Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[linux-2.6-block.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
afe5fea7
TI
40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
5de865ee 42static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 43 struct extent_buffer *eb);
d97e63b6 44
df24a2b9 45struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 46{
df24a2b9 47 struct btrfs_path *path;
e00f7308 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 49 return path;
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a 82
bd681513
CM
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
4008c04a 90 btrfs_set_path_blocking(p);
4008c04a
CM
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
b4ce94de 100 }
4008c04a 101
4008c04a 102 if (held)
bd681513 103 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
104}
105
d352ac68 106/* this also releases the path */
df24a2b9 107void btrfs_free_path(struct btrfs_path *p)
be0e5c09 108{
ff175d57
JJ
109 if (!p)
110 return;
b3b4aa74 111 btrfs_release_path(p);
df24a2b9 112 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
113}
114
d352ac68
CM
115/*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
b3b4aa74 121noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
122{
123 int i;
a2135011 124
234b63a0 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 126 p->slots[i] = 0;
eb60ceac 127 if (!p->nodes[i])
925baedd
CM
128 continue;
129 if (p->locks[i]) {
bd681513 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
131 p->locks[i] = 0;
132 }
5f39d397 133 free_extent_buffer(p->nodes[i]);
3f157a2f 134 p->nodes[i] = NULL;
eb60ceac
CM
135 }
136}
137
d352ac68
CM
138/*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
925baedd
CM
148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149{
150 struct extent_buffer *eb;
240f62c8 151
3083ee2e
JB
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
158 * it was cow'ed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
925baedd
CM
169 return eb;
170}
171
d352ac68
CM
172/* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
925baedd
CM
176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177{
178 struct extent_buffer *eb;
179
d397712b 180 while (1) {
925baedd
CM
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
240f62c8 183 if (eb == root->node)
925baedd 184 break;
925baedd
CM
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189}
190
bd681513
CM
191/* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
48a3b636 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
196{
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208}
209
d352ac68
CM
210/* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
0b86a832
CM
214static void add_root_to_dirty_list(struct btrfs_root *root)
215{
e7070be1
JB
216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 return;
219
e5846fc6 220 spin_lock(&root->fs_info->trans_lock);
e7070be1
JB
221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 /* Want the extent tree to be the last on the list */
223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 list_move_tail(&root->dirty_list,
225 &root->fs_info->dirty_cowonly_roots);
226 else
227 list_move(&root->dirty_list,
228 &root->fs_info->dirty_cowonly_roots);
0b86a832 229 }
e5846fc6 230 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
231}
232
d352ac68
CM
233/*
234 * used by snapshot creation to make a copy of a root for a tree with
235 * a given objectid. The buffer with the new root node is returned in
236 * cow_ret, and this func returns zero on success or a negative error code.
237 */
be20aa9d
CM
238int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 struct btrfs_root *root,
240 struct extent_buffer *buf,
241 struct extent_buffer **cow_ret, u64 new_root_objectid)
242{
243 struct extent_buffer *cow;
be20aa9d
CM
244 int ret = 0;
245 int level;
5d4f98a2 246 struct btrfs_disk_key disk_key;
be20aa9d 247
27cdeb70
MX
248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249 trans->transid != root->fs_info->running_transaction->transid);
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->last_trans);
be20aa9d
CM
252
253 level = btrfs_header_level(buf);
5d4f98a2
YZ
254 if (level == 0)
255 btrfs_item_key(buf, &disk_key, 0);
256 else
257 btrfs_node_key(buf, &disk_key, 0);
31840ae1 258
4d75f8a9
DS
259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260 &disk_key, level, buf->start, 0);
5d4f98a2 261 if (IS_ERR(cow))
be20aa9d
CM
262 return PTR_ERR(cow);
263
264 copy_extent_buffer(cow, buf, 0, 0, cow->len);
265 btrfs_set_header_bytenr(cow, cow->start);
266 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269 BTRFS_HEADER_FLAG_RELOC);
270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 else
273 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 274
0a4e5586 275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
2b82032c
YZ
276 BTRFS_FSID_SIZE);
277
be20aa9d 278 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 280 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 281 else
e339a6b0 282 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 283
be20aa9d
CM
284 if (ret)
285 return ret;
286
287 btrfs_mark_buffer_dirty(cow);
288 *cow_ret = cow;
289 return 0;
290}
291
bd989ba3
JS
292enum mod_log_op {
293 MOD_LOG_KEY_REPLACE,
294 MOD_LOG_KEY_ADD,
295 MOD_LOG_KEY_REMOVE,
296 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 MOD_LOG_MOVE_KEYS,
299 MOD_LOG_ROOT_REPLACE,
300};
301
302struct tree_mod_move {
303 int dst_slot;
304 int nr_items;
305};
306
307struct tree_mod_root {
308 u64 logical;
309 u8 level;
310};
311
312struct tree_mod_elem {
313 struct rb_node node;
298cfd36 314 u64 logical;
097b8a7c 315 u64 seq;
bd989ba3
JS
316 enum mod_log_op op;
317
318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 int slot;
320
321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 u64 generation;
323
324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 struct btrfs_disk_key key;
326 u64 blockptr;
327
328 /* this is used for op == MOD_LOG_MOVE_KEYS */
329 struct tree_mod_move move;
330
331 /* this is used for op == MOD_LOG_ROOT_REPLACE */
332 struct tree_mod_root old_root;
333};
334
097b8a7c 335static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 336{
097b8a7c 337 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
338}
339
097b8a7c
JS
340static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
341{
342 read_unlock(&fs_info->tree_mod_log_lock);
343}
344
345static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
346{
347 write_lock(&fs_info->tree_mod_log_lock);
348}
349
350static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
351{
352 write_unlock(&fs_info->tree_mod_log_lock);
353}
354
fc36ed7e 355/*
fcebe456 356 * Pull a new tree mod seq number for our operation.
fc36ed7e 357 */
fcebe456 358static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
359{
360 return atomic64_inc_return(&fs_info->tree_mod_seq);
361}
362
097b8a7c
JS
363/*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
bd989ba3 373{
097b8a7c 374 tree_mod_log_write_lock(fs_info);
bd989ba3 375 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 376 if (!elem->seq) {
fcebe456 377 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
379 }
bd989ba3 380 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
381 tree_mod_log_write_unlock(fs_info);
382
fcebe456 383 return elem->seq;
bd989ba3
JS
384}
385
386void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387 struct seq_list *elem)
388{
389 struct rb_root *tm_root;
390 struct rb_node *node;
391 struct rb_node *next;
392 struct seq_list *cur_elem;
393 struct tree_mod_elem *tm;
394 u64 min_seq = (u64)-1;
395 u64 seq_putting = elem->seq;
396
397 if (!seq_putting)
398 return;
399
bd989ba3
JS
400 spin_lock(&fs_info->tree_mod_seq_lock);
401 list_del(&elem->list);
097b8a7c 402 elem->seq = 0;
bd989ba3
JS
403
404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 405 if (cur_elem->seq < min_seq) {
bd989ba3
JS
406 if (seq_putting > cur_elem->seq) {
407 /*
408 * blocker with lower sequence number exists, we
409 * cannot remove anything from the log
410 */
097b8a7c
JS
411 spin_unlock(&fs_info->tree_mod_seq_lock);
412 return;
bd989ba3
JS
413 }
414 min_seq = cur_elem->seq;
415 }
416 }
097b8a7c
JS
417 spin_unlock(&fs_info->tree_mod_seq_lock);
418
bd989ba3
JS
419 /*
420 * anything that's lower than the lowest existing (read: blocked)
421 * sequence number can be removed from the tree.
422 */
097b8a7c 423 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
424 tm_root = &fs_info->tree_mod_log;
425 for (node = rb_first(tm_root); node; node = next) {
426 next = rb_next(node);
427 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 428 if (tm->seq > min_seq)
bd989ba3
JS
429 continue;
430 rb_erase(node, tm_root);
bd989ba3
JS
431 kfree(tm);
432 }
097b8a7c 433 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
434}
435
436/*
437 * key order of the log:
298cfd36 438 * node/leaf start address -> sequence
bd989ba3 439 *
298cfd36
CR
440 * The 'start address' is the logical address of the *new* root node
441 * for root replace operations, or the logical address of the affected
442 * block for all other operations.
5de865ee
FDBM
443 *
444 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
445 */
446static noinline int
447__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
448{
449 struct rb_root *tm_root;
450 struct rb_node **new;
451 struct rb_node *parent = NULL;
452 struct tree_mod_elem *cur;
c8cc6341
JB
453
454 BUG_ON(!tm);
455
fcebe456 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 457
bd989ba3
JS
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = container_of(*new, struct tree_mod_elem, node);
462 parent = *new;
298cfd36 463 if (cur->logical < tm->logical)
bd989ba3 464 new = &((*new)->rb_left);
298cfd36 465 else if (cur->logical > tm->logical)
bd989ba3 466 new = &((*new)->rb_right);
097b8a7c 467 else if (cur->seq < tm->seq)
bd989ba3 468 new = &((*new)->rb_left);
097b8a7c 469 else if (cur->seq > tm->seq)
bd989ba3 470 new = &((*new)->rb_right);
5de865ee
FDBM
471 else
472 return -EEXIST;
bd989ba3
JS
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
5de865ee 477 return 0;
bd989ba3
JS
478}
479
097b8a7c
JS
480/*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
e9b7fd4d
JS
486static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
097b8a7c
JS
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
5de865ee
FDBM
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
e9b7fd4d
JS
500 return 0;
501}
502
5de865ee
FDBM
503/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506{
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514}
515
516static struct tree_mod_elem *
517alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
bd989ba3 519{
097b8a7c 520 struct tree_mod_elem *tm;
bd989ba3 521
c8cc6341
JB
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
5de865ee 524 return NULL;
bd989ba3 525
298cfd36 526 tm->logical = eb->start;
bd989ba3
JS
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 534 RB_CLEAR_NODE(&tm->node);
bd989ba3 535
5de865ee 536 return tm;
097b8a7c
JS
537}
538
539static noinline int
c8cc6341
JB
540tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
097b8a7c 543{
5de865ee
FDBM
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
097b8a7c 556 return 0;
5de865ee
FDBM
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
097b8a7c 563
5de865ee 564 return ret;
097b8a7c
JS
565}
566
bd989ba3
JS
567static noinline int
568tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
570 int nr_items, gfp_t flags)
571{
5de865ee
FDBM
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
bd989ba3 575 int i;
5de865ee 576 int locked = 0;
bd989ba3 577
5de865ee 578 if (!tree_mod_need_log(fs_info, eb))
f395694c 579 return 0;
bd989ba3 580
31e818fe 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
5de865ee
FDBM
582 if (!tm_list)
583 return -ENOMEM;
584
585 tm = kzalloc(sizeof(*tm), flags);
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
589 }
590
298cfd36 591 tm->logical = eb->start;
5de865ee
FDBM
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
596
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
603 }
604 }
605
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
609
01763a2e
JS
610 /*
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
614 */
bd989ba3 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
bd989ba3
JS
619 }
620
5de865ee
FDBM
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
f395694c 626
5de865ee
FDBM
627 return 0;
628free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
633 }
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
bd989ba3 638
5de865ee 639 return ret;
bd989ba3
JS
640}
641
5de865ee
FDBM
642static inline int
643__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
097b8a7c 646{
5de865ee 647 int i, j;
097b8a7c
JS
648 int ret;
649
097b8a7c 650 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
657 }
097b8a7c 658 }
5de865ee
FDBM
659
660 return 0;
097b8a7c
JS
661}
662
bd989ba3
JS
663static noinline int
664tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
90f8d62e
JS
666 struct extent_buffer *new_root, gfp_t flags,
667 int log_removal)
bd989ba3 668{
5de865ee
FDBM
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
bd989ba3 674
5de865ee 675 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
676 return 0;
677
5de865ee
FDBM
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
31e818fe 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
681 flags);
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
685 }
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
692 }
693 }
694 }
d9abbf1c 695
c8cc6341 696 tm = kzalloc(sizeof(*tm), flags);
5de865ee
FDBM
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
700 }
bd989ba3 701
298cfd36 702 tm->logical = new_root->start;
bd989ba3
JS
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
707
5de865ee
FDBM
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
710
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
715
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
720
721 return ret;
722
723free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
728 }
729 kfree(tm);
730
731 return ret;
bd989ba3
JS
732}
733
734static struct tree_mod_elem *
735__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
737{
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
bd989ba3 742
097b8a7c 743 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
744 tm_root = &fs_info->tree_mod_log;
745 node = tm_root->rb_node;
746 while (node) {
747 cur = container_of(node, struct tree_mod_elem, node);
298cfd36 748 if (cur->logical < start) {
bd989ba3 749 node = node->rb_left;
298cfd36 750 } else if (cur->logical > start) {
bd989ba3 751 node = node->rb_right;
097b8a7c 752 } else if (cur->seq < min_seq) {
bd989ba3
JS
753 node = node->rb_left;
754 } else if (!smallest) {
755 /* we want the node with the highest seq */
756 if (found)
097b8a7c 757 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
758 found = cur;
759 node = node->rb_left;
097b8a7c 760 } else if (cur->seq > min_seq) {
bd989ba3
JS
761 /* we want the node with the smallest seq */
762 if (found)
097b8a7c 763 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
764 found = cur;
765 node = node->rb_right;
766 } else {
767 found = cur;
768 break;
769 }
770 }
097b8a7c 771 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
772
773 return found;
774}
775
776/*
777 * this returns the element from the log with the smallest time sequence
778 * value that's in the log (the oldest log item). any element with a time
779 * sequence lower than min_seq will be ignored.
780 */
781static struct tree_mod_elem *
782tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
783 u64 min_seq)
784{
785 return __tree_mod_log_search(fs_info, start, min_seq, 1);
786}
787
788/*
789 * this returns the element from the log with the largest time sequence
790 * value that's in the log (the most recent log item). any element with
791 * a time sequence lower than min_seq will be ignored.
792 */
793static struct tree_mod_elem *
794tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
795{
796 return __tree_mod_log_search(fs_info, start, min_seq, 0);
797}
798
5de865ee 799static noinline int
bd989ba3
JS
800tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
801 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 802 unsigned long src_offset, int nr_items)
bd989ba3 803{
5de865ee
FDBM
804 int ret = 0;
805 struct tree_mod_elem **tm_list = NULL;
806 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 807 int i;
5de865ee 808 int locked = 0;
bd989ba3 809
5de865ee
FDBM
810 if (!tree_mod_need_log(fs_info, NULL))
811 return 0;
bd989ba3 812
c8cc6341 813 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
814 return 0;
815
31e818fe 816 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
817 GFP_NOFS);
818 if (!tm_list)
819 return -ENOMEM;
bd989ba3 820
5de865ee
FDBM
821 tm_list_add = tm_list;
822 tm_list_rem = tm_list + nr_items;
bd989ba3 823 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
824 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
825 MOD_LOG_KEY_REMOVE, GFP_NOFS);
826 if (!tm_list_rem[i]) {
827 ret = -ENOMEM;
828 goto free_tms;
829 }
830
831 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
832 MOD_LOG_KEY_ADD, GFP_NOFS);
833 if (!tm_list_add[i]) {
834 ret = -ENOMEM;
835 goto free_tms;
836 }
837 }
838
839 if (tree_mod_dont_log(fs_info, NULL))
840 goto free_tms;
841 locked = 1;
842
843 for (i = 0; i < nr_items; i++) {
844 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
845 if (ret)
846 goto free_tms;
847 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
848 if (ret)
849 goto free_tms;
bd989ba3 850 }
5de865ee
FDBM
851
852 tree_mod_log_write_unlock(fs_info);
853 kfree(tm_list);
854
855 return 0;
856
857free_tms:
858 for (i = 0; i < nr_items * 2; i++) {
859 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
860 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
861 kfree(tm_list[i]);
862 }
863 if (locked)
864 tree_mod_log_write_unlock(fs_info);
865 kfree(tm_list);
866
867 return ret;
bd989ba3
JS
868}
869
870static inline void
871tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
872 int dst_offset, int src_offset, int nr_items)
873{
874 int ret;
875 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
876 nr_items, GFP_NOFS);
877 BUG_ON(ret < 0);
878}
879
097b8a7c 880static noinline void
bd989ba3 881tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 882 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
883{
884 int ret;
885
78357766 886 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
887 MOD_LOG_KEY_REPLACE,
888 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
889 BUG_ON(ret < 0);
890}
891
5de865ee 892static noinline int
097b8a7c 893tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 894{
5de865ee
FDBM
895 struct tree_mod_elem **tm_list = NULL;
896 int nritems = 0;
897 int i;
898 int ret = 0;
899
900 if (btrfs_header_level(eb) == 0)
901 return 0;
902
903 if (!tree_mod_need_log(fs_info, NULL))
904 return 0;
905
906 nritems = btrfs_header_nritems(eb);
31e818fe 907 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
908 if (!tm_list)
909 return -ENOMEM;
910
911 for (i = 0; i < nritems; i++) {
912 tm_list[i] = alloc_tree_mod_elem(eb, i,
913 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
914 if (!tm_list[i]) {
915 ret = -ENOMEM;
916 goto free_tms;
917 }
918 }
919
e9b7fd4d 920 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
921 goto free_tms;
922
923 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
924 tree_mod_log_write_unlock(fs_info);
925 if (ret)
926 goto free_tms;
927 kfree(tm_list);
928
929 return 0;
930
931free_tms:
932 for (i = 0; i < nritems; i++)
933 kfree(tm_list[i]);
934 kfree(tm_list);
935
936 return ret;
bd989ba3
JS
937}
938
097b8a7c 939static noinline void
bd989ba3 940tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
941 struct extent_buffer *new_root_node,
942 int log_removal)
bd989ba3
JS
943{
944 int ret;
bd989ba3 945 ret = tree_mod_log_insert_root(root->fs_info, root->node,
90f8d62e 946 new_root_node, GFP_NOFS, log_removal);
bd989ba3
JS
947 BUG_ON(ret < 0);
948}
949
5d4f98a2
YZ
950/*
951 * check if the tree block can be shared by multiple trees
952 */
953int btrfs_block_can_be_shared(struct btrfs_root *root,
954 struct extent_buffer *buf)
955{
956 /*
957 * Tree blocks not in refernece counted trees and tree roots
958 * are never shared. If a block was allocated after the last
959 * snapshot and the block was not allocated by tree relocation,
960 * we know the block is not shared.
961 */
27cdeb70 962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
963 buf != root->node && buf != root->commit_root &&
964 (btrfs_header_generation(buf) <=
965 btrfs_root_last_snapshot(&root->root_item) ||
966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
967 return 1;
968#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 969 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
970 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
971 return 1;
972#endif
973 return 0;
974}
975
976static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root,
978 struct extent_buffer *buf,
f0486c68
YZ
979 struct extent_buffer *cow,
980 int *last_ref)
5d4f98a2
YZ
981{
982 u64 refs;
983 u64 owner;
984 u64 flags;
985 u64 new_flags = 0;
986 int ret;
987
988 /*
989 * Backrefs update rules:
990 *
991 * Always use full backrefs for extent pointers in tree block
992 * allocated by tree relocation.
993 *
994 * If a shared tree block is no longer referenced by its owner
995 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
996 * use full backrefs for extent pointers in tree block.
997 *
998 * If a tree block is been relocating
999 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1000 * use full backrefs for extent pointers in tree block.
1001 * The reason for this is some operations (such as drop tree)
1002 * are only allowed for blocks use full backrefs.
1003 */
1004
1005 if (btrfs_block_can_be_shared(root, buf)) {
1006 ret = btrfs_lookup_extent_info(trans, root, buf->start,
3173a18f
JB
1007 btrfs_header_level(buf), 1,
1008 &refs, &flags);
be1a5564
MF
1009 if (ret)
1010 return ret;
e5df9573
MF
1011 if (refs == 0) {
1012 ret = -EROFS;
a4553fef 1013 btrfs_std_error(root->fs_info, ret, NULL);
e5df9573
MF
1014 return ret;
1015 }
5d4f98a2
YZ
1016 } else {
1017 refs = 1;
1018 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1019 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1020 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1021 else
1022 flags = 0;
1023 }
1024
1025 owner = btrfs_header_owner(buf);
1026 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1027 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1028
1029 if (refs > 1) {
1030 if ((owner == root->root_key.objectid ||
1031 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1032 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1033 ret = btrfs_inc_ref(trans, root, buf, 1);
79787eaa 1034 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1035
1036 if (root->root_key.objectid ==
1037 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1038 ret = btrfs_dec_ref(trans, root, buf, 0);
79787eaa 1039 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1040 ret = btrfs_inc_ref(trans, root, cow, 1);
79787eaa 1041 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1042 }
1043 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1044 } else {
1045
1046 if (root->root_key.objectid ==
1047 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1048 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1049 else
e339a6b0 1050 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1051 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1052 }
1053 if (new_flags != 0) {
b1c79e09
JB
1054 int level = btrfs_header_level(buf);
1055
5d4f98a2
YZ
1056 ret = btrfs_set_disk_extent_flags(trans, root,
1057 buf->start,
1058 buf->len,
b1c79e09 1059 new_flags, level, 0);
be1a5564
MF
1060 if (ret)
1061 return ret;
5d4f98a2
YZ
1062 }
1063 } else {
1064 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1065 if (root->root_key.objectid ==
1066 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1067 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1068 else
e339a6b0 1069 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1070 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1071 ret = btrfs_dec_ref(trans, root, buf, 1);
79787eaa 1072 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 1073 }
01d58472 1074 clean_tree_block(trans, root->fs_info, buf);
f0486c68 1075 *last_ref = 1;
5d4f98a2
YZ
1076 }
1077 return 0;
1078}
1079
d352ac68 1080/*
d397712b
CM
1081 * does the dirty work in cow of a single block. The parent block (if
1082 * supplied) is updated to point to the new cow copy. The new buffer is marked
1083 * dirty and returned locked. If you modify the block it needs to be marked
1084 * dirty again.
d352ac68
CM
1085 *
1086 * search_start -- an allocation hint for the new block
1087 *
d397712b
CM
1088 * empty_size -- a hint that you plan on doing more cow. This is the size in
1089 * bytes the allocator should try to find free next to the block it returns.
