881 ret);
1882 }
1883
a74a4b97
CM
1884 return 0;
1885}
1886
1887static int transaction_kthread(void *arg)
1888{
1889 struct btrfs_root *root = arg;
1890 struct btrfs_trans_handle *trans;
1891 struct btrfs_transaction *cur;
8929ecfa 1892 u64 transid;
a74a4b97
CM
1893 unsigned long now;
1894 unsigned long delay;
914b2007 1895 bool cannot_commit;
a74a4b97
CM
1896
1897 do {
914b2007 1898 cannot_commit = false;
8b87dc17 1899 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1900 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1901
a4abeea4 1902 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1903 cur = root->fs_info->running_transaction;
1904 if (!cur) {
a4abeea4 1905 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1906 goto sleep;
1907 }
31153d81 1908
a74a4b97 1909 now = get_seconds();
4a9d8bde 1910 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1911 (now < cur->start_time ||
1912 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1913 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1914 delay = HZ * 5;
1915 goto sleep;
1916 }
8929ecfa 1917 transid = cur->transid;
a4abeea4 1918 spin_unlock(&root->fs_info->trans_lock);
56bec294 1919
79787eaa 1920 /* If the file system is aborted, this will always fail. */
354aa0fb 1921 trans = btrfs_attach_transaction(root);
914b2007 1922 if (IS_ERR(trans)) {
354aa0fb
MX
1923 if (PTR_ERR(trans) != -ENOENT)
1924 cannot_commit = true;
79787eaa 1925 goto sleep;
914b2007 1926 }
8929ecfa 1927 if (transid == trans->transid) {
79787eaa 1928 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1929 } else {
1930 btrfs_end_transaction(trans, root);
1931 }
a74a4b97
CM
1932sleep:
1933 wake_up_process(root->fs_info->cleaner_kthread);
1934 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1935
4e121c06
JB
1936 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1937 &root->fs_info->fs_state)))
1938 btrfs_cleanup_transaction(root);
ce63f891
JK
1939 set_current_state(TASK_INTERRUPTIBLE);
1940 if (!kthread_should_stop() &&
1941 (!btrfs_transaction_blocked(root->fs_info) ||
1942 cannot_commit))
1943 schedule_timeout(delay);
1944 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1945 } while (!kthread_should_stop());
1946 return 0;
1947}
1948
af31f5e5
CM
1949/*
1950 * this will find the highest generation in the array of
1951 * root backups. The index of the highest array is returned,
1952 * or -1 if we can't find anything.
1953 *
1954 * We check to make sure the array is valid by comparing the
1955 * generation of the latest root in the array with the generation
1956 * in the super block. If they don't match we pitch it.
1957 */
1958static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1959{
1960 u64 cur;
1961 int newest_index = -1;
1962 struct btrfs_root_backup *root_backup;
1963 int i;
1964
1965 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1966 root_backup = info->super_copy->super_roots + i;
1967 cur = btrfs_backup_tree_root_gen(root_backup);
1968 if (cur == newest_gen)
1969 newest_index = i;
1970 }
1971
1972 /* check to see if we actually wrapped around */
1973 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1974 root_backup = info->super_copy->super_roots;
1975 cur = btrfs_backup_tree_root_gen(root_backup);
1976 if (cur == newest_gen)
1977 newest_index = 0;
1978 }
1979 return newest_index;
1980}
1981
1982
1983/*
1984 * find the oldest backup so we know where to store new entries
1985 * in the backup array. This will set the backup_root_index
1986 * field in the fs_info struct
1987 */
1988static void find_oldest_super_backup(struct btrfs_fs_info *info,
1989 u64 newest_gen)
1990{
1991 int newest_index = -1;
1992
1993 newest_index = find_newest_super_backup(info, newest_gen);
1994 /* if there was garbage in there, just move along */
1995 if (newest_index == -1) {
1996 info->backup_root_index = 0;
1997 } else {
1998 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1999 }
2000}
2001
2002/*
2003 * copy all the root pointers into the super backup array.
2004 * this will bump the backup pointer by one when it is
2005 * done
2006 */
2007static void backup_super_roots(struct btrfs_fs_info *info)
2008{
2009 int next_backup;
2010 struct btrfs_root_backup *root_backup;
2011 int last_backup;
2012
2013 next_backup = info->backup_root_index;
2014 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2015 BTRFS_NUM_BACKUP_ROOTS;
2016
2017 /*
2018 * just overwrite the last backup if we're at the same generation
2019 * this happens only at umount
2020 */
2021 root_backup = info->super_for_commit->super_roots + last_backup;
2022 if (btrfs_backup_tree_root_gen(root_backup) ==
2023 btrfs_header_generation(info->tree_root->node))
2024 next_backup = last_backup;
2025
2026 root_backup = info->super_for_commit->super_roots + next_backup;
2027
2028 /*
2029 * make sure all of our padding and empty slots get zero filled
2030 * regardless of which ones we use today
2031 */
2032 memset(root_backup, 0, sizeof(*root_backup));
2033
2034 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2035
2036 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2037 btrfs_set_backup_tree_root_gen(root_backup,
2038 btrfs_header_generation(info->tree_root->node));
2039
2040 btrfs_set_backup_tree_root_level(root_backup,
2041 btrfs_header_level(info->tree_root->node));
2042
2043 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2044 btrfs_set_backup_chunk_root_gen(root_backup,
2045 btrfs_header_generation(info->chunk_root->node));
2046 btrfs_set_backup_chunk_root_level(root_backup,
2047 btrfs_header_level(info->chunk_root->node));
2048
2049 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2050 btrfs_set_backup_extent_root_gen(root_backup,
2051 btrfs_header_generation(info->extent_root->node));
2052 btrfs_set_backup_extent_root_level(root_backup,
2053 btrfs_header_level(info->extent_root->node));
2054
7c7e82a7
CM
2055 /*
2056 * we might commit during log recovery, which happens before we set
2057 * the fs_root. Make sure it is valid before we fill it in.
2058 */
2059 if (info->fs_root && info->fs_root->node) {
2060 btrfs_set_backup_fs_root(root_backup,
2061 info->fs_root->node->start);
2062 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2063 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2064 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2065 btrfs_header_level(info->fs_root->node));
7c7e82a7 2066 }
af31f5e5
CM
2067
2068 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2069 btrfs_set_backup_dev_root_gen(root_backup,
2070 btrfs_header_generation(info->dev_root->node));
2071 btrfs_set_backup_dev_root_level(root_backup,
2072 btrfs_header_level(info->dev_root->node));
2073
2074 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2075 btrfs_set_backup_csum_root_gen(root_backup,
2076 btrfs_header_generation(info->csum_root->node));
2077 btrfs_set_backup_csum_root_level(root_backup,
2078 btrfs_header_level(info->csum_root->node));
2079
2080 btrfs_set_backup_total_bytes(root_backup,
2081 btrfs_super_total_bytes(info->super_copy));
2082 btrfs_set_backup_bytes_used(root_backup,
2083 btrfs_super_bytes_used(info->super_copy));
2084 btrfs_set_backup_num_devices(root_backup,
2085 btrfs_super_num_devices(info->super_copy));
2086
2087 /*
2088 * if we don't copy this out to the super_copy, it won't get remembered
2089 * for the next commit
2090 */
2091 memcpy(&info->super_copy->super_roots,
2092 &info->super_for_commit->super_roots,
2093 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2094}
2095
2096/*
2097 * this copies info out of the root backup array and back into
2098 * the in-memory super block. It is meant to help iterate through
2099 * the array, so you send it the number of backups you've already
2100 * tried and the last backup index you used.
2101 *
2102 * this returns -1 when it has tried all the backups
2103 */
2104static noinline int next_root_backup(struct btrfs_fs_info *info,
2105 struct btrfs_super_block *super,
2106 int *num_backups_tried, int *backup_index)
2107{
2108 struct btrfs_root_backup *root_backup;
2109 int newest = *backup_index;
2110
2111 if (*num_backups_tried == 0) {
2112 u64 gen = btrfs_super_generation(super);
2113
2114 newest = find_newest_super_backup(info, gen);
2115 if (newest == -1)
2116 return -1;
2117
2118 *backup_index = newest;
2119 *num_backups_tried = 1;
2120 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2121 /* we've tried all the backups, all done */
2122 return -1;
2123 } else {
2124 /* jump to the next oldest backup */
2125 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2126 BTRFS_NUM_BACKUP_ROOTS;
2127 *backup_index = newest;
2128 *num_backups_tried += 1;
2129 }
2130 root_backup = super->super_roots + newest;
2131
2132 btrfs_set_super_generation(super,
2133 btrfs_backup_tree_root_gen(root_backup));
2134 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2135 btrfs_set_super_root_level(super,
2136 btrfs_backup_tree_root_level(root_backup));
2137 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2138
2139 /*
2140 * fixme: the total bytes and num_devices need to match or we should
2141 * need a fsck
2142 */
2143 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2144 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2145 return 0;
2146}
2147
7abadb64
LB
2148/* helper to cleanup workers */
2149static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2150{
dc6e3209 2151 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2152 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2153 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2154 btrfs_destroy_workqueue(fs_info->endio_workers);
2155 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2156 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2157 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2158 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2159 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2160 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2161 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2162 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2163 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2164 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2165 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2166 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2167 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2168 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2169}
2170
2e9f5954
R
2171static void free_root_extent_buffers(struct btrfs_root *root)
2172{
2173 if (root) {
2174 free_extent_buffer(root->node);
2175 free_extent_buffer(root->commit_root);
2176 root->node = NULL;
2177 root->commit_root = NULL;
2178 }
2179}
2180
af31f5e5
CM
2181/* helper to cleanup tree roots */
2182static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2183{
2e9f5954 2184 free_root_extent_buffers(info->tree_root);
655b09fe 2185
2e9f5954
R
2186 free_root_extent_buffers(info->dev_root);
2187 free_root_extent_buffers(info->extent_root);
2188 free_root_extent_buffers(info->csum_root);
2189 free_root_extent_buffers(info->quota_root);
2190 free_root_extent_buffers(info->uuid_root);
2191 if (chunk_root)
2192 free_root_extent_buffers(info->chunk_root);
70f6d82e 2193 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2194}
2195
faa2dbf0 2196void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2197{
2198 int ret;
2199 struct btrfs_root *gang[8];
2200 int i;
2201
2202 while (!list_empty(&fs_info->dead_roots)) {
2203 gang[0] = list_entry(fs_info->dead_roots.next,
2204 struct btrfs_root, root_list);
2205 list_del(&gang[0]->root_list);
2206
27cdeb70 2207 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2208 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2209 } else {
2210 free_extent_buffer(gang[0]->node);
2211 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2212 btrfs_put_fs_root(gang[0]);
171f6537
JB
2213 }
2214 }
2215
2216 while (1) {
2217 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2218 (void **)gang, 0,
2219 ARRAY_SIZE(gang));
2220 if (!ret)
2221 break;
2222 for (i = 0; i < ret; i++)
cb517eab 2223 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2224 }
1a4319cc
LB
2225
2226 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2227 btrfs_free_log_root_tree(NULL, fs_info);
2228 btrfs_destroy_pinned_extent(fs_info->tree_root,
2229 fs_info->pinned_extents);
2230 }
171f6537 2231}
af31f5e5 2232
638aa7ed
ES
2233static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2234{
2235 mutex_init(&fs_info->scrub_lock);
2236 atomic_set(&fs_info->scrubs_running, 0);
2237 atomic_set(&fs_info->scrub_pause_req, 0);
2238 atomic_set(&fs_info->scrubs_paused, 0);
2239 atomic_set(&fs_info->scrub_cancel_req, 0);
2240 init_waitqueue_head(&fs_info->scrub_pause_wait);
2241 fs_info->scrub_workers_refcnt = 0;
2242}
2243
779a65a4
ES
2244static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2245{
2246 spin_lock_init(&fs_info->balance_lock);
2247 mutex_init(&fs_info->balance_mutex);
2248 atomic_set(&fs_info->balance_running, 0);
2249 atomic_set(&fs_info->balance_pause_req, 0);
2250 atomic_set(&fs_info->balance_cancel_req, 0);
2251 fs_info->balance_ctl = NULL;
2252 init_waitqueue_head(&fs_info->balance_wait_q);
2253}
2254
f37938e0
ES
2255static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2256 struct btrfs_root *tree_root)
2257{
2258 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2259 set_nlink(fs_info->btree_inode, 1);
2260 /*
2261 * we set the i_size on the btree inode to the max possible int.
