Btrfs: add a device id to device items
[linux-2.6-block.git] / fs / btrfs / ctree.h
CommitLineData
234b63a0
CM
1#ifndef __BTRFS__
2#define __BTRFS__
eb60ceac 3
e20d96d6 4#include <linux/fs.h>
d6025579 5#include <linux/buffer_head.h>
d6e4a428 6#include <linux/kobject.h>
8ef97622 7#include "bit-radix.h"
e20d96d6 8
e089f05c 9struct btrfs_trans_handle;
79154b1b 10struct btrfs_transaction;
2c90e5d6 11extern struct kmem_cache *btrfs_path_cachep;
e089f05c 12
3768f368 13#define BTRFS_MAGIC "_BtRfS_M"
eb60ceac 14
6407bf6d 15#define BTRFS_ROOT_TREE_OBJECTID 1ULL
0bd93ba0
CM
16#define BTRFS_DEV_TREE_OBJECTID 2ULL
17#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
18#define BTRFS_FS_TREE_OBJECTID 4ULL
19#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
20#define BTRFS_FIRST_FREE_OBJECTID 6ULL
3768f368 21
e20d96d6
CM
22/*
23 * we can actually store much bigger names, but lets not confuse the rest
24 * of linux
25 */
26#define BTRFS_NAME_LEN 255
27
f254e52c
CM
28/* 32 bytes in various csum fields */
29#define BTRFS_CSUM_SIZE 32
30
fec577fb
CM
31/*
32 * the key defines the order in the tree, and so it also defines (optimal)
33 * block layout. objectid corresonds to the inode number. The flags
34 * tells us things about the object, and is a kind of stream selector.
35 * so for a given inode, keys with flags of 1 might refer to the inode
36 * data, flags of 2 may point to file data in the btree and flags == 3
37 * may point to extents.
38 *
39 * offset is the starting byte offset for this key in the stream.
e2fa7227
CM
40 *
41 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
42 * in cpu native order. Otherwise they are identical and their sizes
43 * should be the same (ie both packed)
fec577fb 44 */
e2fa7227
CM
45struct btrfs_disk_key {
46 __le64 objectid;
a8a2ee0c 47 __le64 offset;
f254e52c 48 __le32 flags;
e2fa7227
CM
49} __attribute__ ((__packed__));
50
51struct btrfs_key {
eb60ceac 52 u64 objectid;
a8a2ee0c 53 u64 offset;
f254e52c 54 u32 flags;
eb60ceac
CM
55} __attribute__ ((__packed__));
56
fec577fb
CM
57/*
58 * every tree block (leaf or node) starts with this header.
59 */
bb492bb0 60struct btrfs_header {
f254e52c 61 u8 csum[BTRFS_CSUM_SIZE];
3768f368 62 u8 fsid[16]; /* FS specific uuid */
bb492bb0 63 __le64 blocknr; /* which block this node is supposed to live in */
7f5c1516 64 __le64 generation;
bb492bb0
CM
65 __le16 nritems;
66 __le16 flags;
9a6f11ed 67 u8 level;
eb60ceac
CM
68} __attribute__ ((__packed__));
69
234b63a0 70#define BTRFS_MAX_LEVEL 8
123abc88
CM
71#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
72 sizeof(struct btrfs_header)) / \
73 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
74#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
75#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
eb60ceac 76
e20d96d6 77struct buffer_head;
fec577fb
CM
78/*
79 * the super block basically lists the main trees of the FS
80 * it currently lacks any block count etc etc
81 */
234b63a0 82struct btrfs_super_block {
f254e52c 83 u8 csum[BTRFS_CSUM_SIZE];
87cbda5c 84 /* the first 3 fields must match struct btrfs_header */
3768f368
CM
85 u8 fsid[16]; /* FS specific uuid */
86 __le64 blocknr; /* this block number */
3768f368 87 __le64 magic;
123abc88 88 __le32 blocksize;
3768f368
CM
89 __le64 generation;
90 __le64 root;
91 __le64 total_blocks;
92 __le64 blocks_used;
2e635a27 93 __le64 root_dir_objectid;
b4100d64 94 __le64 last_device_id;
0bd93ba0
CM
95 /* fields below here vary with the underlying disk */
96 __le64 device_block_start;
97 __le64 device_num_blocks;
98 __le64 device_root;
b4100d64 99 __le64 device_id;
cfaa7295
CM
100} __attribute__ ((__packed__));
101
fec577fb 102/*
62e2749e 103 * A leaf is full of items. offset and size tell us where to find
fec577fb
CM
104 * the item in the leaf (relative to the start of the data area)
105 */
0783fcfc 106struct btrfs_item {
e2fa7227 107 struct btrfs_disk_key key;
123abc88 108 __le32 offset;
0783fcfc 109 __le16 size;
eb60ceac
CM
110} __attribute__ ((__packed__));
111
fec577fb
CM
112/*
113 * leaves have an item area and a data area:
114 * [item0, item1....itemN] [free space] [dataN...data1, data0]
115 *
116 * The data is separate from the items to get the keys closer together
117 * during searches.