1090 * This is just a hint and may be ignored by the allocator.
d352ac68 1091 */
d397712b 1092static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1093 struct btrfs_root *root,
1094 struct extent_buffer *buf,
1095 struct extent_buffer *parent, int parent_slot,
1096 struct extent_buffer **cow_ret,
9fa8cfe7 1097 u64 search_start, u64 empty_size)
02217ed2 1098{
5d4f98a2 1099 struct btrfs_disk_key disk_key;
5f39d397 1100 struct extent_buffer *cow;
be1a5564 1101 int level, ret;
f0486c68 1102 int last_ref = 0;
925baedd 1103 int unlock_orig = 0;
5d4f98a2 1104 u64 parent_start;
7bb86316 1105
925baedd
CM
1106 if (*cow_ret == buf)
1107 unlock_orig = 1;
1108
b9447ef8 1109 btrfs_assert_tree_locked(buf);
925baedd 1110
27cdeb70
MX
1111 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1112 trans->transid != root->fs_info->running_transaction->transid);
1113 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1114 trans->transid != root->last_trans);
5f39d397 1115
7bb86316 1116 level = btrfs_header_level(buf);
31840ae1 1117
5d4f98a2
YZ
1118 if (level == 0)
1119 btrfs_item_key(buf, &disk_key, 0);
1120 else
1121 btrfs_node_key(buf, &disk_key, 0);
1122
1123 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1124 if (parent)
1125 parent_start = parent->start;
1126 else
1127 parent_start = 0;
1128 } else
1129 parent_start = 0;
1130
4d75f8a9
DS
1131 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1132 root->root_key.objectid, &disk_key, level,
1133 search_start, empty_size);
54aa1f4d
CM
1134 if (IS_ERR(cow))
1135 return PTR_ERR(cow);
6702ed49 1136
b4ce94de
CM
1137 /* cow is set to blocking by btrfs_init_new_buffer */
1138
5f39d397 1139 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 1140 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1141 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1142 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1143 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1144 BTRFS_HEADER_FLAG_RELOC);
1145 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1146 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1147 else
1148 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1149
0a4e5586 1150 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
2b82032c
YZ
1151 BTRFS_FSID_SIZE);
1152
be1a5564 1153 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1154 if (ret) {
79787eaa 1155 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1156 return ret;
1157 }
1a40e23b 1158
27cdeb70 1159 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1160 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b
Z
1161 if (ret) {
1162 btrfs_abort_transaction(trans, root, ret);
83d4cfd4 1163 return ret;
93314e3b 1164 }
83d4cfd4 1165 }
3fd0a558 1166
02217ed2 1167 if (buf == root->node) {
925baedd 1168 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1169 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1170 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1171 parent_start = buf->start;
1172 else
1173 parent_start = 0;
925baedd 1174
5f39d397 1175 extent_buffer_get(cow);
90f8d62e 1176 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1177 rcu_assign_pointer(root->node, cow);
925baedd 1178
f0486c68 1179 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1180 last_ref);
5f39d397 1181 free_extent_buffer(buf);
0b86a832 1182 add_root_to_dirty_list(root);
02217ed2 1183 } else {
5d4f98a2
YZ
1184 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1185 parent_start = parent->start;
1186 else
1187 parent_start = 0;
1188
1189 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e 1190 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
c8cc6341 1191 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1192 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1193 cow->start);
74493f7a
CM
1194 btrfs_set_node_ptr_generation(parent, parent_slot,
1195 trans->transid);
d6025579 1196 btrfs_mark_buffer_dirty(parent);
5de865ee
FDBM
1197 if (last_ref) {
1198 ret = tree_mod_log_free_eb(root->fs_info, buf);
1199 if (ret) {
1200 btrfs_abort_transaction(trans, root, ret);
1201 return ret;
1202 }
1203 }
f0486c68 1204 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1205 last_ref);
02217ed2 1206 }
925baedd
CM
1207 if (unlock_orig)
1208 btrfs_tree_unlock(buf);
3083ee2e 1209 free_extent_buffer_stale(buf);
ccd467d6 1210 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1211 *cow_ret = cow;
02217ed2
CM
1212 return 0;
1213}
1214
5d9e75c4
JS
1215/*
1216 * returns the logical address of the oldest predecessor of the given root.
1217 * entries older than time_seq are ignored.
1218 */
1219static struct tree_mod_elem *
1220__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1221 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1222{
1223 struct tree_mod_elem *tm;
1224 struct tree_mod_elem *found = NULL;
30b0463a 1225 u64 root_logical = eb_root->start;
5d9e75c4
JS
1226 int looped = 0;
1227
1228 if (!time_seq)
35a3621b 1229 return NULL;
5d9e75c4
JS
1230
1231 /*
298cfd36
CR
1232 * the very last operation that's logged for a root is the
1233 * replacement operation (if it is replaced at all). this has
1234 * the logical address of the *new* root, making it the very
1235 * first operation that's logged for this root.
5d9e75c4
JS
1236 */
1237 while (1) {
1238 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1239 time_seq);
1240 if (!looped && !tm)
35a3621b 1241 return NULL;
5d9e75c4 1242 /*
28da9fb4
JS
1243 * if there are no tree operation for the oldest root, we simply
1244 * return it. this should only happen if that (old) root is at
1245 * level 0.
5d9e75c4 1246 */
28da9fb4
JS
1247 if (!tm)
1248 break;
5d9e75c4 1249
28da9fb4
JS
1250 /*
1251 * if there's an operation that's not a root replacement, we
1252 * found the oldest version of our root. normally, we'll find a
1253 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1254 */
5d9e75c4
JS
1255 if (tm->op != MOD_LOG_ROOT_REPLACE)
1256 break;
1257
1258 found = tm;
1259 root_logical = tm->old_root.logical;
5d9e75c4
JS
1260 looped = 1;
1261 }
1262
a95236d9
JS
1263 /* if there's no old root to return, return what we found instead */
1264 if (!found)
1265 found = tm;
1266
5d9e75c4
JS
1267 return found;
1268}
1269
1270/*
1271 * tm is a pointer to the first operation to rewind within eb. then, all
1272 * previous operations will be rewinded (until we reach something older than
1273 * time_seq).
1274 */
1275static void
f1ca7e98
JB
1276__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1277 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1278{
1279 u32 n;
1280 struct rb_node *next;
1281 struct tree_mod_elem *tm = first_tm;
1282 unsigned long o_dst;
1283 unsigned long o_src;
1284 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1285
1286 n = btrfs_header_nritems(eb);
f1ca7e98 1287 tree_mod_log_read_lock(fs_info);
097b8a7c 1288 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1289 /*
1290 * all the operations are recorded with the operator used for
1291 * the modification. as we're going backwards, we do the
1292 * opposite of each operation here.
1293 */
1294 switch (tm->op) {
1295 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1296 BUG_ON(tm->slot < n);
1c697d4a 1297 /* Fallthrough */
95c80bb1 1298 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1299 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1300 btrfs_set_node_key(eb, &tm->key, tm->slot);
1301 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1302 btrfs_set_node_ptr_generation(eb, tm->slot,
1303 tm->generation);
4c3e6969 1304 n++;
5d9e75c4
JS
1305 break;
1306 case MOD_LOG_KEY_REPLACE:
1307 BUG_ON(tm->slot >= n);
1308 btrfs_set_node_key(eb, &tm->key, tm->slot);
1309 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1310 btrfs_set_node_ptr_generation(eb, tm->slot,
1311 tm->generation);
1312 break;
1313 case MOD_LOG_KEY_ADD:
19956c7e 1314 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1315 n--;
1316 break;
1317 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1318 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1319 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1320 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1321 tm->move.nr_items * p_size);
1322 break;
1323 case MOD_LOG_ROOT_REPLACE:
1324 /*
1325 * this operation is special. for roots, this must be
1326 * handled explicitly before rewinding.
1327 * for non-roots, this operation may exist if the node
1328 * was a root: root A -> child B; then A gets empty and
1329 * B is promoted to the new root. in the mod log, we'll
1330 * have a root-replace operation for B, a tree block
1331 * that is no root. we simply ignore that operation.
1332 */
1333 break;
1334 }
1335 next = rb_next(&tm->node);
1336 if (!next)
1337 break;
1338 tm = container_of(next, struct tree_mod_elem, node);
298cfd36 1339 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1340 break;
1341 }
f1ca7e98 1342 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1343 btrfs_set_header_nritems(eb, n);
1344}
1345
47fb091f
JS
1346/*
1347 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1348 * is returned. If rewind operations happen, a fresh buffer is returned. The
1349 * returned buffer is always read-locked. If the returned buffer is not the
1350 * input buffer, the lock on the input buffer is released and the input buffer
1351 * is freed (its refcount is decremented).
1352 */
5d9e75c4 1353static struct extent_buffer *
9ec72677
JB
1354tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1355 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1356{
1357 struct extent_buffer *eb_rewin;
1358 struct tree_mod_elem *tm;
1359
1360 if (!time_seq)
1361 return eb;
1362
1363 if (btrfs_header_level(eb) == 0)
1364 return eb;
1365
1366 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1367 if (!tm)
1368 return eb;
1369
9ec72677
JB
1370 btrfs_set_path_blocking(path);
1371 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1372
5d9e75c4
JS
1373 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1374 BUG_ON(tm->slot != 0);
3f556f78 1375 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1376 if (!eb_rewin) {
9ec72677 1377 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1378 free_extent_buffer(eb);
1379 return NULL;
1380 }
5d9e75c4
JS
1381 btrfs_set_header_bytenr(eb_rewin, eb->start);
1382 btrfs_set_header_backref_rev(eb_rewin,
1383 btrfs_header_backref_rev(eb));
1384 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1385 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1386 } else {
1387 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1388 if (!eb_rewin) {
9ec72677 1389 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1390 free_extent_buffer(eb);
1391 return NULL;
1392 }
5d9e75c4
JS
1393 }
1394
9ec72677
JB
1395 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1396 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1397 free_extent_buffer(eb);
1398
47fb091f
JS
1399 extent_buffer_get(eb_rewin);
1400 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1401 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1402 WARN_ON(btrfs_header_nritems(eb_rewin) >
2a745b14 1403 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
5d9e75c4
JS
1404
1405 return eb_rewin;
1406}
1407
8ba97a15
JS
1408/*
1409 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1410 * value. If there are no changes, the current root->root_node is returned. If
1411 * anything changed in between, there's a fresh buffer allocated on which the
1412 * rewind operations are done. In any case, the returned buffer is read locked.
1413 * Returns NULL on error (with no locks held).
1414 */
5d9e75c4
JS
1415static inline struct extent_buffer *
1416get_old_root(struct btrfs_root *root, u64 time_seq)
1417{
1418 struct tree_mod_elem *tm;
30b0463a
JS
1419 struct extent_buffer *eb = NULL;
1420 struct extent_buffer *eb_root;
7bfdcf7f 1421 struct extent_buffer *old;
a95236d9 1422 struct tree_mod_root *old_root = NULL;
4325edd0 1423 u64 old_generation = 0;
a95236d9 1424 u64 logical;
5d9e75c4 1425
30b0463a
JS
1426 eb_root = btrfs_read_lock_root_node(root);
1427 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5d9e75c4 1428 if (!tm)
30b0463a 1429 return eb_root;
5d9e75c4 1430
a95236d9
JS
1431 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1432 old_root = &tm->old_root;
1433 old_generation = tm->generation;
1434 logical = old_root->logical;
1435 } else {
30b0463a 1436 logical = eb_root->start;
a95236d9 1437 }
5d9e75c4 1438
a95236d9 1439 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8 1440 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1441 btrfs_tree_read_unlock(eb_root);
1442 free_extent_buffer(eb_root);
ce86cd59 1443 old = read_tree_block(root, logical, 0);
64c043de
LB
1444 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1445 if (!IS_ERR(old))
1446 free_extent_buffer(old);
efe120a0
FH
1447 btrfs_warn(root->fs_info,
1448 "failed to read tree block %llu from get_old_root", logical);
834328a8 1449 } else {
7bfdcf7f
LB
1450 eb = btrfs_clone_extent_buffer(old);
1451 free_extent_buffer(old);
834328a8
JS
1452 }
1453 } else if (old_root) {
30b0463a
JS
1454 btrfs_tree_read_unlock(eb_root);
1455 free_extent_buffer(eb_root);
3f556f78 1456 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
834328a8 1457 } else {
9ec72677 1458 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1459 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1460 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1461 free_extent_buffer(eb_root);
834328a8
JS
1462 }
1463
8ba97a15
JS
1464 if (!eb)
1465 return NULL;
d6381084 1466 extent_buffer_get(eb);
8ba97a15 1467 btrfs_tree_read_lock(eb);
a95236d9 1468 if (old_root) {
5d9e75c4
JS
1469 btrfs_set_header_bytenr(eb, eb->start);
1470 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1471 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1472 btrfs_set_header_level(eb, old_root->level);
1473 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1474 }
28da9fb4 1475 if (tm)
f1ca7e98 1476 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
28da9fb4
JS
1477 else
1478 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1479 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1480
1481 return eb;
1482}
1483
5b6602e7
JS
1484int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1485{
1486 struct tree_mod_elem *tm;
1487 int level;
30b0463a 1488 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1489
30b0463a 1490 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1491 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1492 level = tm->old_root.level;
1493 } else {
30b0463a 1494 level = btrfs_header_level(eb_root);
5b6602e7 1495 }
30b0463a 1496 free_extent_buffer(eb_root);
5b6602e7
JS
1497
1498 return level;
1499}
1500
5d4f98a2
YZ
1501static inline int should_cow_block(struct btrfs_trans_handle *trans,
1502 struct btrfs_root *root,
1503 struct extent_buffer *buf)
1504{
fccb84c9 1505 if (btrfs_test_is_dummy_root(root))
faa2dbf0 1506 return 0;
fccb84c9 1507
f1ebcc74
LB
1508 /* ensure we can see the force_cow */
1509 smp_rmb();
1510
1511 /*
1512 * We do not need to cow a block if
1513 * 1) this block is not created or changed in this transaction;
1514 * 2) this block does not belong to TREE_RELOC tree;
1515 * 3) the root is not forced COW.
1516 *
1517 * What is forced COW:
1518 * when we create snapshot during commiting the transaction,
1519 * after we've finished coping src root, we must COW the shared
1520 * block to ensure the metadata consistency.
1521 */
5d4f98a2
YZ
1522 if (btrfs_header_generation(buf) == trans->transid &&
1523 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1524 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1525 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1526 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1527 return 0;
1528 return 1;
1529}
1530
d352ac68
CM
1531/*
1532 * cows a single block, see __btrfs_cow_block for the real work.
1533 * This version of it has extra checks so that a block isn't cow'd more than
1534 * once per transaction, as long as it hasn't been written yet
1535 */
d397712b 1536noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1537 struct btrfs_root *root, struct extent_buffer *buf,
1538 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1539 struct extent_buffer **cow_ret)
6702ed49
CM
1540{
1541 u64 search_start;
f510cfec 1542 int ret;
dc17ff8f 1543
31b1a2bd
JL
1544 if (trans->transaction != root->fs_info->running_transaction)
1545 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1546 trans->transid,
6702ed49 1547 root->fs_info->running_transaction->transid);
31b1a2bd
JL
1548
1549 if (trans->transid != root->fs_info->generation)
1550 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1551 trans->transid, root->fs_info->generation);
dc17ff8f 1552
5d4f98a2 1553 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1554 *cow_ret = buf;
1555 return 0;
1556 }
c487685d 1557
ee22184b 1558 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1559
1560 if (parent)
1561 btrfs_set_lock_blocking(parent);
1562 btrfs_set_lock_blocking(buf);
1563
f510cfec 1564 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1565 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1566
1567 trace_btrfs_cow_block(root, buf, *cow_ret);
1568
f510cfec 1569 return ret;
6702ed49
CM
1570}
1571
d352ac68
CM
1572/*
1573 * helper function for defrag to decide if two blocks pointed to by a
1574 * node are actually close by
1575 */
6b80053d 1576static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1577{
6b80053d 1578 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1579 return 1;
6b80053d 1580 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1581 return 1;
1582 return 0;
1583}
1584
081e9573
CM
1585/*
1586 * compare two keys in a memcmp fashion
1587 */
1588static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1589{
1590 struct btrfs_key k1;
1591
1592 btrfs_disk_key_to_cpu(&k1, disk);
1593
20736aba 1594 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1595}
1596
f3465ca4
JB
1597/*
1598 * same as comp_keys only with two btrfs_key's
1599 */
5d4f98a2 1600int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1601{
1602 if (k1->objectid > k2->objectid)
1603 return 1;
1604 if (k1->objectid < k2->objectid)
1605 return -1;
1606 if (k1->type > k2->type)
1607 return 1;
1608 if (k1->type < k2->type)
1609 return -1;
1610 if (k1->offset > k2->offset)
1611 return 1;
1612 if (k1->offset < k2->offset)
1613 return -1;
1614 return 0;
1615}
081e9573 1616
d352ac68
CM
1617/*
1618 * this is used by the defrag code to go through all the
1619 * leaves pointed to by a node and reallocate them so that
1620 * disk order is close to key order
1621 */
6702ed49 1622int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1623 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1624 int start_slot, u64 *last_ret,
a6b6e75e 1625 struct btrfs_key *progress)
6702ed49 1626{
6b80053d 1627 struct extent_buffer *cur;
6702ed49 1628 u64 blocknr;
ca7a79ad 1629 u64 gen;
e9d0b13b
CM
1630 u64 search_start = *last_ret;
1631 u64 last_block = 0;
6702ed49
CM
1632 u64 other;
1633 u32 parent_nritems;
6702ed49
CM
1634 int end_slot;
1635 int i;
1636 int err = 0;
f2183bde 1637 int parent_level;
6b80053d
CM
1638 int uptodate;
1639 u32 blocksize;
081e9573
CM
1640 int progress_passed = 0;
1641 struct btrfs_disk_key disk_key;
6702ed49 1642
5708b959 1643 parent_level = btrfs_header_level(parent);
5708b959 1644
6c1500f2
JL
1645 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1646 WARN_ON(trans->transid != root->fs_info->generation);
86479a04 1647
6b80053d 1648 parent_nritems = btrfs_header_nritems(parent);
707e8a07 1649 blocksize = root->nodesize;
5dfe2be7 1650 end_slot = parent_nritems - 1;
6702ed49 1651
5dfe2be7 1652 if (parent_nritems <= 1)
6702ed49
CM
1653 return 0;
1654
b4ce94de
CM
1655 btrfs_set_lock_blocking(parent);
1656
5dfe2be7 1657 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1658 int close = 1;
a6b6e75e 1659
081e9573
CM
1660 btrfs_node_key(parent, &disk_key, i);
1661 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1662 continue;
1663
1664 progress_passed = 1;
6b80053d 1665 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1666 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1667 if (last_block == 0)
1668 last_block = blocknr;
5708b959 1669
6702ed49 1670 if (i > 0) {
6b80053d
CM
1671 other = btrfs_node_blockptr(parent, i - 1);
1672 close = close_blocks(blocknr, other, blocksize);
6702ed49 1673 }
5dfe2be7 1674 if (!close && i < end_slot) {
6b80053d
CM
1675 other = btrfs_node_blockptr(parent, i + 1);
1676 close = close_blocks(blocknr, other, blocksize);
6702ed49 1677 }
e9d0b13b
CM
1678 if (close) {
1679 last_block = blocknr;
6702ed49 1680 continue;
e9d0b13b 1681 }
6702ed49 1682
01d58472 1683 cur = btrfs_find_tree_block(root->fs_info, blocknr);
6b80053d 1684 if (cur)
b9fab919 1685 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1686 else
1687 uptodate = 0;
5708b959 1688 if (!cur || !uptodate) {
6b80053d 1689 if (!cur) {
ce86cd59 1690 cur = read_tree_block(root, blocknr, gen);
64c043de
LB
1691 if (IS_ERR(cur)) {
1692 return PTR_ERR(cur);
1693 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1694 free_extent_buffer(cur);
97d9a8a4 1695 return -EIO;
416bc658 1696 }
6b80053d 1697 } else if (!uptodate) {
018642a1
TI
1698 err = btrfs_read_buffer(cur, gen);
1699 if (err) {
1700 free_extent_buffer(cur);
1701 return err;
1702 }
f2183bde 1703 }
6702ed49 1704 }
e9d0b13b 1705 if (search_start == 0)
6b80053d 1706 search_start = last_block;
e9d0b13b 1707
e7a84565 1708 btrfs_tree_lock(cur);
b4ce94de 1709 btrfs_set_lock_blocking(cur);
6b80053d 1710 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1711 &cur, search_start,
6b80053d 1712 min(16 * blocksize,
9fa8cfe7 1713 (end_slot - i) * blocksize));
252c38f0 1714 if (err) {
e7a84565 1715 btrfs_tree_unlock(cur);
6b80053d 1716 free_extent_buffer(cur);
6702ed49 1717 break;
252c38f0 1718 }
e7a84565
CM
1719 search_start = cur->start;
1720 last_block = cur->start;
f2183bde 1721 *last_ret = search_start;
e7a84565
CM
1722 btrfs_tree_unlock(cur);
1723 free_extent_buffer(cur);
6702ed49
CM
1724 }
1725 return err;
1726}
1727
74123bd7
CM
1728/*
1729 * The leaf data grows from end-to-front in the node.
1730 * this returns the address of the start of the last item,
1731 * which is the stop of the leaf data stack
1732 */
123abc88 1733static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1734 struct extent_buffer *leaf)
be0e5c09 1735{
5f39d397 1736 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1737 if (nr == 0)
123abc88 1738 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1739 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1740}
1741
aa5d6bed 1742
74123bd7 1743/*
5f39d397
CM
1744 * search for key in the extent_buffer. The items start at offset p,
1745 * and they are item_size apart. There are 'max' items in p.
1746 *
74123bd7
CM
1747 * the slot in the array is returned via slot, and it points to
1748 * the place where you would insert key if it is not found in
1749 * the array.
1750 *
1751 * slot may point to max if the key is bigger than all of the keys
1752 */
e02119d5
CM
1753static noinline int generic_bin_search(struct extent_buffer *eb,
1754 unsigned long p,
1755 int item_size, struct btrfs_key *key,
1756 int max, int *slot)
be0e5c09
CM
1757{
1758 int low = 0;
1759 int high = max;
1760 int mid;
1761 int ret;
479965d6 1762 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1763 struct btrfs_disk_key unaligned;
1764 unsigned long offset;
5f39d397
CM
1765 char *kaddr = NULL;
1766 unsigned long map_start = 0;
1767 unsigned long map_len = 0;
479965d6 1768 int err;
be0e5c09 1769
d397712b 1770 while (low < high) {
be0e5c09 1771 mid = (low + high) / 2;
5f39d397
CM
1772 offset = p + mid * item_size;
1773
a6591715 1774 if (!kaddr || offset < map_start ||
5f39d397
CM
1775 (offset + sizeof(struct btrfs_disk_key)) >
1776 map_start + map_len) {
934d375b
CM
1777
1778 err = map_private_extent_buffer(eb, offset,
479965d6 1779 sizeof(struct btrfs_disk_key),
a6591715 1780 &kaddr, &map_start, &map_len);
479965d6
CM
1781
1782 if (!err) {
1783 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784 map_start);
1785 } else {
1786 read_extent_buffer(eb, &unaligned,
1787 offset, sizeof(unaligned));
1788 tmp = &unaligned;
1789 }
5f39d397 1790
5f39d397
CM
1791 } else {
1792 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1793 map_start);
1794 }
be0e5c09
CM
1795 ret = comp_keys(tmp, key);
1796
1797 if (ret < 0)
1798 low = mid + 1;
1799 else if (ret > 0)
1800 high = mid;
1801 else {
1802 *slot = mid;
1803 return 0;
1804 }
1805 }
1806 *slot = low;
1807 return 1;
1808}
1809
97571fd0
CM
1810/*
1811 * simple bin_search frontend that does the right thing for
1812 * leaves vs nodes
1813 */
5f39d397
CM
1814static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1815 int level, int *slot)
be0e5c09 1816{
f775738f 1817 if (level == 0)
5f39d397
CM
1818 return generic_bin_search(eb,
1819 offsetof(struct btrfs_leaf, items),
0783fcfc 1820 sizeof(struct btrfs_item),
5f39d397 1821 key, btrfs_header_nritems(eb),
7518a238 1822 slot);
f775738f 1823 else
5f39d397
CM
1824 return generic_bin_search(eb,
1825 offsetof(struct btrfs_node, ptrs),
123abc88 1826 sizeof(struct btrfs_key_ptr),
5f39d397 1827 key, btrfs_header_nritems(eb),
7518a238 1828 slot);
be0e5c09
CM
1829}
1830
5d4f98a2
YZ
1831int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1832 int level, int *slot)
1833{
1834 return bin_search(eb, key, level, slot);
1835}
1836
f0486c68
YZ
1837static void root_add_used(struct btrfs_root *root, u32 size)
1838{
1839 spin_lock(&root->accounting_lock);
1840 btrfs_set_root_used(&root->root_item,
1841 btrfs_root_used(&root->root_item) + size);
1842 spin_unlock(&root->accounting_lock);
1843}
1844
1845static void root_sub_used(struct btrfs_root *root, u32 size)
1846{
1847 spin_lock(&root->accounting_lock);
1848 btrfs_set_root_used(&root->root_item,
1849 btrfs_root_used(&root->root_item) - size);
1850 spin_unlock(&root->accounting_lock);
1851}
1852
d352ac68
CM
1853/* given a node and slot number, this reads the blocks it points to. The
1854 * extent buffer is returned with a reference taken (but unlocked).