2262 * the real end of the address space is determined by all of
2263 * the devices in the system
2264 */
2265 fs_info->btree_inode->i_size = OFFSET_MAX;
2266 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2267
2268 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2269 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2270 fs_info->btree_inode->i_mapping);
2271 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2272 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2273
2274 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2275
2276 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2277 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2278 sizeof(struct btrfs_key));
2279 set_bit(BTRFS_INODE_DUMMY,
2280 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2281 btrfs_insert_inode_hash(fs_info->btree_inode);
2282}
2283
ad618368
ES
2284static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2285{
2286 fs_info->dev_replace.lock_owner = 0;
2287 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2288 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2289 rwlock_init(&fs_info->dev_replace.lock);
2290 atomic_set(&fs_info->dev_replace.read_locks, 0);
2291 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2292 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2293 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2294}
2295
f9e92e40
ES
2296static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2297{
2298 spin_lock_init(&fs_info->qgroup_lock);
2299 mutex_init(&fs_info->qgroup_ioctl_lock);
2300 fs_info->qgroup_tree = RB_ROOT;
2301 fs_info->qgroup_op_tree = RB_ROOT;
2302 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2303 fs_info->qgroup_seq = 1;
2304 fs_info->quota_enabled = 0;
2305 fs_info->pending_quota_state = 0;
2306 fs_info->qgroup_ulist = NULL;
d2c609b8 2307 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2308 mutex_init(&fs_info->qgroup_rescan_lock);
2309}
2310
2a458198
ES
2311static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2312 struct btrfs_fs_devices *fs_devices)
2313{
2314 int max_active = fs_info->thread_pool_size;
6f011058 2315 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2316
2317 fs_info->workers =
cb001095
JM
2318 btrfs_alloc_workqueue(fs_info, "worker",
2319 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2320
2321 fs_info->delalloc_workers =
cb001095
JM
2322 btrfs_alloc_workqueue(fs_info, "delalloc",
2323 flags, max_active, 2);
2a458198
ES
2324
2325 fs_info->flush_workers =
cb001095
JM
2326 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2327 flags, max_active, 0);
2a458198
ES
2328
2329 fs_info->caching_workers =
cb001095 2330 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2331
2332 /*
2333 * a higher idle thresh on the submit workers makes it much more
2334 * likely that bios will be send down in a sane order to the
2335 * devices
2336 */
2337 fs_info->submit_workers =
cb001095 2338 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2339 min_t(u64, fs_devices->num_devices,
2340 max_active), 64);
2341
2342 fs_info->fixup_workers =
cb001095 2343 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2344
2345 /*
2346 * endios are largely parallel and should have a very
2347 * low idle thresh
2348 */
2349 fs_info->endio_workers =
cb001095 2350 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2351 fs_info->endio_meta_workers =
cb001095
JM
2352 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2353 max_active, 4);
2a458198 2354 fs_info->endio_meta_write_workers =
cb001095
JM
2355 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2356 max_active, 2);
2a458198 2357 fs_info->endio_raid56_workers =
cb001095
JM
2358 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2359 max_active, 4);
2a458198 2360 fs_info->endio_repair_workers =
cb001095 2361 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2362 fs_info->rmw_workers =
cb001095 2363 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2364 fs_info->endio_write_workers =
cb001095
JM
2365 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2366 max_active, 2);
2a458198 2367 fs_info->endio_freespace_worker =
cb001095
JM
2368 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2369 max_active, 0);
2a458198 2370 fs_info->delayed_workers =
cb001095
JM
2371 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2372 max_active, 0);
2a458198 2373 fs_info->readahead_workers =
cb001095
JM
2374 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2375 max_active, 2);
2a458198 2376 fs_info->qgroup_rescan_workers =
cb001095 2377 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2378 fs_info->extent_workers =
cb001095 2379 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2380 min_t(u64, fs_devices->num_devices,
2381 max_active), 8);
2382
2383 if (!(fs_info->workers && fs_info->delalloc_workers &&
2384 fs_info->submit_workers && fs_info->flush_workers &&
2385 fs_info->endio_workers && fs_info->endio_meta_workers &&
2386 fs_info->endio_meta_write_workers &&
2387 fs_info->endio_repair_workers &&
2388 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2389 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2390 fs_info->caching_workers && fs_info->readahead_workers &&
2391 fs_info->fixup_workers && fs_info->delayed_workers &&
2392 fs_info->extent_workers &&
2393 fs_info->qgroup_rescan_workers)) {
2394 return -ENOMEM;
2395 }
2396
2397 return 0;
2398}
2399
63443bf5
ES
2400static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2401 struct btrfs_fs_devices *fs_devices)
2402{
2403 int ret;
2404 struct btrfs_root *tree_root = fs_info->tree_root;
2405 struct btrfs_root *log_tree_root;
2406 struct btrfs_super_block *disk_super = fs_info->super_copy;
2407 u64 bytenr = btrfs_super_log_root(disk_super);
2408
2409 if (fs_devices->rw_devices == 0) {
f14d104d 2410 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2411 return -EIO;
2412 }
2413
74e4d827 2414 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2415 if (!log_tree_root)
2416 return -ENOMEM;
2417
2418 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2419 tree_root->stripesize, log_tree_root, fs_info,
2420 BTRFS_TREE_LOG_OBJECTID);
2421
2422 log_tree_root->node = read_tree_block(tree_root, bytenr,
2423 fs_info->generation + 1);
64c043de 2424 if (IS_ERR(log_tree_root->node)) {
f14d104d 2425 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2426 ret = PTR_ERR(log_tree_root->node);
64c043de 2427 kfree(log_tree_root);
0eeff236 2428 return ret;
64c043de 2429 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2430 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2431 free_extent_buffer(log_tree_root->node);
2432 kfree(log_tree_root);
2433 return -EIO;
2434 }
2435 /* returns with log_tree_root freed on success */
2436 ret = btrfs_recover_log_trees(log_tree_root);
2437 if (ret) {
34d97007 2438 btrfs_handle_fs_error(tree_root->fs_info, ret,
63443bf5
ES
2439 "Failed to recover log tree");
2440 free_extent_buffer(log_tree_root->node);
2441 kfree(log_tree_root);
2442 return ret;
2443 }
2444
2445 if (fs_info->sb->s_flags & MS_RDONLY) {
2446 ret = btrfs_commit_super(tree_root);
2447 if (ret)
2448 return ret;
2449 }
2450
2451 return 0;
2452}
2453
4bbcaa64
ES
2454static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2455 struct btrfs_root *tree_root)
2456{
a4f3d2c4 2457 struct btrfs_root *root;
4bbcaa64
ES
2458 struct btrfs_key location;
2459 int ret;
2460
2461 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2462 location.type = BTRFS_ROOT_ITEM_KEY;
2463 location.offset = 0;
2464
a4f3d2c4
DS
2465 root = btrfs_read_tree_root(tree_root, &location);
2466 if (IS_ERR(root))
2467 return PTR_ERR(root);
2468 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 fs_info->extent_root = root;
4bbcaa64
ES
2470
2471 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2472 root = btrfs_read_tree_root(tree_root, &location);
2473 if (IS_ERR(root))
2474 return PTR_ERR(root);
2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476 fs_info->dev_root = root;
4bbcaa64
ES
2477 btrfs_init_devices_late(fs_info);
2478
2479 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2480 root = btrfs_read_tree_root(tree_root, &location);
2481 if (IS_ERR(root))
2482 return PTR_ERR(root);
2483 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2484 fs_info->csum_root = root;
4bbcaa64
ES
2485
2486 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2487 root = btrfs_read_tree_root(tree_root, &location);
2488 if (!IS_ERR(root)) {
2489 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2490 fs_info->quota_enabled = 1;
2491 fs_info->pending_quota_state = 1;
a4f3d2c4 2492 fs_info->quota_root = root;
4bbcaa64
ES
2493 }
2494
2495 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2496 root = btrfs_read_tree_root(tree_root, &location);
2497 if (IS_ERR(root)) {
2498 ret = PTR_ERR(root);
4bbcaa64
ES
2499 if (ret != -ENOENT)
2500 return ret;
2501 } else {
a4f3d2c4
DS
2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2503 fs_info->uuid_root = root;
4bbcaa64
ES
2504 }
2505
70f6d82e
OS
2506 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2507 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2508 root = btrfs_read_tree_root(tree_root, &location);
2509 if (IS_ERR(root))
2510 return PTR_ERR(root);
2511 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2512 fs_info->free_space_root = root;
2513 }
2514
4bbcaa64
ES
2515 return 0;
2516}
2517
ad2b2c80
AV
2518int open_ctree(struct super_block *sb,
2519 struct btrfs_fs_devices *fs_devices,
2520 char *options)
2e635a27 2521{
db94535d
CM
2522 u32 sectorsize;
2523 u32 nodesize;
87ee04eb 2524 u32 stripesize;
84234f3a 2525 u64 generation;
f2b636e8 2526 u64 features;
3de4586c 2527 struct btrfs_key location;
a061fc8d 2528 struct buffer_head *bh;
4d34b278 2529 struct btrfs_super_block *disk_super;
815745cf 2530 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2531 struct btrfs_root *tree_root;
4d34b278 2532 struct btrfs_root *chunk_root;
eb60ceac 2533 int ret;
e58ca020 2534 int err = -EINVAL;
af31f5e5
CM
2535 int num_backups_tried = 0;
2536 int backup_index = 0;
5cdc7ad3 2537 int max_active;
4543df7e 2538
74e4d827
DS
2539 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2540 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2541 if (!tree_root || !chunk_root) {
39279cc3
CM
2542 err = -ENOMEM;
2543 goto fail;
2544 }
76dda93c
YZ
2545
2546 ret = init_srcu_struct(&fs_info->subvol_srcu);
2547 if (ret) {
2548 err = ret;
2549 goto fail;
2550 }
2551
2552 ret = setup_bdi(fs_info, &fs_info->bdi);
2553 if (ret) {
2554 err = ret;
2555 goto fail_srcu;
2556 }
2557
908c7f19 2558 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2559 if (ret) {
2560 err = ret;
2561 goto fail_bdi;
2562 }
09cbfeaf 2563 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2564 (1 + ilog2(nr_cpu_ids));
2565
908c7f19 2566 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2567 if (ret) {
2568 err = ret;
