Btrfs: change around extent-tree prealloc
[linux-2.6-block.git] / fs / btrfs / ctree.h
CommitLineData
234b63a0
CM
1#ifndef __BTRFS__
2#define __BTRFS__
eb60ceac 3
e20d96d6 4#include <linux/fs.h>
d6025579 5#include <linux/buffer_head.h>
d6e4a428 6#include <linux/kobject.h>
8ef97622 7#include "bit-radix.h"
e20d96d6 8
e089f05c 9struct btrfs_trans_handle;
79154b1b 10struct btrfs_transaction;
2c90e5d6 11extern struct kmem_cache *btrfs_path_cachep;
e089f05c 12
3768f368 13#define BTRFS_MAGIC "_BtRfS_M"
eb60ceac 14
6407bf6d 15#define BTRFS_ROOT_TREE_OBJECTID 1ULL
0bd93ba0
CM
16#define BTRFS_DEV_TREE_OBJECTID 2ULL
17#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
18#define BTRFS_FS_TREE_OBJECTID 4ULL
19#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
20#define BTRFS_FIRST_FREE_OBJECTID 6ULL
3768f368 21
e20d96d6
CM
22/*
23 * we can actually store much bigger names, but lets not confuse the rest
24 * of linux
25 */
26#define BTRFS_NAME_LEN 255
27
f254e52c
CM
28/* 32 bytes in various csum fields */
29#define BTRFS_CSUM_SIZE 32
30
fec577fb
CM
31/*
32 * the key defines the order in the tree, and so it also defines (optimal)
33 * block layout. objectid corresonds to the inode number. The flags
34 * tells us things about the object, and is a kind of stream selector.
35 * so for a given inode, keys with flags of 1 might refer to the inode
36 * data, flags of 2 may point to file data in the btree and flags == 3
37 * may point to extents.
38 *
39 * offset is the starting byte offset for this key in the stream.
e2fa7227
CM
40 *
41 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
42 * in cpu native order. Otherwise they are identical and their sizes
43 * should be the same (ie both packed)
fec577fb 44 */
e2fa7227
CM
45struct btrfs_disk_key {
46 __le64 objectid;
f254e52c 47 __le32 flags;
70b2befd 48 __le64 offset;
e2fa7227
CM
49} __attribute__ ((__packed__));
50
51struct btrfs_key {
eb60ceac 52 u64 objectid;
f254e52c 53 u32 flags;
70b2befd 54 u64 offset;
eb60ceac
CM
55} __attribute__ ((__packed__));
56
fec577fb
CM
57/*
58 * every tree block (leaf or node) starts with this header.
59 */
bb492bb0 60struct btrfs_header {
f254e52c 61 u8 csum[BTRFS_CSUM_SIZE];
3768f368 62 u8 fsid[16]; /* FS specific uuid */
bb492bb0 63 __le64 blocknr; /* which block this node is supposed to live in */
7f5c1516 64 __le64 generation;
4d775673 65 __le64 owner;
bb492bb0
CM
66 __le16 nritems;
67 __le16 flags;
9a6f11ed 68 u8 level;
eb60ceac
CM
69} __attribute__ ((__packed__));
70
234b63a0 71#define BTRFS_MAX_LEVEL 8
123abc88
CM
72#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
73 sizeof(struct btrfs_header)) / \
74 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
75#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
76#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
236454df
CM
77#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
78 sizeof(struct btrfs_item) - \
79 sizeof(struct btrfs_file_extent_item))
eb60ceac 80
e20d96d6 81struct buffer_head;
fec577fb
CM
82/*
83 * the super block basically lists the main trees of the FS
84 * it currently lacks any block count etc etc
85 */
234b63a0 86struct btrfs_super_block {
f254e52c 87 u8 csum[BTRFS_CSUM_SIZE];
87cbda5c 88 /* the first 3 fields must match struct btrfs_header */
3768f368
CM
89 u8 fsid[16]; /* FS specific uuid */
90 __le64 blocknr; /* this block number */
3768f368 91 __le64 magic;
123abc88 92 __le32 blocksize;
3768f368
CM
93 __le64 generation;
94 __le64 root;
95 __le64 total_blocks;
96 __le64 blocks_used;
2e635a27 97 __le64 root_dir_objectid;
b4100d64 98 __le64 last_device_id;
0bd93ba0
CM
99 /* fields below here vary with the underlying disk */
100 __le64 device_block_start;
101 __le64 device_num_blocks;
102 __le64 device_root;
b4100d64 103 __le64 device_id;
cfaa7295
CM
104} __attribute__ ((__packed__));
105
fec577fb 106/*
62e2749e 107 * A leaf is full of items. offset and size tell us where to find
fec577fb
CM
108 * the item in the leaf (relative to the start of the data area)
109 */
0783fcfc 110struct btrfs_item {
e2fa7227 111 struct btrfs_disk_key key;
123abc88 112 __le32 offset;
0783fcfc 113 __le16 size;
eb60ceac
CM
114} __attribute__ ((__packed__));
115
fec577fb
CM
116/*
117 * leaves have an item area and a data area:
118 * [item0, item1....itemN] [free space] [dataN...data1, data0]
119 *
120 * The data is separate from the items to get the keys closer together
121 * during searches.
