Btrfs: insert orphan roots into fs radix tree
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
6463fe58 33#include <linux/uuid.h>
803b2f54 34#include <linux/semaphore.h>
7e75bf3f 35#include <asm/unaligned.h>
4b4e25f2 36#include "compat.h"
eb60ceac
CM
37#include "ctree.h"
38#include "disk-io.h"
e089f05c 39#include "transaction.h"
0f7d52f4 40#include "btrfs_inode.h"
0b86a832 41#include "volumes.h"
db94535d 42#include "print-tree.h"
8b712842 43#include "async-thread.h"
925baedd 44#include "locking.h"
e02119d5 45#include "tree-log.h"
fa9c0d79 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
21adbd5c 48#include "check-integrity.h"
606686ee 49#include "rcu-string.h"
8dabb742 50#include "dev-replace.h"
53b381b3 51#include "raid56.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
aec8030a 67static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
143bede5 68static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 69static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70 struct extent_io_tree *dirty_pages,
71 int mark);
72static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73 struct extent_io_tree *pinned_extents);
48a3b636
ES
74static int btrfs_cleanup_transaction(struct btrfs_root *root);
75static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 76
d352ac68
CM
77/*
78 * end_io_wq structs are used to do processing in task context when an IO is
79 * complete. This is used during reads to verify checksums, and it is used
80 * by writes to insert metadata for new file extents after IO is complete.
81 */
ce9adaa5
CM
82struct end_io_wq {
83 struct bio *bio;
84 bio_end_io_t *end_io;
85 void *private;
86 struct btrfs_fs_info *info;
87 int error;
22c59948 88 int metadata;
ce9adaa5 89 struct list_head list;
8b712842 90 struct btrfs_work work;
ce9adaa5 91};
0da5468f 92
d352ac68
CM
93/*
94 * async submit bios are used to offload expensive checksumming
95 * onto the worker threads. They checksum file and metadata bios
96 * just before they are sent down the IO stack.
97 */
44b8bd7e
CM
98struct async_submit_bio {
99 struct inode *inode;
100 struct bio *bio;
101 struct list_head list;
4a69a410
CM
102 extent_submit_bio_hook_t *submit_bio_start;
103 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
104 int rw;
105 int mirror_num;
c8b97818 106 unsigned long bio_flags;
eaf25d93
CM
107 /*
108 * bio_offset is optional, can be used if the pages in the bio
109 * can't tell us where in the file the bio should go
110 */
111 u64 bio_offset;
8b712842 112 struct btrfs_work work;
79787eaa 113 int error;
44b8bd7e
CM
114};
115
85d4e461
CM
116/*
117 * Lockdep class keys for extent_buffer->lock's in this root. For a given
118 * eb, the lockdep key is determined by the btrfs_root it belongs to and
119 * the level the eb occupies in the tree.
120 *
121 * Different roots are used for different purposes and may nest inside each
122 * other and they require separate keysets. As lockdep keys should be
123 * static, assign keysets according to the purpose of the root as indicated
124 * by btrfs_root->objectid. This ensures that all special purpose roots
125 * have separate keysets.
4008c04a 126 *
85d4e461
CM
127 * Lock-nesting across peer nodes is always done with the immediate parent
128 * node locked thus preventing deadlock. As lockdep doesn't know this, use
129 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 130 *
85d4e461
CM
131 * The key is set by the readpage_end_io_hook after the buffer has passed
132 * csum validation but before the pages are unlocked. It is also set by
133 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 134 *
85d4e461
CM
135 * We also add a check to make sure the highest level of the tree is the
136 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
137 * needs update as well.
4008c04a
CM
138 */
139#ifdef CONFIG_DEBUG_LOCK_ALLOC
140# if BTRFS_MAX_LEVEL != 8
141# error
142# endif
85d4e461
CM
143
144static struct btrfs_lockdep_keyset {
145 u64 id; /* root objectid */
146 const char *name_stem; /* lock name stem */
147 char names[BTRFS_MAX_LEVEL + 1][20];
148 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
149} btrfs_lockdep_keysets[] = {
150 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
151 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
152 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
153 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
154 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
155 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 156 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
157 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
158 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
159 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 160 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 161 { .id = 0, .name_stem = "tree" },
4008c04a 162};
85d4e461
CM
163
164void __init btrfs_init_lockdep(void)
165{
166 int i, j;
167
168 /* initialize lockdep class names */
169 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173 snprintf(ks->names[j], sizeof(ks->names[j]),
174 "btrfs-%s-%02d", ks->name_stem, j);
175 }
176}
177
178void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179 int level)
180{
181 struct btrfs_lockdep_keyset *ks;
182
183 BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185 /* find the matching keyset, id 0 is the default entry */
186 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187 if (ks->id == objectid)
188 break;
189
190 lockdep_set_class_and_name(&eb->lock,
191 &ks->keys[level], ks->names[level]);
192}
193
4008c04a
CM
194#endif
195
d352ac68
CM
196/*
197 * extents on the btree inode are pretty simple, there's one extent
198 * that covers the entire device
199 */
b2950863 200static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 201 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 202 int create)
7eccb903 203{
5f39d397
CM
204 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205 struct extent_map *em;
206 int ret;
207
890871be 208 read_lock(&em_tree->lock);
d1310b2e 209 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
210 if (em) {
211 em->bdev =
212 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 213 read_unlock(&em_tree->lock);
5f39d397 214 goto out;
a061fc8d 215 }
890871be 216 read_unlock(&em_tree->lock);
7b13b7b1 217
172ddd60 218 em = alloc_extent_map();
5f39d397
CM
219 if (!em) {
220 em = ERR_PTR(-ENOMEM);
221 goto out;
222 }
223 em->start = 0;
0afbaf8c 224 em->len = (u64)-1;
c8b97818 225 em->block_len = (u64)-1;
5f39d397 226 em->block_start = 0;
a061fc8d 227 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 228
890871be 229 write_lock(&em_tree->lock);
09a2a8f9 230 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
231 if (ret == -EEXIST) {
232 free_extent_map(em);
7b13b7b1 233 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 234 if (!em)
0433f20d 235 em = ERR_PTR(-EIO);
5f39d397 236 } else if (ret) {
7b13b7b1 237 free_extent_map(em);
0433f20d 238 em = ERR_PTR(ret);
5f39d397 239 }
890871be 240 write_unlock(&em_tree->lock);
7b13b7b1 241
5f39d397
CM
242out:
243 return em;
7eccb903
CM
244}
245
b0496686 246u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 247{
163e783e 248 return crc32c(seed, data, len);
19c00ddc
CM
249}
250
251void btrfs_csum_final(u32 crc, char *result)
252{
7e75bf3f 253 put_unaligned_le32(~crc, result);
19c00ddc
CM
254}
255
d352ac68
CM
256/*
257 * compute the csum for a btree block, and either verify it or write it
258 * into the csum field of the block.
259 */
19c00ddc
CM
260static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261 int verify)
262{
6c41761f 263 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 264 char *result = NULL;
19c00ddc
CM
265 unsigned long len;
266 unsigned long cur_len;
267 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
268 char *kaddr;
269 unsigned long map_start;
270 unsigned long map_len;
271 int err;
272 u32 crc = ~(u32)0;
607d432d 273 unsigned long inline_result;
19c00ddc
CM
274
275 len = buf->len - offset;
d397712b 276 while (len > 0) {
19c00ddc 277 err = map_private_extent_buffer(buf, offset, 32,
a6591715 278 &kaddr, &map_start, &map_len);
d397712b 279 if (err)
19c00ddc 280 return 1;
19c00ddc 281 cur_len = min(len, map_len - (offset - map_start));
b0496686 282 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
283 crc, cur_len);
284 len -= cur_len;
285 offset += cur_len;
19c00ddc 286 }
607d432d
JB
287 if (csum_size > sizeof(inline_result)) {
288 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289 if (!result)
290 return 1;
291 } else {
292 result = (char *)&inline_result;
293 }
294
19c00ddc
CM
295 btrfs_csum_final(crc, result);
296
297 if (verify) {
607d432d 298 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
299 u32 val;
300 u32 found = 0;
607d432d 301 memcpy(&found, result, csum_size);
e4204ded 302
607d432d 303 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 304 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
305 "failed on %llu wanted %X found %X "
306 "level %d\n",
c1c9ff7c
GU
307 root->fs_info->sb->s_id, buf->start,
308 val, found, btrfs_header_level(buf));
607d432d
JB
309 if (result != (char *)&inline_result)
310 kfree(result);
19c00ddc
CM
311 return 1;
312 }
313 } else {
607d432d 314 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 315 }
607d432d
JB
316 if (result != (char *)&inline_result)
317 kfree(result);
19c00ddc
CM
318 return 0;
319}
320
d352ac68
CM
321/*
322 * we can't consider a given block up to date unless the transid of the
323 * block matches the transid in the parent node's pointer. This is how we
324 * detect blocks that either didn't get written at all or got written
325 * in the wrong place.
326 */
1259ab75 327static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
328 struct extent_buffer *eb, u64 parent_transid,
329 int atomic)
1259ab75 330{
2ac55d41 331 struct extent_state *cached_state = NULL;
1259ab75
CM
332 int ret;
333
334 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
335 return 0;
336
b9fab919
CM
337 if (atomic)
338 return -EAGAIN;
339
2ac55d41 340 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 341 0, &cached_state);
0b32f4bb 342 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
343 btrfs_header_generation(eb) == parent_transid) {
344 ret = 0;
345 goto out;
346 }
7a36ddec 347 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 348 "found %llu\n",
c1c9ff7c 349 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 350 ret = 1;
0b32f4bb 351 clear_extent_buffer_uptodate(eb);
33958dc6 352out:
2ac55d41
JB
353 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
354 &cached_state, GFP_NOFS);
1259ab75 355 return ret;
1259ab75
CM
356}
357
1104a885
DS
358/*
359 * Return 0 if the superblock checksum type matches the checksum value of that
360 * algorithm. Pass the raw disk superblock data.
361 */
362static int btrfs_check_super_csum(char *raw_disk_sb)
363{
364 struct btrfs_super_block *disk_sb =
365 (struct btrfs_super_block *)raw_disk_sb;
366 u16 csum_type = btrfs_super_csum_type(disk_sb);
367 int ret = 0;
368
369 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
370 u32 crc = ~(u32)0;
371 const int csum_size = sizeof(crc);
372 char result[csum_size];
373
374 /*
375 * The super_block structure does not span the whole
376 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
377 * is filled with zeros and is included in the checkum.
378 */
379 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
380 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
381 btrfs_csum_final(crc, result);
382
383 if (memcmp(raw_disk_sb, result, csum_size))
384 ret = 1;
667e7d94
CM
385
386 if (ret && btrfs_super_generation(disk_sb) < 10) {
387 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
388 ret = 0;
389 }
1104a885
DS
390 }
391
392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
394 csum_type);
395 ret = 1;
396 }
397
398 return ret;
399}
400
d352ac68
CM
401/*
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
404 */
f188591e
CM
405static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406 struct extent_buffer *eb,
ca7a79ad 407 u64 start, u64 parent_transid)
f188591e
CM
408{
409 struct extent_io_tree *io_tree;
ea466794 410 int failed = 0;
f188591e
CM
411 int ret;
412 int num_copies = 0;
413 int mirror_num = 0;
ea466794 414 int failed_mirror = 0;
f188591e 415
a826d6dc 416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 while (1) {
bb82ab88
AJ
419 ret = read_extent_buffer_pages(io_tree, eb, start,
420 WAIT_COMPLETE,
f188591e 421 btree_get_extent, mirror_num);
256dd1bb
SB
422 if (!ret) {
423 if (!verify_parent_transid(io_tree, eb,
b9fab919 424 parent_transid, 0))
256dd1bb
SB
425 break;
426 else
427 ret = -EIO;
428 }
d397712b 429
a826d6dc
JB
430 /*
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
433 * any less wrong.
434 */
435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
436 break;
437
5d964051 438 num_copies = btrfs_num_copies(root->fs_info,
f188591e 439 eb->start, eb->len);
4235298e 440 if (num_copies == 1)
ea466794 441 break;
4235298e 442
5cf1ab56
JB
443 if (!failed_mirror) {
444 failed = 1;
445 failed_mirror = eb->read_mirror;
446 }
447
f188591e 448 mirror_num++;
ea466794
JB
449 if (mirror_num == failed_mirror)
450 mirror_num++;
451
4235298e 452 if (mirror_num > num_copies)
ea466794 453 break;
f188591e 454 }
ea466794 455
c0901581 456 if (failed && !ret && failed_mirror)
ea466794
JB
457 repair_eb_io_failure(root, eb, failed_mirror);
458
459 return ret;
f188591e 460}
19c00ddc 461
d352ac68 462/*
d397712b
CM
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 465 */
d397712b 466
b2950863 467static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 468{
d1310b2e 469 struct extent_io_tree *tree;
4eee4fa4 470 u64 start = page_offset(page);
19c00ddc 471 u64 found_start;
19c00ddc 472 struct extent_buffer *eb;
f188591e 473
d1310b2e 474 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 475
4f2de97a
JB
476 eb = (struct extent_buffer *)page->private;
477 if (page != eb->pages[0])
478 return 0;
19c00ddc
CM
479 found_start = btrfs_header_bytenr(eb);
480 if (found_start != start) {
55c69072 481 WARN_ON(1);
4f2de97a 482 return 0;
55c69072 483 }
55c69072 484 if (!PageUptodate(page)) {
55c69072 485 WARN_ON(1);
4f2de97a 486 return 0;
19c00ddc 487 }
19c00ddc 488 csum_tree_block(root, eb, 0);
19c00ddc
CM
489 return 0;
490}
491
2b82032c
YZ
492static int check_tree_block_fsid(struct btrfs_root *root,
493 struct extent_buffer *eb)
494{
495 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
496 u8 fsid[BTRFS_UUID_SIZE];
497 int ret = 1;
498
fba6aa75 499 read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
2b82032c
YZ
500 while (fs_devices) {
501 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
502 ret = 0;
503 break;
504 }
505 fs_devices = fs_devices->seed;
506 }
507 return ret;
508}
509
a826d6dc
JB
510#define CORRUPT(reason, eb, root, slot) \
511 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
512 "root=%llu, slot=%d\n", reason, \
c1c9ff7c 513 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
514
515static noinline int check_leaf(struct btrfs_root *root,
516 struct extent_buffer *leaf)
517{
518 struct btrfs_key key;
519 struct btrfs_key leaf_key;
520 u32 nritems = btrfs_header_nritems(leaf);
521 int slot;
522
523 if (nritems == 0)
524 return 0;
525
526 /* Check the 0 item */
527 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
528 BTRFS_LEAF_DATA_SIZE(root)) {
529 CORRUPT("invalid item offset size pair", leaf, root, 0);
530 return -EIO;
531 }
532
533 /*
534 * Check to make sure each items keys are in the correct order and their
535 * offsets make sense. We only have to loop through nritems-1 because
536 * we check the current slot against the next slot, which verifies the
537 * next slot's offset+size makes sense and that the current's slot
538 * offset is correct.
539 */
540 for (slot = 0; slot < nritems - 1; slot++) {
541 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
542 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
543
544 /* Make sure the keys are in the right order */
545 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
546 CORRUPT("bad key order", leaf, root, slot);
547 return -EIO;
548 }
549
550 /*
551 * Make sure the offset and ends are right, remember that the
552 * item data starts at the end of the leaf and grows towards the
553 * front.
554 */
555 if (btrfs_item_offset_nr(leaf, slot) !=
556 btrfs_item_end_nr(leaf, slot + 1)) {
557 CORRUPT("slot offset bad", leaf, root, slot);
558 return -EIO;
559 }
560
561 /*
562 * Check to make sure that we don't point outside of the leaf,
563 * just incase all the items are consistent to eachother, but
564 * all point outside of the leaf.