118 */
234b63a0 119struct btrfs_leaf {
bb492bb0 120 struct btrfs_header header;
123abc88 121 struct btrfs_item items[];
eb60ceac
CM
122} __attribute__ ((__packed__));
123
fec577fb
CM
124/*
125 * all non-leaf blocks are nodes, they hold only keys and pointers to
126 * other blocks
127 */
123abc88
CM
128struct btrfs_key_ptr {
129 struct btrfs_disk_key key;
130 __le64 blockptr;
131} __attribute__ ((__packed__));
132
234b63a0 133struct btrfs_node {
bb492bb0 134 struct btrfs_header header;
123abc88 135 struct btrfs_key_ptr ptrs[];
eb60ceac
CM
136} __attribute__ ((__packed__));
137
fec577fb 138/*
234b63a0
CM
139 * btrfs_paths remember the path taken from the root down to the leaf.
140 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
fec577fb
CM
141 * to any other levels that are present.
142 *
143 * The slots array records the index of the item or block pointer
144 * used while walking the tree.
145 */
234b63a0 146struct btrfs_path {
e20d96d6 147 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
234b63a0 148 int slots[BTRFS_MAX_LEVEL];
eb60ceac 149};
5de08d7d 150
62e2749e
CM
151/*
152 * items in the extent btree are used to record the objectid of the
153 * owner of the block and the number of references
154 */
155struct btrfs_extent_item {
156 __le32 refs;
62e2749e
CM
157} __attribute__ ((__packed__));
158
1e1d2701 159struct btrfs_inode_timespec {
f254e52c 160 __le64 sec;
1e1d2701
CM
161 __le32 nsec;
162} __attribute__ ((__packed__));
163
164/*
165 * there is no padding here on purpose. If you want to extent the inode,
166 * make a new item type
167 */
168struct btrfs_inode_item {
169 __le64 generation;
170 __le64 size;
171 __le64 nblocks;
172 __le32 nlink;
173 __le32 uid;
174 __le32 gid;
175 __le32 mode;
176 __le32 rdev;
177 __le16 flags;
178 __le16 compat_flags;
179 struct btrfs_inode_timespec atime;
180 struct btrfs_inode_timespec ctime;
181 struct btrfs_inode_timespec mtime;
182 struct btrfs_inode_timespec otime;
183} __attribute__ ((__packed__));
184
185/* inline data is just a blob of bytes */
186struct btrfs_inline_data_item {
187 u8 data;
188} __attribute__ ((__packed__));
189
62e2749e 190struct btrfs_dir_item {
d6e4a428 191 struct btrfs_disk_key location;
62e2749e 192 __le16 flags;
a8a2ee0c 193 __le16 name_len;
62e2749e
CM
194 u8 type;
195} __attribute__ ((__packed__));
196
197struct btrfs_root_item {
d6e4a428
CM
198 struct btrfs_inode_item inode;
199 __le64 root_dirid;
62e2749e
CM
200 __le64 blocknr;
201 __le32 flags;
202 __le64 block_limit;
203 __le64 blocks_used;
204 __le32 refs;
9f5fae2f 205} __attribute__ ((__packed__));
62e2749e 206
9f5fae2f 207struct btrfs_file_extent_item {
71951f35 208 __le64 generation;
9f5fae2f
CM
209 /*
210 * disk space consumed by the extent, checksum blocks are included
211 * in these numbers
212 */
213 __le64 disk_blocknr;
214 __le64 disk_num_blocks;
215 /*
dee26a9f 216 * the logical offset in file blocks (no csums)
9f5fae2f
CM
217 * this extent record is for. This allows a file extent to point