1855 * NULL is returned on error.
1856 */
e02119d5 1857static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1858 struct extent_buffer *parent, int slot)
bb803951 1859{
ca7a79ad 1860 int level = btrfs_header_level(parent);
416bc658
JB
1861 struct extent_buffer *eb;
1862
bb803951
CM
1863 if (slot < 0)
1864 return NULL;
5f39d397 1865 if (slot >= btrfs_header_nritems(parent))
bb803951 1866 return NULL;
ca7a79ad
CM
1867
1868 BUG_ON(level == 0);
1869
416bc658 1870 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
416bc658 1871 btrfs_node_ptr_generation(parent, slot));
64c043de
LB
1872 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1873 if (!IS_ERR(eb))
1874 free_extent_buffer(eb);
416bc658
JB
1875 eb = NULL;
1876 }
1877
1878 return eb;
bb803951
CM
1879}
1880
d352ac68
CM
1881/*
1882 * node level balancing, used to make sure nodes are in proper order for
1883 * item deletion. We balance from the top down, so we have to make sure
1884 * that a deletion won't leave an node completely empty later on.
1885 */
e02119d5 1886static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1887 struct btrfs_root *root,
1888 struct btrfs_path *path, int level)
bb803951 1889{
5f39d397
CM
1890 struct extent_buffer *right = NULL;
1891 struct extent_buffer *mid;
1892 struct extent_buffer *left = NULL;
1893 struct extent_buffer *parent = NULL;
bb803951
CM
1894 int ret = 0;
1895 int wret;
1896 int pslot;
bb803951 1897 int orig_slot = path->slots[level];
79f95c82 1898 u64 orig_ptr;
bb803951
CM
1899
1900 if (level == 0)
1901 return 0;
1902
5f39d397 1903 mid = path->nodes[level];
b4ce94de 1904
bd681513
CM
1905 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1906 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1907 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1908
1d4f8a0c 1909 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1910
a05a9bb1 1911 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1912 parent = path->nodes[level + 1];
a05a9bb1
LZ
1913 pslot = path->slots[level + 1];
1914 }
bb803951 1915
40689478
CM
1916 /*
1917 * deal with the case where there is only one pointer in the root
1918 * by promoting the node below to a root
1919 */
5f39d397
CM
1920 if (!parent) {
1921 struct extent_buffer *child;
bb803951 1922
5f39d397 1923 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1924 return 0;
1925
1926 /* promote the child to a root */
5f39d397 1927 child = read_node_slot(root, mid, 0);
305a26af
MF
1928 if (!child) {
1929 ret = -EROFS;
a4553fef 1930 btrfs_std_error(root->fs_info, ret, NULL);
305a26af
MF
1931 goto enospc;
1932 }
1933
925baedd 1934 btrfs_tree_lock(child);
b4ce94de 1935 btrfs_set_lock_blocking(child);
9fa8cfe7 1936 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1937 if (ret) {
1938 btrfs_tree_unlock(child);
1939 free_extent_buffer(child);
1940 goto enospc;
1941 }
2f375ab9 1942
90f8d62e 1943 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1944 rcu_assign_pointer(root->node, child);
925baedd 1945
0b86a832 1946 add_root_to_dirty_list(root);
925baedd 1947 btrfs_tree_unlock(child);
b4ce94de 1948
925baedd 1949 path->locks[level] = 0;
bb803951 1950 path->nodes[level] = NULL;
01d58472 1951 clean_tree_block(trans, root->fs_info, mid);
925baedd 1952 btrfs_tree_unlock(mid);
bb803951 1953 /* once for the path */
5f39d397 1954 free_extent_buffer(mid);
f0486c68
YZ
1955
1956 root_sub_used(root, mid->len);
5581a51a 1957 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1958 /* once for the root ptr */
3083ee2e 1959 free_extent_buffer_stale(mid);
f0486c68 1960 return 0;
bb803951 1961 }
5f39d397 1962 if (btrfs_header_nritems(mid) >
123abc88 1963 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1964 return 0;
1965
5f39d397
CM
1966 left = read_node_slot(root, parent, pslot - 1);
1967 if (left) {
925baedd 1968 btrfs_tree_lock(left);
b4ce94de 1969 btrfs_set_lock_blocking(left);
5f39d397 1970 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1971 parent, pslot - 1, &left);
54aa1f4d
CM
1972 if (wret) {
1973 ret = wret;
1974 goto enospc;
1975 }
2cc58cf2 1976 }
5f39d397
CM
1977 right = read_node_slot(root, parent, pslot + 1);
1978 if (right) {
925baedd 1979 btrfs_tree_lock(right);
b4ce94de 1980 btrfs_set_lock_blocking(right);
5f39d397 1981 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1982 parent, pslot + 1, &right);
2cc58cf2
CM
1983 if (wret) {
1984 ret = wret;
1985 goto enospc;
1986 }
1987 }
1988
1989 /* first, try to make some room in the middle buffer */
5f39d397
CM
1990 if (left) {
1991 orig_slot += btrfs_header_nritems(left);
bce4eae9 1992 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1993 if (wret < 0)
1994 ret = wret;
bb803951 1995 }
79f95c82
CM
1996
1997 /*
1998 * then try to empty the right most buffer into the middle
1999 */
5f39d397 2000 if (right) {
971a1f66 2001 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 2002 if (wret < 0 && wret != -ENOSPC)
79f95c82 2003 ret = wret;
5f39d397 2004 if (btrfs_header_nritems(right) == 0) {
01d58472 2005 clean_tree_block(trans, root->fs_info, right);
925baedd 2006 btrfs_tree_unlock(right);
afe5fea7 2007 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2008 root_sub_used(root, right->len);
5581a51a 2009 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2010 free_extent_buffer_stale(right);
f0486c68 2011 right = NULL;
bb803951 2012 } else {
5f39d397
CM
2013 struct btrfs_disk_key right_key;
2014 btrfs_node_key(right, &right_key, 0);
f230475e 2015 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2016 pslot + 1, 0);
5f39d397
CM
2017 btrfs_set_node_key(parent, &right_key, pslot + 1);
2018 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2019 }
2020 }
5f39d397 2021 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2022 /*
2023 * we're not allowed to leave a node with one item in the
2024 * tree during a delete. A deletion from lower in the tree
2025 * could try to delete the only pointer in this node.
2026 * So, pull some keys from the left.
2027 * There has to be a left pointer at this point because
2028 * otherwise we would have pulled some pointers from the
2029 * right
2030 */
305a26af
MF
2031 if (!left) {
2032 ret = -EROFS;
a4553fef 2033 btrfs_std_error(root->fs_info, ret, NULL);
305a26af
MF
2034 goto enospc;
2035 }
5f39d397 2036 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 2037 if (wret < 0) {
79f95c82 2038 ret = wret;
54aa1f4d
CM
2039 goto enospc;
2040 }
bce4eae9
CM
2041 if (wret == 1) {
2042 wret = push_node_left(trans, root, left, mid, 1);
2043 if (wret < 0)
2044 ret = wret;
2045 }
79f95c82
CM
2046 BUG_ON(wret == 1);
2047 }
5f39d397 2048 if (btrfs_header_nritems(mid) == 0) {
01d58472 2049 clean_tree_block(trans, root->fs_info, mid);
925baedd 2050 btrfs_tree_unlock(mid);
afe5fea7 2051 del_ptr(root, path, level + 1, pslot);
f0486c68 2052 root_sub_used(root, mid->len);
5581a51a 2053 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2054 free_extent_buffer_stale(mid);
f0486c68 2055 mid = NULL;
79f95c82
CM
2056 } else {
2057 /* update the parent key to reflect our changes */
5f39d397
CM
2058 struct btrfs_disk_key mid_key;
2059 btrfs_node_key(mid, &mid_key, 0);
32adf090 2060 tree_mod_log_set_node_key(root->fs_info, parent,
f230475e 2061 pslot, 0);
5f39d397
CM
2062 btrfs_set_node_key(parent, &mid_key, pslot);
2063 btrfs_mark_buffer_dirty(parent);
79f95c82 2064 }
bb803951 2065
79f95c82 2066 /* update the path */
5f39d397
CM
2067 if (left) {
2068 if (btrfs_header_nritems(left) > orig_slot) {
2069 extent_buffer_get(left);
925baedd 2070 /* left was locked after cow */
5f39d397 2071 path->nodes[level] = left;
bb803951
CM
2072 path->slots[level + 1] -= 1;
2073 path->slots[level] = orig_slot;
925baedd
CM
2074 if (mid) {
2075 btrfs_tree_unlock(mid);
5f39d397 2076 free_extent_buffer(mid);
925baedd 2077 }
bb803951 2078 } else {
5f39d397 2079 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2080 path->slots[level] = orig_slot;
2081 }
2082 }
79f95c82 2083 /* double check we haven't messed things up */
e20d96d6 2084 if (orig_ptr !=
5f39d397 2085 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2086 BUG();
54aa1f4d 2087enospc:
925baedd
CM
2088 if (right) {
2089 btrfs_tree_unlock(right);
5f39d397 2090 free_extent_buffer(right);
925baedd
CM
2091 }
2092 if (left) {
2093 if (path->nodes[level] != left)
2094 btrfs_tree_unlock(left);
5f39d397 2095 free_extent_buffer(left);
925baedd 2096 }
bb803951
CM
2097 return ret;
2098}
2099
d352ac68
CM
2100/* Node balancing for insertion. Here we only split or push nodes around
2101 * when they are completely full. This is also done top down, so we
2102 * have to be pessimistic.
2103 */
d397712b 2104static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2105 struct btrfs_root *root,
2106 struct btrfs_path *path, int level)
e66f709b 2107{
5f39d397
CM
2108 struct extent_buffer *right = NULL;
2109 struct extent_buffer *mid;
2110 struct extent_buffer *left = NULL;
2111 struct extent_buffer *parent = NULL;
e66f709b
CM
2112 int ret = 0;
2113 int wret;
2114 int pslot;
2115 int orig_slot = path->slots[level];
e66f709b
CM
2116
2117 if (level == 0)
2118 return 1;
2119
5f39d397 2120 mid = path->nodes[level];
7bb86316 2121 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2122
a05a9bb1 2123 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2124 parent = path->nodes[level + 1];
a05a9bb1
LZ
2125 pslot = path->slots[level + 1];
2126 }
e66f709b 2127
5f39d397 2128 if (!parent)
e66f709b 2129 return 1;
e66f709b 2130
5f39d397 2131 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
2132
2133 /* first, try to make some room in the middle buffer */
5f39d397 2134 if (left) {
e66f709b 2135 u32 left_nr;
925baedd
CM
2136
2137 btrfs_tree_lock(left);
b4ce94de
CM
2138 btrfs_set_lock_blocking(left);
2139
5f39d397 2140 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
2141 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2142 wret = 1;
2143 } else {
5f39d397 2144 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2145 pslot - 1, &left);
54aa1f4d
CM
2146 if (ret)
2147 wret = 1;
2148 else {
54aa1f4d 2149 wret = push_node_left(trans, root,
971a1f66 2150 left, mid, 0);
54aa1f4d 2151 }
33ade1f8 2152 }
e66f709b
CM
2153 if (wret < 0)
2154 ret = wret;
2155 if (wret == 0) {
5f39d397 2156 struct btrfs_disk_key disk_key;
e66f709b 2157 orig_slot += left_nr;
5f39d397 2158 btrfs_node_key(mid, &disk_key, 0);
f230475e 2159 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2160 pslot, 0);
5f39d397
CM
2161 btrfs_set_node_key(parent, &disk_key, pslot);
2162 btrfs_mark_buffer_dirty(parent);
2163 if (btrfs_header_nritems(left) > orig_slot) {
2164 path->nodes[level] = left;
e66f709b
CM
2165 path->slots[level + 1] -= 1;
2166 path->slots[level] = orig_slot;
925baedd 2167 btrfs_tree_unlock(mid);
5f39d397 2168 free_extent_buffer(mid);
e66f709b
CM
2169 } else {
2170 orig_slot -=
5f39d397 2171 btrfs_header_nritems(left);
e66f709b 2172 path->slots[level] = orig_slot;
925baedd 2173 btrfs_tree_unlock(left);
5f39d397 2174 free_extent_buffer(left);
e66f709b 2175 }
e66f709b
CM
2176 return 0;
2177 }
925baedd 2178 btrfs_tree_unlock(left);
5f39d397 2179 free_extent_buffer(left);
e66f709b 2180 }
925baedd 2181 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
2182
2183 /*
2184 * then try to empty the right most buffer into the middle
2185 */
5f39d397 2186 if (right) {
33ade1f8 2187 u32 right_nr;
b4ce94de 2188
925baedd 2189 btrfs_tree_lock(right);
b4ce94de
CM
2190 btrfs_set_lock_blocking(right);
2191
5f39d397 2192 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2193 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2194 wret = 1;
2195 } else {
5f39d397
CM
2196 ret = btrfs_cow_block(trans, root, right,
2197 parent, pslot + 1,
9fa8cfe7 2198 &right);
54aa1f4d
CM
2199 if (ret)
2200 wret = 1;
2201 else {
54aa1f4d 2202 wret = balance_node_right(trans, root,
5f39d397 2203 right, mid);
54aa1f4d 2204 }
33ade1f8 2205 }
e66f709b
CM
2206 if (wret < 0)
2207 ret = wret;
2208 if (wret == 0) {
5f39d397
CM
2209 struct btrfs_disk_key disk_key;
2210
2211 btrfs_node_key(right, &disk_key, 0);
f230475e 2212 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2213 pslot + 1, 0);
5f39d397
CM
2214 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2215 btrfs_mark_buffer_dirty(parent);
2216
2217 if (btrfs_header_nritems(mid) <= orig_slot) {
2218 path->nodes[level] = right;
e66f709b
CM
2219 path->slots[level + 1] += 1;
2220 path->slots[level] = orig_slot -
5f39d397 2221 btrfs_header_nritems(mid);
925baedd 2222 btrfs_tree_unlock(mid);
5f39d397 2223 free_extent_buffer(mid);
e66f709b 2224 } else {
925baedd 2225 btrfs_tree_unlock(right);
5f39d397 2226 free_extent_buffer(right);
e66f709b 2227 }
e66f709b
CM
2228 return 0;
2229 }
925baedd 2230 btrfs_tree_unlock(right);
5f39d397 2231 free_extent_buffer(right);
e66f709b 2232 }
e66f709b
CM
2233 return 1;
2234}
2235
3c69faec 2236/*
d352ac68
CM
2237 * readahead one full node of leaves, finding things that are close
2238 * to the block in 'slot', and triggering ra on them.
3c69faec 2239 */
c8c42864
CM
2240static void reada_for_search(struct btrfs_root *root,
2241 struct btrfs_path *path,
2242 int level, int slot, u64 objectid)
3c69faec 2243{
5f39d397 2244 struct extent_buffer *node;
01f46658 2245 struct btrfs_disk_key disk_key;
3c69faec 2246 u32 nritems;
3c69faec 2247 u64 search;
a7175319 2248 u64 target;
6b80053d 2249 u64 nread = 0;
cb25c2ea 2250 u64 gen;
5f39d397 2251 struct extent_buffer *eb;
6b80053d
CM
2252 u32 nr;
2253 u32 blocksize;
2254 u32 nscan = 0;
db94535d 2255
a6b6e75e 2256 if (level != 1)
6702ed49
CM
2257 return;
2258
2259 if (!path->nodes[level])
3c69faec
CM
2260 return;
2261
5f39d397 2262 node = path->nodes[level];
925baedd 2263
3c69faec 2264 search = btrfs_node_blockptr(node, slot);
707e8a07 2265 blocksize = root->nodesize;
01d58472 2266 eb = btrfs_find_tree_block(root->fs_info, search);
5f39d397
CM
2267 if (eb) {
2268 free_extent_buffer(eb);
3c69faec
CM
2269 return;
2270 }
2271
a7175319 2272 target = search;
6b80053d 2273
5f39d397 2274 nritems = btrfs_header_nritems(node);
6b80053d 2275 nr = slot;
25b8b936 2276
d397712b 2277 while (1) {
e4058b54 2278 if (path->reada == READA_BACK) {
6b80053d
CM
2279 if (nr == 0)
2280 break;
2281 nr--;
e4058b54 2282 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2283 nr++;
2284 if (nr >= nritems)
2285 break;
3c69faec 2286 }
e4058b54 2287 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2288 btrfs_node_key(node, &disk_key, nr);
2289 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2290 break;
2291 }
6b80053d 2292 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2293 if ((search <= target && target - search <= 65536) ||
2294 (search > target && search - target <= 65536)) {
cb25c2ea 2295 gen = btrfs_node_ptr_generation(node, nr);
d3e46fea 2296 readahead_tree_block(root, search);
6b80053d
CM
2297 nread += blocksize;
2298 }
2299 nscan++;
a7175319 2300 if ((nread > 65536 || nscan > 32))
6b80053d 2301 break;
3c69faec
CM
2302 }
2303}
925baedd 2304
0b08851f
JB
2305static noinline void reada_for_balance(struct btrfs_root *root,
2306 struct btrfs_path *path, int level)
b4ce94de
CM
2307{
2308 int slot;
2309 int nritems;
2310 struct extent_buffer *parent;
2311 struct extent_buffer *eb;
2312 u64 gen;
2313 u64 block1 = 0;
2314 u64 block2 = 0;
b4ce94de 2315
8c594ea8 2316 parent = path->nodes[level + 1];
b4ce94de 2317 if (!parent)
0b08851f 2318 return;
b4ce94de
CM
2319
2320 nritems = btrfs_header_nritems(parent);
8c594ea8 2321 slot = path->slots[level + 1];
b4ce94de
CM
2322
2323 if (slot > 0) {
2324 block1 = btrfs_node_blockptr(parent, slot - 1);
2325 gen = btrfs_node_ptr_generation(parent, slot - 1);
01d58472 2326 eb = btrfs_find_tree_block(root->fs_info, block1);
b9fab919
CM
2327 /*
2328 * if we get -eagain from btrfs_buffer_uptodate, we
2329 * don't want to return eagain here. That will loop
2330 * forever
2331 */
2332 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2333 block1 = 0;
2334 free_extent_buffer(eb);
2335 }
8c594ea8 2336 if (slot + 1 < nritems) {
b4ce94de
CM
2337 block2 = btrfs_node_blockptr(parent, slot + 1);
2338 gen = btrfs_node_ptr_generation(parent, slot + 1);
01d58472 2339 eb = btrfs_find_tree_block(root->fs_info, block2);
b9fab919 2340 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2341 block2 = 0;
2342 free_extent_buffer(eb);
2343 }
8c594ea8 2344
0b08851f 2345 if (block1)
d3e46fea 2346 readahead_tree_block(root, block1);
0b08851f 2347 if (block2)
d3e46fea 2348 readahead_tree_block(root, block2);
b4ce94de
CM
2349}
2350
2351
d352ac68 2352/*
d397712b
CM
2353 * when we walk down the tree, it is usually safe to unlock the higher layers
2354 * in the tree. The exceptions are when our path goes through slot 0, because
2355 * operations on the tree might require changing key pointers higher up in the
2356 * tree.
d352ac68 2357 *
d397712b
CM
2358 * callers might also have set path->keep_locks, which tells this code to keep
2359 * the lock if the path points to the last slot in the block. This is part of
2360 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2361 *
d397712b
CM
2362 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2363 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2364 */
e02119d5 2365static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2366 int lowest_unlock, int min_write_lock_level,
2367 int *write_lock_level)
925baedd
CM
2368{
2369 int i;
2370 int skip_level = level;
051e1b9f 2371 int no_skips = 0;
925baedd
CM
2372 struct extent_buffer *t;
2373
2374 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2375 if (!path->nodes[i])
2376 break;
2377 if (!path->locks[i])
2378 break;
051e1b9f 2379 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2380 skip_level = i + 1;
2381 continue;
2382 }
051e1b9f 2383 if (!no_skips && path->keep_locks) {
925baedd
CM
2384 u32 nritems;
2385 t = path->nodes[i];
2386 nritems = btrfs_header_nritems(t);
051e1b9f 2387 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2388 skip_level = i + 1;
2389 continue;
2390 }
2391 }
051e1b9f
CM
2392 if (skip_level < i && i >= lowest_unlock)
2393 no_skips = 1;
2394
925baedd
CM
2395 t = path->nodes[i];
2396 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2397 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2398 path->locks[i] = 0;
f7c79f30
CM
2399 if (write_lock_level &&
2400 i > min_write_lock_level &&
2401 i <= *write_lock_level) {
2402 *write_lock_level = i - 1;
2403 }
925baedd
CM
2404 }
2405 }
2406}
2407
b4ce94de
CM
2408/*
2409 * This releases any locks held in the path starting at level and
2410 * going all the way up to the root.
2411 *
2412 * btrfs_search_slot will keep the lock held on higher nodes in a few
2413 * corner cases, such as COW of the block at slot zero in the node. This
2414 * ignores those rules, and it should only be called when there are no
2415 * more updates to be done higher up in the tree.
2416 */
2417noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2418{
2419 int i;
2420
09a2a8f9 2421 if (path->keep_locks)
b4ce94de
CM
2422 return;
2423
2424 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2425 if (!path->nodes[i])
12f4dacc 2426 continue;
b4ce94de 2427 if (!path->locks[i])
12f4dacc 2428 continue;
bd681513 2429 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2430 path->locks[i] = 0;
2431 }
2432}
2433
c8c42864
CM
2434/*
2435 * helper function for btrfs_search_slot. The goal is to find a block
2436 * in cache without setting the path to blocking. If we find the block
2437 * we return zero and the path is unchanged.
2438 *
2439 * If we can't find the block, we set the path blocking and do some
2440 * reada. -EAGAIN is returned and the search must be repeated.
2441 */
2442static int
2443read_block_for_search(struct btrfs_trans_handle *trans,
2444 struct btrfs_root *root, struct btrfs_path *p,
2445 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2446 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2447{
2448 u64 blocknr;
2449 u64 gen;
c8c42864
CM
2450 struct extent_buffer *b = *eb_ret;
2451 struct extent_buffer *tmp;
76a05b35 2452 int ret;
c8c42864
CM
2453
2454 blocknr = btrfs_node_blockptr(b, slot);
2455 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2456
01d58472 2457 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
cb44921a 2458 if (tmp) {
b9fab919 2459 /* first we do an atomic uptodate check */
bdf7c00e
JB
2460 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2461 *eb_ret = tmp;
2462 return 0;
2463 }
2464
2465 /* the pages were up to date, but we failed
2466 * the generation number check. Do a full
2467 * read for the generation number that is correct.
