Btrfs: cleanup of error processing in btree_get_extent()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
eb60ceac 48
d1310b2e 49static struct extent_io_ops btree_extent_io_ops;
8b712842 50static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 51static void free_fs_root(struct btrfs_root *root);
fcd1f065 52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 53 int read_only);
143bede5
JM
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
143bede5
JM
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
79787eaa 102 int error;
44b8bd7e
CM
103};
104
85d4e461
CM
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
4008c04a 115 *
85d4e461
CM
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 119 *
85d4e461
CM
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 123 *
85d4e461
CM
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
4008c04a
CM
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
85d4e461
CM
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
4008c04a 150};
85d4e461
CM
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
4008c04a
CM
182#endif
183
d352ac68
CM
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
b2950863 188static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 189 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 190 int create)
7eccb903 191{
5f39d397
CM
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
890871be 196 read_lock(&em_tree->lock);
d1310b2e 197 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 201 read_unlock(&em_tree->lock);
5f39d397 202 goto out;
a061fc8d 203 }
890871be 204 read_unlock(&em_tree->lock);
7b13b7b1 205
172ddd60 206 em = alloc_extent_map();
5f39d397
CM
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
0afbaf8c 212 em->len = (u64)-1;
c8b97818 213 em->block_len = (u64)-1;
5f39d397 214 em->block_start = 0;
a061fc8d 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 216
890871be 217 write_lock(&em_tree->lock);
5f39d397
CM
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
0afbaf8c
CM
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
5f39d397 223 free_extent_map(em);
7b13b7b1 224 em = lookup_extent_mapping(em_tree, start, len);
0433f20d
TI
225 if (!em) {
226 lookup_extent_mapping(em_tree, failed_start,
227 failed_len);
228 em = ERR_PTR(-EIO);
0afbaf8c 229 }
5f39d397 230 } else if (ret) {
7b13b7b1 231 free_extent_map(em);
0433f20d 232 em = ERR_PTR(ret);
5f39d397 233 }
890871be 234 write_unlock(&em_tree->lock);
7b13b7b1 235
5f39d397
CM
236out:
237 return em;
7eccb903
CM
238}
239
19c00ddc
CM
240u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
241{
163e783e 242 return crc32c(seed, data, len);
19c00ddc
CM
243}
244
245void btrfs_csum_final(u32 crc, char *result)
246{
7e75bf3f 247 put_unaligned_le32(~crc, result);
19c00ddc
CM
248}
249
d352ac68
CM
250/*
251 * compute the csum for a btree block, and either verify it or write it
252 * into the csum field of the block.
253 */
19c00ddc
CM
254static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
255 int verify)
256{
6c41761f 257 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 258 char *result = NULL;
19c00ddc
CM
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
266 u32 crc = ~(u32)0;
607d432d 267 unsigned long inline_result;
19c00ddc
CM
268
269 len = buf->len - offset;
d397712b 270 while (len > 0) {
19c00ddc 271 err = map_private_extent_buffer(buf, offset, 32,
a6591715 272 &kaddr, &map_start, &map_len);
d397712b 273 if (err)
19c00ddc 274 return 1;
19c00ddc
CM
275 cur_len = min(len, map_len - (offset - map_start));
276 crc = btrfs_csum_data(root, kaddr + offset - map_start,
277 crc, cur_len);
278 len -= cur_len;
279 offset += cur_len;
19c00ddc 280 }
607d432d
JB
281 if (csum_size > sizeof(inline_result)) {
282 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
283 if (!result)
284 return 1;
285 } else {
286 result = (char *)&inline_result;
287 }
288
19c00ddc
CM
289 btrfs_csum_final(crc, result);
290
291 if (verify) {
607d432d 292 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
293 u32 val;
294 u32 found = 0;
607d432d 295 memcpy(&found, result, csum_size);
e4204ded 296
607d432d 297 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 298 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
299 "failed on %llu wanted %X found %X "
300 "level %d\n",
301 root->fs_info->sb->s_id,
302 (unsigned long long)buf->start, val, found,
303 btrfs_header_level(buf));
607d432d
JB
304 if (result != (char *)&inline_result)
305 kfree(result);
19c00ddc
CM
306 return 1;
307 }
308 } else {
607d432d 309 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 310 }
607d432d
JB
311 if (result != (char *)&inline_result)
312 kfree(result);
19c00ddc
CM
313 return 0;
314}
315
d352ac68
CM
316/*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
1259ab75 322static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
1259ab75 325{
2ac55d41 326 struct extent_state *cached_state = NULL;
1259ab75
CM
327 int ret;
328
329 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
330 return 0;
331
b9fab919
CM
332 if (atomic)
333 return -EAGAIN;
334
2ac55d41 335 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 336 0, &cached_state);
0b32f4bb 337 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
338 btrfs_header_generation(eb) == parent_transid) {
339 ret = 0;
340 goto out;
341 }
7a36ddec 342 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
343 "found %llu\n",
344 (unsigned long long)eb->start,
345 (unsigned long long)parent_transid,
346 (unsigned long long)btrfs_header_generation(eb));
1259ab75 347 ret = 1;
0b32f4bb 348 clear_extent_buffer_uptodate(eb);
33958dc6 349out:
2ac55d41
JB
350 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
351 &cached_state, GFP_NOFS);
1259ab75 352 return ret;
1259ab75
CM
353}
354
d352ac68
CM
355/*
356 * helper to read a given tree block, doing retries as required when
357 * the checksums don't match and we have alternate mirrors to try.
358 */
f188591e
CM
359static int btree_read_extent_buffer_pages(struct btrfs_root *root,
360 struct extent_buffer *eb,
ca7a79ad 361 u64 start, u64 parent_transid)
f188591e
CM
362{
363 struct extent_io_tree *io_tree;
ea466794 364 int failed = 0;
f188591e
CM
365 int ret;
366 int num_copies = 0;
367 int mirror_num = 0;
ea466794 368 int failed_mirror = 0;
f188591e 369
a826d6dc 370 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
371 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
372 while (1) {
bb82ab88
AJ
373 ret = read_extent_buffer_pages(io_tree, eb, start,
374 WAIT_COMPLETE,
f188591e 375 btree_get_extent, mirror_num);
256dd1bb
SB
376 if (!ret) {
377 if (!verify_parent_transid(io_tree, eb,
b9fab919 378 parent_transid, 0))
256dd1bb
SB
379 break;
380 else
381 ret = -EIO;
382 }
d397712b 383
a826d6dc
JB
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
390 break;
391
f188591e
CM
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
4235298e 394 if (num_copies == 1)
ea466794 395 break;
4235298e 396
5cf1ab56
JB
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
f188591e 402 mirror_num++;
ea466794
JB
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
4235298e 406 if (mirror_num > num_copies)
ea466794 407 break;
f188591e 408 }
ea466794 409
c0901581 410 if (failed && !ret && failed_mirror)
ea466794
JB
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
f188591e 414}
19c00ddc 415
d352ac68 416/*
d397712b
CM
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 419 */
d397712b 420
b2950863 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 422{
d1310b2e 423 struct extent_io_tree *tree;
35ebb934 424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 425 u64 found_start;
19c00ddc 426 struct extent_buffer *eb;
f188591e 427
d1310b2e 428 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 429
4f2de97a
JB
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
19c00ddc
CM
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
55c69072 435 WARN_ON(1);
4f2de97a 436 return 0;
55c69072 437 }
727011e0 438 if (eb->pages[0] != page) {
55c69072 439 WARN_ON(1);
4f2de97a 440 return 0;
55c69072
CM
441 }
442 if (!PageUptodate(page)) {
55c69072 443 WARN_ON(1);
4f2de97a 444 return 0;
19c00ddc 445 }
19c00ddc 446 csum_tree_block(root, eb, 0);
19c00ddc
CM
447 return 0;
448}
449
2b82032c
YZ
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
a826d6dc
JB
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
727011e0
CM
536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538{
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569}
570
b2950863 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 572 struct extent_state *state, int mirror)
ce9adaa5
CM
573{
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
ce9adaa5
CM
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 579 int ret = 0;
727011e0 580 int reads_done;
ce9adaa5 581
ce9adaa5
CM
582 if (!page->private)
583 goto out;
d397712b 584
727011e0 585 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 586 eb = (struct extent_buffer *)page->private;
d397712b 587
0b32f4bb
JB
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
594 if (!reads_done)
595 goto err;
f188591e 596
5cf1ab56 597 eb->read_mirror = mirror;
ea466794
JB
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
ce9adaa5 603 found_start = btrfs_header_bytenr(eb);
727011e0 604 if (found_start != eb->start) {
7a36ddec 605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
f188591e 609 ret = -EIO;
ce9adaa5
CM
610 goto err;
611 }
2b82032c 612 if (check_tree_block_fsid(root, eb)) {
7a36ddec 613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 614 (unsigned long long)eb->start);
1259ab75
CM
615 ret = -EIO;
616 goto err;
617 }
ce9adaa5
CM
618 found_level = btrfs_header_level(eb);
619
85d4e461
CM
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
4008c04a 622
ce9adaa5 623 ret = csum_tree_block(root, eb, 1);
a826d6dc 624 if (ret) {
f188591e 625 ret = -EIO;
a826d6dc
JB
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
0b32f4bb
JB
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
ce9adaa5 641err:
4bb31e92
AJ
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
0b32f4bb
JB
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
ce9adaa5 650out:
f188591e 651 return ret;
ce9adaa5
CM
652}
653
ea466794 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 655{
4bb31e92
AJ
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
4f2de97a 659 eb = (struct extent_buffer *)page->private;
ea466794 660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 661 eb->read_mirror = failed_mirror;
ea466794 662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 663 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
664 return -EIO; /* we fixed nothing */
665}
666
ce9adaa5 667static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
668{
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
ce9adaa5 671
ce9adaa5 672 fs_info = end_io_wq->info;
ce9adaa5 673 end_io_wq->error = err;
8b712842
CM
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
d20f7043 676
7b6d91da 677 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 678 if (end_io_wq->metadata == 1)
cad321ad
CM
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
0cb59c99
JB
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
cad321ad
CM
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
d20f7043
CM
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
ce9adaa5
CM
695}
696
0cb59c99
JB
697/*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
22c59948
CM
704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
0b86a832 706{
ce9adaa5 707 struct end_io_wq *end_io_wq;
ce9adaa5
CM
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
22c59948 714 end_io_wq->info = info;
ce9adaa5
CM
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
22c59948 717 end_io_wq->metadata = metadata;
ce9adaa5
CM
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
721 return 0;
722}
723
b64a2851 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 725{
4854ddd0
CM
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730}
0986fe9e 731
4a69a410
CM
732static void run_one_async_start(struct btrfs_work *work)
733{
4a69a410 734 struct async_submit_bio *async;
79787eaa 735 int ret;
4a69a410
CM
736
737 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
4a69a410
CM
743}
744
745static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
746{
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
4854ddd0 749 int limit;
8b712842
CM
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 753
b64a2851 754 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
755 limit = limit * 2 / 3;
756
66657b31 757 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 758 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
759 wake_up(&fs_info->async_submit_wait);
760
79787eaa
JM
761 /* If an error occured we just want to clean up the bio and move on */
762 if (async->error) {
763 bio_endio(async->bio, async->error);
764 return;
765 }
766
4a69a410 767 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
768 async->mirror_num, async->bio_flags,
769 async->bio_offset);
4a69a410
CM
770}
771
772static void run_one_async_free(struct btrfs_work *work)
773{
774 struct async_submit_bio *async;
775
776 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
777 kfree(async);
778}
779
44b8bd7e
CM
780int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
781 int rw, struct bio *bio, int mirror_num,
c8b97818 782 unsigned long bio_flags,
eaf25d93 783 u64 bio_offset,
4a69a410
CM
784 extent_submit_bio_hook_t *submit_bio_start,
785 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
786{
787 struct async_submit_bio *async;
788
789 async = kmalloc(sizeof(*async), GFP_NOFS);
790 if (!async)
791 return -ENOMEM;
792
793 async->inode = inode;
794 async->rw = rw;
795 async->bio = bio;
796 async->mirror_num = mirror_num;
4a69a410
CM
797 async->submit_bio_start = submit_bio_start;
798 async->submit_bio_done = submit_bio_done;
799
800 async->work.func = run_one_async_start;
801 async->work.ordered_func = run_one_async_done;
802 async->work.ordered_free = run_one_async_free;
803
8b712842 804 async->work.flags = 0;
c8b97818 805 async->bio_flags = bio_flags;
eaf25d93 806 async->bio_offset = bio_offset;
8c8bee1d 807
79787eaa
JM
808 async->error = 0;
809
cb03c743 810 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 811
7b6d91da 812 if (rw & REQ_SYNC)
d313d7a3
CM
813 btrfs_set_work_high_prio(&async->work);
814
8b712842 815 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 816
d397712b 817 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
818 atomic_read(&fs_info->nr_async_submits)) {
819 wait_event(fs_info->async_submit_wait,
820 (atomic_read(&fs_info->nr_async_submits) == 0));
821 }
822
44b8bd7e
CM
823 return 0;
824}
825
ce3ed71a
CM
826static int btree_csum_one_bio(struct bio *bio)
827{
828 struct bio_vec *bvec = bio->bi_io_vec;
829 int bio_index = 0;
830 struct btrfs_root *root;
79787eaa 831 int ret = 0;
ce3ed71a
CM
832
833 WARN_ON(bio->bi_vcnt <= 0);
d397712b 834 while (bio_index < bio->bi_vcnt) {
ce3ed71a 835 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
836 ret = csum_dirty_buffer(root, bvec->bv_page);
837 if (ret)
838 break;
ce3ed71a
CM
839 bio_index++;
840 bvec++;
841 }
79787eaa 842 return ret;
ce3ed71a
CM
843}
844
4a69a410
CM
845static int __btree_submit_bio_start(struct inode *inode, int rw,
846 struct bio *bio, int mirror_num,
eaf25d93
CM
847 unsigned long bio_flags,
848 u64 bio_offset)
22c59948 849{
8b712842
CM
850 /*
851 * when we're called for a write, we're already in the async
5443be45 852 * submission context. Just jump into btrfs_map_bio
8b712842 853 */
79787eaa 854 return btree_csum_one_bio(bio);
4a69a410 855}
22c59948 856
4a69a410 857static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
858 int mirror_num, unsigned long bio_flags,
859 u64 bio_offset)
4a69a410 860{
8b712842 861 /*
4a69a410
CM
862 * when we're called for a write, we're already in the async
863 * submission context. Just jump into btrfs_map_bio
8b712842 864 */
8b712842 865 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
866}
867
44b8bd7e 868static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
869 int mirror_num, unsigned long bio_flags,
870 u64 bio_offset)
44b8bd7e 871{
cad321ad
CM
872 int ret;
873
7b6d91da 874 if (!(rw & REQ_WRITE)) {
f3f266ab 875
4a69a410
CM
876 /*
877 * called for a read, do the setup so that checksum validation
878 * can happen in the async kernel threads
879 */
f3f266ab
CM
880 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
881 bio, 1);
1d4284bd
CM
882 if (ret)
883 return ret;
4a69a410 884 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 885 mirror_num, 0);
44b8bd7e 886 }
d313d7a3 887
cad321ad
CM
888 /*
889 * kthread helpers are used to submit writes so that checksumming
890 * can happen in parallel across all CPUs
891 */
44b8bd7e 892 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 893 inode, rw, bio, mirror_num, 0,
eaf25d93 894 bio_offset,
4a69a410
CM
895 __btree_submit_bio_start,
896 __btree_submit_bio_done);
44b8bd7e
CM
897}
898
3dd1462e 899#ifdef CONFIG_MIGRATION
784b4e29 900static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
901 struct page *newpage, struct page *page,
902 enum migrate_mode mode)
784b4e29
CM
903{
904 /*
905 * we can't safely write a btree page from here,
906 * we haven't done the locking hook
907 */
908 if (PageDirty(page))
909 return -EAGAIN;
910 /*
911 * Buffers may be managed in a filesystem specific way.