218 * into the middle of an existing extent on disk, sharing it
219 * between two snapshots (useful if some bytes in the middle of the
220 * extent have changed
221 */
222 __le64 offset;
223 /*
224 * the logical number of file blocks (no csums included)
225 */
226 __le64 num_blocks;
227} __attribute__ ((__packed__));
228
f254e52c
CM
229struct btrfs_csum_item {
230 u8 csum[BTRFS_CSUM_SIZE];
231} __attribute__ ((__packed__));
232
0bd93ba0
CM
233struct btrfs_device_item {
234 __le16 pathlen;
b4100d64 235 __le64 device_id;
0bd93ba0
CM
236} __attribute__ ((__packed__));
237
87cbda5c 238struct crypto_hash;
9f5fae2f 239struct btrfs_fs_info {
62e2749e
CM
240 struct btrfs_root *extent_root;
241 struct btrfs_root *tree_root;
0bd93ba0 242 struct btrfs_root *dev_root;
62e2749e
CM
243 struct btrfs_key current_insert;
244 struct btrfs_key last_insert;
0f7d52f4 245 struct radix_tree_root fs_roots_radix;
8ef97622 246 struct radix_tree_root pending_del_radix;
62e2749e 247 struct radix_tree_root pinned_radix;
7eccb903 248 struct radix_tree_root dev_radix;
293ffd5f 249 u64 generation;
79154b1b 250 struct btrfs_transaction *running_transaction;
1261ec42 251 struct btrfs_super_block *disk_super;
e20d96d6
CM
252 struct buffer_head *sb_buffer;
253 struct super_block *sb;
d98237b3 254 struct inode *btree_inode;
79154b1b 255 struct mutex trans_mutex;
d561c025 256 struct mutex fs_mutex;
87cbda5c
CM
257 struct crypto_hash *hash_tfm;
258 spinlock_t hash_lock;
d6e4a428 259 struct kobject kobj;
9f5fae2f
CM
260};
261
262/*
263 * in ram representation of the tree. extent_root is used for all allocations
264 * and for the extent tree extent_root root. current_insert is used
265 * only for the extent tree.
266 */
267struct btrfs_root {
e20d96d6
CM
268 struct buffer_head *node;
269 struct buffer_head *commit_root;
62e2749e
CM
270 struct btrfs_root_item root_item;
271 struct btrfs_key root_key;
9f5fae2f 272 struct btrfs_fs_info *fs_info;
0f7d52f4
CM
273 struct inode *inode;
274 u64 objectid;
275 u64 last_trans;
62e2749e 276 u32 blocksize;
9f5fae2f
CM
277 int ref_cows;
278 u32 type;
1b05da2e
CM
279 u64 highest_inode;
280 u64 last_inode_alloc;
62e2749e
CM
281};
282
62e2749e
CM
283/* the lower bits in the key flags defines the item type */
284#define BTRFS_KEY_TYPE_MAX 256
285#define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
1e1d2701 286
7fcde0e3
CM
287#define BTRFS_KEY_OVERFLOW_MAX 128
288#define BTRFS_KEY_OVERFLOW_SHIFT 8
289#define BTRFS_KEY_OVERFLOW_MASK (0x7FULL << BTRFS_KEY_OVERFLOW_SHIFT)
290
1e1d2701
CM
291/*
292 * inode items have the data typically returned from stat and store other
293 * info about object characteristics. There is one for every file and dir in
294 * the FS
295 */
62e2749e 296#define BTRFS_INODE_ITEM_KEY 1
1e1d2701
CM
297
298/*
299 * dir items are the name -> inode pointers in a directory. There is one
300 * for every name in a directory.
301 */
62e2749e 302#define BTRFS_DIR_ITEM_KEY 2
bae45de0 303#define BTRFS_DIR_INDEX_KEY 3
1e1d2701
CM
304/*
305 * inline data is file data that fits in the btree.