2569 goto fail_dirty_metadata_bytes;
2570 }
2571
908c7f19 2572 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2573 if (ret) {
2574 err = ret;
2575 goto fail_delalloc_bytes;
2576 }
2577
76dda93c
YZ
2578 fs_info->btree_inode = new_inode(sb);
2579 if (!fs_info->btree_inode) {
2580 err = -ENOMEM;
c404e0dc 2581 goto fail_bio_counter;
76dda93c
YZ
2582 }
2583
a6591715 2584 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2585
76dda93c 2586 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2587 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2588 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2589 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2590 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2591 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2592 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2593 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2594 spin_lock_init(&fs_info->trans_lock);
76dda93c 2595 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2596 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2597 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2598 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2599 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2600 spin_lock_init(&fs_info->super_lock);
fcebe456 2601 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2602 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2603 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2604 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2605 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2606 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2607 mutex_init(&fs_info->reloc_mutex);
573bfb72 2608 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2609 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2610 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2611
0b86a832 2612 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2613 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2614 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2615 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2616 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2617 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2618 BTRFS_BLOCK_RSV_GLOBAL);
2619 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2620 BTRFS_BLOCK_RSV_DELALLOC);
2621 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2622 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2623 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2624 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2625 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2626 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2627 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2628 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2629 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2630 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2631 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2632 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2633 atomic64_set(&fs_info->tree_mod_seq, 0);
9e7cc91a 2634 fs_info->fs_frozen = 0;
e20d96d6 2635 fs_info->sb = sb;
95ac567a 2636 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2637 fs_info->metadata_ratio = 0;
4cb5300b 2638 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2639 fs_info->free_chunk_space = 0;
f29021b2 2640 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2641 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2642 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2643 /* readahead state */
d0164adc 2644 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2645 spin_lock_init(&fs_info->reada_lock);
c8b97818 2646
b34b086c
CM
2647 fs_info->thread_pool_size = min_t(unsigned long,
2648 num_online_cpus() + 2, 8);
0afbaf8c 2649
199c2a9c
MX
2650 INIT_LIST_HEAD(&fs_info->ordered_roots);
2651 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2652 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2653 GFP_KERNEL);
16cdcec7
MX
2654 if (!fs_info->delayed_root) {
2655 err = -ENOMEM;
2656 goto fail_iput;
2657 }
2658 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2659
638aa7ed 2660 btrfs_init_scrub(fs_info);
21adbd5c
SB
2661#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2662 fs_info->check_integrity_print_mask = 0;
2663#endif
779a65a4 2664 btrfs_init_balance(fs_info);
21c7e756 2665 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2666
a061fc8d
CM
2667 sb->s_blocksize = 4096;
2668 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2669 sb->s_bdi = &fs_info->bdi;
a061fc8d 2670
f37938e0 2671 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2672
0f9dd46c 2673 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2674 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2675 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2676
11833d66 2677 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2678 fs_info->btree_inode->i_mapping);
11833d66 2679 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2680 fs_info->btree_inode->i_mapping);
11833d66 2681 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2682 fs_info->do_barriers = 1;
e18e4809 2683
39279cc3 2684
5a3f23d5 2685 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2686 mutex_init(&fs_info->tree_log_mutex);
925baedd 2687 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2688 mutex_init(&fs_info->transaction_kthread_mutex);
2689 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2690 mutex_init(&fs_info->volume_mutex);
1bbc621e 2691 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2692 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2693 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2694 init_rwsem(&fs_info->subvol_sem);
803b2f54 2695 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2696
ad618368 2697 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2698 btrfs_init_qgroup(fs_info);
416ac51d 2699
fa9c0d79
CM
2700 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2701 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2702
e6dcd2dc 2703 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2704 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2705 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2706 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2707
04216820
FM
2708 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2709
53b381b3
DW
2710 ret = btrfs_alloc_stripe_hash_table(fs_info);
2711 if (ret) {
83c8266a 2712 err = ret;
53b381b3
DW
2713 goto fail_alloc;
2714 }
2715
707e8a07 2716 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2717 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2718
3c4bb26b 2719 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2720
2721 /*
2722 * Read super block and check the signature bytes only
2723 */
a512bbf8 2724 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2725 if (IS_ERR(bh)) {
2726 err = PTR_ERR(bh);
16cdcec7 2727 goto fail_alloc;
20b45077 2728 }
39279cc3 2729
1104a885
DS
2730 /*
2731 * We want to check superblock checksum, the type is stored inside.
2732 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2733 */
2734 if (btrfs_check_super_csum(bh->b_data)) {
05135f59 2735 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2736 err = -EINVAL;
b2acdddf 2737 brelse(bh);
1104a885
DS
2738 goto fail_alloc;
2739 }
2740
2741 /*
2742 * super_copy is zeroed at allocation time and we never touch the
2743 * following bytes up to INFO_SIZE, the checksum is calculated from
2744 * the whole block of INFO_SIZE
2745 */
6c41761f
DS
2746 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2747 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2748 sizeof(*fs_info->super_for_commit));
a061fc8d 2749 brelse(bh);
5f39d397 2750
6c41761f 2751 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2752
1104a885
DS
2753 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2754 if (ret) {
05135f59 2755 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2756 err = -EINVAL;
2757 goto fail_alloc;
2758 }
2759
6c41761f 2760 disk_super = fs_info->super_copy;
0f7d52f4 2761 if (!btrfs_super_root(disk_super))
16cdcec7 2762 goto fail_alloc;
0f7d52f4 2763
acce952b 2764 /* check FS state, whether FS is broken. */
87533c47
MX
2765 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2766 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2767
af31f5e5
CM
2768 /*
2769 * run through our array of backup supers and setup
2770 * our ring pointer to the oldest one
2771 */
2772 generation = btrfs_super_generation(disk_super);
2773 find_oldest_super_backup(fs_info, generation);
2774
75e7cb7f
LB
2775 /*
2776 * In the long term, we'll store the compression type in the super
2777 * block, and it'll be used for per file compression control.
2778 */
2779 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2780
96da0919 2781 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2b82032c
YZ
2782 if (ret) {
2783 err = ret;
16cdcec7 2784 goto fail_alloc;
2b82032c 2785 }
dfe25020 2786
f2b636e8
JB
2787 features = btrfs_super_incompat_flags(disk_super) &
2788 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2789 if (features) {
05135f59
DS
2790 btrfs_err(fs_info,
2791 "cannot mount because of unsupported optional features (%llx)",
2792 features);
f2b636e8 2793 err = -EINVAL;
16cdcec7 2794 goto fail_alloc;
f2b636e8
JB
2795 }
2796
5d4f98a2 2797 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2798 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2799 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2800 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2801
3173a18f 2802 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2803 btrfs_info(fs_info, "has skinny extents");
3173a18f 2804
727011e0
CM
2805 /*
2806 * flag our filesystem as having big metadata blocks if
2807 * they are bigger than the page size
2808 */
09cbfeaf 2809 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2810 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2811 btrfs_info(fs_info,
2812 "flagging fs with big metadata feature");
727011e0
CM
2813 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2814 }
2815
bc3f116f 2816 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2817 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2818 stripesize = sectorsize;
707e8a07 2819 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2820 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2821
2822 /*
2823 * mixed block groups end up with duplicate but slightly offset
2824 * extent buffers for the same range. It leads to corruptions
2825 */
2826 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2827 (sectorsize != nodesize)) {
05135f59
DS
2828 btrfs_err(fs_info,
2829"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2830 nodesize, sectorsize);
bc3f116f
CM
2831 goto fail_alloc;
2832 }
2833
ceda0864
MX
2834 /*
2835 * Needn't use the lock because there is no other task which will
2836 * update the flag.
