btrfs: remove unused extent state bits
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68
CM
74/*
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
ce9adaa5
CM
79struct end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
22c59948 85 int metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
d352ac68
CM
90/*
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
94 */
44b8bd7e
CM
95struct async_submit_bio {
96 struct inode *inode;
97 struct bio *bio;
98 struct list_head list;
4a69a410
CM
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
101 int rw;
102 int mirror_num;
c8b97818 103 unsigned long bio_flags;
eaf25d93
CM
104 /*
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
107 */
108 u64 bio_offset;
8b712842 109 struct btrfs_work work;
79787eaa 110 int error;
44b8bd7e
CM
111};
112
85d4e461
CM
113/*
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
117 *
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
4008c04a 123 *
85d4e461
CM
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 127 *
85d4e461
CM
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 131 *
85d4e461
CM
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
4008c04a
CM
135 */
136#ifdef CONFIG_DEBUG_LOCK_ALLOC
137# if BTRFS_MAX_LEVEL != 8
138# error
139# endif
85d4e461
CM
140
141static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146} btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 153 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 157 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 158 { .id = 0, .name_stem = "tree" },
4008c04a 159};
85d4e461
CM
160
161void __init btrfs_init_lockdep(void)
162{
163 int i, j;
164
165 /* initialize lockdep class names */
166 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170 snprintf(ks->names[j], sizeof(ks->names[j]),
171 "btrfs-%s-%02d", ks->name_stem, j);
172 }
173}
174
175void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176 int level)
177{
178 struct btrfs_lockdep_keyset *ks;
179
180 BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182 /* find the matching keyset, id 0 is the default entry */
183 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184 if (ks->id == objectid)
185 break;
186
187 lockdep_set_class_and_name(&eb->lock,
188 &ks->keys[level], ks->names[level]);
189}
190
4008c04a
CM
191#endif
192
d352ac68
CM
193/*
194 * extents on the btree inode are pretty simple, there's one extent
195 * that covers the entire device
196 */
b2950863 197static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 198 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 199 int create)
7eccb903 200{
5f39d397
CM
201 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202 struct extent_map *em;
203 int ret;
204
890871be 205 read_lock(&em_tree->lock);
d1310b2e 206 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
207 if (em) {
208 em->bdev =
209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 210 read_unlock(&em_tree->lock);
5f39d397 211 goto out;
a061fc8d 212 }
890871be 213 read_unlock(&em_tree->lock);
7b13b7b1 214
172ddd60 215 em = alloc_extent_map();
5f39d397
CM
216 if (!em) {
217 em = ERR_PTR(-ENOMEM);
218 goto out;
219 }
220 em->start = 0;
0afbaf8c 221 em->len = (u64)-1;
c8b97818 222 em->block_len = (u64)-1;
5f39d397 223 em->block_start = 0;
a061fc8d 224 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 225
890871be 226 write_lock(&em_tree->lock);
09a2a8f9 227 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
228 if (ret == -EEXIST) {
229 free_extent_map(em);
7b13b7b1 230 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 231 if (!em)
0433f20d 232 em = ERR_PTR(-EIO);
5f39d397 233 } else if (ret) {
7b13b7b1 234 free_extent_map(em);
0433f20d 235 em = ERR_PTR(ret);
5f39d397 236 }
890871be 237 write_unlock(&em_tree->lock);
7b13b7b1 238
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
b0496686 243u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 244{
0b947aff 245 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc 278 cur_len = min(len, map_len - (offset - map_start));
b0496686 279 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
301 printk_ratelimited(KERN_INFO
302 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id, buf->start,
305 val, found, btrfs_header_level(buf));
607d432d
JB
306 if (result != (char *)&inline_result)
307 kfree(result);
19c00ddc
CM
308 return 1;
309 }
310 } else {
607d432d 311 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 312 }
607d432d
JB
313 if (result != (char *)&inline_result)
314 kfree(result);
19c00ddc
CM
315 return 0;
316}
317
d352ac68
CM
318/*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
1259ab75 324static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
325 struct extent_buffer *eb, u64 parent_transid,
326 int atomic)
1259ab75 327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75 329 int ret;
a26e8c9f
JB
330 bool need_lock = (current->journal_info ==
331 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
a26e8c9f
JB
339 if (need_lock) {
340 btrfs_tree_read_lock(eb);
341 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342 }
343
2ac55d41 344 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 345 0, &cached_state);
0b32f4bb 346 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
347 btrfs_header_generation(eb) == parent_transid) {
348 ret = 0;
349 goto out;
350 }
29549aec
WS
351 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352 eb->fs_info->sb->s_id, eb->start,
353 parent_transid, btrfs_header_generation(eb));
1259ab75 354 ret = 1;
a26e8c9f
JB
355
356 /*
357 * Things reading via commit roots that don't have normal protection,
358 * like send, can have a really old block in cache that may point at a
359 * block that has been free'd and re-allocated. So don't clear uptodate
360 * if we find an eb that is under IO (dirty/writeback) because we could
361 * end up reading in the stale data and then writing it back out and
362 * making everybody very sad.
363 */
364 if (!extent_buffer_under_io(eb))
365 clear_extent_buffer_uptodate(eb);
33958dc6 366out:
2ac55d41
JB
367 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 &cached_state, GFP_NOFS);
472b909f
JB
369 if (need_lock)
370 btrfs_tree_read_unlock_blocking(eb);
1259ab75 371 return ret;
1259ab75
CM
372}
373
1104a885
DS
374/*
375 * Return 0 if the superblock checksum type matches the checksum value of that
376 * algorithm. Pass the raw disk superblock data.
377 */
378static int btrfs_check_super_csum(char *raw_disk_sb)
379{
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
383 int ret = 0;
384
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 u32 crc = ~(u32)0;
387 const int csum_size = sizeof(crc);
388 char result[csum_size];
389
390 /*
391 * The super_block structure does not span the whole
392 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393 * is filled with zeros and is included in the checkum.
394 */
395 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397 btrfs_csum_final(crc, result);
398
399 if (memcmp(raw_disk_sb, result, csum_size))
400 ret = 1;
667e7d94
CM
401
402 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
403 printk(KERN_WARNING
404 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
405 ret = 0;
406 }
1104a885
DS
407 }
408
409 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 410 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
411 csum_type);
412 ret = 1;
413 }
414
415 return ret;
416}
417
d352ac68
CM
418/*
419 * helper to read a given tree block, doing retries as required when
420 * the checksums don't match and we have alternate mirrors to try.
421 */
f188591e
CM
422static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423 struct extent_buffer *eb,
ca7a79ad 424 u64 start, u64 parent_transid)
f188591e
CM
425{
426 struct extent_io_tree *io_tree;
ea466794 427 int failed = 0;
f188591e
CM
428 int ret;
429 int num_copies = 0;
430 int mirror_num = 0;
ea466794 431 int failed_mirror = 0;
f188591e 432
a826d6dc 433 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
434 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435 while (1) {
bb82ab88
AJ
436 ret = read_extent_buffer_pages(io_tree, eb, start,
437 WAIT_COMPLETE,
f188591e 438 btree_get_extent, mirror_num);
256dd1bb
SB
439 if (!ret) {
440 if (!verify_parent_transid(io_tree, eb,
b9fab919 441 parent_transid, 0))
256dd1bb
SB
442 break;
443 else
444 ret = -EIO;
445 }
d397712b 446
a826d6dc
JB
447 /*
448 * This buffer's crc is fine, but its contents are corrupted, so
449 * there is no reason to read the other copies, they won't be
450 * any less wrong.
451 */
452 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
453 break;
454
5d964051 455 num_copies = btrfs_num_copies(root->fs_info,
f188591e 456 eb->start, eb->len);
4235298e 457 if (num_copies == 1)
ea466794 458 break;
4235298e 459
5cf1ab56
JB
460 if (!failed_mirror) {
461 failed = 1;
462 failed_mirror = eb->read_mirror;
463 }
464
f188591e 465 mirror_num++;
ea466794
JB
466 if (mirror_num == failed_mirror)
467 mirror_num++;
468
4235298e 469 if (mirror_num > num_copies)
ea466794 470 break;
f188591e 471 }
ea466794 472
c0901581 473 if (failed && !ret && failed_mirror)
ea466794
JB
474 repair_eb_io_failure(root, eb, failed_mirror);
475
476 return ret;
f188591e 477}
19c00ddc 478
d352ac68 479/*
d397712b
CM
480 * checksum a dirty tree block before IO. This has extra checks to make sure
481 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 482 */
d397712b 483
b2950863 484static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 485{
4eee4fa4 486 u64 start = page_offset(page);
19c00ddc 487 u64 found_start;
19c00ddc 488 struct extent_buffer *eb;
f188591e 489
4f2de97a
JB
490 eb = (struct extent_buffer *)page->private;
491 if (page != eb->pages[0])
492 return 0;
19c00ddc 493 found_start = btrfs_header_bytenr(eb);
fae7f21c 494 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 495 return 0;
19c00ddc 496 csum_tree_block(root, eb, 0);
19c00ddc
CM
497 return 0;
498}
499
2b82032c
YZ
500static int check_tree_block_fsid(struct btrfs_root *root,
501 struct extent_buffer *eb)
502{
503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504 u8 fsid[BTRFS_UUID_SIZE];
505 int ret = 1;
506
0a4e5586 507 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
508 while (fs_devices) {
509 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510 ret = 0;
511 break;
512 }
513 fs_devices = fs_devices->seed;
514 }
515 return ret;
516}
517
a826d6dc 518#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
519 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
520 "root=%llu, slot=%d", reason, \
c1c9ff7c 521 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
522
523static noinline int check_leaf(struct btrfs_root *root,
524 struct extent_buffer *leaf)
525{
526 struct btrfs_key key;
527 struct btrfs_key leaf_key;
528 u32 nritems = btrfs_header_nritems(leaf);
529 int slot;
530
531 if (nritems == 0)
532 return 0;
533
534 /* Check the 0 item */
535 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536 BTRFS_LEAF_DATA_SIZE(root)) {
537 CORRUPT("invalid item offset size pair", leaf, root, 0);
538 return -EIO;
539 }
540
541 /*
542 * Check to make sure each items keys are in the correct order and their
543 * offsets make sense. We only have to loop through nritems-1 because
544 * we check the current slot against the next slot, which verifies the
545 * next slot's offset+size makes sense and that the current's slot
546 * offset is correct.
547 */
548 for (slot = 0; slot < nritems - 1; slot++) {
549 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552 /* Make sure the keys are in the right order */
553 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554 CORRUPT("bad key order", leaf, root, slot);
555 return -EIO;
556 }
557
558 /*
559 * Make sure the offset and ends are right, remember that the
560 * item data starts at the end of the leaf and grows towards the
561 * front.
562 */
563 if (btrfs_item_offset_nr(leaf, slot) !=
564 btrfs_item_end_nr(leaf, slot + 1)) {
565 CORRUPT("slot offset bad", leaf, root, slot);
566 return -EIO;
567 }
568
569 /*
570 * Check to make sure that we don't point outside of the leaf,
571 * just incase all the items are consistent to eachother, but
572 * all point outside of the leaf.
573 */
574 if (btrfs_item_end_nr(leaf, slot) >
575 BTRFS_LEAF_DATA_SIZE(root)) {
576 CORRUPT("slot end outside of leaf", leaf, root, slot);
577 return -EIO;
578 }
579 }
580
581 return 0;
582}
583
facc8a22
MX
584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
ce9adaa5 587{
ce9adaa5
CM
588 u64 found_start;
589 int found_level;
ce9adaa5
CM
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 592 int ret = 0;
727011e0 593 int reads_done;
ce9adaa5 594
ce9adaa5
CM
595 if (!page->private)
596 goto out;
d397712b 597
4f2de97a 598 eb = (struct extent_buffer *)page->private;
d397712b 599
0b32f4bb
JB
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
602 */
603 extent_buffer_get(eb);
604
605 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
606 if (!reads_done)
607 goto err;
f188591e 608
5cf1ab56 609 eb->read_mirror = mirror;
ea466794
JB
610 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611 ret = -EIO;
612 goto err;
613 }
614
ce9adaa5 615 found_start = btrfs_header_bytenr(eb);
727011e0 616 if (found_start != eb->start) {
29549aec 617 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
193f284d 618 "%llu %llu\n",
29549aec 619 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 620 ret = -EIO;
ce9adaa5
CM
621 goto err;
622 }
2b82032c 623 if (check_tree_block_fsid(root, eb)) {
29549aec
WS
624 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
626 ret = -EIO;
627 goto err;
628 }
ce9adaa5 629 found_level = btrfs_header_level(eb);
1c24c3ce 630 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 631 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
632 (int)btrfs_header_level(eb));
633 ret = -EIO;
634 goto err;
635 }
ce9adaa5 636
85d4e461
CM
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
4008c04a 639
ce9adaa5 640 ret = csum_tree_block(root, eb, 1);
a826d6dc 641 if (ret) {
f188591e 642 ret = -EIO;
a826d6dc
JB
643 goto err;
644 }
645
646 /*
647 * If this is a leaf block and it is corrupt, set the corrupt bit so
648 * that we don't try and read the other copies of this block, just
649 * return -EIO.