122 */
234b63a0 123struct btrfs_leaf {
bb492bb0 124 struct btrfs_header header;
123abc88 125 struct btrfs_item items[];
eb60ceac
CM
126} __attribute__ ((__packed__));
127
fec577fb
CM
128/*
129 * all non-leaf blocks are nodes, they hold only keys and pointers to
130 * other blocks
131 */
123abc88
CM
132struct btrfs_key_ptr {
133 struct btrfs_disk_key key;
134 __le64 blockptr;
135} __attribute__ ((__packed__));
136
234b63a0 137struct btrfs_node {
bb492bb0 138 struct btrfs_header header;
123abc88 139 struct btrfs_key_ptr ptrs[];
eb60ceac
CM
140} __attribute__ ((__packed__));
141
fec577fb 142/*
234b63a0
CM
143 * btrfs_paths remember the path taken from the root down to the leaf.
144 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
fec577fb
CM
145 * to any other levels that are present.
146 *
147 * The slots array records the index of the item or block pointer
148 * used while walking the tree.
149 */
234b63a0 150struct btrfs_path {
e20d96d6 151 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
234b63a0 152 int slots[BTRFS_MAX_LEVEL];
eb60ceac 153};
5de08d7d 154
62e2749e
CM
155/*
156 * items in the extent btree are used to record the objectid of the
157 * owner of the block and the number of references
158 */
159struct btrfs_extent_item {
160 __le32 refs;
4d775673 161 __le64 owner;
62e2749e
CM
162} __attribute__ ((__packed__));
163
1e1d2701 164struct btrfs_inode_timespec {
f254e52c 165 __le64 sec;
1e1d2701
CM
166 __le32 nsec;
167} __attribute__ ((__packed__));
168
169/*
170 * there is no padding here on purpose. If you want to extent the inode,
171 * make a new item type
172 */
173struct btrfs_inode_item {
174 __le64 generation;
175 __le64 size;
176 __le64 nblocks;
177 __le32 nlink;
178 __le32 uid;
179 __le32 gid;
180 __le32 mode;
181 __le32 rdev;
182 __le16 flags;
183 __le16 compat_flags;
184 struct btrfs_inode_timespec atime;
185 struct btrfs_inode_timespec ctime;
186 struct btrfs_inode_timespec mtime;
187 struct btrfs_inode_timespec otime;
188} __attribute__ ((__packed__));
189
62e2749e 190struct btrfs_dir_item {
d6e4a428 191 struct btrfs_disk_key location;
62e2749e 192 __le16 flags;
a8a2ee0c 193 __le16 name_len;
62e2749e
CM
194 u8 type;
195} __attribute__ ((__packed__));
196
197struct btrfs_root_item {
d6e4a428
CM
198 struct btrfs_inode_item inode;
199 __le64 root_dirid;
62e2749e
CM
200 __le64 blocknr;
201 __le32 flags;
202 __le64 block_limit;
203 __le64 blocks_used;
204 __le32 refs;
9f5fae2f 205} __attribute__ ((__packed__));
62e2749e 206
236454df
CM
207#define BTRFS_FILE_EXTENT_REG 0
208#define BTRFS_FILE_EXTENT_INLINE 1
209
9f5fae2f 210struct btrfs_file_extent_item {
71951f35 211 __le64 generation;
236454df 212 u8 type;
9f5fae2f
CM
213 /*
214 * disk space consumed by the extent, checksum blocks are included
215 * in these numbers
216 */
217 __le64 disk_blocknr;
218 __le64 disk_num_blocks;
219 /*
dee26a9f 220 * the logical offset in file blocks (no csums)
9f5fae2f
CM
221 * this extent record is for. This allows a file extent to point
222 * into the middle of an existing extent on disk, sharing it
