Btrfs: reorder key offset and flags
[linux-2.6-block.git] / fs / btrfs / ctree.h
CommitLineData
234b63a0
CM
1#ifndef __BTRFS__
2#define __BTRFS__
eb60ceac 3
ed2ff2cb 4#include "list.h"
e2fa7227 5#include "kerncompat.h"
ed2ff2cb 6
3768f368 7#define BTRFS_MAGIC "_BtRfS_M"
eb60ceac 8
3768f368
CM
9#define BTRFS_ROOT_TREE_OBJECTID 1
10#define BTRFS_EXTENT_TREE_OBJECTID 2
11#define BTRFS_FS_TREE_OBJECTID 3
12
fec577fb
CM
13/*
14 * the key defines the order in the tree, and so it also defines (optimal)
15 * block layout. objectid corresonds to the inode number. The flags
16 * tells us things about the object, and is a kind of stream selector.
17 * so for a given inode, keys with flags of 1 might refer to the inode
18 * data, flags of 2 may point to file data in the btree and flags == 3
19 * may point to extents.
20 *
21 * offset is the starting byte offset for this key in the stream.
e2fa7227
CM
22 *
23 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
24 * in cpu native order. Otherwise they are identical and their sizes
25 * should be the same (ie both packed)
fec577fb 26 */
e2fa7227
CM
27struct btrfs_disk_key {
28 __le64 objectid;
e2fa7227 29 __le64 offset;
a1516c89 30 __le32 flags;
e2fa7227
CM
31} __attribute__ ((__packed__));
32
33struct btrfs_key {
eb60ceac 34 u64 objectid;
eb60ceac 35 u64 offset;
a1516c89 36 u32 flags;
eb60ceac
CM
37} __attribute__ ((__packed__));
38
fec577fb
CM
39/*
40 * every tree block (leaf or node) starts with this header.
41 */
bb492bb0 42struct btrfs_header {
3768f368 43 u8 fsid[16]; /* FS specific uuid */
bb492bb0
CM
44 __le64 blocknr; /* which block this node is supposed to live in */
45 __le64 parentid; /* objectid of the tree root */
46 __le32 csum;
47 __le32 ham;
48 __le16 nritems;
49 __le16 flags;
fec577fb 50 /* generation flags to be added */
eb60ceac
CM
51} __attribute__ ((__packed__));
52
234b63a0 53#define BTRFS_MAX_LEVEL 8
123abc88
CM
54#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
55 sizeof(struct btrfs_header)) / \
56 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
57#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
58#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
eb60ceac 59
234b63a0 60struct btrfs_buffer;
d97e63b6 61
3768f368
CM
62struct btrfs_root_item {
63 __le64 blocknr;
64 __le32 flags;
65 __le64 block_limit;
66 __le64 blocks_used;
67 __le32 refs;
68};
69
fec577fb
CM
70/*
71 * in ram representation of the tree. extent_root is used for all allocations
72 * and for the extent tree extent_root root. current_insert is used
73 * only for the extent tree.
74 */
234b63a0
CM
75struct btrfs_root {
76 struct btrfs_buffer *node;
77 struct btrfs_buffer *commit_root;
78 struct btrfs_root *extent_root;
3768f368 79 struct btrfs_root *tree_root;
e2fa7227
CM
80 struct btrfs_key current_insert;
81 struct btrfs_key last_insert;
eb60ceac
CM
82 int fp;
83 struct radix_tree_root cache_radix;
a28ec197 84 struct radix_tree_root pinned_radix;
ed2ff2cb
CM
85 struct list_head trans;
86 struct list_head cache;
87 int cache_size;
3768f368
CM
88 int ref_cows;
89 struct btrfs_root_item root_item;
90 struct btrfs_key root_key;
123abc88 91 u32 blocksize;
eb60ceac
CM
92};
93
fec577fb
CM
94/*
95 * the super block basically lists the main trees of the FS
96 * it currently lacks any block count etc etc
97 */
234b63a0 98struct btrfs_super_block {
3768f368
CM
99 u8 fsid[16]; /* FS specific uuid */
100 __le64 blocknr; /* this block number */
101 __le32 csum;
102 __le64 magic;
123abc88 103 __le32 blocksize;
3768f368
CM
104 __le64 generation;
105 __le64 root;
106 __le64 total_blocks;
107 __le64 blocks_used;
cfaa7295
CM
108} __attribute__ ((__packed__));
109
fec577fb
CM
110/*
111 * A leaf is full of items. The exact type of item is defined by
112 * the key flags parameter. offset and size tell us where to find
113 * the item in the leaf (relative to the start of the data area)
114 */
0783fcfc 115struct btrfs_item {
e2fa7227 116 struct btrfs_disk_key key;
123abc88 117 __le32 offset;
0783fcfc 118 __le16 size;
eb60ceac
CM
119} __attribute__ ((__packed__));
120
fec577fb
CM
121/*
122 * leaves have an item area and a data area:
123 * [item0, item1....itemN] [free space] [dataN...data1, data0]
124 *
125 * The data is separate from the items to get the keys closer together
126 * during searches.