650 */
651 if (found_level == 0 && check_leaf(root, eb)) {
652 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653 ret = -EIO;
654 }
ce9adaa5 655
0b32f4bb
JB
656 if (!ret)
657 set_extent_buffer_uptodate(eb);
ce9adaa5 658err:
79fb65a1
JB
659 if (reads_done &&
660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 661 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 662
53b381b3
DW
663 if (ret) {
664 /*
665 * our io error hook is going to dec the io pages
666 * again, we have to make sure it has something
667 * to decrement
668 */
669 atomic_inc(&eb->io_pages);
0b32f4bb 670 clear_extent_buffer_uptodate(eb);
53b381b3 671 }
0b32f4bb 672 free_extent_buffer(eb);
ce9adaa5 673out:
f188591e 674 return ret;
ce9adaa5
CM
675}
676
ea466794 677static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 678{
4bb31e92
AJ
679 struct extent_buffer *eb;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
4f2de97a 682 eb = (struct extent_buffer *)page->private;
ea466794 683 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 684 eb->read_mirror = failed_mirror;
53b381b3 685 atomic_dec(&eb->io_pages);
ea466794 686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 687 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
688 return -EIO; /* we fixed nothing */
689}
690
ce9adaa5 691static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
692{
693 struct end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
9e0af237
LB
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
ce9adaa5 697
ce9adaa5 698 fs_info = end_io_wq->info;
ce9adaa5 699 end_io_wq->error = err;
d20f7043 700
7b6d91da 701 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
714 }
d20f7043 715 } else {
8b110e39
MX
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
726 } else {
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
729 }
d20f7043 730 }
9e0af237
LB
731
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
734}
735
0cb59c99
JB
736/*
737 * For the metadata arg you want
738 *
739 * 0 - if data
740 * 1 - if normal metadta
741 * 2 - if writing to the free space cache area
53b381b3 742 * 3 - raid parity work
0cb59c99 743 */
22c59948
CM
744int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
745 int metadata)
0b86a832 746{
ce9adaa5 747 struct end_io_wq *end_io_wq;
8b110e39 748
ce9adaa5
CM
749 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
750 if (!end_io_wq)
751 return -ENOMEM;
752
753 end_io_wq->private = bio->bi_private;
754 end_io_wq->end_io = bio->bi_end_io;
22c59948 755 end_io_wq->info = info;
ce9adaa5
CM
756 end_io_wq->error = 0;
757 end_io_wq->bio = bio;
22c59948 758 end_io_wq->metadata = metadata;
ce9adaa5
CM
759
760 bio->bi_private = end_io_wq;
761 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
762 return 0;
763}
764
b64a2851 765unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 766{
4854ddd0 767 unsigned long limit = min_t(unsigned long,
5cdc7ad3 768 info->thread_pool_size,
4854ddd0
CM
769 info->fs_devices->open_devices);
770 return 256 * limit;
771}
0986fe9e 772
4a69a410
CM
773static void run_one_async_start(struct btrfs_work *work)
774{
4a69a410 775 struct async_submit_bio *async;
79787eaa 776 int ret;
4a69a410
CM
777
778 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
779 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
780 async->mirror_num, async->bio_flags,
781 async->bio_offset);
782 if (ret)
783 async->error = ret;
4a69a410
CM
784}
785
786static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
787{
788 struct btrfs_fs_info *fs_info;
789 struct async_submit_bio *async;
4854ddd0 790 int limit;
8b712842
CM
791
792 async = container_of(work, struct async_submit_bio, work);
793 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 794
b64a2851 795 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
796 limit = limit * 2 / 3;
797
66657b31 798 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 799 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
800 wake_up(&fs_info->async_submit_wait);
801
79787eaa
JM
802 /* If an error occured we just want to clean up the bio and move on */
803 if (async->error) {
804 bio_endio(async->bio, async->error);
805 return;
806 }
807
4a69a410 808 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
809 async->mirror_num, async->bio_flags,
810 async->bio_offset);
4a69a410
CM
811}
812
813static void run_one_async_free(struct btrfs_work *work)
814{
815 struct async_submit_bio *async;
816
817 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
818 kfree(async);
819}
820
44b8bd7e
CM
821int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
822 int rw, struct bio *bio, int mirror_num,
c8b97818 823 unsigned long bio_flags,
eaf25d93 824 u64 bio_offset,
4a69a410
CM
825 extent_submit_bio_hook_t *submit_bio_start,
826 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
827{
828 struct async_submit_bio *async;
829
830 async = kmalloc(sizeof(*async), GFP_NOFS);
831 if (!async)
832 return -ENOMEM;
833
834 async->inode = inode;
835 async->rw = rw;
836 async->bio = bio;
837 async->mirror_num = mirror_num;
4a69a410
CM
838 async->submit_bio_start = submit_bio_start;
839 async->submit_bio_done = submit_bio_done;
840
9e0af237 841 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 842 run_one_async_done, run_one_async_free);
4a69a410 843
c8b97818 844 async->bio_flags = bio_flags;
eaf25d93 845 async->bio_offset = bio_offset;
8c8bee1d 846
79787eaa
JM
847 async->error = 0;
848
cb03c743 849 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 850
7b6d91da 851 if (rw & REQ_SYNC)
5cdc7ad3 852 btrfs_set_work_high_priority(&async->work);
d313d7a3 853
5cdc7ad3 854 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 855
d397712b 856 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
857 atomic_read(&fs_info->nr_async_submits)) {
858 wait_event(fs_info->async_submit_wait,
859 (atomic_read(&fs_info->nr_async_submits) == 0));
860 }
861
44b8bd7e
CM
862 return 0;
863}
864
ce3ed71a
CM
865static int btree_csum_one_bio(struct bio *bio)
866{
2c30c71b 867 struct bio_vec *bvec;
ce3ed71a 868 struct btrfs_root *root;
2c30c71b 869 int i, ret = 0;
ce3ed71a 870
2c30c71b 871 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 872 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
873 ret = csum_dirty_buffer(root, bvec->bv_page);
874 if (ret)
875 break;
ce3ed71a 876 }
2c30c71b 877
79787eaa 878 return ret;
ce3ed71a
CM
879}
880
4a69a410
CM
881static int __btree_submit_bio_start(struct inode *inode, int rw,
882 struct bio *bio, int mirror_num,
eaf25d93
CM
883 unsigned long bio_flags,
884 u64 bio_offset)
22c59948 885{
8b712842
CM
886 /*
887 * when we're called for a write, we're already in the async
5443be45 888 * submission context. Just jump into btrfs_map_bio
8b712842 889 */
79787eaa 890 return btree_csum_one_bio(bio);
4a69a410 891}
22c59948 892
4a69a410 893static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
894 int mirror_num, unsigned long bio_flags,
895 u64 bio_offset)
4a69a410 896{
61891923
SB
897 int ret;
898
8b712842 899 /*
4a69a410
CM
900 * when we're called for a write, we're already in the async
901 * submission context. Just jump into btrfs_map_bio
8b712842 902 */
61891923
SB
903 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
904 if (ret)
905 bio_endio(bio, ret);
906 return ret;
0b86a832
CM
907}
908
de0022b9
JB
909static int check_async_write(struct inode *inode, unsigned long bio_flags)
910{
911 if (bio_flags & EXTENT_BIO_TREE_LOG)
912 return 0;
913#ifdef CONFIG_X86
914 if (cpu_has_xmm4_2)
915 return 0;
916#endif
917 return 1;
918}
919
44b8bd7e 920static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
921 int mirror_num, unsigned long bio_flags,
922 u64 bio_offset)
44b8bd7e 923{
de0022b9 924 int async = check_async_write(inode, bio_flags);
cad321ad
CM
925 int ret;
926
7b6d91da 927 if (!(rw & REQ_WRITE)) {
4a69a410
CM
928 /*
929 * called for a read, do the setup so that checksum validation
930 * can happen in the async kernel threads
931 */
f3f266ab
CM
932 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
933 bio, 1);
1d4284bd 934 if (ret)
61891923
SB
935 goto out_w_error;
936 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
937 mirror_num, 0);
de0022b9
JB
938 } else if (!async) {
939 ret = btree_csum_one_bio(bio);
940 if (ret)
61891923
SB
941 goto out_w_error;
942 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
943 mirror_num, 0);
944 } else {
945 /*
946 * kthread helpers are used to submit writes so that
947 * checksumming can happen in parallel across all CPUs
948 */
949 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
950 inode, rw, bio, mirror_num, 0,
951 bio_offset,
952 __btree_submit_bio_start,
953 __btree_submit_bio_done);
44b8bd7e 954 }
d313d7a3 955
61891923
SB
956 if (ret) {
957out_w_error:
958 bio_endio(bio, ret);
959 }
960 return ret;
44b8bd7e
CM
961}
962
3dd1462e 963#ifdef CONFIG_MIGRATION
784b4e29 964static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
965 struct page *newpage, struct page *page,
966 enum migrate_mode mode)
784b4e29
CM
967{
968 /*
969 * we can't safely write a btree page from here,
970 * we haven't done the locking hook
971 */
972 if (PageDirty(page))
973 return -EAGAIN;
974 /*
975 * Buffers may be managed in a filesystem specific way.
976 * We must have no buffers or drop them.
977 */
978 if (page_has_private(page) &&
979 !try_to_release_page(page, GFP_KERNEL))
980 return -EAGAIN;
a6bc32b8 981 return migrate_page(mapping, newpage, page, mode);
784b4e29 982}
3dd1462e 983#endif
784b4e29 984
0da5468f
CM
985
986static int btree_writepages(struct address_space *mapping,
987 struct writeback_control *wbc)
988{
e2d84521
MX
989 struct btrfs_fs_info *fs_info;
990 int ret;
991
d8d5f3e1 992 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
993
994 if (wbc->for_kupdate)
995 return 0;
996
e2d84521 997 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 998 /* this is a bit racy, but that's ok */
e2d84521
MX
999 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000 BTRFS_DIRTY_METADATA_THRESH);
1001 if (ret < 0)
793955bc 1002 return 0;
793955bc 1003 }
0b32f4bb 1004 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1005}
1006
b2950863 1007static int btree_readpage(struct file *file, struct page *page)
5f39d397 1008{
d1310b2e
CM
1009 struct extent_io_tree *tree;
1010 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1011 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1012}
22b0ebda 1013
70dec807 1014static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1015{
98509cfc 1016 if (PageWriteback(page) || PageDirty(page))
d397712b 1017 return 0;
0c4e538b 1018
f7a52a40 1019 return try_release_extent_buffer(page);
d98237b3
CM
1020}
1021
d47992f8
LC
1022static void btree_invalidatepage(struct page *page, unsigned int offset,
1023 unsigned int length)
d98237b3 1024{
d1310b2e
CM
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1027 extent_invalidatepage(tree, page, offset);
1028 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1029 if (PagePrivate(page)) {
efe120a0
FH
1030 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1031 "page private not zero on page %llu",
1032 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1033 ClearPagePrivate(page);
1034 set_page_private(page, 0);
1035 page_cache_release(page);
1036 }
d98237b3
CM
1037}
1038
0b32f4bb
JB
1039static int btree_set_page_dirty(struct page *page)
1040{
bb146eb2 1041#ifdef DEBUG
0b32f4bb
JB
1042 struct extent_buffer *eb;
1043
1044 BUG_ON(!PagePrivate(page));
1045 eb = (struct extent_buffer *)page->private;
1046 BUG_ON(!eb);
1047 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1048 BUG_ON(!atomic_read(&eb->refs));
1049 btrfs_assert_tree_locked(eb);
bb146eb2 1050#endif
0b32f4bb
JB
1051 return __set_page_dirty_nobuffers(page);
1052}
1053
7f09410b 1054static const struct address_space_operations btree_aops = {
d98237b3 1055 .readpage = btree_readpage,
0da5468f 1056 .writepages = btree_writepages,
5f39d397
CM
1057 .releasepage = btree_releasepage,
1058 .invalidatepage = btree_invalidatepage,
5a92bc88 1059#ifdef CONFIG_MIGRATION
784b4e29 1060 .migratepage = btree_migratepage,
5a92bc88 1061#endif
0b32f4bb 1062 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1063};
1064
ca7a79ad
CM
1065int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1066 u64 parent_transid)
090d1875 1067{
5f39d397
CM
1068 struct extent_buffer *buf = NULL;
1069 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1070 int ret = 0;
090d1875 1071
db94535d 1072 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1073 if (!buf)
090d1875 1074 return 0;
d1310b2e 1075 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1076 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1077 free_extent_buffer(buf);
de428b63 1078 return ret;
090d1875
CM
1079}
1080
ab0fff03
AJ
1081int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1082 int mirror_num, struct extent_buffer **eb)
1083{
1084 struct extent_buffer *buf = NULL;
1085 struct inode *btree_inode = root->fs_info->btree_inode;
1086 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1087 int ret;
1088
1089 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1090 if (!buf)
1091 return 0;
1092
1093 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1094
1095 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1096 btree_get_extent, mirror_num);
1097 if (ret) {
1098 free_extent_buffer(buf);
1099 return ret;
1100 }
1101
1102 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1103 free_extent_buffer(buf);
1104 return -EIO;
0b32f4bb 1105 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1106 *eb = buf;
1107 } else {
1108 free_extent_buffer(buf);
1109 }
1110 return 0;
1111}
1112
0999df54
CM
1113struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1114 u64 bytenr, u32 blocksize)
1115{
f28491e0 1116 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1117}
1118
1119struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1120 u64 bytenr, u32 blocksize)
1121{
faa2dbf0
JB
1122#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1123 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1124 return alloc_test_extent_buffer(root->fs_info, bytenr,
1125 blocksize);
1126#endif
f28491e0 1127 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1128}
1129
1130
e02119d5
CM
1131int btrfs_write_tree_block(struct extent_buffer *buf)
1132{
727011e0 1133 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1134 buf->start + buf->len - 1);
e02119d5
CM
1135}
1136
1137int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1138{
727011e0 1139 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1140 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1141}
1142
0999df54 1143struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1144 u32 blocksize, u64 parent_transid)
0999df54
CM
1145{
1146 struct extent_buffer *buf = NULL;
0999df54
CM
1147 int ret;
1148
0999df54
CM
1149 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1150 if (!buf)
1151 return NULL;
0999df54 1152
ca7a79ad 1153 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1154 if (ret) {
1155 free_extent_buffer(buf);
1156 return NULL;
1157 }
5f39d397 1158 return buf;
ce9adaa5 1159
eb60ceac
CM
1160}
1161
d5c13f92
JM
1162void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1163 struct extent_buffer *buf)
ed2ff2cb 1164{
e2d84521
MX
1165 struct btrfs_fs_info *fs_info = root->fs_info;
1166
55c69072 1167 if (btrfs_header_generation(buf) ==
e2d84521 1168 fs_info->running_transaction->transid) {
b9447ef8 1169 btrfs_assert_tree_locked(buf);
b4ce94de 1170
b9473439 1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 -buf->len,
1174 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 btrfs_set_lock_blocking(buf);
1177 clear_extent_buffer_dirty(buf);
1178 }
925baedd 1179 }
5f39d397
CM
1180}
1181
8257b2dc
MX
1182static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183{
1184 struct btrfs_subvolume_writers *writers;
1185 int ret;
1186
1187 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 if (!writers)
1189 return ERR_PTR(-ENOMEM);
1190
1191 ret = percpu_counter_init(&writers->counter, 0);
1192 if (ret < 0) {
1193 kfree(writers);
1194 return ERR_PTR(ret);
1195 }
1196
1197 init_waitqueue_head(&writers->wait);
1198 return writers;
1199}
1200
1201static void
1202btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203{
1204 percpu_counter_destroy(&writers->counter);
1205 kfree(writers);
1206}
1207
707e8a07
DS
1208static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1210 u64 objectid)
d97e63b6 1211{
cfaa7295 1212 root->node = NULL;
a28ec197 1213 root->commit_root = NULL;
db94535d
CM
1214 root->sectorsize = sectorsize;
1215 root->nodesize = nodesize;
87ee04eb 1216 root->stripesize = stripesize;
27cdeb70 1217 root->state = 0;
d68fc57b 1218 root->orphan_cleanup_state = 0;
0b86a832 1219
0f7d52f4
CM
1220 root->objectid = objectid;
1221 root->last_trans = 0;
13a8a7c8 1222 root->highest_objectid = 0;
eb73c1b7 1223 root->nr_delalloc_inodes = 0;
199c2a9c 1224 root->nr_ordered_extents = 0;
58176a96 1225 root->name = NULL;
6bef4d31 1226 root->inode_tree = RB_ROOT;
16cdcec7 1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1228 root->block_rsv = NULL;
d68fc57b 1229 root->orphan_block_rsv = NULL;
0b86a832
CM
1230
1231 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1232 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1233 INIT_LIST_HEAD(&root->delalloc_inodes);
1234 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1235 INIT_LIST_HEAD(&root->ordered_extents);