306 */
bae45de0 307#define BTRFS_INLINE_DATA_KEY 4
1e1d2701
CM
308/*
309 * extent data is for data that can't fit in the btree. It points to
310 * a (hopefully) huge chunk of disk
311 */
bae45de0 312#define BTRFS_EXTENT_DATA_KEY 5
f254e52c
CM
313/*
314 * csum items have the checksums for data in the extents
315 */
bae45de0 316#define BTRFS_CSUM_ITEM_KEY 6
f254e52c 317
1e1d2701
CM
318/*
319 * root items point to tree roots. There are typically in the root
320 * tree used by the super block to find all the other trees
321 */
bae45de0 322#define BTRFS_ROOT_ITEM_KEY 7
1e1d2701
CM
323/*
324 * extent items are in the extent map tree. These record which blocks
325 * are used, and how many references there are to each block
326 */
bae45de0 327#define BTRFS_EXTENT_ITEM_KEY 8
9f5fae2f 328
0bd93ba0
CM
329/*
330 * dev items list the devices that make up the FS
331 */
332#define BTRFS_DEV_ITEM_KEY 9
333
1e1d2701
CM
334/*
335 * string items are for debugging. They just store a short string of
336 * data in the FS
337 */
0bd93ba0 338#define BTRFS_STRING_ITEM_KEY 10
1e1d2701
CM
339
340static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
341{
342 return le64_to_cpu(i->generation);
343}
344
345static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
346 u64 val)
347{
348 i->generation = cpu_to_le64(val);
349}
350
351static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
352{
353 return le64_to_cpu(i->size);
354}
355
356static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
357{
358 i->size = cpu_to_le64(val);
359}
360
361static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
362{
363 return le64_to_cpu(i->nblocks);
364}
365
366static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
367{
368 i->nblocks = cpu_to_le64(val);
369}
370
371static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
372{
373 return le32_to_cpu(i->nlink);
374}
375
376static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
377{
378 i->nlink = cpu_to_le32(val);
379}
380
381static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
382{
383 return le32_to_cpu(i->uid);
384}
385
386static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
387{
388 i->uid = cpu_to_le32(val);
389}
390
391static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
392{
393 return le32_to_cpu(i->gid);
394}
395
396static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
397{
398 i->gid = cpu_to_le32(val);
399}
400
401static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
402{
403 return le32_to_cpu(i->mode);
404}
405
406static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
407{
408 i->mode = cpu_to_le32(val);
409}
410
411static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
412{
413 return le32_to_cpu(i->rdev);
414}
415
416static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
417{
418 i->rdev = cpu_to_le32(val);
419}
420
421static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
422{
423 return le16_to_cpu(i->flags);
424}
425
426static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
427{
428 i->flags = cpu_to_le16(val);
429}
430
431static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
432{
433 return le16_to_cpu(i->compat_flags);
434}
435
436static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
437 u16 val)
438{
439 i->compat_flags = cpu_to_le16(val);
440}
441
f254e52c 442static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
e20d96d6 443{
f254e52c 444 return le64_to_cpu(ts->sec);
e20d96d6
CM
445}
446
447static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
f254e52c 448 u64 val)
e20d96d6 449{
f254e52c 450 ts->sec = cpu_to_le64(val);
e20d96d6
CM
451}
452
453static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
454{
455 return le32_to_cpu(ts->nsec);
456}
457
458static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
459 u32 val)
460{
461 ts->nsec = cpu_to_le32(val);
462}
463
234b63a0 464static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
cf27e1ee
CM
465{
466 return le32_to_cpu(ei->refs);
467}
468
234b63a0 469static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
cf27e1ee
CM
470{
471 ei->refs = cpu_to_le32(val);
472}
473
234b63a0 474static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
1d4f8a0c 475{
123abc88 476 return le64_to_cpu(n->ptrs[nr].blockptr);
1d4f8a0c
CM
477}
478
234b63a0
CM
479static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
480 u64 val)
1d4f8a0c 481{
