vfs: fix return type of ioctl_file_dedupe_range
[linux-2.6-block.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
8f282f71 22#include <linux/vmalloc.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
7f5c1516 25#include "transaction.h"
5f39d397 26#include "print-tree.h"
925baedd 27#include "locking.h"
9a8dd150 28
e089f05c
CM
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 32 *root, struct btrfs_key *ins_key,
cc0c5538 33 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
34static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 36 struct extent_buffer *src, int empty);
5f39d397
CM
37static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct btrfs_root *root,
39 struct extent_buffer *dst_buf,
40 struct extent_buffer *src_buf);
afe5fea7
TI
41static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 int level, int slot);
5de865ee 43static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 44 struct extent_buffer *eb);
d97e63b6 45
df24a2b9 46struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 47{
df24a2b9 48 struct btrfs_path *path;
e00f7308 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 50 return path;
2c90e5d6
CM
51}
52
b4ce94de
CM
53/*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
57noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58{
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
68 }
69}
70
71/*
72 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
b4ce94de 78 */
4008c04a 79noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 80 struct extent_buffer *held, int held_rw)
b4ce94de
CM
81{
82 int i;
4008c04a 83
bd681513
CM
84 if (held) {
85 btrfs_set_lock_blocking_rw(held, held_rw);
86 if (held_rw == BTRFS_WRITE_LOCK)
87 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 else if (held_rw == BTRFS_READ_LOCK)
89 held_rw = BTRFS_READ_LOCK_BLOCKING;
90 }
4008c04a 91 btrfs_set_path_blocking(p);
4008c04a
CM
92
93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
94 if (p->nodes[i] && p->locks[i]) {
95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 p->locks[i] = BTRFS_WRITE_LOCK;
98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 p->locks[i] = BTRFS_READ_LOCK;
100 }
b4ce94de 101 }
4008c04a 102
4008c04a 103 if (held)
bd681513 104 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
105}
106
d352ac68 107/* this also releases the path */
df24a2b9 108void btrfs_free_path(struct btrfs_path *p)
be0e5c09 109{
ff175d57
JJ
110 if (!p)
111 return;
b3b4aa74 112 btrfs_release_path(p);
df24a2b9 113 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
114}
115
d352ac68
CM
116/*
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
119 *
120 * It is safe to call this on paths that no locks or extent buffers held.
121 */
b3b4aa74 122noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
123{
124 int i;
a2135011 125
234b63a0 126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 127 p->slots[i] = 0;
eb60ceac 128 if (!p->nodes[i])
925baedd
CM
129 continue;
130 if (p->locks[i]) {
bd681513 131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
132 p->locks[i] = 0;
133 }
5f39d397 134 free_extent_buffer(p->nodes[i]);
3f157a2f 135 p->nodes[i] = NULL;
eb60ceac
CM
136 }
137}
138
d352ac68
CM
139/*
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
143 * looping required.
144 *
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
148 */
925baedd
CM
149struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150{
151 struct extent_buffer *eb;
240f62c8 152
3083ee2e
JB
153 while (1) {
154 rcu_read_lock();
155 eb = rcu_dereference(root->node);
156
157 /*
158 * RCU really hurts here, we could free up the root node because
01327610 159 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
162 */
163 if (atomic_inc_not_zero(&eb->refs)) {
164 rcu_read_unlock();
165 break;
166 }
167 rcu_read_unlock();
168 synchronize_rcu();
169 }
925baedd
CM
170 return eb;
171}
172
d352ac68
CM
173/* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
176 */
925baedd
CM
177struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178{
179 struct extent_buffer *eb;
180
d397712b 181 while (1) {
925baedd
CM
182 eb = btrfs_root_node(root);
183 btrfs_tree_lock(eb);
240f62c8 184 if (eb == root->node)
925baedd 185 break;
925baedd
CM
186 btrfs_tree_unlock(eb);
187 free_extent_buffer(eb);
188 }
189 return eb;
190}
191
bd681513
CM
192/* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
195 */
48a3b636 196static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
197{
198 struct extent_buffer *eb;
199
200 while (1) {
201 eb = btrfs_root_node(root);
202 btrfs_tree_read_lock(eb);
203 if (eb == root->node)
204 break;
205 btrfs_tree_read_unlock(eb);
206 free_extent_buffer(eb);
207 }
208 return eb;
209}
210
d352ac68
CM
211/* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
214 */
0b86a832
CM
215static void add_root_to_dirty_list(struct btrfs_root *root)
216{
e7070be1
JB
217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 return;
220
e5846fc6 221 spin_lock(&root->fs_info->trans_lock);
e7070be1
JB
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 /* Want the extent tree to be the last on the list */
224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 list_move_tail(&root->dirty_list,
226 &root->fs_info->dirty_cowonly_roots);
227 else
228 list_move(&root->dirty_list,
229 &root->fs_info->dirty_cowonly_roots);
0b86a832 230 }
e5846fc6 231 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
232}
233
d352ac68
CM
234/*
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
238 */
be20aa9d
CM
239int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root,
241 struct extent_buffer *buf,
242 struct extent_buffer **cow_ret, u64 new_root_objectid)
243{
244 struct extent_buffer *cow;
be20aa9d
CM
245 int ret = 0;
246 int level;
5d4f98a2 247 struct btrfs_disk_key disk_key;
be20aa9d 248
27cdeb70
MX
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 trans->transid != root->fs_info->running_transaction->transid);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != root->last_trans);
be20aa9d
CM
253
254 level = btrfs_header_level(buf);
5d4f98a2
YZ
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
31840ae1 259
4d75f8a9
DS
260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 &disk_key, level, buf->start, 0);
5d4f98a2 262 if (IS_ERR(cow))
be20aa9d
CM
263 return PTR_ERR(cow);
264
265 copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 else
274 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 275
0a4e5586 276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
2b82032c
YZ
277 BTRFS_FSID_SIZE);
278
be20aa9d 279 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 281 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 282 else
e339a6b0 283 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 284
be20aa9d
CM
285 if (ret)
286 return ret;
287
288 btrfs_mark_buffer_dirty(cow);
289 *cow_ret = cow;
290 return 0;
291}
292
bd989ba3
JS
293enum mod_log_op {
294 MOD_LOG_KEY_REPLACE,
295 MOD_LOG_KEY_ADD,
296 MOD_LOG_KEY_REMOVE,
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 MOD_LOG_MOVE_KEYS,
300 MOD_LOG_ROOT_REPLACE,
301};
302
303struct tree_mod_move {
304 int dst_slot;
305 int nr_items;
306};
307
308struct tree_mod_root {
309 u64 logical;
310 u8 level;
311};
312
313struct tree_mod_elem {
314 struct rb_node node;
298cfd36 315 u64 logical;
097b8a7c 316 u64 seq;
bd989ba3
JS
317 enum mod_log_op op;
318
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 int slot;
321
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 u64 generation;
324
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key;
327 u64 blockptr;
328
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move;
331
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root;
334};
335
097b8a7c 336static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 337{
097b8a7c 338 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
339}
340
097b8a7c
JS
341static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342{
343 read_unlock(&fs_info->tree_mod_log_lock);
344}
345
346static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347{
348 write_lock(&fs_info->tree_mod_log_lock);
349}
350
351static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352{
353 write_unlock(&fs_info->tree_mod_log_lock);
354}
355
fc36ed7e 356/*
fcebe456 357 * Pull a new tree mod seq number for our operation.
fc36ed7e 358 */
fcebe456 359static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
360{
361 return atomic64_inc_return(&fs_info->tree_mod_seq);
362}
363
097b8a7c
JS
364/*
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
370 * blocker was added.