2837 */
a6fa6fae 2838 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2839
f2b636e8
JB
2840 features = btrfs_super_compat_ro_flags(disk_super) &
2841 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2842 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2843 btrfs_err(fs_info,
2844 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2845 features);
f2b636e8 2846 err = -EINVAL;
16cdcec7 2847 goto fail_alloc;
f2b636e8 2848 }
61d92c32 2849
5cdc7ad3 2850 max_active = fs_info->thread_pool_size;
61d92c32 2851
2a458198
ES
2852 ret = btrfs_init_workqueues(fs_info, fs_devices);
2853 if (ret) {
2854 err = ret;
0dc3b84a
JB
2855 goto fail_sb_buffer;
2856 }
4543df7e 2857
4575c9cc 2858 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2859 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
09cbfeaf 2860 SZ_4M / PAGE_SIZE);
4575c9cc 2861
db94535d 2862 tree_root->nodesize = nodesize;
db94535d 2863 tree_root->sectorsize = sectorsize;
87ee04eb 2864 tree_root->stripesize = stripesize;
a061fc8d
CM
2865
2866 sb->s_blocksize = sectorsize;
2867 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2868
925baedd 2869 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2870 ret = btrfs_read_sys_array(tree_root);
925baedd 2871 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2872 if (ret) {
05135f59 2873 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2874 goto fail_sb_buffer;
84eed90f 2875 }
0b86a832 2876
84234f3a 2877 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2878
707e8a07
DS
2879 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2880 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2881
2882 chunk_root->node = read_tree_block(chunk_root,
2883 btrfs_super_chunk_root(disk_super),
ce86cd59 2884 generation);
64c043de
LB
2885 if (IS_ERR(chunk_root->node) ||
2886 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2887 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2888 if (!IS_ERR(chunk_root->node))
2889 free_extent_buffer(chunk_root->node);
95ab1f64 2890 chunk_root->node = NULL;
af31f5e5 2891 goto fail_tree_roots;
83121942 2892 }
5d4f98a2
YZ
2893 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2894 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2895
e17cade2 2896 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2897 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2898
0b86a832 2899 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2900 if (ret) {
05135f59 2901 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2902 goto fail_tree_roots;
2b82032c 2903 }
0b86a832 2904
8dabb742
SB
2905 /*
2906 * keep the device that is marked to be the target device for the
2907 * dev_replace procedure
2908 */
9eaed21e 2909 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2910
a6b0d5c8 2911 if (!fs_devices->latest_bdev) {
05135f59 2912 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2913 goto fail_tree_roots;
2914 }
2915
af31f5e5 2916retry_root_backup:
84234f3a 2917 generation = btrfs_super_generation(disk_super);
0b86a832 2918
e20d96d6 2919 tree_root->node = read_tree_block(tree_root,
db94535d 2920 btrfs_super_root(disk_super),
ce86cd59 2921 generation);
64c043de
LB
2922 if (IS_ERR(tree_root->node) ||
2923 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2924 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2925 if (!IS_ERR(tree_root->node))
2926 free_extent_buffer(tree_root->node);
95ab1f64 2927 tree_root->node = NULL;
af31f5e5 2928 goto recovery_tree_root;
83121942 2929 }
af31f5e5 2930
5d4f98a2
YZ
2931 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2932 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2933 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2934
f32e48e9
CR
2935 mutex_lock(&tree_root->objectid_mutex);
2936 ret = btrfs_find_highest_objectid(tree_root,
2937 &tree_root->highest_objectid);
2938 if (ret) {
2939 mutex_unlock(&tree_root->objectid_mutex);
2940 goto recovery_tree_root;
2941 }
2942
2943 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2944
2945 mutex_unlock(&tree_root->objectid_mutex);
2946
4bbcaa64
ES
2947 ret = btrfs_read_roots(fs_info, tree_root);
2948 if (ret)
af31f5e5 2949 goto recovery_tree_root;
f7a81ea4 2950
8929ecfa
YZ
2951 fs_info->generation = generation;
2952 fs_info->last_trans_committed = generation;
8929ecfa 2953
68310a5e
ID
2954 ret = btrfs_recover_balance(fs_info);
2955 if (ret) {
05135f59 2956 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2957 goto fail_block_groups;
2958 }
2959
733f4fbb
SB
2960 ret = btrfs_init_dev_stats(fs_info);
2961 if (ret) {
05135f59 2962 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
2963 goto fail_block_groups;
2964 }
2965
8dabb742
SB
2966 ret = btrfs_init_dev_replace(fs_info);
2967 if (ret) {
05135f59 2968 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
2969 goto fail_block_groups;
2970 }
2971
9eaed21e 2972 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2973
b7c35e81
AJ
2974 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2975 if (ret) {
05135f59
DS
2976 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2977 ret);
b7c35e81
AJ
2978 goto fail_block_groups;
2979 }
2980
2981 ret = btrfs_sysfs_add_device(fs_devices);
2982 if (ret) {
05135f59
DS
2983 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2984 ret);
b7c35e81
AJ
2985 goto fail_fsdev_sysfs;
2986 }
2987
96f3136e 2988 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2989 if (ret) {
05135f59 2990 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 2991 goto fail_fsdev_sysfs;
c59021f8 2992 }
2993
c59021f8 2994 ret = btrfs_init_space_info(fs_info);
2995 if (ret) {
05135f59 2996 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 2997 goto fail_sysfs;
c59021f8 2998 }
2999
4bbcaa64 3000 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 3001 if (ret) {
05135f59 3002 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3003 goto fail_sysfs;
1b1d1f66 3004 }
5af3e8cc
SB
3005 fs_info->num_tolerated_disk_barrier_failures =
3006 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3007 if (fs_info->fs_devices->missing_devices >
3008 fs_info->num_tolerated_disk_barrier_failures &&
3009 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3010 btrfs_warn(fs_info,
3011"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3012 fs_info->fs_devices->missing_devices,
3013 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3014 goto fail_sysfs;
292fd7fc 3015 }
9078a3e1 3016
a74a4b97
CM
3017 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3018 "btrfs-cleaner");
57506d50 3019 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3020 goto fail_sysfs;
a74a4b97
CM
3021
3022 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3023 tree_root,
3024 "btrfs-transaction");
57506d50 3025 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3026 goto fail_cleaner;
a74a4b97 3027
3cdde224
JM
3028 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3029 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
c289811c 3030 !fs_info->fs_devices->rotating) {
05135f59 3031 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3032 btrfs_set_opt(fs_info->mount_opt, SSD);
3033 }
3034
572d9ab7 3035 /*
01327610 3036 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3037 * not have to wait for transaction commit
3038 */
3039 btrfs_apply_pending_changes(fs_info);
3818aea2 3040
21adbd5c 3041#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 3042 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
21adbd5c 3043 ret = btrfsic_mount(tree_root, fs_devices,
3cdde224 3044 btrfs_test_opt(tree_root->fs_info,
21adbd5c
SB
3045 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3046 1 : 0,
3047 fs_info->check_integrity_print_mask);
3048 if (ret)
05135f59
DS
3049 btrfs_warn(fs_info,
3050 "failed to initialize integrity check module: %d",
3051 ret);
21adbd5c
SB
3052 }
3053#endif
bcef60f2
AJ
3054 ret = btrfs_read_qgroup_config(fs_info);
3055 if (ret)
3056 goto fail_trans_kthread;
21adbd5c 3057
96da0919
QW
3058 /* do not make disk changes in broken FS or nologreplay is given */
3059 if (btrfs_super_log_root(disk_super) != 0 &&
3cdde224 3060 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
63443bf5 3061 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3062 if (ret) {
63443bf5 3063 err = ret;
28c16cbb 3064 goto fail_qgroup;
79787eaa 3065 }
e02119d5 3066 }
1a40e23b 3067
76dda93c 3068 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3069 if (ret)
28c16cbb 3070 goto fail_qgroup;
76dda93c 3071
7c2ca468 3072 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3073 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3074 if (ret)
28c16cbb 3075 goto fail_qgroup;
90c711ab
ZB
3076
3077 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3078 ret = btrfs_recover_relocation(tree_root);
90c711ab 3079 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3080 if (ret < 0) {
05135f59
DS
3081 btrfs_warn(fs_info, "failed to recover relocation: %d",
3082 ret);
d7ce5843 3083 err = -EINVAL;
bcef60f2 3084 goto fail_qgroup;
d7ce5843 3085 }
7c2ca468 3086 }
1a40e23b 3087
3de4586c
CM
3088 location.objectid = BTRFS_FS_TREE_OBJECTID;
3089 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3090 location.offset = 0;
3de4586c 3091
3de4586c 3092 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3093 if (IS_ERR(fs_info->fs_root)) {
3094 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3095 goto fail_qgroup;
3140c9a3 3096 }
c289811c 3097
2b6ba629
ID
3098 if (sb->s_flags & MS_RDONLY)
3099 return 0;
59641015 3100
3cdde224 3101 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
511711af 3102 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3103 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3104 ret = btrfs_create_free_space_tree(fs_info);
3105 if (ret) {
05135f59
DS
3106 btrfs_warn(fs_info,
3107 "failed to create free space tree: %d", ret);
511711af
CM
3108 close_ctree(tree_root);
3109 return ret;
3110 }
3111 }
3112
2b6ba629
ID
3113 down_read(&fs_info->cleanup_work_sem);
3114 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3115 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3116 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3117 close_ctree(tree_root);
3118 return ret;
3119 }
3120 up_read(&fs_info->cleanup_work_sem);
59641015 3121
2b6ba629
ID
3122 ret = btrfs_resume_balance_async(fs_info);
3123 if (ret) {
05135f59 3124 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
2b6ba629
ID
3125 close_ctree(tree_root);
3126 return ret;
e3acc2a6
JB
3127 }
3128
8dabb742
SB
3129 ret = btrfs_resume_dev_replace_async(fs_info);
3130 if (ret) {
05135f59 3131 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
8dabb742
SB
3132 close_ctree(tree_root);
3133 return ret;
3134 }
3135
b382a324
JS
3136 btrfs_qgroup_rescan_resume(fs_info);
3137
3cdde224 3138 if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
70f6d82e 3139 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3140 btrfs_info(fs_info, "clearing free space tree");
70f6d82e
OS
3141 ret = btrfs_clear_free_space_tree(fs_info);
3142 if (ret) {
05135f59
DS
3143 btrfs_warn(fs_info,
3144 "failed to clear free space tree: %d", ret);
70f6d82e
OS
3145 close_ctree(tree_root);
3146 return ret;
3147 }
3148 }
3149
4bbcaa64 3150 if (!fs_info->uuid_root) {
05135f59 3151 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3152 ret = btrfs_create_uuid_tree(fs_info);
3153 if (ret) {
05135f59
DS
3154 btrfs_warn(fs_info,
3155 "failed to create the UUID tree: %d", ret);
f7a81ea4
SB
3156 close_ctree(tree_root);
3157 return ret;
3158 }
3cdde224 3159 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3160 fs_info->generation !=
3161 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3162 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3163 ret = btrfs_check_uuid_tree(fs_info);
3164 if (ret) {
05135f59
DS
3165 btrfs_warn(fs_info,
3166 "failed to check the UUID tree: %d", ret);
70f80175
SB
3167 close_ctree(tree_root);
3168 return ret;
3169 }
3170 } else {
3171 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3172 }
3173
47ab2a6c
JB
3174 fs_info->open = 1;
3175
8dcddfa0
QW
3176 /*
3177 * backuproot only affect mount behavior, and if open_ctree succeeded,
3178 * no need to keep the flag
3179 */
3180 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3181
ad2b2c80 3182 return 0;
39279cc3 3183
bcef60f2
AJ
3184fail_qgroup:
3185 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3186fail_trans_kthread:
3187 kthread_stop(fs_info->transaction_kthread);
54067ae9 3188 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3189 btrfs_free_fs_roots(fs_info);
3f157a2f 3190fail_cleaner:
a74a4b97 3191 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3192
3193 /*
3194 * make sure we're done with the btree inode before we stop our
3195 * kthreads
3196 */
3197 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3198
2365dd3c 3199fail_sysfs:
6618a59b 3200 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3201
b7c35e81
AJ
3202fail_fsdev_sysfs:
3203 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3204
1b1d1f66 3205fail_block_groups:
54067ae9 3206 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3207 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3208
3209fail_tree_roots:
3210 free_root_pointers(fs_info, 1);
2b8195bb 3211 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3212
39279cc3 3213fail_sb_buffer:
7abadb64 3214 btrfs_stop_all_workers(fs_info);
16cdcec7 3215fail_alloc:
4543df7e 3216fail_iput:
586e46e2
ID
3217 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3218
4543df7e 3219 iput(fs_info->btree_inode);
c404e0dc
MX
3220fail_bio_counter:
3221 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3222fail_delalloc_bytes:
3223 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3224fail_dirty_metadata_bytes:
3225 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3226fail_bdi:
7e662854 3227 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3228fail_srcu:
3229 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3230fail:
53b381b3 3231 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3232 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3233 return err;
af31f5e5
CM
3234
3235recovery_tree_root:
3cdde224 3236 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
af31f5e5
CM
3237 goto fail_tree_roots;
3238
3239 free_root_pointers(fs_info, 0);
3240
3241 /* don't use the log in recovery mode, it won't be valid */
3242 btrfs_set_super_log_root(disk_super, 0);
3243
3244 /* we can't trust the free space cache either */
3245 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3246
3247 ret = next_root_backup(fs_info, fs_info->super_copy,
3248 &num_backups_tried, &backup_index);
3249 if (ret == -1)
3250 goto fail_block_groups;
3251 goto retry_root_backup;
eb60ceac
CM
3252}
3253
f2984462
CM
3254static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3255{
f2984462
CM
3256 if (uptodate) {
3257 set_buffer_uptodate(bh);
3258 } else {
442a4f63
SB
3259 struct btrfs_device *device = (struct btrfs_device *)
3260 bh->b_private;
3261
b14af3b4
DS
3262 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3263 "lost page write due to IO error on %s",
606686ee 3264 rcu_str_deref(device->name));
01327610 3265 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3266 * our own ways of dealing with the IO errors
3267 */
f2984462 3268 clear_buffer_uptodate(bh);
442a4f63 3269 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3270 }
3271 unlock_buffer(bh);
3272 put_bh(bh);
3273}
3274
29c36d72
AJ
3275int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3276 struct buffer_head **bh_ret)
3277{
3278 struct buffer_head *bh;
3279 struct btrfs_super_block *super;
3280 u64 bytenr;
3281
3282 bytenr = btrfs_sb_offset(copy_num);
3283 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3284 return -EINVAL;
3285
3286 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3287 /*
3288 * If we fail to read from the underlying devices, as of now
3289 * the best option we have is to mark it EIO.