123abc88 482 n->ptrs[nr].blockptr = cpu_to_le64(val);
1d4f8a0c
CM
483}
484
123abc88 485static inline u32 btrfs_item_offset(struct btrfs_item *item)
0783fcfc 486{
123abc88 487 return le32_to_cpu(item->offset);
0783fcfc
CM
488}
489
123abc88 490static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
0783fcfc 491{
123abc88 492 item->offset = cpu_to_le32(val);
0783fcfc
CM
493}
494
123abc88 495static inline u32 btrfs_item_end(struct btrfs_item *item)
0783fcfc 496{
123abc88 497 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
0783fcfc
CM
498}
499
500static inline u16 btrfs_item_size(struct btrfs_item *item)
501{
502 return le16_to_cpu(item->size);
503}
504
505static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
506{
507 item->size = cpu_to_le16(val);
508}
509
1d4f6404
CM
510static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
511{
512 return le16_to_cpu(d->flags);
513}
514
515static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
516{
517 d->flags = cpu_to_le16(val);
518}
519
520static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
521{
522 return d->type;
523}
524
525static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
526{
527 d->type = val;
528}
529
a8a2ee0c
CM
530static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
531{
532 return le16_to_cpu(d->name_len);
533}
534
535static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
1d4f6404 536{
a8a2ee0c 537 d->name_len = cpu_to_le16(val);
1d4f6404
CM
538}
539
e2fa7227
CM
540static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
541 struct btrfs_disk_key *disk)
542{
543 cpu->offset = le64_to_cpu(disk->offset);
544 cpu->flags = le32_to_cpu(disk->flags);
545 cpu->objectid = le64_to_cpu(disk->objectid);
546}
547
548static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
549 struct btrfs_key *cpu)
550{
551 disk->offset = cpu_to_le64(cpu->offset);
552 disk->flags = cpu_to_le32(cpu->flags);
553 disk->objectid = cpu_to_le64(cpu->objectid);
554}
555
62e2749e 556static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
e2fa7227
CM
557{
558 return le64_to_cpu(disk->objectid);
559}
560
62e2749e
CM
561static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
562 u64 val)
e2fa7227
CM
563{
564 disk->objectid = cpu_to_le64(val);
565}
566
62e2749e 567static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
e2fa7227
CM
568{
569 return le64_to_cpu(disk->offset);
570}
571
62e2749e
CM
572static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
573 u64 val)
e2fa7227
CM
574{
575 disk->offset = cpu_to_le64(val);
576}
577
62e2749e 578static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
e2fa7227
CM
579{
580 return le32_to_cpu(disk->flags);
581}
582
62e2749e
CM
583static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
584 u32 val)
e2fa7227
CM
585{
586 disk->flags = cpu_to_le32(val);
587}
588
7fcde0e3
CM
589static inline u32 btrfs_key_overflow(struct btrfs_key *key)
590{
591 u32 over = key->flags & BTRFS_KEY_OVERFLOW_MASK;
592 return over >> BTRFS_KEY_OVERFLOW_SHIFT;
593}
594
595static inline void btrfs_set_key_overflow(struct btrfs_key *key, u32 over)
596{
0f7d52f4 597 BUG_ON(over >= BTRFS_KEY_OVERFLOW_MAX);
7fcde0e3
CM
598 over = over << BTRFS_KEY_OVERFLOW_SHIFT;
599 key->flags = (key->flags & ~((u64)BTRFS_KEY_OVERFLOW_MASK)) | over;
600}
601
62e2749e
CM
602static inline u32 btrfs_key_type(struct btrfs_key *key)
603{
604 return key->flags & BTRFS_KEY_TYPE_MASK;
605}
606
607static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
608{
609 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
610}
611
612static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
613{
614 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
615 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
616}
617
618static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
619{
620 u32 flags = btrfs_disk_key_flags(key);
621 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
622 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
623 btrfs_set_disk_key_flags(key, flags);
7fcde0e3
CM
624}
625
626static inline u32 btrfs_disk_key_overflow(struct btrfs_disk_key *key)
627{
628 u32 over = le32_to_cpu(key->flags) & BTRFS_KEY_OVERFLOW_MASK;
629 return over >> BTRFS_KEY_OVERFLOW_SHIFT;
630}
631
632static inline void btrfs_set_disK_key_overflow(struct btrfs_disk_key *key,
633 u32 over)
634{
635 u32 flags = btrfs_disk_key_flags(key);
0f7d52f4 636 BUG_ON(over >= BTRFS_KEY_OVERFLOW_MAX);