2468 * We must do this without dropping locks so
2469 * we can trust our generation number
2470 */
2471 btrfs_set_path_blocking(p);
2472
2473 /* now we're allowed to do a blocking uptodate check */
2474 ret = btrfs_read_buffer(tmp, gen);
2475 if (!ret) {
2476 *eb_ret = tmp;
2477 return 0;
cb44921a 2478 }
bdf7c00e
JB
2479 free_extent_buffer(tmp);
2480 btrfs_release_path(p);
2481 return -EIO;
c8c42864
CM
2482 }
2483
2484 /*
2485 * reduce lock contention at high levels
2486 * of the btree by dropping locks before
76a05b35
CM
2487 * we read. Don't release the lock on the current
2488 * level because we need to walk this node to figure
2489 * out which blocks to read.
c8c42864 2490 */
8c594ea8
CM
2491 btrfs_unlock_up_safe(p, level + 1);
2492 btrfs_set_path_blocking(p);
2493
cb44921a 2494 free_extent_buffer(tmp);
e4058b54 2495 if (p->reada != READA_NONE)
c8c42864
CM
2496 reada_for_search(root, p, level, slot, key->objectid);
2497
b3b4aa74 2498 btrfs_release_path(p);
76a05b35
CM
2499
2500 ret = -EAGAIN;
ce86cd59 2501 tmp = read_tree_block(root, blocknr, 0);
64c043de 2502 if (!IS_ERR(tmp)) {
76a05b35
CM
2503 /*
2504 * If the read above didn't mark this buffer up to date,
2505 * it will never end up being up to date. Set ret to EIO now
2506 * and give up so that our caller doesn't loop forever
2507 * on our EAGAINs.
2508 */
b9fab919 2509 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2510 ret = -EIO;
c8c42864 2511 free_extent_buffer(tmp);
76a05b35
CM
2512 }
2513 return ret;
c8c42864
CM
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot. This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned. If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2528 struct extent_buffer *b, int level, int ins_len,
2529 int *write_lock_level)
c8c42864
CM
2530{
2531 int ret;
2532 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2533 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2534 int sret;
2535
bd681513
CM
2536 if (*write_lock_level < level + 1) {
2537 *write_lock_level = level + 1;
2538 btrfs_release_path(p);
2539 goto again;
2540 }
2541
c8c42864 2542 btrfs_set_path_blocking(p);
0b08851f 2543 reada_for_balance(root, p, level);
c8c42864 2544 sret = split_node(trans, root, p, level);
bd681513 2545 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2546
2547 BUG_ON(sret > 0);
2548 if (sret) {
2549 ret = sret;
2550 goto done;
2551 }
2552 b = p->nodes[level];
2553 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2554 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2555 int sret;
2556
bd681513
CM
2557 if (*write_lock_level < level + 1) {
2558 *write_lock_level = level + 1;
2559 btrfs_release_path(p);
2560 goto again;
2561 }
2562
c8c42864 2563 btrfs_set_path_blocking(p);
0b08851f 2564 reada_for_balance(root, p, level);
c8c42864 2565 sret = balance_level(trans, root, p, level);
bd681513 2566 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2567
2568 if (sret) {
2569 ret = sret;
2570 goto done;
2571 }
2572 b = p->nodes[level];
2573 if (!b) {
b3b4aa74 2574 btrfs_release_path(p);
c8c42864
CM
2575 goto again;
2576 }
2577 BUG_ON(btrfs_header_nritems(b) == 1);
2578 }
2579 return 0;
2580
2581again:
2582 ret = -EAGAIN;
2583done:
2584 return ret;
2585}
2586
d7396f07
FDBM
2587static void key_search_validate(struct extent_buffer *b,
2588 struct btrfs_key *key,
2589 int level)
2590{
2591#ifdef CONFIG_BTRFS_ASSERT
2592 struct btrfs_disk_key disk_key;
2593
2594 btrfs_cpu_key_to_disk(&disk_key, key);
2595
2596 if (level == 0)
2597 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2598 offsetof(struct btrfs_leaf, items[0].key),
2599 sizeof(disk_key)));
2600 else
2601 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2602 offsetof(struct btrfs_node, ptrs[0].key),
2603 sizeof(disk_key)));
2604#endif
2605}
2606
2607static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2608 int level, int *prev_cmp, int *slot)
2609{
2610 if (*prev_cmp != 0) {
2611 *prev_cmp = bin_search(b, key, level, slot);
2612 return *prev_cmp;
2613 }
2614
2615 key_search_validate(b, key, level);
2616 *slot = 0;
2617
2618 return 0;
2619}
2620
381cf658 2621int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2622 u64 iobjectid, u64 ioff, u8 key_type,
2623 struct btrfs_key *found_key)
2624{
2625 int ret;
2626 struct btrfs_key key;
2627 struct extent_buffer *eb;
381cf658
DS
2628
2629 ASSERT(path);
1d4c08e0 2630 ASSERT(found_key);
e33d5c3d
KN
2631
2632 key.type = key_type;
2633 key.objectid = iobjectid;
2634 key.offset = ioff;
2635
2636 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2637 if (ret < 0)
e33d5c3d
KN
2638 return ret;
2639
2640 eb = path->nodes[0];
2641 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2642 ret = btrfs_next_leaf(fs_root, path);
2643 if (ret)
2644 return ret;
2645 eb = path->nodes[0];
2646 }
2647
2648 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2649 if (found_key->type != key.type ||
2650 found_key->objectid != key.objectid)
2651 return 1;
2652
2653 return 0;
2654}
2655
74123bd7
CM
2656/*
2657 * look for key in the tree. path is filled in with nodes along the way
2658 * if key is found, we return zero and you can find the item in the leaf
2659 * level of the path (level 0)
2660 *
2661 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2662 * be inserted, and 1 is returned. If there are other errors during the
2663 * search a negative error number is returned.
97571fd0
CM
2664 *
2665 * if ins_len > 0, nodes and leaves will be split as we walk down the
2666 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2667 * possible)
74123bd7 2668 */
e089f05c
CM
2669int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2670 *root, struct btrfs_key *key, struct btrfs_path *p, int
2671 ins_len, int cow)
be0e5c09 2672{
5f39d397 2673 struct extent_buffer *b;
be0e5c09
CM
2674 int slot;
2675 int ret;
33c66f43 2676 int err;
be0e5c09 2677 int level;
925baedd 2678 int lowest_unlock = 1;
bd681513
CM
2679 int root_lock;
2680 /* everything at write_lock_level or lower must be write locked */
2681 int write_lock_level = 0;
9f3a7427 2682 u8 lowest_level = 0;
f7c79f30 2683 int min_write_lock_level;
d7396f07 2684 int prev_cmp;
9f3a7427 2685
6702ed49 2686 lowest_level = p->lowest_level;
323ac95b 2687 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2688 WARN_ON(p->nodes[0] != NULL);
eb653de1 2689 BUG_ON(!cow && ins_len);
25179201 2690
bd681513 2691 if (ins_len < 0) {
925baedd 2692 lowest_unlock = 2;
65b51a00 2693
bd681513
CM
2694 /* when we are removing items, we might have to go up to level
2695 * two as we update tree pointers Make sure we keep write
2696 * for those levels as well
2697 */
2698 write_lock_level = 2;
2699 } else if (ins_len > 0) {
2700 /*
2701 * for inserting items, make sure we have a write lock on
2702 * level 1 so we can update keys
2703 */
2704 write_lock_level = 1;
2705 }
2706
2707 if (!cow)
2708 write_lock_level = -1;
2709
09a2a8f9 2710 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2711 write_lock_level = BTRFS_MAX_LEVEL;
2712
f7c79f30
CM
2713 min_write_lock_level = write_lock_level;
2714
bb803951 2715again:
d7396f07 2716 prev_cmp = -1;
bd681513
CM
2717 /*
2718 * we try very hard to do read locks on the root
2719 */
2720 root_lock = BTRFS_READ_LOCK;
2721 level = 0;
5d4f98a2 2722 if (p->search_commit_root) {
bd681513
CM
2723 /*
2724 * the commit roots are read only
2725 * so we always do read locks
2726 */
3f8a18cc
JB
2727 if (p->need_commit_sem)
2728 down_read(&root->fs_info->commit_root_sem);
5d4f98a2
YZ
2729 b = root->commit_root;
2730 extent_buffer_get(b);
bd681513 2731 level = btrfs_header_level(b);
3f8a18cc
JB
2732 if (p->need_commit_sem)
2733 up_read(&root->fs_info->commit_root_sem);
5d4f98a2 2734 if (!p->skip_locking)
bd681513 2735 btrfs_tree_read_lock(b);
5d4f98a2 2736 } else {
bd681513 2737 if (p->skip_locking) {
5d4f98a2 2738 b = btrfs_root_node(root);
bd681513
CM
2739 level = btrfs_header_level(b);
2740 } else {
2741 /* we don't know the level of the root node
2742 * until we actually have it read locked
2743 */
2744 b = btrfs_read_lock_root_node(root);
2745 level = btrfs_header_level(b);
2746 if (level <= write_lock_level) {
2747 /* whoops, must trade for write lock */
2748 btrfs_tree_read_unlock(b);
2749 free_extent_buffer(b);
2750 b = btrfs_lock_root_node(root);
2751 root_lock = BTRFS_WRITE_LOCK;
2752
2753 /* the level might have changed, check again */
2754 level = btrfs_header_level(b);
2755 }
2756 }
5d4f98a2 2757 }
bd681513
CM
2758 p->nodes[level] = b;
2759 if (!p->skip_locking)
2760 p->locks[level] = root_lock;
925baedd 2761
eb60ceac 2762 while (b) {
5f39d397 2763 level = btrfs_header_level(b);
65b51a00
CM
2764
2765 /*
2766 * setup the path here so we can release it under lock
2767 * contention with the cow code
2768 */
02217ed2 2769 if (cow) {
c8c42864
CM
2770 /*
2771 * if we don't really need to cow this block
2772 * then we don't want to set the path blocking,
2773 * so we test it here
2774 */
5d4f98a2 2775 if (!should_cow_block(trans, root, b))
65b51a00 2776 goto cow_done;
5d4f98a2 2777
bd681513
CM
2778 /*
2779 * must have write locks on this node and the
2780 * parent
2781 */
5124e00e
JB
2782 if (level > write_lock_level ||
2783 (level + 1 > write_lock_level &&
2784 level + 1 < BTRFS_MAX_LEVEL &&
2785 p->nodes[level + 1])) {
bd681513
CM
2786 write_lock_level = level + 1;
2787 btrfs_release_path(p);
2788 goto again;
2789 }
2790
160f4089 2791 btrfs_set_path_blocking(p);
33c66f43
YZ
2792 err = btrfs_cow_block(trans, root, b,
2793 p->nodes[level + 1],
2794 p->slots[level + 1], &b);
2795 if (err) {
33c66f43 2796 ret = err;
65b51a00 2797 goto done;
54aa1f4d 2798 }
02217ed2 2799 }
65b51a00 2800cow_done:
eb60ceac 2801 p->nodes[level] = b;
bd681513 2802 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2803
2804 /*
2805 * we have a lock on b and as long as we aren't changing
2806 * the tree, there is no way to for the items in b to change.
2807 * It is safe to drop the lock on our parent before we
2808 * go through the expensive btree search on b.
2809 *
eb653de1
FDBM
2810 * If we're inserting or deleting (ins_len != 0), then we might
2811 * be changing slot zero, which may require changing the parent.
2812 * So, we can't drop the lock until after we know which slot
2813 * we're operating on.
b4ce94de 2814 */
eb653de1
FDBM
2815 if (!ins_len && !p->keep_locks) {
2816 int u = level + 1;
2817
2818 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2819 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2820 p->locks[u] = 0;
2821 }
2822 }
b4ce94de 2823
d7396f07 2824 ret = key_search(b, key, level, &prev_cmp, &slot);
b4ce94de 2825
5f39d397 2826 if (level != 0) {
33c66f43
YZ
2827 int dec = 0;
2828 if (ret && slot > 0) {
2829 dec = 1;
be0e5c09 2830 slot -= 1;
33c66f43 2831 }
be0e5c09 2832 p->slots[level] = slot;
33c66f43 2833 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2834 ins_len, &write_lock_level);
33c66f43 2835 if (err == -EAGAIN)
c8c42864 2836 goto again;
33c66f43
YZ
2837 if (err) {
2838 ret = err;
c8c42864 2839 goto done;
33c66f43 2840 }
c8c42864
CM
2841 b = p->nodes[level];
2842 slot = p->slots[level];
b4ce94de 2843
bd681513
CM
2844 /*
2845 * slot 0 is special, if we change the key
2846 * we have to update the parent pointer
2847 * which means we must have a write lock
2848 * on the parent
2849 */
eb653de1 2850 if (slot == 0 && ins_len &&
bd681513
CM
2851 write_lock_level < level + 1) {
2852 write_lock_level = level + 1;
2853 btrfs_release_path(p);
2854 goto again;
2855 }
2856
f7c79f30
CM
2857 unlock_up(p, level, lowest_unlock,
2858 min_write_lock_level, &write_lock_level);
f9efa9c7 2859
925baedd 2860 if (level == lowest_level) {
33c66f43
YZ
2861 if (dec)
2862 p->slots[level]++;
5b21f2ed 2863 goto done;
925baedd 2864 }
ca7a79ad 2865
33c66f43 2866 err = read_block_for_search(trans, root, p,
5d9e75c4 2867 &b, level, slot, key, 0);
33c66f43 2868 if (err == -EAGAIN)
c8c42864 2869 goto again;
33c66f43
YZ
2870 if (err) {
2871 ret = err;
76a05b35 2872 goto done;
33c66f43 2873 }
76a05b35 2874
b4ce94de 2875 if (!p->skip_locking) {
bd681513
CM
2876 level = btrfs_header_level(b);
2877 if (level <= write_lock_level) {
2878 err = btrfs_try_tree_write_lock(b);
2879 if (!err) {
2880 btrfs_set_path_blocking(p);
2881 btrfs_tree_lock(b);
2882 btrfs_clear_path_blocking(p, b,
2883 BTRFS_WRITE_LOCK);
2884 }
2885 p->locks[level] = BTRFS_WRITE_LOCK;
2886 } else {
f82c458a 2887 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2888 if (!err) {
2889 btrfs_set_path_blocking(p);
2890 btrfs_tree_read_lock(b);
2891 btrfs_clear_path_blocking(p, b,
2892 BTRFS_READ_LOCK);
2893 }
2894 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2895 }
bd681513 2896 p->nodes[level] = b;
b4ce94de 2897 }
be0e5c09
CM
2898 } else {
2899 p->slots[level] = slot;
87b29b20
YZ
2900 if (ins_len > 0 &&
2901 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2902 if (write_lock_level < 1) {
2903 write_lock_level = 1;
2904 btrfs_release_path(p);
2905 goto again;
2906 }
2907
b4ce94de 2908 btrfs_set_path_blocking(p);
33c66f43
YZ
2909 err = split_leaf(trans, root, key,
2910 p, ins_len, ret == 0);
bd681513 2911 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2912
33c66f43
YZ
2913 BUG_ON(err > 0);
2914 if (err) {
2915 ret = err;
65b51a00
CM
2916 goto done;
2917 }
5c680ed6 2918 }
459931ec 2919 if (!p->search_for_split)
f7c79f30
CM
2920 unlock_up(p, level, lowest_unlock,
2921 min_write_lock_level, &write_lock_level);
65b51a00 2922 goto done;
be0e5c09
CM
2923 }
2924 }
65b51a00
CM
2925 ret = 1;
2926done:
b4ce94de
CM
2927 /*
2928 * we don't really know what they plan on doing with the path
2929 * from here on, so for now just mark it as blocking
2930 */
b9473439
CM
2931 if (!p->leave_spinning)
2932 btrfs_set_path_blocking(p);
5f5bc6b1 2933 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2934 btrfs_release_path(p);
65b51a00 2935 return ret;
be0e5c09
CM
2936}
2937
5d9e75c4
JS
2938/*
2939 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2940 * current state of the tree together with the operations recorded in the tree
2941 * modification log to search for the key in a previous version of this tree, as
2942 * denoted by the time_seq parameter.
2943 *
2944 * Naturally, there is no support for insert, delete or cow operations.
2945 *
2946 * The resulting path and return value will be set up as if we called
2947 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2948 */
2949int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2950 struct btrfs_path *p, u64 time_seq)
2951{
2952 struct extent_buffer *b;
2953 int slot;
2954 int ret;
2955 int err;
2956 int level;
2957 int lowest_unlock = 1;
2958 u8 lowest_level = 0;
d4b4087c 2959 int prev_cmp = -1;
5d9e75c4
JS
2960
2961 lowest_level = p->lowest_level;
2962 WARN_ON(p->nodes[0] != NULL);
2963
2964 if (p->search_commit_root) {
2965 BUG_ON(time_seq);
2966 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2967 }
2968
2969again:
5d9e75c4 2970 b = get_old_root(root, time_seq);
5d9e75c4 2971 level = btrfs_header_level(b);
5d9e75c4
JS
2972 p->locks[level] = BTRFS_READ_LOCK;
2973
2974 while (b) {
2975 level = btrfs_header_level(b);
2976 p->nodes[level] = b;
2977 btrfs_clear_path_blocking(p, NULL, 0);
2978
2979 /*
2980 * we have a lock on b and as long as we aren't changing
2981 * the tree, there is no way to for the items in b to change.
2982 * It is safe to drop the lock on our parent before we
2983 * go through the expensive btree search on b.
2984 */
2985 btrfs_unlock_up_safe(p, level + 1);
2986
d4b4087c
JB
2987 /*
2988 * Since we can unwind eb's we want to do a real search every
2989 * time.
2990 */
2991 prev_cmp = -1;
d7396f07 2992 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2993
2994 if (level != 0) {
2995 int dec = 0;
2996 if (ret && slot > 0) {
2997 dec = 1;
2998 slot -= 1;
2999 }
3000 p->slots[level] = slot;
3001 unlock_up(p, level, lowest_unlock, 0, NULL);
3002
3003 if (level == lowest_level) {
3004 if (dec)
3005 p->slots[level]++;
3006 goto done;
3007 }
3008
3009 err = read_block_for_search(NULL, root, p, &b, level,
3010 slot, key, time_seq);
3011 if (err == -EAGAIN)
3012 goto again;
3013 if (err) {
3014 ret = err;
3015 goto done;
3016 }
3017
3018 level = btrfs_header_level(b);
f82c458a 3019 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3020 if (!err) {
3021 btrfs_set_path_blocking(p);
3022 btrfs_tree_read_lock(b);
3023 btrfs_clear_path_blocking(p, b,
3024 BTRFS_READ_LOCK);
3025 }
9ec72677 3026 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
db7f3436
JB
3027 if (!b) {
3028 ret = -ENOMEM;
3029 goto done;
3030 }
5d9e75c4
JS
3031 p->locks[level] = BTRFS_READ_LOCK;
3032 p->nodes[level] = b;
5d9e75c4
JS
3033 } else {
3034 p->slots[level] = slot;
3035 unlock_up(p, level, lowest_unlock, 0, NULL);
3036 goto done;
3037 }
3038 }
3039 ret = 1;
3040done:
3041 if (!p->leave_spinning)
3042 btrfs_set_path_blocking(p);
3043 if (ret < 0)
3044 btrfs_release_path(p);
3045
3046 return ret;
3047}
3048
2f38b3e1
AJ
3049/*
3050 * helper to use instead of search slot if no exact match is needed but
3051 * instead the next or previous item should be returned.
3052 * When find_higher is true, the next higher item is returned, the next lower
3053 * otherwise.
3054 * When return_any and find_higher are both true, and no higher item is found,
3055 * return the next lower instead.
3056 * When return_any is true and find_higher is false, and no lower item is found,
3057 * return the next higher instead.
3058 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3059 * < 0 on error
3060 */
3061int btrfs_search_slot_for_read(struct btrfs_root *root,
3062 struct btrfs_key *key, struct btrfs_path *p,
3063 int find_higher, int return_any)
3064{
3065 int ret;
3066 struct extent_buffer *leaf;
3067
3068again:
3069 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3070 if (ret <= 0)
3071 return ret;
3072 /*
3073 * a return value of 1 means the path is at the position where the
3074 * item should be inserted. Normally this is the next bigger item,
3075 * but in case the previous item is the last in a leaf, path points
3076 * to the first free slot in the previous leaf, i.e. at an invalid
3077 * item.
3078 */
3079 leaf = p->nodes[0];
3080
3081 if (find_higher) {
3082 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3083 ret = btrfs_next_leaf(root, p);
3084 if (ret <= 0)
3085 return ret;
3086 if (!return_any)
3087 return 1;
3088 /*
3089 * no higher item found, return the next
3090 * lower instead
3091 */
3092 return_any = 0;
3093 find_higher = 0;
3094 btrfs_release_path(p);
3095 goto again;
3096 }
3097 } else {
e6793769
AJ
3098 if (p->slots[0] == 0) {
3099 ret = btrfs_prev_leaf(root, p);
3100 if (ret < 0)
3101 return ret;
3102 if (!ret) {
23c6bf6a
FDBM
3103 leaf = p->nodes[0];
3104 if (p->slots[0] == btrfs_header_nritems(leaf))
3105 p->slots[0]--;
e6793769 3106 return 0;
2f38b3e1 3107 }
e6793769
AJ
3108 if (!return_any)
3109 return 1;
3110 /*
3111 * no lower item found, return the next
3112 * higher instead
3113 */
3114 return_any = 0;
3115 find_higher = 1;
3116 btrfs_release_path(p);
3117 goto again;
3118 } else {
2f38b3e1
AJ
3119 --p->slots[0];
3120 }
3121 }
3122 return 0;
3123}
3124
74123bd7
CM
3125/*
3126 * adjust the pointers going up the tree, starting at level
3127 * making sure the right key of each node is points to 'key'.
3128 * This is used after shifting pointers to the left, so it stops
3129 * fixing up pointers when a given leaf/node is not in slot 0 of the
3130 * higher levels
aa5d6bed 3131 *
74123bd7 3132 */
b7a0365e
DD
3133static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3134 struct btrfs_path *path,
143bede5 3135 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3136{
3137 int i;
5f39d397
CM
3138 struct extent_buffer *t;
3139
234b63a0 3140 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3141 int tslot = path->slots[i];
eb60ceac 3142 if (!path->nodes[i])
be0e5c09 3143 break;
5f39d397 3144 t = path->nodes[i];
b7a0365e 3145 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
5f39d397 3146 btrfs_set_node_key(t, key, tslot);
d6025579 3147 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3148 if (tslot != 0)
3149 break;
3150 }
3151}
3152
31840ae1
ZY
3153/*
3154 * update item key.
3155 *
3156 * This function isn't completely safe. It's the caller's responsibility
3157 * that the new key won't break the order
3158 */
b7a0365e
DD
3159void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3160 struct btrfs_path *path,
143bede5 3161 struct btrfs_key *new_key)
31840ae1
ZY
3162{
3163 struct btrfs_disk_key disk_key;
3164 struct extent_buffer *eb;
3165 int slot;
3166
3167 eb = path->nodes[0];
3168 slot = path->slots[0];
3169 if (slot > 0) {
3170 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3171 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3172 }
3173 if (slot < btrfs_header_nritems(eb) - 1) {
3174 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3175 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3176 }
3177
3178 btrfs_cpu_key_to_disk(&disk_key, new_key);
3179 btrfs_set_item_key(eb, &disk_key, slot);
3180 btrfs_mark_buffer_dirty(eb);
3181 if (slot == 0)
b7a0365e 3182 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3183}
3184
74123bd7
CM
3185/*
3186 * try to push data from one node into the next node left in the
79f95c82 3187 * tree.
aa5d6bed
CM
3188 *
3189 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3190 * error, and > 0 if there was no room in the left hand block.