912 * We must have no buffers or drop them.
913 */
914 if (page_has_private(page) &&
915 !try_to_release_page(page, GFP_KERNEL))
916 return -EAGAIN;
a6bc32b8 917 return migrate_page(mapping, newpage, page, mode);
784b4e29 918}
3dd1462e 919#endif
784b4e29 920
0da5468f
CM
921
922static int btree_writepages(struct address_space *mapping,
923 struct writeback_control *wbc)
924{
d1310b2e
CM
925 struct extent_io_tree *tree;
926 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 927 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 928 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 929 u64 num_dirty;
24ab9cd8 930 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
931
932 if (wbc->for_kupdate)
933 return 0;
934
b9473439
CM
935 /* this is a bit racy, but that's ok */
936 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 937 if (num_dirty < thresh)
793955bc 938 return 0;
793955bc 939 }
0b32f4bb 940 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
941}
942
b2950863 943static int btree_readpage(struct file *file, struct page *page)
5f39d397 944{
d1310b2e
CM
945 struct extent_io_tree *tree;
946 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 947 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 948}
22b0ebda 949
70dec807 950static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 951{
98509cfc 952 if (PageWriteback(page) || PageDirty(page))
d397712b 953 return 0;
0c4e538b
DS
954 /*
955 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
956 * slab allocation from alloc_extent_state down the callchain where
957 * it'd hit a BUG_ON as those flags are not allowed.
958 */
959 gfp_flags &= ~GFP_SLAB_BUG_MASK;
960
3083ee2e 961 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
962}
963
5f39d397 964static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 965{
d1310b2e
CM
966 struct extent_io_tree *tree;
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
968 extent_invalidatepage(tree, page, offset);
969 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 970 if (PagePrivate(page)) {
d397712b
CM
971 printk(KERN_WARNING "btrfs warning page private not zero "
972 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
973 ClearPagePrivate(page);
974 set_page_private(page, 0);
975 page_cache_release(page);
976 }
d98237b3
CM
977}
978
0b32f4bb
JB
979static int btree_set_page_dirty(struct page *page)
980{
981 struct extent_buffer *eb;
982
983 BUG_ON(!PagePrivate(page));
984 eb = (struct extent_buffer *)page->private;
985 BUG_ON(!eb);
986 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
987 BUG_ON(!atomic_read(&eb->refs));
988 btrfs_assert_tree_locked(eb);
989 return __set_page_dirty_nobuffers(page);
990}
991
7f09410b 992static const struct address_space_operations btree_aops = {
d98237b3 993 .readpage = btree_readpage,
0da5468f 994 .writepages = btree_writepages,
5f39d397
CM
995 .releasepage = btree_releasepage,
996 .invalidatepage = btree_invalidatepage,
5a92bc88 997#ifdef CONFIG_MIGRATION
784b4e29 998 .migratepage = btree_migratepage,
5a92bc88 999#endif
0b32f4bb 1000 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1001};
1002
ca7a79ad
CM
1003int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1004 u64 parent_transid)
090d1875 1005{
5f39d397
CM
1006 struct extent_buffer *buf = NULL;
1007 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1008 int ret = 0;
090d1875 1009
db94535d 1010 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1011 if (!buf)
090d1875 1012 return 0;
d1310b2e 1013 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1014 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1015 free_extent_buffer(buf);
de428b63 1016 return ret;
090d1875
CM
1017}
1018
ab0fff03
AJ
1019int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1020 int mirror_num, struct extent_buffer **eb)
1021{
1022 struct extent_buffer *buf = NULL;
1023 struct inode *btree_inode = root->fs_info->btree_inode;
1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025 int ret;
1026
1027 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1028 if (!buf)
1029 return 0;
1030
1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
1033 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1034 btree_get_extent, mirror_num);
1035 if (ret) {
1036 free_extent_buffer(buf);
1037 return ret;
1038 }
1039
1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041 free_extent_buffer(buf);
1042 return -EIO;
0b32f4bb 1043 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1044 *eb = buf;
1045 } else {
1046 free_extent_buffer(buf);
1047 }
1048 return 0;
1049}
1050
0999df54
CM
1051struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1052 u64 bytenr, u32 blocksize)
1053{
1054 struct inode *btree_inode = root->fs_info->btree_inode;
1055 struct extent_buffer *eb;
1056 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1057 bytenr, blocksize);
0999df54
CM
1058 return eb;
1059}
1060
1061struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1062 u64 bytenr, u32 blocksize)
1063{
1064 struct inode *btree_inode = root->fs_info->btree_inode;
1065 struct extent_buffer *eb;
1066
1067 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1068 bytenr, blocksize);
0999df54
CM
1069 return eb;
1070}
1071
1072
e02119d5
CM
1073int btrfs_write_tree_block(struct extent_buffer *buf)
1074{
727011e0 1075 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1076 buf->start + buf->len - 1);
e02119d5
CM
1077}
1078
1079int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1080{
727011e0 1081 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1082 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1083}
1084
0999df54 1085struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1086 u32 blocksize, u64 parent_transid)
0999df54
CM
1087{
1088 struct extent_buffer *buf = NULL;
0999df54
CM
1089 int ret;
1090
0999df54
CM
1091 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1092 if (!buf)
1093 return NULL;
0999df54 1094
ca7a79ad 1095 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1096 return buf;
ce9adaa5 1097
eb60ceac
CM
1098}
1099
d5c13f92
JM
1100void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1101 struct extent_buffer *buf)
ed2ff2cb 1102{
55c69072 1103 if (btrfs_header_generation(buf) ==
925baedd 1104 root->fs_info->running_transaction->transid) {
b9447ef8 1105 btrfs_assert_tree_locked(buf);
b4ce94de 1106
b9473439
CM
1107 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1108 spin_lock(&root->fs_info->delalloc_lock);
1109 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1110 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1111 else {
1112 spin_unlock(&root->fs_info->delalloc_lock);
1113 btrfs_panic(root->fs_info, -EOVERFLOW,
1114 "Can't clear %lu bytes from "
533574c6 1115 " dirty_mdatadata_bytes (%llu)",
d5c13f92
JM
1116 buf->len,
1117 root->fs_info->dirty_metadata_bytes);
1118 }
b9473439
CM
1119 spin_unlock(&root->fs_info->delalloc_lock);
1120 }
b4ce94de 1121
b9473439
CM
1122 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1123 btrfs_set_lock_blocking(buf);
0b32f4bb 1124 clear_extent_buffer_dirty(buf);
925baedd 1125 }
5f39d397
CM
1126}
1127
143bede5
JM
1128static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1129 u32 stripesize, struct btrfs_root *root,
1130 struct btrfs_fs_info *fs_info,
1131 u64 objectid)
d97e63b6 1132{
cfaa7295 1133 root->node = NULL;
a28ec197 1134 root->commit_root = NULL;
db94535d
CM
1135 root->sectorsize = sectorsize;
1136 root->nodesize = nodesize;
1137 root->leafsize = leafsize;
87ee04eb 1138 root->stripesize = stripesize;
123abc88 1139 root->ref_cows = 0;
0b86a832 1140 root->track_dirty = 0;
c71bf099 1141 root->in_radix = 0;
d68fc57b
YZ
1142 root->orphan_item_inserted = 0;
1143 root->orphan_cleanup_state = 0;
0b86a832 1144
0f7d52f4
CM
1145 root->objectid = objectid;
1146 root->last_trans = 0;
13a8a7c8 1147 root->highest_objectid = 0;
58176a96 1148 root->name = NULL;
6bef4d31 1149 root->inode_tree = RB_ROOT;
16cdcec7 1150 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1151 root->block_rsv = NULL;
d68fc57b 1152 root->orphan_block_rsv = NULL;
0b86a832
CM
1153
1154 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1155 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1156 spin_lock_init(&root->orphan_lock);
5d4f98a2 1157 spin_lock_init(&root->inode_lock);
f0486c68 1158 spin_lock_init(&root->accounting_lock);
a2135011 1159 mutex_init(&root->objectid_mutex);
e02119d5 1160 mutex_init(&root->log_mutex);
7237f183
YZ
1161 init_waitqueue_head(&root->log_writer_wait);
1162 init_waitqueue_head(&root->log_commit_wait[0]);
1163 init_waitqueue_head(&root->log_commit_wait[1]);
1164 atomic_set(&root->log_commit[0], 0);
1165 atomic_set(&root->log_commit[1], 0);
1166 atomic_set(&root->log_writers, 0);
2ecb7923 1167 atomic_set(&root->log_batch, 0);
8a35d95f 1168 atomic_set(&root->orphan_inodes, 0);
7237f183 1169 root->log_transid = 0;
257c62e1 1170 root->last_log_commit = 0;
d0c803c4 1171 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1172 fs_info->btree_inode->i_mapping);
017e5369 1173
3768f368
CM
1174 memset(&root->root_key, 0, sizeof(root->root_key));
1175 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1176 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1177 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1178 root->defrag_trans_start = fs_info->generation;
58176a96 1179 init_completion(&root->kobj_unregister);
6702ed49 1180 root->defrag_running = 0;
4d775673 1181 root->root_key.objectid = objectid;
0ee5dc67 1182 root->anon_dev = 0;
8ea05e3a
AB
1183
1184 spin_lock_init(&root->root_times_lock);
3768f368
CM
1185}
1186
200a5c17
JM
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
3768f368
CM
1191{
1192 int ret;
db94535d 1193 u32 blocksize;
84234f3a 1194 u64 generation;
3768f368 1195
db94535d 1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
3768f368
CM
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
4df27c4d
YZ
1201 if (ret > 0)
1202 return -ENOENT;
200a5c17
JM
1203 else if (ret < 0)
1204 return ret;
3768f368 1205
84234f3a 1206 generation = btrfs_root_generation(&root->root_item);
db94535d 1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1208 root->commit_root = NULL;
db94535d 1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1210 blocksize, generation);
b9fab919 1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1212 free_extent_buffer(root->node);
af31f5e5 1213 root->node = NULL;
68433b73
CM
1214 return -EIO;
1215 }
4df27c4d 1216 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1217 return 0;
1218}
1219
f84a8bd6 1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1221{
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226}
1227
20897f5c
AJ
1228struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info,
1230 u64 objectid)
1231{
1232 struct extent_buffer *leaf;
1233 struct btrfs_root *tree_root = fs_info->tree_root;
1234 struct btrfs_root *root;
1235 struct btrfs_key key;
1236 int ret = 0;
1237 u64 bytenr;
1238
1239 root = btrfs_alloc_root(fs_info);
1240 if (!root)
1241 return ERR_PTR(-ENOMEM);
1242
1243 __setup_root(tree_root->nodesize, tree_root->leafsize,
1244 tree_root->sectorsize, tree_root->stripesize,
1245 root, fs_info, objectid);
1246 root->root_key.objectid = objectid;
1247 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1248 root->root_key.offset = 0;
1249
1250 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1251 0, objectid, NULL, 0, 0, 0);
1252 if (IS_ERR(leaf)) {
1253 ret = PTR_ERR(leaf);
1254 goto fail;
1255 }
1256
1257 bytenr = leaf->start;
1258 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1259 btrfs_set_header_bytenr(leaf, leaf->start);
1260 btrfs_set_header_generation(leaf, trans->transid);
1261 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1262 btrfs_set_header_owner(leaf, objectid);
1263 root->node = leaf;
1264
1265 write_extent_buffer(leaf, fs_info->fsid,
1266 (unsigned long)btrfs_header_fsid(leaf),
1267 BTRFS_FSID_SIZE);
1268 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1269 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1270 BTRFS_UUID_SIZE);
1271 btrfs_mark_buffer_dirty(leaf);
1272
1273 root->commit_root = btrfs_root_node(root);
1274 root->track_dirty = 1;
1275
1276
1277 root->root_item.flags = 0;
1278 root->root_item.byte_limit = 0;
1279 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1280 btrfs_set_root_generation(&root->root_item, trans->transid);
1281 btrfs_set_root_level(&root->root_item, 0);
1282 btrfs_set_root_refs(&root->root_item, 1);
1283 btrfs_set_root_used(&root->root_item, leaf->len);
1284 btrfs_set_root_last_snapshot(&root->root_item, 0);
1285 btrfs_set_root_dirid(&root->root_item, 0);
1286 root->root_item.drop_level = 0;
1287
1288 key.objectid = objectid;
1289 key.type = BTRFS_ROOT_ITEM_KEY;
1290 key.offset = 0;
1291 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292 if (ret)
1293 goto fail;
1294
1295 btrfs_tree_unlock(leaf);
1296
1297fail:
1298 if (ret)
1299 return ERR_PTR(ret);
1300
1301 return root;
1302}
1303
7237f183
YZ
1304static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1305 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1306{
1307 struct btrfs_root *root;
1308 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1309 struct extent_buffer *leaf;
e02119d5 1310
6f07e42e 1311 root = btrfs_alloc_root(fs_info);
e02119d5 1312 if (!root)
7237f183 1313 return ERR_PTR(-ENOMEM);
e02119d5
CM
1314
1315 __setup_root(tree_root->nodesize, tree_root->leafsize,
1316 tree_root->sectorsize, tree_root->stripesize,
1317 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1318
1319 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1320 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1322 /*
1323 * log trees do not get reference counted because they go away
1324 * before a real commit is actually done. They do store pointers
1325 * to file data extents, and those reference counts still get
1326 * updated (along with back refs to the log tree).