3290 */
3291 if (!bh)
3292 return -EIO;
3293
3294 super = (struct btrfs_super_block *)bh->b_data;
3295 if (btrfs_super_bytenr(super) != bytenr ||
3296 btrfs_super_magic(super) != BTRFS_MAGIC) {
3297 brelse(bh);
3298 return -EINVAL;
3299 }
3300
3301 *bh_ret = bh;
3302 return 0;
3303}
3304
3305
a512bbf8
YZ
3306struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3307{
3308 struct buffer_head *bh;
3309 struct buffer_head *latest = NULL;
3310 struct btrfs_super_block *super;
3311 int i;
3312 u64 transid = 0;
92fc03fb 3313 int ret = -EINVAL;
a512bbf8
YZ
3314
3315 /* we would like to check all the supers, but that would make
3316 * a btrfs mount succeed after a mkfs from a different FS.
3317 * So, we need to add a special mount option to scan for
3318 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3319 */
3320 for (i = 0; i < 1; i++) {
29c36d72
AJ
3321 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3322 if (ret)
a512bbf8
YZ
3323 continue;
3324
3325 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3326
3327 if (!latest || btrfs_super_generation(super) > transid) {
3328 brelse(latest);
3329 latest = bh;
3330 transid = btrfs_super_generation(super);
3331 } else {
3332 brelse(bh);
3333 }
3334 }
92fc03fb
AJ
3335
3336 if (!latest)
3337 return ERR_PTR(ret);
3338
a512bbf8
YZ
3339 return latest;
3340}
3341
4eedeb75
HH
3342/*
3343 * this should be called twice, once with wait == 0 and
3344 * once with wait == 1. When wait == 0 is done, all the buffer heads
3345 * we write are pinned.
3346 *
3347 * They are released when wait == 1 is done.
3348 * max_mirrors must be the same for both runs, and it indicates how
3349 * many supers on this one device should be written.
3350 *
3351 * max_mirrors == 0 means to write them all.
3352 */
a512bbf8
YZ
3353static int write_dev_supers(struct btrfs_device *device,
3354 struct btrfs_super_block *sb,
3355 int do_barriers, int wait, int max_mirrors)
3356{
3357 struct buffer_head *bh;
3358 int i;
3359 int ret;
3360 int errors = 0;
3361 u32 crc;
3362 u64 bytenr;
a512bbf8
YZ
3363
3364 if (max_mirrors == 0)
3365 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3366
a512bbf8
YZ
3367 for (i = 0; i < max_mirrors; i++) {
3368 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3369 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3370 device->commit_total_bytes)
a512bbf8
YZ
3371 break;
3372
3373 if (wait) {
3374 bh = __find_get_block(device->bdev, bytenr / 4096,
3375 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3376 if (!bh) {
3377 errors++;
3378 continue;
3379 }
a512bbf8 3380 wait_on_buffer(bh);
4eedeb75
HH
3381 if (!buffer_uptodate(bh))
3382 errors++;
3383
3384 /* drop our reference */
3385 brelse(bh);
3386
3387 /* drop the reference from the wait == 0 run */
3388 brelse(bh);
3389 continue;
a512bbf8
YZ
3390 } else {
3391 btrfs_set_super_bytenr(sb, bytenr);
3392
3393 crc = ~(u32)0;
b0496686 3394 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3395 BTRFS_CSUM_SIZE, crc,
3396 BTRFS_SUPER_INFO_SIZE -
3397 BTRFS_CSUM_SIZE);
3398 btrfs_csum_final(crc, sb->csum);
3399
4eedeb75
HH
3400 /*
3401 * one reference for us, and we leave it for the
3402 * caller
3403 */
a512bbf8
YZ
3404 bh = __getblk(device->bdev, bytenr / 4096,
3405 BTRFS_SUPER_INFO_SIZE);
634554dc 3406 if (!bh) {
f14d104d
DS
3407 btrfs_err(device->dev_root->fs_info,
3408 "couldn't get super buffer head for bytenr %llu",
3409 bytenr);
634554dc
JB
3410 errors++;
3411 continue;
3412 }
3413
a512bbf8
YZ
3414 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3415
4eedeb75 3416 /* one reference for submit_bh */
a512bbf8 3417 get_bh(bh);
4eedeb75
HH
3418
3419 set_buffer_uptodate(bh);
a512bbf8
YZ
3420 lock_buffer(bh);
3421 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3422 bh->b_private = device;
a512bbf8
YZ
3423 }
3424
387125fc
CM
3425 /*
3426 * we fua the first super. The others we allow
3427 * to go down lazy.
3428 */
e8117c26
WS
3429 if (i == 0)
3430 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3431 else
3432 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3433 if (ret)
a512bbf8 3434 errors++;
a512bbf8
YZ
3435 }
3436 return errors < i ? 0 : -1;
3437}
3438
387125fc
CM
3439/*
3440 * endio for the write_dev_flush, this will wake anyone waiting
3441 * for the barrier when it is done
3442 */
4246a0b6 3443static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3444{
387125fc
CM
3445 if (bio->bi_private)
3446 complete(bio->bi_private);
3447 bio_put(bio);
3448}
3449
3450/*
3451 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3452 * sent down. With wait == 1, it waits for the previous flush.
3453 *
3454 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3455 * capable
3456 */
3457static int write_dev_flush(struct btrfs_device *device, int wait)
3458{
3459 struct bio *bio;
3460 int ret = 0;
3461
3462 if (device->nobarriers)
3463 return 0;
3464
3465 if (wait) {
3466 bio = device->flush_bio;
3467 if (!bio)
3468 return 0;
3469
3470 wait_for_completion(&device->flush_wait);
3471
4246a0b6
CH
3472 if (bio->bi_error) {
3473 ret = bio->bi_error;
5af3e8cc
SB
3474 btrfs_dev_stat_inc_and_print(device,
3475 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3476 }
3477
3478 /* drop the reference from the wait == 0 run */
3479 bio_put(bio);
3480 device->flush_bio = NULL;
3481
3482 return ret;
3483 }
3484
3485 /*
3486 * one reference for us, and we leave it for the
3487 * caller
3488 */
9c017abc 3489 device->flush_bio = NULL;
9be3395b 3490 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3491 if (!bio)
3492 return -ENOMEM;
3493
3494 bio->bi_end_io = btrfs_end_empty_barrier;
3495 bio->bi_bdev = device->bdev;
3496 init_completion(&device->flush_wait);
3497 bio->bi_private = &device->flush_wait;
3498 device->flush_bio = bio;
3499
3500 bio_get(bio);
21adbd5c 3501 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3502
3503 return 0;
3504}
3505
3506/*
3507 * send an empty flush down to each device in parallel,
3508 * then wait for them
3509 */
3510static int barrier_all_devices(struct btrfs_fs_info *info)
3511{
3512 struct list_head *head;
3513 struct btrfs_device *dev;
5af3e8cc
SB
3514 int errors_send = 0;
3515 int errors_wait = 0;
387125fc
CM
3516 int ret;
3517
3518 /* send down all the barriers */
3519 head = &info->fs_devices->devices;
3520 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3521 if (dev->missing)
3522 continue;
387125fc 3523 if (!dev->bdev) {
5af3e8cc 3524 errors_send++;
387125fc
CM
3525 continue;
3526 }
3527 if (!dev->in_fs_metadata || !dev->writeable)
3528 continue;
3529
3530 ret = write_dev_flush(dev, 0);
3531 if (ret)
5af3e8cc 3532 errors_send++;
387125fc
CM
3533 }
3534
3535 /* wait for all the barriers */
3536 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3537 if (dev->missing)
3538 continue;
387125fc 3539 if (!dev->bdev) {
5af3e8cc 3540 errors_wait++;
387125fc
CM
3541 continue;
3542 }
3543 if (!dev->in_fs_metadata || !dev->writeable)
3544 continue;
3545
3546 ret = write_dev_flush(dev, 1);
3547 if (ret)
5af3e8cc 3548 errors_wait++;
387125fc 3549 }
5af3e8cc
SB
3550 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3551 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3552 return -EIO;
3553 return 0;
3554}
3555
943c6e99
ZL
3556int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3557{
8789f4fe
ZL
3558 int raid_type;
3559 int min_tolerated = INT_MAX;
943c6e99 3560
8789f4fe
ZL
3561 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3562 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3563 min_tolerated = min(min_tolerated,
3564 btrfs_raid_array[BTRFS_RAID_SINGLE].