223 * between two snapshots (useful if some bytes in the middle of the
224 * extent have changed
225 */
226 __le64 offset;
227 /*
228 * the logical number of file blocks (no csums included)
229 */
230 __le64 num_blocks;
231} __attribute__ ((__packed__));
232
f254e52c
CM
233struct btrfs_csum_item {
234 u8 csum[BTRFS_CSUM_SIZE];
235} __attribute__ ((__packed__));
236
0bd93ba0
CM
237struct btrfs_device_item {
238 __le16 pathlen;
b4100d64 239 __le64 device_id;
0bd93ba0
CM
240} __attribute__ ((__packed__));
241
87cbda5c 242struct crypto_hash;
9f5fae2f 243struct btrfs_fs_info {
62e2749e
CM
244 struct btrfs_root *extent_root;
245 struct btrfs_root *tree_root;
0bd93ba0 246 struct btrfs_root *dev_root;
62e2749e 247 struct btrfs_key last_insert;
0f7d52f4 248 struct radix_tree_root fs_roots_radix;
8ef97622 249 struct radix_tree_root pending_del_radix;
62e2749e 250 struct radix_tree_root pinned_radix;
7eccb903 251 struct radix_tree_root dev_radix;
f2458e1d
CM
252
253 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
254 int extent_tree_insert_nr;
255 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
256 int extent_tree_prealloc_nr;
257
293ffd5f 258 u64 generation;
79154b1b 259 struct btrfs_transaction *running_transaction;
1261ec42 260 struct btrfs_super_block *disk_super;
e20d96d6
CM
261 struct buffer_head *sb_buffer;
262 struct super_block *sb;
d98237b3 263 struct inode *btree_inode;
79154b1b 264 struct mutex trans_mutex;
d561c025 265 struct mutex fs_mutex;
8fd17795 266 struct list_head trans_list;
87cbda5c
CM
267 struct crypto_hash *hash_tfm;
268 spinlock_t hash_lock;
e66f709b 269 int do_barriers;
d6e4a428 270 struct kobject kobj;
9f5fae2f
CM
271};
272
273/*
274 * in ram representation of the tree. extent_root is used for all allocations
f2458e1d 275 * and for the extent tree extent_root root.
9f5fae2f
CM
276 */
277struct btrfs_root {
e20d96d6
CM
278 struct buffer_head *node;
279 struct buffer_head *commit_root;
62e2749e
CM
280 struct btrfs_root_item root_item;
281 struct btrfs_key root_key;
9f5fae2f 282 struct btrfs_fs_info *fs_info;
0f7d52f4
CM
283 struct inode *inode;
284 u64 objectid;
285 u64 last_trans;
62e2749e 286 u32 blocksize;
9f5fae2f
CM
287 int ref_cows;
288 u32 type;
1b05da2e
CM
289 u64 highest_inode;
290 u64 last_inode_alloc;
62e2749e
CM
291};
292
62e2749e
CM
293/* the lower bits in the key flags defines the item type */
294#define BTRFS_KEY_TYPE_MAX 256
a429e513
CM
295#define BTRFS_KEY_TYPE_SHIFT 24
296#define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
297 BTRFS_KEY_TYPE_SHIFT)
1e1d2701
CM
298
299/*
300 * inode items have the data typically returned from stat and store other
301 * info about object characteristics. There is one for every file and dir in
302 * the FS
303 */
62e2749e 304#define BTRFS_INODE_ITEM_KEY 1
1e1d2701
CM
305
306/*
307 * dir items are the name -> inode pointers in a directory. There is one
308 * for every name in a directory.
309 */
62e2749e 310#define BTRFS_DIR_ITEM_KEY 2
bae45de0 311#define BTRFS_DIR_INDEX_KEY 3
1e1d2701
CM
312/*
313 * inline data is file data that fits in the btree.