565 */
566 if (btrfs_item_end_nr(leaf, slot) >
567 BTRFS_LEAF_DATA_SIZE(root)) {
568 CORRUPT("slot end outside of leaf", leaf, root, slot);
569 return -EIO;
570 }
571 }
572
573 return 0;
574}
575
facc8a22
MX
576static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
577 u64 phy_offset, struct page *page,
578 u64 start, u64 end, int mirror)
ce9adaa5
CM
579{
580 struct extent_io_tree *tree;
581 u64 found_start;
582 int found_level;
ce9adaa5
CM
583 struct extent_buffer *eb;
584 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 585 int ret = 0;
727011e0 586 int reads_done;
ce9adaa5 587
ce9adaa5
CM
588 if (!page->private)
589 goto out;
d397712b 590
727011e0 591 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 592 eb = (struct extent_buffer *)page->private;
d397712b 593
0b32f4bb
JB
594 /* the pending IO might have been the only thing that kept this buffer
595 * in memory. Make sure we have a ref for all this other checks
596 */
597 extent_buffer_get(eb);
598
599 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
600 if (!reads_done)
601 goto err;
f188591e 602
5cf1ab56 603 eb->read_mirror = mirror;
ea466794
JB
604 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
605 ret = -EIO;
606 goto err;
607 }
608
ce9adaa5 609 found_start = btrfs_header_bytenr(eb);
727011e0 610 if (found_start != eb->start) {
7a36ddec 611 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d 612 "%llu %llu\n",
c1c9ff7c 613 found_start, eb->start);
f188591e 614 ret = -EIO;
ce9adaa5
CM
615 goto err;
616 }
2b82032c 617 if (check_tree_block_fsid(root, eb)) {
7a36ddec 618 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
c1c9ff7c 619 eb->start);
1259ab75
CM
620 ret = -EIO;
621 goto err;
622 }
ce9adaa5 623 found_level = btrfs_header_level(eb);
1c24c3ce
JB
624 if (found_level >= BTRFS_MAX_LEVEL) {
625 btrfs_info(root->fs_info, "bad tree block level %d\n",
626 (int)btrfs_header_level(eb));
627 ret = -EIO;
628 goto err;
629 }
ce9adaa5 630
85d4e461
CM
631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632 eb, found_level);
4008c04a 633
ce9adaa5 634 ret = csum_tree_block(root, eb, 1);
a826d6dc 635 if (ret) {
f188591e 636 ret = -EIO;
a826d6dc
JB
637 goto err;
638 }
639
640 /*
641 * If this is a leaf block and it is corrupt, set the corrupt bit so
642 * that we don't try and read the other copies of this block, just
643 * return -EIO.
644 */
645 if (found_level == 0 && check_leaf(root, eb)) {
646 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
647 ret = -EIO;
648 }
ce9adaa5 649
0b32f4bb
JB
650 if (!ret)
651 set_extent_buffer_uptodate(eb);
ce9adaa5 652err:
79fb65a1
JB
653 if (reads_done &&
654 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 655 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 656
53b381b3
DW
657 if (ret) {
658 /*
659 * our io error hook is going to dec the io pages
660 * again, we have to make sure it has something
661 * to decrement
662 */
663 atomic_inc(&eb->io_pages);
0b32f4bb 664 clear_extent_buffer_uptodate(eb);
53b381b3 665 }
0b32f4bb 666 free_extent_buffer(eb);
ce9adaa5 667out:
f188591e 668 return ret;
ce9adaa5
CM
669}
670
ea466794 671static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 672{
4bb31e92
AJ
673 struct extent_buffer *eb;
674 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
675
4f2de97a 676 eb = (struct extent_buffer *)page->private;
ea466794 677 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 678 eb->read_mirror = failed_mirror;
53b381b3 679 atomic_dec(&eb->io_pages);
ea466794 680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 681 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
682 return -EIO; /* we fixed nothing */
683}
684
ce9adaa5 685static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
686{
687 struct end_io_wq *end_io_wq = bio->bi_private;
688 struct btrfs_fs_info *fs_info;
ce9adaa5 689
ce9adaa5 690 fs_info = end_io_wq->info;
ce9adaa5 691 end_io_wq->error = err;
8b712842
CM
692 end_io_wq->work.func = end_workqueue_fn;
693 end_io_wq->work.flags = 0;
d20f7043 694
7b6d91da 695 if (bio->bi_rw & REQ_WRITE) {
53b381b3 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
cad321ad
CM
697 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
698 &end_io_wq->work);
53b381b3 699 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
0cb59c99
JB
700 btrfs_queue_worker(&fs_info->endio_freespace_worker,
701 &end_io_wq->work);
53b381b3
DW
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
703 btrfs_queue_worker(&fs_info->endio_raid56_workers,
704 &end_io_wq->work);
cad321ad
CM
705 else
706 btrfs_queue_worker(&fs_info->endio_write_workers,
707 &end_io_wq->work);
d20f7043 708 } else {
53b381b3
DW
709 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710 btrfs_queue_worker(&fs_info->endio_raid56_workers,
711 &end_io_wq->work);
712 else if (end_io_wq->metadata)
d20f7043
CM
713 btrfs_queue_worker(&fs_info->endio_meta_workers,
714 &end_io_wq->work);
715 else
716 btrfs_queue_worker(&fs_info->endio_workers,
717 &end_io_wq->work);
718 }
ce9adaa5
CM
719}
720
0cb59c99
JB
721/*
722 * For the metadata arg you want
723 *
724 * 0 - if data
725 * 1 - if normal metadta
726 * 2 - if writing to the free space cache area
53b381b3 727 * 3 - raid parity work
0cb59c99 728 */
22c59948
CM
729int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
730 int metadata)
0b86a832 731{
ce9adaa5 732 struct end_io_wq *end_io_wq;
ce9adaa5
CM
733 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
734 if (!end_io_wq)
735 return -ENOMEM;
736
737 end_io_wq->private = bio->bi_private;
738 end_io_wq->end_io = bio->bi_end_io;
22c59948 739 end_io_wq->info = info;
ce9adaa5
CM
740 end_io_wq->error = 0;
741 end_io_wq->bio = bio;
22c59948 742 end_io_wq->metadata = metadata;
ce9adaa5
CM
743
744 bio->bi_private = end_io_wq;
745 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
746 return 0;
747}
748
b64a2851 749unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 750{
4854ddd0
CM
751 unsigned long limit = min_t(unsigned long,
752 info->workers.max_workers,
753 info->fs_devices->open_devices);
754 return 256 * limit;
755}
0986fe9e 756
4a69a410
CM
757static void run_one_async_start(struct btrfs_work *work)
758{
4a69a410 759 struct async_submit_bio *async;
79787eaa 760 int ret;
4a69a410
CM
761
762 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
763 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
764 async->mirror_num, async->bio_flags,
765 async->bio_offset);
766 if (ret)
767 async->error = ret;
4a69a410
CM
768}
769
770static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
771{
772 struct btrfs_fs_info *fs_info;
773 struct async_submit_bio *async;
4854ddd0 774 int limit;
8b712842
CM
775
776 async = container_of(work, struct async_submit_bio, work);
777 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 778
b64a2851 779 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
780 limit = limit * 2 / 3;
781
66657b31 782 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 783 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
784 wake_up(&fs_info->async_submit_wait);
785
79787eaa
JM
786 /* If an error occured we just want to clean up the bio and move on */
787 if (async->error) {
788 bio_endio(async->bio, async->error);
789 return;
790 }
791
4a69a410 792 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
793 async->mirror_num, async->bio_flags,
794 async->bio_offset);
4a69a410
CM
795}
796
797static void run_one_async_free(struct btrfs_work *work)
798{
799 struct async_submit_bio *async;
800
801 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
802 kfree(async);
803}
804
44b8bd7e
CM
805int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
806 int rw, struct bio *bio, int mirror_num,
c8b97818 807 unsigned long bio_flags,
eaf25d93 808 u64 bio_offset,
4a69a410
CM
809 extent_submit_bio_hook_t *submit_bio_start,
810 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
811{
812 struct async_submit_bio *async;
813
814 async = kmalloc(sizeof(*async), GFP_NOFS);
815 if (!async)
816 return -ENOMEM;
817
818 async->inode = inode;
819 async->rw = rw;
820 async->bio = bio;
821 async->mirror_num = mirror_num;
4a69a410
CM
822 async->submit_bio_start = submit_bio_start;
823 async->submit_bio_done = submit_bio_done;
824
825 async->work.func = run_one_async_start;
826 async->work.ordered_func = run_one_async_done;
827 async->work.ordered_free = run_one_async_free;
828
8b712842 829 async->work.flags = 0;
c8b97818 830 async->bio_flags = bio_flags;
eaf25d93 831 async->bio_offset = bio_offset;
8c8bee1d 832
79787eaa
JM
833 async->error = 0;
834
cb03c743 835 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 836
7b6d91da 837 if (rw & REQ_SYNC)
d313d7a3
CM
838 btrfs_set_work_high_prio(&async->work);
839
8b712842 840 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 841
d397712b 842 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
843 atomic_read(&fs_info->nr_async_submits)) {
844 wait_event(fs_info->async_submit_wait,
845 (atomic_read(&fs_info->nr_async_submits) == 0));
846 }
847
44b8bd7e
CM
848 return 0;
849}
850
ce3ed71a
CM
851static int btree_csum_one_bio(struct bio *bio)
852{
853 struct bio_vec *bvec = bio->bi_io_vec;
854 int bio_index = 0;
855 struct btrfs_root *root;
79787eaa 856 int ret = 0;
ce3ed71a
CM
857
858 WARN_ON(bio->bi_vcnt <= 0);
d397712b 859 while (bio_index < bio->bi_vcnt) {
ce3ed71a 860 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
861 ret = csum_dirty_buffer(root, bvec->bv_page);
862 if (ret)
863 break;
ce3ed71a
CM
864 bio_index++;
865 bvec++;
866 }
79787eaa 867 return ret;
ce3ed71a
CM
868}
869
4a69a410
CM
870static int __btree_submit_bio_start(struct inode *inode, int rw,
871 struct bio *bio, int mirror_num,
eaf25d93
CM
872 unsigned long bio_flags,
873 u64 bio_offset)
22c59948 874{
8b712842
CM
875 /*
876 * when we're called for a write, we're already in the async
5443be45 877 * submission context. Just jump into btrfs_map_bio
8b712842 878 */
79787eaa 879 return btree_csum_one_bio(bio);
4a69a410 880}
22c59948 881
4a69a410 882static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
883 int mirror_num, unsigned long bio_flags,
884 u64 bio_offset)
4a69a410 885{
61891923
SB
886 int ret;
887
8b712842 888 /*
4a69a410
CM
889 * when we're called for a write, we're already in the async
890 * submission context. Just jump into btrfs_map_bio
8b712842 891 */
61891923
SB
892 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
893 if (ret)
894 bio_endio(bio, ret);
895 return ret;
0b86a832
CM
896}
897
de0022b9
JB
898static int check_async_write(struct inode *inode, unsigned long bio_flags)
899{
900 if (bio_flags & EXTENT_BIO_TREE_LOG)
901 return 0;
902#ifdef CONFIG_X86
903 if (cpu_has_xmm4_2)
904 return 0;
905#endif
906 return 1;
907}
908
44b8bd7e 909static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
910 int mirror_num, unsigned long bio_flags,
911 u64 bio_offset)
44b8bd7e 912{
de0022b9 913 int async = check_async_write(inode, bio_flags);
cad321ad
CM
914 int ret;
915
7b6d91da 916 if (!(rw & REQ_WRITE)) {
4a69a410
CM
917 /*
918 * called for a read, do the setup so that checksum validation
919 * can happen in the async kernel threads
920 */
f3f266ab
CM
921 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
922 bio, 1);
1d4284bd 923 if (ret)
61891923
SB
924 goto out_w_error;
925 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
926 mirror_num, 0);
de0022b9
JB
927 } else if (!async) {
928 ret = btree_csum_one_bio(bio);
929 if (ret)
61891923
SB
930 goto out_w_error;
931 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932 mirror_num, 0);
933 } else {
934 /*
935 * kthread helpers are used to submit writes so that
936 * checksumming can happen in parallel across all CPUs
937 */
938 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
939 inode, rw, bio, mirror_num, 0,
940 bio_offset,
941 __btree_submit_bio_start,
942 __btree_submit_bio_done);
44b8bd7e 943 }
d313d7a3 944
61891923
SB
945 if (ret) {
946out_w_error:
947 bio_endio(bio, ret);
948 }
949 return ret;
44b8bd7e
CM
950}
951
3dd1462e 952#ifdef CONFIG_MIGRATION
784b4e29 953static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
954 struct page *newpage, struct page *page,
955 enum migrate_mode mode)
784b4e29
CM
956{
957 /*
958 * we can't safely write a btree page from here,
959 * we haven't done the locking hook
960 */
961 if (PageDirty(page))
962 return -EAGAIN;
963 /*
964 * Buffers may be managed in a filesystem specific way.
965 * We must have no buffers or drop them.