127 */
234b63a0 128struct btrfs_leaf {
bb492bb0 129 struct btrfs_header header;
123abc88 130 struct btrfs_item items[];
eb60ceac
CM
131} __attribute__ ((__packed__));
132
fec577fb
CM
133/*
134 * all non-leaf blocks are nodes, they hold only keys and pointers to
135 * other blocks
136 */
123abc88
CM
137struct btrfs_key_ptr {
138 struct btrfs_disk_key key;
139 __le64 blockptr;
140} __attribute__ ((__packed__));
141
234b63a0 142struct btrfs_node {
bb492bb0 143 struct btrfs_header header;
123abc88 144 struct btrfs_key_ptr ptrs[];
eb60ceac
CM
145} __attribute__ ((__packed__));
146
fec577fb
CM
147/*
148 * items in the extent btree are used to record the objectid of the
149 * owner of the block and the number of references
150 */
234b63a0 151struct btrfs_extent_item {
cf27e1ee
CM
152 __le32 refs;
153 __le64 owner;
d97e63b6
CM
154} __attribute__ ((__packed__));
155
fec577fb 156/*
234b63a0
CM
157 * btrfs_paths remember the path taken from the root down to the leaf.
158 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
fec577fb
CM
159 * to any other levels that are present.
160 *
161 * The slots array records the index of the item or block pointer
162 * used while walking the tree.
163 */
234b63a0
CM
164struct btrfs_path {
165 struct btrfs_buffer *nodes[BTRFS_MAX_LEVEL];
166 int slots[BTRFS_MAX_LEVEL];
eb60ceac 167};
5de08d7d 168
234b63a0 169static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
cf27e1ee
CM
170{
171 return le64_to_cpu(ei->owner);
172}
173
234b63a0 174static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
cf27e1ee
CM
175{
176 ei->owner = cpu_to_le64(val);
177}
178
234b63a0 179static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
cf27e1ee
CM
180{
181 return le32_to_cpu(ei->refs);
182}
183
234b63a0 184static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
cf27e1ee
CM
185{
186 ei->refs = cpu_to_le32(val);
187}
188
234b63a0 189static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
1d4f8a0c 190{
123abc88 191 return le64_to_cpu(n->ptrs[nr].blockptr);
1d4f8a0c
CM
192}
193
234b63a0
CM
194static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
195 u64 val)
1d4f8a0c 196{
123abc88 197 n->ptrs[nr].blockptr = cpu_to_le64(val);
1d4f8a0c
CM
198}
199
123abc88 200static inline u32 btrfs_item_offset(struct btrfs_item *item)
0783fcfc 201{
123abc88 202 return le32_to_cpu(item->offset);
0783fcfc
CM
203}
204
123abc88 205static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
0783fcfc 206{
123abc88 207 item->offset = cpu_to_le32(val);
0783fcfc
CM
208}
209
123abc88 210static inline u32 btrfs_item_end(struct btrfs_item *item)
0783fcfc 211{
123abc88 212 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
0783fcfc
CM
213}
214
215static inline u16 btrfs_item_size(struct btrfs_item *item)
216{
217 return le16_to_cpu(item->size);
218}
219
220static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
221{
222 item->size = cpu_to_le16(val);
223}
224
e2fa7227
CM
225static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
226 struct btrfs_disk_key *disk)
227{
228 cpu->offset = le64_to_cpu(disk->offset);
229 cpu->flags = le32_to_cpu(disk->flags);
230 cpu->objectid = le64_to_cpu(disk->objectid);
231}
232
233static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
234 struct btrfs_key *cpu)
235{
236 disk->offset = cpu_to_le64(cpu->offset);
237 disk->flags = cpu_to_le32(cpu->flags);
238 disk->objectid = cpu_to_le64(cpu->objectid);
239}
240
241static inline u64 btrfs_key_objectid(struct btrfs_disk_key *disk)
242{
243 return le64_to_cpu(disk->objectid);
244}
245
246static inline void btrfs_set_key_objectid(struct btrfs_disk_key *disk,
247 u64 val)
248{
249 disk->objectid = cpu_to_le64(val);
250}
251
252static inline u64 btrfs_key_offset(struct btrfs_disk_key *disk)
253{
254 return le64_to_cpu(disk->offset);
255}
256
257static inline void btrfs_set_key_offset(struct btrfs_disk_key *disk,
258 u64 val)
259{
260 disk->offset = cpu_to_le64(val);
261}
262
263static inline u32 btrfs_key_flags(struct btrfs_disk_key *disk)
264{
265 return le32_to_cpu(disk->flags);
266}
267
268static inline void btrfs_set_key_flags(struct btrfs_disk_key *disk,
269 u32 val)
270{
271 disk->flags = cpu_to_le32(val);
272}
273
bb492bb0 274static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
7518a238 275{
bb492bb0 276 return le64_to_cpu(h->blocknr);
7518a238
CM
277}
278
bb492bb0 279static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
7518a238 280{
bb492bb0 281 h->blocknr = cpu_to_le64(blocknr);
7518a238
CM
282}
283
bb492bb0 284static inline u64 btrfs_header_parentid(struct btrfs_header *h)
7518a238 285{
bb492bb0 286 return le64_to_cpu(h->parentid);
7518a238
CM
287}
288
bb492bb0
CM
289static inline void btrfs_set_header_parentid(struct btrfs_header *h,
290 u64 parentid)