371 */
372u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
bd989ba3 374{
097b8a7c 375 tree_mod_log_write_lock(fs_info);
bd989ba3 376 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 377 if (!elem->seq) {
fcebe456 378 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 }
bd989ba3 381 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
382 tree_mod_log_write_unlock(fs_info);
383
fcebe456 384 return elem->seq;
bd989ba3
JS
385}
386
387void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 struct seq_list *elem)
389{
390 struct rb_root *tm_root;
391 struct rb_node *node;
392 struct rb_node *next;
393 struct seq_list *cur_elem;
394 struct tree_mod_elem *tm;
395 u64 min_seq = (u64)-1;
396 u64 seq_putting = elem->seq;
397
398 if (!seq_putting)
399 return;
400
bd989ba3
JS
401 spin_lock(&fs_info->tree_mod_seq_lock);
402 list_del(&elem->list);
097b8a7c 403 elem->seq = 0;
bd989ba3
JS
404
405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 406 if (cur_elem->seq < min_seq) {
bd989ba3
JS
407 if (seq_putting > cur_elem->seq) {
408 /*
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
411 */
097b8a7c
JS
412 spin_unlock(&fs_info->tree_mod_seq_lock);
413 return;
bd989ba3
JS
414 }
415 min_seq = cur_elem->seq;
416 }
417 }
097b8a7c
JS
418 spin_unlock(&fs_info->tree_mod_seq_lock);
419
bd989ba3
JS
420 /*
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
423 */
097b8a7c 424 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
425 tm_root = &fs_info->tree_mod_log;
426 for (node = rb_first(tm_root); node; node = next) {
427 next = rb_next(node);
428 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 429 if (tm->seq > min_seq)
bd989ba3
JS
430 continue;
431 rb_erase(node, tm_root);
bd989ba3
JS
432 kfree(tm);
433 }
097b8a7c 434 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
435}
436
437/*
438 * key order of the log:
298cfd36 439 * node/leaf start address -> sequence
bd989ba3 440 *
298cfd36
CR
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
5de865ee
FDBM
444 *
445 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
446 */
447static noinline int
448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449{
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
c8cc6341
JB
454
455 BUG_ON(!tm);
456
fcebe456 457 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 458
bd989ba3
JS
459 tm_root = &fs_info->tree_mod_log;
460 new = &tm_root->rb_node;
461 while (*new) {
462 cur = container_of(*new, struct tree_mod_elem, node);
463 parent = *new;
298cfd36 464 if (cur->logical < tm->logical)
bd989ba3 465 new = &((*new)->rb_left);
298cfd36 466 else if (cur->logical > tm->logical)
bd989ba3 467 new = &((*new)->rb_right);
097b8a7c 468 else if (cur->seq < tm->seq)
bd989ba3 469 new = &((*new)->rb_left);
097b8a7c 470 else if (cur->seq > tm->seq)
bd989ba3 471 new = &((*new)->rb_right);
5de865ee
FDBM
472 else
473 return -EEXIST;
bd989ba3
JS
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
5de865ee 478 return 0;
bd989ba3
JS
479}
480
097b8a7c
JS
481/*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
e9b7fd4d
JS
487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
097b8a7c
JS
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
5de865ee
FDBM
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 tree_mod_log_write_unlock(fs_info);
498 return 1;
499 }
500
e9b7fd4d
JS
501 return 0;
502}
503
5de865ee
FDBM
504/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 struct extent_buffer *eb)
507{
508 smp_mb();
509 if (list_empty(&(fs_info)->tree_mod_seq_list))
510 return 0;
511 if (eb && btrfs_header_level(eb) == 0)
512 return 0;
513
514 return 1;
515}
516
517static struct tree_mod_elem *
518alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 enum mod_log_op op, gfp_t flags)
bd989ba3 520{
097b8a7c 521 struct tree_mod_elem *tm;
bd989ba3 522
c8cc6341
JB
523 tm = kzalloc(sizeof(*tm), flags);
524 if (!tm)
5de865ee 525 return NULL;
bd989ba3 526
298cfd36 527 tm->logical = eb->start;
bd989ba3
JS
528 if (op != MOD_LOG_KEY_ADD) {
529 btrfs_node_key(eb, &tm->key, slot);
530 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 }
532 tm->op = op;
533 tm->slot = slot;
534 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 535 RB_CLEAR_NODE(&tm->node);
bd989ba3 536
5de865ee 537 return tm;
097b8a7c
JS
538}
539
540static noinline int
c8cc6341
JB
541tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 struct extent_buffer *eb, int slot,
543 enum mod_log_op op, gfp_t flags)
097b8a7c 544{
5de865ee
FDBM
545 struct tree_mod_elem *tm;
546 int ret;
547
548 if (!tree_mod_need_log(fs_info, eb))
549 return 0;
550
551 tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 if (!tm)
553 return -ENOMEM;
554
555 if (tree_mod_dont_log(fs_info, eb)) {
556 kfree(tm);
097b8a7c 557 return 0;
5de865ee
FDBM
558 }
559
560 ret = __tree_mod_log_insert(fs_info, tm);
561 tree_mod_log_write_unlock(fs_info);
562 if (ret)
563 kfree(tm);
097b8a7c 564
5de865ee 565 return ret;
097b8a7c
JS
566}
567
bd989ba3
JS
568static noinline int
569tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 struct extent_buffer *eb, int dst_slot, int src_slot,
571 int nr_items, gfp_t flags)
572{
5de865ee
FDBM
573 struct tree_mod_elem *tm = NULL;
574 struct tree_mod_elem **tm_list = NULL;
575 int ret = 0;
bd989ba3 576 int i;
5de865ee 577 int locked = 0;
bd989ba3 578
5de865ee 579 if (!tree_mod_need_log(fs_info, eb))
f395694c 580 return 0;
bd989ba3 581
31e818fe 582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
5de865ee
FDBM
583 if (!tm_list)
584 return -ENOMEM;
585
586 tm = kzalloc(sizeof(*tm), flags);
587 if (!tm) {
588 ret = -ENOMEM;
589 goto free_tms;
590 }
591
298cfd36 592 tm->logical = eb->start;
5de865ee
FDBM
593 tm->slot = src_slot;
594 tm->move.dst_slot = dst_slot;
595 tm->move.nr_items = nr_items;
596 tm->op = MOD_LOG_MOVE_KEYS;
597
598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601 if (!tm_list[i]) {
602 ret = -ENOMEM;
603 goto free_tms;
604 }
605 }
606
607 if (tree_mod_dont_log(fs_info, eb))
608 goto free_tms;
609 locked = 1;
610
01763a2e
JS
611 /*
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
615 */
bd989ba3 616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
617 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618 if (ret)
619 goto free_tms;
bd989ba3
JS
620 }
621
5de865ee
FDBM
622 ret = __tree_mod_log_insert(fs_info, tm);
623 if (ret)
624 goto free_tms;
625 tree_mod_log_write_unlock(fs_info);
626 kfree(tm_list);
f395694c 627
5de865ee
FDBM
628 return 0;
629free_tms:
630 for (i = 0; i < nr_items; i++) {
631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 kfree(tm_list[i]);
634 }
635 if (locked)
636 tree_mod_log_write_unlock(fs_info);
637 kfree(tm_list);
638 kfree(tm);
bd989ba3 639
5de865ee 640 return ret;
bd989ba3
JS
641}
642
5de865ee
FDBM
643static inline int
644__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 struct tree_mod_elem **tm_list,
646 int nritems)
097b8a7c 647{
5de865ee 648 int i, j;
097b8a7c
JS
649 int ret;
650
097b8a7c 651 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
652 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 if (ret) {
654 for (j = nritems - 1; j > i; j--)
655 rb_erase(&tm_list[j]->node,
656 &fs_info->tree_mod_log);
657 return ret;
658 }
097b8a7c 659 }
5de865ee
FDBM
660
661 return 0;
097b8a7c
JS
662}
663
bd989ba3
JS
664static noinline int
665tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 struct extent_buffer *old_root,
90f8d62e
JS
667 struct extent_buffer *new_root, gfp_t flags,
668 int log_removal)
bd989ba3 669{
5de865ee
FDBM
670 struct tree_mod_elem *tm = NULL;
671 struct tree_mod_elem **tm_list = NULL;
672 int nritems = 0;
673 int ret = 0;
674 int i;
bd989ba3 675
5de865ee 676 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
677 return 0;
678
5de865ee
FDBM
679 if (log_removal && btrfs_header_level(old_root) > 0) {
680 nritems = btrfs_header_nritems(old_root);
31e818fe 681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
682 flags);
683 if (!tm_list) {
684 ret = -ENOMEM;
685 goto free_tms;
686 }
687 for (i = 0; i < nritems; i++) {
688 tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690 if (!tm_list[i]) {
691 ret = -ENOMEM;
692 goto free_tms;
693 }
694 }
695 }
d9abbf1c 696
c8cc6341 697 tm = kzalloc(sizeof(*tm), flags);
5de865ee
FDBM
698 if (!tm) {
699 ret = -ENOMEM;
700 goto free_tms;
701 }
bd989ba3 702
298cfd36 703 tm->logical = new_root->start;
bd989ba3
JS
704 tm->old_root.logical = old_root->start;
705 tm->old_root.level = btrfs_header_level(old_root);
706 tm->generation = btrfs_header_generation(old_root);
707 tm->op = MOD_LOG_ROOT_REPLACE;
708
5de865ee
FDBM
709 if (tree_mod_dont_log(fs_info, NULL))
710 goto free_tms;
711
712 if (tm_list)
713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 if (!ret)
715 ret = __tree_mod_log_insert(fs_info, tm);
716
717 tree_mod_log_write_unlock(fs_info);
718 if (ret)
719 goto free_tms;
720 kfree(tm_list);
721
722 return ret;
723
724free_tms:
725 if (tm_list) {
726 for (i = 0; i < nritems; i++)
727 kfree(tm_list[i]);
728 kfree(tm_list);
729 }
730 kfree(tm);
731
732 return ret;
bd989ba3
JS
733}
734
735static struct tree_mod_elem *
736__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737 int smallest)
738{
739 struct rb_root *tm_root;
740 struct rb_node *node;
741 struct tree_mod_elem *cur = NULL;
742 struct tree_mod_elem *found = NULL;
bd989ba3 743
097b8a7c 744 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
298cfd36 749 if (cur->logical < start) {
bd989ba3 750 node = node->rb_left;
298cfd36 751 } else if (cur->logical > start) {
bd989ba3 752 node = node->rb_right;
097b8a7c 753 } else if (cur->seq < min_seq) {
bd989ba3
JS
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
097b8a7c 758 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
759 found = cur;
760 node = node->rb_left;
097b8a7c 761 } else if (cur->seq > min_seq) {
