Btrfs: early work to file_write in big extents
[linux-2.6-block.git] / fs / btrfs / ctree.h
CommitLineData
234b63a0
CM
1#ifndef __BTRFS__
2#define __BTRFS__
eb60ceac 3
e20d96d6 4#include <linux/fs.h>
d6025579 5#include <linux/buffer_head.h>
d6e4a428 6#include <linux/kobject.h>
8ef97622 7#include "bit-radix.h"
e20d96d6 8
e089f05c 9struct btrfs_trans_handle;
79154b1b 10struct btrfs_transaction;
2c90e5d6 11extern struct kmem_cache *btrfs_path_cachep;
e089f05c 12
3768f368 13#define BTRFS_MAGIC "_BtRfS_M"
eb60ceac 14
6407bf6d 15#define BTRFS_ROOT_TREE_OBJECTID 1ULL
0bd93ba0
CM
16#define BTRFS_DEV_TREE_OBJECTID 2ULL
17#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
18#define BTRFS_FS_TREE_OBJECTID 4ULL
19#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
20#define BTRFS_FIRST_FREE_OBJECTID 6ULL
3768f368 21
e20d96d6
CM
22/*
23 * we can actually store much bigger names, but lets not confuse the rest
24 * of linux
25 */
26#define BTRFS_NAME_LEN 255
27
f254e52c
CM
28/* 32 bytes in various csum fields */
29#define BTRFS_CSUM_SIZE 32
30
fec577fb
CM
31/*
32 * the key defines the order in the tree, and so it also defines (optimal)
33 * block layout. objectid corresonds to the inode number. The flags
34 * tells us things about the object, and is a kind of stream selector.
35 * so for a given inode, keys with flags of 1 might refer to the inode
36 * data, flags of 2 may point to file data in the btree and flags == 3
37 * may point to extents.
38 *
39 * offset is the starting byte offset for this key in the stream.
e2fa7227
CM
40 *
41 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
42 * in cpu native order. Otherwise they are identical and their sizes
43 * should be the same (ie both packed)
fec577fb 44 */
e2fa7227
CM
45struct btrfs_disk_key {
46 __le64 objectid;
a8a2ee0c 47 __le64 offset;
f254e52c 48 __le32 flags;
e2fa7227
CM
49} __attribute__ ((__packed__));
50
51struct btrfs_key {
eb60ceac 52 u64 objectid;
a8a2ee0c 53 u64 offset;
f254e52c 54 u32 flags;
eb60ceac
CM
55} __attribute__ ((__packed__));
56
fec577fb
CM
57/*
58 * every tree block (leaf or node) starts with this header.
59 */
bb492bb0 60struct btrfs_header {
f254e52c 61 u8 csum[BTRFS_CSUM_SIZE];
3768f368 62 u8 fsid[16]; /* FS specific uuid */
bb492bb0 63 __le64 blocknr; /* which block this node is supposed to live in */
7f5c1516 64 __le64 generation;
bb492bb0
CM
65 __le16 nritems;
66 __le16 flags;
9a6f11ed 67 u8 level;
eb60ceac
CM
68} __attribute__ ((__packed__));
69
234b63a0 70#define BTRFS_MAX_LEVEL 8
123abc88
CM
71#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
72 sizeof(struct btrfs_header)) / \
73 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
74#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
75#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
eb60ceac 76
e20d96d6 77struct buffer_head;
fec577fb
CM
78/*
79 * the super block basically lists the main trees of the FS
80 * it currently lacks any block count etc etc
81 */
234b63a0 82struct btrfs_super_block {
f254e52c 83 u8 csum[BTRFS_CSUM_SIZE];
87cbda5c 84 /* the first 3 fields must match struct btrfs_header */
3768f368
CM
85 u8 fsid[16]; /* FS specific uuid */
86 __le64 blocknr; /* this block number */
3768f368 87 __le64 magic;
123abc88 88 __le32 blocksize;
3768f368
CM
89 __le64 generation;
90 __le64 root;
91 __le64 total_blocks;
92 __le64 blocks_used;
2e635a27 93 __le64 root_dir_objectid;
b4100d64 94 __le64 last_device_id;
0bd93ba0
CM
95 /* fields below here vary with the underlying disk */
96 __le64 device_block_start;
97 __le64 device_num_blocks;
98 __le64 device_root;
b4100d64 99 __le64 device_id;
cfaa7295
CM
100} __attribute__ ((__packed__));
101
fec577fb 102/*
62e2749e 103 * A leaf is full of items. offset and size tell us where to find
fec577fb
CM
104 * the item in the leaf (relative to the start of the data area)
105 */
0783fcfc 106struct btrfs_item {
e2fa7227 107 struct btrfs_disk_key key;
123abc88 108 __le32 offset;
0783fcfc 109 __le16 size;
eb60ceac
CM
110} __attribute__ ((__packed__));
111
fec577fb
CM
112/*
113 * leaves have an item area and a data area:
114 * [item0, item1....itemN] [free space] [dataN...data1, data0]
115 *
116 * The data is separate from the items to get the keys closer together
117 * during searches.