7518a238 291{
bb492bb0 292 h->parentid = cpu_to_le64(parentid);
7518a238
CM
293}
294
bb492bb0 295static inline u16 btrfs_header_nritems(struct btrfs_header *h)
7518a238 296{
bb492bb0 297 return le16_to_cpu(h->nritems);
7518a238
CM
298}
299
bb492bb0 300static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
7518a238 301{
bb492bb0 302 h->nritems = cpu_to_le16(val);
7518a238
CM
303}
304
bb492bb0 305static inline u16 btrfs_header_flags(struct btrfs_header *h)
7518a238 306{
bb492bb0 307 return le16_to_cpu(h->flags);
7518a238
CM
308}
309
bb492bb0 310static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
7518a238 311{
bb492bb0 312 h->flags = cpu_to_le16(val);
7518a238
CM
313}
314
bb492bb0 315static inline int btrfs_header_level(struct btrfs_header *h)
7518a238 316{
234b63a0 317 return btrfs_header_flags(h) & (BTRFS_MAX_LEVEL - 1);
7518a238
CM
318}
319
bb492bb0 320static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
7518a238 321{
bb492bb0 322 u16 flags;
234b63a0
CM
323 BUG_ON(level > BTRFS_MAX_LEVEL);
324 flags = btrfs_header_flags(h) & ~(BTRFS_MAX_LEVEL - 1);
7518a238
CM
325 btrfs_set_header_flags(h, flags | level);
326}
327
234b63a0 328static inline int btrfs_is_leaf(struct btrfs_node *n)
7518a238
CM
329{
330 return (btrfs_header_level(&n->header) == 0);
331}
332
3768f368
CM
333static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
334{
335 return le64_to_cpu(item->blocknr);
336}
337
338static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
339{
340 item->blocknr = cpu_to_le64(val);
341}
342
343static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
344{
345 return le32_to_cpu(item->refs);
346}
347
348static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
349{
350 item->refs = cpu_to_le32(val);
351}
352
353static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
354{
355 return le64_to_cpu(s->blocknr);
356}
357
358static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
359{
360 s->blocknr = cpu_to_le64(val);
361}
362
363static inline u64 btrfs_super_root(struct btrfs_super_block *s)
364{
365 return le64_to_cpu(s->root);
366}
367
368static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
369{
370 s->root = cpu_to_le64(val);
371}
372
373static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
374{
375 return le64_to_cpu(s->total_blocks);
376}
377
378static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
379 u64 val)
380{
381 s->total_blocks = cpu_to_le64(val);
382}
383
384static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
385{
386 return le64_to_cpu(s->blocks_used);
387}
388
389static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
390 u64 val)
391{
392 s->blocks_used = cpu_to_le64(val);
393}
394
123abc88 395static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
3768f368 396{
123abc88 397 return le32_to_cpu(s->blocksize);
3768f368
CM
398}
399
400static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
123abc88
CM
401 u32 val)
402{
403 s->blocksize = cpu_to_le32(val);
404}
405
406static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
3768f368 407{
123abc88 408 return (u8 *)l->items;
3768f368
CM
409}
410
4beb1b8b
CM
411/* helper function to cast into the data area of the leaf. */
412#define btrfs_item_ptr(leaf, slot, type) \
123abc88
CM
413 ((type *)(btrfs_leaf_data(leaf) + \
414 btrfs_item_offset((leaf)->items + (slot))))
4beb1b8b 415
234b63a0
CM
416struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_root *root);
417int btrfs_inc_ref(struct btrfs_root *root, struct btrfs_buffer *buf);
418int btrfs_free_extent(struct btrfs_root *root, u64 blocknr, u64 num_blocks);
419int btrfs_search_slot(struct btrfs_root *root, struct btrfs_key *key,
420 struct btrfs_path *p, int ins_len, int cow);
421void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
422void btrfs_init_path(struct btrfs_path *p);
423int btrfs_del_item(struct btrfs_root *root, struct btrfs_path *path);
424int btrfs_insert_item(struct btrfs_root *root, struct btrfs_key *key,
e2fa7227 425 void *data, int data_size);
234b63a0 426int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
123abc88 427int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
234b63a0
CM
428int btrfs_drop_snapshot(struct btrfs_root *root, struct btrfs_buffer *snap);
429int btrfs_finish_extent_commit(struct btrfs_root *root);
3768f368
CM
430int btrfs_del_root(struct btrfs_root *root, struct btrfs_key *key);
431int btrfs_insert_root(struct btrfs_root *root, struct btrfs_key *key,
432 struct btrfs_root_item *item);
433int btrfs_update_root(struct btrfs_root *root, struct btrfs_key *key,
434 struct btrfs_root_item *item);
435int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
436 struct btrfs_root_item *item, struct btrfs_key *key);
eb60ceac 437#endif