1236 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1237 INIT_LIST_HEAD(&root->logged_list[0]);
1238 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1239 spin_lock_init(&root->orphan_lock);
5d4f98a2 1240 spin_lock_init(&root->inode_lock);
eb73c1b7 1241 spin_lock_init(&root->delalloc_lock);
199c2a9c 1242 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1243 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1244 spin_lock_init(&root->log_extents_lock[0]);
1245 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1246 mutex_init(&root->objectid_mutex);
e02119d5 1247 mutex_init(&root->log_mutex);
31f3d255 1248 mutex_init(&root->ordered_extent_mutex);
573bfb72 1249 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1250 init_waitqueue_head(&root->log_writer_wait);
1251 init_waitqueue_head(&root->log_commit_wait[0]);
1252 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1253 INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1255 atomic_set(&root->log_commit[0], 0);
1256 atomic_set(&root->log_commit[1], 0);
1257 atomic_set(&root->log_writers, 0);
2ecb7923 1258 atomic_set(&root->log_batch, 0);
8a35d95f 1259 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1260 atomic_set(&root->refs, 1);
8257b2dc 1261 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1262 root->log_transid = 0;
d1433deb 1263 root->log_transid_committed = -1;
257c62e1 1264 root->last_log_commit = 0;
06ea65a3
JB
1265 if (fs_info)
1266 extent_io_tree_init(&root->dirty_log_pages,
1267 fs_info->btree_inode->i_mapping);
017e5369 1268
3768f368
CM
1269 memset(&root->root_key, 0, sizeof(root->root_key));
1270 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1272 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1273 if (fs_info)
1274 root->defrag_trans_start = fs_info->generation;
1275 else
1276 root->defrag_trans_start = 0;
58176a96 1277 init_completion(&root->kobj_unregister);
4d775673 1278 root->root_key.objectid = objectid;
0ee5dc67 1279 root->anon_dev = 0;
8ea05e3a 1280
5f3ab90a 1281 spin_lock_init(&root->root_item_lock);
3768f368
CM
1282}
1283
f84a8bd6 1284static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1285{
1286 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1287 if (root)
1288 root->fs_info = fs_info;
1289 return root;
1290}
1291
06ea65a3
JB
1292#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1293/* Should only be used by the testing infrastructure */
1294struct btrfs_root *btrfs_alloc_dummy_root(void)
1295{
1296 struct btrfs_root *root;
1297
1298 root = btrfs_alloc_root(NULL);
1299 if (!root)
1300 return ERR_PTR(-ENOMEM);
707e8a07 1301 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1302 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1303 root->alloc_bytenr = 0;
06ea65a3
JB
1304
1305 return root;
1306}
1307#endif
1308
20897f5c
AJ
1309struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_fs_info *fs_info,
1311 u64 objectid)
1312{
1313 struct extent_buffer *leaf;
1314 struct btrfs_root *tree_root = fs_info->tree_root;
1315 struct btrfs_root *root;
1316 struct btrfs_key key;
1317 int ret = 0;
6463fe58 1318 uuid_le uuid;
20897f5c
AJ
1319
1320 root = btrfs_alloc_root(fs_info);
1321 if (!root)
1322 return ERR_PTR(-ENOMEM);
1323
707e8a07
DS
1324 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1325 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1326 root->root_key.objectid = objectid;
1327 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1328 root->root_key.offset = 0;
1329
707e8a07 1330 leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
20897f5c
AJ
1331 0, objectid, NULL, 0, 0, 0);
1332 if (IS_ERR(leaf)) {
1333 ret = PTR_ERR(leaf);
1dd05682 1334 leaf = NULL;
20897f5c
AJ
1335 goto fail;
1336 }
1337
20897f5c
AJ
1338 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339 btrfs_set_header_bytenr(leaf, leaf->start);
1340 btrfs_set_header_generation(leaf, trans->transid);
1341 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342 btrfs_set_header_owner(leaf, objectid);
1343 root->node = leaf;
1344
0a4e5586 1345 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1346 BTRFS_FSID_SIZE);
1347 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1348 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1349 BTRFS_UUID_SIZE);
1350 btrfs_mark_buffer_dirty(leaf);
1351
1352 root->commit_root = btrfs_root_node(root);
27cdeb70 1353 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1354
1355 root->root_item.flags = 0;
1356 root->root_item.byte_limit = 0;
1357 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1358 btrfs_set_root_generation(&root->root_item, trans->transid);
1359 btrfs_set_root_level(&root->root_item, 0);
1360 btrfs_set_root_refs(&root->root_item, 1);
1361 btrfs_set_root_used(&root->root_item, leaf->len);
1362 btrfs_set_root_last_snapshot(&root->root_item, 0);
1363 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1364 uuid_le_gen(&uuid);
1365 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1366 root->root_item.drop_level = 0;
1367
1368 key.objectid = objectid;
1369 key.type = BTRFS_ROOT_ITEM_KEY;
1370 key.offset = 0;
1371 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1372 if (ret)
1373 goto fail;
1374
1375 btrfs_tree_unlock(leaf);
1376
1dd05682
TI
1377 return root;
1378
20897f5c 1379fail:
1dd05682
TI
1380 if (leaf) {
1381 btrfs_tree_unlock(leaf);
59885b39 1382 free_extent_buffer(root->commit_root);
1dd05682
TI
1383 free_extent_buffer(leaf);
1384 }
1385 kfree(root);
20897f5c 1386
1dd05682 1387 return ERR_PTR(ret);
20897f5c
AJ
1388}
1389
7237f183
YZ
1390static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1391 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1392{
1393 struct btrfs_root *root;
1394 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1395 struct extent_buffer *leaf;
e02119d5 1396
6f07e42e 1397 root = btrfs_alloc_root(fs_info);
e02119d5 1398 if (!root)
7237f183 1399 return ERR_PTR(-ENOMEM);
e02119d5 1400
707e8a07
DS
1401 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1402 tree_root->stripesize, root, fs_info,
1403 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1404
1405 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1406 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1407 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1408
7237f183 1409 /*
27cdeb70
MX
1410 * DON'T set REF_COWS for log trees
1411 *
7237f183
YZ
1412 * log trees do not get reference counted because they go away
1413 * before a real commit is actually done. They do store pointers
1414 * to file data extents, and those reference counts still get
1415 * updated (along with back refs to the log tree).
1416 */
e02119d5 1417
707e8a07 1418 leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
66d7e7f0 1419 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1420 0, 0, 0);
7237f183
YZ
1421 if (IS_ERR(leaf)) {
1422 kfree(root);
1423 return ERR_CAST(leaf);
1424 }
e02119d5 1425
5d4f98a2
YZ
1426 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1427 btrfs_set_header_bytenr(leaf, leaf->start);
1428 btrfs_set_header_generation(leaf, trans->transid);
1429 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1430 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1431 root->node = leaf;
e02119d5
CM
1432
1433 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1434 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1435 btrfs_mark_buffer_dirty(root->node);
1436 btrfs_tree_unlock(root->node);
7237f183
YZ
1437 return root;
1438}
1439
1440int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1441 struct btrfs_fs_info *fs_info)
1442{
1443 struct btrfs_root *log_root;
1444
1445 log_root = alloc_log_tree(trans, fs_info);
1446 if (IS_ERR(log_root))
1447 return PTR_ERR(log_root);
1448 WARN_ON(fs_info->log_root_tree);
1449 fs_info->log_root_tree = log_root;
1450 return 0;
1451}
1452
1453int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1454 struct btrfs_root *root)
1455{
1456 struct btrfs_root *log_root;
1457 struct btrfs_inode_item *inode_item;
1458
1459 log_root = alloc_log_tree(trans, root->fs_info);
1460 if (IS_ERR(log_root))
1461 return PTR_ERR(log_root);
1462
1463 log_root->last_trans = trans->transid;
1464 log_root->root_key.offset = root->root_key.objectid;
1465
1466 inode_item = &log_root->root_item.inode;
3cae210f
QW
1467 btrfs_set_stack_inode_generation(inode_item, 1);
1468 btrfs_set_stack_inode_size(inode_item, 3);
1469 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1470 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1471 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1472
5d4f98a2 1473 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1474
1475 WARN_ON(root->log_root);
1476 root->log_root = log_root;
1477 root->log_transid = 0;
d1433deb 1478 root->log_transid_committed = -1;
257c62e1 1479 root->last_log_commit = 0;
e02119d5
CM
1480 return 0;
1481}
1482
35a3621b
SB
1483static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1484 struct btrfs_key *key)
e02119d5
CM
1485{
1486 struct btrfs_root *root;
1487 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1488 struct btrfs_path *path;
84234f3a 1489 u64 generation;
db94535d 1490 u32 blocksize;
cb517eab 1491 int ret;
0f7d52f4 1492
cb517eab
MX
1493 path = btrfs_alloc_path();
1494 if (!path)
0f7d52f4 1495 return ERR_PTR(-ENOMEM);
cb517eab
MX
1496
1497 root = btrfs_alloc_root(fs_info);
1498 if (!root) {
1499 ret = -ENOMEM;
1500 goto alloc_fail;
0f7d52f4
CM
1501 }
1502
707e8a07
DS
1503 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1504 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1505
cb517eab
MX
1506 ret = btrfs_find_root(tree_root, key, path,
1507 &root->root_item, &root->root_key);
0f7d52f4 1508 if (ret) {
13a8a7c8
YZ
1509 if (ret > 0)
1510 ret = -ENOENT;
cb517eab 1511 goto find_fail;
0f7d52f4 1512 }
13a8a7c8 1513
84234f3a 1514 generation = btrfs_root_generation(&root->root_item);
707e8a07 1515 blocksize = root->nodesize;
db94535d 1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1517 blocksize, generation);
cb517eab
MX
1518 if (!root->node) {
1519 ret = -ENOMEM;
1520 goto find_fail;
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 ret = -EIO;
1523 goto read_fail;
416bc658 1524 }
5d4f98a2 1525 root->commit_root = btrfs_root_node(root);
13a8a7c8 1526out:
cb517eab
MX
1527 btrfs_free_path(path);
1528 return root;
1529
1530read_fail:
1531 free_extent_buffer(root->node);
1532find_fail:
1533 kfree(root);
1534alloc_fail:
1535 root = ERR_PTR(ret);
1536 goto out;
1537}
1538
1539struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1540 struct btrfs_key *location)
1541{
1542 struct btrfs_root *root;
1543
1544 root = btrfs_read_tree_root(tree_root, location);
1545 if (IS_ERR(root))
1546 return root;
1547
1548 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1549 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1550 btrfs_check_and_init_root_item(&root->root_item);
1551 }
13a8a7c8 1552
5eda7b5e
CM
1553 return root;
1554}
1555
cb517eab
MX
1556int btrfs_init_fs_root(struct btrfs_root *root)
1557{
1558 int ret;
8257b2dc 1559 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1560
1561 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1562 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1563 GFP_NOFS);
1564 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1565 ret = -ENOMEM;
1566 goto fail;
1567 }
1568
8257b2dc
MX
1569 writers = btrfs_alloc_subvolume_writers();
1570 if (IS_ERR(writers)) {
1571 ret = PTR_ERR(writers);
1572 goto fail;
1573 }
1574 root->subv_writers = writers;
1575
cb517eab 1576 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1577 spin_lock_init(&root->ino_cache_lock);
1578 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1579
1580 ret = get_anon_bdev(&root->anon_dev);
1581 if (ret)
8257b2dc 1582 goto free_writers;
cb517eab 1583 return 0;
8257b2dc
MX
1584
1585free_writers:
1586 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1587fail:
1588 kfree(root->free_ino_ctl);
1589 kfree(root->free_ino_pinned);
1590 return ret;
1591}
1592
171170c1
ST
1593static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1594 u64 root_id)
cb517eab
MX
1595{
1596 struct btrfs_root *root;
1597
1598 spin_lock(&fs_info->fs_roots_radix_lock);
1599 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1600 (unsigned long)root_id);
1601 spin_unlock(&fs_info->fs_roots_radix_lock);
1602 return root;
1603}
1604
1605int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1606 struct btrfs_root *root)
1607{
1608 int ret;
1609
1610 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1611 if (ret)
1612 return ret;
1613
1614 spin_lock(&fs_info->fs_roots_radix_lock);
1615 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1616 (unsigned long)root->root_key.objectid,
1617 root);
1618 if (ret == 0)
27cdeb70 1619 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1620 spin_unlock(&fs_info->fs_roots_radix_lock);
1621 radix_tree_preload_end();
1622
1623 return ret;
1624}
1625
c00869f1
MX
1626struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627 struct btrfs_key *location,
1628 bool check_ref)
5eda7b5e
CM
1629{
1630 struct btrfs_root *root;
1631 int ret;
1632
edbd8d4e
CM
1633 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1634 return fs_info->tree_root;
1635 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1636 return fs_info->extent_root;
8f18cf13
CM
1637 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1638 return fs_info->chunk_root;
1639 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1640 return fs_info->dev_root;
0403e47e
YZ
1641 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1642 return fs_info->csum_root;
bcef60f2
AJ
1643 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1644 return fs_info->quota_root ? fs_info->quota_root :
1645 ERR_PTR(-ENOENT);
f7a81ea4
SB
1646 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1647 return fs_info->uuid_root ? fs_info->uuid_root :
1648 ERR_PTR(-ENOENT);
4df27c4d 1649again:
cb517eab 1650 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1651 if (root) {
c00869f1 1652 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1653 return ERR_PTR(-ENOENT);
5eda7b5e 1654 return root;
48475471 1655 }
5eda7b5e 1656
cb517eab 1657 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1658 if (IS_ERR(root))
1659 return root;
3394e160 1660
c00869f1 1661 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1662 ret = -ENOENT;
581bb050 1663 goto fail;
35a30d7c 1664 }
581bb050 1665
cb517eab 1666 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1667 if (ret)
1668 goto fail;
3394e160 1669
3f870c28
KN
1670 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1671 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1672 if (ret < 0)
1673 goto fail;
1674 if (ret == 0)
27cdeb70 1675 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1676
cb517eab 1677 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1678 if (ret) {
4df27c4d
YZ
1679 if (ret == -EEXIST) {
1680 free_fs_root(root);
1681 goto again;
1682 }
1683 goto fail;
0f7d52f4 1684 }
edbd8d4e 1685 return root;
4df27c4d
YZ
1686fail:
1687 free_fs_root(root);
1688 return ERR_PTR(ret);
edbd8d4e
CM
1689}
1690
04160088
CM
1691static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1692{
1693 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1694 int ret = 0;
04160088
CM
1695 struct btrfs_device *device;
1696 struct backing_dev_info *bdi;
b7967db7 1697
1f78160c
XG
1698 rcu_read_lock();
1699 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1700 if (!device->bdev)
1701 continue;
04160088
CM
1702 bdi = blk_get_backing_dev_info(device->bdev);
1703 if (bdi && bdi_congested(bdi, bdi_bits)) {
1704 ret = 1;
1705 break;
1706 }
1707 }
1f78160c 1708 rcu_read_unlock();
04160088
CM
1709 return ret;
1710}
1711
04160088
CM
1712static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1713{
ad081f14
JA
1714 int err;
1715
1716 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1717 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1718 if (err)
1719 return err;
1720
4575c9cc 1721 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1722 bdi->congested_fn = btrfs_congested_fn;
1723 bdi->congested_data = info;
1724 return 0;
1725}
1726
8b712842
CM
1727/*
1728 * called by the kthread helper functions to finally call the bio end_io
1729 * functions. This is where read checksum verification actually happens
1730 */
1731static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1732{
ce9adaa5 1733 struct bio *bio;
8b712842 1734 struct end_io_wq *end_io_wq;
ce9adaa5 1735 int error;
ce9adaa5 1736
8b712842
CM
1737 end_io_wq = container_of(work, struct end_io_wq, work);
1738 bio = end_io_wq->bio;
ce9adaa5 1739
8b712842
CM
1740 error = end_io_wq->error;
1741 bio->bi_private = end_io_wq->private;
1742 bio->bi_end_io = end_io_wq->end_io;
1743 kfree(end_io_wq);
bc1e79ac 1744 bio_endio_nodec(bio, error);
44b8bd7e
CM
1745}
1746
a74a4b97
CM
1747static int cleaner_kthread(void *arg)
1748{
1749 struct btrfs_root *root = arg;
d0278245 1750 int again;
a74a4b97
CM
1751
1752 do {
d0278245 1753 again = 0;
a74a4b97 1754
d0278245 1755 /* Make the cleaner go to sleep early. */
babbf170 1756 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1757 goto sleep;
1758
1759 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1760 goto sleep;
1761
dc7f370c
MX
1762 /*
1763 * Avoid the problem that we change the status of the fs
1764 * during the above check and trylock.