3565 tolerated_failures);
943c6e99 3566
8789f4fe
ZL
3567 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3568 if (raid_type == BTRFS_RAID_SINGLE)
3569 continue;
3570 if (!(flags & btrfs_raid_group[raid_type]))
3571 continue;
3572 min_tolerated = min(min_tolerated,
3573 btrfs_raid_array[raid_type].
3574 tolerated_failures);
3575 }
943c6e99 3576
8789f4fe
ZL
3577 if (min_tolerated == INT_MAX) {
3578 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3579 min_tolerated = 0;
3580 }
3581
3582 return min_tolerated;
943c6e99
ZL
3583}
3584
5af3e8cc
SB
3585int btrfs_calc_num_tolerated_disk_barrier_failures(
3586 struct btrfs_fs_info *fs_info)
3587{
3588 struct btrfs_ioctl_space_info space;
3589 struct btrfs_space_info *sinfo;
3590 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3591 BTRFS_BLOCK_GROUP_SYSTEM,
3592 BTRFS_BLOCK_GROUP_METADATA,
3593 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3594 int i;
3595 int c;
3596 int num_tolerated_disk_barrier_failures =
3597 (int)fs_info->fs_devices->num_devices;
3598
2c458045 3599 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3600 struct btrfs_space_info *tmp;
3601
3602 sinfo = NULL;
3603 rcu_read_lock();
3604 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3605 if (tmp->flags == types[i]) {
3606 sinfo = tmp;
3607 break;
3608 }
3609 }
3610 rcu_read_unlock();
3611
3612 if (!sinfo)
3613 continue;
3614
3615 down_read(&sinfo->groups_sem);
3616 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3617 u64 flags;
3618
3619 if (list_empty(&sinfo->block_groups[c]))
3620 continue;
3621
3622 btrfs_get_block_group_info(&sinfo->block_groups[c],
3623 &space);
3624 if (space.total_bytes == 0 || space.used_bytes == 0)
3625 continue;
3626 flags = space.flags;
943c6e99
ZL
3627
3628 num_tolerated_disk_barrier_failures = min(
3629 num_tolerated_disk_barrier_failures,
3630 btrfs_get_num_tolerated_disk_barrier_failures(
3631 flags));
5af3e8cc
SB
3632 }
3633 up_read(&sinfo->groups_sem);
3634 }
3635
3636 return num_tolerated_disk_barrier_failures;
3637}
3638
48a3b636 3639static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3640{
e5e9a520 3641 struct list_head *head;
f2984462 3642 struct btrfs_device *dev;
a061fc8d 3643 struct btrfs_super_block *sb;
f2984462 3644 struct btrfs_dev_item *dev_item;
f2984462
CM
3645 int ret;
3646 int do_barriers;
a236aed1
CM
3647 int max_errors;
3648 int total_errors = 0;
a061fc8d 3649 u64 flags;
f2984462 3650
3cdde224 3651 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
af31f5e5 3652 backup_super_roots(root->fs_info);
f2984462 3653
6c41761f 3654 sb = root->fs_info->super_for_commit;
a061fc8d 3655 dev_item = &sb->dev_item;
e5e9a520 3656
174ba509 3657 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3658 head = &root->fs_info->fs_devices->devices;
d7306801 3659 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3660
5af3e8cc
SB
3661 if (do_barriers) {
3662 ret = barrier_all_devices(root->fs_info);
3663 if (ret) {
3664 mutex_unlock(
3665 &root->fs_info->fs_devices->device_list_mutex);
34d97007 3666 btrfs_handle_fs_error(root->fs_info, ret,
5af3e8cc
SB
3667 "errors while submitting device barriers.");
3668 return ret;
3669 }
3670 }
387125fc 3671
1f78160c 3672 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3673 if (!dev->bdev) {
3674 total_errors++;
3675 continue;
3676 }
2b82032c 3677 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3678 continue;
3679
2b82032c 3680 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3681 btrfs_set_stack_device_type(dev_item, dev->type);
3682 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3683 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3684 dev->commit_total_bytes);
ce7213c7
MX
3685 btrfs_set_stack_device_bytes_used(dev_item,
3686 dev->commit_bytes_used);
a061fc8d
CM
3687 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3688 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3689 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3690 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3691 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3692
a061fc8d
CM
3693 flags = btrfs_super_flags(sb);
3694 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3695
a512bbf8 3696 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3697 if (ret)
3698 total_errors++;
f2984462 3699 }
a236aed1 3700 if (total_errors > max_errors) {
efe120a0 3701 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3702 total_errors);
a724b436 3703 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3704
9d565ba4 3705 /* FUA is masked off if unsupported and can't be the reason */
34d97007 3706 btrfs_handle_fs_error(root->fs_info, -EIO,
9d565ba4
SB
3707 "%d errors while writing supers", total_errors);
3708 return -EIO;
a236aed1 3709 }
f2984462 3710
a512bbf8 3711 total_errors = 0;
1f78160c 3712 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3713 if (!dev->bdev)
3714 continue;
2b82032c 3715 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3716 continue;
3717
a512bbf8
YZ
3718 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3719 if (ret)
3720 total_errors++;
f2984462 3721 }
174ba509 3722 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3723 if (total_errors > max_errors) {
34d97007 3724 btrfs_handle_fs_error(root->fs_info, -EIO,
79787eaa
JM
3725 "%d errors while writing supers", total_errors);
3726 return -EIO;
a236aed1 3727 }
f2984462
CM
3728 return 0;
3729}
3730
a512bbf8
YZ
3731int write_ctree_super(struct btrfs_trans_handle *trans,
3732 struct btrfs_root *root, int max_mirrors)
eb60ceac 3733{
f570e757 3734 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3735}
3736
cb517eab
MX
3737/* Drop a fs root from the radix tree and free it. */
3738void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3739 struct btrfs_root *root)
2619ba1f 3740{
4df27c4d 3741 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3742 radix_tree_delete(&fs_info->fs_roots_radix,
3743 (unsigned long)root->root_key.objectid);
4df27c4d 3744 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3745
3746 if (btrfs_root_refs(&root->root_item) == 0)
3747 synchronize_srcu(&fs_info->subvol_srcu);
3748
1c1ea4f7 3749 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3750 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3751 if (root->reloc_root) {
3752 free_extent_buffer(root->reloc_root->node);
3753 free_extent_buffer(root->reloc_root->commit_root);
3754 btrfs_put_fs_root(root->reloc_root);
3755 root->reloc_root = NULL;
3756 }
3757 }
3321719e 3758
faa2dbf0
JB
3759 if (root->free_ino_pinned)
3760 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3761 if (root->free_ino_ctl)
3762 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3763 free_fs_root(root);
4df27c4d
YZ
3764}
3765
3766static void free_fs_root(struct btrfs_root *root)
3767{
57cdc8db 3768 iput(root->ino_cache_inode);
4df27c4d 3769 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3770 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3771 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3772 if (root->anon_dev)
3773 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3774 if (root->subv_writers)
3775 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3776 free_extent_buffer(root->node);
3777 free_extent_buffer(root->commit_root);
581bb050
LZ
3778 kfree(root->free_ino_ctl);
3779 kfree(root->free_ino_pinned);
d397712b 3780 kfree(root->name);
b0feb9d9 3781 btrfs_put_fs_root(root);
2619ba1f
CM
3782}
3783
cb517eab
MX
3784void btrfs_free_fs_root(struct btrfs_root *root)
3785{
3786 free_fs_root(root);
2619ba1f
CM
3787}
3788
c146afad 3789int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3790{
c146afad
YZ
3791 u64 root_objectid = 0;
3792 struct btrfs_root *gang[8];
65d33fd7
QW
3793 int i = 0;
3794 int err = 0;
3795 unsigned int ret = 0;
3796 int index;
e089f05c 3797
c146afad 3798 while (1) {
65d33fd7 3799 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3800 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3801 (void **)gang, root_objectid,
3802 ARRAY_SIZE(gang));
65d33fd7
QW
3803 if (!ret) {
3804 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3805 break;
65d33fd7 3806 }
5d4f98a2 3807 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3808
c146afad 3809 for (i = 0; i < ret; i++) {
65d33fd7
QW
3810 /* Avoid to grab roots in dead_roots */
3811 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3812 gang[i] = NULL;
3813 continue;
3814 }
3815 /* grab all the search result for later use */
3816 gang[i] = btrfs_grab_fs_root(gang[i]);
3817 }
3818 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3819
65d33fd7
QW
3820 for (i = 0; i < ret; i++) {
3821 if (!gang[i])
3822 continue;
c146afad 3823 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3824 err = btrfs_orphan_cleanup(gang[i]);
3825 if (err)
65d33fd7
QW
3826 break;
3827 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3828 }
3829 root_objectid++;
3830 }
65d33fd7
QW
3831
3832 /* release the uncleaned roots due to error */
3833 for (; i < ret; i++) {
3834 if (gang[i])
3835 btrfs_put_fs_root(gang[i]);
3836 }
3837 return err;
c146afad 3838}
a2135011 3839
c146afad
YZ
3840int btrfs_commit_super(struct btrfs_root *root)
3841{
3842 struct btrfs_trans_handle *trans;
a74a4b97 3843
c146afad 3844 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3845 btrfs_run_delayed_iputs(root);
c146afad 3846 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3847 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3848
3849 /* wait until ongoing cleanup work done */
3850 down_write(&root->fs_info->cleanup_work_sem);
3851 up_write(&root->fs_info->cleanup_work_sem);
3852
7a7eaa40 3853 trans = btrfs_join_transaction(root);
3612b495
TI
3854 if (IS_ERR(trans))
3855 return PTR_ERR(trans);
d52c1bcc 3856 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3857}
3858
3abdbd78 3859void close_ctree(struct btrfs_root *root)
c146afad
YZ
3860{
3861 struct btrfs_fs_info *fs_info = root->fs_info;
3862 int ret;
3863
3864 fs_info->closing = 1;
3865 smp_mb();
3866
7343dd61 3867 /* wait for the qgroup rescan worker to stop */
d06f23d6 3868 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3869
803b2f54
SB
3870 /* wait for the uuid_scan task to finish */
3871 down(&fs_info->uuid_tree_rescan_sem);
3872 /* avoid complains from lockdep et al., set sem back to initial state */
3873 up(&fs_info->uuid_tree_rescan_sem);
3874
837d5b6e 3875 /* pause restriper - we want to resume on mount */
aa1b8cd4 3876 btrfs_pause_balance(fs_info);
837d5b6e 3877
8dabb742
SB
3878 btrfs_dev_replace_suspend_for_unmount(fs_info);
3879
aa1b8cd4 3880 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3881
3882 /* wait for any defraggers to finish */
3883 wait_event(fs_info->transaction_wait,
3884 (atomic_read(&fs_info->defrag_running) == 0));
3885
3886 /* clear out the rbtree of defraggable inodes */
26176e7c 3887 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3888
21c7e756
MX
3889 cancel_work_sync(&fs_info->async_reclaim_work);
3890
c146afad 3891 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3892 /*
3893 * If the cleaner thread is stopped and there are
3894 * block groups queued for removal, the deletion will be
3895 * skipped when we quit the cleaner thread.