118 */
234b63a0 119struct btrfs_leaf {
bb492bb0 120 struct btrfs_header header;
123abc88 121 struct btrfs_item items[];
eb60ceac
CM
122} __attribute__ ((__packed__));
123
fec577fb
CM
124/*
125 * all non-leaf blocks are nodes, they hold only keys and pointers to
126 * other blocks
127 */
123abc88
CM
128struct btrfs_key_ptr {
129 struct btrfs_disk_key key;
130 __le64 blockptr;
131} __attribute__ ((__packed__));
132
234b63a0 133struct btrfs_node {
bb492bb0 134 struct btrfs_header header;
123abc88 135 struct btrfs_key_ptr ptrs[];
eb60ceac
CM
136} __attribute__ ((__packed__));
137
fec577fb 138/*
234b63a0
CM
139 * btrfs_paths remember the path taken from the root down to the leaf.
140 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
fec577fb
CM
141 * to any other levels that are present.
142 *
143 * The slots array records the index of the item or block pointer
144 * used while walking the tree.
145 */
234b63a0 146struct btrfs_path {
e20d96d6 147 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
234b63a0 148 int slots[BTRFS_MAX_LEVEL];
eb60ceac 149};
5de08d7d 150
62e2749e
CM
151/*
152 * items in the extent btree are used to record the objectid of the
153 * owner of the block and the number of references
154 */
155struct btrfs_extent_item {
156 __le32 refs;
62e2749e
CM
157} __attribute__ ((__packed__));
158
1e1d2701 159struct btrfs_inode_timespec {
f254e52c 160 __le64 sec;
1e1d2701
CM
161 __le32 nsec;
162} __attribute__ ((__packed__));
163
164/*
165 * there is no padding here on purpose. If you want to extent the inode,
166 * make a new item type
167 */
168struct btrfs_inode_item {
169 __le64 generation;
170 __le64 size;
171 __le64 nblocks;
172 __le32 nlink;
173 __le32 uid;
174 __le32 gid;
175 __le32 mode;
176 __le32 rdev;
177 __le16 flags;
178 __le16 compat_flags;
179 struct btrfs_inode_timespec atime;
180 struct btrfs_inode_timespec ctime;
181 struct btrfs_inode_timespec mtime;
182 struct btrfs_inode_timespec otime;
183} __attribute__ ((__packed__));
184
185/* inline data is just a blob of bytes */
186struct btrfs_inline_data_item {
187 u8 data;
188} __attribute__ ((__packed__));
189
62e2749e 190struct btrfs_dir_item {
d6e4a428 191 struct btrfs_disk_key location;
62e2749e 192 __le16 flags;
a8a2ee0c 193 __le16 name_len;
62e2749e
CM
194 u8 type;
195} __attribute__ ((__packed__));
196
197struct btrfs_root_item {
d6e4a428
CM
198 struct btrfs_inode_item inode;
199 __le64 root_dirid;
62e2749e
CM
200 __le64 blocknr;
201 __le32 flags;
202 __le64 block_limit;
203 __le64 blocks_used;
204 __le32 refs;
9f5fae2f 205} __attribute__ ((__packed__));
62e2749e 206
9f5fae2f 207struct btrfs_file_extent_item {
71951f35 208 __le64 generation;
9f5fae2f
CM
209 /*
210 * disk space consumed by the extent, checksum blocks are included
211 * in these numbers
212 */
213 __le64 disk_blocknr;
214 __le64 disk_num_blocks;
215 /*
dee26a9f 216 * the logical offset in file blocks (no csums)
9f5fae2f
CM
217 * this extent record is for. This allows a file extent to point
218 * into the middle of an existing extent on disk, sharing it