1765 */
babbf170 1766 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1767 mutex_unlock(&root->fs_info->cleaner_mutex);
1768 goto sleep;
76dda93c 1769 }
a74a4b97 1770
d0278245 1771 btrfs_run_delayed_iputs(root);
47ab2a6c 1772 btrfs_delete_unused_bgs(root->fs_info);
d0278245
MX
1773 again = btrfs_clean_one_deleted_snapshot(root);
1774 mutex_unlock(&root->fs_info->cleaner_mutex);
1775
1776 /*
05323cd1
MX
1777 * The defragger has dealt with the R/O remount and umount,
1778 * needn't do anything special here.
d0278245
MX
1779 */
1780 btrfs_run_defrag_inodes(root->fs_info);
1781sleep:
9d1a2a3a 1782 if (!try_to_freeze() && !again) {
a74a4b97 1783 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1784 if (!kthread_should_stop())
1785 schedule();
a74a4b97
CM
1786 __set_current_state(TASK_RUNNING);
1787 }
1788 } while (!kthread_should_stop());
1789 return 0;
1790}
1791
1792static int transaction_kthread(void *arg)
1793{
1794 struct btrfs_root *root = arg;
1795 struct btrfs_trans_handle *trans;
1796 struct btrfs_transaction *cur;
8929ecfa 1797 u64 transid;
a74a4b97
CM
1798 unsigned long now;
1799 unsigned long delay;
914b2007 1800 bool cannot_commit;
a74a4b97
CM
1801
1802 do {
914b2007 1803 cannot_commit = false;
8b87dc17 1804 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1805 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1806
a4abeea4 1807 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1808 cur = root->fs_info->running_transaction;
1809 if (!cur) {
a4abeea4 1810 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1811 goto sleep;
1812 }
31153d81 1813
a74a4b97 1814 now = get_seconds();
4a9d8bde 1815 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1816 (now < cur->start_time ||
1817 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1818 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1819 delay = HZ * 5;
1820 goto sleep;
1821 }
8929ecfa 1822 transid = cur->transid;
a4abeea4 1823 spin_unlock(&root->fs_info->trans_lock);
56bec294 1824
79787eaa 1825 /* If the file system is aborted, this will always fail. */
354aa0fb 1826 trans = btrfs_attach_transaction(root);
914b2007 1827 if (IS_ERR(trans)) {
354aa0fb
MX
1828 if (PTR_ERR(trans) != -ENOENT)
1829 cannot_commit = true;
79787eaa 1830 goto sleep;
914b2007 1831 }
8929ecfa 1832 if (transid == trans->transid) {
79787eaa 1833 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1834 } else {
1835 btrfs_end_transaction(trans, root);
1836 }
a74a4b97
CM
1837sleep:
1838 wake_up_process(root->fs_info->cleaner_kthread);
1839 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1840
4e121c06
JB
1841 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1842 &root->fs_info->fs_state)))
1843 btrfs_cleanup_transaction(root);
a0acae0e 1844 if (!try_to_freeze()) {
a74a4b97 1845 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1846 if (!kthread_should_stop() &&
914b2007
JK
1847 (!btrfs_transaction_blocked(root->fs_info) ||
1848 cannot_commit))
8929ecfa 1849 schedule_timeout(delay);
a74a4b97
CM
1850 __set_current_state(TASK_RUNNING);
1851 }
1852 } while (!kthread_should_stop());
1853 return 0;
1854}
1855
af31f5e5
CM
1856/*
1857 * this will find the highest generation in the array of
1858 * root backups. The index of the highest array is returned,
1859 * or -1 if we can't find anything.
1860 *
1861 * We check to make sure the array is valid by comparing the
1862 * generation of the latest root in the array with the generation
1863 * in the super block. If they don't match we pitch it.
1864 */
1865static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1866{
1867 u64 cur;
1868 int newest_index = -1;
1869 struct btrfs_root_backup *root_backup;
1870 int i;
1871
1872 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1873 root_backup = info->super_copy->super_roots + i;
1874 cur = btrfs_backup_tree_root_gen(root_backup);
1875 if (cur == newest_gen)
1876 newest_index = i;
1877 }
1878
1879 /* check to see if we actually wrapped around */
1880 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1881 root_backup = info->super_copy->super_roots;
1882 cur = btrfs_backup_tree_root_gen(root_backup);
1883 if (cur == newest_gen)
1884 newest_index = 0;
1885 }
1886 return newest_index;
1887}
1888
1889
1890/*
1891 * find the oldest backup so we know where to store new entries
1892 * in the backup array. This will set the backup_root_index
1893 * field in the fs_info struct
1894 */
1895static void find_oldest_super_backup(struct btrfs_fs_info *info,
1896 u64 newest_gen)
1897{
1898 int newest_index = -1;
1899
1900 newest_index = find_newest_super_backup(info, newest_gen);
1901 /* if there was garbage in there, just move along */
1902 if (newest_index == -1) {
1903 info->backup_root_index = 0;
1904 } else {
1905 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1906 }
1907}
1908
1909/*
1910 * copy all the root pointers into the super backup array.
1911 * this will bump the backup pointer by one when it is
1912 * done
1913 */
1914static void backup_super_roots(struct btrfs_fs_info *info)
1915{
1916 int next_backup;
1917 struct btrfs_root_backup *root_backup;
1918 int last_backup;
1919
1920 next_backup = info->backup_root_index;
1921 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1922 BTRFS_NUM_BACKUP_ROOTS;
1923
1924 /*
1925 * just overwrite the last backup if we're at the same generation
1926 * this happens only at umount
1927 */
1928 root_backup = info->super_for_commit->super_roots + last_backup;
1929 if (btrfs_backup_tree_root_gen(root_backup) ==
1930 btrfs_header_generation(info->tree_root->node))
1931 next_backup = last_backup;
1932
1933 root_backup = info->super_for_commit->super_roots + next_backup;
1934
1935 /*
1936 * make sure all of our padding and empty slots get zero filled
1937 * regardless of which ones we use today
1938 */
1939 memset(root_backup, 0, sizeof(*root_backup));
1940
1941 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1942
1943 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1944 btrfs_set_backup_tree_root_gen(root_backup,
1945 btrfs_header_generation(info->tree_root->node));
1946
1947 btrfs_set_backup_tree_root_level(root_backup,
1948 btrfs_header_level(info->tree_root->node));
1949
1950 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1951 btrfs_set_backup_chunk_root_gen(root_backup,
1952 btrfs_header_generation(info->chunk_root->node));
1953 btrfs_set_backup_chunk_root_level(root_backup,
1954 btrfs_header_level(info->chunk_root->node));
1955
1956 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1957 btrfs_set_backup_extent_root_gen(root_backup,
1958 btrfs_header_generation(info->extent_root->node));
1959 btrfs_set_backup_extent_root_level(root_backup,
1960 btrfs_header_level(info->extent_root->node));
1961
7c7e82a7
CM
1962 /*
1963 * we might commit during log recovery, which happens before we set
1964 * the fs_root. Make sure it is valid before we fill it in.
1965 */
1966 if (info->fs_root && info->fs_root->node) {
1967 btrfs_set_backup_fs_root(root_backup,
1968 info->fs_root->node->start);
1969 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1970 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1971 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1972 btrfs_header_level(info->fs_root->node));
7c7e82a7 1973 }
af31f5e5
CM
1974
1975 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1976 btrfs_set_backup_dev_root_gen(root_backup,
1977 btrfs_header_generation(info->dev_root->node));
1978 btrfs_set_backup_dev_root_level(root_backup,
1979 btrfs_header_level(info->dev_root->node));
1980
1981 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1982 btrfs_set_backup_csum_root_gen(root_backup,
1983 btrfs_header_generation(info->csum_root->node));
1984 btrfs_set_backup_csum_root_level(root_backup,
1985 btrfs_header_level(info->csum_root->node));
1986
1987 btrfs_set_backup_total_bytes(root_backup,
1988 btrfs_super_total_bytes(info->super_copy));
1989 btrfs_set_backup_bytes_used(root_backup,
1990 btrfs_super_bytes_used(info->super_copy));
1991 btrfs_set_backup_num_devices(root_backup,
1992 btrfs_super_num_devices(info->super_copy));
1993
1994 /*
1995 * if we don't copy this out to the super_copy, it won't get remembered
1996 * for the next commit
1997 */
1998 memcpy(&info->super_copy->super_roots,
1999 &info->super_for_commit->super_roots,
2000 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2001}
2002
2003/*
2004 * this copies info out of the root backup array and back into
2005 * the in-memory super block. It is meant to help iterate through
2006 * the array, so you send it the number of backups you've already
2007 * tried and the last backup index you used.
2008 *
2009 * this returns -1 when it has tried all the backups
2010 */
2011static noinline int next_root_backup(struct btrfs_fs_info *info,
2012 struct btrfs_super_block *super,
2013 int *num_backups_tried, int *backup_index)
2014{
2015 struct btrfs_root_backup *root_backup;
2016 int newest = *backup_index;
2017
2018 if (*num_backups_tried == 0) {
2019 u64 gen = btrfs_super_generation(super);
2020
2021 newest = find_newest_super_backup(info, gen);
2022 if (newest == -1)
2023 return -1;
2024
2025 *backup_index = newest;
2026 *num_backups_tried = 1;
2027 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2028 /* we've tried all the backups, all done */
2029 return -1;
2030 } else {
2031 /* jump to the next oldest backup */
2032 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2033 BTRFS_NUM_BACKUP_ROOTS;
2034 *backup_index = newest;
2035 *num_backups_tried += 1;
2036 }
2037 root_backup = super->super_roots + newest;
2038
2039 btrfs_set_super_generation(super,
2040 btrfs_backup_tree_root_gen(root_backup));
2041 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2042 btrfs_set_super_root_level(super,
2043 btrfs_backup_tree_root_level(root_backup));
2044 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2045
2046 /*
2047 * fixme: the total bytes and num_devices need to match or we should
2048 * need a fsck
2049 */
2050 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2051 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2052 return 0;
2053}
2054
7abadb64
LB
2055/* helper to cleanup workers */
2056static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2057{
dc6e3209 2058 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2059 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2060 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2061 btrfs_destroy_workqueue(fs_info->endio_workers);
2062 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2063 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2064 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2065 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2066 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2067 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2068 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2069 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2070 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2071 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2072 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2073 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2074 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2075 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2076}
2077
2e9f5954
R
2078static void free_root_extent_buffers(struct btrfs_root *root)
2079{
2080 if (root) {
2081 free_extent_buffer(root->node);
2082 free_extent_buffer(root->commit_root);
2083 root->node = NULL;
2084 root->commit_root = NULL;
2085 }
2086}
2087
af31f5e5
CM
2088/* helper to cleanup tree roots */
2089static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2090{
2e9f5954 2091 free_root_extent_buffers(info->tree_root);
655b09fe 2092
2e9f5954
R
2093 free_root_extent_buffers(info->dev_root);
2094 free_root_extent_buffers(info->extent_root);
2095 free_root_extent_buffers(info->csum_root);
2096 free_root_extent_buffers(info->quota_root);
2097 free_root_extent_buffers(info->uuid_root);
2098 if (chunk_root)
2099 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2100}
2101
faa2dbf0 2102void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2103{
2104 int ret;
2105 struct btrfs_root *gang[8];
2106 int i;
2107
2108 while (!list_empty(&fs_info->dead_roots)) {
2109 gang[0] = list_entry(fs_info->dead_roots.next,
2110 struct btrfs_root, root_list);
2111 list_del(&gang[0]->root_list);
2112
27cdeb70 2113 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2114 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2115 } else {
2116 free_extent_buffer(gang[0]->node);
2117 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2118 btrfs_put_fs_root(gang[0]);
171f6537
JB
2119 }
2120 }
2121
2122 while (1) {
2123 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2124 (void **)gang, 0,
2125 ARRAY_SIZE(gang));
2126 if (!ret)
2127 break;
2128 for (i = 0; i < ret; i++)
cb517eab 2129 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2130 }
1a4319cc
LB
2131
2132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2133 btrfs_free_log_root_tree(NULL, fs_info);
2134 btrfs_destroy_pinned_extent(fs_info->tree_root,
2135 fs_info->pinned_extents);
2136 }
171f6537 2137}
af31f5e5 2138
ad2b2c80
AV
2139int open_ctree(struct super_block *sb,
2140 struct btrfs_fs_devices *fs_devices,
2141 char *options)
2e635a27 2142{
db94535d
CM
2143 u32 sectorsize;
2144 u32 nodesize;
db94535d 2145 u32 blocksize;
87ee04eb 2146 u32 stripesize;
84234f3a 2147 u64 generation;
f2b636e8 2148 u64 features;
3de4586c 2149 struct btrfs_key location;
a061fc8d 2150 struct buffer_head *bh;
4d34b278 2151 struct btrfs_super_block *disk_super;
815745cf 2152 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2153 struct btrfs_root *tree_root;
4d34b278
ID
2154 struct btrfs_root *extent_root;
2155 struct btrfs_root *csum_root;
2156 struct btrfs_root *chunk_root;
2157 struct btrfs_root *dev_root;
bcef60f2 2158 struct btrfs_root *quota_root;
f7a81ea4 2159 struct btrfs_root *uuid_root;
e02119d5 2160 struct btrfs_root *log_tree_root;
eb60ceac 2161 int ret;
e58ca020 2162 int err = -EINVAL;
af31f5e5
CM
2163 int num_backups_tried = 0;
2164 int backup_index = 0;
5cdc7ad3
QW
2165 int max_active;
2166 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2167 bool create_uuid_tree;
2168 bool check_uuid_tree;
4543df7e 2169
f84a8bd6 2170 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2171 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2172 if (!tree_root || !chunk_root) {
39279cc3
CM
2173 err = -ENOMEM;
2174 goto fail;
2175 }
76dda93c
YZ
2176
2177 ret = init_srcu_struct(&fs_info->subvol_srcu);
2178 if (ret) {
2179 err = ret;
2180 goto fail;
2181 }
2182
2183 ret = setup_bdi(fs_info, &fs_info->bdi);
2184 if (ret) {
2185 err = ret;
2186 goto fail_srcu;
2187 }
2188
e2d84521
MX
2189 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2190 if (ret) {
2191 err = ret;
2192 goto fail_bdi;
2193 }
2194 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2195 (1 + ilog2(nr_cpu_ids));
2196
963d678b
MX
2197 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2198 if (ret) {
2199 err = ret;
2200 goto fail_dirty_metadata_bytes;
2201 }
2202
c404e0dc
MX
2203 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2204 if (ret) {
2205 err = ret;
2206 goto fail_delalloc_bytes;
2207 }
2208
76dda93c
YZ
2209 fs_info->btree_inode = new_inode(sb);
2210 if (!fs_info->btree_inode) {
2211 err = -ENOMEM;
c404e0dc 2212 goto fail_bio_counter;
76dda93c
YZ
2213 }
2214
a6591715 2215 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2216
76dda93c 2217 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2218 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2219 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2220 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2221 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2222 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2223 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2224 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2225 spin_lock_init(&fs_info->trans_lock);
76dda93c 2226 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2227 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2228 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2229 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2230 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2231 spin_lock_init(&fs_info->super_lock);
fcebe456 2232 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2233 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2234 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2235 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2236 mutex_init(&fs_info->reloc_mutex);
573bfb72 2237 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2238 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2239
58176a96 2240 init_completion(&fs_info->kobj_unregister);
0b86a832 2241 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2242 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2243 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2244 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2245 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2246 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2247 BTRFS_BLOCK_RSV_GLOBAL);
2248 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2249 BTRFS_BLOCK_RSV_DELALLOC);
2250 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2251 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2252 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2253 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2254 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2255 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2256 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2257 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2258 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2259 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2260 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2261 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2262 fs_info->sb = sb;
95ac567a 2263 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2264 fs_info->metadata_ratio = 0;
4cb5300b 2265 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2266 fs_info->free_chunk_space = 0;
f29021b2 2267 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2268 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2269 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2270 /* readahead state */
2271 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2272 spin_lock_init(&fs_info->reada_lock);
c8b97818 2273
b34b086c
CM
2274 fs_info->thread_pool_size = min_t(unsigned long,
2275 num_online_cpus() + 2, 8);
0afbaf8c 2276
199c2a9c
MX
2277 INIT_LIST_HEAD(&fs_info->ordered_roots);
2278 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2279 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2280 GFP_NOFS);
2281 if (!fs_info->delayed_root) {
2282 err = -ENOMEM;
2283 goto fail_iput;
2284 }
2285 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2286
a2de733c
AJ
2287 mutex_init(&fs_info->scrub_lock);
2288 atomic_set(&fs_info->scrubs_running, 0);
2289 atomic_set(&fs_info->scrub_pause_req, 0);
2290 atomic_set(&fs_info->scrubs_paused, 0);
2291 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2292 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2293 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2294 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2295#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2296 fs_info->check_integrity_print_mask = 0;
2297#endif
a2de733c 2298
c9e9f97b
ID
2299 spin_lock_init(&fs_info->balance_lock);
2300 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2301 atomic_set(&fs_info->balance_running, 0);
2302 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2303 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2304 fs_info->balance_ctl = NULL;
837d5b6e 2305 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2306 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2307
a061fc8d
CM
2308 sb->s_blocksize = 4096;
2309 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2310 sb->s_bdi = &fs_info->bdi;
a061fc8d 2311
76dda93c 2312 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2313 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2314 /*
2315 * we set the i_size on the btree inode to the max possible int.