bd989ba3
JS
762 /* we want the node with the smallest seq */
763 if (found)
097b8a7c 764 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
770 }
771 }
097b8a7c 772 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
773
774 return found;
775}
776
777/*
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
781 */
782static struct tree_mod_elem *
783tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
785{
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787}
788
789/*
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
793 */
794static struct tree_mod_elem *
795tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796{
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798}
799
5de865ee 800static noinline int
bd989ba3
JS
801tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 803 unsigned long src_offset, int nr_items)
bd989ba3 804{
5de865ee
FDBM
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 808 int i;
5de865ee 809 int locked = 0;
bd989ba3 810
5de865ee
FDBM
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
bd989ba3 813
c8cc6341 814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
815 return 0;
816
31e818fe 817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
bd989ba3 821
5de865ee
FDBM
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
bd989ba3 824 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
830 }
831
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
837 }
838 }
839
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
843
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
bd989ba3 851 }
5de865ee
FDBM
852
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
855
856 return 0;
857
858free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
863 }
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
867
868 return ret;
bd989ba3
JS
869}
870
871static inline void
872tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
874{
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
879}
880
097b8a7c 881static noinline void
bd989ba3 882tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 883 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
884{
885 int ret;
886
78357766 887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
890 BUG_ON(ret < 0);
891}
892
5de865ee 893static noinline int
097b8a7c 894tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 895{
5de865ee
FDBM
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
900
901 if (btrfs_header_level(eb) == 0)
902 return 0;
903
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
906
907 nritems = btrfs_header_nritems(eb);
31e818fe 908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
909 if (!tm_list)
910 return -ENOMEM;
911
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
918 }
919 }
920
e9b7fd4d 921 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
922 goto free_tms;
923
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
929
930 return 0;
931
932free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
936
937 return ret;
bd989ba3
JS
938}
939
097b8a7c 940static noinline void
bd989ba3 941tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
942 struct extent_buffer *new_root_node,
943 int log_removal)
bd989ba3
JS
944{
945 int ret;
bd989ba3 946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
90f8d62e 947 new_root_node, GFP_NOFS, log_removal);
bd989ba3
JS
948 BUG_ON(ret < 0);
949}
950
5d4f98a2
YZ
951/*
952 * check if the tree block can be shared by multiple trees
953 */
954int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
956{
957 /*
01327610 958 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
962 */
27cdeb70 963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973#endif
974 return 0;
975}
976
977static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
f0486c68
YZ
980 struct extent_buffer *cow,
981 int *last_ref)
5d4f98a2
YZ
982{
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
3173a18f
JB
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
be1a5564
MF
1010 if (ret)
1011 return ret;
e5df9573
MF
1012 if (refs == 0) {
1013 ret = -EROFS;
34d97007 1014 btrfs_handle_fs_error(root->fs_info, ret, NULL);
e5df9573
MF
1015 return ret;
1016 }
5d4f98a2
YZ
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1034 ret = btrfs_inc_ref(trans, root, buf, 1);
79787eaa 1035 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1039 ret = btrfs_dec_ref(trans, root, buf, 0);
79787eaa 1040 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1041 ret = btrfs_inc_ref(trans, root, cow, 1);
79787eaa 1042 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1049 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1050 else
e339a6b0 1051 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1052 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1053 }
1054 if (new_flags != 0) {
b1c79e09
JB
1055 int level = btrfs_header_level(buf);
1056
5d4f98a2
YZ
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
b1c79e09 1060 new_flags, level, 0);
be1a5564
MF
1061 if (ret)
1062 return ret;
5d4f98a2
YZ
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1068 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1069 else
e339a6b0 1070 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1071 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1072 ret = btrfs_dec_ref(trans, root, buf, 1);
79787eaa 1073 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 1074 }
01d58472 1075 clean_tree_block(trans, root->fs_info, buf);
f0486c68 1076 *last_ref = 1;
5d4f98a2
YZ
1077 }
1078 return 0;
1079}
1080
d352ac68 1081/*
d397712b
CM
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
d352ac68
CM
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
d397712b
CM
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
d352ac68 1092 */
d397712b 1093static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
9fa8cfe7 1098 u64 search_start, u64 empty_size)
02217ed2 1099{
5d4f98a2 1100 struct btrfs_disk_key disk_key;
5f39d397 1101 struct extent_buffer *cow;
be1a5564 1102 int level, ret;
f0486c68 1103 int last_ref = 0;
925baedd 1104 int unlock_orig = 0;
5d4f98a2 1105 u64 parent_start;
7bb86316 1106
925baedd
CM
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1109
b9447ef8 1110 btrfs_assert_tree_locked(buf);
925baedd 1111
27cdeb70
MX
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
5f39d397 1116
7bb86316 1117 level = btrfs_header_level(buf);
31840ae1 1118
5d4f98a2
YZ
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1123
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1131
4d75f8a9
DS
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
54aa1f4d
CM
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
6702ed49 1137
b4ce94de
CM
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1139
5f39d397 1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 1141 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1142 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1150
0a4e5586 1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
2b82032c
YZ
1152 BTRFS_FSID_SIZE);
1153
be1a5564 1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1155 if (ret) {
66642832 1156 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1157 return ret;
1158 }
1a40e23b 1159
27cdeb70 1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1162 if (ret) {
66642832 1163 btrfs_abort_transaction(trans, ret);
83d4cfd4 1164 return ret;
93314e3b 1165 }
83d4cfd4 1166 }
3fd0a558 1167
02217ed2 1168 if (buf == root->node) {
925baedd 1169 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 parent_start = buf->start;
1173 else
1174 parent_start = 0;
925baedd 1175
5f39d397 1176 extent_buffer_get(cow);
90f8d62e 1177 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1178 rcu_assign_pointer(root->node, cow);
925baedd 1179
f0486c68 1180 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1181 last_ref);
5f39d397 1182 free_extent_buffer(buf);
0b86a832 1183 add_root_to_dirty_list(root);
02217ed2 1184 } else {
5d4f98a2
YZ
1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 parent_start = parent->start;
1187 else
1188 parent_start = 0;
1189
1190 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e 1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
c8cc6341 1192 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1193 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1194 cow->start);
74493f7a
CM
1195 btrfs_set_node_ptr_generation(parent, parent_slot,
1196 trans->transid);
d6025579 1197 btrfs_mark_buffer_dirty(parent);
5de865ee
FDBM
1198 if (last_ref) {
1199 ret = tree_mod_log_free_eb(root->fs_info, buf);
1200 if (ret) {
66642832 1201 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1202 return ret;
1203 }
1204 }
f0486c68 1205 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1206 last_ref);
02217ed2 1207 }
925baedd
CM
1208 if (unlock_orig)
1209 btrfs_tree_unlock(buf);
3083ee2e 1210 free_extent_buffer_stale(buf);
ccd467d6 1211 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1212 *cow_ret = cow;
02217ed2
CM
1213 return 0;
1214}
1215
5d9e75c4
JS
1216/*
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1219 */
1220static struct tree_mod_elem *
1221__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1222 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1223{
1224 struct tree_mod_elem *tm;
1225 struct tree_mod_elem *found = NULL;
30b0463a 1226 u64 root_logical = eb_root->start;
5d9e75c4
JS
1227 int looped = 0;
1228
1229 if (!time_seq)
35a3621b 1230 return NULL;
5d9e75c4
JS
1231
1232 /*
298cfd36
CR
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
5d9e75c4
JS
1237 */
1238 while (1) {
1239 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 time_seq);
1241 if (!looped && !tm)
35a3621b 1242 return NULL;
5d9e75c4 1243 /*
28da9fb4
JS
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1246 * level 0.