219 * between two snapshots (useful if some bytes in the middle of the
220 * extent have changed
221 */
222 __le64 offset;
223 /*
224 * the logical number of file blocks (no csums included)
225 */
226 __le64 num_blocks;
227} __attribute__ ((__packed__));
228
f254e52c 229struct btrfs_csum_item {
6567e837 230 __le64 extent_offset;
f254e52c
CM
231 u8 csum[BTRFS_CSUM_SIZE];
232} __attribute__ ((__packed__));
233
0bd93ba0
CM
234struct btrfs_device_item {
235 __le16 pathlen;
b4100d64 236 __le64 device_id;
0bd93ba0
CM
237} __attribute__ ((__packed__));
238
87cbda5c 239struct crypto_hash;
9f5fae2f 240struct btrfs_fs_info {
62e2749e
CM
241 struct btrfs_root *extent_root;
242 struct btrfs_root *tree_root;
0bd93ba0 243 struct btrfs_root *dev_root;
62e2749e
CM
244 struct btrfs_key current_insert;
245 struct btrfs_key last_insert;
0f7d52f4 246 struct radix_tree_root fs_roots_radix;
8ef97622 247 struct radix_tree_root pending_del_radix;
62e2749e 248 struct radix_tree_root pinned_radix;
7eccb903 249 struct radix_tree_root dev_radix;
293ffd5f 250 u64 generation;
79154b1b 251 struct btrfs_transaction *running_transaction;
1261ec42 252 struct btrfs_super_block *disk_super;
e20d96d6
CM
253 struct buffer_head *sb_buffer;
254 struct super_block *sb;
d98237b3 255 struct inode *btree_inode;
79154b1b 256 struct mutex trans_mutex;
d561c025 257 struct mutex fs_mutex;
87cbda5c
CM
258 struct crypto_hash *hash_tfm;
259 spinlock_t hash_lock;
d6e4a428 260 struct kobject kobj;
9f5fae2f
CM
261};
262
263/*
264 * in ram representation of the tree. extent_root is used for all allocations
265 * and for the extent tree extent_root root. current_insert is used
266 * only for the extent tree.
267 */
268struct btrfs_root {
e20d96d6
CM
269 struct buffer_head *node;
270 struct buffer_head *commit_root;
62e2749e
CM
271 struct btrfs_root_item root_item;
272 struct btrfs_key root_key;
9f5fae2f 273 struct btrfs_fs_info *fs_info;
0f7d52f4
CM
274 struct inode *inode;
275 u64 objectid;
276 u64 last_trans;
62e2749e 277 u32 blocksize;
9f5fae2f
CM
278 int ref_cows;
279 u32 type;
1b05da2e
CM
280 u64 highest_inode;
281 u64 last_inode_alloc;
62e2749e
CM
282};
283
62e2749e
CM
284/* the lower bits in the key flags defines the item type */
285#define BTRFS_KEY_TYPE_MAX 256
286#define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
1e1d2701 287
7fcde0e3
CM
288#define BTRFS_KEY_OVERFLOW_MAX 128
289#define BTRFS_KEY_OVERFLOW_SHIFT 8
290#define BTRFS_KEY_OVERFLOW_MASK (0x7FULL << BTRFS_KEY_OVERFLOW_SHIFT)
291
1e1d2701
CM
292/*
293 * inode items have the data typically returned from stat and store other
294 * info about object characteristics. There is one for every file and dir in
295 * the FS
296 */
62e2749e 297#define BTRFS_INODE_ITEM_KEY 1
1e1d2701
CM
298
299/*
300 * dir items are the name -> inode pointers in a directory. There is one
301 * for every name in a directory.
302 */
62e2749e 303#define BTRFS_DIR_ITEM_KEY 2
bae45de0 304#define BTRFS_DIR_INDEX_KEY 3
1e1d2701
CM
305/*
306 * inline data is file data that fits in the btree.