966 */
967 if (page_has_private(page) &&
968 !try_to_release_page(page, GFP_KERNEL))
969 return -EAGAIN;
a6bc32b8 970 return migrate_page(mapping, newpage, page, mode);
784b4e29 971}
3dd1462e 972#endif
784b4e29 973
0da5468f
CM
974
975static int btree_writepages(struct address_space *mapping,
976 struct writeback_control *wbc)
977{
d1310b2e 978 struct extent_io_tree *tree;
e2d84521
MX
979 struct btrfs_fs_info *fs_info;
980 int ret;
981
d1310b2e 982 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 983 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
984
985 if (wbc->for_kupdate)
986 return 0;
987
e2d84521 988 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 989 /* this is a bit racy, but that's ok */
e2d84521
MX
990 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991 BTRFS_DIRTY_METADATA_THRESH);
992 if (ret < 0)
793955bc 993 return 0;
793955bc 994 }
0b32f4bb 995 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
996}
997
b2950863 998static int btree_readpage(struct file *file, struct page *page)
5f39d397 999{
d1310b2e
CM
1000 struct extent_io_tree *tree;
1001 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1002 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1003}
22b0ebda 1004
70dec807 1005static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1006{
98509cfc 1007 if (PageWriteback(page) || PageDirty(page))
d397712b 1008 return 0;
0c4e538b 1009
f7a52a40 1010 return try_release_extent_buffer(page);
d98237b3
CM
1011}
1012
d47992f8
LC
1013static void btree_invalidatepage(struct page *page, unsigned int offset,
1014 unsigned int length)
d98237b3 1015{
d1310b2e
CM
1016 struct extent_io_tree *tree;
1017 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1018 extent_invalidatepage(tree, page, offset);
1019 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1020 if (PagePrivate(page)) {
d397712b
CM
1021 printk(KERN_WARNING "btrfs warning page private not zero "
1022 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1023 ClearPagePrivate(page);
1024 set_page_private(page, 0);
1025 page_cache_release(page);
1026 }
d98237b3
CM
1027}
1028
0b32f4bb
JB
1029static int btree_set_page_dirty(struct page *page)
1030{
bb146eb2 1031#ifdef DEBUG
0b32f4bb
JB
1032 struct extent_buffer *eb;
1033
1034 BUG_ON(!PagePrivate(page));
1035 eb = (struct extent_buffer *)page->private;
1036 BUG_ON(!eb);
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
1039 btrfs_assert_tree_locked(eb);
bb146eb2 1040#endif
0b32f4bb
JB
1041 return __set_page_dirty_nobuffers(page);
1042}
1043
7f09410b 1044static const struct address_space_operations btree_aops = {
d98237b3 1045 .readpage = btree_readpage,
0da5468f 1046 .writepages = btree_writepages,
5f39d397
CM
1047 .releasepage = btree_releasepage,
1048 .invalidatepage = btree_invalidatepage,
5a92bc88 1049#ifdef CONFIG_MIGRATION
784b4e29 1050 .migratepage = btree_migratepage,
5a92bc88 1051#endif
0b32f4bb 1052 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1053};
1054
ca7a79ad
CM
1055int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056 u64 parent_transid)
090d1875 1057{
5f39d397
CM
1058 struct extent_buffer *buf = NULL;
1059 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1060 int ret = 0;
090d1875 1061
db94535d 1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1063 if (!buf)
090d1875 1064 return 0;
d1310b2e 1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1066 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1067 free_extent_buffer(buf);
de428b63 1068 return ret;
090d1875
CM
1069}
1070
ab0fff03
AJ
1071int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072 int mirror_num, struct extent_buffer **eb)
1073{
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077 int ret;
1078
1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080 if (!buf)
1081 return 0;
1082
1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086 btree_get_extent, mirror_num);
1087 if (ret) {
1088 free_extent_buffer(buf);
1089 return ret;
1090 }
1091
1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093 free_extent_buffer(buf);
1094 return -EIO;
0b32f4bb 1095 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1096 *eb = buf;
1097 } else {
1098 free_extent_buffer(buf);
1099 }
1100 return 0;
1101}
1102
0999df54
CM
1103struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104 u64 bytenr, u32 blocksize)
1105{
1106 struct inode *btree_inode = root->fs_info->btree_inode;
1107 struct extent_buffer *eb;
1108 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1109 bytenr, blocksize);
0999df54
CM
1110 return eb;
1111}
1112
1113struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1114 u64 bytenr, u32 blocksize)
1115{
1116 struct inode *btree_inode = root->fs_info->btree_inode;
1117 struct extent_buffer *eb;
1118
1119 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1120 bytenr, blocksize);
0999df54
CM
1121 return eb;
1122}
1123
1124
e02119d5
CM
1125int btrfs_write_tree_block(struct extent_buffer *buf)
1126{
727011e0 1127 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1128 buf->start + buf->len - 1);
e02119d5
CM
1129}
1130
1131int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1132{
727011e0 1133 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1134 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1135}
1136
0999df54 1137struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1138 u32 blocksize, u64 parent_transid)
0999df54
CM
1139{
1140 struct extent_buffer *buf = NULL;
0999df54
CM
1141 int ret;
1142
0999df54
CM
1143 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1144 if (!buf)
1145 return NULL;
0999df54 1146
ca7a79ad 1147 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1148 if (ret) {
1149 free_extent_buffer(buf);
1150 return NULL;
1151 }
5f39d397 1152 return buf;
ce9adaa5 1153
eb60ceac
CM
1154}
1155
d5c13f92
JM
1156void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1157 struct extent_buffer *buf)
ed2ff2cb 1158{
e2d84521
MX
1159 struct btrfs_fs_info *fs_info = root->fs_info;
1160
55c69072 1161 if (btrfs_header_generation(buf) ==
e2d84521 1162 fs_info->running_transaction->transid) {
b9447ef8 1163 btrfs_assert_tree_locked(buf);
b4ce94de 1164
b9473439 1165 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1166 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1167 -buf->len,
1168 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1169 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1170 btrfs_set_lock_blocking(buf);
1171 clear_extent_buffer_dirty(buf);
1172 }
925baedd 1173 }
5f39d397
CM
1174}
1175
143bede5
JM
1176static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1177 u32 stripesize, struct btrfs_root *root,
1178 struct btrfs_fs_info *fs_info,
1179 u64 objectid)
d97e63b6 1180{
cfaa7295 1181 root->node = NULL;
a28ec197 1182 root->commit_root = NULL;
db94535d
CM
1183 root->sectorsize = sectorsize;
1184 root->nodesize = nodesize;
1185 root->leafsize = leafsize;
87ee04eb 1186 root->stripesize = stripesize;
123abc88 1187 root->ref_cows = 0;
0b86a832 1188 root->track_dirty = 0;
c71bf099 1189 root->in_radix = 0;
d68fc57b
YZ
1190 root->orphan_item_inserted = 0;
1191 root->orphan_cleanup_state = 0;
0b86a832 1192
0f7d52f4
CM
1193 root->objectid = objectid;
1194 root->last_trans = 0;
13a8a7c8 1195 root->highest_objectid = 0;
eb73c1b7 1196 root->nr_delalloc_inodes = 0;
199c2a9c 1197 root->nr_ordered_extents = 0;
58176a96 1198 root->name = NULL;
6bef4d31 1199 root->inode_tree = RB_ROOT;
16cdcec7 1200 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1201 root->block_rsv = NULL;
d68fc57b 1202 root->orphan_block_rsv = NULL;
0b86a832
CM
1203
1204 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1205 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1206 INIT_LIST_HEAD(&root->delalloc_inodes);
1207 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1208 INIT_LIST_HEAD(&root->ordered_extents);
1209 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1210 INIT_LIST_HEAD(&root->logged_list[0]);
1211 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1212 spin_lock_init(&root->orphan_lock);
5d4f98a2 1213 spin_lock_init(&root->inode_lock);
eb73c1b7 1214 spin_lock_init(&root->delalloc_lock);
199c2a9c 1215 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1216 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1217 spin_lock_init(&root->log_extents_lock[0]);
1218 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1219 mutex_init(&root->objectid_mutex);
e02119d5 1220 mutex_init(&root->log_mutex);
7237f183
YZ
1221 init_waitqueue_head(&root->log_writer_wait);
1222 init_waitqueue_head(&root->log_commit_wait[0]);
1223 init_waitqueue_head(&root->log_commit_wait[1]);
1224 atomic_set(&root->log_commit[0], 0);
1225 atomic_set(&root->log_commit[1], 0);
1226 atomic_set(&root->log_writers, 0);
2ecb7923 1227 atomic_set(&root->log_batch, 0);
8a35d95f 1228 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1229 atomic_set(&root->refs, 1);
7237f183 1230 root->log_transid = 0;
257c62e1 1231 root->last_log_commit = 0;
d0c803c4 1232 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1233 fs_info->btree_inode->i_mapping);
017e5369 1234
3768f368
CM
1235 memset(&root->root_key, 0, sizeof(root->root_key));
1236 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1237 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1238 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1239 root->defrag_trans_start = fs_info->generation;
58176a96 1240 init_completion(&root->kobj_unregister);
6702ed49 1241 root->defrag_running = 0;
4d775673 1242 root->root_key.objectid = objectid;
0ee5dc67 1243 root->anon_dev = 0;
8ea05e3a 1244
5f3ab90a 1245 spin_lock_init(&root->root_item_lock);
3768f368
CM
1246}
1247
f84a8bd6 1248static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1249{
1250 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1251 if (root)
1252 root->fs_info = fs_info;
1253 return root;
1254}
1255
20897f5c
AJ
1256struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info,
1258 u64 objectid)
1259{
1260 struct extent_buffer *leaf;
1261 struct btrfs_root *tree_root = fs_info->tree_root;
1262 struct btrfs_root *root;
1263 struct btrfs_key key;
1264 int ret = 0;
1265 u64 bytenr;
6463fe58 1266 uuid_le uuid;
20897f5c
AJ
1267
1268 root = btrfs_alloc_root(fs_info);
1269 if (!root)
1270 return ERR_PTR(-ENOMEM);
1271
1272 __setup_root(tree_root->nodesize, tree_root->leafsize,
1273 tree_root->sectorsize, tree_root->stripesize,
1274 root, fs_info, objectid);
1275 root->root_key.objectid = objectid;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = 0;
1278
1279 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280 0, objectid, NULL, 0, 0, 0);
1281 if (IS_ERR(leaf)) {
1282 ret = PTR_ERR(leaf);
1dd05682 1283 leaf = NULL;
20897f5c
AJ
1284 goto fail;
1285 }
1286
1287 bytenr = leaf->start;
1288 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1289 btrfs_set_header_bytenr(leaf, leaf->start);
1290 btrfs_set_header_generation(leaf, trans->transid);
1291 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1292 btrfs_set_header_owner(leaf, objectid);
1293 root->node = leaf;
1294
fba6aa75 1295 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
20897f5c
AJ
1296 BTRFS_FSID_SIZE);
1297 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1298 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1299 BTRFS_UUID_SIZE);
1300 btrfs_mark_buffer_dirty(leaf);
1301
1302 root->commit_root = btrfs_root_node(root);
1303 root->track_dirty = 1;
1304
1305
1306 root->root_item.flags = 0;
1307 root->root_item.byte_limit = 0;
1308 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309 btrfs_set_root_generation(&root->root_item, trans->transid);
1310 btrfs_set_root_level(&root->root_item, 0);
1311 btrfs_set_root_refs(&root->root_item, 1);
1312 btrfs_set_root_used(&root->root_item, leaf->len);
1313 btrfs_set_root_last_snapshot(&root->root_item, 0);
1314 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1315 uuid_le_gen(&uuid);
1316 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1317 root->root_item.drop_level = 0;
1318
1319 key.objectid = objectid;
1320 key.type = BTRFS_ROOT_ITEM_KEY;
1321 key.offset = 0;
1322 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1323 if (ret)
1324 goto fail;
1325
1326 btrfs_tree_unlock(leaf);
1327
1dd05682
TI
1328 return root;
1329
20897f5c 1330fail:
1dd05682
TI
1331 if (leaf) {
1332 btrfs_tree_unlock(leaf);
1333 free_extent_buffer(leaf);
1334 }
1335 kfree(root);
20897f5c 1336
1dd05682 1337 return ERR_PTR(ret);
20897f5c
AJ
1338}
1339
7237f183
YZ
1340static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1341 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1342{
1343 struct btrfs_root *root;
1344 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1345 struct extent_buffer *leaf;
e02119d5 1346
6f07e42e 1347 root = btrfs_alloc_root(fs_info);
e02119d5 1348 if (!root)
7237f183 1349 return ERR_PTR(-ENOMEM);
e02119d5
CM
1350
1351 __setup_root(tree_root->nodesize, tree_root->leafsize,
1352 tree_root->sectorsize, tree_root->stripesize,
1353 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1354
1355 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1356 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1357 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1358 /*
1359 * log trees do not get reference counted because they go away
1360 * before a real commit is actually done. They do store pointers
1361 * to file data extents, and those reference counts still get
1362 * updated (along with back refs to the log tree).
1363 */
e02119d5
CM
1364 root->ref_cows = 0;
1365
5d4f98a2 1366 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1367 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1368 0, 0, 0);
7237f183
YZ
1369 if (IS_ERR(leaf)) {
1370 kfree(root);
1371 return ERR_CAST(leaf);
1372 }
e02119d5 1373
5d4f98a2
YZ
1374 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1375 btrfs_set_header_bytenr(leaf, leaf->start);
1376 btrfs_set_header_generation(leaf, trans->transid);
1377 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1378 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1379 root->node = leaf;
e02119d5
CM
1380
1381 write_extent_buffer(root->node, root->fs_info->fsid,
fba6aa75 1382 btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
e02119d5
CM
1383 btrfs_mark_buffer_dirty(root->node);
1384 btrfs_tree_unlock(root->node);
7237f183
YZ
1385 return root;
1386}
1387
1388int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1389 struct btrfs_fs_info *fs_info)
1390{
1391 struct btrfs_root *log_root;
1392
1393 log_root = alloc_log_tree(trans, fs_info);
1394 if (IS_ERR(log_root))
1395 return PTR_ERR(log_root);
1396 WARN_ON(fs_info->log_root_tree);
1397 fs_info->log_root_tree = log_root;
1398 return 0;
1399}
1400
1401int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root)
1403{
1404 struct btrfs_root *log_root;
1405 struct btrfs_inode_item *inode_item;
1406
1407 log_root = alloc_log_tree(trans, root->fs_info);
1408 if (IS_ERR(log_root))
1409 return PTR_ERR(log_root);
1410
1411 log_root->last_trans = trans->transid;
1412 log_root->root_key.offset = root->root_key.objectid;
1413
1414 inode_item = &log_root->root_item.inode;
3cae210f
QW
1415 btrfs_set_stack_inode_generation(inode_item, 1);
1416 btrfs_set_stack_inode_size(inode_item, 3);
1417 btrfs_set_stack_inode_nlink(inode_item, 1);
1418 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1419 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1420
5d4f98a2 1421 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1422
1423 WARN_ON(root->log_root);
1424 root->log_root = log_root;
1425 root->log_transid = 0;
257c62e1 1426 root->last_log_commit = 0;
e02119d5
CM
1427 return 0;
1428}
1429
35a3621b
SB
1430static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1431 struct btrfs_key *key)
e02119d5
CM
1432{
1433 struct btrfs_root *root;
1434 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1435 struct btrfs_path *path;
84234f3a 1436 u64 generation;
db94535d 1437 u32 blocksize;
cb517eab 1438 int ret;
0f7d52f4 1439
cb517eab
MX
1440 path = btrfs_alloc_path();
1441 if (!path)
0f7d52f4 1442 return ERR_PTR(-ENOMEM);
cb517eab
MX
1443
1444 root = btrfs_alloc_root(fs_info);
1445 if (!root) {
1446 ret = -ENOMEM;
1447 goto alloc_fail;
0f7d52f4
CM
1448 }
1449
db94535d 1450 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1451 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1452 root, fs_info, key->objectid);
0f7d52f4 1453
cb517eab
MX
1454 ret = btrfs_find_root(tree_root, key, path,
1455 &root->root_item, &root->root_key);
0f7d52f4 1456 if (ret) {
13a8a7c8
YZ
1457 if (ret > 0)
1458 ret = -ENOENT;
cb517eab 1459 goto find_fail;
0f7d52f4 1460 }
13a8a7c8 1461
84234f3a 1462 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1463 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1464 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1465 blocksize, generation);
cb517eab
MX
1466 if (!root->node) {
1467 ret = -ENOMEM;
1468 goto find_fail;
1469 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1470 ret = -EIO;
1471 goto read_fail;
416bc658 1472 }
5d4f98a2 1473 root->commit_root = btrfs_root_node(root);
13a8a7c8 1474out:
cb517eab
MX
1475 btrfs_free_path(path);
1476 return root;
1477
1478read_fail:
1479 free_extent_buffer(root->node);
1480find_fail:
1481 kfree(root);
1482alloc_fail:
1483 root = ERR_PTR(ret);
1484 goto out;
1485}
1486
1487struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1488 struct btrfs_key *location)
1489{
1490 struct btrfs_root *root;
1491
1492 root = btrfs_read_tree_root(tree_root, location);
1493 if (IS_ERR(root))
1494 return root;
1495
1496 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1497 root->ref_cows = 1;
08fe4db1
LZ
1498 btrfs_check_and_init_root_item(&root->root_item);
1499 }
13a8a7c8 1500
5eda7b5e
CM
1501 return root;
1502}
1503
cb517eab
MX
1504int btrfs_init_fs_root(struct btrfs_root *root)
1505{
1506 int ret;
1507
1508 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1509 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1510 GFP_NOFS);
1511 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1512 ret = -ENOMEM;
1513 goto fail;
1514 }
1515
1516 btrfs_init_free_ino_ctl(root);
1517 mutex_init(&root->fs_commit_mutex);
1518 spin_lock_init(&root->cache_lock);
1519 init_waitqueue_head(&root->cache_wait);
1520
1521 ret = get_anon_bdev(&root->anon_dev);
1522 if (ret)
1523 goto fail;
1524 return 0;
1525fail:
1526 kfree(root->free_ino_ctl);
1527 kfree(root->free_ino_pinned);
1528 return ret;
1529}
1530
171170c1
ST
1531static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1532 u64 root_id)
cb517eab
MX
1533{
1534 struct btrfs_root *root;
1535
1536 spin_lock(&fs_info->fs_roots_radix_lock);
1537 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1538 (unsigned long)root_id);
1539 spin_unlock(&fs_info->fs_roots_radix_lock);
1540 return root;
1541}
1542
1543int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1544 struct btrfs_root *root)
1545{
1546 int ret;
1547
1548 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1549 if (ret)
1550 return ret;
1551
1552 spin_lock(&fs_info->fs_roots_radix_lock);
1553 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1554 (unsigned long)root->root_key.objectid,
1555 root);
1556 if (ret == 0)
1557 root->in_radix = 1;
1558 spin_unlock(&fs_info->fs_roots_radix_lock);
1559 radix_tree_preload_end();
1560
1561 return ret;
1562}
1563
edbd8d4e
CM
1564struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1565 struct btrfs_key *location)
5eda7b5e
CM
1566{
1567 struct btrfs_root *root;
1568 int ret;
1569
edbd8d4e
CM
1570 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1571 return fs_info->tree_root;
1572 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1573 return fs_info->extent_root;
8f18cf13
CM
1574 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1575 return fs_info->chunk_root;
1576 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1577 return fs_info->dev_root;
0403e47e
YZ
1578 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1579 return fs_info->csum_root;
bcef60f2
AJ
1580 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1581 return fs_info->quota_root ? fs_info->quota_root :
1582 ERR_PTR(-ENOENT);
f7a81ea4
SB
1583 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1584 return fs_info->uuid_root ? fs_info->uuid_root :
1585 ERR_PTR(-ENOENT);
4df27c4d 1586again:
cb517eab 1587 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471
SB
1588 if (root) {
1589 if (btrfs_root_refs(&root->root_item) == 0)
1590 return ERR_PTR(-ENOENT);
5eda7b5e 1591 return root;
48475471 1592 }
5eda7b5e 1593
cb517eab 1594 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1595 if (IS_ERR(root))
1596 return root;
3394e160 1597
cb517eab
MX
1598 if (btrfs_root_refs(&root->root_item) == 0) {
1599 ret = -ENOENT;
581bb050 1600 goto fail;
35a30d7c 1601 }
581bb050 1602
cb517eab 1603 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1604 if (ret)
1605 goto fail;
3394e160 1606
d68fc57b
YZ
1607 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1608 if (ret < 0)
1609 goto fail;
1610 if (ret == 0)
1611 root->orphan_item_inserted = 1;
1612
cb517eab 1613 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1614 if (ret) {
4df27c4d
YZ
1615 if (ret == -EEXIST) {
1616 free_fs_root(root);
1617 goto again;
1618 }
1619 goto fail;
0f7d52f4 1620 }
edbd8d4e 1621 return root;
4df27c4d
YZ
1622fail:
1623 free_fs_root(root);
1624 return ERR_PTR(ret);
edbd8d4e
CM
1625}
1626
04160088
CM
1627static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628{
1629 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630 int ret = 0;
04160088
CM
1631 struct btrfs_device *device;
1632 struct backing_dev_info *bdi;
b7967db7 1633
1f78160c
XG
1634 rcu_read_lock();
1635 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1636 if (!device->bdev)
1637 continue;
04160088
CM
1638 bdi = blk_get_backing_dev_info(device->bdev);
1639 if (bdi && bdi_congested(bdi, bdi_bits)) {
1640 ret = 1;
1641 break;
1642 }
1643 }
1f78160c 1644 rcu_read_unlock();
04160088
CM
1645 return ret;
1646}
1647
ad081f14
JA
1648/*
1649 * If this fails, caller must call bdi_destroy() to get rid of the
1650 * bdi again.