5d9e75c4 1247 */
28da9fb4
JS
1248 if (!tm)
1249 break;
5d9e75c4 1250
28da9fb4
JS
1251 /*
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 */
5d9e75c4
JS
1256 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 break;
1258
1259 found = tm;
1260 root_logical = tm->old_root.logical;
5d9e75c4
JS
1261 looped = 1;
1262 }
1263
a95236d9
JS
1264 /* if there's no old root to return, return what we found instead */
1265 if (!found)
1266 found = tm;
1267
5d9e75c4
JS
1268 return found;
1269}
1270
1271/*
1272 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1273 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1274 * time_seq).
1275 */
1276static void
f1ca7e98
JB
1277__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1279{
1280 u32 n;
1281 struct rb_node *next;
1282 struct tree_mod_elem *tm = first_tm;
1283 unsigned long o_dst;
1284 unsigned long o_src;
1285 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287 n = btrfs_header_nritems(eb);
f1ca7e98 1288 tree_mod_log_read_lock(fs_info);
097b8a7c 1289 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1290 /*
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1294 */
1295 switch (tm->op) {
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 BUG_ON(tm->slot < n);
1c697d4a 1298 /* Fallthrough */
95c80bb1 1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1300 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1301 btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 btrfs_set_node_ptr_generation(eb, tm->slot,
1304 tm->generation);
4c3e6969 1305 n++;
5d9e75c4
JS
1306 break;
1307 case MOD_LOG_KEY_REPLACE:
1308 BUG_ON(tm->slot >= n);
1309 btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 btrfs_set_node_ptr_generation(eb, tm->slot,
1312 tm->generation);
1313 break;
1314 case MOD_LOG_KEY_ADD:
19956c7e 1315 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1316 n--;
1317 break;
1318 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1319 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1322 tm->move.nr_items * p_size);
1323 break;
1324 case MOD_LOG_ROOT_REPLACE:
1325 /*
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1333 */
1334 break;
1335 }
1336 next = rb_next(&tm->node);
1337 if (!next)
1338 break;
1339 tm = container_of(next, struct tree_mod_elem, node);
298cfd36 1340 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1341 break;
1342 }
f1ca7e98 1343 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1344 btrfs_set_header_nritems(eb, n);
1345}
1346
47fb091f 1347/*
01327610 1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1353 */
5d9e75c4 1354static struct extent_buffer *
9ec72677
JB
1355tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1357{
1358 struct extent_buffer *eb_rewin;
1359 struct tree_mod_elem *tm;
1360
1361 if (!time_seq)
1362 return eb;
1363
1364 if (btrfs_header_level(eb) == 0)
1365 return eb;
1366
1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 if (!tm)
1369 return eb;
1370
9ec72677
JB
1371 btrfs_set_path_blocking(path);
1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
5d9e75c4
JS
1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 BUG_ON(tm->slot != 0);
b9ef22de
FX
1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377 eb->len);
db7f3436 1378 if (!eb_rewin) {
9ec72677 1379 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1380 free_extent_buffer(eb);
1381 return NULL;
1382 }
5d9e75c4
JS
1383 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 btrfs_set_header_backref_rev(eb_rewin,
1385 btrfs_header_backref_rev(eb));
1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1388 } else {
1389 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1390 if (!eb_rewin) {
9ec72677 1391 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1392 free_extent_buffer(eb);
1393 return NULL;
1394 }
5d9e75c4
JS
1395 }
1396
9ec72677
JB
1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1399 free_extent_buffer(eb);
1400
47fb091f
JS
1401 extent_buffer_get(eb_rewin);
1402 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1404 WARN_ON(btrfs_header_nritems(eb_rewin) >
2a745b14 1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
5d9e75c4
JS
1406
1407 return eb_rewin;
1408}
1409
8ba97a15
JS
1410/*
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1416 */
5d9e75c4
JS
1417static inline struct extent_buffer *
1418get_old_root(struct btrfs_root *root, u64 time_seq)
1419{
1420 struct tree_mod_elem *tm;
30b0463a
JS
1421 struct extent_buffer *eb = NULL;
1422 struct extent_buffer *eb_root;
7bfdcf7f 1423 struct extent_buffer *old;
a95236d9 1424 struct tree_mod_root *old_root = NULL;
4325edd0 1425 u64 old_generation = 0;
a95236d9 1426 u64 logical;
5d9e75c4 1427
30b0463a
JS
1428 eb_root = btrfs_read_lock_root_node(root);
1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5d9e75c4 1430 if (!tm)
30b0463a 1431 return eb_root;
5d9e75c4 1432
a95236d9
JS
1433 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 old_root = &tm->old_root;
1435 old_generation = tm->generation;
1436 logical = old_root->logical;
1437 } else {
30b0463a 1438 logical = eb_root->start;
a95236d9 1439 }
5d9e75c4 1440
a95236d9 1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8 1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1443 btrfs_tree_read_unlock(eb_root);
1444 free_extent_buffer(eb_root);
ce86cd59 1445 old = read_tree_block(root, logical, 0);
64c043de
LB
1446 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447 if (!IS_ERR(old))
1448 free_extent_buffer(old);
efe120a0
FH
1449 btrfs_warn(root->fs_info,
1450 "failed to read tree block %llu from get_old_root", logical);
834328a8 1451 } else {
7bfdcf7f
LB
1452 eb = btrfs_clone_extent_buffer(old);
1453 free_extent_buffer(old);
834328a8
JS
1454 }
1455 } else if (old_root) {
30b0463a
JS
1456 btrfs_tree_read_unlock(eb_root);
1457 free_extent_buffer(eb_root);
b9ef22de
FX
1458 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459 root->nodesize);
834328a8 1460 } else {
9ec72677 1461 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1462 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1463 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1464 free_extent_buffer(eb_root);
834328a8
JS
1465 }
1466
8ba97a15
JS
1467 if (!eb)
1468 return NULL;
d6381084 1469 extent_buffer_get(eb);
8ba97a15 1470 btrfs_tree_read_lock(eb);
a95236d9 1471 if (old_root) {
5d9e75c4
JS
1472 btrfs_set_header_bytenr(eb, eb->start);
1473 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1474 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1475 btrfs_set_header_level(eb, old_root->level);
1476 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1477 }
28da9fb4 1478 if (tm)
f1ca7e98 1479 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
28da9fb4
JS
1480 else
1481 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1482 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1483
1484 return eb;
1485}
1486
5b6602e7
JS
1487int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488{
1489 struct tree_mod_elem *tm;
1490 int level;
30b0463a 1491 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1492
30b0463a 1493 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1494 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495 level = tm->old_root.level;
1496 } else {
30b0463a 1497 level = btrfs_header_level(eb_root);
5b6602e7 1498 }
30b0463a 1499 free_extent_buffer(eb_root);
5b6602e7
JS
1500
1501 return level;
1502}
1503
5d4f98a2
YZ