307 */
bae45de0 308#define BTRFS_INLINE_DATA_KEY 4
1e1d2701
CM
309/*
310 * extent data is for data that can't fit in the btree. It points to
311 * a (hopefully) huge chunk of disk
312 */
bae45de0 313#define BTRFS_EXTENT_DATA_KEY 5
f254e52c
CM
314/*
315 * csum items have the checksums for data in the extents
316 */
bae45de0 317#define BTRFS_CSUM_ITEM_KEY 6
f254e52c 318
1e1d2701
CM
319/*
320 * root items point to tree roots. There are typically in the root
321 * tree used by the super block to find all the other trees
322 */
bae45de0 323#define BTRFS_ROOT_ITEM_KEY 7
1e1d2701
CM
324/*
325 * extent items are in the extent map tree. These record which blocks
326 * are used, and how many references there are to each block
327 */
bae45de0 328#define BTRFS_EXTENT_ITEM_KEY 8
9f5fae2f 329
0bd93ba0
CM
330/*
331 * dev items list the devices that make up the FS
332 */
333#define BTRFS_DEV_ITEM_KEY 9
334
1e1d2701
CM
335/*
336 * string items are for debugging. They just store a short string of
337 * data in the FS
338 */
0bd93ba0 339#define BTRFS_STRING_ITEM_KEY 10
1e1d2701
CM
340
341static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
342{
343 return le64_to_cpu(i->generation);
344}
345
346static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
347 u64 val)
348{
349 i->generation = cpu_to_le64(val);
350}
351
352static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
353{
354 return le64_to_cpu(i->size);
355}
356
357static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
358{
359 i->size = cpu_to_le64(val);
360}
361
362static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
363{
364 return le64_to_cpu(i->nblocks);
365}
366
367static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
368{
369 i->nblocks = cpu_to_le64(val);
370}
371
372static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
373{
374 return le32_to_cpu(i->nlink);
375}
376
377static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
378{
379 i->nlink = cpu_to_le32(val);
380}
381
382static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
383{
384 return le32_to_cpu(i->uid);
385}
386
387static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
388{
389 i->uid = cpu_to_le32(val);
390}
391
392static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
393{
394 return le32_to_cpu(i->gid);
395}
396
397static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
398{
399 i->gid = cpu_to_le32(val);
400}
401
402static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
403{
404 return le32_to_cpu(i->mode);
405}
406
407static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
408{
409 i->mode = cpu_to_le32(val);
410}
411
412static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
413{
414 return le32_to_cpu(i->rdev);
415}
416
417static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
418{
419 i->rdev = cpu_to_le32(val);
420}
421
422static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
423{
424 return le16_to_cpu(i->flags);
425}
426
427static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
428{
429 i->flags = cpu_to_le16(val);
430}
431
432static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
433{
434 return le16_to_cpu(i->compat_flags);
435}
436
437static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
438 u16 val)
439{
440 i->compat_flags = cpu_to_le16(val);
441}
442
f254e52c 443static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
e20d96d6 444{
f254e52c 445 return le64_to_cpu(ts->sec);
e20d96d6
CM
446}
447
448static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
f254e52c 449 u64 val)
e20d96d6 450{
f254e52c 451 ts->sec = cpu_to_le64(val);
e20d96d6
CM
452}
453
454static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
455{
456 return le32_to_cpu(ts->nsec);
457}
458
459static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
460 u32 val)
461{
462 ts->nsec = cpu_to_le32(val);
463}
464
234b63a0 465static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
cf27e1ee
CM
466{
467 return le32_to_cpu(ei->refs);
468}
469
234b63a0 470static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
cf27e1ee
CM
471{
472 ei->refs = cpu_to_le32(val);
473}
474
234b63a0 475static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
1d4f8a0c 476{
123abc88 477 return le64_to_cpu(n->ptrs[nr].blockptr);
1d4f8a0c
CM
478}
479
234b63a0
CM
480static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
481 u64 val)
1d4f8a0c 482{
123abc88 483 n->ptrs[nr].blockptr = cpu_to_le64(val);
1d4f8a0c
CM
484}
485