74123bd7 3191 */
98ed5174
CM
3192static int push_node_left(struct btrfs_trans_handle *trans,
3193 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 3194 struct extent_buffer *src, int empty)
be0e5c09 3195{
be0e5c09 3196 int push_items = 0;
bb803951
CM
3197 int src_nritems;
3198 int dst_nritems;
aa5d6bed 3199 int ret = 0;
be0e5c09 3200
5f39d397
CM
3201 src_nritems = btrfs_header_nritems(src);
3202 dst_nritems = btrfs_header_nritems(dst);
123abc88 3203 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
3204 WARN_ON(btrfs_header_generation(src) != trans->transid);
3205 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3206
bce4eae9 3207 if (!empty && src_nritems <= 8)
971a1f66
CM
3208 return 1;
3209
d397712b 3210 if (push_items <= 0)
be0e5c09
CM
3211 return 1;
3212
bce4eae9 3213 if (empty) {
971a1f66 3214 push_items = min(src_nritems, push_items);
bce4eae9
CM
3215 if (push_items < src_nritems) {
3216 /* leave at least 8 pointers in the node if
3217 * we aren't going to empty it
3218 */
3219 if (src_nritems - push_items < 8) {
3220 if (push_items <= 8)
3221 return 1;
3222 push_items -= 8;
3223 }
3224 }
3225 } else
3226 push_items = min(src_nritems - 8, push_items);
79f95c82 3227
5de865ee
FDBM
3228 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3229 push_items);
3230 if (ret) {
3231 btrfs_abort_transaction(trans, root, ret);
3232 return ret;
3233 }
5f39d397
CM
3234 copy_extent_buffer(dst, src,
3235 btrfs_node_key_ptr_offset(dst_nritems),
3236 btrfs_node_key_ptr_offset(0),
d397712b 3237 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3238
bb803951 3239 if (push_items < src_nritems) {
57911b8b
JS
3240 /*
3241 * don't call tree_mod_log_eb_move here, key removal was already
3242 * fully logged by tree_mod_log_eb_copy above.
3243 */
5f39d397
CM
3244 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3245 btrfs_node_key_ptr_offset(push_items),
3246 (src_nritems - push_items) *
3247 sizeof(struct btrfs_key_ptr));
3248 }
3249 btrfs_set_header_nritems(src, src_nritems - push_items);
3250 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3251 btrfs_mark_buffer_dirty(src);
3252 btrfs_mark_buffer_dirty(dst);
31840ae1 3253
79f95c82
CM
3254 return ret;
3255}
3256
3257/*
3258 * try to push data from one node into the next node right in the
3259 * tree.
3260 *
3261 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3262 * error, and > 0 if there was no room in the right hand block.
3263 *
3264 * this will only push up to 1/2 the contents of the left node over
3265 */
5f39d397
CM
3266static int balance_node_right(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *root,
3268 struct extent_buffer *dst,
3269 struct extent_buffer *src)
79f95c82 3270{
79f95c82
CM
3271 int push_items = 0;
3272 int max_push;
3273 int src_nritems;
3274 int dst_nritems;
3275 int ret = 0;
79f95c82 3276
7bb86316
CM
3277 WARN_ON(btrfs_header_generation(src) != trans->transid);
3278 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3279
5f39d397
CM
3280 src_nritems = btrfs_header_nritems(src);
3281 dst_nritems = btrfs_header_nritems(dst);
123abc88 3282 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3283 if (push_items <= 0)
79f95c82 3284 return 1;
bce4eae9 3285
d397712b 3286 if (src_nritems < 4)
bce4eae9 3287 return 1;
79f95c82
CM
3288
3289 max_push = src_nritems / 2 + 1;
3290 /* don't try to empty the node */
d397712b 3291 if (max_push >= src_nritems)
79f95c82 3292 return 1;
252c38f0 3293
79f95c82
CM
3294 if (max_push < push_items)
3295 push_items = max_push;
3296
f230475e 3297 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3298 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3299 btrfs_node_key_ptr_offset(0),
3300 (dst_nritems) *
3301 sizeof(struct btrfs_key_ptr));
d6025579 3302
5de865ee
FDBM
3303 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3304 src_nritems - push_items, push_items);
3305 if (ret) {
3306 btrfs_abort_transaction(trans, root, ret);
3307 return ret;
3308 }
5f39d397
CM
3309 copy_extent_buffer(dst, src,
3310 btrfs_node_key_ptr_offset(0),
3311 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3312 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3313
5f39d397
CM
3314 btrfs_set_header_nritems(src, src_nritems - push_items);
3315 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3316
5f39d397
CM
3317 btrfs_mark_buffer_dirty(src);
3318 btrfs_mark_buffer_dirty(dst);
31840ae1 3319
aa5d6bed 3320 return ret;
be0e5c09
CM
3321}
3322
97571fd0
CM
3323/*
3324 * helper function to insert a new root level in the tree.
3325 * A new node is allocated, and a single item is inserted to
3326 * point to the existing root
aa5d6bed
CM
3327 *
3328 * returns zero on success or < 0 on failure.
97571fd0 3329 */
d397712b 3330static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3331 struct btrfs_root *root,
fdd99c72 3332 struct btrfs_path *path, int level)
5c680ed6 3333{
7bb86316 3334 u64 lower_gen;
5f39d397
CM
3335 struct extent_buffer *lower;
3336 struct extent_buffer *c;
925baedd 3337 struct extent_buffer *old;
5f39d397 3338 struct btrfs_disk_key lower_key;
5c680ed6
CM
3339
3340 BUG_ON(path->nodes[level]);
3341 BUG_ON(path->nodes[level-1] != root->node);
3342
7bb86316
CM
3343 lower = path->nodes[level-1];
3344 if (level == 1)
3345 btrfs_item_key(lower, &lower_key, 0);
3346 else
3347 btrfs_node_key(lower, &lower_key, 0);
3348
4d75f8a9
DS
3349 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3350 &lower_key, level, root->node->start, 0);
5f39d397
CM
3351 if (IS_ERR(c))
3352 return PTR_ERR(c);
925baedd 3353
f0486c68
YZ
3354 root_add_used(root, root->nodesize);
3355
5d4f98a2 3356 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3357 btrfs_set_header_nritems(c, 1);
3358 btrfs_set_header_level(c, level);
db94535d 3359 btrfs_set_header_bytenr(c, c->start);
5f39d397 3360 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3361 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3362 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3363
0a4e5586 3364 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
5f39d397 3365 BTRFS_FSID_SIZE);
e17cade2
CM
3366
3367 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
b308bc2f 3368 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
e17cade2 3369
5f39d397 3370 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3371 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3372 lower_gen = btrfs_header_generation(lower);
31840ae1 3373 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3374
3375 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3376
5f39d397 3377 btrfs_mark_buffer_dirty(c);
d5719762 3378
925baedd 3379 old = root->node;
fdd99c72 3380 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3381 rcu_assign_pointer(root->node, c);
925baedd
CM
3382
3383 /* the super has an extra ref to root->node */
3384 free_extent_buffer(old);
3385
0b86a832 3386 add_root_to_dirty_list(root);
5f39d397
CM
3387 extent_buffer_get(c);
3388 path->nodes[level] = c;
95449a16 3389 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3390 path->slots[level] = 0;
3391 return 0;
3392}
3393
74123bd7
CM
3394/*
3395 * worker function to insert a single pointer in a node.
3396 * the node should have enough room for the pointer already
97571fd0 3397 *
74123bd7
CM
3398 * slot and level indicate where you want the key to go, and
3399 * blocknr is the block the key points to.
3400 */
143bede5
JM
3401static void insert_ptr(struct btrfs_trans_handle *trans,
3402 struct btrfs_root *root, struct btrfs_path *path,
3403 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3404 int slot, int level)
74123bd7 3405{
5f39d397 3406 struct extent_buffer *lower;
74123bd7 3407 int nritems;
f3ea38da 3408 int ret;
5c680ed6
CM
3409
3410 BUG_ON(!path->nodes[level]);
f0486c68 3411 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3412 lower = path->nodes[level];
3413 nritems = btrfs_header_nritems(lower);
c293498b 3414 BUG_ON(slot > nritems);
143bede5 3415 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3416 if (slot != nritems) {
c3e06965 3417 if (level)
f3ea38da
JS
3418 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3419 slot, nritems - slot);
5f39d397
CM
3420 memmove_extent_buffer(lower,
3421 btrfs_node_key_ptr_offset(slot + 1),
3422 btrfs_node_key_ptr_offset(slot),
d6025579 3423 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3424 }
c3e06965 3425 if (level) {
f3ea38da 3426 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
c8cc6341 3427 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3428 BUG_ON(ret < 0);
3429 }
5f39d397 3430 btrfs_set_node_key(lower, key, slot);
db94535d 3431 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3432 WARN_ON(trans->transid == 0);
3433 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3434 btrfs_set_header_nritems(lower, nritems + 1);
3435 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3436}
3437
97571fd0
CM
3438/*
3439 * split the node at the specified level in path in two.
3440 * The path is corrected to point to the appropriate node after the split
3441 *
3442 * Before splitting this tries to make some room in the node by pushing
3443 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3444 *
3445 * returns 0 on success and < 0 on failure
97571fd0 3446 */
e02119d5
CM
3447static noinline int split_node(struct btrfs_trans_handle *trans,
3448 struct btrfs_root *root,
3449 struct btrfs_path *path, int level)
be0e5c09 3450{
5f39d397
CM
3451 struct extent_buffer *c;
3452 struct extent_buffer *split;
3453 struct btrfs_disk_key disk_key;
be0e5c09 3454 int mid;
5c680ed6 3455 int ret;
7518a238 3456 u32 c_nritems;
eb60ceac 3457
5f39d397 3458 c = path->nodes[level];
7bb86316 3459 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3460 if (c == root->node) {
d9abbf1c 3461 /*
90f8d62e
JS
3462 * trying to split the root, lets make a new one
3463 *
fdd99c72 3464 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3465 * insert_new_root, because that root buffer will be kept as a
3466 * normal node. We are going to log removal of half of the
3467 * elements below with tree_mod_log_eb_copy. We're holding a
3468 * tree lock on the buffer, which is why we cannot race with
3469 * other tree_mod_log users.
d9abbf1c 3470 */
fdd99c72 3471 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3472 if (ret)
3473 return ret;
b3612421 3474 } else {
e66f709b 3475 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3476 c = path->nodes[level];
3477 if (!ret && btrfs_header_nritems(c) <
c448acf0 3478 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3479 return 0;
54aa1f4d
CM
3480 if (ret < 0)
3481 return ret;
be0e5c09 3482 }
e66f709b 3483
5f39d397 3484 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3485 mid = (c_nritems + 1) / 2;
3486 btrfs_node_key(c, &disk_key, mid);
7bb86316 3487
4d75f8a9
DS
3488 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3489 &disk_key, level, c->start, 0);
5f39d397
CM
3490 if (IS_ERR(split))
3491 return PTR_ERR(split);
3492
f0486c68
YZ
3493 root_add_used(root, root->nodesize);
3494
5d4f98a2 3495 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3496 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3497 btrfs_set_header_bytenr(split, split->start);
5f39d397 3498 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3499 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3500 btrfs_set_header_owner(split, root->root_key.objectid);
3501 write_extent_buffer(split, root->fs_info->fsid,
0a4e5586 3502 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e17cade2 3503 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
b308bc2f 3504 btrfs_header_chunk_tree_uuid(split),
e17cade2 3505 BTRFS_UUID_SIZE);
54aa1f4d 3506
5de865ee
FDBM
3507 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3508 mid, c_nritems - mid);
3509 if (ret) {
3510 btrfs_abort_transaction(trans, root, ret);
3511 return ret;
3512 }
5f39d397
CM
3513 copy_extent_buffer(split, c,
3514 btrfs_node_key_ptr_offset(0),
3515 btrfs_node_key_ptr_offset(mid),
3516 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3517 btrfs_set_header_nritems(split, c_nritems - mid);
3518 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3519 ret = 0;
3520
5f39d397
CM
3521 btrfs_mark_buffer_dirty(c);
3522 btrfs_mark_buffer_dirty(split);
3523
143bede5 3524 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3525 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3526
5de08d7d 3527 if (path->slots[level] >= mid) {
5c680ed6 3528 path->slots[level] -= mid;
925baedd 3529 btrfs_tree_unlock(c);
5f39d397
CM
3530 free_extent_buffer(c);
3531 path->nodes[level] = split;
5c680ed6
CM
3532 path->slots[level + 1] += 1;
3533 } else {
925baedd 3534 btrfs_tree_unlock(split);
5f39d397 3535 free_extent_buffer(split);
be0e5c09 3536 }
aa5d6bed 3537 return ret;
be0e5c09
CM
3538}
3539
74123bd7
CM
3540/*
3541 * how many bytes are required to store the items in a leaf. start
3542 * and nr indicate which items in the leaf to check. This totals up the
3543 * space used both by the item structs and the item data
3544 */
5f39d397 3545static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3546{
41be1f3b
JB
3547 struct btrfs_item *start_item;
3548 struct btrfs_item *end_item;
3549 struct btrfs_map_token token;
be0e5c09 3550 int data_len;
5f39d397 3551 int nritems = btrfs_header_nritems(l);
d4dbff95 3552 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3553
3554 if (!nr)
3555 return 0;
41be1f3b 3556 btrfs_init_map_token(&token);
dd3cc16b
RK
3557 start_item = btrfs_item_nr(start);
3558 end_item = btrfs_item_nr(end);
41be1f3b
JB
3559 data_len = btrfs_token_item_offset(l, start_item, &token) +
3560 btrfs_token_item_size(l, start_item, &token);
3561 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3562 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3563 WARN_ON(data_len < 0);
be0e5c09
CM
3564 return data_len;
3565}
3566
d4dbff95
CM
3567/*
3568 * The space between the end of the leaf items and
3569 * the start of the leaf data. IOW, how much room
3570 * the leaf has left for both items and data
3571 */
d397712b 3572noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3573 struct extent_buffer *leaf)
d4dbff95 3574{
5f39d397
CM
3575 int nritems = btrfs_header_nritems(leaf);
3576 int ret;
3577 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3578 if (ret < 0) {
efe120a0
FH
3579 btrfs_crit(root->fs_info,
3580 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
ae2f5411 3581 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3582 leaf_space_used(leaf, 0, nritems), nritems);
3583 }
3584 return ret;
d4dbff95
CM
3585}
3586
99d8f83c
CM
3587/*
3588 * min slot controls the lowest index we're willing to push to the
3589 * right. We'll push up to and including min_slot, but no lower
3590 */
44871b1b
CM
3591static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3592 struct btrfs_root *root,
3593 struct btrfs_path *path,
3594 int data_size, int empty,
3595 struct extent_buffer *right,
99d8f83c
CM
3596 int free_space, u32 left_nritems,
3597 u32 min_slot)
00ec4c51 3598{
5f39d397 3599 struct extent_buffer *left = path->nodes[0];
44871b1b 3600 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3601 struct btrfs_map_token token;
5f39d397 3602 struct btrfs_disk_key disk_key;
00ec4c51 3603 int slot;
34a38218 3604 u32 i;
00ec4c51
CM
3605 int push_space = 0;
3606 int push_items = 0;
0783fcfc 3607 struct btrfs_item *item;
34a38218 3608 u32 nr;
7518a238 3609 u32 right_nritems;
5f39d397 3610 u32 data_end;
db94535d 3611 u32 this_item_size;
00ec4c51 3612
cfed81a0
CM
3613 btrfs_init_map_token(&token);
3614
34a38218
CM
3615 if (empty)
3616 nr = 0;
3617 else
99d8f83c 3618 nr = max_t(u32, 1, min_slot);
34a38218 3619
31840ae1 3620 if (path->slots[0] >= left_nritems)
87b29b20 3621 push_space += data_size;
31840ae1 3622
44871b1b 3623 slot = path->slots[1];
34a38218
CM
3624 i = left_nritems - 1;
3625 while (i >= nr) {
dd3cc16b 3626 item = btrfs_item_nr(i);
db94535d 3627
31840ae1
ZY
3628 if (!empty && push_items > 0) {
3629 if (path->slots[0] > i)
3630 break;
3631 if (path->slots[0] == i) {
3632 int space = btrfs_leaf_free_space(root, left);
3633 if (space + push_space * 2 > free_space)
3634 break;
3635 }
3636 }
3637
00ec4c51 3638 if (path->slots[0] == i)
87b29b20 3639 push_space += data_size;
db94535d 3640
db94535d
CM
3641 this_item_size = btrfs_item_size(left, item);
3642 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3643 break;
31840ae1 3644
00ec4c51 3645 push_items++;
db94535d 3646 push_space += this_item_size + sizeof(*item);
34a38218
CM
3647 if (i == 0)
3648 break;
3649 i--;
db94535d 3650 }
5f39d397 3651
925baedd
CM
3652 if (push_items == 0)
3653 goto out_unlock;
5f39d397 3654
6c1500f2 3655 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3656
00ec4c51 3657 /* push left to right */
5f39d397 3658 right_nritems = btrfs_header_nritems(right);
34a38218 3659
5f39d397 3660 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3661 push_space -= leaf_data_end(root, left);
5f39d397 3662
00ec4c51 3663 /* make room in the right data area */
5f39d397
CM
3664 data_end = leaf_data_end(root, right);
3665 memmove_extent_buffer(right,
3666 btrfs_leaf_data(right) + data_end - push_space,
3667 btrfs_leaf_data(right) + data_end,
3668 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3669
00ec4c51 3670 /* copy from the left data area */
5f39d397 3671 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3672 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3673 btrfs_leaf_data(left) + leaf_data_end(root, left),
3674 push_space);
5f39d397
CM
3675
3676 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3677 btrfs_item_nr_offset(0),
3678 right_nritems * sizeof(struct btrfs_item));
3679
00ec4c51 3680 /* copy the items from left to right */
5f39d397
CM
3681 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3682 btrfs_item_nr_offset(left_nritems - push_items),
3683 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3684
3685 /* update the item pointers */
7518a238 3686 right_nritems += push_items;
5f39d397 3687 btrfs_set_header_nritems(right, right_nritems);
123abc88 3688 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3689 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3690 item = btrfs_item_nr(i);
cfed81a0
CM
3691 push_space -= btrfs_token_item_size(right, item, &token);
3692 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3693 }
3694
7518a238 3695 left_nritems -= push_items;
5f39d397 3696 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3697
34a38218
CM
3698 if (left_nritems)
3699 btrfs_mark_buffer_dirty(left);
f0486c68 3700 else
01d58472 3701 clean_tree_block(trans, root->fs_info, left);
f0486c68 3702
5f39d397 3703 btrfs_mark_buffer_dirty(right);
a429e513 3704
5f39d397
CM
3705 btrfs_item_key(right, &disk_key, 0);
3706 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3707 btrfs_mark_buffer_dirty(upper);
02217ed2 3708
00ec4c51 3709 /* then fixup the leaf pointer in the path */
7518a238
CM
3710 if (path->slots[0] >= left_nritems) {
3711 path->slots[0] -= left_nritems;
925baedd 3712 if (btrfs_header_nritems(path->nodes[0]) == 0)
01d58472 3713 clean_tree_block(trans, root->fs_info, path->nodes[0]);
925baedd 3714 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3715 free_extent_buffer(path->nodes[0]);
3716 path->nodes[0] = right;
00ec4c51
CM
3717 path->slots[1] += 1;
3718 } else {
925baedd 3719 btrfs_tree_unlock(right);
5f39d397 3720 free_extent_buffer(right);
00ec4c51
CM
3721 }
3722 return 0;
925baedd
CM
3723
3724out_unlock:
3725 btrfs_tree_unlock(right);
3726 free_extent_buffer(right);
3727 return 1;
00ec4c51 3728}
925baedd 3729
44871b1b
CM
3730/*
3731 * push some data in the path leaf to the right, trying to free up at
3732 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3733 *
3734 * returns 1 if the push failed because the other node didn't have enough
3735 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3736 *
3737 * this will push starting from min_slot to the end of the leaf. It won't
3738 * push any slot lower than min_slot
44871b1b
CM
3739 */
3740static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3741 *root, struct btrfs_path *path,
3742 int min_data_size, int data_size,
3743 int empty, u32 min_slot)
44871b1b
CM
3744{
3745 struct extent_buffer *left = path->nodes[0];
3746 struct extent_buffer *right;
3747 struct extent_buffer *upper;
3748 int slot;
3749 int free_space;
3750 u32 left_nritems;
3751 int ret;
3752
3753 if (!path->nodes[1])
3754 return 1;
3755
3756 slot = path->slots[1];
3757 upper = path->nodes[1];
3758 if (slot >= btrfs_header_nritems(upper) - 1)
3759 return 1;
3760
3761 btrfs_assert_tree_locked(path->nodes[1]);
3762
3763 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3764 if (right == NULL)
3765 return 1;
3766
44871b1b
CM
3767 btrfs_tree_lock(right);
3768 btrfs_set_lock_blocking(right);
3769
3770 free_space = btrfs_leaf_free_space(root, right);
3771 if (free_space < data_size)
3772 goto out_unlock;
3773
3774 /* cow and double check */
3775 ret = btrfs_cow_block(trans, root, right, upper,
3776 slot + 1, &right);
3777 if (ret)
3778 goto out_unlock;
3779
3780 free_space = btrfs_leaf_free_space(root, right);
3781 if (free_space < data_size)
3782 goto out_unlock;
3783
3784 left_nritems = btrfs_header_nritems(left);
3785 if (left_nritems == 0)
3786 goto out_unlock;
3787
2ef1fed2
FDBM
3788 if (path->slots[0] == left_nritems && !empty) {
3789 /* Key greater than all keys in the leaf, right neighbor has
3790 * enough room for it and we're not emptying our leaf to delete
3791 * it, therefore use right neighbor to insert the new item and
3792 * no need to touch/dirty our left leaft. */
3793 btrfs_tree_unlock(left);
3794 free_extent_buffer(left);
3795 path->nodes[0] = right;
3796 path->slots[0] = 0;
3797 path->slots[1]++;
3798 return 0;
3799 }
3800
99d8f83c
CM
3801 return __push_leaf_right(trans, root, path, min_data_size, empty,
3802 right, free_space, left_nritems, min_slot);
44871b1b
CM
3803out_unlock:
3804 btrfs_tree_unlock(right);
3805 free_extent_buffer(right);
3806 return 1;
3807}
3808
74123bd7
CM
3809/*
3810 * push some data in the path leaf to the left, trying to free up at
3811 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3812 *
3813 * max_slot can put a limit on how far into the leaf we'll push items. The
3814 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3815 * items
74123bd7 3816 */
44871b1b
CM
3817static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3818 struct btrfs_root *root,
3819 struct btrfs_path *path, int data_size,
3820 int empty, struct extent_buffer *left,
99d8f83c
CM
3821 int free_space, u32 right_nritems,
3822 u32 max_slot)
be0e5c09 3823{
5f39d397
CM
3824 struct btrfs_disk_key disk_key;
3825 struct extent_buffer *right = path->nodes[0];
be0e5c09 3826 int i;
be0e5c09
CM
3827 int push_space = 0;
3828 int push_items = 0;
0783fcfc 3829 struct btrfs_item *item;
7518a238 3830 u32 old_left_nritems;
34a38218 3831 u32 nr;
aa5d6bed 3832 int ret = 0;
db94535d
CM
3833 u32 this_item_size;
3834 u32 old_left_item_size;
cfed81a0
CM
3835 struct btrfs_map_token token;
3836
3837 btrfs_init_map_token(&token);
be0e5c09 3838
34a38218 3839 if (empty)
99d8f83c 3840 nr = min(right_nritems, max_slot);
34a38218 3841 else
99d8f83c 3842 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3843
3844 for (i = 0; i < nr; i++) {
dd3cc16b 3845 item = btrfs_item_nr(i);
db94535d 3846
31840ae1
ZY
3847 if (!empty && push_items > 0) {
3848 if (path->slots[0] < i)
3849 break;
3850 if (path->slots[0] == i) {
3851 int space = btrfs_leaf_free_space(root, right);
3852 if (space + push_space * 2 > free_space)
3853 break;
3854 }
3855 }
3856
be0e5c09 3857 if (path->slots[0] == i)
87b29b20 3858 push_space += data_size;
db94535d
CM
3859
3860 this_item_size = btrfs_item_size(right, item);
3861 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3862 break;
db94535d 3863
be0e5c09 3864 push_items++;
db94535d
CM
3865 push_space += this_item_size + sizeof(*item);
3866 }
3867
be0e5c09 3868 if (push_items == 0) {
925baedd
CM
3869 ret = 1;
3870 goto out;
be0e5c09 3871 }
fae7f21c 3872 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3873
be0e5c09 3874 /* push data from right to left */
5f39d397
CM
3875 copy_extent_buffer(left, right,
3876 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3877 btrfs_item_nr_offset(0),
3878 push_items * sizeof(struct btrfs_item));
3879
123abc88 3880 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3881 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3882
3883 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3884 leaf_data_end(root, left) - push_space,
3885 btrfs_leaf_data(right) +
5f39d397 3886 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3887 push_space);
5f39d397 3888 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3889 BUG_ON(old_left_nritems <= 0);
eb60ceac 3890
db94535d 3891 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3892 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3893 u32 ioff;
db94535d 3894
dd3cc16b 3895 item = btrfs_item_nr(i);
db94535d 3896
cfed81a0
CM
3897 ioff = btrfs_token_item_offset(left, item, &token);
3898 btrfs_set_token_item_offset(left, item,
3899 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3900 &token);
be0e5c09 3901 }
5f39d397 3902 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3903
3904 /* fixup right node */
31b1a2bd
JL
3905 if (push_items > right_nritems)
3906 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3907 right_nritems);
34a38218
CM
3908
3909 if (push_items < right_nritems) {
3910 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3911 leaf_data_end(root, right);
3912 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3913 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3914 btrfs_leaf_data(right) +
3915 leaf_data_end(root, right), push_space);
3916
3917 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3918 btrfs_item_nr_offset(push_items),
3919 (btrfs_header_nritems(right) - push_items) *
3920 sizeof(struct btrfs_item));
34a38218 3921 }
eef1c494
Y
3922 right_nritems -= push_items;
3923 btrfs_set_header_nritems(right, right_nritems);
123abc88 3924 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397 3925 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3926 item = btrfs_item_nr(i);
db94535d 3927
cfed81a0
CM
3928 push_space = push_space - btrfs_token_item_size(right,
3929 item, &token);
3930 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3931 }
eb60ceac 3932
5f39d397 3933 btrfs_mark_buffer_dirty(left);
34a38218
CM
3934 if (right_nritems)
3935 btrfs_mark_buffer_dirty(right);
f0486c68 3936 else
01d58472 3937 clean_tree_block(trans, root->fs_info, right);
098f59c2 3938
5f39d397 3939 btrfs_item_key(right, &disk_key, 0);
b7a0365e 3940 fixup_low_keys(root->fs_info, path, &disk_key, 1);
be0e5c09
CM
3941
3942 /* then fixup the leaf pointer in the path */
3943 if (path->slots[0] < push_items) {
3944 path->slots[0] += old_left_nritems;
925baedd 3945 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3946 free_extent_buffer(path->nodes[0]);
3947 path->nodes[0] = left;
be0e5c09
CM
3948 path->slots[1] -= 1;
3949 } else {
925baedd 3950 btrfs_tree_unlock(left);
5f39d397 3951 free_extent_buffer(left);
be0e5c09
CM
3952 path->slots[0] -= push_items;
3953 }
eb60ceac 3954 BUG_ON(path->slots[0] < 0);
aa5d6bed 3955 return ret;
925baedd
CM
3956out:
3957 btrfs_tree_unlock(left);
3958 free_extent_buffer(left);
3959 return ret;
be0e5c09
CM
3960}
3961
44871b1b
CM
3962/*
3963 * push some data in the path leaf to the left, trying to free up at
3964 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3965 *
3966 * max_slot can put a limit on how far into the leaf we'll push items. The
3967 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3968 * items
44871b1b
CM
3969 */
3970static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3971 *root, struct btrfs_path *path, int min_data_size,
3972 int data_size, int empty, u32 max_slot)
44871b1b
CM
3973{
3974 struct extent_buffer *right = path->nodes[0];
3975 struct extent_buffer *left;
3976 int slot;
3977 int free_space;
3978 u32 right_nritems;
3979 int ret = 0;
3980
3981 slot = path->slots[1];
3982 if (slot == 0)
3983 return 1;
3984 if (!path->nodes[1])
3985 return 1;
3986
3987 right_nritems = btrfs_header_nritems(right);
3988 if (right_nritems == 0)
3989 return 1;
3990
3991 btrfs_assert_tree_locked(path->nodes[1]);
3992
3993 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3994 if (left == NULL)
3995 return 1;
3996
44871b1b
CM
3997 btrfs_tree_lock(left);
3998 btrfs_set_lock_blocking(left);
3999
4000 free_space = btrfs_leaf_free_space(root, left);
4001 if (free_space < data_size) {
4002 ret = 1;
4003 goto out;
4004 }
4005
4006 /* cow and double check */
4007 ret = btrfs_cow_block(trans, root, left,
4008 path->nodes[1], slot - 1, &left);
4009 if (ret) {
4010 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4011 if (ret == -ENOSPC)
4012 ret = 1;
44871b1b
CM
4013 goto out;
4014 }
4015
4016 free_space = btrfs_leaf_free_space(root, left);
4017 if (free_space < data_size) {
4018 ret = 1;
4019 goto out;
4020 }
4021
99d8f83c
CM
4022 return __push_leaf_left(trans, root, path, min_data_size,
4023 empty, left, free_space, right_nritems,
4024 max_slot);
44871b1b
CM
4025out:
4026 btrfs_tree_unlock(left);
4027 free_extent_buffer(left);
4028 return ret;
4029}
4030
4031/*
4032 * split the path's leaf in two, making sure there is at least data_size
4033 * available for the resulting leaf level of the path.