2316 * the real end of the address space is determined by all of
2317 * the devices in the system
2318 */
2319 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2320 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2321 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2322
5d4f98a2 2323 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2324 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2325 fs_info->btree_inode->i_mapping);
0b32f4bb 2326 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2327 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2328
2329 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2330
76dda93c
YZ
2331 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2332 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2333 sizeof(struct btrfs_key));
72ac3c0d
JB
2334 set_bit(BTRFS_INODE_DUMMY,
2335 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2336 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2337
0f9dd46c 2338 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2339 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2340 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2341
11833d66 2342 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2343 fs_info->btree_inode->i_mapping);
11833d66 2344 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2345 fs_info->btree_inode->i_mapping);
11833d66 2346 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2347 fs_info->do_barriers = 1;
e18e4809 2348
39279cc3 2349
5a3f23d5 2350 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2351 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2352 mutex_init(&fs_info->tree_log_mutex);
925baedd 2353 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2354 mutex_init(&fs_info->transaction_kthread_mutex);
2355 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2356 mutex_init(&fs_info->volume_mutex);
9e351cc8 2357 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2358 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2359 init_rwsem(&fs_info->subvol_sem);
803b2f54 2360 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2361 fs_info->dev_replace.lock_owner = 0;
2362 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2363 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2364 mutex_init(&fs_info->dev_replace.lock_management_lock);
2365 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2366
416ac51d 2367 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2368 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2369 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2370 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2371 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2372 fs_info->qgroup_seq = 1;
2373 fs_info->quota_enabled = 0;
2374 fs_info->pending_quota_state = 0;
1e8f9158 2375 fs_info->qgroup_ulist = NULL;
2f232036 2376 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2377
fa9c0d79
CM
2378 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2379 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2380
e6dcd2dc 2381 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2382 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2383 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2384 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2385
53b381b3
DW
2386 ret = btrfs_alloc_stripe_hash_table(fs_info);
2387 if (ret) {
83c8266a 2388 err = ret;
53b381b3
DW
2389 goto fail_alloc;
2390 }
2391
707e8a07 2392 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2393 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2394
3c4bb26b 2395 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2396
2397 /*
2398 * Read super block and check the signature bytes only
2399 */
a512bbf8 2400 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2401 if (!bh) {
2402 err = -EINVAL;
16cdcec7 2403 goto fail_alloc;
20b45077 2404 }
39279cc3 2405
1104a885
DS
2406 /*
2407 * We want to check superblock checksum, the type is stored inside.
2408 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2409 */
2410 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2411 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2412 err = -EINVAL;
2413 goto fail_alloc;
2414 }
2415
2416 /*
2417 * super_copy is zeroed at allocation time and we never touch the
2418 * following bytes up to INFO_SIZE, the checksum is calculated from
2419 * the whole block of INFO_SIZE
2420 */
6c41761f
DS
2421 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2422 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2423 sizeof(*fs_info->super_for_commit));
a061fc8d 2424 brelse(bh);
5f39d397 2425
6c41761f 2426 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2427
1104a885
DS
2428 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2429 if (ret) {
efe120a0 2430 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2431 err = -EINVAL;
2432 goto fail_alloc;
2433 }
2434
6c41761f 2435 disk_super = fs_info->super_copy;
0f7d52f4 2436 if (!btrfs_super_root(disk_super))
16cdcec7 2437 goto fail_alloc;
0f7d52f4 2438
acce952b 2439 /* check FS state, whether FS is broken. */
87533c47
MX
2440 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2441 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2442
af31f5e5
CM
2443 /*
2444 * run through our array of backup supers and setup
2445 * our ring pointer to the oldest one
2446 */
2447 generation = btrfs_super_generation(disk_super);
2448 find_oldest_super_backup(fs_info, generation);
2449
75e7cb7f
LB
2450 /*
2451 * In the long term, we'll store the compression type in the super
2452 * block, and it'll be used for per file compression control.
2453 */
2454 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2455
2b82032c
YZ
2456 ret = btrfs_parse_options(tree_root, options);
2457 if (ret) {
2458 err = ret;
16cdcec7 2459 goto fail_alloc;
2b82032c 2460 }
dfe25020 2461
f2b636e8
JB
2462 features = btrfs_super_incompat_flags(disk_super) &
2463 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2464 if (features) {
2465 printk(KERN_ERR "BTRFS: couldn't mount because of "
2466 "unsupported optional features (%Lx).\n",
c1c9ff7c 2467 features);
f2b636e8 2468 err = -EINVAL;
16cdcec7 2469 goto fail_alloc;
f2b636e8
JB
2470 }
2471
707e8a07
DS
2472 /*
2473 * Leafsize and nodesize were always equal, this is only a sanity check.
2474 */
2475 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2476 btrfs_super_nodesize(disk_super)) {
2477 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2478 "blocksizes don't match. node %d leaf %d\n",
2479 btrfs_super_nodesize(disk_super),
707e8a07 2480 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2481 err = -EINVAL;
2482 goto fail_alloc;
2483 }
707e8a07 2484 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2485 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2486 "blocksize (%d) was too large\n",
707e8a07 2487 btrfs_super_nodesize(disk_super));
727011e0
CM
2488 err = -EINVAL;
2489 goto fail_alloc;
2490 }
2491
5d4f98a2 2492 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2493 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2494 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2495 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2496
3173a18f 2497 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2498 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2499
727011e0
CM
2500 /*
2501 * flag our filesystem as having big metadata blocks if
2502 * they are bigger than the page size
2503 */
707e8a07 2504 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2505 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2506 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2507 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2508 }
2509
bc3f116f 2510 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2511 sectorsize = btrfs_super_sectorsize(disk_super);
2512 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2513 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2514 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2515
2516 /*
2517 * mixed block groups end up with duplicate but slightly offset
2518 * extent buffers for the same range. It leads to corruptions
2519 */
2520 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2521 (sectorsize != nodesize)) {
efe120a0 2522 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2523 "are not allowed for mixed block groups on %s\n",
2524 sb->s_id);
2525 goto fail_alloc;
2526 }
2527
ceda0864
MX
2528 /*
2529 * Needn't use the lock because there is no other task which will
2530 * update the flag.
2531 */
a6fa6fae 2532 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2533
f2b636e8
JB
2534 features = btrfs_super_compat_ro_flags(disk_super) &
2535 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2536 if (!(sb->s_flags & MS_RDONLY) && features) {
2537 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2538 "unsupported option features (%Lx).\n",
c1c9ff7c 2539 features);
f2b636e8 2540 err = -EINVAL;
16cdcec7 2541 goto fail_alloc;
f2b636e8 2542 }
61d92c32 2543
5cdc7ad3 2544 max_active = fs_info->thread_pool_size;
61d92c32 2545
5cdc7ad3
QW
2546 fs_info->workers =
2547 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2548 max_active, 16);
c8b97818 2549
afe3d242
QW
2550 fs_info->delalloc_workers =
2551 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2552
a44903ab
QW
2553 fs_info->flush_workers =
2554 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2555
e66f0bb1
QW
2556 fs_info->caching_workers =
2557 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2558
a8c93d4e
QW
2559 /*
2560 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2561 * likely that bios will be send down in a sane order to the
2562 * devices
2563 */
a8c93d4e
QW
2564 fs_info->submit_workers =
2565 btrfs_alloc_workqueue("submit", flags,
2566 min_t(u64, fs_devices->num_devices,
2567 max_active), 64);
53863232 2568
dc6e3209
QW
2569 fs_info->fixup_workers =
2570 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2571
2572 /*
2573 * endios are largely parallel and should have a very
2574 * low idle thresh
2575 */
fccb5d86
QW
2576 fs_info->endio_workers =
2577 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2578 fs_info->endio_meta_workers =
2579 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2580 fs_info->endio_meta_write_workers =
2581 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2582 fs_info->endio_raid56_workers =
2583 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
8b110e39
MX
2584 fs_info->endio_repair_workers =
2585 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
d05a33ac
QW
2586 fs_info->rmw_workers =
2587 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2588 fs_info->endio_write_workers =
2589 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2590 fs_info->endio_freespace_worker =
2591 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2592 fs_info->delayed_workers =
2593 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2594 fs_info->readahead_workers =
2595 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2596 fs_info->qgroup_rescan_workers =
2597 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2598 fs_info->extent_workers =
2599 btrfs_alloc_workqueue("extent-refs", flags,
2600 min_t(u64, fs_devices->num_devices,
2601 max_active), 8);
61b49440 2602
a8c93d4e 2603 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2604 fs_info->submit_workers && fs_info->flush_workers &&
2605 fs_info->endio_workers && fs_info->endio_meta_workers &&
2606 fs_info->endio_meta_write_workers &&
8b110e39 2607 fs_info->endio_repair_workers &&
fccb5d86 2608 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2609 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2610 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2611 fs_info->fixup_workers && fs_info->delayed_workers &&
56094eec 2612 fs_info->extent_workers &&
fc97fab0 2613 fs_info->qgroup_rescan_workers)) {
fed425c7 2614 err = -ENOMEM;
0dc3b84a
JB
2615 goto fail_sb_buffer;
2616 }
4543df7e 2617
4575c9cc 2618 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2619 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2620 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2621
db94535d 2622 tree_root->nodesize = nodesize;
db94535d 2623 tree_root->sectorsize = sectorsize;
87ee04eb 2624 tree_root->stripesize = stripesize;
a061fc8d
CM
2625
2626 sb->s_blocksize = sectorsize;
2627 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2628
3cae210f 2629 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2630 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2631 goto fail_sb_buffer;
2632 }
19c00ddc 2633
8d082fb7 2634 if (sectorsize != PAGE_SIZE) {
efe120a0 2635 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2636 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2637 goto fail_sb_buffer;
2638 }
2639
925baedd 2640 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2641 ret = btrfs_read_sys_array(tree_root);
925baedd 2642 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2643 if (ret) {
efe120a0 2644 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2645 "array on %s\n", sb->s_id);
5d4f98a2 2646 goto fail_sb_buffer;
84eed90f 2647 }
0b86a832 2648
707e8a07 2649 blocksize = tree_root->nodesize;
84234f3a 2650 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2651
707e8a07
DS
2652 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2653 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2654
2655 chunk_root->node = read_tree_block(chunk_root,
2656 btrfs_super_chunk_root(disk_super),
84234f3a 2657 blocksize, generation);
416bc658
JB
2658 if (!chunk_root->node ||
2659 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2660 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2661 sb->s_id);
af31f5e5 2662 goto fail_tree_roots;
83121942 2663 }
5d4f98a2
YZ
2664 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2665 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2666
e17cade2 2667 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2668 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2669
0b86a832 2670 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2671 if (ret) {
efe120a0 2672 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2673 sb->s_id);
af31f5e5 2674 goto fail_tree_roots;
2b82032c 2675 }
0b86a832 2676
8dabb742
SB
2677 /*
2678 * keep the device that is marked to be the target device for the
2679 * dev_replace procedure
2680 */
2681 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2682
a6b0d5c8 2683 if (!fs_devices->latest_bdev) {
efe120a0 2684 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2685 sb->s_id);
2686 goto fail_tree_roots;
2687 }
2688
af31f5e5 2689retry_root_backup:
707e8a07 2690 blocksize = tree_root->nodesize;
84234f3a 2691 generation = btrfs_super_generation(disk_super);
0b86a832 2692
e20d96d6 2693 tree_root->node = read_tree_block(tree_root,
db94535d 2694 btrfs_super_root(disk_super),
84234f3a 2695 blocksize, generation);
af31f5e5
CM
2696 if (!tree_root->node ||
2697 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2698 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2699 sb->s_id);
af31f5e5
CM
2700
2701 goto recovery_tree_root;
83121942 2702 }
af31f5e5 2703
5d4f98a2
YZ
2704 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2705 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2706 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2707
cb517eab
MX
2708 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2709 location.type = BTRFS_ROOT_ITEM_KEY;
2710 location.offset = 0;
2711
2712 extent_root = btrfs_read_tree_root(tree_root, &location);
2713 if (IS_ERR(extent_root)) {
2714 ret = PTR_ERR(extent_root);
af31f5e5 2715 goto recovery_tree_root;
cb517eab 2716 }
27cdeb70 2717 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2718 fs_info->extent_root = extent_root;
0b86a832 2719
cb517eab
MX
2720 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2721 dev_root = btrfs_read_tree_root(tree_root, &location);
2722 if (IS_ERR(dev_root)) {