123abc88 486static inline u32 btrfs_item_offset(struct btrfs_item *item)
0783fcfc 487{
123abc88 488 return le32_to_cpu(item->offset);
0783fcfc
CM
489}
490
123abc88 491static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
0783fcfc 492{
123abc88 493 item->offset = cpu_to_le32(val);
0783fcfc
CM
494}
495
123abc88 496static inline u32 btrfs_item_end(struct btrfs_item *item)
0783fcfc 497{
123abc88 498 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
0783fcfc
CM
499}
500
501static inline u16 btrfs_item_size(struct btrfs_item *item)
502{
503 return le16_to_cpu(item->size);
504}
505
506static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
507{
508 item->size = cpu_to_le16(val);
509}
510
1d4f6404
CM
511static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
512{
513 return le16_to_cpu(d->flags);
514}
515
516static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
517{
518 d->flags = cpu_to_le16(val);
519}
520
521static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
522{
523 return d->type;
524}
525
526static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
527{
528 d->type = val;
529}
530
a8a2ee0c
CM
531static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
532{
533 return le16_to_cpu(d->name_len);
534}
535
536static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
1d4f6404 537{
a8a2ee0c 538 d->name_len = cpu_to_le16(val);
1d4f6404
CM
539}
540
e2fa7227
CM
541static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
542 struct btrfs_disk_key *disk)
543{
544 cpu->offset = le64_to_cpu(disk->offset);
545 cpu->flags = le32_to_cpu(disk->flags);
546 cpu->objectid = le64_to_cpu(disk->objectid);
547}
548
549static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
550 struct btrfs_key *cpu)
551{
552 disk->offset = cpu_to_le64(cpu->offset);
553 disk->flags = cpu_to_le32(cpu->flags);
554 disk->objectid = cpu_to_le64(cpu->objectid);
555}
556
62e2749e 557static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
e2fa7227
CM
558{
559 return le64_to_cpu(disk->objectid);
560}
561
62e2749e
CM
562static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
563 u64 val)
e2fa7227
CM
564{
565 disk->objectid = cpu_to_le64(val);
566}
567
62e2749e 568static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
e2fa7227
CM
569{
570 return le64_to_cpu(disk->offset);
571}
572
62e2749e
CM
573static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
574 u64 val)
e2fa7227
CM
575{
576 disk->offset = cpu_to_le64(val);
577}
578
62e2749e 579static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
e2fa7227
CM
580{
581 return le32_to_cpu(disk->flags);
582}
583
62e2749e
CM
584static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
585 u32 val)
e2fa7227
CM
586{
587 disk->flags = cpu_to_le32(val);
588}
589
7fcde0e3
CM
590static inline u32 btrfs_key_overflow(struct btrfs_key *key)
591{
592 u32 over = key->flags & BTRFS_KEY_OVERFLOW_MASK;
593 return over >> BTRFS_KEY_OVERFLOW_SHIFT;
594}
595
596static inline void btrfs_set_key_overflow(struct btrfs_key *key, u32 over)
597{
0f7d52f4 598 BUG_ON(over >= BTRFS_KEY_OVERFLOW_MAX);
7fcde0e3
CM
599 over = over << BTRFS_KEY_OVERFLOW_SHIFT;
600 key->flags = (key->flags & ~((u64)BTRFS_KEY_OVERFLOW_MASK)) | over;
601}
602
62e2749e
CM
603static inline u32 btrfs_key_type(struct btrfs_key *key)
604{
605 return key->flags & BTRFS_KEY_TYPE_MASK;
606}
607
608static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
609{
610 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
611}
612
613static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
614{
615 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
616 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
617}
618
619static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
620{
621 u32 flags = btrfs_disk_key_flags(key);
622 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
623 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
624 btrfs_set_disk_key_flags(key, flags);
7fcde0e3
CM
625}
626
627static inline u32 btrfs_disk_key_overflow(struct btrfs_disk_key *key)
628{
629 u32 over = le32_to_cpu(key->flags) & BTRFS_KEY_OVERFLOW_MASK;
630 return over >> BTRFS_KEY_OVERFLOW_SHIFT;
631}
632
633static inline void btrfs_set_disK_key_overflow(struct btrfs_disk_key *key,
634 u32 over)
635{
636 u32 flags = btrfs_disk_key_flags(key);
0f7d52f4 637 BUG_ON(over >= BTRFS_KEY_OVERFLOW_MAX);
7fcde0e3
CM
638 over = over << BTRFS_KEY_OVERFLOW_SHIFT;
639 flags = (flags & ~((u64)BTRFS_KEY_OVERFLOW_MASK)) | over;
640 btrfs_set_disk_key_flags(key, flags);
62e2749e
CM
641}
642