44871b1b 4034 */
143bede5
JM
4035static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4036 struct btrfs_root *root,
4037 struct btrfs_path *path,
4038 struct extent_buffer *l,
4039 struct extent_buffer *right,
4040 int slot, int mid, int nritems)
44871b1b
CM
4041{
4042 int data_copy_size;
4043 int rt_data_off;
4044 int i;
44871b1b 4045 struct btrfs_disk_key disk_key;
cfed81a0
CM
4046 struct btrfs_map_token token;
4047
4048 btrfs_init_map_token(&token);
44871b1b
CM
4049
4050 nritems = nritems - mid;
4051 btrfs_set_header_nritems(right, nritems);
4052 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4053
4054 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4055 btrfs_item_nr_offset(mid),
4056 nritems * sizeof(struct btrfs_item));
4057
4058 copy_extent_buffer(right, l,
4059 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4060 data_copy_size, btrfs_leaf_data(l) +
4061 leaf_data_end(root, l), data_copy_size);
4062
4063 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4064 btrfs_item_end_nr(l, mid);
4065
4066 for (i = 0; i < nritems; i++) {
dd3cc16b 4067 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4068 u32 ioff;
4069
cfed81a0
CM
4070 ioff = btrfs_token_item_offset(right, item, &token);
4071 btrfs_set_token_item_offset(right, item,
4072 ioff + rt_data_off, &token);
44871b1b
CM
4073 }
4074
44871b1b 4075 btrfs_set_header_nritems(l, mid);
44871b1b 4076 btrfs_item_key(right, &disk_key, 0);
143bede5 4077 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4078 path->slots[1] + 1, 1);
44871b1b
CM
4079
4080 btrfs_mark_buffer_dirty(right);
4081 btrfs_mark_buffer_dirty(l);
4082 BUG_ON(path->slots[0] != slot);
4083
44871b1b
CM
4084 if (mid <= slot) {
4085 btrfs_tree_unlock(path->nodes[0]);
4086 free_extent_buffer(path->nodes[0]);
4087 path->nodes[0] = right;
4088 path->slots[0] -= mid;
4089 path->slots[1] += 1;
4090 } else {
4091 btrfs_tree_unlock(right);
4092 free_extent_buffer(right);
4093 }
4094
4095 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4096}
4097
99d8f83c
CM
4098/*
4099 * double splits happen when we need to insert a big item in the middle
4100 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4101 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4102 * A B C
4103 *
4104 * We avoid this by trying to push the items on either side of our target
4105 * into the adjacent leaves. If all goes well we can avoid the double split
4106 * completely.
4107 */
4108static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4109 struct btrfs_root *root,
4110 struct btrfs_path *path,
4111 int data_size)
4112{
4113 int ret;
4114 int progress = 0;
4115 int slot;
4116 u32 nritems;
5a4267ca 4117 int space_needed = data_size;
99d8f83c
CM
4118
4119 slot = path->slots[0];
5a4267ca
FDBM
4120 if (slot < btrfs_header_nritems(path->nodes[0]))
4121 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
99d8f83c
CM
4122
4123 /*
4124 * try to push all the items after our slot into the
4125 * right leaf
4126 */
5a4267ca 4127 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4128 if (ret < 0)
4129 return ret;
4130
4131 if (ret == 0)
4132 progress++;
4133
4134 nritems = btrfs_header_nritems(path->nodes[0]);
4135 /*
4136 * our goal is to get our slot at the start or end of a leaf. If
4137 * we've done so we're done
4138 */
4139 if (path->slots[0] == 0 || path->slots[0] == nritems)
4140 return 0;
4141
4142 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4143 return 0;
4144
4145 /* try to push all the items before our slot into the next leaf */
4146 slot = path->slots[0];
5a4267ca 4147 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4148 if (ret < 0)
4149 return ret;
4150
4151 if (ret == 0)
4152 progress++;
4153
4154 if (progress)
4155 return 0;
4156 return 1;
4157}
4158
74123bd7
CM
4159/*
4160 * split the path's leaf in two, making sure there is at least data_size
4161 * available for the resulting leaf level of the path.
aa5d6bed
CM
4162 *
4163 * returns 0 if all went well and < 0 on failure.
74123bd7 4164 */
e02119d5
CM
4165static noinline int split_leaf(struct btrfs_trans_handle *trans,
4166 struct btrfs_root *root,
4167 struct btrfs_key *ins_key,
4168 struct btrfs_path *path, int data_size,
4169 int extend)
be0e5c09 4170{
5d4f98a2 4171 struct btrfs_disk_key disk_key;
5f39d397 4172 struct extent_buffer *l;
7518a238 4173 u32 nritems;
eb60ceac
CM
4174 int mid;
4175 int slot;
5f39d397 4176 struct extent_buffer *right;
b7a0365e 4177 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4178 int ret = 0;
aa5d6bed 4179 int wret;
5d4f98a2 4180 int split;
cc0c5538 4181 int num_doubles = 0;
99d8f83c 4182 int tried_avoid_double = 0;
aa5d6bed 4183
a5719521
YZ
4184 l = path->nodes[0];
4185 slot = path->slots[0];
4186 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4187 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4188 return -EOVERFLOW;
4189
40689478 4190 /* first try to make some room by pushing left and right */
33157e05 4191 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4192 int space_needed = data_size;
4193
4194 if (slot < btrfs_header_nritems(l))
4195 space_needed -= btrfs_leaf_free_space(root, l);
4196
4197 wret = push_leaf_right(trans, root, path, space_needed,
4198 space_needed, 0, 0);
d397712b 4199 if (wret < 0)
eaee50e8 4200 return wret;
3685f791 4201 if (wret) {
5a4267ca
FDBM
4202 wret = push_leaf_left(trans, root, path, space_needed,
4203 space_needed, 0, (u32)-1);
3685f791
CM
4204 if (wret < 0)
4205 return wret;
4206 }
4207 l = path->nodes[0];
aa5d6bed 4208
3685f791 4209 /* did the pushes work? */
87b29b20 4210 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 4211 return 0;
3326d1b0 4212 }
aa5d6bed 4213
5c680ed6 4214 if (!path->nodes[1]) {
fdd99c72 4215 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4216 if (ret)
4217 return ret;
4218 }
cc0c5538 4219again:
5d4f98a2 4220 split = 1;
cc0c5538 4221 l = path->nodes[0];
eb60ceac 4222 slot = path->slots[0];
5f39d397 4223 nritems = btrfs_header_nritems(l);
d397712b 4224 mid = (nritems + 1) / 2;
54aa1f4d 4225
5d4f98a2
YZ
4226 if (mid <= slot) {
4227 if (nritems == 1 ||
4228 leaf_space_used(l, mid, nritems - mid) + data_size >
4229 BTRFS_LEAF_DATA_SIZE(root)) {
4230 if (slot >= nritems) {
4231 split = 0;
4232 } else {
4233 mid = slot;
4234 if (mid != nritems &&
4235 leaf_space_used(l, mid, nritems - mid) +
4236 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4237 if (data_size && !tried_avoid_double)
4238 goto push_for_double;
5d4f98a2
YZ
4239 split = 2;
4240 }
4241 }
4242 }
4243 } else {
4244 if (leaf_space_used(l, 0, mid) + data_size >
4245 BTRFS_LEAF_DATA_SIZE(root)) {
4246 if (!extend && data_size && slot == 0) {
4247 split = 0;
4248 } else if ((extend || !data_size) && slot == 0) {
4249 mid = 1;
4250 } else {
4251 mid = slot;
4252 if (mid != nritems &&
4253 leaf_space_used(l, mid, nritems - mid) +
4254 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4255 if (data_size && !tried_avoid_double)
4256 goto push_for_double;
67871254 4257 split = 2;
5d4f98a2
YZ
4258 }
4259 }
4260 }
4261 }
4262
4263 if (split == 0)
4264 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4265 else
4266 btrfs_item_key(l, &disk_key, mid);
4267
4d75f8a9
DS
4268 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4269 &disk_key, 0, l->start, 0);
f0486c68 4270 if (IS_ERR(right))
5f39d397 4271 return PTR_ERR(right);
f0486c68 4272
707e8a07 4273 root_add_used(root, root->nodesize);
5f39d397
CM
4274
4275 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4276 btrfs_set_header_bytenr(right, right->start);
5f39d397 4277 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4278 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4279 btrfs_set_header_owner(right, root->root_key.objectid);
4280 btrfs_set_header_level(right, 0);
b7a0365e 4281 write_extent_buffer(right, fs_info->fsid,
0a4e5586 4282 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e17cade2 4283
b7a0365e 4284 write_extent_buffer(right, fs_info->chunk_tree_uuid,
b308bc2f 4285 btrfs_header_chunk_tree_uuid(right),
e17cade2 4286 BTRFS_UUID_SIZE);
44871b1b 4287
5d4f98a2
YZ
4288 if (split == 0) {
4289 if (mid <= slot) {
4290 btrfs_set_header_nritems(right, 0);
143bede5 4291 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4292 path->slots[1] + 1, 1);
5d4f98a2
YZ
4293 btrfs_tree_unlock(path->nodes[0]);
4294 free_extent_buffer(path->nodes[0]);
4295 path->nodes[0] = right;
4296 path->slots[0] = 0;
4297 path->slots[1] += 1;
4298 } else {
4299 btrfs_set_header_nritems(right, 0);
143bede5 4300 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4301 path->slots[1], 1);
5d4f98a2
YZ
4302 btrfs_tree_unlock(path->nodes[0]);
4303 free_extent_buffer(path->nodes[0]);
4304 path->nodes[0] = right;
4305 path->slots[0] = 0;
143bede5 4306 if (path->slots[1] == 0)
b7a0365e 4307 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4308 }
5d4f98a2
YZ
4309 btrfs_mark_buffer_dirty(right);
4310 return ret;
d4dbff95 4311 }
74123bd7 4312
143bede5 4313 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4314
5d4f98a2 4315 if (split == 2) {
cc0c5538
CM
4316 BUG_ON(num_doubles != 0);
4317 num_doubles++;
4318 goto again;
a429e513 4319 }
44871b1b 4320
143bede5 4321 return 0;
99d8f83c
CM
4322
4323push_for_double:
4324 push_for_double_split(trans, root, path, data_size);
4325 tried_avoid_double = 1;
4326 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4327 return 0;
4328 goto again;
be0e5c09
CM
4329}
4330
ad48fd75
YZ
4331static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4332 struct btrfs_root *root,
4333 struct btrfs_path *path, int ins_len)
459931ec 4334{
ad48fd75 4335 struct btrfs_key key;
459931ec 4336 struct extent_buffer *leaf;
ad48fd75
YZ
4337 struct btrfs_file_extent_item *fi;
4338 u64 extent_len = 0;
4339 u32 item_size;
4340 int ret;
459931ec
CM
4341
4342 leaf = path->nodes[0];
ad48fd75
YZ
4343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4344
4345 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4346 key.type != BTRFS_EXTENT_CSUM_KEY);
4347
4348 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4349 return 0;
459931ec
CM
4350
4351 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4352 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4353 fi = btrfs_item_ptr(leaf, path->slots[0],
4354 struct btrfs_file_extent_item);
4355 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4356 }
b3b4aa74 4357 btrfs_release_path(path);
459931ec 4358
459931ec 4359 path->keep_locks = 1;
ad48fd75
YZ
4360 path->search_for_split = 1;
4361 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4362 path->search_for_split = 0;
a8df6fe6
FM
4363 if (ret > 0)
4364 ret = -EAGAIN;
ad48fd75
YZ
4365 if (ret < 0)
4366 goto err;
459931ec 4367
ad48fd75
YZ
4368 ret = -EAGAIN;
4369 leaf = path->nodes[0];
a8df6fe6
FM
4370 /* if our item isn't there, return now */
4371 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4372 goto err;
4373
109f6aef
CM
4374 /* the leaf has changed, it now has room. return now */
4375 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4376 goto err;
4377
ad48fd75
YZ
4378 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4379 fi = btrfs_item_ptr(leaf, path->slots[0],
4380 struct btrfs_file_extent_item);
4381 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4382 goto err;
459931ec
CM
4383 }
4384
b9473439 4385 btrfs_set_path_blocking(path);
ad48fd75 4386 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4387 if (ret)
4388 goto err;
459931ec 4389
ad48fd75 4390 path->keep_locks = 0;
b9473439 4391 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4392 return 0;
4393err:
4394 path->keep_locks = 0;
4395 return ret;
4396}
4397
4398static noinline int split_item(struct btrfs_trans_handle *trans,
4399 struct btrfs_root *root,
4400 struct btrfs_path *path,
4401 struct btrfs_key *new_key,
4402 unsigned long split_offset)
4403{
4404 struct extent_buffer *leaf;
4405 struct btrfs_item *item;
4406 struct btrfs_item *new_item;
4407 int slot;
4408 char *buf;
4409 u32 nritems;
4410 u32 item_size;
4411 u32 orig_offset;
4412 struct btrfs_disk_key disk_key;
4413
b9473439
CM
4414 leaf = path->nodes[0];
4415 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4416
b4ce94de
CM
4417 btrfs_set_path_blocking(path);
4418
dd3cc16b 4419 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4420 orig_offset = btrfs_item_offset(leaf, item);
4421 item_size = btrfs_item_size(leaf, item);
4422
459931ec 4423 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4424 if (!buf)
4425 return -ENOMEM;
4426
459931ec
CM
4427 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4428 path->slots[0]), item_size);
459931ec 4429
ad48fd75 4430 slot = path->slots[0] + 1;
459931ec 4431 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4432 if (slot != nritems) {
4433 /* shift the items */
4434 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4435 btrfs_item_nr_offset(slot),
4436 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4437 }
4438
4439 btrfs_cpu_key_to_disk(&disk_key, new_key);
4440 btrfs_set_item_key(leaf, &disk_key, slot);
4441
dd3cc16b 4442 new_item = btrfs_item_nr(slot);
459931ec
CM
4443
4444 btrfs_set_item_offset(leaf, new_item, orig_offset);
4445 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4446
4447 btrfs_set_item_offset(leaf, item,
4448 orig_offset + item_size - split_offset);
4449 btrfs_set_item_size(leaf, item, split_offset);
4450
4451 btrfs_set_header_nritems(leaf, nritems + 1);
4452
4453 /* write the data for the start of the original item */
4454 write_extent_buffer(leaf, buf,
4455 btrfs_item_ptr_offset(leaf, path->slots[0]),
4456 split_offset);
4457
4458 /* write the data for the new item */
4459 write_extent_buffer(leaf, buf + split_offset,
4460 btrfs_item_ptr_offset(leaf, slot),
4461 item_size - split_offset);
4462 btrfs_mark_buffer_dirty(leaf);
4463
ad48fd75 4464 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4465 kfree(buf);
ad48fd75
YZ
4466 return 0;
4467}
4468
4469/*
4470 * This function splits a single item into two items,
4471 * giving 'new_key' to the new item and splitting the
4472 * old one at split_offset (from the start of the item).
4473 *
4474 * The path may be released by this operation. After
4475 * the split, the path is pointing to the old item. The
4476 * new item is going to be in the same node as the old one.
4477 *
4478 * Note, the item being split must be smaller enough to live alone on
4479 * a tree block with room for one extra struct btrfs_item
4480 *
4481 * This allows us to split the item in place, keeping a lock on the
4482 * leaf the entire time.
4483 */
4484int btrfs_split_item(struct btrfs_trans_handle *trans,
4485 struct btrfs_root *root,
4486 struct btrfs_path *path,
4487 struct btrfs_key *new_key,
4488 unsigned long split_offset)
4489{
4490 int ret;
4491 ret = setup_leaf_for_split(trans, root, path,
4492 sizeof(struct btrfs_item));
4493 if (ret)
4494 return ret;
4495
4496 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4497 return ret;
4498}
4499
ad48fd75
YZ
4500/*
4501 * This function duplicate a item, giving 'new_key' to the new item.
4502 * It guarantees both items live in the same tree leaf and the new item
4503 * is contiguous with the original item.
4504 *
4505 * This allows us to split file extent in place, keeping a lock on the
4506 * leaf the entire time.
4507 */
4508int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4509 struct btrfs_root *root,
4510 struct btrfs_path *path,
4511 struct btrfs_key *new_key)
4512{
4513 struct extent_buffer *leaf;
4514 int ret;
4515 u32 item_size;
4516
4517 leaf = path->nodes[0];
4518 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4519 ret = setup_leaf_for_split(trans, root, path,
4520 item_size + sizeof(struct btrfs_item));
4521 if (ret)
4522 return ret;
4523
4524 path->slots[0]++;
afe5fea7 4525 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4526 item_size, item_size +
4527 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4528 leaf = path->nodes[0];
4529 memcpy_extent_buffer(leaf,
4530 btrfs_item_ptr_offset(leaf, path->slots[0]),
4531 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4532 item_size);
4533 return 0;
4534}
4535
d352ac68
CM
4536/*
4537 * make the item pointed to by the path smaller. new_size indicates
4538 * how small to make it, and from_end tells us if we just chop bytes
4539 * off the end of the item or if we shift the item to chop bytes off
4540 * the front.