1327 */
e02119d5
CM
1328 root->ref_cows = 0;
1329
5d4f98a2 1330 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1331 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1332 0, 0, 0);
7237f183
YZ
1333 if (IS_ERR(leaf)) {
1334 kfree(root);
1335 return ERR_CAST(leaf);
1336 }
e02119d5 1337
5d4f98a2
YZ
1338 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339 btrfs_set_header_bytenr(leaf, leaf->start);
1340 btrfs_set_header_generation(leaf, trans->transid);
1341 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1343 root->node = leaf;
e02119d5
CM
1344
1345 write_extent_buffer(root->node, root->fs_info->fsid,
1346 (unsigned long)btrfs_header_fsid(root->node),
1347 BTRFS_FSID_SIZE);
1348 btrfs_mark_buffer_dirty(root->node);
1349 btrfs_tree_unlock(root->node);
7237f183
YZ
1350 return root;
1351}
1352
1353int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1354 struct btrfs_fs_info *fs_info)
1355{
1356 struct btrfs_root *log_root;
1357
1358 log_root = alloc_log_tree(trans, fs_info);
1359 if (IS_ERR(log_root))
1360 return PTR_ERR(log_root);
1361 WARN_ON(fs_info->log_root_tree);
1362 fs_info->log_root_tree = log_root;
1363 return 0;
1364}
1365
1366int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root)
1368{
1369 struct btrfs_root *log_root;
1370 struct btrfs_inode_item *inode_item;
1371
1372 log_root = alloc_log_tree(trans, root->fs_info);
1373 if (IS_ERR(log_root))
1374 return PTR_ERR(log_root);
1375
1376 log_root->last_trans = trans->transid;
1377 log_root->root_key.offset = root->root_key.objectid;
1378
1379 inode_item = &log_root->root_item.inode;
1380 inode_item->generation = cpu_to_le64(1);
1381 inode_item->size = cpu_to_le64(3);
1382 inode_item->nlink = cpu_to_le32(1);
1383 inode_item->nbytes = cpu_to_le64(root->leafsize);
1384 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1385
5d4f98a2 1386 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1387
1388 WARN_ON(root->log_root);
1389 root->log_root = log_root;
1390 root->log_transid = 0;
257c62e1 1391 root->last_log_commit = 0;
e02119d5
CM
1392 return 0;
1393}
1394
1395struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1396 struct btrfs_key *location)
1397{
1398 struct btrfs_root *root;
1399 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1400 struct btrfs_path *path;
5f39d397 1401 struct extent_buffer *l;
84234f3a 1402 u64 generation;
db94535d 1403 u32 blocksize;
0f7d52f4 1404 int ret = 0;
8ea05e3a 1405 int slot;
0f7d52f4 1406
6f07e42e 1407 root = btrfs_alloc_root(fs_info);
0cf6c620 1408 if (!root)
0f7d52f4 1409 return ERR_PTR(-ENOMEM);
0f7d52f4 1410 if (location->offset == (u64)-1) {
db94535d 1411 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1412 location->objectid, root);
1413 if (ret) {
0f7d52f4
CM
1414 kfree(root);
1415 return ERR_PTR(ret);
1416 }
13a8a7c8 1417 goto out;
0f7d52f4
CM
1418 }
1419
db94535d 1420 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1421 tree_root->sectorsize, tree_root->stripesize,
1422 root, fs_info, location->objectid);
0f7d52f4
CM
1423
1424 path = btrfs_alloc_path();
db5b493a
TI
1425 if (!path) {
1426 kfree(root);
1427 return ERR_PTR(-ENOMEM);
1428 }
0f7d52f4 1429 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1430 if (ret == 0) {
1431 l = path->nodes[0];
8ea05e3a
AB
1432 slot = path->slots[0];
1433 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1434 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1435 }
0f7d52f4
CM
1436 btrfs_free_path(path);
1437 if (ret) {
5e540f77 1438 kfree(root);
13a8a7c8
YZ
1439 if (ret > 0)
1440 ret = -ENOENT;
0f7d52f4
CM
1441 return ERR_PTR(ret);
1442 }
13a8a7c8 1443
84234f3a 1444 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1445 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1446 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1447 blocksize, generation);
5d4f98a2 1448 root->commit_root = btrfs_root_node(root);
79787eaa 1449 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1450out:
08fe4db1 1451 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1452 root->ref_cows = 1;
08fe4db1
LZ
1453 btrfs_check_and_init_root_item(&root->root_item);
1454 }
13a8a7c8 1455
5eda7b5e
CM
1456 return root;
1457}
1458
edbd8d4e
CM
1459struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1460 struct btrfs_key *location)
5eda7b5e
CM
1461{
1462 struct btrfs_root *root;
1463 int ret;
1464
edbd8d4e
CM
1465 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1466 return fs_info->tree_root;
1467 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1468 return fs_info->extent_root;
8f18cf13
CM
1469 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1470 return fs_info->chunk_root;
1471 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1472 return fs_info->dev_root;
0403e47e
YZ
1473 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1474 return fs_info->csum_root;
bcef60f2
AJ
1475 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1476 return fs_info->quota_root ? fs_info->quota_root :
1477 ERR_PTR(-ENOENT);
4df27c4d
YZ
1478again:
1479 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1480 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1481 (unsigned long)location->objectid);
4df27c4d 1482 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1483 if (root)
1484 return root;
1485
e02119d5 1486 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1487 if (IS_ERR(root))
1488 return root;
3394e160 1489
581bb050 1490 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1491 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1492 GFP_NOFS);
35a30d7c
DS
1493 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1494 ret = -ENOMEM;
581bb050 1495 goto fail;
35a30d7c 1496 }
581bb050
LZ
1497
1498 btrfs_init_free_ino_ctl(root);
1499 mutex_init(&root->fs_commit_mutex);
1500 spin_lock_init(&root->cache_lock);
1501 init_waitqueue_head(&root->cache_wait);
1502
0ee5dc67 1503 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1504 if (ret)
1505 goto fail;
3394e160 1506
d68fc57b
YZ
1507 if (btrfs_root_refs(&root->root_item) == 0) {
1508 ret = -ENOENT;
1509 goto fail;
1510 }
1511
1512 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1513 if (ret < 0)
1514 goto fail;
1515 if (ret == 0)
1516 root->orphan_item_inserted = 1;
1517
4df27c4d
YZ
1518 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1519 if (ret)
1520 goto fail;
1521
1522 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1523 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524 (unsigned long)root->root_key.objectid,
0f7d52f4 1525 root);
d68fc57b 1526 if (ret == 0)
4df27c4d 1527 root->in_radix = 1;
d68fc57b 1528
4df27c4d
YZ
1529 spin_unlock(&fs_info->fs_roots_radix_lock);
1530 radix_tree_preload_end();
0f7d52f4 1531 if (ret) {
4df27c4d
YZ
1532 if (ret == -EEXIST) {
1533 free_fs_root(root);
1534 goto again;
1535 }
1536 goto fail;
0f7d52f4 1537 }
4df27c4d
YZ
1538
1539 ret = btrfs_find_dead_roots(fs_info->tree_root,
1540 root->root_key.objectid);
1541 WARN_ON(ret);
edbd8d4e 1542 return root;
4df27c4d
YZ
1543fail:
1544 free_fs_root(root);
1545 return ERR_PTR(ret);
edbd8d4e
CM
1546}
1547
04160088
CM
1548static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1549{
1550 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1551 int ret = 0;
04160088
CM
1552 struct btrfs_device *device;
1553 struct backing_dev_info *bdi;
b7967db7 1554
1f78160c
XG
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1557 if (!device->bdev)
1558 continue;
04160088
CM
1559 bdi = blk_get_backing_dev_info(device->bdev);
1560 if (bdi && bdi_congested(bdi, bdi_bits)) {
1561 ret = 1;
1562 break;
1563 }
1564 }
1f78160c 1565 rcu_read_unlock();
04160088
CM
1566 return ret;
1567}
1568
ad081f14
JA
1569/*
1570 * If this fails, caller must call bdi_destroy() to get rid of the
1571 * bdi again.
1572 */
04160088
CM
1573static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1574{
ad081f14
JA
1575 int err;
1576
1577 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1578 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1579 if (err)
1580 return err;
1581
4575c9cc 1582 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1583 bdi->congested_fn = btrfs_congested_fn;
1584 bdi->congested_data = info;
1585 return 0;
1586}
1587
8b712842
CM
1588/*
1589 * called by the kthread helper functions to finally call the bio end_io
1590 * functions. This is where read checksum verification actually happens
1591 */
1592static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1593{
ce9adaa5 1594 struct bio *bio;
8b712842
CM
1595 struct end_io_wq *end_io_wq;
1596 struct btrfs_fs_info *fs_info;
ce9adaa5 1597 int error;
ce9adaa5 1598
8b712842
CM
1599 end_io_wq = container_of(work, struct end_io_wq, work);
1600 bio = end_io_wq->bio;
1601 fs_info = end_io_wq->info;
ce9adaa5 1602
8b712842
CM
1603 error = end_io_wq->error;
1604 bio->bi_private = end_io_wq->private;
1605 bio->bi_end_io = end_io_wq->end_io;
1606 kfree(end_io_wq);
8b712842 1607 bio_endio(bio, error);
44b8bd7e
CM
1608}
1609
a74a4b97
CM
1610static int cleaner_kthread(void *arg)
1611{
1612 struct btrfs_root *root = arg;
1613
1614 do {
76dda93c
YZ
1615 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1616 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1617 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1618 btrfs_clean_old_snapshots(root);
1619 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1620 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1621 }
a74a4b97 1622
a0acae0e 1623 if (!try_to_freeze()) {
a74a4b97 1624 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1625 if (!kthread_should_stop())
1626 schedule();
a74a4b97
CM
1627 __set_current_state(TASK_RUNNING);
1628 }
1629 } while (!kthread_should_stop());
1630 return 0;
1631}
1632
1633static int transaction_kthread(void *arg)
1634{
1635 struct btrfs_root *root = arg;
1636 struct btrfs_trans_handle *trans;
1637 struct btrfs_transaction *cur;
8929ecfa 1638 u64 transid;
a74a4b97
CM
1639 unsigned long now;
1640 unsigned long delay;
914b2007 1641 bool cannot_commit;
a74a4b97
CM
1642
1643 do {
914b2007 1644 cannot_commit = false;
a74a4b97 1645 delay = HZ * 30;
a74a4b97
CM
1646 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1647
a4abeea4 1648 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1649 cur = root->fs_info->running_transaction;
1650 if (!cur) {
a4abeea4 1651 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1652 goto sleep;
1653 }
31153d81 1654
a74a4b97 1655 now = get_seconds();
8929ecfa
YZ
1656 if (!cur->blocked &&
1657 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1658 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1659 delay = HZ * 5;
1660 goto sleep;
1661 }
8929ecfa 1662 transid = cur->transid;
a4abeea4 1663 spin_unlock(&root->fs_info->trans_lock);
56bec294 1664
79787eaa 1665 /* If the file system is aborted, this will always fail. */
7a7eaa40 1666 trans = btrfs_join_transaction(root);
914b2007
JK
1667 if (IS_ERR(trans)) {
1668 cannot_commit = true;
79787eaa 1669 goto sleep;
914b2007 1670 }
8929ecfa 1671 if (transid == trans->transid) {
79787eaa 1672 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1673 } else {
1674 btrfs_end_transaction(trans, root);
1675 }
a74a4b97
CM
1676sleep:
1677 wake_up_process(root->fs_info->cleaner_kthread);
1678 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1679
a0acae0e 1680 if (!try_to_freeze()) {
a74a4b97 1681 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1682 if (!kthread_should_stop() &&
914b2007
JK
1683 (!btrfs_transaction_blocked(root->fs_info) ||
1684 cannot_commit))
8929ecfa 1685 schedule_timeout(delay);
a74a4b97
CM
1686 __set_current_state(TASK_RUNNING);
1687 }
1688 } while (!kthread_should_stop());
1689 return 0;
1690}
1691
af31f5e5
CM
1692/*
1693 * this will find the highest generation in the array of
1694 * root backups. The index of the highest array is returned,
1695 * or -1 if we can't find anything.