314 */
bae45de0 315#define BTRFS_INLINE_DATA_KEY 4
1e1d2701
CM
316/*
317 * extent data is for data that can't fit in the btree. It points to
318 * a (hopefully) huge chunk of disk
319 */
bae45de0 320#define BTRFS_EXTENT_DATA_KEY 5
f254e52c
CM
321/*
322 * csum items have the checksums for data in the extents
323 */
bae45de0 324#define BTRFS_CSUM_ITEM_KEY 6
f254e52c 325
1e1d2701
CM
326/*
327 * root items point to tree roots. There are typically in the root
328 * tree used by the super block to find all the other trees
329 */
bae45de0 330#define BTRFS_ROOT_ITEM_KEY 7
1e1d2701
CM
331/*
332 * extent items are in the extent map tree. These record which blocks
333 * are used, and how many references there are to each block
334 */
bae45de0 335#define BTRFS_EXTENT_ITEM_KEY 8
9f5fae2f 336
0bd93ba0
CM
337/*
338 * dev items list the devices that make up the FS
339 */
340#define BTRFS_DEV_ITEM_KEY 9
341
1e1d2701
CM
342/*
343 * string items are for debugging. They just store a short string of
344 * data in the FS
345 */
0bd93ba0 346#define BTRFS_STRING_ITEM_KEY 10
1e1d2701
CM
347
348static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
349{
350 return le64_to_cpu(i->generation);
351}
352
353static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
354 u64 val)
355{
356 i->generation = cpu_to_le64(val);
357}
358
359static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
360{
361 return le64_to_cpu(i->size);
362}
363
364static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
365{
366 i->size = cpu_to_le64(val);
367}
368
369static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
370{
371 return le64_to_cpu(i->nblocks);
372}
373
374static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
375{
376 i->nblocks = cpu_to_le64(val);
377}
378
379static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
380{
381 return le32_to_cpu(i->nlink);
382}
383
384static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
385{
386 i->nlink = cpu_to_le32(val);
387}
388
389static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
390{
391 return le32_to_cpu(i->uid);
392}
393
394static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
395{
396 i->uid = cpu_to_le32(val);
397}
398
399static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
400{
401 return le32_to_cpu(i->gid);
402}
403
404static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
405{
406 i->gid = cpu_to_le32(val);
407}
408
409static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
410{
411 return le32_to_cpu(i->mode);
412}
413
414static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
415{
416 i->mode = cpu_to_le32(val);
417}
418
419static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
420{
421 return le32_to_cpu(i->rdev);
422}
423
424static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
425{
426 i->rdev = cpu_to_le32(val);
427}
428
429static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
430{
431 return le16_to_cpu(i->flags);
432}
433
434static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
435{
436 i->flags = cpu_to_le16(val);
437}
438
439static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
440{
441 return le16_to_cpu(i->compat_flags);
442}
443
444static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
445 u16 val)
446{
447 i->compat_flags = cpu_to_le16(val);
448}
449
f254e52c 450static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
e20d96d6 451{
f254e52c 452 return le64_to_cpu(ts->sec);
e20d96d6
CM
453}
454
455static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
f254e52c 456 u64 val)
e20d96d6 457{
f254e52c 458 ts->sec = cpu_to_le64(val);
e20d96d6
CM
459}
460
461static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
462{
463 return le32_to_cpu(ts->nsec);
464}
465
466static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
467 u32 val)
468{
469 ts->nsec = cpu_to_le32(val);
470}
471
234b63a0 472static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
cf27e1ee
CM
473{
474 return le32_to_cpu(ei->refs);
475}
476
234b63a0 477static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
cf27e1ee
CM
478{
479 ei->refs = cpu_to_le32(val);
480}
481
4d775673
CM
482static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
483{
484 return le64_to_cpu(ei->owner);
485}
486
487static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
488{
489 ei->owner = cpu_to_le64(val);
490}
491
234b63a0 492static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
1d4f8a0c 493{
123abc88 494 return le64_to_cpu(n->ptrs[nr].blockptr);
1d4f8a0c
CM
495}
496
4d775673 497
234b63a0
CM
498static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
499 u64 val)
1d4f8a0c 500{