7fcde0e3
CM
637 over = over << BTRFS_KEY_OVERFLOW_SHIFT;
638 flags = (flags & ~((u64)BTRFS_KEY_OVERFLOW_MASK)) | over;
639 btrfs_set_disk_key_flags(key, flags);
62e2749e
CM
640}
641
bb492bb0 642static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
7518a238 643{
bb492bb0 644 return le64_to_cpu(h->blocknr);
7518a238
CM
645}
646
bb492bb0 647static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
7518a238 648{
bb492bb0 649 h->blocknr = cpu_to_le64(blocknr);
7518a238
CM
650}
651
7f5c1516
CM
652static inline u64 btrfs_header_generation(struct btrfs_header *h)
653{
654 return le64_to_cpu(h->generation);
655}
656
657static inline void btrfs_set_header_generation(struct btrfs_header *h,
658 u64 val)
659{
660 h->generation = cpu_to_le64(val);
661}
662
bb492bb0 663static inline u16 btrfs_header_nritems(struct btrfs_header *h)
7518a238 664{
bb492bb0 665 return le16_to_cpu(h->nritems);
7518a238
CM
666}
667
bb492bb0 668static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
7518a238 669{
bb492bb0 670 h->nritems = cpu_to_le16(val);
7518a238
CM
671}
672
bb492bb0 673static inline u16 btrfs_header_flags(struct btrfs_header *h)
7518a238 674{
bb492bb0 675 return le16_to_cpu(h->flags);
7518a238
CM
676}
677
bb492bb0 678static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
7518a238 679{
bb492bb0 680 h->flags = cpu_to_le16(val);
7518a238
CM
681}
682
bb492bb0 683static inline int btrfs_header_level(struct btrfs_header *h)
7518a238 684{
9a6f11ed 685 return h->level;
7518a238
CM
686}
687
bb492bb0 688static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
7518a238 689{
234b63a0 690 BUG_ON(level > BTRFS_MAX_LEVEL);
9a6f11ed 691 h->level = level;
7518a238
CM
692}
693
234b63a0 694static inline int btrfs_is_leaf(struct btrfs_node *n)
7518a238
CM
695{
696 return (btrfs_header_level(&n->header) == 0);
697}
698
3768f368
CM
699static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
700{
701 return le64_to_cpu(item->blocknr);
702}
703
704static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
705{
706 item->blocknr = cpu_to_le64(val);
707}
708
d6e4a428
CM
709static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
710{
711 return le64_to_cpu(item->root_dirid);
712}
713
714static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
715{
716 item->root_dirid = cpu_to_le64(val);
717}
718
3768f368
CM
719static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
720{
721 return le32_to_cpu(item->refs);
722}
723
724static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
725{
726 item->refs = cpu_to_le32(val);
727}
728
729static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
730{
731 return le64_to_cpu(s->blocknr);
732}
733
734static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
735{
736 s->blocknr = cpu_to_le64(val);
737}
738
0f7d52f4
CM
739static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
740{
741 return le64_to_cpu(s->generation);
742}
743
744static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
745 u64 val)
746{
747 s->generation = cpu_to_le64(val);
748}
749
3768f368
CM
750static inline u64 btrfs_super_root(struct btrfs_super_block *s)
751{
752 return le64_to_cpu(s->root);
753}
754
755static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
756{
757 s->root = cpu_to_le64(val);
758}
759
760static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
761{
762 return le64_to_cpu(s->total_blocks);
763}
764
765static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
766 u64 val)
767{
768 s->total_blocks = cpu_to_le64(val);
769}
770
771static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
772{
773 return le64_to_cpu(s->blocks_used);
774}
775
776static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
777 u64 val)
778{
779 s->blocks_used = cpu_to_le64(val);
780}
781
123abc88 782static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
3768f368 783{
123abc88 784 return le32_to_cpu(s->blocksize);
3768f368
CM
785}
786
787static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
123abc88
CM
788 u32 val)
789{
790 s->blocksize = cpu_to_le32(val);
791}
792
2e635a27
CM
793static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
794{
795 return le64_to_cpu(s->root_dir_objectid);
796}
797
798static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
799 val)
800{
801 s->root_dir_objectid = cpu_to_le64(val);
802}
803
b4100d64
CM
804static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