3896 */
e44163e1 3897 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3898
acce952b 3899 ret = btrfs_commit_super(root);
3900 if (ret)
04892340 3901 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3902 }
3903
87533c47 3904 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3905 btrfs_error_commit_super(root);
0f7d52f4 3906
e3029d9f
AV
3907 kthread_stop(fs_info->transaction_kthread);
3908 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3909
f25784b3
YZ
3910 fs_info->closing = 2;
3911 smp_mb();
3912
04892340 3913 btrfs_free_qgroup_config(fs_info);
bcef60f2 3914
963d678b 3915 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3916 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3917 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3918 }
bcc63abb 3919
6618a59b 3920 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3921 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3922
faa2dbf0 3923 btrfs_free_fs_roots(fs_info);
d10c5f31 3924
1a4319cc
LB
3925 btrfs_put_block_group_cache(fs_info);
3926
2b1360da
JB
3927 btrfs_free_block_groups(fs_info);
3928
de348ee0
WS
3929 /*
3930 * we must make sure there is not any read request to
3931 * submit after we stopping all workers.
3932 */
3933 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3934 btrfs_stop_all_workers(fs_info);
3935
47ab2a6c 3936 fs_info->open = 0;
13e6c37b 3937 free_root_pointers(fs_info, 1);
9ad6b7bc 3938
13e6c37b 3939 iput(fs_info->btree_inode);
d6bfde87 3940
21adbd5c 3941#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 3942 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
21adbd5c
SB
3943 btrfsic_unmount(root, fs_info->fs_devices);
3944#endif
3945
dfe25020 3946 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3947 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3948
e2d84521 3949 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3950 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3951 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3952 bdi_destroy(&fs_info->bdi);
76dda93c 3953 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3954
53b381b3
DW
3955 btrfs_free_stripe_hash_table(fs_info);
3956
cdfb080e 3957 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3958 root->orphan_block_rsv = NULL;
04216820
FM
3959
3960 lock_chunks(root);
3961 while (!list_empty(&fs_info->pinned_chunks)) {
3962 struct extent_map *em;
3963
3964 em = list_first_entry(&fs_info->pinned_chunks,
3965 struct extent_map, list);
3966 list_del_init(&em->list);
3967 free_extent_map(em);
3968 }
3969 unlock_chunks(root);
eb60ceac
CM
3970}
3971
b9fab919
CM
3972int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3973 int atomic)
5f39d397 3974{
1259ab75 3975 int ret;
727011e0 3976 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3977
0b32f4bb 3978 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3979 if (!ret)
3980 return ret;
3981
3982 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3983 parent_transid, atomic);
3984 if (ret == -EAGAIN)
3985 return ret;
1259ab75 3986 return !ret;
5f39d397
CM
3987}
3988
5f39d397
CM
3989void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3990{
06ea65a3 3991 struct btrfs_root *root;
5f39d397 3992 u64 transid = btrfs_header_generation(buf);
b9473439 3993 int was_dirty;
b4ce94de 3994
06ea65a3
JB
3995#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3996 /*
3997 * This is a fast path so only do this check if we have sanity tests
3998 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3999 * outside of the sanity tests.
4000 */
4001 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4002 return;
4003#endif
4004 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 4005 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
4006 if (transid != root->fs_info->generation)
4007 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 4008 "found %llu running %llu\n",
c1c9ff7c 4009 buf->start, transid, root->fs_info->generation);
0b32f4bb 4010 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
4011 if (!was_dirty)
4012 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4013 buf->len,
4014 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
4015#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4016 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4017 btrfs_print_leaf(root, buf);
4018 ASSERT(0);
4019 }
4020#endif
eb60ceac
CM
4021}
4022
b53d3f5d
LB
4023static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4024 int flush_delayed)
16cdcec7
MX
4025{
4026 /*
4027 * looks as though older kernels can get into trouble with
4028 * this code, they end up stuck in balance_dirty_pages forever
4029 */
e2d84521 4030 int ret;
16cdcec7
MX
4031
4032 if (current->flags & PF_MEMALLOC)
4033 return;
4034
b53d3f5d
LB
4035 if (flush_delayed)
4036 btrfs_balance_delayed_items(root);
16cdcec7 4037
e2d84521
MX
4038 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4039 BTRFS_DIRTY_METADATA_THRESH);
4040 if (ret > 0) {
d0e1d66b
NJ
4041 balance_dirty_pages_ratelimited(
4042 root->fs_info->btree_inode->i_mapping);
16cdcec7 4043 }
16cdcec7
MX
4044}
4045
b53d3f5d 4046void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4047{
b53d3f5d
LB
4048 __btrfs_btree_balance_dirty(root, 1);
4049}
585ad2c3 4050
b53d3f5d
LB
4051void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4052{
4053 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4054}
6b80053d 4055
ca7a79ad 4056int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4057{
727011e0 4058 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 4059 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 4060}
0da5468f 4061
fcd1f065 4062static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4063 int read_only)
4064{
c926093e 4065 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4066 u64 nodesize = btrfs_super_nodesize(sb);
4067 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4068 int ret = 0;
4069
319e4d06
QW
4070 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4071 printk(KERN_ERR "BTRFS: no valid FS found\n");
4072 ret = -EINVAL;
4073 }
4074 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4075 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4076 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b
DS
4077 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4078 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4079 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4080 ret = -EINVAL;
4081 }
21e7626b
DS
4082 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4083 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4084 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4085 ret = -EINVAL;
4086 }
21e7626b
DS
4087 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4088 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4089 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4090 ret = -EINVAL;
4091 }
4092
1104a885 4093 /*
319e4d06
QW
4094 * Check sectorsize and nodesize first, other check will need it.
4095 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4096 */
319e4d06
QW
4097 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4098 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4099 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4100 ret = -EINVAL;
4101 }
4102 /* Only PAGE SIZE is supported yet */
09cbfeaf 4103 if (sectorsize != PAGE_SIZE) {
319e4d06 4104 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
09cbfeaf 4105 sectorsize, PAGE_SIZE);
319e4d06
QW
4106 ret = -EINVAL;
4107 }
4108 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4109 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4110 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4111 ret = -EINVAL;
4112 }
4113 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4114 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4115 le32_to_cpu(sb->__unused_leafsize),
4116 nodesize);
4117 ret = -EINVAL;
4118 }
4119
4120 /* Root alignment check */
4121 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
c926093e 4122 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4123 btrfs_super_root(sb));
319e4d06
QW
4124 ret = -EINVAL;
4125 }
4126 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
cd743fac
DS
4127 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4128 btrfs_super_chunk_root(sb));
75d6ad38
DS
4129 ret = -EINVAL;
4130 }
319e4d06
QW
4131 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4132 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4133 btrfs_super_log_root(sb));
75d6ad38
DS
4134 ret = -EINVAL;
4135 }
4136
c926093e
DS
4137 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4138 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4139 fs_info->fsid, sb->dev_item.fsid);
4140 ret = -EINVAL;
4141 }
4142
4143 /*
4144 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4145 * done later
4146 */
99e3ecfc
LB
4147 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4148 btrfs_err(fs_info, "bytes_used is too small %llu",
4149 btrfs_super_bytes_used(sb));
4150 ret = -EINVAL;
4151 }
b7f67055 4152 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc
LB
4153 btrfs_err(fs_info, "invalid stripesize %u",
4154 btrfs_super_stripesize(sb));
4155 ret = -EINVAL;
4156 }
21e7626b 4157 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4158 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4159 btrfs_super_num_devices(sb));
75d6ad38
DS
4160 if (btrfs_super_num_devices(sb) == 0) {
4161 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4162 ret = -EINVAL;
4163 }
c926093e 4164
21e7626b 4165 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4166 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4167 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4168 ret = -EINVAL;
4169 }
4170
ce7fca5f
DS
4171 /*
4172 * Obvious sys_chunk_array corruptions, it must hold at least one key
4173 * and one chunk
4174 */
4175 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4176 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4177 btrfs_super_sys_array_size(sb),
4178 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4179 ret = -EINVAL;
4180 }
4181 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4182 + sizeof(struct btrfs_chunk)) {
d2207129 4183 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4184 btrfs_super_sys_array_size(sb),
4185 sizeof(struct btrfs_disk_key)
4186 + sizeof(struct btrfs_chunk));
4187 ret = -EINVAL;
4188 }
4189
c926093e
DS
4190 /*
4191 * The generation is a global counter, we'll trust it more than the others
4192 * but it's still possible that it's the one that's wrong.
4193 */
21e7626b 4194 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4195 printk(KERN_WARNING
4196 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4197 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4198 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4199 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4200 printk(KERN_WARNING
4201 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4202 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4203
4204 return ret;
acce952b 4205}
4206
48a3b636 4207static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4208{
acce952b 4209 mutex_lock(&root->fs_info->cleaner_mutex);
4210 btrfs_run_delayed_iputs(root);
4211 mutex_unlock(&root->fs_info->cleaner_mutex);
4212
4213 down_write(&root->fs_info->cleanup_work_sem);
4214 up_write(&root->fs_info->cleanup_work_sem);
4215
4216 /* cleanup FS via transaction */
4217 btrfs_cleanup_transaction(root);
acce952b 4218}
4219
143bede5 4220static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4221{
acce952b 4222 struct btrfs_ordered_extent *ordered;
acce952b 4223
199c2a9c 4224 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4225 /*
4226 * This will just short circuit the ordered completion stuff which will
4227 * make sure the ordered extent gets properly cleaned up.