1504static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505 struct btrfs_root *root,
1506 struct extent_buffer *buf)
1507{
f5ee5c9a 1508 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1509 return 0;
fccb84c9 1510
f1ebcc74
LB
1511 /* ensure we can see the force_cow */
1512 smp_rmb();
1513
1514 /*
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1519 *
1520 * What is forced COW:
01327610 1521 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1524 */
5d4f98a2
YZ
1525 if (btrfs_header_generation(buf) == trans->transid &&
1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1530 return 0;
1531 return 1;
1532}
1533
d352ac68
CM
1534/*
1535 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1536 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1537 * once per transaction, as long as it hasn't been written yet
1538 */
d397712b 1539noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1540 struct btrfs_root *root, struct extent_buffer *buf,
1541 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1542 struct extent_buffer **cow_ret)
6702ed49
CM
1543{
1544 u64 search_start;
f510cfec 1545 int ret;
dc17ff8f 1546
31b1a2bd
JL
1547 if (trans->transaction != root->fs_info->running_transaction)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1549 trans->transid,
6702ed49 1550 root->fs_info->running_transaction->transid);
31b1a2bd
JL
1551
1552 if (trans->transid != root->fs_info->generation)
1553 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1554 trans->transid, root->fs_info->generation);
dc17ff8f 1555
5d4f98a2 1556 if (!should_cow_block(trans, root, buf)) {
64c12921 1557 trans->dirty = true;
6702ed49
CM
1558 *cow_ret = buf;
1559 return 0;
1560 }
c487685d 1561
ee22184b 1562 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1563
1564 if (parent)
1565 btrfs_set_lock_blocking(parent);
1566 btrfs_set_lock_blocking(buf);
1567
f510cfec 1568 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1569 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1570
1571 trace_btrfs_cow_block(root, buf, *cow_ret);
1572
f510cfec 1573 return ret;
6702ed49
CM
1574}
1575
d352ac68
CM
1576/*
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1579 */
6b80053d 1580static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1581{
6b80053d 1582 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1583 return 1;
6b80053d 1584 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1585 return 1;
1586 return 0;
1587}
1588
081e9573
CM
1589/*
1590 * compare two keys in a memcmp fashion
1591 */
1592static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1593{
1594 struct btrfs_key k1;
1595
1596 btrfs_disk_key_to_cpu(&k1, disk);
1597
20736aba 1598 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1599}
1600
f3465ca4
JB
1601/*
1602 * same as comp_keys only with two btrfs_key's
1603 */
5d4f98a2 1604int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1605{
1606 if (k1->objectid > k2->objectid)
1607 return 1;
1608 if (k1->objectid < k2->objectid)
1609 return -1;
1610 if (k1->type > k2->type)
1611 return 1;
1612 if (k1->type < k2->type)
1613 return -1;
1614 if (k1->offset > k2->offset)
1615 return 1;
1616 if (k1->offset < k2->offset)
1617 return -1;
1618 return 0;
1619}
081e9573 1620
d352ac68
CM
1621/*
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1625 */
6702ed49 1626int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1627 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1628 int start_slot, u64 *last_ret,
a6b6e75e 1629 struct btrfs_key *progress)
6702ed49 1630{
6b80053d 1631 struct extent_buffer *cur;
6702ed49 1632 u64 blocknr;
ca7a79ad 1633 u64 gen;
e9d0b13b
CM
1634 u64 search_start = *last_ret;
1635 u64 last_block = 0;
6702ed49
CM
1636 u64 other;
1637 u32 parent_nritems;
6702ed49
CM
1638 int end_slot;
1639 int i;
1640 int err = 0;
f2183bde 1641 int parent_level;
6b80053d
CM
1642 int uptodate;
1643 u32 blocksize;
081e9573
CM
1644 int progress_passed = 0;
1645 struct btrfs_disk_key disk_key;
6702ed49 1646
5708b959 1647 parent_level = btrfs_header_level(parent);
5708b959 1648
6c1500f2
JL
1649 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650 WARN_ON(trans->transid != root->fs_info->generation);
86479a04 1651
6b80053d 1652 parent_nritems = btrfs_header_nritems(parent);
707e8a07 1653 blocksize = root->nodesize;
5dfe2be7 1654 end_slot = parent_nritems - 1;
6702ed49 1655
5dfe2be7 1656 if (parent_nritems <= 1)
6702ed49
CM
1657 return 0;
1658
b4ce94de
CM
1659 btrfs_set_lock_blocking(parent);
1660
5dfe2be7 1661 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1662 int close = 1;
a6b6e75e 1663
081e9573
CM
1664 btrfs_node_key(parent, &disk_key, i);
1665 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1666 continue;
1667
1668 progress_passed = 1;
6b80053d 1669 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1670 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1671 if (last_block == 0)
1672 last_block = blocknr;
5708b959 1673
6702ed49 1674 if (i > 0) {
6b80053d
CM
1675 other = btrfs_node_blockptr(parent, i - 1);
1676 close = close_blocks(blocknr, other, blocksize);
6702ed49 1677 }
5dfe2be7 1678 if (!close && i < end_slot) {
6b80053d
CM
1679 other = btrfs_node_blockptr(parent, i + 1);
1680 close = close_blocks(blocknr, other, blocksize);
6702ed49 1681 }
e9d0b13b
CM
1682 if (close) {
1683 last_block = blocknr;
6702ed49 1684 continue;
e9d0b13b 1685 }
6702ed49 1686
01d58472 1687 cur = btrfs_find_tree_block(root->fs_info, blocknr);
6b80053d 1688 if (cur)
b9fab919 1689 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1690 else
1691 uptodate = 0;
5708b959 1692 if (!cur || !uptodate) {
6b80053d 1693 if (!cur) {
ce86cd59 1694 cur = read_tree_block(root, blocknr, gen);
64c043de
LB
1695 if (IS_ERR(cur)) {
1696 return PTR_ERR(cur);
1697 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1698 free_extent_buffer(cur);
97d9a8a4 1699 return -EIO;
416bc658 1700 }
6b80053d 1701 } else if (!uptodate) {
018642a1
TI
1702 err = btrfs_read_buffer(cur, gen);
1703 if (err) {
1704 free_extent_buffer(cur);
1705 return err;
1706 }
f2183bde 1707 }
6702ed49 1708 }
e9d0b13b 1709 if (search_start == 0)
6b80053d 1710 search_start = last_block;
e9d0b13b 1711
e7a84565 1712 btrfs_tree_lock(cur);
b4ce94de 1713 btrfs_set_lock_blocking(cur);
6b80053d 1714 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1715 &cur, search_start,
6b80053d 1716 min(16 * blocksize,
9fa8cfe7 1717 (end_slot - i) * blocksize));
252c38f0 1718 if (err) {
e7a84565 1719 btrfs_tree_unlock(cur);
6b80053d 1720 free_extent_buffer(cur);
6702ed49 1721 break;
252c38f0 1722 }
e7a84565
CM
1723 search_start = cur->start;
1724 last_block = cur->start;
f2183bde 1725 *last_ret = search_start;
e7a84565
CM
1726 btrfs_tree_unlock(cur);
1727 free_extent_buffer(cur);
6702ed49
CM
1728 }
1729 return err;
1730}
1731
74123bd7
CM
1732/*
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1736 */
123abc88 1737static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1738 struct extent_buffer *leaf)
be0e5c09 1739{
5f39d397 1740 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1741 if (nr == 0)
123abc88 1742 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1743 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1744}
1745
aa5d6bed 1746
74123bd7 1747/*
5f39d397
CM
1748 * search for key in the extent_buffer. The items start at offset p,
1749 * and they are item_size apart. There are 'max' items in p.
1750 *
74123bd7
CM
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1753 * the array.