bb492bb0 643static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
7518a238 644{
bb492bb0 645 return le64_to_cpu(h->blocknr);
7518a238
CM
646}
647
bb492bb0 648static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
7518a238 649{
bb492bb0 650 h->blocknr = cpu_to_le64(blocknr);
7518a238
CM
651}
652
7f5c1516
CM
653static inline u64 btrfs_header_generation(struct btrfs_header *h)
654{
655 return le64_to_cpu(h->generation);
656}
657
658static inline void btrfs_set_header_generation(struct btrfs_header *h,
659 u64 val)
660{
661 h->generation = cpu_to_le64(val);
662}
663
bb492bb0 664static inline u16 btrfs_header_nritems(struct btrfs_header *h)
7518a238 665{
bb492bb0 666 return le16_to_cpu(h->nritems);
7518a238
CM
667}
668
bb492bb0 669static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
7518a238 670{
bb492bb0 671 h->nritems = cpu_to_le16(val);
7518a238
CM
672}
673
bb492bb0 674static inline u16 btrfs_header_flags(struct btrfs_header *h)
7518a238 675{
bb492bb0 676 return le16_to_cpu(h->flags);
7518a238
CM
677}
678
bb492bb0 679static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
7518a238 680{
bb492bb0 681 h->flags = cpu_to_le16(val);
7518a238
CM
682}
683
bb492bb0 684static inline int btrfs_header_level(struct btrfs_header *h)
7518a238 685{
9a6f11ed 686 return h->level;
7518a238
CM
687}
688
bb492bb0 689static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
7518a238 690{
234b63a0 691 BUG_ON(level > BTRFS_MAX_LEVEL);
9a6f11ed 692 h->level = level;
7518a238
CM
693}
694
234b63a0 695static inline int btrfs_is_leaf(struct btrfs_node *n)
7518a238
CM
696{
697 return (btrfs_header_level(&n->header) == 0);
698}
699
3768f368
CM
700static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
701{
702 return le64_to_cpu(item->blocknr);
703}
704
705static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
706{
707 item->blocknr = cpu_to_le64(val);
708}
709
d6e4a428
CM
710static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
711{
712 return le64_to_cpu(item->root_dirid);
713}
714
715static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
716{
717 item->root_dirid = cpu_to_le64(val);
718}
719
3768f368
CM
720static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
721{
722 return le32_to_cpu(item->refs);
723}
724
725static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
726{
727 item->refs = cpu_to_le32(val);
728}
729
730static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
731{
732 return le64_to_cpu(s->blocknr);
733}
734
735static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
736{
737 s->blocknr = cpu_to_le64(val);
738}
739
0f7d52f4
CM
740static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
741{
742 return le64_to_cpu(s->generation);
743}
744
745static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
746 u64 val)
747{
748 s->generation = cpu_to_le64(val);
749}
750
3768f368
CM
751static inline u64 btrfs_super_root(struct btrfs_super_block *s)
752{
753 return le64_to_cpu(s->root);
754}
755
756static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
757{
758 s->root = cpu_to_le64(val);
759}
760
761static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
762{
763 return le64_to_cpu(s->total_blocks);
764}
765
766static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
767 u64 val)
768{
769 s->total_blocks = cpu_to_le64(val);
770}
771
772static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
773{
774 return le64_to_cpu(s->blocks_used);
775}
776
777static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
778 u64 val)
779{
780 s->blocks_used = cpu_to_le64(val);
781}
782
123abc88 783static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
3768f368 784{
123abc88 785 return le32_to_cpu(s->blocksize);
3768f368
CM
786}
787
788static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
123abc88
CM
789 u32 val)
790{
791 s->blocksize = cpu_to_le32(val);
792}
793
2e635a27
CM
794static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
795{
796 return le64_to_cpu(s->root_dir_objectid);
797}
798
799static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
800 val)
801{
802 s->root_dir_objectid = cpu_to_le64(val);
803}
804
b4100d64
CM
805static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
806{
807 return le64_to_cpu(s->last_device_id);
808}
809
810static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
811 u64 val)
812{
813 s->last_device_id = cpu_to_le64(val);
814}
815
816static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
817{
818 return le64_to_cpu(s->device_id);