2723 ret = PTR_ERR(dev_root);
af31f5e5 2724 goto recovery_tree_root;
cb517eab 2725 }
27cdeb70 2726 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2727 fs_info->dev_root = dev_root;
2728 btrfs_init_devices_late(fs_info);
3768f368 2729
cb517eab
MX
2730 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2731 csum_root = btrfs_read_tree_root(tree_root, &location);
2732 if (IS_ERR(csum_root)) {
2733 ret = PTR_ERR(csum_root);
af31f5e5 2734 goto recovery_tree_root;
cb517eab 2735 }
27cdeb70 2736 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2737 fs_info->csum_root = csum_root;
d20f7043 2738
cb517eab
MX
2739 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2740 quota_root = btrfs_read_tree_root(tree_root, &location);
2741 if (!IS_ERR(quota_root)) {
27cdeb70 2742 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2743 fs_info->quota_enabled = 1;
2744 fs_info->pending_quota_state = 1;
cb517eab 2745 fs_info->quota_root = quota_root;
bcef60f2
AJ
2746 }
2747
f7a81ea4
SB
2748 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2749 uuid_root = btrfs_read_tree_root(tree_root, &location);
2750 if (IS_ERR(uuid_root)) {
2751 ret = PTR_ERR(uuid_root);
2752 if (ret != -ENOENT)
2753 goto recovery_tree_root;
2754 create_uuid_tree = true;
70f80175 2755 check_uuid_tree = false;
f7a81ea4 2756 } else {
27cdeb70 2757 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2758 fs_info->uuid_root = uuid_root;
70f80175
SB
2759 create_uuid_tree = false;
2760 check_uuid_tree =
2761 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2762 }
2763
8929ecfa
YZ
2764 fs_info->generation = generation;
2765 fs_info->last_trans_committed = generation;
8929ecfa 2766
68310a5e
ID
2767 ret = btrfs_recover_balance(fs_info);
2768 if (ret) {
efe120a0 2769 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2770 goto fail_block_groups;
2771 }
2772
733f4fbb
SB
2773 ret = btrfs_init_dev_stats(fs_info);
2774 if (ret) {
efe120a0 2775 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2776 ret);
2777 goto fail_block_groups;
2778 }
2779
8dabb742
SB
2780 ret = btrfs_init_dev_replace(fs_info);
2781 if (ret) {
efe120a0 2782 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2783 goto fail_block_groups;
2784 }
2785
2786 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2787
5ac1d209 2788 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2789 if (ret) {
efe120a0 2790 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2791 goto fail_block_groups;
2792 }
2793
c59021f8 2794 ret = btrfs_init_space_info(fs_info);
2795 if (ret) {
efe120a0 2796 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2797 goto fail_sysfs;
c59021f8 2798 }
2799
1b1d1f66
JB
2800 ret = btrfs_read_block_groups(extent_root);
2801 if (ret) {
efe120a0 2802 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2803 goto fail_sysfs;
1b1d1f66 2804 }
5af3e8cc
SB
2805 fs_info->num_tolerated_disk_barrier_failures =
2806 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2807 if (fs_info->fs_devices->missing_devices >
2808 fs_info->num_tolerated_disk_barrier_failures &&
2809 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2810 printk(KERN_WARNING "BTRFS: "
2811 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2812 goto fail_sysfs;
292fd7fc 2813 }
9078a3e1 2814
a74a4b97
CM
2815 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2816 "btrfs-cleaner");
57506d50 2817 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2818 goto fail_sysfs;
a74a4b97
CM
2819
2820 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2821 tree_root,
2822 "btrfs-transaction");
57506d50 2823 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2824 goto fail_cleaner;
a74a4b97 2825
c289811c
CM
2826 if (!btrfs_test_opt(tree_root, SSD) &&
2827 !btrfs_test_opt(tree_root, NOSSD) &&
2828 !fs_info->fs_devices->rotating) {
efe120a0 2829 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2830 "mode\n");
2831 btrfs_set_opt(fs_info->mount_opt, SSD);
2832 }
2833
3818aea2
QW
2834 /* Set the real inode map cache flag */
2835 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2836 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2837
21adbd5c
SB
2838#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2839 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2840 ret = btrfsic_mount(tree_root, fs_devices,
2841 btrfs_test_opt(tree_root,
2842 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2843 1 : 0,
2844 fs_info->check_integrity_print_mask);
2845 if (ret)
efe120a0 2846 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2847 " integrity check module %s\n", sb->s_id);
2848 }
2849#endif
bcef60f2
AJ
2850 ret = btrfs_read_qgroup_config(fs_info);
2851 if (ret)
2852 goto fail_trans_kthread;
21adbd5c 2853
acce952b 2854 /* do not make disk changes in broken FS */
68ce9682 2855 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2856 u64 bytenr = btrfs_super_log_root(disk_super);
2857
7c2ca468 2858 if (fs_devices->rw_devices == 0) {
efe120a0 2859 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2860 "on RO media\n");
7c2ca468 2861 err = -EIO;
bcef60f2 2862 goto fail_qgroup;
7c2ca468 2863 }
707e8a07 2864 blocksize = tree_root->nodesize;
d18a2c44 2865
6f07e42e 2866 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2867 if (!log_tree_root) {
2868 err = -ENOMEM;
bcef60f2 2869 goto fail_qgroup;
676e4c86 2870 }
e02119d5 2871
707e8a07 2872 __setup_root(nodesize, sectorsize, stripesize,
e02119d5
CM
2873 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2874
2875 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2876 blocksize,
2877 generation + 1);
416bc658
JB
2878 if (!log_tree_root->node ||
2879 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2880 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2881 free_extent_buffer(log_tree_root->node);
2882 kfree(log_tree_root);
28c16cbb 2883 goto fail_qgroup;
416bc658 2884 }
79787eaa 2885 /* returns with log_tree_root freed on success */
e02119d5 2886 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2887 if (ret) {
2888 btrfs_error(tree_root->fs_info, ret,
2889 "Failed to recover log tree");
2890 free_extent_buffer(log_tree_root->node);
2891 kfree(log_tree_root);
28c16cbb 2892 goto fail_qgroup;
79787eaa 2893 }
e556ce2c
YZ
2894
2895 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2896 ret = btrfs_commit_super(tree_root);
2897 if (ret)
28c16cbb 2898 goto fail_qgroup;
e556ce2c 2899 }
e02119d5 2900 }
1a40e23b 2901
76dda93c 2902 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2903 if (ret)
28c16cbb 2904 goto fail_qgroup;
76dda93c 2905
7c2ca468 2906 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2907 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2908 if (ret)
28c16cbb 2909 goto fail_qgroup;
d68fc57b 2910
5f316481 2911 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2912 ret = btrfs_recover_relocation(tree_root);
5f316481 2913 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2914 if (ret < 0) {
2915 printk(KERN_WARNING
efe120a0 2916 "BTRFS: failed to recover relocation\n");
d7ce5843 2917 err = -EINVAL;
bcef60f2 2918 goto fail_qgroup;
d7ce5843 2919 }
7c2ca468 2920 }
1a40e23b 2921
3de4586c
CM
2922 location.objectid = BTRFS_FS_TREE_OBJECTID;
2923 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2924 location.offset = 0;
3de4586c 2925
3de4586c 2926 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2927 if (IS_ERR(fs_info->fs_root)) {
2928 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2929 goto fail_qgroup;
3140c9a3 2930 }
c289811c 2931
2b6ba629
ID
2932 if (sb->s_flags & MS_RDONLY)
2933 return 0;
59641015 2934
2b6ba629
ID
2935 down_read(&fs_info->cleanup_work_sem);
2936 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2937 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2938 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2939 close_ctree(tree_root);
2940 return ret;
2941 }
2942 up_read(&fs_info->cleanup_work_sem);
59641015 2943
2b6ba629
ID
2944 ret = btrfs_resume_balance_async(fs_info);
2945 if (ret) {
efe120a0 2946 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2947 close_ctree(tree_root);
2948 return ret;
e3acc2a6
JB
2949 }
2950
8dabb742
SB
2951 ret = btrfs_resume_dev_replace_async(fs_info);
2952 if (ret) {
efe120a0 2953 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2954 close_ctree(tree_root);
2955 return ret;
2956 }
2957
b382a324
JS
2958 btrfs_qgroup_rescan_resume(fs_info);
2959
f7a81ea4 2960 if (create_uuid_tree) {
efe120a0 2961 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2962 ret = btrfs_create_uuid_tree(fs_info);
2963 if (ret) {
efe120a0 2964 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2965 ret);
2966 close_ctree(tree_root);
2967 return ret;
2968 }
f420ee1e
SB
2969 } else if (check_uuid_tree ||
2970 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2971 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2972 ret = btrfs_check_uuid_tree(fs_info);
2973 if (ret) {
efe120a0 2974 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2975 ret);
2976 close_ctree(tree_root);
2977 return ret;
2978 }
2979 } else {
2980 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2981 }
2982
47ab2a6c
JB
2983 fs_info->open = 1;
2984
ad2b2c80 2985 return 0;
39279cc3 2986
bcef60f2
AJ
2987fail_qgroup:
2988 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2989fail_trans_kthread:
2990 kthread_stop(fs_info->transaction_kthread);
54067ae9 2991 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 2992 btrfs_free_fs_roots(fs_info);
3f157a2f 2993fail_cleaner:
a74a4b97 2994 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2995
2996 /*
2997 * make sure we're done with the btree inode before we stop our
2998 * kthreads
2999 */
3000 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3001
2365dd3c
AJ
3002fail_sysfs:
3003 btrfs_sysfs_remove_one(fs_info);
3004
1b1d1f66 3005fail_block_groups:
54067ae9 3006 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3007 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3008
3009fail_tree_roots:
3010 free_root_pointers(fs_info, 1);
2b8195bb 3011 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3012
39279cc3 3013fail_sb_buffer:
7abadb64 3014 btrfs_stop_all_workers(fs_info);
16cdcec7 3015fail_alloc:
4543df7e 3016fail_iput:
586e46e2
ID
3017 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3018
4543df7e 3019 iput(fs_info->btree_inode);
c404e0dc
MX
3020fail_bio_counter:
3021 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3022fail_delalloc_bytes:
3023 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3024fail_dirty_metadata_bytes:
3025 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3026fail_bdi:
7e662854 3027 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3028fail_srcu:
3029 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3030fail:
53b381b3 3031 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3032 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3033 return err;
af31f5e5
CM
3034
3035recovery_tree_root:
af31f5e5
CM
3036 if (!btrfs_test_opt(tree_root, RECOVERY))
3037 goto fail_tree_roots;
3038
3039 free_root_pointers(fs_info, 0);
3040
3041 /* don't use the log in recovery mode, it won't be valid */
3042 btrfs_set_super_log_root(disk_super, 0);
3043
3044 /* we can't trust the free space cache either */
3045 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3046
3047 ret = next_root_backup(fs_info, fs_info->super_copy,
3048 &num_backups_tried, &backup_index);
3049 if (ret == -1)
3050 goto fail_block_groups;
3051 goto retry_root_backup;
eb60ceac
CM
3052}
3053
f2984462
CM
3054static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3055{
f2984462
CM
3056 if (uptodate) {
3057 set_buffer_uptodate(bh);
3058 } else {
442a4f63
SB
3059 struct btrfs_device *device = (struct btrfs_device *)
3060 bh->b_private;
3061
efe120a0 3062 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3063 "I/O error on %s\n",
3064 rcu_str_deref(device->name));
1259ab75
CM
3065 /* note, we dont' set_buffer_write_io_error because we have
3066 * our own ways of dealing with the IO errors
3067 */
f2984462 3068 clear_buffer_uptodate(bh);
442a4f63 3069 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3070 }
3071 unlock_buffer(bh);
3072 put_bh(bh);
3073}
3074
a512bbf8
YZ
3075struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3076{
3077 struct buffer_head *bh;
3078 struct buffer_head *latest = NULL;
3079 struct btrfs_super_block *super;
3080 int i;
3081 u64 transid = 0;
3082 u64 bytenr;
3083
3084 /* we would like to check all the supers, but that would make
3085 * a btrfs mount succeed after a mkfs from a different FS.
3086 * So, we need to add a special mount option to scan for
3087 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3088 */
3089 for (i = 0; i < 1; i++) {
3090 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3091 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3092 i_size_read(bdev->bd_inode))
a512bbf8 3093 break;
8068a47e
AJ
3094 bh = __bread(bdev, bytenr / 4096,
3095 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3096 if (!bh)
3097 continue;
3098
3099 super = (struct btrfs_super_block *)bh->b_data;
3100 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3101 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3102 brelse(bh);
3103 continue;
3104 }
3105
3106 if (!latest || btrfs_super_generation(super) > transid) {
3107 brelse(latest);
3108 latest = bh;
3109 transid = btrfs_super_generation(super);
3110 } else {
3111 brelse(bh);
3112 }
3113 }
3114 return latest;
3115}
3116
4eedeb75
HH
3117/*
3118 * this should be called twice, once with wait == 0 and
3119 * once with wait == 1. When wait == 0 is done, all the buffer heads
3120 * we write are pinned.
3121 *
3122 * They are released when wait == 1 is done.
3123 * max_mirrors must be the same for both runs, and it indicates how
3124 * many supers on this one device should be written.
3125 *
3126 * max_mirrors == 0 means to write them all.
3127 */
a512bbf8
YZ
3128static int write_dev_supers(struct btrfs_device *device,
3129 struct btrfs_super_block *sb,
3130 int do_barriers, int wait, int max_mirrors)
3131{
3132 struct buffer_head *bh;
3133 int i;
3134 int ret;
3135 int errors = 0;
3136 u32 crc;
3137 u64 bytenr;
a512bbf8
YZ
3138
3139 if (max_mirrors == 0)
3140 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3141
a512bbf8
YZ
3142 for (i = 0; i < max_mirrors; i++) {
3143 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3144 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3145 device->commit_total_bytes)
a512bbf8
YZ
3146 break;
3147
3148 if (wait) {
3149 bh = __find_get_block(device->bdev, bytenr / 4096,
3150 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3151 if (!bh) {
3152 errors++;
3153 continue;
3154 }
a512bbf8 3155 wait_on_buffer(bh);
4eedeb75
HH
3156 if (!buffer_uptodate(bh))
3157 errors++;
3158
3159 /* drop our reference */
3160 brelse(bh);
3161
3162 /* drop the reference from the wait == 0 run */
3163 brelse(bh);
3164 continue;
a512bbf8
YZ
3165 } else {
3166 btrfs_set_super_bytenr(sb, bytenr);
3167
3168 crc = ~(u32)0;
b0496686 3169 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3170 BTRFS_CSUM_SIZE, crc,
3171 BTRFS_SUPER_INFO_SIZE -
3172 BTRFS_CSUM_SIZE);
3173 btrfs_csum_final(crc, sb->csum);
3174
4eedeb75
HH
3175 /*
3176 * one reference for us, and we leave it for the
3177 * caller
3178 */
a512bbf8
YZ
3179 bh = __getblk(device->bdev, bytenr / 4096,
3180 BTRFS_SUPER_INFO_SIZE);
634554dc 3181 if (!bh) {
efe120a0 3182 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3183 "buffer head for bytenr %Lu\n", bytenr);
3184 errors++;
3185 continue;
3186 }
3187
a512bbf8
YZ
3188 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3189
4eedeb75 3190 /* one reference for submit_bh */
a512bbf8 3191 get_bh(bh);
4eedeb75
HH
3192
3193 set_buffer_uptodate(bh);
a512bbf8
YZ
3194 lock_buffer(bh);
3195 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3196 bh->b_private = device;
a512bbf8
YZ
3197 }
3198
387125fc
CM
3199 /*
3200 * we fua the first super. The others we allow
3201 * to go down lazy.