1754 *
1755 * slot may point to max if the key is bigger than all of the keys
1756 */
e02119d5
CM
1757static noinline int generic_bin_search(struct extent_buffer *eb,
1758 unsigned long p,
1759 int item_size, struct btrfs_key *key,
1760 int max, int *slot)
be0e5c09
CM
1761{
1762 int low = 0;
1763 int high = max;
1764 int mid;
1765 int ret;
479965d6 1766 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1767 struct btrfs_disk_key unaligned;
1768 unsigned long offset;
5f39d397
CM
1769 char *kaddr = NULL;
1770 unsigned long map_start = 0;
1771 unsigned long map_len = 0;
479965d6 1772 int err;
be0e5c09 1773
5e24e9af
LB
1774 if (low > high) {
1775 btrfs_err(eb->fs_info,
1776 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1777 __func__, low, high, eb->start,
1778 btrfs_header_owner(eb), btrfs_header_level(eb));
1779 return -EINVAL;
1780 }
1781
d397712b 1782 while (low < high) {
be0e5c09 1783 mid = (low + high) / 2;
5f39d397
CM
1784 offset = p + mid * item_size;
1785
a6591715 1786 if (!kaddr || offset < map_start ||
5f39d397
CM
1787 (offset + sizeof(struct btrfs_disk_key)) >
1788 map_start + map_len) {
934d375b
CM
1789
1790 err = map_private_extent_buffer(eb, offset,
479965d6 1791 sizeof(struct btrfs_disk_key),
a6591715 1792 &kaddr, &map_start, &map_len);
479965d6
CM
1793
1794 if (!err) {
1795 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796 map_start);
415b35a5 1797 } else if (err == 1) {
479965d6
CM
1798 read_extent_buffer(eb, &unaligned,
1799 offset, sizeof(unaligned));
1800 tmp = &unaligned;
415b35a5
LB
1801 } else {
1802 return err;
479965d6 1803 }
5f39d397 1804
5f39d397
CM
1805 } else {
1806 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1807 map_start);
1808 }
be0e5c09
CM
1809 ret = comp_keys(tmp, key);
1810
1811 if (ret < 0)
1812 low = mid + 1;
1813 else if (ret > 0)
1814 high = mid;
1815 else {
1816 *slot = mid;
1817 return 0;
1818 }
1819 }
1820 *slot = low;
1821 return 1;
1822}
1823
97571fd0
CM
1824/*
1825 * simple bin_search frontend that does the right thing for
1826 * leaves vs nodes
1827 */
5f39d397
CM
1828static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1829 int level, int *slot)
be0e5c09 1830{
f775738f 1831 if (level == 0)
5f39d397
CM
1832 return generic_bin_search(eb,
1833 offsetof(struct btrfs_leaf, items),
0783fcfc 1834 sizeof(struct btrfs_item),
5f39d397 1835 key, btrfs_header_nritems(eb),
7518a238 1836 slot);
f775738f 1837 else
5f39d397
CM
1838 return generic_bin_search(eb,
1839 offsetof(struct btrfs_node, ptrs),
123abc88 1840 sizeof(struct btrfs_key_ptr),
5f39d397 1841 key, btrfs_header_nritems(eb),
7518a238 1842 slot);
be0e5c09
CM
1843}
1844
5d4f98a2
YZ
1845int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1846 int level, int *slot)
1847{
1848 return bin_search(eb, key, level, slot);
1849}
1850
f0486c68
YZ
1851static void root_add_used(struct btrfs_root *root, u32 size)
1852{
1853 spin_lock(&root->accounting_lock);
1854 btrfs_set_root_used(&root->root_item,
1855 btrfs_root_used(&root->root_item) + size);
1856 spin_unlock(&root->accounting_lock);
1857}
1858
1859static void root_sub_used(struct btrfs_root *root, u32 size)
1860{
1861 spin_lock(&root->accounting_lock);
1862 btrfs_set_root_used(&root->root_item,
1863 btrfs_root_used(&root->root_item) - size);
1864 spin_unlock(&root->accounting_lock);
1865}
1866
d352ac68
CM
1867/* given a node and slot number, this reads the blocks it points to. The
1868 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1869 */
e02119d5 1870static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1871 struct extent_buffer *parent, int slot)
bb803951 1872{
ca7a79ad 1873 int level = btrfs_header_level(parent);
416bc658
JB
1874 struct extent_buffer *eb;
1875
fb770ae4
LB
1876 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1877 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1878
1879 BUG_ON(level == 0);
1880
416bc658 1881 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
416bc658 1882 btrfs_node_ptr_generation(parent, slot));
fb770ae4
LB
1883 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1884 free_extent_buffer(eb);
1885 eb = ERR_PTR(-EIO);
416bc658
JB
1886 }
1887
1888 return eb;
bb803951
CM
1889}
1890
d352ac68
CM
1891/*
1892 * node level balancing, used to make sure nodes are in proper order for
1893 * item deletion. We balance from the top down, so we have to make sure
1894 * that a deletion won't leave an node completely empty later on.
1895 */
e02119d5 1896static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1897 struct btrfs_root *root,
1898 struct btrfs_path *path, int level)
bb803951 1899{
5f39d397
CM
1900 struct extent_buffer *right = NULL;
1901 struct extent_buffer *mid;
1902 struct extent_buffer *left = NULL;
1903 struct extent_buffer *parent = NULL;
bb803951
CM
1904 int ret = 0;
1905 int wret;
1906 int pslot;
bb803951 1907 int orig_slot = path->slots[level];
79f95c82 1908 u64 orig_ptr;
bb803951
CM
1909
1910 if (level == 0)
1911 return 0;
1912
5f39d397 1913 mid = path->nodes[level];
b4ce94de 1914
bd681513
CM
1915 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1916 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1917 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1918
1d4f8a0c 1919 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1920
a05a9bb1 1921 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1922 parent = path->nodes[level + 1];
a05a9bb1
LZ
1923 pslot = path->slots[level + 1];
1924 }
bb803951 1925
40689478
CM
1926 /*
1927 * deal with the case where there is only one pointer in the root
1928 * by promoting the node below to a root
1929 */
5f39d397
CM
1930 if (!parent) {
1931 struct extent_buffer *child;
bb803951 1932
5f39d397 1933 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1934 return 0;
1935
1936 /* promote the child to a root */
5f39d397 1937 child = read_node_slot(root, mid, 0);
fb770ae4
LB
1938 if (IS_ERR(child)) {
1939 ret = PTR_ERR(child);
34d97007 1940 btrfs_handle_fs_error(root->fs_info, ret, NULL);
305a26af
MF
1941 goto enospc;
1942 }
1943
925baedd 1944 btrfs_tree_lock(child);
b4ce94de 1945 btrfs_set_lock_blocking(child);
9fa8cfe7 1946 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1947 if (ret) {
1948 btrfs_tree_unlock(child);
1949 free_extent_buffer(child);
1950 goto enospc;
1951 }
2f375ab9 1952
90f8d62e 1953 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1954 rcu_assign_pointer(root->node, child);
925baedd 1955
0b86a832 1956 add_root_to_dirty_list(root);
925baedd 1957 btrfs_tree_unlock(child);
b4ce94de 1958
925baedd 1959 path->locks[level] = 0;
bb803951 1960 path->nodes[level] = NULL;
01d58472 1961 clean_tree_block(trans, root->fs_info, mid);
925baedd 1962 btrfs_tree_unlock(mid);
bb803951 1963 /* once for the path */
5f39d397 1964 free_extent_buffer(mid);
f0486c68
YZ
1965
1966 root_sub_used(root, mid->len);
5581a51a 1967 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1968 /* once for the root ptr */
3083ee2e 1969 free_extent_buffer_stale(mid);
f0486c68 1970 return 0;
bb803951 1971 }
5f39d397 1972 if (btrfs_header_nritems(mid) >
123abc88 1973 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1974 return 0;
1975
5f39d397 1976 left = read_node_slot(root, parent, pslot - 1);
fb770ae4
LB
1977 if (IS_ERR(left))
1978 left = NULL;
1979
5f39d397 1980 if (left) {
925baedd 1981 btrfs_tree_lock(left);
b4ce94de 1982 btrfs_set_lock_blocking(left);
5f39d397 1983 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1984 parent, pslot - 1, &left);
54aa1f4d
CM
1985 if (wret) {
1986 ret = wret;
1987 goto enospc;
1988 }
2cc58cf2 1989 }
fb770ae4 1990
5f39d397 1991 right = read_node_slot(root, parent, pslot + 1);
fb770ae4
LB
1992 if (IS_ERR(right))
1993 right = NULL;
1994
5f39d397 1995 if (right) {
925baedd 1996 btrfs_tree_lock(right);
b4ce94de 1997 btrfs_set_lock_blocking(right);
5f39d397 1998 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1999 parent, pslot + 1, &right);
2cc58cf2
CM
2000 if (wret) {
2001 ret = wret;
2002 goto enospc;
2003 }
2004 }
2005
2006 /* first, try to make some room in the middle buffer */
5f39d397
CM
2007 if (left) {
2008 orig_slot += btrfs_header_nritems(left);
bce4eae9 2009 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
2010 if (wret < 0)
2011 ret = wret;
bb803951 2012 }
79f95c82
CM
2013
2014 /*
2015 * then try to empty the right most buffer into the middle
2016 */
5f39d397 2017 if (right) {
971a1f66 2018 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 2019 if (wret < 0 && wret != -ENOSPC)
79f95c82 2020 ret = wret;
5f39d397 2021 if (btrfs_header_nritems(right) == 0) {
01d58472 2022 clean_tree_block(trans, root->fs_info, right);
925baedd 2023 btrfs_tree_unlock(right);
afe5fea7 2024 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2025 root_sub_used(root, right->len);
5581a51a 2026 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2027 free_extent_buffer_stale(right);
f0486c68 2028 right = NULL;
bb803951 2029 } else {
5f39d397
CM
2030 struct btrfs_disk_key right_key;
2031 btrfs_node_key(right, &right_key, 0);
f230475e 2032 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2033 pslot + 1, 0);
5f39d397
CM
2034 btrfs_set_node_key(parent, &right_key, pslot + 1);
2035 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2036 }
2037 }
5f39d397 2038 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2039 /*
2040 * we're not allowed to leave a node with one item in the
2041 * tree during a delete. A deletion from lower in the tree
2042 * could try to delete the only pointer in this node.