1651 */
04160088
CM
1652static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1653{
ad081f14
JA
1654 int err;
1655
1656 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1657 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1658 if (err)
1659 return err;
1660
4575c9cc 1661 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1662 bdi->congested_fn = btrfs_congested_fn;
1663 bdi->congested_data = info;
1664 return 0;
1665}
1666
8b712842
CM
1667/*
1668 * called by the kthread helper functions to finally call the bio end_io
1669 * functions. This is where read checksum verification actually happens
1670 */
1671static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1672{
ce9adaa5 1673 struct bio *bio;
8b712842
CM
1674 struct end_io_wq *end_io_wq;
1675 struct btrfs_fs_info *fs_info;
ce9adaa5 1676 int error;
ce9adaa5 1677
8b712842
CM
1678 end_io_wq = container_of(work, struct end_io_wq, work);
1679 bio = end_io_wq->bio;
1680 fs_info = end_io_wq->info;
ce9adaa5 1681
8b712842
CM
1682 error = end_io_wq->error;
1683 bio->bi_private = end_io_wq->private;
1684 bio->bi_end_io = end_io_wq->end_io;
1685 kfree(end_io_wq);
8b712842 1686 bio_endio(bio, error);
44b8bd7e
CM
1687}
1688
a74a4b97
CM
1689static int cleaner_kthread(void *arg)
1690{
1691 struct btrfs_root *root = arg;
d0278245 1692 int again;
a74a4b97
CM
1693
1694 do {
d0278245 1695 again = 0;
a74a4b97 1696
d0278245 1697 /* Make the cleaner go to sleep early. */
babbf170 1698 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1699 goto sleep;
1700
1701 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1702 goto sleep;
1703
dc7f370c
MX
1704 /*
1705 * Avoid the problem that we change the status of the fs
1706 * during the above check and trylock.
1707 */
babbf170 1708 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1709 mutex_unlock(&root->fs_info->cleaner_mutex);
1710 goto sleep;
76dda93c 1711 }
a74a4b97 1712
d0278245
MX
1713 btrfs_run_delayed_iputs(root);
1714 again = btrfs_clean_one_deleted_snapshot(root);
1715 mutex_unlock(&root->fs_info->cleaner_mutex);
1716
1717 /*
05323cd1
MX
1718 * The defragger has dealt with the R/O remount and umount,
1719 * needn't do anything special here.
d0278245
MX
1720 */
1721 btrfs_run_defrag_inodes(root->fs_info);
1722sleep:
9d1a2a3a 1723 if (!try_to_freeze() && !again) {
a74a4b97 1724 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1725 if (!kthread_should_stop())
1726 schedule();
a74a4b97
CM
1727 __set_current_state(TASK_RUNNING);
1728 }
1729 } while (!kthread_should_stop());
1730 return 0;
1731}
1732
1733static int transaction_kthread(void *arg)
1734{
1735 struct btrfs_root *root = arg;
1736 struct btrfs_trans_handle *trans;
1737 struct btrfs_transaction *cur;
8929ecfa 1738 u64 transid;
a74a4b97
CM
1739 unsigned long now;
1740 unsigned long delay;
914b2007 1741 bool cannot_commit;
a74a4b97
CM
1742
1743 do {
914b2007 1744 cannot_commit = false;
8b87dc17 1745 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1746 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1747
a4abeea4 1748 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1749 cur = root->fs_info->running_transaction;
1750 if (!cur) {
a4abeea4 1751 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1752 goto sleep;
1753 }
31153d81 1754
a74a4b97 1755 now = get_seconds();
4a9d8bde 1756 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1757 (now < cur->start_time ||
1758 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1759 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1760 delay = HZ * 5;
1761 goto sleep;
1762 }
8929ecfa 1763 transid = cur->transid;
a4abeea4 1764 spin_unlock(&root->fs_info->trans_lock);
56bec294 1765
79787eaa 1766 /* If the file system is aborted, this will always fail. */
354aa0fb 1767 trans = btrfs_attach_transaction(root);
914b2007 1768 if (IS_ERR(trans)) {
354aa0fb
MX
1769 if (PTR_ERR(trans) != -ENOENT)
1770 cannot_commit = true;
79787eaa 1771 goto sleep;
914b2007 1772 }
8929ecfa 1773 if (transid == trans->transid) {
79787eaa 1774 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1775 } else {
1776 btrfs_end_transaction(trans, root);
1777 }
a74a4b97
CM
1778sleep:
1779 wake_up_process(root->fs_info->cleaner_kthread);
1780 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1781
a0acae0e 1782 if (!try_to_freeze()) {
a74a4b97 1783 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1784 if (!kthread_should_stop() &&
914b2007
JK
1785 (!btrfs_transaction_blocked(root->fs_info) ||
1786 cannot_commit))
8929ecfa 1787 schedule_timeout(delay);
a74a4b97
CM
1788 __set_current_state(TASK_RUNNING);
1789 }
1790 } while (!kthread_should_stop());
1791 return 0;
1792}
1793
af31f5e5
CM
1794/*
1795 * this will find the highest generation in the array of
1796 * root backups. The index of the highest array is returned,
1797 * or -1 if we can't find anything.
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest root in the array with the generation
1801 * in the super block. If they don't match we pitch it.
1802 */
1803static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804{
1805 u64 cur;
1806 int newest_index = -1;
1807 struct btrfs_root_backup *root_backup;
1808 int i;
1809
1810 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811 root_backup = info->super_copy->super_roots + i;
1812 cur = btrfs_backup_tree_root_gen(root_backup);
1813 if (cur == newest_gen)
1814 newest_index = i;
1815 }
1816
1817 /* check to see if we actually wrapped around */
1818 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819 root_backup = info->super_copy->super_roots;
1820 cur = btrfs_backup_tree_root_gen(root_backup);
1821 if (cur == newest_gen)
1822 newest_index = 0;
1823 }
1824 return newest_index;
1825}
1826
1827
1828/*
1829 * find the oldest backup so we know where to store new entries
1830 * in the backup array. This will set the backup_root_index
1831 * field in the fs_info struct
1832 */
1833static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834 u64 newest_gen)
1835{
1836 int newest_index = -1;
1837
1838 newest_index = find_newest_super_backup(info, newest_gen);
1839 /* if there was garbage in there, just move along */
1840 if (newest_index == -1) {
1841 info->backup_root_index = 0;
1842 } else {
1843 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844 }
1845}
1846
1847/*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852static void backup_super_roots(struct btrfs_fs_info *info)
1853{
1854 int next_backup;
1855 struct btrfs_root_backup *root_backup;
1856 int last_backup;
1857
1858 next_backup = info->backup_root_index;
1859 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860 BTRFS_NUM_BACKUP_ROOTS;
1861
1862 /*
1863 * just overwrite the last backup if we're at the same generation
1864 * this happens only at umount
1865 */
1866 root_backup = info->super_for_commit->super_roots + last_backup;
1867 if (btrfs_backup_tree_root_gen(root_backup) ==
1868 btrfs_header_generation(info->tree_root->node))
1869 next_backup = last_backup;
1870
1871 root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873 /*
1874 * make sure all of our padding and empty slots get zero filled
1875 * regardless of which ones we use today
1876 */
1877 memset(root_backup, 0, sizeof(*root_backup));
1878
1879 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882 btrfs_set_backup_tree_root_gen(root_backup,
1883 btrfs_header_generation(info->tree_root->node));
1884
1885 btrfs_set_backup_tree_root_level(root_backup,
1886 btrfs_header_level(info->tree_root->node));
1887
1888 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889 btrfs_set_backup_chunk_root_gen(root_backup,
1890 btrfs_header_generation(info->chunk_root->node));
1891 btrfs_set_backup_chunk_root_level(root_backup,
1892 btrfs_header_level(info->chunk_root->node));
1893
1894 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895 btrfs_set_backup_extent_root_gen(root_backup,
1896 btrfs_header_generation(info->extent_root->node));
1897 btrfs_set_backup_extent_root_level(root_backup,
1898 btrfs_header_level(info->extent_root->node));
1899
7c7e82a7
CM
1900 /*
1901 * we might commit during log recovery, which happens before we set
1902 * the fs_root. Make sure it is valid before we fill it in.
1903 */
1904 if (info->fs_root && info->fs_root->node) {
1905 btrfs_set_backup_fs_root(root_backup,
1906 info->fs_root->node->start);
1907 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1908 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1909 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1910 btrfs_header_level(info->fs_root->node));
7c7e82a7 1911 }
af31f5e5
CM
1912
1913 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914 btrfs_set_backup_dev_root_gen(root_backup,
1915 btrfs_header_generation(info->dev_root->node));
1916 btrfs_set_backup_dev_root_level(root_backup,
1917 btrfs_header_level(info->dev_root->node));
1918
1919 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920 btrfs_set_backup_csum_root_gen(root_backup,
1921 btrfs_header_generation(info->csum_root->node));
1922 btrfs_set_backup_csum_root_level(root_backup,
1923 btrfs_header_level(info->csum_root->node));
1924
1925 btrfs_set_backup_total_bytes(root_backup,
1926 btrfs_super_total_bytes(info->super_copy));
1927 btrfs_set_backup_bytes_used(root_backup,
1928 btrfs_super_bytes_used(info->super_copy));
1929 btrfs_set_backup_num_devices(root_backup,
1930 btrfs_super_num_devices(info->super_copy));
1931
1932 /*
1933 * if we don't copy this out to the super_copy, it won't get remembered
1934 * for the next commit
1935 */
1936 memcpy(&info->super_copy->super_roots,
1937 &info->super_for_commit->super_roots,
1938 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939}
1940
1941/*
1942 * this copies info out of the root backup array and back into
1943 * the in-memory super block. It is meant to help iterate through
1944 * the array, so you send it the number of backups you've already
1945 * tried and the last backup index you used.
1946 *
1947 * this returns -1 when it has tried all the backups
1948 */
1949static noinline int next_root_backup(struct btrfs_fs_info *info,
1950 struct btrfs_super_block *super,
1951 int *num_backups_tried, int *backup_index)
1952{
1953 struct btrfs_root_backup *root_backup;
1954 int newest = *backup_index;
1955
1956 if (*num_backups_tried == 0) {
1957 u64 gen = btrfs_super_generation(super);
1958
1959 newest = find_newest_super_backup(info, gen);
1960 if (newest == -1)
1961 return -1;
1962
1963 *backup_index = newest;
1964 *num_backups_tried = 1;
1965 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966 /* we've tried all the backups, all done */
1967 return -1;
1968 } else {
1969 /* jump to the next oldest backup */
1970 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971 BTRFS_NUM_BACKUP_ROOTS;
1972 *backup_index = newest;
1973 *num_backups_tried += 1;
1974 }
1975 root_backup = super->super_roots + newest;
1976
1977 btrfs_set_super_generation(super,
1978 btrfs_backup_tree_root_gen(root_backup));
1979 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980 btrfs_set_super_root_level(super,
1981 btrfs_backup_tree_root_level(root_backup));
1982 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984 /*
1985 * fixme: the total bytes and num_devices need to match or we should
1986 * need a fsck
1987 */
1988 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990 return 0;
1991}
1992
7abadb64
LB
1993/* helper to cleanup workers */
1994static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995{
1996 btrfs_stop_workers(&fs_info->generic_worker);
1997 btrfs_stop_workers(&fs_info->fixup_workers);
1998 btrfs_stop_workers(&fs_info->delalloc_workers);
1999 btrfs_stop_workers(&fs_info->workers);
2000 btrfs_stop_workers(&fs_info->endio_workers);
2001 btrfs_stop_workers(&fs_info->endio_meta_workers);
2002 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2003 btrfs_stop_workers(&fs_info->rmw_workers);
2004 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2005 btrfs_stop_workers(&fs_info->endio_write_workers);
2006 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2007 btrfs_stop_workers(&fs_info->submit_workers);
2008 btrfs_stop_workers(&fs_info->delayed_workers);
2009 btrfs_stop_workers(&fs_info->caching_workers);
2010 btrfs_stop_workers(&fs_info->readahead_workers);
2011 btrfs_stop_workers(&fs_info->flush_workers);
2f232036 2012 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
7abadb64
LB
2013}
2014
af31f5e5
CM
2015/* helper to cleanup tree roots */
2016static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2017{
2018 free_extent_buffer(info->tree_root->node);
2019 free_extent_buffer(info->tree_root->commit_root);
af31f5e5
CM
2020 info->tree_root->node = NULL;
2021 info->tree_root->commit_root = NULL;
655b09fe
JB
2022
2023 if (info->dev_root) {
2024 free_extent_buffer(info->dev_root->node);
2025 free_extent_buffer(info->dev_root->commit_root);
2026 info->dev_root->node = NULL;
2027 info->dev_root->commit_root = NULL;
2028 }
2029 if (info->extent_root) {
2030 free_extent_buffer(info->extent_root->node);
2031 free_extent_buffer(info->extent_root->commit_root);
2032 info->extent_root->node = NULL;
2033 info->extent_root->commit_root = NULL;
2034 }
2035 if (info->csum_root) {
2036 free_extent_buffer(info->csum_root->node);
2037 free_extent_buffer(info->csum_root->commit_root);
2038 info->csum_root->node = NULL;
2039 info->csum_root->commit_root = NULL;
2040 }
bcef60f2 2041 if (info->quota_root) {
655b09fe
JB
2042 free_extent_buffer(info->quota_root->node);
2043 free_extent_buffer(info->quota_root->commit_root);
bcef60f2
AJ
2044 info->quota_root->node = NULL;
2045 info->quota_root->commit_root = NULL;
2046 }
f7a81ea4
SB
2047 if (info->uuid_root) {
2048 free_extent_buffer(info->uuid_root->node);
2049 free_extent_buffer(info->uuid_root->commit_root);
2050 info->uuid_root->node = NULL;
2051 info->uuid_root->commit_root = NULL;
2052 }
af31f5e5
CM
2053 if (chunk_root) {
2054 free_extent_buffer(info->chunk_root->node);
2055 free_extent_buffer(info->chunk_root->commit_root);
2056 info->chunk_root->node = NULL;
2057 info->chunk_root->commit_root = NULL;
2058 }
2059}
2060
171f6537
JB
2061static void del_fs_roots(struct btrfs_fs_info *fs_info)
2062{
2063 int ret;
2064 struct btrfs_root *gang[8];
2065 int i;
2066
2067 while (!list_empty(&fs_info->dead_roots)) {
2068 gang[0] = list_entry(fs_info->dead_roots.next,
2069 struct btrfs_root, root_list);
2070 list_del(&gang[0]->root_list);
2071
2072 if (gang[0]->in_radix) {
cb517eab 2073 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2074 } else {
2075 free_extent_buffer(gang[0]->node);
2076 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2077 btrfs_put_fs_root(gang[0]);
171f6537
JB
2078 }
2079 }
2080
2081 while (1) {
2082 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2083 (void **)gang, 0,
2084 ARRAY_SIZE(gang));
2085 if (!ret)
2086 break;
2087 for (i = 0; i < ret; i++)
cb517eab 2088 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2089 }
2090}
af31f5e5 2091
ad2b2c80
AV
2092int open_ctree(struct super_block *sb,
2093 struct btrfs_fs_devices *fs_devices,
2094 char *options)
2e635a27 2095{
db94535d
CM
2096 u32 sectorsize;
2097 u32 nodesize;
2098 u32 leafsize;
2099 u32 blocksize;
87ee04eb 2100 u32 stripesize;
84234f3a 2101 u64 generation;
f2b636e8 2102 u64 features;
3de4586c 2103 struct btrfs_key location;
a061fc8d 2104 struct buffer_head *bh;
4d34b278 2105 struct btrfs_super_block *disk_super;
815745cf 2106 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2107 struct btrfs_root *tree_root;
4d34b278
ID
2108 struct btrfs_root *extent_root;
2109 struct btrfs_root *csum_root;
2110 struct btrfs_root *chunk_root;
2111 struct btrfs_root *dev_root;
bcef60f2 2112 struct btrfs_root *quota_root;
f7a81ea4 2113 struct btrfs_root *uuid_root;
e02119d5 2114 struct btrfs_root *log_tree_root;
eb60ceac 2115 int ret;
e58ca020 2116 int err = -EINVAL;
af31f5e5
CM
2117 int num_backups_tried = 0;
2118 int backup_index = 0;
70f80175
SB
2119 bool create_uuid_tree;
2120 bool check_uuid_tree;
4543df7e 2121
f84a8bd6 2122 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2123 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2124 if (!tree_root || !chunk_root) {
39279cc3
CM
2125 err = -ENOMEM;
2126 goto fail;
2127 }
76dda93c
YZ
2128
2129 ret = init_srcu_struct(&fs_info->subvol_srcu);
2130 if (ret) {
2131 err = ret;
2132 goto fail;
2133 }
2134
2135 ret = setup_bdi(fs_info, &fs_info->bdi);
2136 if (ret) {
2137 err = ret;
2138 goto fail_srcu;
2139 }
2140
e2d84521
MX
2141 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2142 if (ret) {
2143 err = ret;
2144 goto fail_bdi;
2145 }
2146 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2147 (1 + ilog2(nr_cpu_ids));
2148
963d678b
MX