1696 *
1697 * We check to make sure the array is valid by comparing the
1698 * generation of the latest root in the array with the generation
1699 * in the super block. If they don't match we pitch it.
1700 */
1701static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1702{
1703 u64 cur;
1704 int newest_index = -1;
1705 struct btrfs_root_backup *root_backup;
1706 int i;
1707
1708 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1709 root_backup = info->super_copy->super_roots + i;
1710 cur = btrfs_backup_tree_root_gen(root_backup);
1711 if (cur == newest_gen)
1712 newest_index = i;
1713 }
1714
1715 /* check to see if we actually wrapped around */
1716 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1717 root_backup = info->super_copy->super_roots;
1718 cur = btrfs_backup_tree_root_gen(root_backup);
1719 if (cur == newest_gen)
1720 newest_index = 0;
1721 }
1722 return newest_index;
1723}
1724
1725
1726/*
1727 * find the oldest backup so we know where to store new entries
1728 * in the backup array. This will set the backup_root_index
1729 * field in the fs_info struct
1730 */
1731static void find_oldest_super_backup(struct btrfs_fs_info *info,
1732 u64 newest_gen)
1733{
1734 int newest_index = -1;
1735
1736 newest_index = find_newest_super_backup(info, newest_gen);
1737 /* if there was garbage in there, just move along */
1738 if (newest_index == -1) {
1739 info->backup_root_index = 0;
1740 } else {
1741 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1742 }
1743}
1744
1745/*
1746 * copy all the root pointers into the super backup array.
1747 * this will bump the backup pointer by one when it is
1748 * done
1749 */
1750static void backup_super_roots(struct btrfs_fs_info *info)
1751{
1752 int next_backup;
1753 struct btrfs_root_backup *root_backup;
1754 int last_backup;
1755
1756 next_backup = info->backup_root_index;
1757 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1758 BTRFS_NUM_BACKUP_ROOTS;
1759
1760 /*
1761 * just overwrite the last backup if we're at the same generation
1762 * this happens only at umount
1763 */
1764 root_backup = info->super_for_commit->super_roots + last_backup;
1765 if (btrfs_backup_tree_root_gen(root_backup) ==
1766 btrfs_header_generation(info->tree_root->node))
1767 next_backup = last_backup;
1768
1769 root_backup = info->super_for_commit->super_roots + next_backup;
1770
1771 /*
1772 * make sure all of our padding and empty slots get zero filled
1773 * regardless of which ones we use today
1774 */
1775 memset(root_backup, 0, sizeof(*root_backup));
1776
1777 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1778
1779 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1780 btrfs_set_backup_tree_root_gen(root_backup,
1781 btrfs_header_generation(info->tree_root->node));
1782
1783 btrfs_set_backup_tree_root_level(root_backup,
1784 btrfs_header_level(info->tree_root->node));
1785
1786 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1787 btrfs_set_backup_chunk_root_gen(root_backup,
1788 btrfs_header_generation(info->chunk_root->node));
1789 btrfs_set_backup_chunk_root_level(root_backup,
1790 btrfs_header_level(info->chunk_root->node));
1791
1792 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1793 btrfs_set_backup_extent_root_gen(root_backup,
1794 btrfs_header_generation(info->extent_root->node));
1795 btrfs_set_backup_extent_root_level(root_backup,
1796 btrfs_header_level(info->extent_root->node));
1797
7c7e82a7
CM
1798 /*
1799 * we might commit during log recovery, which happens before we set
1800 * the fs_root. Make sure it is valid before we fill it in.
1801 */
1802 if (info->fs_root && info->fs_root->node) {
1803 btrfs_set_backup_fs_root(root_backup,
1804 info->fs_root->node->start);
1805 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1806 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1807 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1808 btrfs_header_level(info->fs_root->node));
7c7e82a7 1809 }
af31f5e5
CM
1810
1811 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1812 btrfs_set_backup_dev_root_gen(root_backup,
1813 btrfs_header_generation(info->dev_root->node));
1814 btrfs_set_backup_dev_root_level(root_backup,
1815 btrfs_header_level(info->dev_root->node));
1816
1817 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1818 btrfs_set_backup_csum_root_gen(root_backup,
1819 btrfs_header_generation(info->csum_root->node));
1820 btrfs_set_backup_csum_root_level(root_backup,
1821 btrfs_header_level(info->csum_root->node));
1822
1823 btrfs_set_backup_total_bytes(root_backup,
1824 btrfs_super_total_bytes(info->super_copy));
1825 btrfs_set_backup_bytes_used(root_backup,
1826 btrfs_super_bytes_used(info->super_copy));
1827 btrfs_set_backup_num_devices(root_backup,
1828 btrfs_super_num_devices(info->super_copy));
1829
1830 /*
1831 * if we don't copy this out to the super_copy, it won't get remembered
1832 * for the next commit
1833 */
1834 memcpy(&info->super_copy->super_roots,
1835 &info->super_for_commit->super_roots,
1836 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1837}
1838
1839/*
1840 * this copies info out of the root backup array and back into
1841 * the in-memory super block. It is meant to help iterate through
1842 * the array, so you send it the number of backups you've already
1843 * tried and the last backup index you used.
1844 *
1845 * this returns -1 when it has tried all the backups
1846 */
1847static noinline int next_root_backup(struct btrfs_fs_info *info,
1848 struct btrfs_super_block *super,
1849 int *num_backups_tried, int *backup_index)
1850{
1851 struct btrfs_root_backup *root_backup;
1852 int newest = *backup_index;
1853
1854 if (*num_backups_tried == 0) {
1855 u64 gen = btrfs_super_generation(super);
1856
1857 newest = find_newest_super_backup(info, gen);
1858 if (newest == -1)
1859 return -1;
1860
1861 *backup_index = newest;
1862 *num_backups_tried = 1;
1863 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1864 /* we've tried all the backups, all done */
1865 return -1;
1866 } else {
1867 /* jump to the next oldest backup */
1868 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1869 BTRFS_NUM_BACKUP_ROOTS;
1870 *backup_index = newest;
1871 *num_backups_tried += 1;
1872 }
1873 root_backup = super->super_roots + newest;
1874
1875 btrfs_set_super_generation(super,
1876 btrfs_backup_tree_root_gen(root_backup));
1877 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1878 btrfs_set_super_root_level(super,
1879 btrfs_backup_tree_root_level(root_backup));
1880 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1881
1882 /*
1883 * fixme: the total bytes and num_devices need to match or we should
1884 * need a fsck
1885 */
1886 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1887 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1888 return 0;
1889}
1890
1891/* helper to cleanup tree roots */
1892static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1893{
1894 free_extent_buffer(info->tree_root->node);
1895 free_extent_buffer(info->tree_root->commit_root);
1896 free_extent_buffer(info->dev_root->node);
1897 free_extent_buffer(info->dev_root->commit_root);
1898 free_extent_buffer(info->extent_root->node);
1899 free_extent_buffer(info->extent_root->commit_root);
1900 free_extent_buffer(info->csum_root->node);
1901 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1902 if (info->quota_root) {
1903 free_extent_buffer(info->quota_root->node);
1904 free_extent_buffer(info->quota_root->commit_root);
1905 }
af31f5e5
CM
1906
1907 info->tree_root->node = NULL;
1908 info->tree_root->commit_root = NULL;
1909 info->dev_root->node = NULL;
1910 info->dev_root->commit_root = NULL;
1911 info->extent_root->node = NULL;
1912 info->extent_root->commit_root = NULL;
1913 info->csum_root->node = NULL;
1914 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1915 if (info->quota_root) {
1916 info->quota_root->node = NULL;
1917 info->quota_root->commit_root = NULL;
1918 }
af31f5e5
CM
1919
1920 if (chunk_root) {
1921 free_extent_buffer(info->chunk_root->node);
1922 free_extent_buffer(info->chunk_root->commit_root);
1923 info->chunk_root->node = NULL;
1924 info->chunk_root->commit_root = NULL;
1925 }
1926}
1927
1928
ad2b2c80
AV
1929int open_ctree(struct super_block *sb,
1930 struct btrfs_fs_devices *fs_devices,
1931 char *options)
2e635a27 1932{
db94535d
CM
1933 u32 sectorsize;
1934 u32 nodesize;
1935 u32 leafsize;
1936 u32 blocksize;
87ee04eb 1937 u32 stripesize;
84234f3a 1938 u64 generation;
f2b636e8 1939 u64 features;
3de4586c 1940 struct btrfs_key location;
a061fc8d 1941 struct buffer_head *bh;
4d34b278 1942 struct btrfs_super_block *disk_super;
815745cf 1943 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1944 struct btrfs_root *tree_root;
4d34b278
ID
1945 struct btrfs_root *extent_root;
1946 struct btrfs_root *csum_root;
1947 struct btrfs_root *chunk_root;
1948 struct btrfs_root *dev_root;
bcef60f2 1949 struct btrfs_root *quota_root;
e02119d5 1950 struct btrfs_root *log_tree_root;
eb60ceac 1951 int ret;
e58ca020 1952 int err = -EINVAL;
af31f5e5
CM
1953 int num_backups_tried = 0;
1954 int backup_index = 0;
4543df7e 1955
f84a8bd6 1956 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1957 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1958 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1959 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1960 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1961 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1962
f84a8bd6 1963 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1964 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1965 err = -ENOMEM;
1966 goto fail;
1967 }
76dda93c
YZ
1968
1969 ret = init_srcu_struct(&fs_info->subvol_srcu);
1970 if (ret) {
1971 err = ret;
1972 goto fail;
1973 }
1974
1975 ret = setup_bdi(fs_info, &fs_info->bdi);
1976 if (ret) {
1977 err = ret;
1978 goto fail_srcu;
1979 }
1980
1981 fs_info->btree_inode = new_inode(sb);
1982 if (!fs_info->btree_inode) {
1983 err = -ENOMEM;
1984 goto fail_bdi;
1985 }
1986
a6591715 1987 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1988
76dda93c 1989 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1990 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1991 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1992 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1993 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1994 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1995 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1996 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1997 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1998 spin_lock_init(&fs_info->trans_lock);
76dda93c 1999 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2000 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2001 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2002 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2003 spin_lock_init(&fs_info->tree_mod_seq_lock);
2004 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2005 mutex_init(&fs_info->reloc_mutex);
19c00ddc 2006
58176a96 2007 init_completion(&fs_info->kobj_unregister);
0b86a832 2008 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2009 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2010 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2011 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2012 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2013 BTRFS_BLOCK_RSV_GLOBAL);
2014 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2015 BTRFS_BLOCK_RSV_DELALLOC);
2016 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2017 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2018 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2019 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2020 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2021 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2022 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2023 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2024 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2025 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2026 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2027 fs_info->sb = sb;
6f568d35 2028 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2029 fs_info->metadata_ratio = 0;
4cb5300b 2030 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2031 fs_info->trans_no_join = 0;
2bf64758 2032 fs_info->free_chunk_space = 0;
f29021b2 2033 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2034
90519d66
AJ
2035 /* readahead state */
2036 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2037 spin_lock_init(&fs_info->reada_lock);
c8b97818 2038
b34b086c
CM
2039 fs_info->thread_pool_size = min_t(unsigned long,
2040 num_online_cpus() + 2, 8);
0afbaf8c 2041
3eaa2885
CM
2042 INIT_LIST_HEAD(&fs_info->ordered_extents);
2043 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2044 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2045 GFP_NOFS);
2046 if (!fs_info->delayed_root) {
2047 err = -ENOMEM;
2048 goto fail_iput;
2049 }
2050 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2051
a2de733c
AJ
2052 mutex_init(&fs_info->scrub_lock);
2053 atomic_set(&fs_info->scrubs_running, 0);
2054 atomic_set(&fs_info->scrub_pause_req, 0);
2055 atomic_set(&fs_info->scrubs_paused, 0);
2056 atomic_set(&fs_info->scrub_cancel_req, 0);
2057 init_waitqueue_head(&fs_info->scrub_pause_wait);
2058 init_rwsem(&fs_info->scrub_super_lock);
2059 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2060#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2061 fs_info->check_integrity_print_mask = 0;
2062#endif
a2de733c 2063
c9e9f97b
ID
2064 spin_lock_init(&fs_info->balance_lock);
2065 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2066 atomic_set(&fs_info->balance_running, 0);
2067 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2068 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2069 fs_info->balance_ctl = NULL;
837d5b6e 2070 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2071
a061fc8d
CM
2072 sb->s_blocksize = 4096;
2073 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2074 sb->s_bdi = &fs_info->bdi;
a061fc8d 2075
76dda93c 2076 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2077 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2078 /*
2079 * we set the i_size on the btree inode to the max possible int.