2043 * So, pull some keys from the left.
2044 * There has to be a left pointer at this point because
2045 * otherwise we would have pulled some pointers from the
2046 * right
2047 */
305a26af
MF
2048 if (!left) {
2049 ret = -EROFS;
34d97007 2050 btrfs_handle_fs_error(root->fs_info, ret, NULL);
305a26af
MF
2051 goto enospc;
2052 }
5f39d397 2053 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 2054 if (wret < 0) {
79f95c82 2055 ret = wret;
54aa1f4d
CM
2056 goto enospc;
2057 }
bce4eae9
CM
2058 if (wret == 1) {
2059 wret = push_node_left(trans, root, left, mid, 1);
2060 if (wret < 0)
2061 ret = wret;
2062 }
79f95c82
CM
2063 BUG_ON(wret == 1);
2064 }
5f39d397 2065 if (btrfs_header_nritems(mid) == 0) {
01d58472 2066 clean_tree_block(trans, root->fs_info, mid);
925baedd 2067 btrfs_tree_unlock(mid);
afe5fea7 2068 del_ptr(root, path, level + 1, pslot);
f0486c68 2069 root_sub_used(root, mid->len);
5581a51a 2070 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2071 free_extent_buffer_stale(mid);
f0486c68 2072 mid = NULL;
79f95c82
CM
2073 } else {
2074 /* update the parent key to reflect our changes */
5f39d397
CM
2075 struct btrfs_disk_key mid_key;
2076 btrfs_node_key(mid, &mid_key, 0);
32adf090 2077 tree_mod_log_set_node_key(root->fs_info, parent,
f230475e 2078 pslot, 0);
5f39d397
CM
2079 btrfs_set_node_key(parent, &mid_key, pslot);
2080 btrfs_mark_buffer_dirty(parent);
79f95c82 2081 }
bb803951 2082
79f95c82 2083 /* update the path */
5f39d397
CM
2084 if (left) {
2085 if (btrfs_header_nritems(left) > orig_slot) {
2086 extent_buffer_get(left);
925baedd 2087 /* left was locked after cow */
5f39d397 2088 path->nodes[level] = left;
bb803951
CM
2089 path->slots[level + 1] -= 1;
2090 path->slots[level] = orig_slot;
925baedd
CM
2091 if (mid) {
2092 btrfs_tree_unlock(mid);
5f39d397 2093 free_extent_buffer(mid);
925baedd 2094 }
bb803951 2095 } else {
5f39d397 2096 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2097 path->slots[level] = orig_slot;
2098 }
2099 }
79f95c82 2100 /* double check we haven't messed things up */
e20d96d6 2101 if (orig_ptr !=
5f39d397 2102 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2103 BUG();
54aa1f4d 2104enospc:
925baedd
CM
2105 if (right) {
2106 btrfs_tree_unlock(right);
5f39d397 2107 free_extent_buffer(right);
925baedd
CM
2108 }
2109 if (left) {
2110 if (path->nodes[level] != left)
2111 btrfs_tree_unlock(left);
5f39d397 2112 free_extent_buffer(left);
925baedd 2113 }
bb803951
CM
2114 return ret;
2115}
2116
d352ac68
CM
2117/* Node balancing for insertion. Here we only split or push nodes around
2118 * when they are completely full. This is also done top down, so we
2119 * have to be pessimistic.
2120 */
d397712b 2121static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2122 struct btrfs_root *root,
2123 struct btrfs_path *path, int level)
e66f709b 2124{
5f39d397
CM
2125 struct extent_buffer *right = NULL;
2126 struct extent_buffer *mid;
2127 struct extent_buffer *left = NULL;
2128 struct extent_buffer *parent = NULL;
e66f709b
CM
2129 int ret = 0;
2130 int wret;
2131 int pslot;
2132 int orig_slot = path->slots[level];
e66f709b
CM
2133
2134 if (level == 0)
2135 return 1;
2136
5f39d397 2137 mid = path->nodes[level];
7bb86316 2138 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2139
a05a9bb1 2140 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2141 parent = path->nodes[level + 1];
a05a9bb1
LZ
2142 pslot = path->slots[level + 1];
2143 }
e66f709b 2144
5f39d397 2145 if (!parent)
e66f709b 2146 return 1;
e66f709b 2147
5f39d397 2148 left = read_node_slot(root, parent, pslot - 1);
fb770ae4
LB
2149 if (IS_ERR(left))
2150 left = NULL;
e66f709b
CM
2151
2152 /* first, try to make some room in the middle buffer */
5f39d397 2153 if (left) {
e66f709b 2154 u32 left_nr;
925baedd
CM
2155
2156 btrfs_tree_lock(left);
b4ce94de
CM
2157 btrfs_set_lock_blocking(left);
2158
5f39d397 2159 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
2160 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2161 wret = 1;
2162 } else {
5f39d397 2163 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2164 pslot - 1, &left);
54aa1f4d
CM
2165 if (ret)
2166 wret = 1;
2167 else {
54aa1f4d 2168 wret = push_node_left(trans, root,
971a1f66 2169 left, mid, 0);
54aa1f4d 2170 }
33ade1f8 2171 }
e66f709b
CM
2172 if (wret < 0)
2173 ret = wret;
2174 if (wret == 0) {
5f39d397 2175 struct btrfs_disk_key disk_key;
e66f709b 2176 orig_slot += left_nr;
5f39d397 2177 btrfs_node_key(mid, &disk_key, 0);
f230475e 2178 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2179 pslot, 0);
5f39d397
CM
2180 btrfs_set_node_key(parent, &disk_key, pslot);
2181 btrfs_mark_buffer_dirty(parent);
2182 if (btrfs_header_nritems(left) > orig_slot) {
2183 path->nodes[level] = left;
e66f709b
CM
2184 path->slots[level + 1] -= 1;
2185 path->slots[level] = orig_slot;
925baedd 2186 btrfs_tree_unlock(mid);
5f39d397 2187 free_extent_buffer(mid);
e66f709b
CM
2188 } else {
2189 orig_slot -=
5f39d397 2190 btrfs_header_nritems(left);
e66f709b 2191 path->slots[level] = orig_slot;
925baedd 2192 btrfs_tree_unlock(left);
5f39d397 2193 free_extent_buffer(left);
e66f709b 2194 }
e66f709b
CM
2195 return 0;
2196 }
925baedd 2197 btrfs_tree_unlock(left);
5f39d397 2198 free_extent_buffer(left);
e66f709b 2199 }
925baedd 2200 right = read_node_slot(root, parent, pslot + 1);
fb770ae4
LB
2201 if (IS_ERR(right))
2202 right = NULL;
e66f709b
CM
2203
2204 /*
2205 * then try to empty the right most buffer into the middle
2206 */
5f39d397 2207 if (right) {
33ade1f8 2208 u32 right_nr;
b4ce94de 2209
925baedd 2210 btrfs_tree_lock(right);
b4ce94de
CM
2211 btrfs_set_lock_blocking(right);
2212
5f39d397 2213 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2214 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2215 wret = 1;
2216 } else {
5f39d397
CM
2217 ret = btrfs_cow_block(trans, root, right,
2218 parent, pslot + 1,
9fa8cfe7 2219 &right);
54aa1f4d
CM
2220 if (ret)
2221 wret = 1;
2222 else {
54aa1f4d 2223 wret = balance_node_right(trans, root,
5f39d397 2224 right, mid);
54aa1f4d 2225 }
33ade1f8 2226 }
e66f709b
CM
2227 if (wret < 0)
2228 ret = wret;
2229 if (wret == 0) {
5f39d397
CM
2230 struct btrfs_disk_key disk_key;
2231
2232 btrfs_node_key(right, &disk_key, 0);
f230475e 2233 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2234 pslot + 1, 0);
5f39d397
CM
2235 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2236 btrfs_mark_buffer_dirty(parent);
2237
2238 if (btrfs_header_nritems(mid) <= orig_slot) {
2239 path->nodes[level] = right;
e66f709b
CM
2240 path->slots[level + 1] += 1;
2241 path->slots[level] = orig_slot -
5f39d397 2242 btrfs_header_nritems(mid);
925baedd 2243 btrfs_tree_unlock(mid);
5f39d397 2244 free_extent_buffer(mid);
e66f709b 2245 } else {
925baedd 2246 btrfs_tree_unlock(right);
5f39d397 2247 free_extent_buffer(right);
e66f709b 2248 }
e66f709b
CM
2249 return 0;
2250 }
925baedd 2251 btrfs_tree_unlock(right);
5f39d397 2252 free_extent_buffer(right);
e66f709b 2253 }
e66f709b
CM
2254 return 1;
2255}
2256
3c69faec 2257/*
d352ac68
CM
2258 * readahead one full node of leaves, finding things that are close
2259 * to the block in 'slot', and triggering ra on them.