3202 */
e8117c26
WS
3203 if (i == 0)
3204 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3205 else
3206 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3207 if (ret)
a512bbf8 3208 errors++;
a512bbf8
YZ
3209 }
3210 return errors < i ? 0 : -1;
3211}
3212
387125fc
CM
3213/*
3214 * endio for the write_dev_flush, this will wake anyone waiting
3215 * for the barrier when it is done
3216 */
3217static void btrfs_end_empty_barrier(struct bio *bio, int err)
3218{
3219 if (err) {
3220 if (err == -EOPNOTSUPP)
3221 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3222 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3223 }
3224 if (bio->bi_private)
3225 complete(bio->bi_private);
3226 bio_put(bio);
3227}
3228
3229/*
3230 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3231 * sent down. With wait == 1, it waits for the previous flush.
3232 *
3233 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3234 * capable
3235 */
3236static int write_dev_flush(struct btrfs_device *device, int wait)
3237{
3238 struct bio *bio;
3239 int ret = 0;
3240
3241 if (device->nobarriers)
3242 return 0;
3243
3244 if (wait) {
3245 bio = device->flush_bio;
3246 if (!bio)
3247 return 0;
3248
3249 wait_for_completion(&device->flush_wait);
3250
3251 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3252 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3253 rcu_str_deref(device->name));
387125fc 3254 device->nobarriers = 1;
5af3e8cc 3255 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3256 ret = -EIO;
5af3e8cc
SB
3257 btrfs_dev_stat_inc_and_print(device,
3258 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3259 }
3260
3261 /* drop the reference from the wait == 0 run */
3262 bio_put(bio);
3263 device->flush_bio = NULL;
3264
3265 return ret;
3266 }
3267
3268 /*
3269 * one reference for us, and we leave it for the
3270 * caller
3271 */
9c017abc 3272 device->flush_bio = NULL;
9be3395b 3273 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3274 if (!bio)
3275 return -ENOMEM;
3276
3277 bio->bi_end_io = btrfs_end_empty_barrier;
3278 bio->bi_bdev = device->bdev;
3279 init_completion(&device->flush_wait);
3280 bio->bi_private = &device->flush_wait;
3281 device->flush_bio = bio;
3282
3283 bio_get(bio);
21adbd5c 3284 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3285
3286 return 0;
3287}
3288
3289/*
3290 * send an empty flush down to each device in parallel,
3291 * then wait for them
3292 */
3293static int barrier_all_devices(struct btrfs_fs_info *info)
3294{
3295 struct list_head *head;
3296 struct btrfs_device *dev;
5af3e8cc
SB
3297 int errors_send = 0;
3298 int errors_wait = 0;
387125fc
CM
3299 int ret;
3300
3301 /* send down all the barriers */
3302 head = &info->fs_devices->devices;
3303 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3304 if (dev->missing)
3305 continue;
387125fc 3306 if (!dev->bdev) {
5af3e8cc 3307 errors_send++;
387125fc
CM
3308 continue;
3309 }
3310 if (!dev->in_fs_metadata || !dev->writeable)
3311 continue;
3312
3313 ret = write_dev_flush(dev, 0);
3314 if (ret)
5af3e8cc 3315 errors_send++;
387125fc
CM
3316 }
3317
3318 /* wait for all the barriers */
3319 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3320 if (dev->missing)
3321 continue;
387125fc 3322 if (!dev->bdev) {
5af3e8cc 3323 errors_wait++;
387125fc
CM
3324 continue;
3325 }
3326 if (!dev->in_fs_metadata || !dev->writeable)
3327 continue;
3328
3329 ret = write_dev_flush(dev, 1);
3330 if (ret)
5af3e8cc 3331 errors_wait++;
387125fc 3332 }
5af3e8cc
SB
3333 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3334 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3335 return -EIO;
3336 return 0;
3337}
3338
5af3e8cc
SB
3339int btrfs_calc_num_tolerated_disk_barrier_failures(
3340 struct btrfs_fs_info *fs_info)
3341{
3342 struct btrfs_ioctl_space_info space;
3343 struct btrfs_space_info *sinfo;
3344 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3345 BTRFS_BLOCK_GROUP_SYSTEM,
3346 BTRFS_BLOCK_GROUP_METADATA,
3347 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3348 int num_types = 4;
3349 int i;
3350 int c;
3351 int num_tolerated_disk_barrier_failures =
3352 (int)fs_info->fs_devices->num_devices;
3353
3354 for (i = 0; i < num_types; i++) {
3355 struct btrfs_space_info *tmp;
3356
3357 sinfo = NULL;
3358 rcu_read_lock();
3359 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3360 if (tmp->flags == types[i]) {
3361 sinfo = tmp;
3362 break;
3363 }
3364 }
3365 rcu_read_unlock();
3366
3367 if (!sinfo)
3368 continue;
3369
3370 down_read(&sinfo->groups_sem);
3371 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3372 if (!list_empty(&sinfo->block_groups[c])) {
3373 u64 flags;
3374
3375 btrfs_get_block_group_info(
3376 &sinfo->block_groups[c], &space);
3377 if (space.total_bytes == 0 ||
3378 space.used_bytes == 0)
3379 continue;
3380 flags = space.flags;
3381 /*
3382 * return
3383 * 0: if dup, single or RAID0 is configured for
3384 * any of metadata, system or data, else
3385 * 1: if RAID5 is configured, or if RAID1 or
3386 * RAID10 is configured and only two mirrors
3387 * are used, else
3388 * 2: if RAID6 is configured, else
3389 * num_mirrors - 1: if RAID1 or RAID10 is
3390 * configured and more than
3391 * 2 mirrors are used.
3392 */
3393 if (num_tolerated_disk_barrier_failures > 0 &&
3394 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3395 BTRFS_BLOCK_GROUP_RAID0)) ||
3396 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3397 == 0)))
3398 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3399 else if (num_tolerated_disk_barrier_failures > 1) {
3400 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3401 BTRFS_BLOCK_GROUP_RAID5 |
3402 BTRFS_BLOCK_GROUP_RAID10)) {
3403 num_tolerated_disk_barrier_failures = 1;
3404 } else if (flags &
15b0a89d 3405 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3406 num_tolerated_disk_barrier_failures = 2;
3407 }
3408 }
5af3e8cc
SB
3409 }
3410 }
3411 up_read(&sinfo->groups_sem);
3412 }
3413
3414 return num_tolerated_disk_barrier_failures;
3415}
3416
48a3b636 3417static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3418{
e5e9a520 3419 struct list_head *head;
f2984462 3420 struct btrfs_device *dev;
a061fc8d 3421 struct btrfs_super_block *sb;
f2984462 3422 struct btrfs_dev_item *dev_item;
f2984462
CM
3423 int ret;
3424 int do_barriers;
a236aed1
CM
3425 int max_errors;
3426 int total_errors = 0;
a061fc8d 3427 u64 flags;
f2984462
CM
3428
3429 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3430 backup_super_roots(root->fs_info);
f2984462 3431
6c41761f 3432 sb = root->fs_info->super_for_commit;
a061fc8d 3433 dev_item = &sb->dev_item;
e5e9a520 3434
174ba509 3435 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3436 head = &root->fs_info->fs_devices->devices;
d7306801 3437 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3438
5af3e8cc
SB
3439 if (do_barriers) {
3440 ret = barrier_all_devices(root->fs_info);
3441 if (ret) {
3442 mutex_unlock(
3443 &root->fs_info->fs_devices->device_list_mutex);
3444 btrfs_error(root->fs_info, ret,
3445 "errors while submitting device barriers.");
3446 return ret;
3447 }
3448 }
387125fc 3449
1f78160c 3450 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3451 if (!dev->bdev) {
3452 total_errors++;
3453 continue;
3454 }
2b82032c 3455 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3456 continue;
3457
2b82032c 3458 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3459 btrfs_set_stack_device_type(dev_item, dev->type);
3460 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3461 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3462 dev->commit_total_bytes);
ce7213c7
MX
3463 btrfs_set_stack_device_bytes_used(dev_item,
3464 dev->commit_bytes_used);
a061fc8d
CM
3465 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3466 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3467 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3468 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3469 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3470
a061fc8d
CM
3471 flags = btrfs_super_flags(sb);
3472 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3473
a512bbf8 3474 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3475 if (ret)
3476 total_errors++;
f2984462 3477 }
a236aed1 3478 if (total_errors > max_errors) {
efe120a0 3479 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3480 total_errors);
a724b436 3481 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3482
9d565ba4
SB
3483 /* FUA is masked off if unsupported and can't be the reason */
3484 btrfs_error(root->fs_info, -EIO,
3485 "%d errors while writing supers", total_errors);
3486 return -EIO;
a236aed1 3487 }
f2984462 3488
a512bbf8 3489 total_errors = 0;
1f78160c 3490 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3491 if (!dev->bdev)
3492 continue;
2b82032c 3493 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3494 continue;
3495
a512bbf8
YZ
3496 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3497 if (ret)
3498 total_errors++;
f2984462 3499 }
174ba509 3500 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3501 if (total_errors > max_errors) {
79787eaa
JM
3502 btrfs_error(root->fs_info, -EIO,
3503 "%d errors while writing supers", total_errors);
3504 return -EIO;
a236aed1 3505 }
f2984462
CM
3506 return 0;
3507}
3508
a512bbf8
YZ
3509int write_ctree_super(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root, int max_mirrors)
eb60ceac 3511{
f570e757 3512 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3513}
3514
cb517eab
MX
3515/* Drop a fs root from the radix tree and free it. */
3516void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3517 struct btrfs_root *root)
2619ba1f 3518{
4df27c4d 3519 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3520 radix_tree_delete(&fs_info->fs_roots_radix,
3521 (unsigned long)root->root_key.objectid);
4df27c4d 3522 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3523
3524 if (btrfs_root_refs(&root->root_item) == 0)
3525 synchronize_srcu(&fs_info->subvol_srcu);
3526
1a4319cc 3527 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3528 btrfs_free_log(NULL, root);
3321719e 3529
faa2dbf0
JB
3530 if (root->free_ino_pinned)
3531 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3532 if (root->free_ino_ctl)
3533 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3534 free_fs_root(root);
4df27c4d
YZ
3535}
3536
3537static void free_fs_root(struct btrfs_root *root)
3538{
57cdc8db 3539 iput(root->ino_cache_inode);
4df27c4d 3540 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3541 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3542 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3543 if (root->anon_dev)
3544 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3545 if (root->subv_writers)
3546 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3547 free_extent_buffer(root->node);
3548 free_extent_buffer(root->commit_root);
581bb050
LZ
3549 kfree(root->free_ino_ctl);
3550 kfree(root->free_ino_pinned);
d397712b 3551 kfree(root->name);
b0feb9d9 3552 btrfs_put_fs_root(root);
2619ba1f
CM
3553}
3554
cb517eab
MX
3555void btrfs_free_fs_root(struct btrfs_root *root)
3556{
3557 free_fs_root(root);
2619ba1f
CM
3558}
3559
c146afad 3560int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3561{
c146afad
YZ
3562 u64 root_objectid = 0;
3563 struct btrfs_root *gang[8];
65d33fd7
QW
3564 int i = 0;
3565 int err = 0;
3566 unsigned int ret = 0;
3567 int index;
e089f05c 3568
c146afad 3569 while (1) {
65d33fd7 3570 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3571 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3572 (void **)gang, root_objectid,
3573 ARRAY_SIZE(gang));
65d33fd7
QW
3574 if (!ret) {
3575 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3576 break;
65d33fd7 3577 }
5d4f98a2 3578 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3579
c146afad 3580 for (i = 0; i < ret; i++) {
65d33fd7
QW
3581 /* Avoid to grab roots in dead_roots */
3582 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3583 gang[i] = NULL;
3584 continue;
3585 }
3586 /* grab all the search result for later use */
3587 gang[i] = btrfs_grab_fs_root(gang[i]);
3588 }
3589 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3590
65d33fd7
QW
3591 for (i = 0; i < ret; i++) {
3592 if (!gang[i])
3593 continue;
c146afad 3594 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3595 err = btrfs_orphan_cleanup(gang[i]);
3596 if (err)
65d33fd7
QW
3597 break;
3598 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3599 }
3600 root_objectid++;
3601 }
65d33fd7
QW
3602
3603 /* release the uncleaned roots due to error */
3604 for (; i < ret; i++) {
3605 if (gang[i])
3606 btrfs_put_fs_root(gang[i]);
3607 }
3608 return err;
c146afad 3609}
a2135011 3610
c146afad
YZ
3611int btrfs_commit_super(struct btrfs_root *root)
3612{
3613 struct btrfs_trans_handle *trans;
a74a4b97 3614
c146afad 3615 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3616 btrfs_run_delayed_iputs(root);
c146afad 3617 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3618 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3619
3620 /* wait until ongoing cleanup work done */
3621 down_write(&root->fs_info->cleanup_work_sem);
3622 up_write(&root->fs_info->cleanup_work_sem);
3623
7a7eaa40 3624 trans = btrfs_join_transaction(root);
3612b495
TI
3625 if (IS_ERR(trans))
3626 return PTR_ERR(trans);
d52c1bcc 3627 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3628}
3629
3abdbd78 3630void close_ctree(struct btrfs_root *root)
c146afad
YZ
3631{
3632 struct btrfs_fs_info *fs_info = root->fs_info;
3633 int ret;
3634
3635 fs_info->closing = 1;
3636 smp_mb();
3637
803b2f54
SB
3638 /* wait for the uuid_scan task to finish */
3639 down(&fs_info->uuid_tree_rescan_sem);
3640 /* avoid complains from lockdep et al., set sem back to initial state */
3641 up(&fs_info->uuid_tree_rescan_sem);
3642
837d5b6e 3643 /* pause restriper - we want to resume on mount */
aa1b8cd4 3644 btrfs_pause_balance(fs_info);
837d5b6e 3645
8dabb742
SB
3646 btrfs_dev_replace_suspend_for_unmount(fs_info);
3647
aa1b8cd4 3648 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3649
3650 /* wait for any defraggers to finish */
3651 wait_event(fs_info->transaction_wait,
3652 (atomic_read(&fs_info->defrag_running) == 0));
3653
3654 /* clear out the rbtree of defraggable inodes */
26176e7c 3655 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3656
21c7e756
MX
3657 cancel_work_sync(&fs_info->async_reclaim_work);
3658
c146afad 3659 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3660 ret = btrfs_commit_super(root);
3661 if (ret)
efe120a0 3662 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3663 }
3664
87533c47 3665 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3666 btrfs_error_commit_super(root);
0f7d52f4 3667
e3029d9f
AV
3668 kthread_stop(fs_info->transaction_kthread);
3669 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3670
f25784b3
YZ
3671 fs_info->closing = 2;
3672 smp_mb();
3673
bcef60f2
AJ
3674 btrfs_free_qgroup_config(root->fs_info);
3675
963d678b 3676 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3677 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3678 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3679 }
bcc63abb 3680
5ac1d209
JM
3681 btrfs_sysfs_remove_one(fs_info);
3682
faa2dbf0 3683 btrfs_free_fs_roots(fs_info);
d10c5f31 3684
1a4319cc
LB
3685 btrfs_put_block_group_cache(fs_info);
3686
2b1360da
JB
3687 btrfs_free_block_groups(fs_info);
3688
de348ee0
WS
3689 /*
3690 * we must make sure there is not any read request to
3691 * submit after we stopping all workers.
