Btrfs: struct item endian fixes
[linux-2.6-block.git] / fs / btrfs / ctree.h
CommitLineData
eb60ceac
CM
1#ifndef __CTREE__
2#define __CTREE__
3
ed2ff2cb 4#include "list.h"
e2fa7227 5#include "kerncompat.h"
ed2ff2cb 6
fec577fb 7#define CTREE_BLOCKSIZE 1024
eb60ceac 8
fec577fb
CM
9/*
10 * the key defines the order in the tree, and so it also defines (optimal)
11 * block layout. objectid corresonds to the inode number. The flags
12 * tells us things about the object, and is a kind of stream selector.
13 * so for a given inode, keys with flags of 1 might refer to the inode
14 * data, flags of 2 may point to file data in the btree and flags == 3
15 * may point to extents.
16 *
17 * offset is the starting byte offset for this key in the stream.
e2fa7227
CM
18 *
19 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
20 * in cpu native order. Otherwise they are identical and their sizes
21 * should be the same (ie both packed)
fec577fb 22 */
e2fa7227
CM
23struct btrfs_disk_key {
24 __le64 objectid;
25 __le32 flags;
26 __le64 offset;
27} __attribute__ ((__packed__));
28
29struct btrfs_key {
eb60ceac
CM
30 u64 objectid;
31 u32 flags;
32 u64 offset;
33} __attribute__ ((__packed__));
34
fec577fb
CM
35/*
36 * every tree block (leaf or node) starts with this header.
37 */
bb492bb0
CM
38struct btrfs_header {
39 __le64 fsid[2]; /* FS specific uuid */
40 __le64 blocknr; /* which block this node is supposed to live in */
41 __le64 parentid; /* objectid of the tree root */
42 __le32 csum;
43 __le32 ham;
44 __le16 nritems;
45 __le16 flags;
fec577fb 46 /* generation flags to be added */
eb60ceac
CM
47} __attribute__ ((__packed__));
48
7518a238 49#define MAX_LEVEL 8
bb492bb0 50#define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct btrfs_header)) / \
e2fa7227 51 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
eb60ceac 52
eb60ceac 53struct tree_buffer;
d97e63b6 54
fec577fb
CM
55/*
56 * in ram representation of the tree. extent_root is used for all allocations
57 * and for the extent tree extent_root root. current_insert is used
58 * only for the extent tree.
59 */
eb60ceac
CM
60struct ctree_root {
61 struct tree_buffer *node;
a28ec197 62 struct tree_buffer *commit_root;
d97e63b6 63 struct ctree_root *extent_root;
e2fa7227
CM
64 struct btrfs_key current_insert;
65 struct btrfs_key last_insert;
eb60ceac
CM
66 int fp;
67 struct radix_tree_root cache_radix;
a28ec197 68 struct radix_tree_root pinned_radix;
ed2ff2cb
CM
69 struct list_head trans;
70 struct list_head cache;
71 int cache_size;
eb60ceac
CM
72};
73
fec577fb
CM
74/*
75 * describes a tree on disk
76 */
d97e63b6
CM
77struct ctree_root_info {
78 u64 fsid[2]; /* FS specific uuid */
79 u64 blocknr; /* blocknr of this block */
80 u64 objectid; /* inode number of this root */
fec577fb 81 u64 tree_root; /* the tree root block */
d97e63b6
CM
82 u32 csum;
83 u32 ham;
d97e63b6
CM
84 u64 snapuuid[2]; /* root specific uuid */
85} __attribute__ ((__packed__));
86
fec577fb
CM
87/*
88 * the super block basically lists the main trees of the FS
89 * it currently lacks any block count etc etc
90 */
cfaa7295
CM
91struct ctree_super_block {
92 struct ctree_root_info root_info;
93 struct ctree_root_info extent_info;
94} __attribute__ ((__packed__));
95
fec577fb
CM
96/*
97 * A leaf is full of items. The exact type of item is defined by
98 * the key flags parameter. offset and size tell us where to find
99 * the item in the leaf (relative to the start of the data area)
100 */
0783fcfc 101struct btrfs_item {
e2fa7227 102 struct btrfs_disk_key key;
0783fcfc
CM
103 __le16 offset;
104 __le16 size;
eb60ceac
CM
105} __attribute__ ((__packed__));
106
fec577fb
CM
107/*
108 * leaves have an item area and a data area:
109 * [item0, item1....itemN] [free space] [dataN...data1, data0]
110 *
111 * The data is separate from the items to get the keys closer together
112 * during searches.