819}
820
821static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
822 u64 val)
823{
824 s->device_id = cpu_to_le64(val);
825}
826
0bd93ba0
CM
827static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
828{
829 return le64_to_cpu(s->device_block_start);
830}
831
832static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
833 *s, u64 val)
834{
835 s->device_block_start = cpu_to_le64(val);
836}
837
838static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
839{
840 return le64_to_cpu(s->device_num_blocks);
841}
842
843static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
844 *s, u64 val)
845{
846 s->device_num_blocks = cpu_to_le64(val);
847}
848
849static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
850{
851 return le64_to_cpu(s->device_root);
852}
853
854static inline void btrfs_set_super_device_root(struct btrfs_super_block
855 *s, u64 val)
856{
857 s->device_root = cpu_to_le64(val);
858}
859
860
123abc88 861static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
3768f368 862{
123abc88 863 return (u8 *)l->items;
3768f368 864}
9f5fae2f
CM
865
866static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
867 *e)
868{
869 return le64_to_cpu(e->disk_blocknr);
870}
871
872static inline void btrfs_set_file_extent_disk_blocknr(struct
873 btrfs_file_extent_item
874 *e, u64 val)
875{
876 e->disk_blocknr = cpu_to_le64(val);
877}
878
71951f35
CM
879static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
880{
881 return le64_to_cpu(e->generation);
882}
883
884static inline void btrfs_set_file_extent_generation(struct
885 btrfs_file_extent_item *e,
886 u64 val)
887{
888 e->generation = cpu_to_le64(val);
889}
890
9f5fae2f
CM
891static inline u64 btrfs_file_extent_disk_num_blocks(struct
892 btrfs_file_extent_item *e)
893{
894 return le64_to_cpu(e->disk_num_blocks);
895}
896
897static inline void btrfs_set_file_extent_disk_num_blocks(struct
898 btrfs_file_extent_item
899 *e, u64 val)
900{
901 e->disk_num_blocks = cpu_to_le64(val);
902}
903
904static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
905{
906 return le64_to_cpu(e->offset);
907}
908
909static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
910 *e, u64 val)
911{
912 e->offset = cpu_to_le64(val);
913}
914
915static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
916 *e)
917{
918 return le64_to_cpu(e->num_blocks);
919}
920
921static inline void btrfs_set_file_extent_num_blocks(struct
922 btrfs_file_extent_item *e,
923 u64 val)
924{
925 e->num_blocks = cpu_to_le64(val);
926}
927
6567e837
CM
928static inline u64 btrfs_csum_extent_offset(struct btrfs_csum_item *c)
929{
930 return le64_to_cpu(c->extent_offset);
931}
932
933static inline void btrfs_set_csum_extent_offset(struct btrfs_csum_item *c,
934 u64 val)
935{
936 c->extent_offset = cpu_to_le64(val);
937}
938
0bd93ba0
CM
939static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
940{
941 return le16_to_cpu(d->pathlen);
942}
943
944static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
945 u16 val)
946{
947 d->pathlen = cpu_to_le16(val);
948}
949
b4100d64
CM
950static inline u64 btrfs_device_id(struct btrfs_device_item *d)
951{
952 return le64_to_cpu(d->device_id);
953}
954
955static inline void btrfs_set_device_id(struct btrfs_device_item *d,
956 u64 val)
957{
958 d->device_id = cpu_to_le64(val);
959}
960
e20d96d6
CM
961static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
962{
963 return sb->s_fs_info;
964}
965
d6025579
CM
966static inline void btrfs_check_bounds(void *vptr, size_t len,
967 void *vcontainer, size_t container_len)
968{
969 char *ptr = vptr;
970 char *container = vcontainer;
971 WARN_ON(ptr < container);
972 WARN_ON(ptr + len > container + container_len);
973}
974
975static inline void btrfs_memcpy(struct btrfs_root *root,
976 void *dst_block,
977 void *dst, const void *src, size_t nr)
978{
979 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
980 memcpy(dst, src, nr);
981}
982
983static inline void btrfs_memmove(struct btrfs_root *root,
984 void *dst_block,
985 void *dst, void *src, size_t nr)
986{
987 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
988 memmove(dst, src, nr);
989}
990
991static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
992{
993 WARN_ON(!atomic_read(&bh->b_count));
994 mark_buffer_dirty(bh);
995}
996
4beb1b8b
CM
997/* helper function to cast into the data area of the leaf. */
998#define btrfs_item_ptr(leaf, slot, type) \
123abc88
CM
999 ((type *)(btrfs_leaf_data(leaf) + \
1000 btrfs_item_offset((leaf)->items + (slot))))