3692 */
3693 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3694 btrfs_stop_all_workers(fs_info);
3695
47ab2a6c 3696 fs_info->open = 0;
13e6c37b 3697 free_root_pointers(fs_info, 1);
9ad6b7bc 3698
13e6c37b 3699 iput(fs_info->btree_inode);
d6bfde87 3700
21adbd5c
SB
3701#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3702 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3703 btrfsic_unmount(root, fs_info->fs_devices);
3704#endif
3705
dfe25020 3706 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3707 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3708
e2d84521 3709 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3710 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3711 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3712 bdi_destroy(&fs_info->bdi);
76dda93c 3713 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3714
53b381b3
DW
3715 btrfs_free_stripe_hash_table(fs_info);
3716
1cb048f5
FDBM
3717 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3718 root->orphan_block_rsv = NULL;
eb60ceac
CM
3719}
3720
b9fab919
CM
3721int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3722 int atomic)
5f39d397 3723{
1259ab75 3724 int ret;
727011e0 3725 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3726
0b32f4bb 3727 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3728 if (!ret)
3729 return ret;
3730
3731 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3732 parent_transid, atomic);
3733 if (ret == -EAGAIN)
3734 return ret;
1259ab75 3735 return !ret;
5f39d397
CM
3736}
3737
3738int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3739{
0b32f4bb 3740 return set_extent_buffer_uptodate(buf);
5f39d397 3741}
6702ed49 3742
5f39d397
CM
3743void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3744{
06ea65a3 3745 struct btrfs_root *root;
5f39d397 3746 u64 transid = btrfs_header_generation(buf);
b9473439 3747 int was_dirty;
b4ce94de 3748
06ea65a3
JB
3749#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3750 /*
3751 * This is a fast path so only do this check if we have sanity tests
3752 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3753 * outside of the sanity tests.
3754 */
3755 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3756 return;
3757#endif
3758 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3759 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3760 if (transid != root->fs_info->generation)
3761 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3762 "found %llu running %llu\n",
c1c9ff7c 3763 buf->start, transid, root->fs_info->generation);
0b32f4bb 3764 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3765 if (!was_dirty)
3766 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3767 buf->len,
3768 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3769#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3770 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3771 btrfs_print_leaf(root, buf);
3772 ASSERT(0);
3773 }
3774#endif
eb60ceac
CM
3775}
3776
b53d3f5d
LB
3777static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3778 int flush_delayed)
16cdcec7
MX
3779{
3780 /*
3781 * looks as though older kernels can get into trouble with
3782 * this code, they end up stuck in balance_dirty_pages forever
3783 */
e2d84521 3784 int ret;
16cdcec7
MX
3785
3786 if (current->flags & PF_MEMALLOC)
3787 return;
3788
b53d3f5d
LB
3789 if (flush_delayed)
3790 btrfs_balance_delayed_items(root);
16cdcec7 3791
e2d84521
MX
3792 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3793 BTRFS_DIRTY_METADATA_THRESH);
3794 if (ret > 0) {
d0e1d66b
NJ
3795 balance_dirty_pages_ratelimited(
3796 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3797 }
3798 return;
3799}
3800
b53d3f5d 3801void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3802{
b53d3f5d
LB
3803 __btrfs_btree_balance_dirty(root, 1);
3804}
585ad2c3 3805
b53d3f5d
LB
3806void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3807{
3808 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3809}
6b80053d 3810
ca7a79ad 3811int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3812{
727011e0 3813 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3814 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3815}
0da5468f 3816
fcd1f065 3817static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3818 int read_only)
3819{
1104a885
DS
3820 /*
3821 * Placeholder for checks
3822 */
fcd1f065 3823 return 0;
acce952b 3824}
3825
48a3b636 3826static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3827{
acce952b 3828 mutex_lock(&root->fs_info->cleaner_mutex);
3829 btrfs_run_delayed_iputs(root);
3830 mutex_unlock(&root->fs_info->cleaner_mutex);
3831
3832 down_write(&root->fs_info->cleanup_work_sem);
3833 up_write(&root->fs_info->cleanup_work_sem);
3834
3835 /* cleanup FS via transaction */
3836 btrfs_cleanup_transaction(root);
acce952b 3837}
3838
143bede5 3839static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3840{
acce952b 3841 struct btrfs_ordered_extent *ordered;
acce952b 3842
199c2a9c 3843 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3844 /*
3845 * This will just short circuit the ordered completion stuff which will
3846 * make sure the ordered extent gets properly cleaned up.
3847 */
199c2a9c 3848 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3849 root_extent_list)
3850 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3851 spin_unlock(&root->ordered_extent_lock);
3852}
3853
3854static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3855{
3856 struct btrfs_root *root;
3857 struct list_head splice;
3858
3859 INIT_LIST_HEAD(&splice);
3860
3861 spin_lock(&fs_info->ordered_root_lock);
3862 list_splice_init(&fs_info->ordered_roots, &splice);
3863 while (!list_empty(&splice)) {
3864 root = list_first_entry(&splice, struct btrfs_root,
3865 ordered_root);
1de2cfde
JB
3866 list_move_tail(&root->ordered_root,
3867 &fs_info->ordered_roots);
199c2a9c 3868
2a85d9ca 3869 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3870 btrfs_destroy_ordered_extents(root);
3871
2a85d9ca
LB
3872 cond_resched();
3873 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3874 }
3875 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3876}
3877
35a3621b
SB
3878static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3879 struct btrfs_root *root)
acce952b 3880{
3881 struct rb_node *node;
3882 struct btrfs_delayed_ref_root *delayed_refs;
3883 struct btrfs_delayed_ref_node *ref;
3884 int ret = 0;
3885
3886 delayed_refs = &trans->delayed_refs;
3887
3888 spin_lock(&delayed_refs->lock);
d7df2c79 3889 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3890 spin_unlock(&delayed_refs->lock);
efe120a0 3891 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3892 return ret;
3893 }
3894
d7df2c79
JB
3895 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3896 struct btrfs_delayed_ref_head *head;
e78417d1 3897 bool pin_bytes = false;
acce952b 3898
d7df2c79
JB
3899 head = rb_entry(node, struct btrfs_delayed_ref_head,
3900 href_node);
3901 if (!mutex_trylock(&head->mutex)) {
3902 atomic_inc(&head->node.refs);
3903 spin_unlock(&delayed_refs->lock);
eb12db69 3904
d7df2c79 3905 mutex_lock(&head->mutex);
e78417d1 3906 mutex_unlock(&head->mutex);
d7df2c79
JB
3907 btrfs_put_delayed_ref(&head->node);
3908 spin_lock(&delayed_refs->lock);
3909 continue;
3910 }
3911 spin_lock(&head->lock);
3912 while ((node = rb_first(&head->ref_root)) != NULL) {
3913 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3914 rb_node);
3915 ref->in_tree = 0;
3916 rb_erase(&ref->rb_node, &head->ref_root);
3917 atomic_dec(&delayed_refs->num_entries);
3918 btrfs_put_delayed_ref(ref);
e78417d1 3919 }
d7df2c79
JB
3920 if (head->must_insert_reserved)
3921 pin_bytes = true;
3922 btrfs_free_delayed_extent_op(head->extent_op);
3923 delayed_refs->num_heads--;
3924 if (head->processing == 0)
3925 delayed_refs->num_heads_ready--;
3926 atomic_dec(&delayed_refs->num_entries);
3927 head->node.in_tree = 0;
3928 rb_erase(&head->href_node, &delayed_refs->href_root);
3929 spin_unlock(&head->lock);
3930 spin_unlock(&delayed_refs->lock);
3931 mutex_unlock(&head->mutex);
acce952b 3932
d7df2c79
JB
3933 if (pin_bytes)
3934 btrfs_pin_extent(root, head->node.bytenr,
3935 head->node.num_bytes, 1);
3936 btrfs_put_delayed_ref(&head->node);
acce952b 3937 cond_resched();
3938 spin_lock(&delayed_refs->lock);
3939 }
3940
3941 spin_unlock(&delayed_refs->lock);
3942
3943 return ret;
3944}
3945
143bede5 3946static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3947{
3948 struct btrfs_inode *btrfs_inode;
3949 struct list_head splice;
3950
3951 INIT_LIST_HEAD(&splice);
3952
eb73c1b7
MX
3953 spin_lock(&root->delalloc_lock);
3954 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3955
3956 while (!list_empty(&splice)) {
eb73c1b7
MX
3957 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3958 delalloc_inodes);
acce952b 3959
3960 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3961 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3962 &btrfs_inode->runtime_flags);
eb73c1b7 3963 spin_unlock(&root->delalloc_lock);
acce952b 3964
3965 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3966
eb73c1b7 3967 spin_lock(&root->delalloc_lock);
acce952b 3968 }
3969
eb73c1b7
MX
3970 spin_unlock(&root->delalloc_lock);
3971}
3972
3973static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3974{
3975 struct btrfs_root *root;
3976 struct list_head splice;
3977
3978 INIT_LIST_HEAD(&splice);
3979
3980 spin_lock(&fs_info->delalloc_root_lock);
3981 list_splice_init(&fs_info->delalloc_roots, &splice);
3982 while (!list_empty(&splice)) {
3983 root = list_first_entry(&splice, struct btrfs_root,
3984 delalloc_root);
3985 list_del_init(&root->delalloc_root);
3986 root = btrfs_grab_fs_root(root);
3987 BUG_ON(!root);
3988 spin_unlock(&fs_info->delalloc_root_lock);
3989
3990 btrfs_destroy_delalloc_inodes(root);
3991 btrfs_put_fs_root(root);
3992
3993 spin_lock(&fs_info->delalloc_root_lock);
3994 }
3995 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3996}
3997
3998static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3999 struct extent_io_tree *dirty_pages,
4000 int mark)
4001{
4002 int ret;
acce952b 4003 struct extent_buffer *eb;
4004 u64 start = 0;
4005 u64 end;
acce952b 4006
4007 while (1) {
4008 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4009 mark, NULL);
acce952b 4010 if (ret)
4011 break;
4012
4013 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4014 while (start <= end) {
fd8b2b61 4015 eb = btrfs_find_tree_block(root, start,
707e8a07
DS
4016 root->nodesize);
4017 start += root->nodesize;
fd8b2b61 4018 if (!eb)
acce952b 4019 continue;
fd8b2b61 4020 wait_on_extent_buffer_writeback(eb);
acce952b 4021
fd8b2b61
JB
4022 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4023 &eb->bflags))
4024 clear_extent_buffer_dirty(eb);
4025 free_extent_buffer_stale(eb);
acce952b 4026 }
4027 }
4028
4029 return ret;
4030}
4031
4032static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4033 struct extent_io_tree *pinned_extents)
4034{
4035 struct extent_io_tree *unpin;
4036 u64 start;
4037 u64 end;
4038 int ret;
ed0eaa14 4039 bool loop = true;
acce952b 4040
4041 unpin = pinned_extents;
ed0eaa14 4042again:
acce952b 4043 while (1) {
4044 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4045 EXTENT_DIRTY, NULL);
acce952b 4046 if (ret)
4047 break;
4048
4049 /* opt_discard */
5378e607
LD
4050 if (btrfs_test_opt(root, DISCARD))
4051 ret = btrfs_error_discard_extent(root, start,
4052 end + 1 - start,
4053 NULL);
acce952b 4054
4055 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4056 btrfs_error_unpin_extent_range(root, start, end);
4057 cond_resched();
4058 }
4059
ed0eaa14
LB
4060 if (loop) {
4061 if (unpin == &root->fs_info->freed_extents[0])
4062 unpin = &root->fs_info->freed_extents[1];
4063 else
4064 unpin = &root->fs_info->freed_extents[0];
4065 loop = false;
4066 goto again;
4067 }
4068
acce952b 4069 return 0;
4070}
4071
49b25e05
JM
4072void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4073 struct btrfs_root *root)
4074{
4075 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4076
4a9d8bde 4077 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4078 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4079
4a9d8bde 4080 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4081 wake_up(&root->fs_info->transaction_wait);
49b25e05 4082
67cde344
MX
4083 btrfs_destroy_delayed_inodes(root);
4084 btrfs_assert_delayed_root_empty(root);
49b25e05 4085
49b25e05
JM
4086 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4087 EXTENT_DIRTY);
6e841e32
LB
4088 btrfs_destroy_pinned_extent(root,
4089 root->fs_info->pinned_extents);
49b25e05 4090
4a9d8bde
MX
4091 cur_trans->state =TRANS_STATE_COMPLETED;
4092 wake_up(&cur_trans->commit_wait);
4093
49b25e05
JM
4094 /*
4095 memset(cur_trans, 0, sizeof(*cur_trans));
4096 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4097 */
4098}
4099
48a3b636 4100static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4101{
4102 struct btrfs_transaction *t;
acce952b 4103
acce952b 4104 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4105
a4abeea4 4106 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4107 while (!list_empty(&root->fs_info->trans_list)) {
4108 t = list_first_entry(&root->fs_info->trans_list,
4109 struct btrfs_transaction, list);
4110 if (t->state >= TRANS_STATE_COMMIT_START) {
4111 atomic_inc(&t->use_count);
4112 spin_unlock(&root->fs_info->trans_lock);
4113 btrfs_wait_for_commit(root, t->transid);
4114 btrfs_put_transaction(t);
4115 spin_lock(&root->fs_info->trans_lock);
4116 continue;
4117 }
4118 if (t == root->fs_info->running_transaction) {
4119 t->state = TRANS_STATE_COMMIT_DOING;
4120 spin_unlock(&root->fs_info->trans_lock);
4121 /*
4122 * We wait for 0 num_writers since we don't hold a trans
4123 * handle open currently for this transaction.
4124 */
4125 wait_event(t->writer_wait,
4126 atomic_read(&t->num_writers) == 0);
4127 } else {
4128 spin_unlock(&root->fs_info->trans_lock);
4129 }
4130 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4131
724e2315
JB
4132 spin_lock(&root->fs_info->trans_lock);
4133 if (t == root->fs_info->running_transaction)
4134 root->fs_info->running_transaction = NULL;
acce952b 4135 list_del_init(&t->list);
724e2315 4136 spin_unlock(&root->fs_info->trans_lock);
acce952b 4137
724e2315
JB
4138 btrfs_put_transaction(t);
4139 trace_btrfs_transaction_commit(root);
4140 spin_lock(&root->fs_info->trans_lock);
4141 }
4142 spin_unlock(&root->fs_info->trans_lock);
4143 btrfs_destroy_all_ordered_extents(root->fs_info);
4144 btrfs_destroy_delayed_inodes(root);
4145 btrfs_assert_delayed_root_empty(root);
4146 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4147 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4148 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4149
4150 return 0;
4151}
4152
d1310b2e 4153static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4154 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4155 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4156 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4157 /* note we're sharing with inode.c for the merge bio hook */
4158 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4159};