113 */
bb492bb0 114#define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct btrfs_header))
eb60ceac 115struct leaf {
bb492bb0 116 struct btrfs_header header;
eb60ceac 117 union {
0783fcfc
CM
118 struct btrfs_item items[LEAF_DATA_SIZE/
119 sizeof(struct btrfs_item)];
bb492bb0 120 u8 data[CTREE_BLOCKSIZE-sizeof(struct btrfs_header)];
eb60ceac
CM
121 };
122} __attribute__ ((__packed__));
123
fec577fb
CM
124/*
125 * all non-leaf blocks are nodes, they hold only keys and pointers to
126 * other blocks
127 */
eb60ceac 128struct node {
bb492bb0 129 struct btrfs_header header;
e2fa7227 130 struct btrfs_disk_key keys[NODEPTRS_PER_BLOCK];
eb60ceac
CM
131 u64 blockptrs[NODEPTRS_PER_BLOCK];
132} __attribute__ ((__packed__));
133
fec577fb
CM
134/*
135 * items in the extent btree are used to record the objectid of the
136 * owner of the block and the number of references
137 */
d97e63b6
CM
138struct extent_item {
139 u32 refs;
140 u64 owner;
141} __attribute__ ((__packed__));
142
fec577fb
CM
143/*
144 * ctree_paths remember the path taken from the root down to the leaf.
145 * level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
146 * to any other levels that are present.
147 *
148 * The slots array records the index of the item or block pointer
149 * used while walking the tree.
150 */
eb60ceac
CM
151struct ctree_path {
152 struct tree_buffer *nodes[MAX_LEVEL];
153 int slots[MAX_LEVEL];
154};
5de08d7d 155
0783fcfc
CM
156static inline u16 btrfs_item_offset(struct btrfs_item *item)
157{
158 return le16_to_cpu(item->offset);
159}
160
161static inline void btrfs_set_item_offset(struct btrfs_item *item, u16 val)
162{
163 item->offset = cpu_to_le16(val);
164}
165
166static inline u16 btrfs_item_end(struct btrfs_item *item)
167{
168 return le16_to_cpu(item->offset) + le16_to_cpu(item->size);
169}
170
171static inline u16 btrfs_item_size(struct btrfs_item *item)
172{
173 return le16_to_cpu(item->size);
174}
175
176static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
177{
178 item->size = cpu_to_le16(val);
179}
180
e2fa7227
CM
181static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
182 struct btrfs_disk_key *disk)
183{
184 cpu->offset = le64_to_cpu(disk->offset);
185 cpu->flags = le32_to_cpu(disk->flags);
186 cpu->objectid = le64_to_cpu(disk->objectid);
187}
188
189static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
190 struct btrfs_key *cpu)
191{
192 disk->offset = cpu_to_le64(cpu->offset);
193 disk->flags = cpu_to_le32(cpu->flags);
194 disk->objectid = cpu_to_le64(cpu->objectid);
195}
196
197static inline u64 btrfs_key_objectid(struct btrfs_disk_key *disk)
198{
199 return le64_to_cpu(disk->objectid);
200}
201
202static inline void btrfs_set_key_objectid(struct btrfs_disk_key *disk,
203 u64 val)
204{
205 disk->objectid = cpu_to_le64(val);
206}
207
208static inline u64 btrfs_key_offset(struct btrfs_disk_key *disk)
209{
210 return le64_to_cpu(disk->offset);
211}
212
213static inline void btrfs_set_key_offset(struct btrfs_disk_key *disk,
214 u64 val)
215{