4541 */
afe5fea7 4542void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4543 u32 new_size, int from_end)
b18c6685 4544{
b18c6685 4545 int slot;
5f39d397
CM
4546 struct extent_buffer *leaf;
4547 struct btrfs_item *item;
b18c6685
CM
4548 u32 nritems;
4549 unsigned int data_end;
4550 unsigned int old_data_start;
4551 unsigned int old_size;
4552 unsigned int size_diff;
4553 int i;
cfed81a0
CM
4554 struct btrfs_map_token token;
4555
4556 btrfs_init_map_token(&token);
b18c6685 4557
5f39d397 4558 leaf = path->nodes[0];
179e29e4
CM
4559 slot = path->slots[0];
4560
4561 old_size = btrfs_item_size_nr(leaf, slot);
4562 if (old_size == new_size)
143bede5 4563 return;
b18c6685 4564
5f39d397 4565 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4566 data_end = leaf_data_end(root, leaf);
4567
5f39d397 4568 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4569
b18c6685
CM
4570 size_diff = old_size - new_size;
4571
4572 BUG_ON(slot < 0);
4573 BUG_ON(slot >= nritems);
4574
4575 /*
4576 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4577 */
4578 /* first correct the data pointers */
4579 for (i = slot; i < nritems; i++) {
5f39d397 4580 u32 ioff;
dd3cc16b 4581 item = btrfs_item_nr(i);
db94535d 4582
cfed81a0
CM
4583 ioff = btrfs_token_item_offset(leaf, item, &token);
4584 btrfs_set_token_item_offset(leaf, item,
4585 ioff + size_diff, &token);
b18c6685 4586 }
db94535d 4587
b18c6685 4588 /* shift the data */
179e29e4
CM
4589 if (from_end) {
4590 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4591 data_end + size_diff, btrfs_leaf_data(leaf) +
4592 data_end, old_data_start + new_size - data_end);
4593 } else {
4594 struct btrfs_disk_key disk_key;
4595 u64 offset;
4596
4597 btrfs_item_key(leaf, &disk_key, slot);
4598
4599 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4600 unsigned long ptr;
4601 struct btrfs_file_extent_item *fi;
4602
4603 fi = btrfs_item_ptr(leaf, slot,
4604 struct btrfs_file_extent_item);
4605 fi = (struct btrfs_file_extent_item *)(
4606 (unsigned long)fi - size_diff);
4607
4608 if (btrfs_file_extent_type(leaf, fi) ==
4609 BTRFS_FILE_EXTENT_INLINE) {
4610 ptr = btrfs_item_ptr_offset(leaf, slot);
4611 memmove_extent_buffer(leaf, ptr,
d397712b 4612 (unsigned long)fi,
7ec20afb 4613 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4614 }
4615 }
4616
4617 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4618 data_end + size_diff, btrfs_leaf_data(leaf) +
4619 data_end, old_data_start - data_end);
4620
4621 offset = btrfs_disk_key_offset(&disk_key);
4622 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4623 btrfs_set_item_key(leaf, &disk_key, slot);
4624 if (slot == 0)
b7a0365e 4625 fixup_low_keys(root->fs_info, path, &disk_key, 1);
179e29e4 4626 }
5f39d397 4627
dd3cc16b 4628 item = btrfs_item_nr(slot);
5f39d397
CM
4629 btrfs_set_item_size(leaf, item, new_size);
4630 btrfs_mark_buffer_dirty(leaf);
b18c6685 4631
5f39d397
CM
4632 if (btrfs_leaf_free_space(root, leaf) < 0) {
4633 btrfs_print_leaf(root, leaf);
b18c6685 4634 BUG();
5f39d397 4635 }
b18c6685
CM
4636}
4637
d352ac68 4638/*
8f69dbd2 4639 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4640 */
4b90c680 4641void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4642 u32 data_size)
6567e837 4643{
6567e837 4644 int slot;
5f39d397
CM
4645 struct extent_buffer *leaf;
4646 struct btrfs_item *item;
6567e837
CM
4647 u32 nritems;
4648 unsigned int data_end;
4649 unsigned int old_data;
4650 unsigned int old_size;
4651 int i;
cfed81a0
CM
4652 struct btrfs_map_token token;
4653
4654 btrfs_init_map_token(&token);
6567e837 4655
5f39d397 4656 leaf = path->nodes[0];
6567e837 4657
5f39d397 4658 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4659 data_end = leaf_data_end(root, leaf);
4660
5f39d397
CM
4661 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4662 btrfs_print_leaf(root, leaf);
6567e837 4663 BUG();
5f39d397 4664 }
6567e837 4665 slot = path->slots[0];
5f39d397 4666 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4667
4668 BUG_ON(slot < 0);
3326d1b0
CM
4669 if (slot >= nritems) {
4670 btrfs_print_leaf(root, leaf);
efe120a0 4671 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
d397712b 4672 slot, nritems);
3326d1b0
CM
4673 BUG_ON(1);
4674 }
6567e837
CM
4675
4676 /*
4677 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4678 */
4679 /* first correct the data pointers */
4680 for (i = slot; i < nritems; i++) {
5f39d397 4681 u32 ioff;
dd3cc16b 4682 item = btrfs_item_nr(i);
db94535d 4683
cfed81a0
CM
4684 ioff = btrfs_token_item_offset(leaf, item, &token);
4685 btrfs_set_token_item_offset(leaf, item,
4686 ioff - data_size, &token);
6567e837 4687 }
5f39d397 4688
6567e837 4689 /* shift the data */
5f39d397 4690 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4691 data_end - data_size, btrfs_leaf_data(leaf) +
4692 data_end, old_data - data_end);
5f39d397 4693
6567e837 4694 data_end = old_data;
5f39d397 4695 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4696 item = btrfs_item_nr(slot);
5f39d397
CM
4697 btrfs_set_item_size(leaf, item, old_size + data_size);
4698 btrfs_mark_buffer_dirty(leaf);
6567e837 4699
5f39d397
CM
4700 if (btrfs_leaf_free_space(root, leaf) < 0) {
4701 btrfs_print_leaf(root, leaf);
6567e837 4702 BUG();
5f39d397 4703 }
6567e837
CM
4704}
4705
74123bd7 4706/*
44871b1b
CM
4707 * this is a helper for btrfs_insert_empty_items, the main goal here is
4708 * to save stack depth by doing the bulk of the work in a function
4709 * that doesn't call btrfs_search_slot
74123bd7 4710 */
afe5fea7 4711void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
143bede5
JM
4712 struct btrfs_key *cpu_key, u32 *data_size,
4713 u32 total_data, u32 total_size, int nr)
be0e5c09 4714{
5f39d397 4715 struct btrfs_item *item;
9c58309d 4716 int i;
7518a238 4717 u32 nritems;
be0e5c09 4718 unsigned int data_end;
e2fa7227 4719 struct btrfs_disk_key disk_key;
44871b1b
CM
4720 struct extent_buffer *leaf;
4721 int slot;
cfed81a0
CM
4722 struct btrfs_map_token token;
4723
24cdc847
FM
4724 if (path->slots[0] == 0) {
4725 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
b7a0365e 4726 fixup_low_keys(root->fs_info, path, &disk_key, 1);
24cdc847
FM
4727 }
4728 btrfs_unlock_up_safe(path, 1);
4729
cfed81a0 4730 btrfs_init_map_token(&token);
e2fa7227 4731
5f39d397 4732 leaf = path->nodes[0];
44871b1b 4733 slot = path->slots[0];
74123bd7 4734
5f39d397 4735 nritems = btrfs_header_nritems(leaf);
123abc88 4736 data_end = leaf_data_end(root, leaf);
eb60ceac 4737
f25956cc 4738 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4739 btrfs_print_leaf(root, leaf);
efe120a0 4740 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
9c58309d 4741 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4742 BUG();
d4dbff95 4743 }
5f39d397 4744
be0e5c09 4745 if (slot != nritems) {
5f39d397 4746 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4747
5f39d397
CM
4748 if (old_data < data_end) {
4749 btrfs_print_leaf(root, leaf);
efe120a0 4750 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
5f39d397
CM
4751 slot, old_data, data_end);
4752 BUG_ON(1);
4753 }
be0e5c09
CM
4754 /*
4755 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4756 */
4757 /* first correct the data pointers */
0783fcfc 4758 for (i = slot; i < nritems; i++) {
5f39d397 4759 u32 ioff;
db94535d 4760
dd3cc16b 4761 item = btrfs_item_nr( i);
cfed81a0
CM
4762 ioff = btrfs_token_item_offset(leaf, item, &token);
4763 btrfs_set_token_item_offset(leaf, item,
4764 ioff - total_data, &token);
0783fcfc 4765 }
be0e5c09 4766 /* shift the items */
9c58309d 4767 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4768 btrfs_item_nr_offset(slot),
d6025579 4769 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4770
4771 /* shift the data */
5f39d397 4772 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4773 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4774 data_end, old_data - data_end);
be0e5c09
CM
4775 data_end = old_data;
4776 }
5f39d397 4777
62e2749e 4778 /* setup the item for the new data */
9c58309d
CM
4779 for (i = 0; i < nr; i++) {
4780 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4781 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4782 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4783 btrfs_set_token_item_offset(leaf, item,
4784 data_end - data_size[i], &token);
9c58309d 4785 data_end -= data_size[i];
cfed81a0 4786 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4787 }
44871b1b 4788
9c58309d 4789 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4790 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4791
5f39d397
CM
4792 if (btrfs_leaf_free_space(root, leaf) < 0) {
4793 btrfs_print_leaf(root, leaf);
be0e5c09 4794 BUG();
5f39d397 4795 }
44871b1b
CM
4796}
4797
4798/*
4799 * Given a key and some data, insert items into the tree.
4800 * This does all the path init required, making room in the tree if needed.
4801 */
4802int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4803 struct btrfs_root *root,
4804 struct btrfs_path *path,
4805 struct btrfs_key *cpu_key, u32 *data_size,
4806 int nr)
4807{
44871b1b
CM
4808 int ret = 0;
4809 int slot;
4810 int i;
4811 u32 total_size = 0;
4812 u32 total_data = 0;
4813
4814 for (i = 0; i < nr; i++)
4815 total_data += data_size[i];
4816
4817 total_size = total_data + (nr * sizeof(struct btrfs_item));
4818 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4819 if (ret == 0)
4820 return -EEXIST;
4821 if (ret < 0)
143bede5 4822 return ret;
44871b1b 4823
44871b1b
CM
4824 slot = path->slots[0];
4825 BUG_ON(slot < 0);
4826
afe5fea7 4827 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4828 total_data, total_size, nr);
143bede5 4829 return 0;
62e2749e
CM
4830}
4831
4832/*
4833 * Given a key and some data, insert an item into the tree.
4834 * This does all the path init required, making room in the tree if needed.
4835 */
e089f05c
CM
4836int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4837 *root, struct btrfs_key *cpu_key, void *data, u32
4838 data_size)
62e2749e
CM
4839{
4840 int ret = 0;
2c90e5d6 4841 struct btrfs_path *path;
5f39d397
CM
4842 struct extent_buffer *leaf;
4843 unsigned long ptr;
62e2749e 4844
2c90e5d6 4845 path = btrfs_alloc_path();
db5b493a
TI
4846 if (!path)
4847 return -ENOMEM;
2c90e5d6 4848 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4849 if (!ret) {
5f39d397
CM
4850 leaf = path->nodes[0];
4851 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4852 write_extent_buffer(leaf, data, ptr, data_size);
4853 btrfs_mark_buffer_dirty(leaf);
62e2749e 4854 }
2c90e5d6 4855 btrfs_free_path(path);
aa5d6bed 4856 return ret;
be0e5c09
CM
4857}
4858
74123bd7 4859/*
5de08d7d 4860 * delete the pointer from a given node.
74123bd7 4861 *
d352ac68
CM
4862 * the tree should have been previously balanced so the deletion does not
4863 * empty a node.
74123bd7 4864 */
afe5fea7
TI
4865static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4866 int level, int slot)
be0e5c09 4867{
5f39d397 4868 struct extent_buffer *parent = path->nodes[level];
7518a238 4869 u32 nritems;
f3ea38da 4870 int ret;
be0e5c09 4871
5f39d397 4872 nritems = btrfs_header_nritems(parent);
d397712b 4873 if (slot != nritems - 1) {
0e411ece 4874 if (level)
f3ea38da
JS
4875 tree_mod_log_eb_move(root->fs_info, parent, slot,
4876 slot + 1, nritems - slot - 1);
5f39d397
CM
4877 memmove_extent_buffer(parent,
4878 btrfs_node_key_ptr_offset(slot),
4879 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4880 sizeof(struct btrfs_key_ptr) *
4881 (nritems - slot - 1));
57ba86c0
CM
4882 } else if (level) {
4883 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
c8cc6341 4884 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4885 BUG_ON(ret < 0);
bb803951 4886 }
f3ea38da 4887
7518a238 4888 nritems--;
5f39d397 4889 btrfs_set_header_nritems(parent, nritems);
7518a238 4890 if (nritems == 0 && parent == root->node) {
5f39d397 4891 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4892 /* just turn the root into a leaf and break */
5f39d397 4893 btrfs_set_header_level(root->node, 0);
bb803951 4894 } else if (slot == 0) {
5f39d397
CM
4895 struct btrfs_disk_key disk_key;
4896
4897 btrfs_node_key(parent, &disk_key, 0);
b7a0365e 4898 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
be0e5c09 4899 }
d6025579 4900 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4901}
4902
323ac95b
CM
4903/*
4904 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4905 * path->nodes[1].
323ac95b
CM
4906 *
4907 * This deletes the pointer in path->nodes[1] and frees the leaf
4908 * block extent. zero is returned if it all worked out, < 0 otherwise.
4909 *
4910 * The path must have already been setup for deleting the leaf, including
4911 * all the proper balancing. path->nodes[1] must be locked.
4912 */
143bede5
JM
4913static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4914 struct btrfs_root *root,
4915 struct btrfs_path *path,
4916 struct extent_buffer *leaf)
323ac95b 4917{
5d4f98a2 4918 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4919 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4920
4d081c41
CM
4921 /*
4922 * btrfs_free_extent is expensive, we want to make sure we
4923 * aren't holding any locks when we call it
4924 */
4925 btrfs_unlock_up_safe(path, 0);
4926
f0486c68
YZ
4927 root_sub_used(root, leaf->len);
4928
3083ee2e 4929 extent_buffer_get(leaf);
5581a51a 4930 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4931 free_extent_buffer_stale(leaf);
323ac95b 4932}
74123bd7
CM
4933/*
4934 * delete the item at the leaf level in path. If that empties
4935 * the leaf, remove it from the tree
4936 */
85e21bac
CM
4937int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4938 struct btrfs_path *path, int slot, int nr)
be0e5c09 4939{
5f39d397
CM
4940 struct extent_buffer *leaf;
4941 struct btrfs_item *item;
ce0eac2a
AM
4942 u32 last_off;
4943 u32 dsize = 0;
aa5d6bed
CM
4944 int ret = 0;
4945 int wret;
85e21bac 4946 int i;
7518a238 4947 u32 nritems;
cfed81a0
CM
4948 struct btrfs_map_token token;
4949
4950 btrfs_init_map_token(&token);
be0e5c09 4951
5f39d397 4952 leaf = path->nodes[0];
85e21bac
CM
4953 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4954
4955 for (i = 0; i < nr; i++)
4956 dsize += btrfs_item_size_nr(leaf, slot + i);
4957
5f39d397 4958 nritems = btrfs_header_nritems(leaf);
be0e5c09 4959
85e21bac 4960 if (slot + nr != nritems) {
123abc88 4961 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4962
4963 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4964 data_end + dsize,
4965 btrfs_leaf_data(leaf) + data_end,
85e21bac 4966 last_off - data_end);
5f39d397 4967
85e21bac 4968 for (i = slot + nr; i < nritems; i++) {
5f39d397 4969 u32 ioff;
db94535d 4970
dd3cc16b 4971 item = btrfs_item_nr(i);
cfed81a0
CM
4972 ioff = btrfs_token_item_offset(leaf, item, &token);
4973 btrfs_set_token_item_offset(leaf, item,
4974 ioff + dsize, &token);
0783fcfc 4975 }
db94535d 4976
5f39d397 4977 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4978 btrfs_item_nr_offset(slot + nr),
d6025579 4979 sizeof(struct btrfs_item) *
85e21bac 4980 (nritems - slot - nr));
be0e5c09 4981 }
85e21bac
CM
4982 btrfs_set_header_nritems(leaf, nritems - nr);
4983 nritems -= nr;
5f39d397 4984
74123bd7 4985 /* delete the leaf if we've emptied it */
7518a238 4986 if (nritems == 0) {
5f39d397
CM
4987 if (leaf == root->node) {
4988 btrfs_set_header_level(leaf, 0);
9a8dd150 4989 } else {
f0486c68 4990 btrfs_set_path_blocking(path);
01d58472 4991 clean_tree_block(trans, root->fs_info, leaf);
143bede5 4992 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4993 }
be0e5c09 4994 } else {
7518a238 4995 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4996 if (slot == 0) {
5f39d397
CM
4997 struct btrfs_disk_key disk_key;
4998
4999 btrfs_item_key(leaf, &disk_key, 0);
b7a0365e 5000 fixup_low_keys(root->fs_info, path, &disk_key, 1);
aa5d6bed 5001 }
aa5d6bed 5002
74123bd7 5003 /* delete the leaf if it is mostly empty */
d717aa1d 5004 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
5005 /* push_leaf_left fixes the path.
5006 * make sure the path still points to our leaf
5007 * for possible call to del_ptr below
5008 */
4920c9ac 5009 slot = path->slots[1];
5f39d397
CM
5010 extent_buffer_get(leaf);
5011
b9473439 5012 btrfs_set_path_blocking(path);
99d8f83c
CM
5013 wret = push_leaf_left(trans, root, path, 1, 1,
5014 1, (u32)-1);
54aa1f4d 5015 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5016 ret = wret;
5f39d397
CM
5017
5018 if (path->nodes[0] == leaf &&
5019 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5020 wret = push_leaf_right(trans, root, path, 1,
5021 1, 1, 0);
54aa1f4d 5022 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5023 ret = wret;
5024 }
5f39d397
CM
5025
5026 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5027 path->slots[1] = slot;
143bede5 5028 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5029 free_extent_buffer(leaf);
143bede5 5030 ret = 0;
5de08d7d 5031 } else {
925baedd
CM
5032 /* if we're still in the path, make sure
5033 * we're dirty. Otherwise, one of the
5034 * push_leaf functions must have already
5035 * dirtied this buffer
5036 */
5037 if (path->nodes[0] == leaf)
5038 btrfs_mark_buffer_dirty(leaf);
5f39d397 5039 free_extent_buffer(leaf);
be0e5c09 5040 }
d5719762 5041 } else {
5f39d397 5042 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5043 }
5044 }
aa5d6bed 5045 return ret;
be0e5c09
CM
5046}
5047
7bb86316 5048/*
925baedd 5049 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5050 * returns 0 if it found something or 1 if there are no lesser leaves.
5051 * returns < 0 on io errors.
d352ac68
CM
5052 *
5053 * This may release the path, and so you may lose any locks held at the
5054 * time you call it.
7bb86316 5055 */
16e7549f 5056int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5057{
925baedd
CM
5058 struct btrfs_key key;
5059 struct btrfs_disk_key found_key;
5060 int ret;
7bb86316 5061
925baedd 5062 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5063
e8b0d724 5064 if (key.offset > 0) {
925baedd 5065 key.offset--;
e8b0d724 5066 } else if (key.type > 0) {
925baedd 5067 key.type--;
e8b0d724
FDBM
5068 key.offset = (u64)-1;
5069 } else if (key.objectid > 0) {
925baedd 5070 key.objectid--;
e8b0d724
FDBM
5071 key.type = (u8)-1;
5072 key.offset = (u64)-1;
5073 } else {
925baedd 5074 return 1;
e8b0d724 5075 }
7bb86316 5076
b3b4aa74 5077 btrfs_release_path(path);
925baedd
CM
5078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5079 if (ret < 0)
5080 return ret;
5081 btrfs_item_key(path->nodes[0], &found_key, 0);
5082 ret = comp_keys(&found_key, &key);
337c6f68
FM
5083 /*
5084 * We might have had an item with the previous key in the tree right
5085 * before we released our path. And after we released our path, that
5086 * item might have been pushed to the first slot (0) of the leaf we
5087 * were holding due to a tree balance. Alternatively, an item with the
5088 * previous key can exist as the only element of a leaf (big fat item).
5089 * Therefore account for these 2 cases, so that our callers (like
5090 * btrfs_previous_item) don't miss an existing item with a key matching
5091 * the previous key we computed above.
5092 */
5093 if (ret <= 0)
925baedd
CM
5094 return 0;
5095 return 1;
7bb86316
CM
5096}
5097
3f157a2f
CM
5098/*
5099 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5100 * for nodes or leaves that are have a minimum transaction id.
5101 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5102 *
5103 * This does not cow, but it does stuff the starting key it finds back
5104 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5105 * key and get a writable path.
5106 *
5107 * This does lock as it descends, and path->keep_locks should be set
5108 * to 1 by the caller.
5109 *
5110 * This honors path->lowest_level to prevent descent past a given level
5111 * of the tree.
5112 *
d352ac68
CM
5113 * min_trans indicates the oldest transaction that you are interested
5114 * in walking through. Any nodes or leaves older than min_trans are
5115 * skipped over (without reading them).
5116 *
3f157a2f
CM
5117 * returns zero if something useful was found, < 0 on error and 1 if there
5118 * was nothing in the tree that matched the search criteria.
5119 */
5120int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5121 struct btrfs_path *path,
3f157a2f
CM
5122 u64 min_trans)
5123{
5124 struct extent_buffer *cur;
5125 struct btrfs_key found_key;
5126 int slot;
9652480b 5127 int sret;
3f157a2f
CM
5128 u32 nritems;
5129 int level;
5130 int ret = 1;
f98de9b9 5131 int keep_locks = path->keep_locks;
3f157a2f 5132
f98de9b9 5133 path->keep_locks = 1;
3f157a2f 5134again:
bd681513 5135 cur = btrfs_read_lock_root_node(root);
3f157a2f 5136 level = btrfs_header_level(cur);
e02119d5 5137 WARN_ON(path->nodes[level]);
3f157a2f 5138 path->nodes[level] = cur;
bd681513 5139 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5140
5141 if (btrfs_header_generation(cur) < min_trans) {
5142 ret = 1;
5143 goto out;
5144 }
d397712b 5145 while (1) {
3f157a2f
CM
5146 nritems = btrfs_header_nritems(cur);
5147 level = btrfs_header_level(cur);
9652480b 5148 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 5149
323ac95b
CM
5150 /* at the lowest level, we're done, setup the path and exit */
5151 if (level == path->lowest_level) {
e02119d5
CM
5152 if (slot >= nritems)
5153 goto find_next_key;
3f157a2f
CM
5154 ret = 0;
5155 path->slots[level] = slot;
5156 btrfs_item_key_to_cpu(cur, &found_key, slot);
5157 goto out;
5158 }
9652480b
Y
5159 if (sret && slot > 0)
5160 slot--;
3f157a2f 5161 /*
de78b51a
ES
5162 * check this node pointer against the min_trans parameters.
5163 * If it is too old, old, skip to the next one.