123abc88 501 n->ptrs[nr].blockptr = cpu_to_le64(val);
1d4f8a0c
CM
502}
503
123abc88 504static inline u32 btrfs_item_offset(struct btrfs_item *item)
0783fcfc 505{
123abc88 506 return le32_to_cpu(item->offset);
0783fcfc
CM
507}
508
123abc88 509static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
0783fcfc 510{
123abc88 511 item->offset = cpu_to_le32(val);
0783fcfc
CM
512}
513
123abc88 514static inline u32 btrfs_item_end(struct btrfs_item *item)
0783fcfc 515{
123abc88 516 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
0783fcfc
CM
517}
518
519static inline u16 btrfs_item_size(struct btrfs_item *item)
520{
521 return le16_to_cpu(item->size);
522}
523
524static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
525{
526 item->size = cpu_to_le16(val);
527}
528
1d4f6404
CM
529static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
530{
531 return le16_to_cpu(d->flags);
532}
533
534static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
535{
536 d->flags = cpu_to_le16(val);
537}
538
539static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
540{
541 return d->type;
542}
543
544static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
545{
546 d->type = val;
547}
548
a8a2ee0c
CM
549static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
550{
551 return le16_to_cpu(d->name_len);
552}
553
554static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
1d4f6404 555{
a8a2ee0c 556 d->name_len = cpu_to_le16(val);
1d4f6404
CM
557}
558
e2fa7227
CM
559static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
560 struct btrfs_disk_key *disk)
561{
562 cpu->offset = le64_to_cpu(disk->offset);
563 cpu->flags = le32_to_cpu(disk->flags);
564 cpu->objectid = le64_to_cpu(disk->objectid);
565}
566
567static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
568 struct btrfs_key *cpu)
569{
570 disk->offset = cpu_to_le64(cpu->offset);
571 disk->flags = cpu_to_le32(cpu->flags);
572 disk->objectid = cpu_to_le64(cpu->objectid);
573}
574
62e2749e 575static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
e2fa7227
CM
576{
577 return le64_to_cpu(disk->objectid);
578}
579
62e2749e
CM
580static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
581 u64 val)
e2fa7227
CM
582{
583 disk->objectid = cpu_to_le64(val);
584}
585
62e2749e 586static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
e2fa7227
CM
587{
588 return le64_to_cpu(disk->offset);
589}
590
62e2749e
CM
591static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
592 u64 val)
e2fa7227
CM
593{
594 disk->offset = cpu_to_le64(val);
595}
596
62e2749e 597static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
e2fa7227
CM
598{
599 return le32_to_cpu(disk->flags);
600}
601
62e2749e
CM
602static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
603 u32 val)
e2fa7227
CM
604{
605 disk->flags = cpu_to_le32(val);
606}
607
a429e513 608static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
7fcde0e3 609{
a429e513 610 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
7fcde0e3
CM
611}
612
a429e513
CM
613static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
614 u32 val)
7fcde0e3 615{
a429e513
CM
616 u32 flags = btrfs_disk_key_flags(key);
617 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
618 val = val << BTRFS_KEY_TYPE_SHIFT;
619 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
620 btrfs_set_disk_key_flags(key, flags);
7fcde0e3
CM
621}
622
62e2749e
CM
623static inline u32 btrfs_key_type(struct btrfs_key *key)
624{
a429e513 625 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
62e2749e
CM
626}
627
a429e513 628static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
62e2749e 629{
a429e513
CM
630 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
631 val = val << BTRFS_KEY_TYPE_SHIFT;
632 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
62e2749e
CM
633}
634
bb492bb0 635static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
7518a238 636{
bb492bb0 637 return le64_to_cpu(h->blocknr);
7518a238
CM
638}
639
bb492bb0 640static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
7518a238 641{
bb492bb0 642 h->blocknr = cpu_to_le64(blocknr);
7518a238
CM
643}
644
7f5c1516
CM
645static inline u64 btrfs_header_generation(struct btrfs_header *h)
646{
647 return le64_to_cpu(h->generation);
648}
649
650static inline void btrfs_set_header_generation(struct btrfs_header *h,
651 u64 val)
652{
653 h->generation = cpu_to_le64(val);
654}
655
4d775673
CM
656static inline u64 btrfs_header_owner(struct btrfs_header *h)
657{
658 return le64_to_cpu(h->owner);
659}
660
661static inline void btrfs_set_header_owner(struct btrfs_header *h,
662 u64 val)
663{
664 h->owner = cpu_to_le64(val);
665}
666
bb492bb0 667static inline u16 btrfs_header_nritems(struct btrfs_header *h)