2149 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2150 if (ret) {
2151 err = ret;
2152 goto fail_dirty_metadata_bytes;
2153 }
2154
76dda93c
YZ
2155 fs_info->btree_inode = new_inode(sb);
2156 if (!fs_info->btree_inode) {
2157 err = -ENOMEM;
963d678b 2158 goto fail_delalloc_bytes;
76dda93c
YZ
2159 }
2160
a6591715 2161 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2162
76dda93c 2163 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2164 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2165 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2166 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2167 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2168 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2169 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2170 spin_lock_init(&fs_info->trans_lock);
76dda93c 2171 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2172 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2173 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2174 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2175 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2176 spin_lock_init(&fs_info->super_lock);
f29021b2 2177 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2178 mutex_init(&fs_info->reloc_mutex);
de98ced9 2179 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2180
58176a96 2181 init_completion(&fs_info->kobj_unregister);
0b86a832 2182 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2183 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2184 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2185 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2186 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2187 BTRFS_BLOCK_RSV_GLOBAL);
2188 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2189 BTRFS_BLOCK_RSV_DELALLOC);
2190 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2191 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2192 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2193 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2194 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2195 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2196 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2197 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2198 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2199 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2200 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2201 fs_info->sb = sb;
6f568d35 2202 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2203 fs_info->metadata_ratio = 0;
4cb5300b 2204 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2205 fs_info->free_chunk_space = 0;
f29021b2 2206 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2207 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
c8b97818 2208
90519d66
AJ
2209 /* readahead state */
2210 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2211 spin_lock_init(&fs_info->reada_lock);
c8b97818 2212
b34b086c
CM
2213 fs_info->thread_pool_size = min_t(unsigned long,
2214 num_online_cpus() + 2, 8);
0afbaf8c 2215
199c2a9c
MX
2216 INIT_LIST_HEAD(&fs_info->ordered_roots);
2217 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2218 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2219 GFP_NOFS);
2220 if (!fs_info->delayed_root) {
2221 err = -ENOMEM;
2222 goto fail_iput;
2223 }
2224 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2225
a2de733c
AJ
2226 mutex_init(&fs_info->scrub_lock);
2227 atomic_set(&fs_info->scrubs_running, 0);
2228 atomic_set(&fs_info->scrub_pause_req, 0);
2229 atomic_set(&fs_info->scrubs_paused, 0);
2230 atomic_set(&fs_info->scrub_cancel_req, 0);
2231 init_waitqueue_head(&fs_info->scrub_pause_wait);
2232 init_rwsem(&fs_info->scrub_super_lock);
2233 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2234#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2235 fs_info->check_integrity_print_mask = 0;
2236#endif
a2de733c 2237
c9e9f97b
ID
2238 spin_lock_init(&fs_info->balance_lock);
2239 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2240 atomic_set(&fs_info->balance_running, 0);
2241 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2242 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2243 fs_info->balance_ctl = NULL;
837d5b6e 2244 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2245
a061fc8d
CM
2246 sb->s_blocksize = 4096;
2247 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2248 sb->s_bdi = &fs_info->bdi;
a061fc8d 2249
76dda93c 2250 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2251 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2252 /*
2253 * we set the i_size on the btree inode to the max possible int.
2254 * the real end of the address space is determined by all of
2255 * the devices in the system
2256 */
2257 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2258 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2259 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2260
5d4f98a2 2261 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2262 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2263 fs_info->btree_inode->i_mapping);
0b32f4bb 2264 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2265 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2266
2267 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2268
76dda93c
YZ
2269 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2270 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2271 sizeof(struct btrfs_key));
72ac3c0d
JB
2272 set_bit(BTRFS_INODE_DUMMY,
2273 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2274 insert_inode_hash(fs_info->btree_inode);
76dda93c 2275
0f9dd46c 2276 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2277 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2278 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2279
11833d66 2280 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2281 fs_info->btree_inode->i_mapping);
11833d66 2282 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2283 fs_info->btree_inode->i_mapping);
11833d66 2284 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2285 fs_info->do_barriers = 1;
e18e4809 2286
39279cc3 2287
5a3f23d5 2288 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2289 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2290 mutex_init(&fs_info->tree_log_mutex);
925baedd 2291 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2292 mutex_init(&fs_info->transaction_kthread_mutex);
2293 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2294 mutex_init(&fs_info->volume_mutex);
276e680d 2295 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2296 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2297 init_rwsem(&fs_info->subvol_sem);
803b2f54 2298 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2299 fs_info->dev_replace.lock_owner = 0;
2300 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2301 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2302 mutex_init(&fs_info->dev_replace.lock_management_lock);
2303 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2304
416ac51d 2305 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2306 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2307 fs_info->qgroup_tree = RB_ROOT;
2308 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2309 fs_info->qgroup_seq = 1;
2310 fs_info->quota_enabled = 0;
2311 fs_info->pending_quota_state = 0;
1e8f9158 2312 fs_info->qgroup_ulist = NULL;
2f232036 2313 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2314
fa9c0d79
CM
2315 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2316 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2317
e6dcd2dc 2318 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2319 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2320 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2321 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2322
53b381b3
DW
2323 ret = btrfs_alloc_stripe_hash_table(fs_info);
2324 if (ret) {
83c8266a 2325 err = ret;
53b381b3
DW
2326 goto fail_alloc;
2327 }
2328
0b86a832 2329 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2330 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2331
3c4bb26b 2332 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2333
2334 /*
2335 * Read super block and check the signature bytes only
2336 */
a512bbf8 2337 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2338 if (!bh) {
2339 err = -EINVAL;
16cdcec7 2340 goto fail_alloc;
20b45077 2341 }
39279cc3 2342
1104a885
DS
2343 /*
2344 * We want to check superblock checksum, the type is stored inside.
2345 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2346 */
2347 if (btrfs_check_super_csum(bh->b_data)) {
2348 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2349 err = -EINVAL;
2350 goto fail_alloc;
2351 }
2352
2353 /*
2354 * super_copy is zeroed at allocation time and we never touch the
2355 * following bytes up to INFO_SIZE, the checksum is calculated from
2356 * the whole block of INFO_SIZE
2357 */
6c41761f
DS
2358 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2359 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2360 sizeof(*fs_info->super_for_commit));
a061fc8d 2361 brelse(bh);
5f39d397 2362
6c41761f 2363 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2364
1104a885
DS
2365 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2366 if (ret) {
2367 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2368 err = -EINVAL;
2369 goto fail_alloc;
2370 }
2371
6c41761f 2372 disk_super = fs_info->super_copy;
0f7d52f4 2373 if (!btrfs_super_root(disk_super))
16cdcec7 2374 goto fail_alloc;
0f7d52f4 2375
acce952b 2376 /* check FS state, whether FS is broken. */
87533c47
MX
2377 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2378 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2379
af31f5e5
CM
2380 /*
2381 * run through our array of backup supers and setup
2382 * our ring pointer to the oldest one
2383 */
2384 generation = btrfs_super_generation(disk_super);
2385 find_oldest_super_backup(fs_info, generation);
2386
75e7cb7f
LB
2387 /*
2388 * In the long term, we'll store the compression type in the super
2389 * block, and it'll be used for per file compression control.
2390 */
2391 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2392
2b82032c
YZ
2393 ret = btrfs_parse_options(tree_root, options);
2394 if (ret) {
2395 err = ret;
16cdcec7 2396 goto fail_alloc;
2b82032c 2397 }
dfe25020 2398
f2b636e8
JB
2399 features = btrfs_super_incompat_flags(disk_super) &
2400 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2401 if (features) {
2402 printk(KERN_ERR "BTRFS: couldn't mount because of "
2403 "unsupported optional features (%Lx).\n",
c1c9ff7c 2404 features);
f2b636e8 2405 err = -EINVAL;
16cdcec7 2406 goto fail_alloc;
f2b636e8
JB
2407 }
2408
727011e0
CM
2409 if (btrfs_super_leafsize(disk_super) !=
2410 btrfs_super_nodesize(disk_super)) {
2411 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2412 "blocksizes don't match. node %d leaf %d\n",
2413 btrfs_super_nodesize(disk_super),
2414 btrfs_super_leafsize(disk_super));
2415 err = -EINVAL;
2416 goto fail_alloc;
2417 }
2418 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2419 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2420 "blocksize (%d) was too large\n",
2421 btrfs_super_leafsize(disk_super));
2422 err = -EINVAL;
2423 goto fail_alloc;
2424 }
2425
5d4f98a2 2426 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2427 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2428 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2429 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2430
3173a18f
JB
2431 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2432 printk(KERN_ERR "btrfs: has skinny extents\n");
2433
727011e0
CM
2434 /*
2435 * flag our filesystem as having big metadata blocks if
2436 * they are bigger than the page size
2437 */
2438 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2439 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2440 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2441 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2442 }
2443
bc3f116f
CM
2444 nodesize = btrfs_super_nodesize(disk_super);
2445 leafsize = btrfs_super_leafsize(disk_super);
2446 sectorsize = btrfs_super_sectorsize(disk_super);
2447 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2448 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2449 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2450
2451 /*
2452 * mixed block groups end up with duplicate but slightly offset
2453 * extent buffers for the same range. It leads to corruptions
2454 */
2455 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2456 (sectorsize != leafsize)) {
2457 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2458 "are not allowed for mixed block groups on %s\n",
2459 sb->s_id);
2460 goto fail_alloc;
2461 }
2462
ceda0864
MX
2463 /*
2464 * Needn't use the lock because there is no other task which will
2465 * update the flag.
2466 */
a6fa6fae 2467 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2468
f2b636e8
JB
2469 features = btrfs_super_compat_ro_flags(disk_super) &
2470 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2471 if (!(sb->s_flags & MS_RDONLY) && features) {
2472 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2473 "unsupported option features (%Lx).\n",
c1c9ff7c 2474 features);
f2b636e8 2475 err = -EINVAL;
16cdcec7 2476 goto fail_alloc;
f2b636e8 2477 }
61d92c32
CM
2478
2479 btrfs_init_workers(&fs_info->generic_worker,
2480 "genwork", 1, NULL);
2481
5443be45 2482 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2483 fs_info->thread_pool_size,
2484 &fs_info->generic_worker);
c8b97818 2485
771ed689 2486 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
45d5fd14 2487 fs_info->thread_pool_size, NULL);
771ed689 2488
8ccf6f19 2489 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
45d5fd14 2490 fs_info->thread_pool_size, NULL);
8ccf6f19 2491
5443be45 2492 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2493 min_t(u64, fs_devices->num_devices,
45d5fd14 2494 fs_info->thread_pool_size), NULL);
61b49440 2495
bab39bf9 2496 btrfs_init_workers(&fs_info->caching_workers, "cache",
45d5fd14 2497 fs_info->thread_pool_size, NULL);
bab39bf9 2498
61b49440
CM
2499 /* a higher idle thresh on the submit workers makes it much more
2500 * likely that bios will be send down in a sane order to the
2501 * devices
2502 */
2503 fs_info->submit_workers.idle_thresh = 64;
53863232 2504
771ed689 2505 fs_info->workers.idle_thresh = 16;
4a69a410 2506 fs_info->workers.ordered = 1;
61b49440 2507
771ed689
CM
2508 fs_info->delalloc_workers.idle_thresh = 2;
2509 fs_info->delalloc_workers.ordered = 1;
2510
61d92c32
CM
2511 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2512 &fs_info->generic_worker);
5443be45 2513 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2514 fs_info->thread_pool_size,
2515 &fs_info->generic_worker);
d20f7043 2516 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2517 fs_info->thread_pool_size,
2518 &fs_info->generic_worker);
cad321ad 2519 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2520 "endio-meta-write", fs_info->thread_pool_size,
2521 &fs_info->generic_worker);
53b381b3
DW
2522 btrfs_init_workers(&fs_info->endio_raid56_workers,
2523 "endio-raid56", fs_info->thread_pool_size,
2524 &fs_info->generic_worker);
2525 btrfs_init_workers(&fs_info->rmw_workers,
2526 "rmw", fs_info->thread_pool_size,
2527 &fs_info->generic_worker);
5443be45 2528 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2529 fs_info->thread_pool_size,
2530 &fs_info->generic_worker);
0cb59c99
JB
2531 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2532 1, &fs_info->generic_worker);
16cdcec7
MX
2533 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2534 fs_info->thread_pool_size,
2535 &fs_info->generic_worker);
90519d66
AJ
2536 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2537 fs_info->thread_pool_size,
2538 &fs_info->generic_worker);
2f232036
JS
2539 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2540 &fs_info->generic_worker);
61b49440
CM
2541
2542 /*
2543 * endios are largely parallel and should have a very
2544 * low idle thresh
2545 */
2546 fs_info->endio_workers.idle_thresh = 4;
b51912c9 2547 fs_info->endio_meta_workers.idle_thresh = 4;
53b381b3
DW
2548 fs_info->endio_raid56_workers.idle_thresh = 4;
2549 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2550
9042846b
CM
2551 fs_info->endio_write_workers.idle_thresh = 2;
2552 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2553 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2554
0dc3b84a
JB
2555 /*
2556 * btrfs_start_workers can really only fail because of ENOMEM so just
2557 * return -ENOMEM if any of these fail.