4beb1b8b 1001
dee26a9f 1002/* extent-item.c */
c5739bba
CM
1003int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1004 struct btrfs_root *root);
e20d96d6 1005struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
e089f05c 1006 struct btrfs_root *root);
dee26a9f
CM
1007int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1008 *root, u64 num_blocks, u64 search_start, u64
d0dbc624 1009 search_end, struct btrfs_key *ins);
e089f05c 1010int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e20d96d6 1011 struct buffer_head *buf);
e089f05c
CM
1012int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1013 *root, u64 blocknr, u64 num_blocks, int pin);
dee26a9f
CM
1014int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1015 btrfs_root *root);
1016/* ctree.c */
6567e837
CM
1017int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1018 *root, struct btrfs_path *path, u32 data_size);
e089f05c
CM
1019int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1020 *root, struct btrfs_key *key, struct btrfs_path *p, int
1021 ins_len, int cow);
234b63a0 1022void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
2c90e5d6
CM
1023struct btrfs_path *btrfs_alloc_path(void);
1024void btrfs_free_path(struct btrfs_path *p);
234b63a0 1025void btrfs_init_path(struct btrfs_path *p);
e089f05c
CM
1026int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1027 struct btrfs_path *path);
1028int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1029 *root, struct btrfs_key *key, void *data, u32 data_size);
1030int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1031 *root, struct btrfs_path *path, struct btrfs_key
1032 *cpu_key, u32 data_size);
234b63a0 1033int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
123abc88 1034int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
e089f05c 1035int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
e20d96d6 1036 *root, struct buffer_head *snap);
dee26a9f 1037/* root-item.c */
e089f05c
CM
1038int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1039 struct btrfs_key *key);
1040int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1041 *root, struct btrfs_key *key, struct btrfs_root_item
1042 *item);
1043int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1044 *root, struct btrfs_key *key, struct btrfs_root_item
1045 *item);
1046int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1047 btrfs_root_item *item, struct btrfs_key *key);
dee26a9f 1048/* dir-item.c */
e089f05c 1049int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
d6e4a428
CM
1050 *root, const char *name, int name_len, u64 dir,
1051 struct btrfs_key *location, u8 type);
e089f05c 1052int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
e20d96d6
CM
1053 *root, struct btrfs_path *path, u64 dir,
1054 const char *name, int name_len, int mod);
5f26f772
CM
1055int btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1056 struct btrfs_root *root,
1057 struct btrfs_path *path, u64 dir,
1058 u64 objectid, int mod);
1d4f6404 1059int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
7f5c1516 1060 const char *name, int name_len);
dee26a9f 1061/* inode-map.c */
9f5fae2f
CM
1062int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1063 struct btrfs_root *fs_root,
1064 u64 dirid, u64 *objectid);
5be6f7f1
CM
1065int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1066
dee26a9f 1067/* inode-item.c */
293ffd5f
CM
1068int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1069 *root, u64 objectid, struct btrfs_inode_item
1070 *inode_item);
1071int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
d6e4a428
CM
1072 *root, struct btrfs_path *path,
1073 struct btrfs_key *location, int mod);
dee26a9f
CM
1074
1075/* file-item.c */
1076int btrfs_alloc_file_extent(struct btrfs_trans_handle *trans,
1077 struct btrfs_root *root,
1078 u64 objectid, u64 offset,
1079 u64 num_blocks, u64 hint_block,
1080 u64 *result);
1081int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1082 struct btrfs_root *root,
1083 struct btrfs_path *path, u64 objectid,
9773a788 1084 u64 blocknr, int mod);
f254e52c
CM
1085int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1086 struct btrfs_root *root,
1087 u64 objectid, u64 offset,
6567e837 1088 u64 extent_offset,
f254e52c
CM
1089 char *data, size_t len);
1090int btrfs_csum_verify_file_block(struct btrfs_root *root,
1091 u64 objectid, u64 offset,
1092 char *data, size_t len);
d6e4a428
CM
1093/* super.c */
1094extern struct subsystem btrfs_subsys;
1095
eb60ceac 1096#endif