2080 * the real end of the address space is determined by all of
2081 * the devices in the system
2082 */
2083 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2084 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2085 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2086
5d4f98a2 2087 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2088 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2089 fs_info->btree_inode->i_mapping);
0b32f4bb 2090 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2091 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2092
2093 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2094
76dda93c
YZ
2095 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2096 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2097 sizeof(struct btrfs_key));
72ac3c0d
JB
2098 set_bit(BTRFS_INODE_DUMMY,
2099 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2100 insert_inode_hash(fs_info->btree_inode);
76dda93c 2101
0f9dd46c 2102 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2103 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2104
11833d66 2105 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2106 fs_info->btree_inode->i_mapping);
11833d66 2107 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2108 fs_info->btree_inode->i_mapping);
11833d66 2109 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2110 fs_info->do_barriers = 1;
e18e4809 2111
39279cc3 2112
5a3f23d5 2113 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2114 mutex_init(&fs_info->tree_log_mutex);
925baedd 2115 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2116 mutex_init(&fs_info->transaction_kthread_mutex);
2117 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2118 mutex_init(&fs_info->volume_mutex);
276e680d 2119 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2120 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2121 init_rwsem(&fs_info->subvol_sem);
fa9c0d79 2122
416ac51d
AJ
2123 spin_lock_init(&fs_info->qgroup_lock);
2124 fs_info->qgroup_tree = RB_ROOT;
2125 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2126 fs_info->qgroup_seq = 1;
2127 fs_info->quota_enabled = 0;
2128 fs_info->pending_quota_state = 0;
2129
fa9c0d79
CM
2130 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2131 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2132
e6dcd2dc 2133 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2134 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2135 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2136 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2137
0b86a832 2138 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2139 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2140
3c4bb26b 2141 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2142 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2143 if (!bh) {
2144 err = -EINVAL;
16cdcec7 2145 goto fail_alloc;
20b45077 2146 }
39279cc3 2147
6c41761f
DS
2148 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2149 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2150 sizeof(*fs_info->super_for_commit));
a061fc8d 2151 brelse(bh);
5f39d397 2152
6c41761f 2153 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2154
6c41761f 2155 disk_super = fs_info->super_copy;
0f7d52f4 2156 if (!btrfs_super_root(disk_super))
16cdcec7 2157 goto fail_alloc;
0f7d52f4 2158
acce952b 2159 /* check FS state, whether FS is broken. */
2160 fs_info->fs_state |= btrfs_super_flags(disk_super);
2161
fcd1f065
DS
2162 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2163 if (ret) {
2164 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2165 err = ret;
2166 goto fail_alloc;
2167 }
acce952b 2168
af31f5e5
CM
2169 /*
2170 * run through our array of backup supers and setup
2171 * our ring pointer to the oldest one
2172 */
2173 generation = btrfs_super_generation(disk_super);
2174 find_oldest_super_backup(fs_info, generation);
2175
75e7cb7f
LB
2176 /*
2177 * In the long term, we'll store the compression type in the super
2178 * block, and it'll be used for per file compression control.
2179 */
2180 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2181
2b82032c
YZ
2182 ret = btrfs_parse_options(tree_root, options);
2183 if (ret) {
2184 err = ret;
16cdcec7 2185 goto fail_alloc;
2b82032c 2186 }
dfe25020 2187
f2b636e8
JB
2188 features = btrfs_super_incompat_flags(disk_super) &
2189 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2190 if (features) {
2191 printk(KERN_ERR "BTRFS: couldn't mount because of "
2192 "unsupported optional features (%Lx).\n",
21380931 2193 (unsigned long long)features);
f2b636e8 2194 err = -EINVAL;
16cdcec7 2195 goto fail_alloc;
f2b636e8
JB
2196 }
2197
727011e0
CM
2198 if (btrfs_super_leafsize(disk_super) !=
2199 btrfs_super_nodesize(disk_super)) {
2200 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2201 "blocksizes don't match. node %d leaf %d\n",
2202 btrfs_super_nodesize(disk_super),
2203 btrfs_super_leafsize(disk_super));
2204 err = -EINVAL;
2205 goto fail_alloc;
2206 }
2207 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2208 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2209 "blocksize (%d) was too large\n",
2210 btrfs_super_leafsize(disk_super));
2211 err = -EINVAL;
2212 goto fail_alloc;
2213 }
2214
5d4f98a2 2215 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2216 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2217 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2218 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2219
2220 /*
2221 * flag our filesystem as having big metadata blocks if
2222 * they are bigger than the page size
2223 */
2224 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2225 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2226 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2227 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2228 }
2229
bc3f116f
CM
2230 nodesize = btrfs_super_nodesize(disk_super);
2231 leafsize = btrfs_super_leafsize(disk_super);
2232 sectorsize = btrfs_super_sectorsize(disk_super);
2233 stripesize = btrfs_super_stripesize(disk_super);
2234
2235 /*
2236 * mixed block groups end up with duplicate but slightly offset
2237 * extent buffers for the same range. It leads to corruptions
2238 */
2239 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2240 (sectorsize != leafsize)) {
2241 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2242 "are not allowed for mixed block groups on %s\n",
2243 sb->s_id);
2244 goto fail_alloc;
2245 }
2246
a6fa6fae 2247 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2248
f2b636e8
JB
2249 features = btrfs_super_compat_ro_flags(disk_super) &
2250 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2251 if (!(sb->s_flags & MS_RDONLY) && features) {
2252 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2253 "unsupported option features (%Lx).\n",
21380931 2254 (unsigned long long)features);
f2b636e8 2255 err = -EINVAL;
16cdcec7 2256 goto fail_alloc;
f2b636e8 2257 }
61d92c32
CM
2258
2259 btrfs_init_workers(&fs_info->generic_worker,
2260 "genwork", 1, NULL);
2261
5443be45 2262 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2263 fs_info->thread_pool_size,
2264 &fs_info->generic_worker);
c8b97818 2265
771ed689 2266 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2267 fs_info->thread_pool_size,
2268 &fs_info->generic_worker);
771ed689 2269
5443be45 2270 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2271 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2272 fs_info->thread_pool_size),
2273 &fs_info->generic_worker);
61b49440 2274
bab39bf9
JB
2275 btrfs_init_workers(&fs_info->caching_workers, "cache",
2276 2, &fs_info->generic_worker);
2277
61b49440
CM
2278 /* a higher idle thresh on the submit workers makes it much more
2279 * likely that bios will be send down in a sane order to the
2280 * devices
2281 */
2282 fs_info->submit_workers.idle_thresh = 64;
53863232 2283
771ed689 2284 fs_info->workers.idle_thresh = 16;
4a69a410 2285 fs_info->workers.ordered = 1;
61b49440 2286
771ed689
CM
2287 fs_info->delalloc_workers.idle_thresh = 2;
2288 fs_info->delalloc_workers.ordered = 1;
2289
61d92c32
CM
2290 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2291 &fs_info->generic_worker);
5443be45 2292 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2293 fs_info->thread_pool_size,
2294 &fs_info->generic_worker);
d20f7043 2295 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2296 fs_info->thread_pool_size,
2297 &fs_info->generic_worker);
cad321ad 2298 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2299 "endio-meta-write", fs_info->thread_pool_size,
2300 &fs_info->generic_worker);
5443be45 2301 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2302 fs_info->thread_pool_size,
2303 &fs_info->generic_worker);
0cb59c99
JB
2304 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2305 1, &fs_info->generic_worker);
16cdcec7
MX
2306 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2307 fs_info->thread_pool_size,
2308 &fs_info->generic_worker);
90519d66
AJ
2309 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2310 fs_info->thread_pool_size,
2311 &fs_info->generic_worker);
61b49440
CM
2312
2313 /*
2314 * endios are largely parallel and should have a very
2315 * low idle thresh
2316 */
2317 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2318 fs_info->endio_meta_workers.idle_thresh = 4;
2319
9042846b
CM
2320 fs_info->endio_write_workers.idle_thresh = 2;
2321 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2322 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2323
0dc3b84a
JB
2324 /*
2325 * btrfs_start_workers can really only fail because of ENOMEM so just
2326 * return -ENOMEM if any of these fail.
2327 */
2328 ret = btrfs_start_workers(&fs_info->workers);
2329 ret |= btrfs_start_workers(&fs_info->generic_worker);
2330 ret |= btrfs_start_workers(&fs_info->submit_workers);
2331 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2332 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2333 ret |= btrfs_start_workers(&fs_info->endio_workers);
2334 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2335 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2336 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2337 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2338 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2339 ret |= btrfs_start_workers(&fs_info->caching_workers);
2340 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2341 if (ret) {
fed425c7 2342 err = -ENOMEM;
0dc3b84a
JB
2343 goto fail_sb_buffer;
2344 }
4543df7e 2345
4575c9cc 2346 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2347 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2348 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2349
db94535d
CM
2350 tree_root->nodesize = nodesize;
2351 tree_root->leafsize = leafsize;
2352 tree_root->sectorsize = sectorsize;
87ee04eb 2353 tree_root->stripesize = stripesize;
a061fc8d
CM
2354
2355 sb->s_blocksize = sectorsize;
2356 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2357
39279cc3
CM
2358 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2359 sizeof(disk_super->magic))) {
d397712b 2360 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2361 goto fail_sb_buffer;
2362 }
19c00ddc 2363
8d082fb7
LB
2364 if (sectorsize != PAGE_SIZE) {
2365 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2366 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2367 goto fail_sb_buffer;
2368 }
2369
925baedd 2370 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2371 ret = btrfs_read_sys_array(tree_root);
925baedd 2372 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2373 if (ret) {
d397712b
CM
2374 printk(KERN_WARNING "btrfs: failed to read the system "
2375 "array on %s\n", sb->s_id);
5d4f98a2 2376 goto fail_sb_buffer;
84eed90f 2377 }
0b86a832
CM
2378
2379 blocksize = btrfs_level_size(tree_root,
2380 btrfs_super_chunk_root_level(disk_super));
84234f3a 2381 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2382
2383 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2384 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2385
2386 chunk_root->node = read_tree_block(chunk_root,
2387 btrfs_super_chunk_root(disk_super),
84234f3a 2388 blocksize, generation);
79787eaa 2389 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2390 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2391 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2392 sb->s_id);
af31f5e5 2393 goto fail_tree_roots;
83121942 2394 }
5d4f98a2
YZ
2395 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2396 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2397
e17cade2 2398 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2399 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2400 BTRFS_UUID_SIZE);
e17cade2 2401
0b86a832 2402 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2403 if (ret) {
d397712b
CM
2404 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2405 sb->s_id);
af31f5e5 2406 goto fail_tree_roots;
2b82032c 2407 }
0b86a832 2408
dfe25020
CM
2409 btrfs_close_extra_devices(fs_devices);
2410
a6b0d5c8
CM
2411 if (!fs_devices->latest_bdev) {
2412 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2413 sb->s_id);
2414 goto fail_tree_roots;
2415 }
2416
af31f5e5 2417retry_root_backup:
db94535d
CM
2418 blocksize = btrfs_level_size(tree_root,
2419 btrfs_super_root_level(disk_super));
84234f3a 2420 generation = btrfs_super_generation(disk_super);
0b86a832 2421
e20d96d6 2422 tree_root->node = read_tree_block(tree_root,
db94535d 2423 btrfs_super_root(disk_super),
84234f3a 2424 blocksize, generation);
af31f5e5
CM
2425 if (!tree_root->node ||
2426 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2427 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2428 sb->s_id);