2558 */
2559 ret = btrfs_start_workers(&fs_info->workers);
2560 ret |= btrfs_start_workers(&fs_info->generic_worker);
2561 ret |= btrfs_start_workers(&fs_info->submit_workers);
2562 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2563 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2564 ret |= btrfs_start_workers(&fs_info->endio_workers);
2565 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2566 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2567 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
0dc3b84a
JB
2568 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2569 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2570 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2571 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2572 ret |= btrfs_start_workers(&fs_info->caching_workers);
2573 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2574 ret |= btrfs_start_workers(&fs_info->flush_workers);
2f232036 2575 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
0dc3b84a 2576 if (ret) {
fed425c7 2577 err = -ENOMEM;
0dc3b84a
JB
2578 goto fail_sb_buffer;
2579 }
4543df7e 2580
4575c9cc 2581 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2582 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2583 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2584
db94535d
CM
2585 tree_root->nodesize = nodesize;
2586 tree_root->leafsize = leafsize;
2587 tree_root->sectorsize = sectorsize;
87ee04eb 2588 tree_root->stripesize = stripesize;
a061fc8d
CM
2589
2590 sb->s_blocksize = sectorsize;
2591 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2592
3cae210f 2593 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
d397712b 2594 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2595 goto fail_sb_buffer;
2596 }
19c00ddc 2597
8d082fb7
LB
2598 if (sectorsize != PAGE_SIZE) {
2599 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2600 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2601 goto fail_sb_buffer;
2602 }
2603
925baedd 2604 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2605 ret = btrfs_read_sys_array(tree_root);
925baedd 2606 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2607 if (ret) {
d397712b
CM
2608 printk(KERN_WARNING "btrfs: failed to read the system "
2609 "array on %s\n", sb->s_id);
5d4f98a2 2610 goto fail_sb_buffer;
84eed90f 2611 }
0b86a832
CM
2612
2613 blocksize = btrfs_level_size(tree_root,
2614 btrfs_super_chunk_root_level(disk_super));
84234f3a 2615 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2616
2617 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2618 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2619
2620 chunk_root->node = read_tree_block(chunk_root,
2621 btrfs_super_chunk_root(disk_super),
84234f3a 2622 blocksize, generation);
416bc658
JB
2623 if (!chunk_root->node ||
2624 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
83121942
DW
2625 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2626 sb->s_id);
af31f5e5 2627 goto fail_tree_roots;
83121942 2628 }
5d4f98a2
YZ
2629 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2630 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2631
e17cade2 2632 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2633 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2634
0b86a832 2635 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2636 if (ret) {
d397712b
CM
2637 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2638 sb->s_id);
af31f5e5 2639 goto fail_tree_roots;
2b82032c 2640 }
0b86a832 2641
8dabb742
SB
2642 /*
2643 * keep the device that is marked to be the target device for the
2644 * dev_replace procedure
2645 */
2646 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2647
a6b0d5c8
CM
2648 if (!fs_devices->latest_bdev) {
2649 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2650 sb->s_id);
2651 goto fail_tree_roots;
2652 }
2653
af31f5e5 2654retry_root_backup:
db94535d
CM
2655 blocksize = btrfs_level_size(tree_root,
2656 btrfs_super_root_level(disk_super));
84234f3a 2657 generation = btrfs_super_generation(disk_super);
0b86a832 2658
e20d96d6 2659 tree_root->node = read_tree_block(tree_root,
db94535d 2660 btrfs_super_root(disk_super),
84234f3a 2661 blocksize, generation);
af31f5e5
CM
2662 if (!tree_root->node ||
2663 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2664 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2665 sb->s_id);
af31f5e5
CM
2666
2667 goto recovery_tree_root;
83121942 2668 }
af31f5e5 2669
5d4f98a2
YZ
2670 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2671 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d 2672
cb517eab
MX
2673 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2674 location.type = BTRFS_ROOT_ITEM_KEY;
2675 location.offset = 0;
2676
2677 extent_root = btrfs_read_tree_root(tree_root, &location);
2678 if (IS_ERR(extent_root)) {
2679 ret = PTR_ERR(extent_root);
af31f5e5 2680 goto recovery_tree_root;
cb517eab 2681 }
0b86a832 2682 extent_root->track_dirty = 1;
cb517eab 2683 fs_info->extent_root = extent_root;
0b86a832 2684
cb517eab
MX
2685 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2686 dev_root = btrfs_read_tree_root(tree_root, &location);
2687 if (IS_ERR(dev_root)) {
2688 ret = PTR_ERR(dev_root);
af31f5e5 2689 goto recovery_tree_root;
cb517eab 2690 }
5d4f98a2 2691 dev_root->track_dirty = 1;
cb517eab
MX
2692 fs_info->dev_root = dev_root;
2693 btrfs_init_devices_late(fs_info);
3768f368 2694
cb517eab
MX
2695 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2696 csum_root = btrfs_read_tree_root(tree_root, &location);
2697 if (IS_ERR(csum_root)) {
2698 ret = PTR_ERR(csum_root);
af31f5e5 2699 goto recovery_tree_root;
cb517eab 2700 }
d20f7043 2701 csum_root->track_dirty = 1;
cb517eab 2702 fs_info->csum_root = csum_root;
d20f7043 2703
cb517eab
MX
2704 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2705 quota_root = btrfs_read_tree_root(tree_root, &location);
2706 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2707 quota_root->track_dirty = 1;
2708 fs_info->quota_enabled = 1;
2709 fs_info->pending_quota_state = 1;
cb517eab 2710 fs_info->quota_root = quota_root;
bcef60f2
AJ
2711 }
2712
f7a81ea4
SB
2713 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2714 uuid_root = btrfs_read_tree_root(tree_root, &location);
2715 if (IS_ERR(uuid_root)) {
2716 ret = PTR_ERR(uuid_root);
2717 if (ret != -ENOENT)
2718 goto recovery_tree_root;
2719 create_uuid_tree = true;
70f80175 2720 check_uuid_tree = false;
f7a81ea4
SB
2721 } else {
2722 uuid_root->track_dirty = 1;
2723 fs_info->uuid_root = uuid_root;
70f80175
SB
2724 create_uuid_tree = false;
2725 check_uuid_tree =
2726 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2727 }
2728
8929ecfa
YZ
2729 fs_info->generation = generation;
2730 fs_info->last_trans_committed = generation;
8929ecfa 2731
68310a5e
ID
2732 ret = btrfs_recover_balance(fs_info);
2733 if (ret) {
2734 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2735 goto fail_block_groups;
2736 }
2737
733f4fbb
SB
2738 ret = btrfs_init_dev_stats(fs_info);
2739 if (ret) {
2740 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2741 ret);
2742 goto fail_block_groups;
2743 }
2744
8dabb742
SB
2745 ret = btrfs_init_dev_replace(fs_info);
2746 if (ret) {
2747 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2748 goto fail_block_groups;
2749 }
2750
2751 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2752
c59021f8 2753 ret = btrfs_init_space_info(fs_info);
2754 if (ret) {
2755 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2756 goto fail_block_groups;
2757 }
2758
1b1d1f66
JB
2759 ret = btrfs_read_block_groups(extent_root);
2760 if (ret) {
2761 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2762 goto fail_block_groups;
2763 }
5af3e8cc
SB
2764 fs_info->num_tolerated_disk_barrier_failures =
2765 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2766 if (fs_info->fs_devices->missing_devices >
2767 fs_info->num_tolerated_disk_barrier_failures &&
2768 !(sb->s_flags & MS_RDONLY)) {
2769 printk(KERN_WARNING
2770 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2771 goto fail_block_groups;
2772 }
9078a3e1 2773
a74a4b97
CM
2774 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2775 "btrfs-cleaner");
57506d50 2776 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2777 goto fail_block_groups;
a74a4b97
CM
2778
2779 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2780 tree_root,
2781 "btrfs-transaction");
57506d50 2782 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2783 goto fail_cleaner;
a74a4b97 2784
c289811c
CM
2785 if (!btrfs_test_opt(tree_root, SSD) &&
2786 !btrfs_test_opt(tree_root, NOSSD) &&
2787 !fs_info->fs_devices->rotating) {
2788 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2789 "mode\n");
2790 btrfs_set_opt(fs_info->mount_opt, SSD);
2791 }
2792
21adbd5c
SB
2793#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2794 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2795 ret = btrfsic_mount(tree_root, fs_devices,
2796 btrfs_test_opt(tree_root,
2797 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2798 1 : 0,
2799 fs_info->check_integrity_print_mask);
2800 if (ret)
2801 printk(KERN_WARNING "btrfs: failed to initialize"
2802 " integrity check module %s\n", sb->s_id);
2803 }
2804#endif
bcef60f2
AJ
2805 ret = btrfs_read_qgroup_config(fs_info);
2806 if (ret)
2807 goto fail_trans_kthread;
21adbd5c 2808
acce952b 2809 /* do not make disk changes in broken FS */
68ce9682 2810 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2811 u64 bytenr = btrfs_super_log_root(disk_super);
2812
7c2ca468 2813 if (fs_devices->rw_devices == 0) {
d397712b
CM
2814 printk(KERN_WARNING "Btrfs log replay required "
2815 "on RO media\n");
7c2ca468 2816 err = -EIO;
bcef60f2 2817 goto fail_qgroup;
7c2ca468 2818 }
e02119d5
CM
2819 blocksize =
2820 btrfs_level_size(tree_root,
2821 btrfs_super_log_root_level(disk_super));
d18a2c44 2822
6f07e42e 2823 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2824 if (!log_tree_root) {
2825 err = -ENOMEM;
bcef60f2 2826 goto fail_qgroup;
676e4c86 2827 }
e02119d5
CM
2828
2829 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2830 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2831
2832 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2833 blocksize,
2834 generation + 1);
416bc658
JB
2835 if (!log_tree_root->node ||
2836 !extent_buffer_uptodate(log_tree_root->node)) {
2837 printk(KERN_ERR "btrfs: failed to read log tree\n");
2838 free_extent_buffer(log_tree_root->node);
2839 kfree(log_tree_root);
2840 goto fail_trans_kthread;
2841 }
79787eaa 2842 /* returns with log_tree_root freed on success */
e02119d5 2843 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2844 if (ret) {
2845 btrfs_error(tree_root->fs_info, ret,
2846 "Failed to recover log tree");
2847 free_extent_buffer(log_tree_root->node);
2848 kfree(log_tree_root);
2849 goto fail_trans_kthread;
2850 }
e556ce2c
YZ
2851
2852 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2853 ret = btrfs_commit_super(tree_root);
2854 if (ret)
2855 goto fail_trans_kthread;
e556ce2c 2856 }
e02119d5 2857 }
1a40e23b 2858
76dda93c 2859 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2860 if (ret)
2861 goto fail_trans_kthread;
76dda93c 2862
7c2ca468 2863 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2864 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2865 if (ret)
2866 goto fail_trans_kthread;
d68fc57b 2867
5d4f98a2 2868 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2869 if (ret < 0) {
2870 printk(KERN_WARNING
2871 "btrfs: failed to recover relocation\n");
2872 err = -EINVAL;
bcef60f2 2873 goto fail_qgroup;
d7ce5843 2874 }
7c2ca468 2875 }
1a40e23b 2876
3de4586c
CM
2877 location.objectid = BTRFS_FS_TREE_OBJECTID;
2878 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2879 location.offset = 0;
3de4586c 2880
3de4586c 2881 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2882 if (IS_ERR(fs_info->fs_root)) {
2883 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2884 goto fail_qgroup;
3140c9a3 2885 }
c289811c 2886
2b6ba629
ID
2887 if (sb->s_flags & MS_RDONLY)
2888 return 0;
59641015 2889
2b6ba629
ID
2890 down_read(&fs_info->cleanup_work_sem);
2891 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2892 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2893 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2894 close_ctree(tree_root);
2895 return ret;
2896 }
2897 up_read(&fs_info->cleanup_work_sem);
59641015 2898
2b6ba629
ID
2899 ret = btrfs_resume_balance_async(fs_info);
2900 if (ret) {
2901 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2902 close_ctree(tree_root);
2903 return ret;
e3acc2a6
JB
2904 }
2905
8dabb742
SB
2906 ret = btrfs_resume_dev_replace_async(fs_info);
2907 if (ret) {
2908 pr_warn("btrfs: failed to resume dev_replace\n");
2909 close_ctree(tree_root);
2910 return ret;
2911 }
2912
b382a324
JS
2913 btrfs_qgroup_rescan_resume(fs_info);
2914
f7a81ea4
SB
2915 if (create_uuid_tree) {
2916 pr_info("btrfs: creating UUID tree\n");
2917 ret = btrfs_create_uuid_tree(fs_info);
2918 if (ret) {
2919 pr_warn("btrfs: failed to create the UUID tree %d\n",
2920 ret);
2921 close_ctree(tree_root);
2922 return ret;
2923 }
f420ee1e
SB
2924 } else if (check_uuid_tree ||
2925 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
70f80175
SB
2926 pr_info("btrfs: checking UUID tree\n");
2927 ret = btrfs_check_uuid_tree(fs_info);
2928 if (ret) {
2929 pr_warn("btrfs: failed to check the UUID tree %d\n",
2930 ret);
2931 close_ctree(tree_root);
2932 return ret;
2933 }
2934 } else {
2935 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2936 }
2937
ad2b2c80 2938 return 0;
39279cc3 2939
bcef60f2
AJ
2940fail_qgroup:
2941 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2942fail_trans_kthread:
2943 kthread_stop(fs_info->transaction_kthread);
54067ae9 2944 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2945 del_fs_roots(fs_info);
3f157a2f 2946fail_cleaner:
a74a4b97 2947 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2948
2949 /*
2950 * make sure we're done with the btree inode before we stop our
2951 * kthreads
2952 */
2953 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2954
1b1d1f66 2955fail_block_groups:
54067ae9 2956 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2957 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2958
2959fail_tree_roots:
2960 free_root_pointers(fs_info, 1);
2b8195bb 2961 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2962
39279cc3 2963fail_sb_buffer:
7abadb64 2964 btrfs_stop_all_workers(fs_info);
16cdcec7 2965fail_alloc:
4543df7e 2966fail_iput:
586e46e2
ID
2967 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2968
4543df7e 2969 iput(fs_info->btree_inode);
963d678b
MX
2970fail_delalloc_bytes:
2971 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2972fail_dirty_metadata_bytes:
2973 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2974fail_bdi:
7e662854 2975 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2976fail_srcu:
2977 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2978fail:
53b381b3 2979 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2980 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2981 return err;
af31f5e5
CM
2982
2983recovery_tree_root:
af31f5e5
CM
2984 if (!btrfs_test_opt(tree_root, RECOVERY))
2985 goto fail_tree_roots;
2986
2987 free_root_pointers(fs_info, 0);
2988
2989 /* don't use the log in recovery mode, it won't be valid */
2990 btrfs_set_super_log_root(disk_super, 0);
2991
2992 /* we can't trust the free space cache either */
2993 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2994
2995 ret = next_root_backup(fs_info, fs_info->super_copy,
2996 &num_backups_tried, &backup_index);
2997 if (ret == -1)
2998 goto fail_block_groups;
2999 goto retry_root_backup;
eb60ceac
CM
3000}
3001
f2984462
CM
3002static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3003{
f2984462
CM
3004 if (uptodate) {
3005 set_buffer_uptodate(bh);
3006 } else {
442a4f63
SB
3007 struct btrfs_device *device = (struct btrfs_device *)
3008 bh->b_private;
3009
606686ee
JB
3010 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3011 "I/O error on %s\n",
3012 rcu_str_deref(device->name));
1259ab75
CM
3013 /* note, we dont' set_buffer_write_io_error because we have
3014 * our own ways of dealing with the IO errors
3015 */
f2984462 3016 clear_buffer_uptodate(bh);
442a4f63 3017 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3018 }
3019 unlock_buffer(bh);
3020 put_bh(bh);
3021}
3022
a512bbf8
YZ
3023struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3024{
3025 struct buffer_head *bh;
3026 struct buffer_head *latest = NULL;
3027 struct btrfs_super_block *super;
3028 int i;
3029 u64 transid = 0;
3030 u64 bytenr;
3031
3032 /* we would like to check all the supers, but that would make
3033 * a btrfs mount succeed after a mkfs from a different FS.
3034 * So, we need to add a special mount option to scan for
3035 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3036 */
3037 for (i = 0; i < 1; i++) {
3038 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3039 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3040 i_size_read(bdev->bd_inode))
a512bbf8 3041 break;
8068a47e
AJ
3042 bh = __bread(bdev, bytenr / 4096,
3043 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3044 if (!bh)
3045 continue;
3046
3047 super = (struct btrfs_super_block *)bh->b_data;
3048 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3049 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3050 brelse(bh);
3051 continue;
3052 }
3053
3054 if (!latest || btrfs_super_generation(super) > transid) {
3055 brelse(latest);
3056 latest = bh;
3057 transid = btrfs_super_generation(super);
3058 } else {
3059 brelse(bh);
3060 }
3061 }
3062 return latest;
3063}
3064
4eedeb75
HH
3065/*
3066 * this should be called twice, once with wait == 0 and
3067 * once with wait == 1. When wait == 0 is done, all the buffer heads
3068 * we write are pinned.
3069 *
3070 * They are released when wait == 1 is done.
3071 * max_mirrors must be the same for both runs, and it indicates how
3072 * many supers on this one device should be written.
3073 *
3074 * max_mirrors == 0 means to write them all.