7518a238 668{
bb492bb0 669 return le16_to_cpu(h->nritems);
7518a238
CM
670}
671
bb492bb0 672static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
7518a238 673{
bb492bb0 674 h->nritems = cpu_to_le16(val);
7518a238
CM
675}
676
bb492bb0 677static inline u16 btrfs_header_flags(struct btrfs_header *h)
7518a238 678{
bb492bb0 679 return le16_to_cpu(h->flags);
7518a238
CM
680}
681
bb492bb0 682static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
7518a238 683{
bb492bb0 684 h->flags = cpu_to_le16(val);
7518a238
CM
685}
686
bb492bb0 687static inline int btrfs_header_level(struct btrfs_header *h)
7518a238 688{
9a6f11ed 689 return h->level;
7518a238
CM
690}
691
bb492bb0 692static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
7518a238 693{
234b63a0 694 BUG_ON(level > BTRFS_MAX_LEVEL);
9a6f11ed 695 h->level = level;
7518a238
CM
696}
697
234b63a0 698static inline int btrfs_is_leaf(struct btrfs_node *n)
7518a238
CM
699{
700 return (btrfs_header_level(&n->header) == 0);
701}
702
3768f368
CM
703static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
704{
705 return le64_to_cpu(item->blocknr);
706}
707
708static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
709{
710 item->blocknr = cpu_to_le64(val);
711}
712
d6e4a428
CM
713static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
714{
715 return le64_to_cpu(item->root_dirid);
716}
717
718static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
719{
720 item->root_dirid = cpu_to_le64(val);
721}
722
3768f368
CM
723static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
724{
725 return le32_to_cpu(item->refs);
726}
727
728static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
729{
730 item->refs = cpu_to_le32(val);
731}
732
733static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
734{
735 return le64_to_cpu(s->blocknr);
736}
737
738static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
739{
740 s->blocknr = cpu_to_le64(val);
741}
742
0f7d52f4
CM
743static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
744{
745 return le64_to_cpu(s->generation);
746}
747
748static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
749 u64 val)
750{
751 s->generation = cpu_to_le64(val);
752}
753
3768f368
CM
754static inline u64 btrfs_super_root(struct btrfs_super_block *s)
755{
756 return le64_to_cpu(s->root);
757}
758
759static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
760{
761 s->root = cpu_to_le64(val);
762}
763
764static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
765{
766 return le64_to_cpu(s->total_blocks);
767}
768
769static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
770 u64 val)
771{
772 s->total_blocks = cpu_to_le64(val);
773}
774
775static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
776{
777 return le64_to_cpu(s->blocks_used);
778}
779
780static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
781 u64 val)
782{
783 s->blocks_used = cpu_to_le64(val);
784}
785
123abc88 786static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
3768f368 787{
123abc88 788 return le32_to_cpu(s->blocksize);
3768f368
CM
789}
790
791static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
123abc88
CM
792 u32 val)
793{
794 s->blocksize = cpu_to_le32(val);
795}
796
2e635a27
CM
797static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
798{
799 return le64_to_cpu(s->root_dir_objectid);
800}
801
802static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
803 val)
804{
805 s->root_dir_objectid = cpu_to_le64(val);
806}
807
b4100d64
CM
808static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
809{
810 return le64_to_cpu(s->last_device_id);
811}
812
813static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
814 u64 val)
815{
816 s->last_device_id = cpu_to_le64(val);
817}
818
819static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
820{
821 return le64_to_cpu(s->device_id);
822}
823
824static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
825 u64 val)
826{
827 s->device_id = cpu_to_le64(val);
828}
829
0bd93ba0
CM
830static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
831{
832 return le64_to_cpu(s->device_block_start);
833}
834
835static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
836 *s, u64 val)
837{
838 s->device_block_start = cpu_to_le64(val);
839}
840
841static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
842{
843 return le64_to_cpu(s->device_num_blocks);
844}
845
846static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
847 *s, u64 val)
848{
849 s->device_num_blocks = cpu_to_le64(val);
850}
851
852static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
853{
854 return le64_to_cpu(s->device_root);