af31f5e5
CM
2429
2430 goto recovery_tree_root;
83121942 2431 }
af31f5e5 2432
5d4f98a2
YZ
2433 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2434 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2435
2436 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2437 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2438 if (ret)
af31f5e5 2439 goto recovery_tree_root;
0b86a832
CM
2440 extent_root->track_dirty = 1;
2441
2442 ret = find_and_setup_root(tree_root, fs_info,
2443 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2444 if (ret)
af31f5e5 2445 goto recovery_tree_root;
5d4f98a2 2446 dev_root->track_dirty = 1;
3768f368 2447
d20f7043
CM
2448 ret = find_and_setup_root(tree_root, fs_info,
2449 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2450 if (ret)
af31f5e5 2451 goto recovery_tree_root;
d20f7043
CM
2452 csum_root->track_dirty = 1;
2453
bcef60f2
AJ
2454 ret = find_and_setup_root(tree_root, fs_info,
2455 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2456 if (ret) {
2457 kfree(quota_root);
2458 quota_root = fs_info->quota_root = NULL;
2459 } else {
2460 quota_root->track_dirty = 1;
2461 fs_info->quota_enabled = 1;
2462 fs_info->pending_quota_state = 1;
2463 }
2464
8929ecfa
YZ
2465 fs_info->generation = generation;
2466 fs_info->last_trans_committed = generation;
8929ecfa 2467
68310a5e
ID
2468 ret = btrfs_recover_balance(fs_info);
2469 if (ret) {
2470 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2471 goto fail_block_groups;
2472 }
2473
733f4fbb
SB
2474 ret = btrfs_init_dev_stats(fs_info);
2475 if (ret) {
2476 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2477 ret);
2478 goto fail_block_groups;
2479 }
2480
c59021f8 2481 ret = btrfs_init_space_info(fs_info);
2482 if (ret) {
2483 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2484 goto fail_block_groups;
2485 }
2486
1b1d1f66
JB
2487 ret = btrfs_read_block_groups(extent_root);
2488 if (ret) {
2489 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2490 goto fail_block_groups;
2491 }
9078a3e1 2492
a74a4b97
CM
2493 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2494 "btrfs-cleaner");
57506d50 2495 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2496 goto fail_block_groups;
a74a4b97
CM
2497
2498 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2499 tree_root,
2500 "btrfs-transaction");
57506d50 2501 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2502 goto fail_cleaner;
a74a4b97 2503
c289811c
CM
2504 if (!btrfs_test_opt(tree_root, SSD) &&
2505 !btrfs_test_opt(tree_root, NOSSD) &&
2506 !fs_info->fs_devices->rotating) {
2507 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2508 "mode\n");
2509 btrfs_set_opt(fs_info->mount_opt, SSD);
2510 }
2511
21adbd5c
SB
2512#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2513 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2514 ret = btrfsic_mount(tree_root, fs_devices,
2515 btrfs_test_opt(tree_root,
2516 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2517 1 : 0,
2518 fs_info->check_integrity_print_mask);
2519 if (ret)
2520 printk(KERN_WARNING "btrfs: failed to initialize"
2521 " integrity check module %s\n", sb->s_id);
2522 }
2523#endif
bcef60f2
AJ
2524 ret = btrfs_read_qgroup_config(fs_info);
2525 if (ret)
2526 goto fail_trans_kthread;
21adbd5c 2527
acce952b 2528 /* do not make disk changes in broken FS */
68ce9682 2529 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2530 u64 bytenr = btrfs_super_log_root(disk_super);
2531
7c2ca468 2532 if (fs_devices->rw_devices == 0) {
d397712b
CM
2533 printk(KERN_WARNING "Btrfs log replay required "
2534 "on RO media\n");
7c2ca468 2535 err = -EIO;
bcef60f2 2536 goto fail_qgroup;
7c2ca468 2537 }
e02119d5
CM
2538 blocksize =
2539 btrfs_level_size(tree_root,
2540 btrfs_super_log_root_level(disk_super));
d18a2c44 2541
6f07e42e 2542 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2543 if (!log_tree_root) {
2544 err = -ENOMEM;
bcef60f2 2545 goto fail_qgroup;
676e4c86 2546 }
e02119d5
CM
2547
2548 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2549 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2550
2551 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2552 blocksize,
2553 generation + 1);
79787eaa 2554 /* returns with log_tree_root freed on success */
e02119d5 2555 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2556 if (ret) {
2557 btrfs_error(tree_root->fs_info, ret,
2558 "Failed to recover log tree");
2559 free_extent_buffer(log_tree_root->node);
2560 kfree(log_tree_root);
2561 goto fail_trans_kthread;
2562 }
e556ce2c
YZ
2563
2564 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2565 ret = btrfs_commit_super(tree_root);
2566 if (ret)
2567 goto fail_trans_kthread;
e556ce2c 2568 }
e02119d5 2569 }
1a40e23b 2570
76dda93c 2571 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2572 if (ret)
2573 goto fail_trans_kthread;
76dda93c 2574
7c2ca468 2575 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2576 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2577 if (ret)
2578 goto fail_trans_kthread;
d68fc57b 2579
5d4f98a2 2580 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2581 if (ret < 0) {
2582 printk(KERN_WARNING
2583 "btrfs: failed to recover relocation\n");
2584 err = -EINVAL;
bcef60f2 2585 goto fail_qgroup;
d7ce5843 2586 }
7c2ca468 2587 }
1a40e23b 2588
3de4586c
CM
2589 location.objectid = BTRFS_FS_TREE_OBJECTID;
2590 location.type = BTRFS_ROOT_ITEM_KEY;
2591 location.offset = (u64)-1;
2592
3de4586c
CM
2593 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2594 if (!fs_info->fs_root)
bcef60f2 2595 goto fail_qgroup;
3140c9a3
DC
2596 if (IS_ERR(fs_info->fs_root)) {
2597 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2598 goto fail_qgroup;
3140c9a3 2599 }
c289811c 2600
2b6ba629
ID
2601 if (sb->s_flags & MS_RDONLY)
2602 return 0;
59641015 2603
2b6ba629
ID
2604 down_read(&fs_info->cleanup_work_sem);
2605 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2606 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2607 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2608 close_ctree(tree_root);
2609 return ret;
2610 }
2611 up_read(&fs_info->cleanup_work_sem);
59641015 2612
2b6ba629
ID
2613 ret = btrfs_resume_balance_async(fs_info);
2614 if (ret) {
2615 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2616 close_ctree(tree_root);
2617 return ret;
e3acc2a6
JB
2618 }
2619
ad2b2c80 2620 return 0;
39279cc3 2621
bcef60f2
AJ
2622fail_qgroup:
2623 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2624fail_trans_kthread:
2625 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2626fail_cleaner:
a74a4b97 2627 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2628
2629 /*
2630 * make sure we're done with the btree inode before we stop our
2631 * kthreads
2632 */
2633 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2634 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2635
1b1d1f66
JB
2636fail_block_groups:
2637 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2638
2639fail_tree_roots:
2640 free_root_pointers(fs_info, 1);
2641
39279cc3 2642fail_sb_buffer:
61d92c32 2643 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2644 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2645 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2646 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2647 btrfs_stop_workers(&fs_info->workers);
2648 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2649 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2650 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2651 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2652 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2653 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2654 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2655 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2656fail_alloc:
4543df7e 2657fail_iput:
586e46e2
ID
2658 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2659
7c2ca468 2660 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2661 iput(fs_info->btree_inode);
ad081f14 2662fail_bdi:
7e662854 2663 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2664fail_srcu:
2665 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2666fail:
586e46e2 2667 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2668 return err;
af31f5e5
CM
2669
2670recovery_tree_root:
af31f5e5
CM
2671 if (!btrfs_test_opt(tree_root, RECOVERY))
2672 goto fail_tree_roots;
2673
2674 free_root_pointers(fs_info, 0);
2675
2676 /* don't use the log in recovery mode, it won't be valid */
2677 btrfs_set_super_log_root(disk_super, 0);
2678
2679 /* we can't trust the free space cache either */
2680 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2681
2682 ret = next_root_backup(fs_info, fs_info->super_copy,
2683 &num_backups_tried, &backup_index);
2684 if (ret == -1)
2685 goto fail_block_groups;
2686 goto retry_root_backup;
eb60ceac
CM
2687}
2688
f2984462
CM
2689static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2690{
f2984462
CM
2691 if (uptodate) {
2692 set_buffer_uptodate(bh);
2693 } else {
442a4f63
SB
2694 struct btrfs_device *device = (struct btrfs_device *)
2695 bh->b_private;
2696
606686ee
JB
2697 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2698 "I/O error on %s\n",
2699 rcu_str_deref(device->name));
1259ab75
CM
2700 /* note, we dont' set_buffer_write_io_error because we have
2701 * our own ways of dealing with the IO errors
2702 */
f2984462 2703 clear_buffer_uptodate(bh);
442a4f63 2704 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2705 }
2706 unlock_buffer(bh);
2707 put_bh(bh);
2708}
2709
a512bbf8
YZ
2710struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2711{
2712 struct buffer_head *bh;
2713 struct buffer_head *latest = NULL;
2714 struct btrfs_super_block *super;
2715 int i;
2716 u64 transid = 0;
2717 u64 bytenr;
2718
2719 /* we would like to check all the supers, but that would make
2720 * a btrfs mount succeed after a mkfs from a different FS.
2721 * So, we need to add a special mount option to scan for
2722 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2723 */
2724 for (i = 0; i < 1; i++) {
2725 bytenr = btrfs_sb_offset(i);
2726 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2727 break;
2728 bh = __bread(bdev, bytenr / 4096, 4096);
2729 if (!bh)
2730 continue;
2731
2732 super = (struct btrfs_super_block *)bh->b_data;
2733 if (btrfs_super_bytenr(super) != bytenr ||
2734 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2735 sizeof(super->magic))) {
2736 brelse(bh);
2737 continue;
2738 }
2739
2740 if (!latest || btrfs_super_generation(super) > transid) {
2741 brelse(latest);
2742 latest = bh;
2743 transid = btrfs_super_generation(super);
2744 } else {
2745 brelse(bh);
2746 }
2747 }
2748 return latest;
2749}
2750
4eedeb75
HH
2751/*
2752 * this should be called twice, once with wait == 0 and
2753 * once with wait == 1. When wait == 0 is done, all the buffer heads
2754 * we write are pinned.
2755 *
2756 * They are released when wait == 1 is done.
2757 * max_mirrors must be the same for both runs, and it indicates how
2758 * many supers on this one device should be written.
2759 *
2760 * max_mirrors == 0 means to write them all.
2761 */
a512bbf8
YZ
2762static int write_dev_supers(struct btrfs_device *device,
2763 struct btrfs_super_block *sb,
2764 int do_barriers, int wait, int max_mirrors)
2765{
2766 struct buffer_head *bh;
2767 int i;
2768 int ret;
2769 int errors = 0;
2770 u32 crc;
2771 u64 bytenr;
a512bbf8
YZ
2772
2773 if (max_mirrors == 0)
2774 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2775
a512bbf8
YZ
2776 for (i = 0; i < max_mirrors; i++) {
2777 bytenr = btrfs_sb_offset(i);
2778 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2779 break;
2780
2781 if (wait) {
2782 bh = __find_get_block(device->bdev, bytenr / 4096,
2783 BTRFS_SUPER_INFO_SIZE);
2784 BUG_ON(!bh);
a512bbf8 2785 wait_on_buffer(bh);
4eedeb75
HH
2786 if (!buffer_uptodate(bh))
2787 errors++;
2788
2789 /* drop our reference */
2790 brelse(bh);
2791
2792 /* drop the reference from the wait == 0 run */
2793 brelse(bh);
2794 continue;
a512bbf8
YZ
2795 } else {
2796 btrfs_set_super_bytenr(sb, bytenr);
2797
2798 crc = ~(u32)0;
2799 crc = btrfs_csum_data(NULL, (char *)sb +
2800 BTRFS_CSUM_SIZE, crc,
2801 BTRFS_SUPER_INFO_SIZE -
2802 BTRFS_CSUM_SIZE);
2803 btrfs_csum_final(crc, sb->csum);
2804
4eedeb75
HH
2805 /*
2806 * one reference for us, and we leave it for the
2807 * caller
2808 */
a512bbf8
YZ
2809 bh = __getblk(device->bdev, bytenr / 4096,
2810 BTRFS_SUPER_INFO_SIZE);
2811 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2812
4eedeb75 2813 /* one reference for submit_bh */
a512bbf8 2814 get_bh(bh);
4eedeb75
HH
2815
2816 set_buffer_uptodate(bh);
a512bbf8
YZ
2817 lock_buffer(bh);
2818 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2819 bh->b_private = device;
a512bbf8
YZ
2820 }
2821
387125fc
CM
2822 /*
2823 * we fua the first super. The others we allow
2824 * to go down lazy.
2825 */
21adbd5c 2826 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2827 if (ret)
a512bbf8 2828 errors++;
a512bbf8
YZ
2829 }
2830 return errors < i ? 0 : -1;
2831}
2832
387125fc
CM
2833/*
2834 * endio for the write_dev_flush, this will wake anyone waiting
2835 * for the barrier when it is done
2836 */
2837static void btrfs_end_empty_barrier(struct bio *bio, int err)
2838{
2839 if (err) {
2840 if (err == -EOPNOTSUPP)
2841 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2842 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2843 }
2844 if (bio->bi_private)
2845 complete(bio->bi_private);
2846 bio_put(bio);
2847}
2848
2849/*
2850 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2851 * sent down. With wait == 1, it waits for the previous flush.