3075 */
a512bbf8
YZ
3076static int write_dev_supers(struct btrfs_device *device,
3077 struct btrfs_super_block *sb,
3078 int do_barriers, int wait, int max_mirrors)
3079{
3080 struct buffer_head *bh;
3081 int i;
3082 int ret;
3083 int errors = 0;
3084 u32 crc;
3085 u64 bytenr;
a512bbf8
YZ
3086
3087 if (max_mirrors == 0)
3088 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3089
a512bbf8
YZ
3090 for (i = 0; i < max_mirrors; i++) {
3091 bytenr = btrfs_sb_offset(i);
3092 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3093 break;
3094
3095 if (wait) {
3096 bh = __find_get_block(device->bdev, bytenr / 4096,
3097 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3098 if (!bh) {
3099 errors++;
3100 continue;
3101 }
a512bbf8 3102 wait_on_buffer(bh);
4eedeb75
HH
3103 if (!buffer_uptodate(bh))
3104 errors++;
3105
3106 /* drop our reference */
3107 brelse(bh);
3108
3109 /* drop the reference from the wait == 0 run */
3110 brelse(bh);
3111 continue;
a512bbf8
YZ
3112 } else {
3113 btrfs_set_super_bytenr(sb, bytenr);
3114
3115 crc = ~(u32)0;
b0496686 3116 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3117 BTRFS_CSUM_SIZE, crc,
3118 BTRFS_SUPER_INFO_SIZE -
3119 BTRFS_CSUM_SIZE);
3120 btrfs_csum_final(crc, sb->csum);
3121
4eedeb75
HH
3122 /*
3123 * one reference for us, and we leave it for the
3124 * caller
3125 */
a512bbf8
YZ
3126 bh = __getblk(device->bdev, bytenr / 4096,
3127 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3128 if (!bh) {
3129 printk(KERN_ERR "btrfs: couldn't get super "
3130 "buffer head for bytenr %Lu\n", bytenr);
3131 errors++;
3132 continue;
3133 }
3134
a512bbf8
YZ
3135 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3136
4eedeb75 3137 /* one reference for submit_bh */
a512bbf8 3138 get_bh(bh);
4eedeb75
HH
3139
3140 set_buffer_uptodate(bh);
a512bbf8
YZ
3141 lock_buffer(bh);
3142 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3143 bh->b_private = device;
a512bbf8
YZ
3144 }
3145
387125fc
CM
3146 /*
3147 * we fua the first super. The others we allow
3148 * to go down lazy.
3149 */
21adbd5c 3150 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 3151 if (ret)
a512bbf8 3152 errors++;
a512bbf8
YZ
3153 }
3154 return errors < i ? 0 : -1;
3155}
3156
387125fc
CM
3157/*
3158 * endio for the write_dev_flush, this will wake anyone waiting
3159 * for the barrier when it is done
3160 */
3161static void btrfs_end_empty_barrier(struct bio *bio, int err)
3162{
3163 if (err) {
3164 if (err == -EOPNOTSUPP)
3165 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3166 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3167 }
3168 if (bio->bi_private)
3169 complete(bio->bi_private);
3170 bio_put(bio);
3171}
3172
3173/*
3174 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3175 * sent down. With wait == 1, it waits for the previous flush.
3176 *
3177 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3178 * capable
3179 */
3180static int write_dev_flush(struct btrfs_device *device, int wait)
3181{
3182 struct bio *bio;
3183 int ret = 0;
3184
3185 if (device->nobarriers)
3186 return 0;
3187
3188 if (wait) {
3189 bio = device->flush_bio;
3190 if (!bio)
3191 return 0;
3192
3193 wait_for_completion(&device->flush_wait);
3194
3195 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
3196 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3197 rcu_str_deref(device->name));
387125fc 3198 device->nobarriers = 1;
5af3e8cc 3199 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3200 ret = -EIO;
5af3e8cc
SB
3201 btrfs_dev_stat_inc_and_print(device,
3202 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3203 }
3204
3205 /* drop the reference from the wait == 0 run */
3206 bio_put(bio);
3207 device->flush_bio = NULL;
3208
3209 return ret;
3210 }
3211
3212 /*
3213 * one reference for us, and we leave it for the
3214 * caller
3215 */
9c017abc 3216 device->flush_bio = NULL;
9be3395b 3217 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3218 if (!bio)
3219 return -ENOMEM;
3220
3221 bio->bi_end_io = btrfs_end_empty_barrier;
3222 bio->bi_bdev = device->bdev;
3223 init_completion(&device->flush_wait);
3224 bio->bi_private = &device->flush_wait;
3225 device->flush_bio = bio;
3226
3227 bio_get(bio);
21adbd5c 3228 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3229
3230 return 0;
3231}
3232
3233/*
3234 * send an empty flush down to each device in parallel,
3235 * then wait for them
3236 */
3237static int barrier_all_devices(struct btrfs_fs_info *info)
3238{
3239 struct list_head *head;
3240 struct btrfs_device *dev;
5af3e8cc
SB
3241 int errors_send = 0;
3242 int errors_wait = 0;
387125fc
CM
3243 int ret;
3244
3245 /* send down all the barriers */
3246 head = &info->fs_devices->devices;
3247 list_for_each_entry_rcu(dev, head, dev_list) {
3248 if (!dev->bdev) {
5af3e8cc 3249 errors_send++;
387125fc
CM
3250 continue;
3251 }
3252 if (!dev->in_fs_metadata || !dev->writeable)
3253 continue;
3254
3255 ret = write_dev_flush(dev, 0);
3256 if (ret)
5af3e8cc 3257 errors_send++;
387125fc
CM
3258 }
3259
3260 /* wait for all the barriers */
3261 list_for_each_entry_rcu(dev, head, dev_list) {
3262 if (!dev->bdev) {
5af3e8cc 3263 errors_wait++;
387125fc
CM
3264 continue;
3265 }
3266 if (!dev->in_fs_metadata || !dev->writeable)
3267 continue;
3268
3269 ret = write_dev_flush(dev, 1);
3270 if (ret)
5af3e8cc 3271 errors_wait++;
387125fc 3272 }
5af3e8cc
SB
3273 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3274 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3275 return -EIO;
3276 return 0;
3277}
3278
5af3e8cc
SB
3279int btrfs_calc_num_tolerated_disk_barrier_failures(
3280 struct btrfs_fs_info *fs_info)
3281{
3282 struct btrfs_ioctl_space_info space;
3283 struct btrfs_space_info *sinfo;
3284 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3285 BTRFS_BLOCK_GROUP_SYSTEM,
3286 BTRFS_BLOCK_GROUP_METADATA,
3287 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3288 int num_types = 4;
3289 int i;
3290 int c;
3291 int num_tolerated_disk_barrier_failures =
3292 (int)fs_info->fs_devices->num_devices;
3293
3294 for (i = 0; i < num_types; i++) {
3295 struct btrfs_space_info *tmp;
3296
3297 sinfo = NULL;
3298 rcu_read_lock();
3299 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3300 if (tmp->flags == types[i]) {
3301 sinfo = tmp;
3302 break;
3303 }
3304 }
3305 rcu_read_unlock();
3306
3307 if (!sinfo)
3308 continue;
3309
3310 down_read(&sinfo->groups_sem);
3311 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3312 if (!list_empty(&sinfo->block_groups[c])) {
3313 u64 flags;
3314
3315 btrfs_get_block_group_info(
3316 &sinfo->block_groups[c], &space);
3317 if (space.total_bytes == 0 ||
3318 space.used_bytes == 0)
3319 continue;
3320 flags = space.flags;
3321 /*
3322 * return
3323 * 0: if dup, single or RAID0 is configured for
3324 * any of metadata, system or data, else
3325 * 1: if RAID5 is configured, or if RAID1 or
3326 * RAID10 is configured and only two mirrors
3327 * are used, else
3328 * 2: if RAID6 is configured, else
3329 * num_mirrors - 1: if RAID1 or RAID10 is
3330 * configured and more than
3331 * 2 mirrors are used.
3332 */
3333 if (num_tolerated_disk_barrier_failures > 0 &&
3334 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3335 BTRFS_BLOCK_GROUP_RAID0)) ||
3336 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3337 == 0)))
3338 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3339 else if (num_tolerated_disk_barrier_failures > 1) {
3340 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3341 BTRFS_BLOCK_GROUP_RAID5 |
3342 BTRFS_BLOCK_GROUP_RAID10)) {
3343 num_tolerated_disk_barrier_failures = 1;
3344 } else if (flags &
15b0a89d 3345 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3346 num_tolerated_disk_barrier_failures = 2;
3347 }
3348 }
5af3e8cc
SB
3349 }
3350 }
3351 up_read(&sinfo->groups_sem);
3352 }
3353
3354 return num_tolerated_disk_barrier_failures;
3355}
3356
48a3b636 3357static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3358{
e5e9a520 3359 struct list_head *head;
f2984462 3360 struct btrfs_device *dev;
a061fc8d 3361 struct btrfs_super_block *sb;
f2984462 3362 struct btrfs_dev_item *dev_item;
f2984462
CM
3363 int ret;
3364 int do_barriers;
a236aed1
CM
3365 int max_errors;
3366 int total_errors = 0;
a061fc8d 3367 u64 flags;
f2984462
CM
3368
3369 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3370 backup_super_roots(root->fs_info);
f2984462 3371
6c41761f 3372 sb = root->fs_info->super_for_commit;
a061fc8d 3373 dev_item = &sb->dev_item;
e5e9a520 3374
174ba509 3375 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3376 head = &root->fs_info->fs_devices->devices;
d7306801 3377 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3378
5af3e8cc
SB
3379 if (do_barriers) {
3380 ret = barrier_all_devices(root->fs_info);
3381 if (ret) {
3382 mutex_unlock(
3383 &root->fs_info->fs_devices->device_list_mutex);
3384 btrfs_error(root->fs_info, ret,
3385 "errors while submitting device barriers.");
3386 return ret;
3387 }
3388 }
387125fc 3389
1f78160c 3390 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3391 if (!dev->bdev) {
3392 total_errors++;
3393 continue;
3394 }
2b82032c 3395 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3396 continue;
3397
2b82032c 3398 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3399 btrfs_set_stack_device_type(dev_item, dev->type);
3400 btrfs_set_stack_device_id(dev_item, dev->devid);
3401 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3402 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3403 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3404 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3405 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3406 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3407 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3408
a061fc8d
CM
3409 flags = btrfs_super_flags(sb);
3410 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3411
a512bbf8 3412 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3413 if (ret)
3414 total_errors++;
f2984462 3415 }
a236aed1 3416 if (total_errors > max_errors) {
d397712b
CM
3417 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3418 total_errors);
a724b436 3419 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3420
9d565ba4
SB
3421 /* FUA is masked off if unsupported and can't be the reason */
3422 btrfs_error(root->fs_info, -EIO,
3423 "%d errors while writing supers", total_errors);
3424 return -EIO;
a236aed1 3425 }
f2984462 3426
a512bbf8 3427 total_errors = 0;
1f78160c 3428 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3429 if (!dev->bdev)
3430 continue;
2b82032c 3431 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3432 continue;
3433
a512bbf8
YZ
3434 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3435 if (ret)
3436 total_errors++;
f2984462 3437 }
174ba509 3438 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3439 if (total_errors > max_errors) {
79787eaa
JM
3440 btrfs_error(root->fs_info, -EIO,
3441 "%d errors while writing supers", total_errors);
3442 return -EIO;
a236aed1 3443 }
f2984462
CM
3444 return 0;
3445}
3446
a512bbf8
YZ
3447int write_ctree_super(struct btrfs_trans_handle *trans,
3448 struct btrfs_root *root, int max_mirrors)
eb60ceac 3449{
e66f709b 3450 int ret;
5f39d397 3451
a512bbf8 3452 ret = write_all_supers(root, max_mirrors);
5f39d397 3453 return ret;
cfaa7295
CM
3454}
3455
cb517eab
MX
3456/* Drop a fs root from the radix tree and free it. */
3457void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3458 struct btrfs_root *root)
2619ba1f 3459{
4df27c4d 3460 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3461 radix_tree_delete(&fs_info->fs_roots_radix,
3462 (unsigned long)root->root_key.objectid);
4df27c4d 3463 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3464
3465 if (btrfs_root_refs(&root->root_item) == 0)
3466 synchronize_srcu(&fs_info->subvol_srcu);
3467
d7634482 3468 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e
LB
3469 btrfs_free_log(NULL, root);
3470 btrfs_free_log_root_tree(NULL, fs_info);
3471 }
3472
581bb050
LZ
3473 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3474 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3475 free_fs_root(root);
4df27c4d
YZ
3476}
3477
3478static void free_fs_root(struct btrfs_root *root)
3479{
82d5902d 3480 iput(root->cache_inode);
4df27c4d 3481 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3482 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3483 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3484 if (root->anon_dev)
3485 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3486 free_extent_buffer(root->node);
3487 free_extent_buffer(root->commit_root);
581bb050
LZ
3488 kfree(root->free_ino_ctl);
3489 kfree(root->free_ino_pinned);
d397712b 3490 kfree(root->name);
b0feb9d9 3491 btrfs_put_fs_root(root);
2619ba1f
CM
3492}
3493
cb517eab
MX
3494void btrfs_free_fs_root(struct btrfs_root *root)
3495{
3496 free_fs_root(root);
2619ba1f
CM
3497}
3498
c146afad 3499int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3500{
c146afad
YZ
3501 u64 root_objectid = 0;
3502 struct btrfs_root *gang[8];
3503 int i;
3768f368 3504 int ret;
e089f05c 3505
c146afad
YZ
3506 while (1) {
3507 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3508 (void **)gang, root_objectid,
3509 ARRAY_SIZE(gang));
3510 if (!ret)
3511 break;
5d4f98a2
YZ
3512
3513 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3514 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3515 int err;
3516
c146afad 3517 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3518 err = btrfs_orphan_cleanup(gang[i]);
3519 if (err)
3520 return err;
c146afad
YZ
3521 }
3522 root_objectid++;
3523 }
3524 return 0;
3525}
a2135011 3526
c146afad
YZ
3527int btrfs_commit_super(struct btrfs_root *root)
3528{
3529 struct btrfs_trans_handle *trans;
3530 int ret;
a74a4b97 3531
c146afad 3532 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3533 btrfs_run_delayed_iputs(root);
c146afad 3534 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3535 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3536
3537 /* wait until ongoing cleanup work done */
3538 down_write(&root->fs_info->cleanup_work_sem);
3539 up_write(&root->fs_info->cleanup_work_sem);
3540
7a7eaa40 3541 trans = btrfs_join_transaction(root);
3612b495
TI
3542 if (IS_ERR(trans))
3543 return PTR_ERR(trans);
54aa1f4d 3544 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3545 if (ret)
3546 return ret;
c146afad 3547 /* run commit again to drop the original snapshot */
7a7eaa40 3548 trans = btrfs_join_transaction(root);
3612b495
TI
3549 if (IS_ERR(trans))
3550 return PTR_ERR(trans);
79787eaa
JM
3551 ret = btrfs_commit_transaction(trans, root);
3552 if (ret)
3553 return ret;
79154b1b 3554 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3555 if (ret) {
3556 btrfs_error(root->fs_info, ret,
3557 "Failed to sync btree inode to disk.");
3558 return ret;
3559 }
d6bfde87 3560
a512bbf8 3561 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3562 return ret;
3563}
3564
3565int close_ctree(struct btrfs_root *root)
3566{
3567 struct btrfs_fs_info *fs_info = root->fs_info;
3568 int ret;
3569
3570 fs_info->closing = 1;
3571 smp_mb();
3572
803b2f54
SB
3573 /* wait for the uuid_scan task to finish */
3574 down(&fs_info->uuid_tree_rescan_sem);
3575 /* avoid complains from lockdep et al., set sem back to initial state */
3576 up(&fs_info->uuid_tree_rescan_sem);
3577
837d5b6e 3578 /* pause restriper - we want to resume on mount */
aa1b8cd4 3579 btrfs_pause_balance(fs_info);
837d5b6e 3580
8dabb742
SB
3581 btrfs_dev_replace_suspend_for_unmount(fs_info);
3582
aa1b8cd4 3583 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3584
3585 /* wait for any defraggers to finish */
3586 wait_event(fs_info->transaction_wait,
3587 (atomic_read(&fs_info->defrag_running) == 0));
3588
3589 /* clear out the rbtree of defraggable inodes */
26176e7c 3590 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3591
c146afad 3592 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3593 ret = btrfs_commit_super(root);
3594 if (ret)
3595 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3596 }
3597
87533c47 3598 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3599 btrfs_error_commit_super(root);
0f7d52f4 3600
300e4f8a
JB
3601 btrfs_put_block_group_cache(fs_info);
3602
e3029d9f
AV
3603 kthread_stop(fs_info->transaction_kthread);
3604 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3605
f25784b3
YZ
3606 fs_info->closing = 2;
3607 smp_mb();
3608
bcef60f2