4228 */
199c2a9c 4229 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4230 root_extent_list)
4231 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4232 spin_unlock(&root->ordered_extent_lock);
4233}
4234
4235static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4236{
4237 struct btrfs_root *root;
4238 struct list_head splice;
4239
4240 INIT_LIST_HEAD(&splice);
4241
4242 spin_lock(&fs_info->ordered_root_lock);
4243 list_splice_init(&fs_info->ordered_roots, &splice);
4244 while (!list_empty(&splice)) {
4245 root = list_first_entry(&splice, struct btrfs_root,
4246 ordered_root);
1de2cfde
JB
4247 list_move_tail(&root->ordered_root,
4248 &fs_info->ordered_roots);
199c2a9c 4249
2a85d9ca 4250 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4251 btrfs_destroy_ordered_extents(root);
4252
2a85d9ca
LB
4253 cond_resched();
4254 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4255 }
4256 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4257}
4258
35a3621b
SB
4259static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4260 struct btrfs_root *root)
acce952b 4261{
4262 struct rb_node *node;
4263 struct btrfs_delayed_ref_root *delayed_refs;
4264 struct btrfs_delayed_ref_node *ref;
4265 int ret = 0;
4266
4267 delayed_refs = &trans->delayed_refs;
4268
4269 spin_lock(&delayed_refs->lock);
d7df2c79 4270 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4271 spin_unlock(&delayed_refs->lock);
efe120a0 4272 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4273 return ret;
4274 }
4275
d7df2c79
JB
4276 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4277 struct btrfs_delayed_ref_head *head;
c6fc2454 4278 struct btrfs_delayed_ref_node *tmp;
e78417d1 4279 bool pin_bytes = false;
acce952b 4280
d7df2c79
JB
4281 head = rb_entry(node, struct btrfs_delayed_ref_head,
4282 href_node);
4283 if (!mutex_trylock(&head->mutex)) {
4284 atomic_inc(&head->node.refs);
4285 spin_unlock(&delayed_refs->lock);
eb12db69 4286
d7df2c79 4287 mutex_lock(&head->mutex);
e78417d1 4288 mutex_unlock(&head->mutex);
d7df2c79
JB
4289 btrfs_put_delayed_ref(&head->node);
4290 spin_lock(&delayed_refs->lock);
4291 continue;
4292 }
4293 spin_lock(&head->lock);
c6fc2454
QW
4294 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4295 list) {
d7df2c79 4296 ref->in_tree = 0;
c6fc2454 4297 list_del(&ref->list);
d7df2c79
JB
4298 atomic_dec(&delayed_refs->num_entries);
4299 btrfs_put_delayed_ref(ref);
e78417d1 4300 }
d7df2c79
JB
4301 if (head->must_insert_reserved)
4302 pin_bytes = true;
4303 btrfs_free_delayed_extent_op(head->extent_op);
4304 delayed_refs->num_heads--;
4305 if (head->processing == 0)
4306 delayed_refs->num_heads_ready--;
4307 atomic_dec(&delayed_refs->num_entries);
4308 head->node.in_tree = 0;
4309 rb_erase(&head->href_node, &delayed_refs->href_root);
4310 spin_unlock(&head->lock);
4311 spin_unlock(&delayed_refs->lock);
4312 mutex_unlock(&head->mutex);
acce952b 4313
d7df2c79
JB
4314 if (pin_bytes)
4315 btrfs_pin_extent(root, head->node.bytenr,
4316 head->node.num_bytes, 1);
4317 btrfs_put_delayed_ref(&head->node);
acce952b 4318 cond_resched();
4319 spin_lock(&delayed_refs->lock);
4320 }
4321
4322 spin_unlock(&delayed_refs->lock);
4323
4324 return ret;
4325}
4326
143bede5 4327static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4328{
4329 struct btrfs_inode *btrfs_inode;
4330 struct list_head splice;
4331
4332 INIT_LIST_HEAD(&splice);
4333
eb73c1b7
MX
4334 spin_lock(&root->delalloc_lock);
4335 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4336
4337 while (!list_empty(&splice)) {
eb73c1b7
MX
4338 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4339 delalloc_inodes);
acce952b 4340
4341 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4342 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4343 &btrfs_inode->runtime_flags);
eb73c1b7 4344 spin_unlock(&root->delalloc_lock);
acce952b 4345
4346 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4347
eb73c1b7 4348 spin_lock(&root->delalloc_lock);
acce952b 4349 }
4350
eb73c1b7
MX
4351 spin_unlock(&root->delalloc_lock);
4352}
4353
4354static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4355{
4356 struct btrfs_root *root;
4357 struct list_head splice;
4358
4359 INIT_LIST_HEAD(&splice);
4360
4361 spin_lock(&fs_info->delalloc_root_lock);
4362 list_splice_init(&fs_info->delalloc_roots, &splice);
4363 while (!list_empty(&splice)) {
4364 root = list_first_entry(&splice, struct btrfs_root,
4365 delalloc_root);
4366 list_del_init(&root->delalloc_root);
4367 root = btrfs_grab_fs_root(root);
4368 BUG_ON(!root);
4369 spin_unlock(&fs_info->delalloc_root_lock);
4370
4371 btrfs_destroy_delalloc_inodes(root);
4372 btrfs_put_fs_root(root);
4373
4374 spin_lock(&fs_info->delalloc_root_lock);
4375 }
4376 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4377}
4378
4379static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4380 struct extent_io_tree *dirty_pages,
4381 int mark)
4382{
4383 int ret;
acce952b 4384 struct extent_buffer *eb;
4385 u64 start = 0;
4386 u64 end;
acce952b 4387
4388 while (1) {
4389 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4390 mark, NULL);
acce952b 4391 if (ret)
4392 break;
4393
91166212 4394 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4395 while (start <= end) {
01d58472 4396 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4397 start += root->nodesize;
fd8b2b61 4398 if (!eb)
acce952b 4399 continue;
fd8b2b61 4400 wait_on_extent_buffer_writeback(eb);
acce952b 4401
fd8b2b61
JB
4402 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4403 &eb->bflags))
4404 clear_extent_buffer_dirty(eb);
4405 free_extent_buffer_stale(eb);
acce952b 4406 }
4407 }
4408
4409 return ret;
4410}
4411
4412static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4413 struct extent_io_tree *pinned_extents)
4414{
4415 struct extent_io_tree *unpin;
4416 u64 start;
4417 u64 end;
4418 int ret;
ed0eaa14 4419 bool loop = true;
acce952b 4420
4421 unpin = pinned_extents;
ed0eaa14 4422again:
acce952b 4423 while (1) {
4424 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4425 EXTENT_DIRTY, NULL);
acce952b 4426 if (ret)
4427 break;
4428
af6f8f60 4429 clear_extent_dirty(unpin, start, end);
acce952b 4430 btrfs_error_unpin_extent_range(root, start, end);
4431 cond_resched();
4432 }
4433
ed0eaa14
LB
4434 if (loop) {
4435 if (unpin == &root->fs_info->freed_extents[0])
4436 unpin = &root->fs_info->freed_extents[1];
4437 else
4438 unpin = &root->fs_info->freed_extents[0];
4439 loop = false;
4440 goto again;
4441 }
4442
acce952b 4443 return 0;
4444}
4445
49b25e05
JM
4446void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4447 struct btrfs_root *root)
4448{
4449 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4450
4a9d8bde 4451 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4452 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4453
4a9d8bde 4454 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4455 wake_up(&root->fs_info->transaction_wait);
49b25e05 4456
67cde344
MX
4457 btrfs_destroy_delayed_inodes(root);
4458 btrfs_assert_delayed_root_empty(root);
49b25e05 4459
49b25e05
JM
4460 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4461 EXTENT_DIRTY);
6e841e32
LB
4462 btrfs_destroy_pinned_extent(root,
4463 root->fs_info->pinned_extents);
49b25e05 4464
4a9d8bde
MX
4465 cur_trans->state =TRANS_STATE_COMPLETED;
4466 wake_up(&cur_trans->commit_wait);
4467
49b25e05
JM
4468 /*
4469 memset(cur_trans, 0, sizeof(*cur_trans));
4470 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4471 */
4472}
4473
48a3b636 4474static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4475{
4476 struct btrfs_transaction *t;
acce952b 4477
acce952b 4478 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4479
a4abeea4 4480 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4481 while (!list_empty(&root->fs_info->trans_list)) {
4482 t = list_first_entry(&root->fs_info->trans_list,
4483 struct btrfs_transaction, list);
4484 if (t->state >= TRANS_STATE_COMMIT_START) {
4485 atomic_inc(&t->use_count);
4486 spin_unlock(&root->fs_info->trans_lock);
4487 btrfs_wait_for_commit(root, t->transid);
4488 btrfs_put_transaction(t);
4489 spin_lock(&root->fs_info->trans_lock);
4490 continue;
4491 }
4492 if (t == root->fs_info->running_transaction) {
4493 t->state = TRANS_STATE_COMMIT_DOING;
4494 spin_unlock(&root->fs_info->trans_lock);
4495 /*
4496 * We wait for 0 num_writers since we don't hold a trans
4497 * handle open currently for this transaction.
4498 */
4499 wait_event(t->writer_wait,
4500 atomic_read(&t->num_writers) == 0);
4501 } else {
4502 spin_unlock(&root->fs_info->trans_lock);
4503 }
4504 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4505
724e2315
JB
4506 spin_lock(&root->fs_info->trans_lock);
4507 if (t == root->fs_info->running_transaction)
4508 root->fs_info->running_transaction = NULL;
acce952b 4509 list_del_init(&t->list);
724e2315 4510 spin_unlock(&root->fs_info->trans_lock);
acce952b 4511
724e2315
JB
4512 btrfs_put_transaction(t);
4513 trace_btrfs_transaction_commit(root);
4514 spin_lock(&root->fs_info->trans_lock);
4515 }
4516 spin_unlock(&root->fs_info->trans_lock);
4517 btrfs_destroy_all_ordered_extents(root->fs_info);
4518 btrfs_destroy_delayed_inodes(root);
4519 btrfs_assert_delayed_root_empty(root);
4520 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4521 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4522 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4523
4524 return 0;
4525}
4526
e8c9f186 4527static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4528 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4529 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4530 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4531 /* note we're sharing with inode.c for the merge bio hook */
4532 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4533};