2852 *
2853 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2854 * capable
2855 */
2856static int write_dev_flush(struct btrfs_device *device, int wait)
2857{
2858 struct bio *bio;
2859 int ret = 0;
2860
2861 if (device->nobarriers)
2862 return 0;
2863
2864 if (wait) {
2865 bio = device->flush_bio;
2866 if (!bio)
2867 return 0;
2868
2869 wait_for_completion(&device->flush_wait);
2870
2871 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2872 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2873 rcu_str_deref(device->name));
387125fc
CM
2874 device->nobarriers = 1;
2875 }
2876 if (!bio_flagged(bio, BIO_UPTODATE)) {
2877 ret = -EIO;
442a4f63
SB
2878 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2879 btrfs_dev_stat_inc_and_print(device,
2880 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2881 }
2882
2883 /* drop the reference from the wait == 0 run */
2884 bio_put(bio);
2885 device->flush_bio = NULL;
2886
2887 return ret;
2888 }
2889
2890 /*
2891 * one reference for us, and we leave it for the
2892 * caller
2893 */
9c017abc 2894 device->flush_bio = NULL;
387125fc
CM
2895 bio = bio_alloc(GFP_NOFS, 0);
2896 if (!bio)
2897 return -ENOMEM;
2898
2899 bio->bi_end_io = btrfs_end_empty_barrier;
2900 bio->bi_bdev = device->bdev;
2901 init_completion(&device->flush_wait);
2902 bio->bi_private = &device->flush_wait;
2903 device->flush_bio = bio;
2904
2905 bio_get(bio);
21adbd5c 2906 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2907
2908 return 0;
2909}
2910
2911/*
2912 * send an empty flush down to each device in parallel,
2913 * then wait for them
2914 */
2915static int barrier_all_devices(struct btrfs_fs_info *info)
2916{
2917 struct list_head *head;
2918 struct btrfs_device *dev;
2919 int errors = 0;
2920 int ret;
2921
2922 /* send down all the barriers */
2923 head = &info->fs_devices->devices;
2924 list_for_each_entry_rcu(dev, head, dev_list) {
2925 if (!dev->bdev) {
2926 errors++;
2927 continue;
2928 }
2929 if (!dev->in_fs_metadata || !dev->writeable)
2930 continue;
2931
2932 ret = write_dev_flush(dev, 0);
2933 if (ret)
2934 errors++;
2935 }
2936
2937 /* wait for all the barriers */
2938 list_for_each_entry_rcu(dev, head, dev_list) {
2939 if (!dev->bdev) {
2940 errors++;
2941 continue;
2942 }
2943 if (!dev->in_fs_metadata || !dev->writeable)
2944 continue;
2945
2946 ret = write_dev_flush(dev, 1);
2947 if (ret)
2948 errors++;
2949 }
2950 if (errors)
2951 return -EIO;
2952 return 0;
2953}
2954
a512bbf8 2955int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2956{
e5e9a520 2957 struct list_head *head;
f2984462 2958 struct btrfs_device *dev;
a061fc8d 2959 struct btrfs_super_block *sb;
f2984462 2960 struct btrfs_dev_item *dev_item;
f2984462
CM
2961 int ret;
2962 int do_barriers;
a236aed1
CM
2963 int max_errors;
2964 int total_errors = 0;
a061fc8d 2965 u64 flags;
f2984462 2966
6c41761f 2967 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2968 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2969 backup_super_roots(root->fs_info);
f2984462 2970
6c41761f 2971 sb = root->fs_info->super_for_commit;
a061fc8d 2972 dev_item = &sb->dev_item;
e5e9a520 2973
174ba509 2974 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2975 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2976
2977 if (do_barriers)
2978 barrier_all_devices(root->fs_info);
2979
1f78160c 2980 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2981 if (!dev->bdev) {
2982 total_errors++;
2983 continue;
2984 }
2b82032c 2985 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2986 continue;
2987
2b82032c 2988 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2989 btrfs_set_stack_device_type(dev_item, dev->type);
2990 btrfs_set_stack_device_id(dev_item, dev->devid);
2991 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2992 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2993 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2994 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2995 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2996 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2997 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2998
a061fc8d
CM
2999 flags = btrfs_super_flags(sb);
3000 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3001
a512bbf8 3002 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3003 if (ret)
3004 total_errors++;
f2984462 3005 }
a236aed1 3006 if (total_errors > max_errors) {
d397712b
CM
3007 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3008 total_errors);
79787eaa
JM
3009
3010 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3011 BUG();
3012 }
f2984462 3013
a512bbf8 3014 total_errors = 0;
1f78160c 3015 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3016 if (!dev->bdev)
3017 continue;
2b82032c 3018 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3019 continue;
3020
a512bbf8
YZ
3021 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3022 if (ret)
3023 total_errors++;
f2984462 3024 }
174ba509 3025 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3026 if (total_errors > max_errors) {
79787eaa
JM
3027 btrfs_error(root->fs_info, -EIO,
3028 "%d errors while writing supers", total_errors);
3029 return -EIO;
a236aed1 3030 }
f2984462
CM
3031 return 0;
3032}
3033
a512bbf8
YZ
3034int write_ctree_super(struct btrfs_trans_handle *trans,
3035 struct btrfs_root *root, int max_mirrors)
eb60ceac 3036{
e66f709b 3037 int ret;
5f39d397 3038
a512bbf8 3039 ret = write_all_supers(root, max_mirrors);
5f39d397 3040 return ret;
cfaa7295
CM
3041}
3042
143bede5 3043void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3044{
4df27c4d 3045 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3046 radix_tree_delete(&fs_info->fs_roots_radix,
3047 (unsigned long)root->root_key.objectid);
4df27c4d 3048 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3049
3050 if (btrfs_root_refs(&root->root_item) == 0)
3051 synchronize_srcu(&fs_info->subvol_srcu);
3052
581bb050
LZ
3053 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3054 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3055 free_fs_root(root);
4df27c4d
YZ
3056}
3057
3058static void free_fs_root(struct btrfs_root *root)
3059{
82d5902d 3060 iput(root->cache_inode);
4df27c4d 3061 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3062 if (root->anon_dev)
3063 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3064 free_extent_buffer(root->node);
3065 free_extent_buffer(root->commit_root);
581bb050
LZ
3066 kfree(root->free_ino_ctl);
3067 kfree(root->free_ino_pinned);
d397712b 3068 kfree(root->name);
2619ba1f 3069 kfree(root);
2619ba1f
CM
3070}
3071
143bede5 3072static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3073{
3074 int ret;
3075 struct btrfs_root *gang[8];
3076 int i;
3077
76dda93c
YZ
3078 while (!list_empty(&fs_info->dead_roots)) {
3079 gang[0] = list_entry(fs_info->dead_roots.next,
3080 struct btrfs_root, root_list);
3081 list_del(&gang[0]->root_list);
3082
3083 if (gang[0]->in_radix) {
3084 btrfs_free_fs_root(fs_info, gang[0]);
3085 } else {
3086 free_extent_buffer(gang[0]->node);
3087 free_extent_buffer(gang[0]->commit_root);
3088 kfree(gang[0]);
3089 }
3090 }
3091
d397712b 3092 while (1) {
0f7d52f4
CM
3093 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3094 (void **)gang, 0,
3095 ARRAY_SIZE(gang));
3096 if (!ret)
3097 break;
2619ba1f 3098 for (i = 0; i < ret; i++)
5eda7b5e 3099 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3100 }
0f7d52f4 3101}
b4100d64 3102
c146afad 3103int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3104{
c146afad
YZ
3105 u64 root_objectid = 0;
3106 struct btrfs_root *gang[8];
3107 int i;
3768f368 3108 int ret;
e089f05c 3109
c146afad
YZ
3110 while (1) {
3111 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3112 (void **)gang, root_objectid,
3113 ARRAY_SIZE(gang));
3114 if (!ret)
3115 break;
5d4f98a2
YZ
3116
3117 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3118 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3119 int err;
3120
c146afad 3121 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3122 err = btrfs_orphan_cleanup(gang[i]);
3123 if (err)
3124 return err;
c146afad
YZ
3125 }
3126 root_objectid++;
3127 }
3128 return 0;
3129}
a2135011 3130
c146afad
YZ
3131int btrfs_commit_super(struct btrfs_root *root)
3132{
3133 struct btrfs_trans_handle *trans;
3134 int ret;
a74a4b97 3135
c146afad 3136 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3137 btrfs_run_delayed_iputs(root);
a74a4b97 3138 btrfs_clean_old_snapshots(root);
c146afad 3139 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3140
3141 /* wait until ongoing cleanup work done */
3142 down_write(&root->fs_info->cleanup_work_sem);
3143 up_write(&root->fs_info->cleanup_work_sem);
3144
7a7eaa40 3145 trans = btrfs_join_transaction(root);
3612b495
TI
3146 if (IS_ERR(trans))
3147 return PTR_ERR(trans);
54aa1f4d 3148 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3149 if (ret)
3150 return ret;
c146afad 3151 /* run commit again to drop the original snapshot */
7a7eaa40 3152 trans = btrfs_join_transaction(root);
3612b495
TI
3153 if (IS_ERR(trans))
3154 return PTR_ERR(trans);
79787eaa
JM
3155 ret = btrfs_commit_transaction(trans, root);
3156 if (ret)
3157 return ret;
79154b1b 3158 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3159 if (ret) {
3160 btrfs_error(root->fs_info, ret,
3161 "Failed to sync btree inode to disk.");
3162 return ret;
3163 }
d6bfde87 3164
a512bbf8 3165 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3166 return ret;
3167}
3168
3169int close_ctree(struct btrfs_root *root)
3170{
3171 struct btrfs_fs_info *fs_info = root->fs_info;
3172 int ret;
3173
3174 fs_info->closing = 1;
3175 smp_mb();
3176
837d5b6e
ID
3177 /* pause restriper - we want to resume on mount */
3178 btrfs_pause_balance(root->fs_info);
3179
a2de733c 3180 btrfs_scrub_cancel(root);
4cb5300b
CM
3181
3182 /* wait for any defraggers to finish */
3183 wait_event(fs_info->transaction_wait,
3184 (atomic_read(&fs_info->defrag_running) == 0));
3185
3186 /* clear out the rbtree of defraggable inodes */
e3029d9f 3187 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3188
c146afad 3189 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3190 ret = btrfs_commit_super(root);
3191 if (ret)
3192 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3193 }
3194
68ce9682
SB
3195 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3196 btrfs_error_commit_super(root);
0f7d52f4 3197
300e4f8a
JB
3198 btrfs_put_block_group_cache(fs_info);
3199
e3029d9f
AV
3200 kthread_stop(fs_info->transaction_kthread);
3201 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3202
f25784b3
YZ
3203 fs_info->closing = 2;
3204 smp_mb();
3205
bcef60f2
AJ
3206 btrfs_free_qgroup_config(root->fs_info);
3207
b0c68f8b 3208 if (fs_info->delalloc_bytes) {
d397712b 3209 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3210 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3211 }
bcc63abb 3212
5d4f98a2
YZ
3213 free_extent_buffer(fs_info->extent_root->node);
3214 free_extent_buffer(fs_info->extent_root->commit_root);
3215 free_extent_buffer(fs_info->tree_root->node);
3216 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3217 free_extent_buffer(fs_info->chunk_root->node);
3218 free_extent_buffer(fs_info->chunk_root->commit_root);
3219 free_extent_buffer(fs_info->dev_root->node);
3220 free_extent_buffer(fs_info->dev_root->commit_root);
3221 free_extent_buffer(fs_info->csum_root->node);
3222 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3223 if (fs_info->quota_root) {
3224 free_extent_buffer(fs_info->quota_root->node);
3225 free_extent_buffer(fs_info->quota_root->commit_root);
3226 }
d20f7043 3227
e3029d9f 3228 btrfs_free_block_groups(fs_info);
d10c5f31 3229
c146afad 3230 del_fs_roots(fs_info);
d10c5f31 3231
c146afad 3232 iput(fs_info->btree_inode);
9ad6b7bc 3233
61d92c32 3234 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3235 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3236 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3237 btrfs_stop_workers(&fs_info->workers);
3238 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3239 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3240 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3241 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3242 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3243 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3244 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3245 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3246 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3247
21adbd5c
SB
3248#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3249 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3250 btrfsic_unmount(root, fs_info->fs_devices);
3251#endif
3252
dfe25020 3253 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3254 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3255
04160088 3256 bdi_destroy(&fs_info->bdi);
76dda93c 3257 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3258
eb60ceac
CM
3259 return 0;
3260}
3261
b9fab919
CM
3262int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3263 int atomic)
5f39d397 3264{
1259ab75 3265 int ret;
727011e0 3266 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3267
0b32f4bb 3268 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3269 if (!ret)
3270 return ret;
3271
3272 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3273 parent_transid, atomic);
3274 if (ret == -EAGAIN)
3275 return ret;
1259ab75 3276 return !ret;
5f39d397
CM
3277}
3278
3279int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3280{
0b32f4bb 3281 return set_extent_buffer_uptodate(buf);
5f39d397 3282}
6702ed49 3283
5f39d397
CM
3284void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3285{
727011e0 3286 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3287 u64 transid = btrfs_header_generation(buf);
b9473439 3288 int was_dirty;
b4ce94de 3289
b9447ef8 3290 btrfs_assert_tree_locked(buf);
ccd467d6 3291 if (transid != root->fs_info->generation) {
d397712b
CM
3292 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3293 "found %llu running %llu\n",
db94535d 3294 (unsigned long long)buf->start,
d397712b
CM
3295 (unsigned long long)transid,
3296 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3297 WARN_ON(1);
3298 }
0b32f4bb 3299 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3300 if (!was_dirty) {
3301 spin_lock(&root->fs_info->delalloc_lock);
3302 root->fs_info->dirty_metadata_bytes += buf->len;
3303 spin_unlock(&root->fs_info->delalloc_lock);
3304 }
eb60ceac
CM
3305}
3306
d3c2fdcf 3307void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3308{
3309 /*
3310 * looks as though older kernels can get into trouble with
3311 * this code, they end up stuck in balance_dirty_pages forever
3312 */
3313 u64 num_dirty;
3314 unsigned long thresh = 32 * 1024 * 1024;
3315
3316 if (current->flags & PF_MEMALLOC)
3317 return;
3318
3319 btrfs_balance_delayed_items(root);
3320
3321 num_dirty = root->fs_info->dirty_metadata_bytes;
3322
3323 if (num_dirty > thresh) {
3324 balance_dirty_pages_ratelimited_nr(
3325 root->fs_info->btree_inode->i_mapping, 1);
3326 }
3327 return;
3328}
3329
3330void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3331{
188de649
CM
3332 /*
3333 * looks as though older kernels can get into trouble with
3334 * this code, they end up stuck in balance_dirty_pages forever
3335 */
d6bfde87 3336 u64 num_dirty;
771ed689 3337 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3338
6933c02e 3339 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3340 return;
3341
585ad2c3
CM
3342 num_dirty = root->fs_info->dirty_metadata_bytes;
3343
d6bfde87
CM
3344 if (num_dirty > thresh) {
3345 balance_dirty_pages_ratelimited_nr(
d7fc640e 3346 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3347 }
188de649 3348 return;
35b7e476 3349}
6b80053d 3350
ca7a79ad 3351int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3352{
727011e0 3353 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3354 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3355}
0da5468f 3356
20897f5c 3357int btree_lock_page_hook(struct page *page, void *data,
01d658f2 3358 void (*flush_fn)(void *))
4bef0848
CM
3359{
3360 struct inode *inode = page->mapping->host;
b9473439 3361 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3362 struct extent_buffer *eb;
4bef0848 3363
4f2de97a
JB
3364 /*
3365 * We culled this eb but the page is still hanging out on the mapping,
3366 * carry on.