AJ
3609 btrfs_free_qgroup_config(root->fs_info);
3610
963d678b
MX
3611 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3612 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3613 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3614 }
bcc63abb 3615
e3029d9f 3616 btrfs_free_block_groups(fs_info);
d10c5f31 3617
13e6c37b 3618 btrfs_stop_all_workers(fs_info);
2932505a 3619
c146afad 3620 del_fs_roots(fs_info);
d10c5f31 3621
13e6c37b 3622 free_root_pointers(fs_info, 1);
9ad6b7bc 3623
13e6c37b 3624 iput(fs_info->btree_inode);
d6bfde87 3625
21adbd5c
SB
3626#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3627 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3628 btrfsic_unmount(root, fs_info->fs_devices);
3629#endif
3630
dfe25020 3631 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3632 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3633
e2d84521 3634 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3635 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3636 bdi_destroy(&fs_info->bdi);
76dda93c 3637 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3638
53b381b3
DW
3639 btrfs_free_stripe_hash_table(fs_info);
3640
1cb048f5
FDBM
3641 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3642 root->orphan_block_rsv = NULL;
3643
eb60ceac
CM
3644 return 0;
3645}
3646
b9fab919
CM
3647int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3648 int atomic)
5f39d397 3649{
1259ab75 3650 int ret;
727011e0 3651 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3652
0b32f4bb 3653 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3654 if (!ret)
3655 return ret;
3656
3657 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3658 parent_transid, atomic);
3659 if (ret == -EAGAIN)
3660 return ret;
1259ab75 3661 return !ret;
5f39d397
CM
3662}
3663
3664int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3665{
0b32f4bb 3666 return set_extent_buffer_uptodate(buf);
5f39d397 3667}
6702ed49 3668
5f39d397
CM
3669void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3670{
727011e0 3671 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3672 u64 transid = btrfs_header_generation(buf);
b9473439 3673 int was_dirty;
b4ce94de 3674
b9447ef8 3675 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3676 if (transid != root->fs_info->generation)
3677 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3678 "found %llu running %llu\n",
c1c9ff7c 3679 buf->start, transid, root->fs_info->generation);
0b32f4bb 3680 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3681 if (!was_dirty)
3682 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3683 buf->len,
3684 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3685}
3686
b53d3f5d
LB
3687static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3688 int flush_delayed)
16cdcec7
MX
3689{
3690 /*
3691 * looks as though older kernels can get into trouble with
3692 * this code, they end up stuck in balance_dirty_pages forever
3693 */
e2d84521 3694 int ret;
16cdcec7
MX
3695
3696 if (current->flags & PF_MEMALLOC)
3697 return;
3698
b53d3f5d
LB
3699 if (flush_delayed)
3700 btrfs_balance_delayed_items(root);
16cdcec7 3701
e2d84521
MX
3702 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3703 BTRFS_DIRTY_METADATA_THRESH);
3704 if (ret > 0) {
d0e1d66b
NJ
3705 balance_dirty_pages_ratelimited(
3706 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3707 }
3708 return;
3709}
3710
b53d3f5d 3711void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3712{
b53d3f5d
LB
3713 __btrfs_btree_balance_dirty(root, 1);
3714}
585ad2c3 3715
b53d3f5d
LB
3716void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3717{
3718 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3719}
6b80053d 3720
ca7a79ad 3721int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3722{
727011e0 3723 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3724 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3725}
0da5468f 3726
fcd1f065 3727static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3728 int read_only)
3729{
1104a885
DS
3730 /*
3731 * Placeholder for checks
3732 */
fcd1f065 3733 return 0;
acce952b 3734}
3735
48a3b636 3736static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3737{
acce952b 3738 mutex_lock(&root->fs_info->cleaner_mutex);
3739 btrfs_run_delayed_iputs(root);
3740 mutex_unlock(&root->fs_info->cleaner_mutex);
3741
3742 down_write(&root->fs_info->cleanup_work_sem);
3743 up_write(&root->fs_info->cleanup_work_sem);
3744
3745 /* cleanup FS via transaction */
3746 btrfs_cleanup_transaction(root);
acce952b 3747}
3748
569e0f35
JB
3749static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3750 struct btrfs_root *root)
acce952b 3751{
3752 struct btrfs_inode *btrfs_inode;
3753 struct list_head splice;
3754
3755 INIT_LIST_HEAD(&splice);
3756
3757 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3758 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3759
569e0f35 3760 list_splice_init(&t->ordered_operations, &splice);
acce952b 3761 while (!list_empty(&splice)) {
3762 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3763 ordered_operations);
3764
3765 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3766 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3767
3768 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3769
199c2a9c 3770 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3771 }
3772
199c2a9c 3773 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3774 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3775}
3776
143bede5 3777static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3778{
acce952b 3779 struct btrfs_ordered_extent *ordered;
acce952b 3780
199c2a9c 3781 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3782 /*
3783 * This will just short circuit the ordered completion stuff which will
3784 * make sure the ordered extent gets properly cleaned up.
3785 */
199c2a9c 3786 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3787 root_extent_list)
3788 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3789 spin_unlock(&root->ordered_extent_lock);
3790}
3791
3792static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3793{
3794 struct btrfs_root *root;
3795 struct list_head splice;
3796
3797 INIT_LIST_HEAD(&splice);
3798
3799 spin_lock(&fs_info->ordered_root_lock);
3800 list_splice_init(&fs_info->ordered_roots, &splice);
3801 while (!list_empty(&splice)) {
3802 root = list_first_entry(&splice, struct btrfs_root,
3803 ordered_root);
3804 list_del_init(&root->ordered_root);
3805
3806 btrfs_destroy_ordered_extents(root);
3807
3808 cond_resched_lock(&fs_info->ordered_root_lock);
3809 }
3810 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3811}
3812
35a3621b
SB
3813static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3814 struct btrfs_root *root)
acce952b 3815{
3816 struct rb_node *node;
3817 struct btrfs_delayed_ref_root *delayed_refs;
3818 struct btrfs_delayed_ref_node *ref;
3819 int ret = 0;
3820
3821 delayed_refs = &trans->delayed_refs;
3822
3823 spin_lock(&delayed_refs->lock);
3824 if (delayed_refs->num_entries == 0) {
cfece4db 3825 spin_unlock(&delayed_refs->lock);
acce952b 3826 printk(KERN_INFO "delayed_refs has NO entry\n");
3827 return ret;
3828 }
3829
b939d1ab 3830 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3831 struct btrfs_delayed_ref_head *head = NULL;
e78417d1 3832 bool pin_bytes = false;
acce952b 3833
eb12db69 3834 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3835 atomic_set(&ref->refs, 1);
3836 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3837
3838 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3839 if (!mutex_trylock(&head->mutex)) {
3840 atomic_inc(&ref->refs);
3841 spin_unlock(&delayed_refs->lock);
3842
3843 /* Need to wait for the delayed ref to run */
3844 mutex_lock(&head->mutex);
3845 mutex_unlock(&head->mutex);
3846 btrfs_put_delayed_ref(ref);
3847
e18fca73 3848 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3849 continue;
3850 }
3851
54067ae9 3852 if (head->must_insert_reserved)
e78417d1 3853 pin_bytes = true;
78a6184a 3854 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3855 delayed_refs->num_heads--;
3856 if (list_empty(&head->cluster))
3857 delayed_refs->num_heads_ready--;
3858 list_del_init(&head->cluster);
acce952b 3859 }
eb12db69 3860
b939d1ab
JB
3861 ref->in_tree = 0;
3862 rb_erase(&ref->rb_node, &delayed_refs->root);
3863 delayed_refs->num_entries--;
acce952b 3864 spin_unlock(&delayed_refs->lock);
e78417d1
JB
3865 if (head) {
3866 if (pin_bytes)
3867 btrfs_pin_extent(root, ref->bytenr,
3868 ref->num_bytes, 1);
3869 mutex_unlock(&head->mutex);
3870 }
acce952b 3871 btrfs_put_delayed_ref(ref);
3872
3873 cond_resched();
3874 spin_lock(&delayed_refs->lock);
3875 }
3876
3877 spin_unlock(&delayed_refs->lock);
3878
3879 return ret;
3880}
3881
aec8030a 3882static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
acce952b 3883{
3884 struct btrfs_pending_snapshot *snapshot;
3885 struct list_head splice;
3886
3887 INIT_LIST_HEAD(&splice);
3888
3889 list_splice_init(&t->pending_snapshots, &splice);
3890
3891 while (!list_empty(&splice)) {
3892 snapshot = list_entry(splice.next,
3893 struct btrfs_pending_snapshot,
3894 list);
aec8030a 3895 snapshot->error = -ECANCELED;
acce952b 3896 list_del_init(&snapshot->list);
acce952b 3897 }
acce952b 3898}
3899
143bede5 3900static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3901{
3902 struct btrfs_inode *btrfs_inode;
3903 struct list_head splice;
3904
3905 INIT_LIST_HEAD(&splice);
3906
eb73c1b7
MX
3907 spin_lock(&root->delalloc_lock);
3908 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3909
3910 while (!list_empty(&splice)) {
eb73c1b7
MX
3911 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3912 delalloc_inodes);
acce952b 3913
3914 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3915 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3916 &btrfs_inode->runtime_flags);
eb73c1b7 3917 spin_unlock(&root->delalloc_lock);
acce952b 3918
3919 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3920
eb73c1b7 3921 spin_lock(&root->delalloc_lock);
acce952b 3922 }
3923
eb73c1b7
MX
3924 spin_unlock(&root->delalloc_lock);
3925}
3926
3927static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3928{
3929 struct btrfs_root *root;
3930 struct list_head splice;
3931
3932 INIT_LIST_HEAD(&splice);
3933
3934 spin_lock(&fs_info->delalloc_root_lock);
3935 list_splice_init(&fs_info->delalloc_roots, &splice);
3936 while (!list_empty(&splice)) {
3937 root = list_first_entry(&splice, struct btrfs_root,
3938 delalloc_root);
3939 list_del_init(&root->delalloc_root);
3940 root = btrfs_grab_fs_root(root);
3941 BUG_ON(!root);
3942 spin_unlock(&fs_info->delalloc_root_lock);
3943
3944 btrfs_destroy_delalloc_inodes(root);
3945 btrfs_put_fs_root(root);
3946
3947 spin_lock(&fs_info->delalloc_root_lock);
3948 }
3949 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3950}
3951
3952static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3953 struct extent_io_tree *dirty_pages,
3954 int mark)
3955{
3956 int ret;
acce952b 3957 struct extent_buffer *eb;
3958 u64 start = 0;
3959 u64 end;
acce952b 3960
3961 while (1) {
3962 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3963 mark, NULL);
acce952b 3964 if (ret)
3965 break;
3966
3967 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3968 while (start <= end) {
fd8b2b61
JB
3969 eb = btrfs_find_tree_block(root, start,
3970 root->leafsize);
69a85bd8 3971 start += root->leafsize;
fd8b2b61 3972 if (!eb)
acce952b 3973 continue;
fd8b2b61 3974 wait_on_extent_buffer_writeback(eb);
acce952b 3975
fd8b2b61
JB
3976 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3977 &eb->bflags))
3978 clear_extent_buffer_dirty(eb);
3979 free_extent_buffer_stale(eb);
acce952b 3980 }
3981 }
3982
3983 return ret;
3984}
3985
3986static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3987 struct extent_io_tree *pinned_extents)
3988{
3989 struct extent_io_tree *unpin;
3990 u64 start;
3991 u64 end;
3992 int ret;
ed0eaa14 3993 bool loop = true;
acce952b 3994
3995 unpin = pinned_extents;
ed0eaa14 3996again:
acce952b 3997 while (1) {
3998 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3999 EXTENT_DIRTY, NULL);
acce952b 4000 if (ret)
4001 break;
4002
4003 /* opt_discard */
5378e607
LD
4004 if (btrfs_test_opt(root, DISCARD))
4005 ret = btrfs_error_discard_extent(root, start,
4006 end + 1 - start,
4007 NULL);
acce952b 4008
4009 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4010 btrfs_error_unpin_extent_range(root, start, end);
4011 cond_resched();
4012 }
4013
ed0eaa14
LB
4014 if (loop) {
4015 if (unpin == &root->fs_info->freed_extents[0])
4016 unpin = &root->fs_info->freed_extents[1];
4017 else
4018 unpin = &root->fs_info->freed_extents[0];
4019 loop = false;
4020 goto again;
4021 }
4022
acce952b 4023 return 0;
4024}
4025
49b25e05
JM
4026void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4027 struct btrfs_root *root)
4028{
4029 btrfs_destroy_delayed_refs(cur_trans, root);
4030 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4031 cur_trans->dirty_pages.dirty_bytes);
4032
4a9d8bde 4033 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4034 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4035
aec8030a
MX
4036 btrfs_evict_pending_snapshots(cur_trans);
4037
4a9d8bde 4038 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4039 wake_up(&root->fs_info->transaction_wait);
49b25e05 4040
67cde344
MX
4041 btrfs_destroy_delayed_inodes(root);
4042 btrfs_assert_delayed_root_empty(root);
49b25e05 4043
49b25e05
JM
4044 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4045 EXTENT_DIRTY);
6e841e32
LB
4046 btrfs_destroy_pinned_extent(root,
4047 root->fs_info->pinned_extents);
49b25e05 4048
4a9d8bde
MX
4049 cur_trans->state =TRANS_STATE_COMPLETED;
4050 wake_up(&cur_trans->commit_wait);
4051
49b25e05
JM
4052 /*
4053 memset(cur_trans, 0, sizeof(*cur_trans));
4054 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4055 */
4056}
4057
48a3b636 4058static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4059{
4060 struct btrfs_transaction *t;
4061 LIST_HEAD(list);
4062
acce952b 4063 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4064
a4abeea4 4065 spin_lock(&root->fs_info->trans_lock);
acce952b 4066 list_splice_init(&root->fs_info->trans_list, &list);
ac673879 4067 root->fs_info->running_transaction = NULL;
a4abeea4
JB
4068 spin_unlock(&root->fs_info->trans_lock);
4069
acce952b 4070 while (!list_empty(&list)) {
4071 t = list_entry(list.next, struct btrfs_transaction, list);
acce952b 4072
569e0f35 4073 btrfs_destroy_ordered_operations(t, root);
acce952b 4074
199c2a9c 4075 btrfs_destroy_all_ordered_extents(root->fs_info);
acce952b 4076
4077 btrfs_destroy_delayed_refs(t, root);
4078
4a9d8bde
MX
4079 /*
4080 * FIXME: cleanup wait for commit
4081 * We needn't acquire the lock here, because we are during
4082 * the umount, there is no other task which will change it.
4083 */
4084 t->state = TRANS_STATE_COMMIT_START;
66657b31 4085 smp_mb();
acce952b 4086 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4087 wake_up(&root->fs_info->transaction_blocked_wait);
4088
aec8030a
MX
4089 btrfs_evict_pending_snapshots(t);
4090
4a9d8bde 4091 t->state = TRANS_STATE_UNBLOCKED;
66657b31 4092 smp_mb();
acce952b 4093 if (waitqueue_active(&root->fs_info->transaction_wait))
4094 wake_up(&root->fs_info->transaction_wait);
acce952b 4095
67cde344
MX
4096 btrfs_destroy_delayed_inodes(root);
4097 btrfs_assert_delayed_root_empty(root);
4098
eb73c1b7 4099 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4100
4101 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4102 EXTENT_DIRTY);
4103
4104 btrfs_destroy_pinned_extent(root,
4105 root->fs_info->pinned_extents);
4106
4a9d8bde
MX
4107 t->state = TRANS_STATE_COMPLETED;
4108 smp_mb();
4109 if (waitqueue_active(&t->commit_wait))
4110 wake_up(&t->commit_wait);
4111
13c5a93e 4112 atomic_set(&t->use_count, 0);
acce952b 4113 list_del_init(&t->list);
4114 memset(t, 0, sizeof(*t));
4115 kmem_cache_free(btrfs_transaction_cachep, t);
4116 }
4117
4118 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4119
4120 return 0;
4121}
4122
d1310b2e 4123static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4124 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4125 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4126 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4127 /* note we're sharing with inode.c for the merge bio hook */
4128 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4129};