216 disk->offset = cpu_to_le64(val);
217}
218
219static inline u32 btrfs_key_flags(struct btrfs_disk_key *disk)
220{
221 return le32_to_cpu(disk->flags);
222}
223
224static inline void btrfs_set_key_flags(struct btrfs_disk_key *disk,
225 u32 val)
226{
227 disk->flags = cpu_to_le32(val);
228}
229
bb492bb0 230static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
7518a238 231{
bb492bb0 232 return le64_to_cpu(h->blocknr);
7518a238
CM
233}
234
bb492bb0 235static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
7518a238 236{
bb492bb0 237 h->blocknr = cpu_to_le64(blocknr);
7518a238
CM
238}
239
bb492bb0 240static inline u64 btrfs_header_parentid(struct btrfs_header *h)
7518a238 241{
bb492bb0 242 return le64_to_cpu(h->parentid);
7518a238
CM
243}
244
bb492bb0
CM
245static inline void btrfs_set_header_parentid(struct btrfs_header *h,
246 u64 parentid)
7518a238 247{
bb492bb0 248 h->parentid = cpu_to_le64(parentid);
7518a238
CM
249}
250
bb492bb0 251static inline u16 btrfs_header_nritems(struct btrfs_header *h)
7518a238 252{
bb492bb0 253 return le16_to_cpu(h->nritems);
7518a238
CM
254}
255
bb492bb0 256static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
7518a238 257{
bb492bb0 258 h->nritems = cpu_to_le16(val);
7518a238
CM
259}
260
bb492bb0 261static inline u16 btrfs_header_flags(struct btrfs_header *h)
7518a238 262{
bb492bb0 263 return le16_to_cpu(h->flags);
7518a238
CM
264}
265
bb492bb0 266static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
7518a238 267{
bb492bb0 268 h->flags = cpu_to_le16(val);
7518a238
CM
269}
270
bb492bb0 271static inline int btrfs_header_level(struct btrfs_header *h)
7518a238
CM
272{
273 return btrfs_header_flags(h) & (MAX_LEVEL - 1);
274}
275
bb492bb0 276static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
7518a238 277{
bb492bb0 278 u16 flags;
7518a238
CM
279 BUG_ON(level > MAX_LEVEL);
280 flags = btrfs_header_flags(h) & ~(MAX_LEVEL - 1);
281 btrfs_set_header_flags(h, flags | level);
282}
283
284static inline int btrfs_is_leaf(struct node *n)
285{
286 return (btrfs_header_level(&n->header) == 0);
287}
288
5de08d7d 289struct tree_buffer *alloc_free_block(struct ctree_root *root);
02217ed2 290int btrfs_inc_ref(struct ctree_root *root, struct tree_buffer *buf);
5de08d7d 291int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks);
e2fa7227
CM
292int search_slot(struct ctree_root *root, struct btrfs_key *key,
293 struct ctree_path *p, int ins_len, int cow);
5de08d7d
CM
294void release_path(struct ctree_root *root, struct ctree_path *p);
295void init_path(struct ctree_path *p);
296int del_item(struct ctree_root *root, struct ctree_path *path);
e2fa7227
CM
297int insert_item(struct ctree_root *root, struct btrfs_key *key,
298 void *data, int data_size);
5de08d7d
CM
299int next_leaf(struct ctree_root *root, struct ctree_path *path);
300int leaf_free_space(struct leaf *leaf);
a28ec197
CM
301int btrfs_drop_snapshot(struct ctree_root *root, struct tree_buffer *snap);
302int btrfs_finish_extent_commit(struct ctree_root *root);
eb60ceac 303#endif