3f157a2f 5164 */
d397712b 5165 while (slot < nritems) {
3f157a2f 5166 u64 gen;
e02119d5 5167
3f157a2f
CM
5168 gen = btrfs_node_ptr_generation(cur, slot);
5169 if (gen < min_trans) {
5170 slot++;
5171 continue;
5172 }
de78b51a 5173 break;
3f157a2f 5174 }
e02119d5 5175find_next_key:
3f157a2f
CM
5176 /*
5177 * we didn't find a candidate key in this node, walk forward
5178 * and find another one
5179 */
5180 if (slot >= nritems) {
e02119d5 5181 path->slots[level] = slot;
b4ce94de 5182 btrfs_set_path_blocking(path);
e02119d5 5183 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5184 min_trans);
e02119d5 5185 if (sret == 0) {
b3b4aa74 5186 btrfs_release_path(path);
3f157a2f
CM
5187 goto again;
5188 } else {
5189 goto out;
5190 }
5191 }
5192 /* save our key for returning back */
5193 btrfs_node_key_to_cpu(cur, &found_key, slot);
5194 path->slots[level] = slot;
5195 if (level == path->lowest_level) {
5196 ret = 0;
3f157a2f
CM
5197 goto out;
5198 }
b4ce94de 5199 btrfs_set_path_blocking(path);
3f157a2f 5200 cur = read_node_slot(root, cur, slot);
79787eaa 5201 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 5202
bd681513 5203 btrfs_tree_read_lock(cur);
b4ce94de 5204
bd681513 5205 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5206 path->nodes[level - 1] = cur;
f7c79f30 5207 unlock_up(path, level, 1, 0, NULL);
bd681513 5208 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5209 }
5210out:
f98de9b9
FM
5211 path->keep_locks = keep_locks;
5212 if (ret == 0) {
5213 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5214 btrfs_set_path_blocking(path);
3f157a2f 5215 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5216 }
3f157a2f
CM
5217 return ret;
5218}
5219
7069830a
AB
5220static void tree_move_down(struct btrfs_root *root,
5221 struct btrfs_path *path,
5222 int *level, int root_level)
5223{
74dd17fb 5224 BUG_ON(*level == 0);
7069830a
AB
5225 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5226 path->slots[*level]);
5227 path->slots[*level - 1] = 0;
5228 (*level)--;
5229}
5230
5231static int tree_move_next_or_upnext(struct btrfs_root *root,
5232 struct btrfs_path *path,
5233 int *level, int root_level)
5234{
5235 int ret = 0;
5236 int nritems;
5237 nritems = btrfs_header_nritems(path->nodes[*level]);
5238
5239 path->slots[*level]++;
5240
74dd17fb 5241 while (path->slots[*level] >= nritems) {
7069830a
AB
5242 if (*level == root_level)
5243 return -1;
5244
5245 /* move upnext */
5246 path->slots[*level] = 0;
5247 free_extent_buffer(path->nodes[*level]);
5248 path->nodes[*level] = NULL;
5249 (*level)++;
5250 path->slots[*level]++;
5251
5252 nritems = btrfs_header_nritems(path->nodes[*level]);
5253 ret = 1;
5254 }
5255 return ret;
5256}
5257
5258/*
5259 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5260 * or down.
5261 */
5262static int tree_advance(struct btrfs_root *root,
5263 struct btrfs_path *path,
5264 int *level, int root_level,
5265 int allow_down,
5266 struct btrfs_key *key)
5267{
5268 int ret;
5269
5270 if (*level == 0 || !allow_down) {
5271 ret = tree_move_next_or_upnext(root, path, level, root_level);
5272 } else {
5273 tree_move_down(root, path, level, root_level);
5274 ret = 0;
5275 }
5276 if (ret >= 0) {
5277 if (*level == 0)
5278 btrfs_item_key_to_cpu(path->nodes[*level], key,
5279 path->slots[*level]);
5280 else
5281 btrfs_node_key_to_cpu(path->nodes[*level], key,
5282 path->slots[*level]);
5283 }
5284 return ret;
5285}
5286
5287static int tree_compare_item(struct btrfs_root *left_root,
5288 struct btrfs_path *left_path,
5289 struct btrfs_path *right_path,
5290 char *tmp_buf)
5291{
5292 int cmp;
5293 int len1, len2;
5294 unsigned long off1, off2;
5295
5296 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5297 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5298 if (len1 != len2)
5299 return 1;
5300
5301 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5302 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5303 right_path->slots[0]);
5304
5305 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5306
5307 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5308 if (cmp)
5309 return 1;
5310 return 0;
5311}
5312
5313#define ADVANCE 1
5314#define ADVANCE_ONLY_NEXT -1
5315
5316/*
5317 * This function compares two trees and calls the provided callback for
5318 * every changed/new/deleted item it finds.
5319 * If shared tree blocks are encountered, whole subtrees are skipped, making
5320 * the compare pretty fast on snapshotted subvolumes.
5321 *
5322 * This currently works on commit roots only. As commit roots are read only,
5323 * we don't do any locking. The commit roots are protected with transactions.
5324 * Transactions are ended and rejoined when a commit is tried in between.
5325 *
5326 * This function checks for modifications done to the trees while comparing.
5327 * If it detects a change, it aborts immediately.
5328 */
5329int btrfs_compare_trees(struct btrfs_root *left_root,
5330 struct btrfs_root *right_root,
5331 btrfs_changed_cb_t changed_cb, void *ctx)
5332{
5333 int ret;
5334 int cmp;
7069830a
AB
5335 struct btrfs_path *left_path = NULL;
5336 struct btrfs_path *right_path = NULL;
5337 struct btrfs_key left_key;
5338 struct btrfs_key right_key;
5339 char *tmp_buf = NULL;
5340 int left_root_level;
5341 int right_root_level;
5342 int left_level;
5343 int right_level;
5344 int left_end_reached;
5345 int right_end_reached;
5346 int advance_left;
5347 int advance_right;
5348 u64 left_blockptr;
5349 u64 right_blockptr;
6baa4293
FM
5350 u64 left_gen;
5351 u64 right_gen;
7069830a
AB
5352
5353 left_path = btrfs_alloc_path();
5354 if (!left_path) {
5355 ret = -ENOMEM;
5356 goto out;
5357 }
5358 right_path = btrfs_alloc_path();
5359 if (!right_path) {
5360 ret = -ENOMEM;
5361 goto out;
5362 }
5363
e780b0d1 5364 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL);
7069830a
AB
5365 if (!tmp_buf) {
5366 ret = -ENOMEM;
5367 goto out;
5368 }
5369
5370 left_path->search_commit_root = 1;
5371 left_path->skip_locking = 1;
5372 right_path->search_commit_root = 1;
5373 right_path->skip_locking = 1;
5374
7069830a
AB
5375 /*
5376 * Strategy: Go to the first items of both trees. Then do
5377 *
5378 * If both trees are at level 0
5379 * Compare keys of current items
5380 * If left < right treat left item as new, advance left tree
5381 * and repeat
5382 * If left > right treat right item as deleted, advance right tree
5383 * and repeat
5384 * If left == right do deep compare of items, treat as changed if
5385 * needed, advance both trees and repeat
5386 * If both trees are at the same level but not at level 0
5387 * Compare keys of current nodes/leafs
5388 * If left < right advance left tree and repeat
5389 * If left > right advance right tree and repeat
5390 * If left == right compare blockptrs of the next nodes/leafs
5391 * If they match advance both trees but stay at the same level
5392 * and repeat
5393 * If they don't match advance both trees while allowing to go
5394 * deeper and repeat
5395 * If tree levels are different
5396 * Advance the tree that needs it and repeat
5397 *
5398 * Advancing a tree means:
5399 * If we are at level 0, try to go to the next slot. If that's not
5400 * possible, go one level up and repeat. Stop when we found a level
5401 * where we could go to the next slot. We may at this point be on a
5402 * node or a leaf.
5403 *
5404 * If we are not at level 0 and not on shared tree blocks, go one
5405 * level deeper.
5406 *
5407 * If we are not at level 0 and on shared tree blocks, go one slot to
5408 * the right if possible or go up and right.
5409 */
5410
3f8a18cc 5411 down_read(&left_root->fs_info->commit_root_sem);
7069830a
AB
5412 left_level = btrfs_header_level(left_root->commit_root);
5413 left_root_level = left_level;
5414 left_path->nodes[left_level] = left_root->commit_root;
5415 extent_buffer_get(left_path->nodes[left_level]);
5416
5417 right_level = btrfs_header_level(right_root->commit_root);
5418 right_root_level = right_level;
5419 right_path->nodes[right_level] = right_root->commit_root;
5420 extent_buffer_get(right_path->nodes[right_level]);
3f8a18cc 5421 up_read(&left_root->fs_info->commit_root_sem);
7069830a
AB
5422
5423 if (left_level == 0)
5424 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5425 &left_key, left_path->slots[left_level]);
5426 else
5427 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5428 &left_key, left_path->slots[left_level]);
5429 if (right_level == 0)
5430 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5431 &right_key, right_path->slots[right_level]);
5432 else
5433 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5434 &right_key, right_path->slots[right_level]);
5435
5436 left_end_reached = right_end_reached = 0;
5437 advance_left = advance_right = 0;
5438
5439 while (1) {
7069830a
AB
5440 if (advance_left && !left_end_reached) {
5441 ret = tree_advance(left_root, left_path, &left_level,
5442 left_root_level,
5443 advance_left != ADVANCE_ONLY_NEXT,
5444 &left_key);
5445 if (ret < 0)
5446 left_end_reached = ADVANCE;
5447 advance_left = 0;
5448 }
5449 if (advance_right && !right_end_reached) {
5450 ret = tree_advance(right_root, right_path, &right_level,
5451 right_root_level,
5452 advance_right != ADVANCE_ONLY_NEXT,
5453 &right_key);
5454 if (ret < 0)
5455 right_end_reached = ADVANCE;
5456 advance_right = 0;
5457 }
5458
5459 if (left_end_reached && right_end_reached) {
5460 ret = 0;
5461 goto out;
5462 } else if (left_end_reached) {
5463 if (right_level == 0) {
5464 ret = changed_cb(left_root, right_root,
5465 left_path, right_path,
5466 &right_key,
5467 BTRFS_COMPARE_TREE_DELETED,
5468 ctx);
5469 if (ret < 0)
5470 goto out;
5471 }
5472 advance_right = ADVANCE;
5473 continue;
5474 } else if (right_end_reached) {
5475 if (left_level == 0) {
5476 ret = changed_cb(left_root, right_root,
5477 left_path, right_path,
5478 &left_key,
5479 BTRFS_COMPARE_TREE_NEW,
5480 ctx);
5481 if (ret < 0)
5482 goto out;
5483 }
5484 advance_left = ADVANCE;
5485 continue;
5486 }
5487
5488 if (left_level == 0 && right_level == 0) {
5489 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5490 if (cmp < 0) {
5491 ret = changed_cb(left_root, right_root,
5492 left_path, right_path,
5493 &left_key,
5494 BTRFS_COMPARE_TREE_NEW,
5495 ctx);
5496 if (ret < 0)
5497 goto out;
5498 advance_left = ADVANCE;
5499 } else if (cmp > 0) {
5500 ret = changed_cb(left_root, right_root,
5501 left_path, right_path,
5502 &right_key,
5503 BTRFS_COMPARE_TREE_DELETED,
5504 ctx);
5505 if (ret < 0)
5506 goto out;
5507 advance_right = ADVANCE;
5508 } else {
b99d9a6a 5509 enum btrfs_compare_tree_result result;
ba5e8f2e 5510
74dd17fb 5511 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5512 ret = tree_compare_item(left_root, left_path,
5513 right_path, tmp_buf);
ba5e8f2e 5514 if (ret)
b99d9a6a 5515 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5516 else
b99d9a6a 5517 result = BTRFS_COMPARE_TREE_SAME;
ba5e8f2e
JB
5518 ret = changed_cb(left_root, right_root,
5519 left_path, right_path,
b99d9a6a 5520 &left_key, result, ctx);
ba5e8f2e
JB
5521 if (ret < 0)
5522 goto out;
7069830a
AB
5523 advance_left = ADVANCE;
5524 advance_right = ADVANCE;
5525 }
5526 } else if (left_level == right_level) {
5527 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5528 if (cmp < 0) {
5529 advance_left = ADVANCE;
5530 } else if (cmp > 0) {
5531 advance_right = ADVANCE;
5532 } else {
5533 left_blockptr = btrfs_node_blockptr(
5534 left_path->nodes[left_level],
5535 left_path->slots[left_level]);
5536 right_blockptr = btrfs_node_blockptr(
5537 right_path->nodes[right_level],
5538 right_path->slots[right_level]);
6baa4293
FM
5539 left_gen = btrfs_node_ptr_generation(
5540 left_path->nodes[left_level],
5541 left_path->slots[left_level]);
5542 right_gen = btrfs_node_ptr_generation(
5543 right_path->nodes[right_level],
5544 right_path->slots[right_level]);
5545 if (left_blockptr == right_blockptr &&
5546 left_gen == right_gen) {
7069830a
AB
5547 /*
5548 * As we're on a shared block, don't
5549 * allow to go deeper.
5550 */
5551 advance_left = ADVANCE_ONLY_NEXT;
5552 advance_right = ADVANCE_ONLY_NEXT;
5553 } else {
5554 advance_left = ADVANCE;
5555 advance_right = ADVANCE;
5556 }
5557 }
5558 } else if (left_level < right_level) {
5559 advance_right = ADVANCE;
5560 } else {
5561 advance_left = ADVANCE;
5562 }
5563 }
5564
5565out:
5566 btrfs_free_path(left_path);
5567 btrfs_free_path(right_path);
5568 kfree(tmp_buf);
7069830a
AB
5569 return ret;
5570}
5571
3f157a2f
CM
5572/*
5573 * this is similar to btrfs_next_leaf, but does not try to preserve
5574 * and fixup the path. It looks for and returns the next key in the
de78b51a 5575 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5576 *
5577 * 0 is returned if another key is found, < 0 if there are any errors
5578 * and 1 is returned if there are no higher keys in the tree
5579 *
5580 * path->keep_locks should be set to 1 on the search made before
5581 * calling this function.
5582 */
e7a84565 5583int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5584 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5585{
e7a84565
CM
5586 int slot;
5587 struct extent_buffer *c;
5588
934d375b 5589 WARN_ON(!path->keep_locks);
d397712b 5590 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5591 if (!path->nodes[level])
5592 return 1;
5593
5594 slot = path->slots[level] + 1;
5595 c = path->nodes[level];
3f157a2f 5596next:
e7a84565 5597 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5598 int ret;
5599 int orig_lowest;
5600 struct btrfs_key cur_key;
5601 if (level + 1 >= BTRFS_MAX_LEVEL ||
5602 !path->nodes[level + 1])
e7a84565 5603 return 1;
33c66f43
YZ
5604
5605 if (path->locks[level + 1]) {
5606 level++;
5607 continue;
5608 }
5609
5610 slot = btrfs_header_nritems(c) - 1;
5611 if (level == 0)
5612 btrfs_item_key_to_cpu(c, &cur_key, slot);
5613 else
5614 btrfs_node_key_to_cpu(c, &cur_key, slot);
5615
5616 orig_lowest = path->lowest_level;
b3b4aa74 5617 btrfs_release_path(path);
33c66f43
YZ
5618 path->lowest_level = level;
5619 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5620 0, 0);
5621 path->lowest_level = orig_lowest;
5622 if (ret < 0)
5623 return ret;
5624
5625 c = path->nodes[level];
5626 slot = path->slots[level];
5627 if (ret == 0)
5628 slot++;
5629 goto next;
e7a84565 5630 }
33c66f43 5631
e7a84565
CM
5632 if (level == 0)
5633 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5634 else {
3f157a2f
CM
5635 u64 gen = btrfs_node_ptr_generation(c, slot);
5636
3f157a2f
CM
5637 if (gen < min_trans) {
5638 slot++;
5639 goto next;
5640 }
e7a84565 5641 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5642 }
e7a84565
CM
5643 return 0;
5644 }
5645 return 1;
5646}
5647
97571fd0 5648/*
925baedd 5649 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5650 * returns 0 if it found something or 1 if there are no greater leaves.
5651 * returns < 0 on io errors.
97571fd0 5652 */
234b63a0 5653int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5654{
5655 return btrfs_next_old_leaf(root, path, 0);
5656}
5657
5658int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5659 u64 time_seq)
d97e63b6
CM
5660{
5661 int slot;
8e73f275 5662 int level;
5f39d397 5663 struct extent_buffer *c;
8e73f275 5664 struct extent_buffer *next;
925baedd
CM
5665 struct btrfs_key key;
5666 u32 nritems;
5667 int ret;
8e73f275 5668 int old_spinning = path->leave_spinning;
bd681513 5669 int next_rw_lock = 0;
925baedd
CM
5670
5671 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5672 if (nritems == 0)
925baedd 5673 return 1;
925baedd 5674
8e73f275
CM
5675 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5676again:
5677 level = 1;
5678 next = NULL;
bd681513 5679 next_rw_lock = 0;
b3b4aa74 5680 btrfs_release_path(path);
8e73f275 5681
a2135011 5682 path->keep_locks = 1;
31533fb2 5683 path->leave_spinning = 1;
8e73f275 5684
3d7806ec
JS
5685 if (time_seq)
5686 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5687 else
5688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5689 path->keep_locks = 0;
5690
5691 if (ret < 0)
5692 return ret;
5693
a2135011 5694 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5695 /*
5696 * by releasing the path above we dropped all our locks. A balance
5697 * could have added more items next to the key that used to be
5698 * at the very end of the block. So, check again here and
5699 * advance the path if there are now more items available.
5700 */
a2135011 5701 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5702 if (ret == 0)
5703 path->slots[0]++;
8e73f275 5704 ret = 0;
925baedd
CM
5705 goto done;
5706 }
0b43e04f
LB
5707 /*
5708 * So the above check misses one case:
5709 * - after releasing the path above, someone has removed the item that
5710 * used to be at the very end of the block, and balance between leafs
5711 * gets another one with bigger key.offset to replace it.
5712 *
5713 * This one should be returned as well, or we can get leaf corruption
5714 * later(esp. in __btrfs_drop_extents()).
5715 *
5716 * And a bit more explanation about this check,
5717 * with ret > 0, the key isn't found, the path points to the slot
5718 * where it should be inserted, so the path->slots[0] item must be the
5719 * bigger one.
5720 */
5721 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5722 ret = 0;
5723 goto done;
5724 }
d97e63b6 5725
d397712b 5726 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5727 if (!path->nodes[level]) {
5728 ret = 1;
5729 goto done;
5730 }
5f39d397 5731
d97e63b6
CM
5732 slot = path->slots[level] + 1;
5733 c = path->nodes[level];
5f39d397 5734 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5735 level++;
8e73f275
CM
5736 if (level == BTRFS_MAX_LEVEL) {
5737 ret = 1;
5738 goto done;
5739 }
d97e63b6
CM
5740 continue;
5741 }
5f39d397 5742
925baedd 5743 if (next) {
bd681513 5744 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5745 free_extent_buffer(next);
925baedd 5746 }
5f39d397 5747
8e73f275 5748 next = c;
bd681513 5749 next_rw_lock = path->locks[level];
8e73f275 5750 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5751 slot, &key, 0);
8e73f275
CM
5752 if (ret == -EAGAIN)
5753 goto again;
5f39d397 5754
76a05b35 5755 if (ret < 0) {
b3b4aa74 5756 btrfs_release_path(path);
76a05b35
CM
5757 goto done;
5758 }
5759
5cd57b2c 5760 if (!path->skip_locking) {
bd681513 5761 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5762 if (!ret && time_seq) {
5763 /*
5764 * If we don't get the lock, we may be racing
5765 * with push_leaf_left, holding that lock while
5766 * itself waiting for the leaf we've currently
5767 * locked. To solve this situation, we give up
5768 * on our lock and cycle.
5769 */
cf538830 5770 free_extent_buffer(next);
d42244a0
JS
5771 btrfs_release_path(path);
5772 cond_resched();
5773 goto again;
5774 }
8e73f275
CM
5775 if (!ret) {
5776 btrfs_set_path_blocking(path);
bd681513 5777 btrfs_tree_read_lock(next);
31533fb2 5778 btrfs_clear_path_blocking(path, next,
bd681513 5779 BTRFS_READ_LOCK);
8e73f275 5780 }
31533fb2 5781 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5782 }
d97e63b6
CM
5783 break;
5784 }
5785 path->slots[level] = slot;
d397712b 5786 while (1) {
d97e63b6
CM
5787 level--;
5788 c = path->nodes[level];
925baedd 5789 if (path->locks[level])
bd681513 5790 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5791
5f39d397 5792 free_extent_buffer(c);
d97e63b6
CM
5793 path->nodes[level] = next;
5794 path->slots[level] = 0;
a74a4b97 5795 if (!path->skip_locking)
bd681513 5796 path->locks[level] = next_rw_lock;
d97e63b6
CM
5797 if (!level)
5798 break;
b4ce94de 5799
8e73f275 5800 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5801 0, &key, 0);
8e73f275
CM
5802 if (ret == -EAGAIN)
5803 goto again;
5804
76a05b35 5805 if (ret < 0) {
b3b4aa74 5806 btrfs_release_path(path);
76a05b35
CM
5807 goto done;
5808 }
5809
5cd57b2c 5810 if (!path->skip_locking) {
bd681513 5811 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5812 if (!ret) {
5813 btrfs_set_path_blocking(path);
bd681513 5814 btrfs_tree_read_lock(next);
31533fb2 5815 btrfs_clear_path_blocking(path, next,
bd681513
CM
5816 BTRFS_READ_LOCK);
5817 }
31533fb2 5818 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5819 }
d97e63b6 5820 }
8e73f275 5821 ret = 0;
925baedd 5822done:
f7c79f30 5823 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5824 path->leave_spinning = old_spinning;
5825 if (!old_spinning)
5826 btrfs_set_path_blocking(path);
5827
5828 return ret;
d97e63b6 5829}
0b86a832 5830
3f157a2f
CM
5831/*
5832 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5833 * searching until it gets past min_objectid or finds an item of 'type'
5834 *
5835 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5836 */
0b86a832
CM
5837int btrfs_previous_item(struct btrfs_root *root,
5838 struct btrfs_path *path, u64 min_objectid,
5839 int type)
5840{
5841 struct btrfs_key found_key;
5842 struct extent_buffer *leaf;
e02119d5 5843 u32 nritems;
0b86a832
CM
5844 int ret;
5845
d397712b 5846 while (1) {
0b86a832 5847 if (path->slots[0] == 0) {
b4ce94de 5848 btrfs_set_path_blocking(path);
0b86a832
CM
5849 ret = btrfs_prev_leaf(root, path);
5850 if (ret != 0)
5851 return ret;
5852 } else {
5853 path->slots[0]--;
5854 }
5855 leaf = path->nodes[0];
e02119d5
CM
5856 nritems = btrfs_header_nritems(leaf);
5857 if (nritems == 0)
5858 return 1;
5859 if (path->slots[0] == nritems)
5860 path->slots[0]--;
5861
0b86a832 5862 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5863 if (found_key.objectid < min_objectid)
5864 break;
0a4eefbb
YZ
5865 if (found_key.type == type)
5866 return 0;
e02119d5
CM
5867 if (found_key.objectid == min_objectid &&
5868 found_key.type < type)
5869 break;
0b86a832
CM
5870 }
5871 return 1;
5872}
ade2e0b3
WS
5873
5874/*
5875 * search in extent tree to find a previous Metadata/Data extent item with
5876 * min objecitd.
5877 *
5878 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5879 */
5880int btrfs_previous_extent_item(struct btrfs_root *root,
5881 struct btrfs_path *path, u64 min_objectid)
5882{
5883 struct btrfs_key found_key;
5884 struct extent_buffer *leaf;
5885 u32 nritems;
5886 int ret;
5887
5888 while (1) {
5889 if (path->slots[0] == 0) {
5890 btrfs_set_path_blocking(path);
5891 ret = btrfs_prev_leaf(root, path);
5892 if (ret != 0)
5893 return ret;
5894 } else {
5895 path->slots[0]--;
5896 }
5897 leaf = path->nodes[0];
5898 nritems = btrfs_header_nritems(leaf);
5899 if (nritems == 0)
5900 return 1;
5901 if (path->slots[0] == nritems)
5902 path->slots[0]--;
5903
5904 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5905 if (found_key.objectid < min_objectid)
5906 break;
5907 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5908 found_key.type == BTRFS_METADATA_ITEM_KEY)
5909 return 0;
5910 if (found_key.objectid == min_objectid &&
5911 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5912 break;
5913 }
5914 return 1;
5915}