3367 */
3368 if (!PagePrivate(page))
4bef0848
CM
3369 goto out;
3370
4f2de97a
JB
3371 eb = (struct extent_buffer *)page->private;
3372 if (!eb) {
3373 WARN_ON(1);
3374 goto out;
3375 }
3376 if (page != eb->pages[0])
4bef0848
CM
3377 goto out;
3378
01d658f2
CM
3379 if (!btrfs_try_tree_write_lock(eb)) {
3380 flush_fn(data);
3381 btrfs_tree_lock(eb);
3382 }
4bef0848 3383 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3384
3385 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3386 spin_lock(&root->fs_info->delalloc_lock);
3387 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3388 root->fs_info->dirty_metadata_bytes -= eb->len;
3389 else
3390 WARN_ON(1);
3391 spin_unlock(&root->fs_info->delalloc_lock);
3392 }
3393
4bef0848 3394 btrfs_tree_unlock(eb);
4bef0848 3395out:
01d658f2
CM
3396 if (!trylock_page(page)) {
3397 flush_fn(data);
3398 lock_page(page);
3399 }
4bef0848
CM
3400 return 0;
3401}
3402
fcd1f065 3403static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3404 int read_only)
3405{
fcd1f065
DS
3406 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3407 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3408 return -EINVAL;
3409 }
3410
acce952b 3411 if (read_only)
fcd1f065 3412 return 0;
acce952b 3413
fcd1f065 3414 return 0;
acce952b 3415}
3416
68ce9682 3417void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3418{
acce952b 3419 mutex_lock(&root->fs_info->cleaner_mutex);
3420 btrfs_run_delayed_iputs(root);
3421 mutex_unlock(&root->fs_info->cleaner_mutex);
3422
3423 down_write(&root->fs_info->cleanup_work_sem);
3424 up_write(&root->fs_info->cleanup_work_sem);
3425
3426 /* cleanup FS via transaction */
3427 btrfs_cleanup_transaction(root);
acce952b 3428}
3429
143bede5 3430static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3431{
3432 struct btrfs_inode *btrfs_inode;
3433 struct list_head splice;
3434
3435 INIT_LIST_HEAD(&splice);
3436
3437 mutex_lock(&root->fs_info->ordered_operations_mutex);
3438 spin_lock(&root->fs_info->ordered_extent_lock);
3439
3440 list_splice_init(&root->fs_info->ordered_operations, &splice);
3441 while (!list_empty(&splice)) {
3442 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3443 ordered_operations);
3444
3445 list_del_init(&btrfs_inode->ordered_operations);
3446
3447 btrfs_invalidate_inodes(btrfs_inode->root);
3448 }
3449
3450 spin_unlock(&root->fs_info->ordered_extent_lock);
3451 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3452}
3453
143bede5 3454static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3455{
3456 struct list_head splice;
3457 struct btrfs_ordered_extent *ordered;
3458 struct inode *inode;
3459
3460 INIT_LIST_HEAD(&splice);
3461
3462 spin_lock(&root->fs_info->ordered_extent_lock);
3463
3464 list_splice_init(&root->fs_info->ordered_extents, &splice);
3465 while (!list_empty(&splice)) {
3466 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3467 root_extent_list);
3468
3469 list_del_init(&ordered->root_extent_list);
3470 atomic_inc(&ordered->refs);
3471
3472 /* the inode may be getting freed (in sys_unlink path). */
3473 inode = igrab(ordered->inode);
3474
3475 spin_unlock(&root->fs_info->ordered_extent_lock);
3476 if (inode)
3477 iput(inode);
3478
3479 atomic_set(&ordered->refs, 1);
3480 btrfs_put_ordered_extent(ordered);
3481
3482 spin_lock(&root->fs_info->ordered_extent_lock);
3483 }
3484
3485 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3486}
3487
79787eaa
JM
3488int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3489 struct btrfs_root *root)
acce952b 3490{
3491 struct rb_node *node;
3492 struct btrfs_delayed_ref_root *delayed_refs;
3493 struct btrfs_delayed_ref_node *ref;
3494 int ret = 0;
3495
3496 delayed_refs = &trans->delayed_refs;
3497
3498 spin_lock(&delayed_refs->lock);
3499 if (delayed_refs->num_entries == 0) {
cfece4db 3500 spin_unlock(&delayed_refs->lock);
acce952b 3501 printk(KERN_INFO "delayed_refs has NO entry\n");
3502 return ret;
3503 }
3504
b939d1ab 3505 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3506 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3507
3508 atomic_set(&ref->refs, 1);
3509 if (btrfs_delayed_ref_is_head(ref)) {
3510 struct btrfs_delayed_ref_head *head;
3511
3512 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3513 if (!mutex_trylock(&head->mutex)) {
3514 atomic_inc(&ref->refs);
3515 spin_unlock(&delayed_refs->lock);
3516
3517 /* Need to wait for the delayed ref to run */
3518 mutex_lock(&head->mutex);
3519 mutex_unlock(&head->mutex);
3520 btrfs_put_delayed_ref(ref);
3521
e18fca73 3522 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3523 continue;
3524 }
3525
acce952b 3526 kfree(head->extent_op);
3527 delayed_refs->num_heads--;
3528 if (list_empty(&head->cluster))
3529 delayed_refs->num_heads_ready--;
3530 list_del_init(&head->cluster);
acce952b 3531 }
b939d1ab
JB
3532 ref->in_tree = 0;
3533 rb_erase(&ref->rb_node, &delayed_refs->root);
3534 delayed_refs->num_entries--;
3535
acce952b 3536 spin_unlock(&delayed_refs->lock);
3537 btrfs_put_delayed_ref(ref);
3538
3539 cond_resched();
3540 spin_lock(&delayed_refs->lock);
3541 }
3542
3543 spin_unlock(&delayed_refs->lock);
3544
3545 return ret;
3546}
3547
143bede5 3548static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3549{
3550 struct btrfs_pending_snapshot *snapshot;
3551 struct list_head splice;
3552
3553 INIT_LIST_HEAD(&splice);
3554
3555 list_splice_init(&t->pending_snapshots, &splice);
3556
3557 while (!list_empty(&splice)) {
3558 snapshot = list_entry(splice.next,
3559 struct btrfs_pending_snapshot,
3560 list);
3561
3562 list_del_init(&snapshot->list);
3563
3564 kfree(snapshot);
3565 }
acce952b 3566}
3567
143bede5 3568static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3569{
3570 struct btrfs_inode *btrfs_inode;
3571 struct list_head splice;
3572
3573 INIT_LIST_HEAD(&splice);
3574
acce952b 3575 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3576 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3577
3578 while (!list_empty(&splice)) {
3579 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3580 delalloc_inodes);
3581
3582 list_del_init(&btrfs_inode->delalloc_inodes);
3583
3584 btrfs_invalidate_inodes(btrfs_inode->root);
3585 }
3586
3587 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3588}
3589
3590static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3591 struct extent_io_tree *dirty_pages,
3592 int mark)
3593{
3594 int ret;
3595 struct page *page;
3596 struct inode *btree_inode = root->fs_info->btree_inode;
3597 struct extent_buffer *eb;
3598 u64 start = 0;
3599 u64 end;
3600 u64 offset;
3601 unsigned long index;
3602
3603 while (1) {
3604 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3605 mark);
3606 if (ret)
3607 break;
3608
3609 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3610 while (start <= end) {
3611 index = start >> PAGE_CACHE_SHIFT;
3612 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3613 page = find_get_page(btree_inode->i_mapping, index);
3614 if (!page)
3615 continue;
3616 offset = page_offset(page);
3617
3618 spin_lock(&dirty_pages->buffer_lock);
3619 eb = radix_tree_lookup(
3620 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3621 offset >> PAGE_CACHE_SHIFT);
3622 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3623 if (eb)
acce952b 3624 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3625 &eb->bflags);
acce952b 3626 if (PageWriteback(page))
3627 end_page_writeback(page);
3628
3629 lock_page(page);
3630 if (PageDirty(page)) {
3631 clear_page_dirty_for_io(page);
3632 spin_lock_irq(&page->mapping->tree_lock);
3633 radix_tree_tag_clear(&page->mapping->page_tree,
3634 page_index(page),
3635 PAGECACHE_TAG_DIRTY);
3636 spin_unlock_irq(&page->mapping->tree_lock);
3637 }
3638
acce952b 3639 unlock_page(page);
ee670f0a 3640 page_cache_release(page);
acce952b 3641 }
3642 }
3643
3644 return ret;
3645}
3646
3647static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3648 struct extent_io_tree *pinned_extents)
3649{
3650 struct extent_io_tree *unpin;
3651 u64 start;
3652 u64 end;
3653 int ret;
ed0eaa14 3654 bool loop = true;
acce952b 3655
3656 unpin = pinned_extents;
ed0eaa14 3657again:
acce952b 3658 while (1) {
3659 ret = find_first_extent_bit(unpin, 0, &start, &end,
3660 EXTENT_DIRTY);
3661 if (ret)
3662 break;
3663
3664 /* opt_discard */
5378e607
LD
3665 if (btrfs_test_opt(root, DISCARD))
3666 ret = btrfs_error_discard_extent(root, start,
3667 end + 1 - start,
3668 NULL);
acce952b 3669
3670 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3671 btrfs_error_unpin_extent_range(root, start, end);
3672 cond_resched();
3673 }
3674
ed0eaa14
LB
3675 if (loop) {
3676 if (unpin == &root->fs_info->freed_extents[0])
3677 unpin = &root->fs_info->freed_extents[1];
3678 else
3679 unpin = &root->fs_info->freed_extents[0];
3680 loop = false;
3681 goto again;
3682 }
3683
acce952b 3684 return 0;
3685}
3686
49b25e05
JM
3687void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3688 struct btrfs_root *root)
3689{
3690 btrfs_destroy_delayed_refs(cur_trans, root);
3691 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3692 cur_trans->dirty_pages.dirty_bytes);
3693
3694 /* FIXME: cleanup wait for commit */
3695 cur_trans->in_commit = 1;
3696 cur_trans->blocked = 1;
d7096fc3 3697 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3698
3699 cur_trans->blocked = 0;
d7096fc3 3700 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3701
3702 cur_trans->commit_done = 1;
d7096fc3 3703 wake_up(&cur_trans->commit_wait);
49b25e05 3704
67cde344
MX
3705 btrfs_destroy_delayed_inodes(root);
3706 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3707
3708 btrfs_destroy_pending_snapshots(cur_trans);
3709
3710 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3711 EXTENT_DIRTY);
6e841e32
LB
3712 btrfs_destroy_pinned_extent(root,
3713 root->fs_info->pinned_extents);
49b25e05
JM
3714
3715 /*
3716 memset(cur_trans, 0, sizeof(*cur_trans));
3717 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3718 */
3719}
3720
3721int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3722{
3723 struct btrfs_transaction *t;
3724 LIST_HEAD(list);
3725
acce952b 3726 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3727
a4abeea4 3728 spin_lock(&root->fs_info->trans_lock);
acce952b 3729 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3730 root->fs_info->trans_no_join = 1;
3731 spin_unlock(&root->fs_info->trans_lock);
3732
acce952b 3733 while (!list_empty(&list)) {
3734 t = list_entry(list.next, struct btrfs_transaction, list);
3735 if (!t)
3736 break;
3737
3738 btrfs_destroy_ordered_operations(root);
3739
3740 btrfs_destroy_ordered_extents(root);
3741
3742 btrfs_destroy_delayed_refs(t, root);
3743
3744 btrfs_block_rsv_release(root,
3745 &root->fs_info->trans_block_rsv,
3746 t->dirty_pages.dirty_bytes);
3747
3748 /* FIXME: cleanup wait for commit */
3749 t->in_commit = 1;
3750 t->blocked = 1;
66657b31 3751 smp_mb();
acce952b 3752 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3753 wake_up(&root->fs_info->transaction_blocked_wait);
3754
3755 t->blocked = 0;
66657b31 3756 smp_mb();
acce952b 3757 if (waitqueue_active(&root->fs_info->transaction_wait))
3758 wake_up(&root->fs_info->transaction_wait);
acce952b 3759
acce952b 3760 t->commit_done = 1;
66657b31 3761 smp_mb();
acce952b 3762 if (waitqueue_active(&t->commit_wait))
3763 wake_up(&t->commit_wait);
acce952b 3764
67cde344
MX
3765 btrfs_destroy_delayed_inodes(root);
3766 btrfs_assert_delayed_root_empty(root);
3767
acce952b 3768 btrfs_destroy_pending_snapshots(t);
3769
3770 btrfs_destroy_delalloc_inodes(root);
3771
a4abeea4 3772 spin_lock(&root->fs_info->trans_lock);
acce952b 3773 root->fs_info->running_transaction = NULL;
a4abeea4 3774 spin_unlock(&root->fs_info->trans_lock);
acce952b 3775
3776 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3777 EXTENT_DIRTY);
3778
3779 btrfs_destroy_pinned_extent(root,
3780 root->fs_info->pinned_extents);
3781
13c5a93e 3782 atomic_set(&t->use_count, 0);
acce952b 3783 list_del_init(&t->list);
3784 memset(t, 0, sizeof(*t));
3785 kmem_cache_free(btrfs_transaction_cachep, t);
3786 }
3787
a4abeea4
JB
3788 spin_lock(&root->fs_info->trans_lock);
3789 root->fs_info->trans_no_join = 0;
3790 spin_unlock(&root->fs_info->trans_lock);
acce952b 3791 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3792
3793 return 0;
3794}
3795
d1310b2e 3796static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3797 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3798 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3799 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3800 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3801 /* note we're sharing with inode.c for the merge bio hook */
3802 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3803};