805{
806 return le64_to_cpu(s->last_device_id);
807}
808
809static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
810 u64 val)
811{
812 s->last_device_id = cpu_to_le64(val);
813}
814
815static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
816{
817 return le64_to_cpu(s->device_id);
818}
819
820static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
821 u64 val)
822{
823 s->device_id = cpu_to_le64(val);
824}
825
0bd93ba0
CM
826static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
827{
828 return le64_to_cpu(s->device_block_start);
829}
830
831static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
832 *s, u64 val)
833{
834 s->device_block_start = cpu_to_le64(val);
835}
836
837static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
838{
839 return le64_to_cpu(s->device_num_blocks);
840}
841
842static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
843 *s, u64 val)
844{
845 s->device_num_blocks = cpu_to_le64(val);
846}
847
848static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
849{
850 return le64_to_cpu(s->device_root);
851}
852
853static inline void btrfs_set_super_device_root(struct btrfs_super_block
854 *s, u64 val)
855{
856 s->device_root = cpu_to_le64(val);
857}
858
859
123abc88 860static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
3768f368 861{
123abc88 862 return (u8 *)l->items;
3768f368 863}
9f5fae2f
CM
864
865static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
866 *e)
867{
868 return le64_to_cpu(e->disk_blocknr);
869}
870
871static inline void btrfs_set_file_extent_disk_blocknr(struct
872 btrfs_file_extent_item
873 *e, u64 val)
874{
875 e->disk_blocknr = cpu_to_le64(val);
876}
877
71951f35
CM
878static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
879{
880 return le64_to_cpu(e->generation);
881}
882
883static inline void btrfs_set_file_extent_generation(struct
884 btrfs_file_extent_item *e,
885 u64 val)
886{
887 e->generation = cpu_to_le64(val);
888}
889
9f5fae2f
CM
890static inline u64 btrfs_file_extent_disk_num_blocks(struct
891 btrfs_file_extent_item *e)
892{
893 return le64_to_cpu(e->disk_num_blocks);
894}
895
896static inline void btrfs_set_file_extent_disk_num_blocks(struct
897 btrfs_file_extent_item
898 *e, u64 val)
899{
900 e->disk_num_blocks = cpu_to_le64(val);
901}
902
903static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
904{
905 return le64_to_cpu(e->offset);
906}
907
908static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
909 *e, u64 val)
910{
911 e->offset = cpu_to_le64(val);
912}
913
914static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
915 *e)
916{
917 return le64_to_cpu(e->num_blocks);
918}
919
920static inline void btrfs_set_file_extent_num_blocks(struct
921 btrfs_file_extent_item *e,
922 u64 val)
923{
924 e->num_blocks = cpu_to_le64(val);
925}
926
0bd93ba0
CM
927static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
928{
929 return le16_to_cpu(d->pathlen);
930}
931
932static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
933 u16 val)
934{
935 d->pathlen = cpu_to_le16(val);
936}
937
b4100d64
CM
938static inline u64 btrfs_device_id(struct btrfs_device_item *d)
939{
940 return le64_to_cpu(d->device_id);
941}
942
943static inline void btrfs_set_device_id(struct btrfs_device_item *d,
944 u64 val)
945{
946 d->device_id = cpu_to_le64(val);
947}
948
e20d96d6
CM
949static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
950{
951 return sb->s_fs_info;
952}
953
d6025579
CM
954static inline void btrfs_check_bounds(void *vptr, size_t len,
955 void *vcontainer, size_t container_len)
956{
957 char *ptr = vptr;
958 char *container = vcontainer;
959 WARN_ON(ptr < container);
960 WARN_ON(ptr + len > container + container_len);
961}
962
963static inline void btrfs_memcpy(struct btrfs_root *root,
964 void *dst_block,
965 void *dst, const void *src, size_t nr)
966{
967 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
968 memcpy(dst, src, nr);
969}
970
971static inline void btrfs_memmove(struct btrfs_root *root,
972 void *dst_block,
973 void *dst, void *src, size_t nr)
974{
975 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
976 memmove(dst, src, nr);
977}
978
979static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
980{
981 WARN_ON(!atomic_read(&bh->b_count));
982 mark_buffer_dirty(bh);
983}
984
4beb1b8b
CM
985/* helper function to cast into the data area of the leaf. */
986#define btrfs_item_ptr(leaf, slot, type) \