855}
856
857static inline void btrfs_set_super_device_root(struct btrfs_super_block
858 *s, u64 val)
859{
860 s->device_root = cpu_to_le64(val);
861}
862
863
123abc88 864static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
3768f368 865{
123abc88 866 return (u8 *)l->items;
3768f368 867}
9f5fae2f 868
236454df
CM
869static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
870{
871 return e->type;
872}
873static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
874 u8 val)
875{
876 e->type = val;
877}
878
879static inline char *btrfs_file_extent_inline_start(struct
880 btrfs_file_extent_item *e)
881{
882 return (char *)(&e->disk_blocknr);
883}
884
885static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
886{
887 return (unsigned long)(&((struct
888 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
889}
890
891static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
892{
893 struct btrfs_file_extent_item *fe = NULL;
894 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
895}
896
9f5fae2f
CM
897static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
898 *e)
899{
900 return le64_to_cpu(e->disk_blocknr);
901}
902
903static inline void btrfs_set_file_extent_disk_blocknr(struct
904 btrfs_file_extent_item
905 *e, u64 val)
906{
907 e->disk_blocknr = cpu_to_le64(val);
908}
909
71951f35
CM
910static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
911{
912 return le64_to_cpu(e->generation);
913}
914
915static inline void btrfs_set_file_extent_generation(struct
916 btrfs_file_extent_item *e,
917 u64 val)
918{
919 e->generation = cpu_to_le64(val);
920}
921
9f5fae2f
CM
922static inline u64 btrfs_file_extent_disk_num_blocks(struct
923 btrfs_file_extent_item *e)
924{
925 return le64_to_cpu(e->disk_num_blocks);
926}
927
928static inline void btrfs_set_file_extent_disk_num_blocks(struct
929 btrfs_file_extent_item
930 *e, u64 val)
931{
932 e->disk_num_blocks = cpu_to_le64(val);
933}
934
935static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
936{
937 return le64_to_cpu(e->offset);
938}
939
940static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
941 *e, u64 val)
942{
943 e->offset = cpu_to_le64(val);
944}
945
946static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
947 *e)
948{
949 return le64_to_cpu(e->num_blocks);
950}
951
952static inline void btrfs_set_file_extent_num_blocks(struct
953 btrfs_file_extent_item *e,
954 u64 val)
955{
956 e->num_blocks = cpu_to_le64(val);
957}
958
0bd93ba0
CM
959static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
960{
961 return le16_to_cpu(d->pathlen);
962}
963
964static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
965 u16 val)
966{
967 d->pathlen = cpu_to_le16(val);
968}
969
b4100d64
CM
970static inline u64 btrfs_device_id(struct btrfs_device_item *d)
971{
972 return le64_to_cpu(d->device_id);
973}
974
975static inline void btrfs_set_device_id(struct btrfs_device_item *d,
976 u64 val)
977{
978 d->device_id = cpu_to_le64(val);
979}
980
e20d96d6
CM
981static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
982{
983 return sb->s_fs_info;
984}
985
d6025579
CM
986static inline void btrfs_check_bounds(void *vptr, size_t len,
987 void *vcontainer, size_t container_len)
988{
989 char *ptr = vptr;
990 char *container = vcontainer;
991 WARN_ON(ptr < container);
992 WARN_ON(ptr + len > container + container_len);
993}
994
995static inline void btrfs_memcpy(struct btrfs_root *root,
996 void *dst_block,
997 void *dst, const void *src, size_t nr)
998{
999 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1000 memcpy(dst, src, nr);
1001}
1002
1003static inline void btrfs_memmove(struct btrfs_root *root,
1004 void *dst_block,
1005 void *dst, void *src, size_t nr)
1006{
1007 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1008 memmove(dst, src, nr);
1009}
1010
1011static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1012{
1013 WARN_ON(!atomic_read(&bh->b_count));
1014 mark_buffer_dirty(bh);
1015}
1016
4beb1b8b
CM
1017/* helper function to cast into the data area of the leaf. */
1018#define btrfs_item_ptr(leaf, slot, type) \
123abc88
CM
1019 ((type *)(btrfs_leaf_data(leaf) + \
1020 btrfs_item_offset((leaf)->items + (slot))))
4beb1b8b 1021
b18c6685 1022/* extent-tree.c */
c5739bba
CM
1023int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1024 struct btrfs_root *root);
e20d96d6 1025struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
e089f05c 1026 struct btrfs_root *root);
4d775673
CM
1027int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1028 struct btrfs_root *root, u64 owner,
c62a1920 1029 u64 num_blocks, u64 search_start,
4d775673 1030 u64 search_end, struct btrfs_key *ins);