123abc88
CM
987 ((type *)(btrfs_leaf_data(leaf) + \
988 btrfs_item_offset((leaf)->items + (slot))))
4beb1b8b 989
dee26a9f 990/* extent-item.c */
c5739bba
CM
991int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
992 struct btrfs_root *root);
e20d96d6 993struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
e089f05c 994 struct btrfs_root *root);
dee26a9f
CM
995int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root
996 *root, u64 num_blocks, u64 search_start, u64
d0dbc624 997 search_end, struct btrfs_key *ins);
e089f05c 998int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e20d96d6 999 struct buffer_head *buf);
e089f05c
CM
1000int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1001 *root, u64 blocknr, u64 num_blocks, int pin);
dee26a9f
CM
1002int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1003 btrfs_root *root);
1004/* ctree.c */
e089f05c
CM
1005int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1006 *root, struct btrfs_key *key, struct btrfs_path *p, int
1007 ins_len, int cow);
234b63a0 1008void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
2c90e5d6
CM
1009struct btrfs_path *btrfs_alloc_path(void);
1010void btrfs_free_path(struct btrfs_path *p);
234b63a0 1011void btrfs_init_path(struct btrfs_path *p);
e089f05c
CM
1012int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1013 struct btrfs_path *path);
1014int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1015 *root, struct btrfs_key *key, void *data, u32 data_size);
1016int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1017 *root, struct btrfs_path *path, struct btrfs_key
1018 *cpu_key, u32 data_size);
234b63a0 1019int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
123abc88 1020int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
e089f05c 1021int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
e20d96d6 1022 *root, struct buffer_head *snap);
dee26a9f 1023/* root-item.c */
e089f05c
CM
1024int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1025 struct btrfs_key *key);
1026int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1027 *root, struct btrfs_key *key, struct btrfs_root_item
1028 *item);
1029int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1030 *root, struct btrfs_key *key, struct btrfs_root_item
1031 *item);
1032int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1033 btrfs_root_item *item, struct btrfs_key *key);
dee26a9f 1034/* dir-item.c */
e089f05c 1035int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
d6e4a428
CM
1036 *root, const char *name, int name_len, u64 dir,
1037 struct btrfs_key *location, u8 type);
e089f05c 1038int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
e20d96d6
CM
1039 *root, struct btrfs_path *path, u64 dir,
1040 const char *name, int name_len, int mod);
5f26f772
CM
1041int btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1042 struct btrfs_root *root,
1043 struct btrfs_path *path, u64 dir,
1044 u64 objectid, int mod);
1d4f6404 1045int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
7f5c1516 1046 const char *name, int name_len);
dee26a9f 1047/* inode-map.c */
9f5fae2f
CM
1048int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1049 struct btrfs_root *fs_root,
1050 u64 dirid, u64 *objectid);
5be6f7f1
CM
1051int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1052
dee26a9f 1053/* inode-item.c */
293ffd5f
CM
1054int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1055 *root, u64 objectid, struct btrfs_inode_item
1056 *inode_item);
1057int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
d6e4a428
CM
1058 *root, struct btrfs_path *path,
1059 struct btrfs_key *location, int mod);
dee26a9f
CM
1060
1061/* file-item.c */
1062int btrfs_alloc_file_extent(struct btrfs_trans_handle *trans,
1063 struct btrfs_root *root,
1064 u64 objectid, u64 offset,
1065 u64 num_blocks, u64 hint_block,
1066 u64 *result);
1067int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1068 struct btrfs_root *root,
1069 struct btrfs_path *path, u64 objectid,
9773a788 1070 u64 blocknr, int mod);
f254e52c
CM
1071int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root,
1073 u64 objectid, u64 offset,
1074 char *data, size_t len);
1075int btrfs_csum_verify_file_block(struct btrfs_root *root,
1076 u64 objectid, u64 offset,
1077 char *data, size_t len);
d6e4a428
CM
1078/* super.c */
1079extern struct subsystem btrfs_subsys;
1080
eb60ceac 1081#endif