e089f05c 1031int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e20d96d6 1032 struct buffer_head *buf);
e089f05c
CM
1033int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1034 *root, u64 blocknr, u64 num_blocks, int pin);
dee26a9f
CM
1035int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1036 btrfs_root *root);
b18c6685
CM
1037int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1038 struct btrfs_root *root,
1039 u64 blocknr, u64 num_blocks);
dee26a9f 1040/* ctree.c */
6567e837
CM
1041int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1042 *root, struct btrfs_path *path, u32 data_size);
b18c6685
CM
1043int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1044 struct btrfs_root *root,
1045 struct btrfs_path *path,
1046 u32 new_size);
e089f05c
CM
1047int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1048 *root, struct btrfs_key *key, struct btrfs_path *p, int
1049 ins_len, int cow);
234b63a0 1050void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
2c90e5d6
CM
1051struct btrfs_path *btrfs_alloc_path(void);
1052void btrfs_free_path(struct btrfs_path *p);
234b63a0 1053void btrfs_init_path(struct btrfs_path *p);
e089f05c
CM
1054int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1055 struct btrfs_path *path);
1056int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1057 *root, struct btrfs_key *key, void *data, u32 data_size);
1058int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1059 *root, struct btrfs_path *path, struct btrfs_key
1060 *cpu_key, u32 data_size);
234b63a0 1061int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
123abc88 1062int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
e089f05c 1063int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
e20d96d6 1064 *root, struct buffer_head *snap);
dee26a9f 1065/* root-item.c */
e089f05c
CM
1066int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1067 struct btrfs_key *key);
1068int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1069 *root, struct btrfs_key *key, struct btrfs_root_item
1070 *item);
1071int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1072 *root, struct btrfs_key *key, struct btrfs_root_item
1073 *item);
1074int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1075 btrfs_root_item *item, struct btrfs_key *key);
dee26a9f 1076/* dir-item.c */
e089f05c 1077int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
d6e4a428
CM
1078 *root, const char *name, int name_len, u64 dir,
1079 struct btrfs_key *location, u8 type);
7e38180e
CM
1080struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1081 struct btrfs_root *root,
1082 struct btrfs_path *path, u64 dir,
1083 const char *name, int name_len,
1084 int mod);
1085struct btrfs_dir_item *
1086btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path, u64 dir,
1089 u64 objectid, const char *name, int name_len,
1090 int mod);
1091struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1092 struct btrfs_path *path,
7f5c1516 1093 const char *name, int name_len);
7e38180e
CM
1094int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1095 struct btrfs_root *root,
1096 struct btrfs_path *path,
1097 struct btrfs_dir_item *di);
dee26a9f 1098/* inode-map.c */
9f5fae2f
CM
1099int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *fs_root,
1101 u64 dirid, u64 *objectid);
5be6f7f1
CM
1102int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1103
dee26a9f 1104/* inode-item.c */
293ffd5f
CM
1105int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1106 *root, u64 objectid, struct btrfs_inode_item
1107 *inode_item);
1108int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
d6e4a428
CM
1109 *root, struct btrfs_path *path,
1110 struct btrfs_key *location, int mod);
dee26a9f
CM
1111
1112/* file-item.c */
b18c6685 1113int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
dee26a9f 1114 struct btrfs_root *root,
b18c6685
CM
1115 u64 objectid, u64 pos, u64 offset,
1116 u64 num_blocks);
dee26a9f
CM
1117int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1118 struct btrfs_root *root,
1119 struct btrfs_path *path, u64 objectid,
9773a788 1120 u64 blocknr, int mod);
f254e52c
CM
1121int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1122 struct btrfs_root *root,
1123 u64 objectid, u64 offset,
1124 char *data, size_t len);
1125int btrfs_csum_verify_file_block(struct btrfs_root *root,
1126 u64 objectid, u64 offset,
1127 char *data, size_t len);
b18c6685
CM
1128struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1129 struct btrfs_root *root,
1130 struct btrfs_path *path,
1131 u64 objectid, u64 offset,
1132 int cow);
d6e4a428
CM
1133/* super.c */
1134extern struct subsystem btrfs_subsys;
1135
eb60ceac 1136#endif