3c69faec 2260 */
c8c42864
CM
2261static void reada_for_search(struct btrfs_root *root,
2262 struct btrfs_path *path,
2263 int level, int slot, u64 objectid)
3c69faec 2264{
5f39d397 2265 struct extent_buffer *node;
01f46658 2266 struct btrfs_disk_key disk_key;
3c69faec 2267 u32 nritems;
3c69faec 2268 u64 search;
a7175319 2269 u64 target;
6b80053d 2270 u64 nread = 0;
cb25c2ea 2271 u64 gen;
5f39d397 2272 struct extent_buffer *eb;
6b80053d
CM
2273 u32 nr;
2274 u32 blocksize;
2275 u32 nscan = 0;
db94535d 2276
a6b6e75e 2277 if (level != 1)
6702ed49
CM
2278 return;
2279
2280 if (!path->nodes[level])
3c69faec
CM
2281 return;
2282
5f39d397 2283 node = path->nodes[level];
925baedd 2284
3c69faec 2285 search = btrfs_node_blockptr(node, slot);
707e8a07 2286 blocksize = root->nodesize;
01d58472 2287 eb = btrfs_find_tree_block(root->fs_info, search);
5f39d397
CM
2288 if (eb) {
2289 free_extent_buffer(eb);
3c69faec
CM
2290 return;
2291 }
2292
a7175319 2293 target = search;
6b80053d 2294
5f39d397 2295 nritems = btrfs_header_nritems(node);
6b80053d 2296 nr = slot;
25b8b936 2297
d397712b 2298 while (1) {
e4058b54 2299 if (path->reada == READA_BACK) {
6b80053d
CM
2300 if (nr == 0)
2301 break;
2302 nr--;
e4058b54 2303 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2304 nr++;
2305 if (nr >= nritems)
2306 break;
3c69faec 2307 }
e4058b54 2308 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2309 btrfs_node_key(node, &disk_key, nr);
2310 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2311 break;
2312 }
6b80053d 2313 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2314 if ((search <= target && target - search <= 65536) ||
2315 (search > target && search - target <= 65536)) {
cb25c2ea 2316 gen = btrfs_node_ptr_generation(node, nr);
d3e46fea 2317 readahead_tree_block(root, search);
6b80053d
CM
2318 nread += blocksize;
2319 }
2320 nscan++;
a7175319 2321 if ((nread > 65536 || nscan > 32))
6b80053d 2322 break;
3c69faec
CM
2323 }
2324}
925baedd 2325
0b08851f
JB
2326static noinline void reada_for_balance(struct btrfs_root *root,
2327 struct btrfs_path *path, int level)
b4ce94de
CM
2328{
2329 int slot;
2330 int nritems;
2331 struct extent_buffer *parent;
2332 struct extent_buffer *eb;
2333 u64 gen;
2334 u64 block1 = 0;
2335 u64 block2 = 0;
b4ce94de 2336
8c594ea8 2337 parent = path->nodes[level + 1];
b4ce94de 2338 if (!parent)
0b08851f 2339 return;
b4ce94de
CM
2340
2341 nritems = btrfs_header_nritems(parent);
8c594ea8 2342 slot = path->slots[level + 1];
b4ce94de
CM
2343
2344 if (slot > 0) {
2345 block1 = btrfs_node_blockptr(parent, slot - 1);
2346 gen = btrfs_node_ptr_generation(parent, slot - 1);
01d58472 2347 eb = btrfs_find_tree_block(root->fs_info, block1);
b9fab919
CM
2348 /*
2349 * if we get -eagain from btrfs_buffer_uptodate, we
2350 * don't want to return eagain here. That will loop
2351 * forever
2352 */
2353 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2354 block1 = 0;
2355 free_extent_buffer(eb);
2356 }
8c594ea8 2357 if (slot + 1 < nritems) {
b4ce94de
CM
2358 block2 = btrfs_node_blockptr(parent, slot + 1);
2359 gen = btrfs_node_ptr_generation(parent, slot + 1);
01d58472 2360 eb = btrfs_find_tree_block(root->fs_info, block2);
b9fab919 2361 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2362 block2 = 0;
2363 free_extent_buffer(eb);
2364 }
8c594ea8 2365
0b08851f 2366 if (block1)
d3e46fea 2367 readahead_tree_block(root, block1);
0b08851f 2368 if (block2)
d3e46fea 2369 readahead_tree_block(root, block2);
b4ce94de
CM
2370}
2371
2372
d352ac68 2373/*
d397712b
CM
2374 * when we walk down the tree, it is usually safe to unlock the higher layers
2375 * in the tree. The exceptions are when our path goes through slot 0, because
2376 * operations on the tree might require changing key pointers higher up in the
2377 * tree.
d352ac68 2378 *
d397712b
CM
2379 * callers might also have set path->keep_locks, which tells this code to keep
2380 * the lock if the path points to the last slot in the block. This is part of
2381 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2382 *
d397712b
CM
2383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2384 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2385 */
e02119d5 2386static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2387 int lowest_unlock, int min_write_lock_level,
2388 int *write_lock_level)
925baedd
CM
2389{
2390 int i;
2391 int skip_level = level;
051e1b9f 2392 int no_skips = 0;
925baedd
CM
2393 struct extent_buffer *t;
2394
2395 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2396 if (!path->nodes[i])
2397 break;
2398 if (!path->locks[i])
2399 break;
051e1b9f 2400 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2401 skip_level = i + 1;
2402 continue;
2403 }
051e1b9f 2404 if (!no_skips && path->keep_locks) {
925baedd
CM
2405 u32 nritems;
2406 t = path->nodes[i];
2407 nritems = btrfs_header_nritems(t);
051e1b9f 2408 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2409 skip_level = i + 1;
2410 continue;
2411 }
2412 }
051e1b9f
CM
2413 if (skip_level < i && i >= lowest_unlock)
2414 no_skips = 1;
2415
925baedd
CM
2416 t = path->nodes[i];
2417 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2418 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2419 path->locks[i] = 0;
f7c79f30
CM
2420 if (write_lock_level &&
2421 i > min_write_lock_level &&
2422 i <= *write_lock_level) {
2423 *write_lock_level = i - 1;
2424 }
925baedd
CM
2425 }
2426 }
2427}
2428
b4ce94de
CM
2429/*
2430 * This releases any locks held in the path starting at level and
2431 * going all the way up to the root.
2432 *
2433 * btrfs_search_slot will keep the lock held on higher nodes in a few
2434 * corner cases, such as COW of the block at slot zero in the node. This
2435 * ignores those rules, and it should only be called when there are no
2436 * more updates to be done higher up in the tree.
2437 */
2438noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2439{
2440 int i;
2441
09a2a8f9 2442 if (path->keep_locks)
b4ce94de
CM
2443 return;
2444
2445 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2446 if (!path->nodes[i])
12f4dacc 2447 continue;
b4ce94de 2448 if (!path->locks[i])
12f4dacc 2449 continue;
bd681513 2450 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2451 path->locks[i] = 0;
2452 }
2453}
2454
c8c42864
CM
2455/*
2456 * helper function for btrfs_search_slot. The goal is to find a block
2457 * in cache without setting the path to blocking. If we find the block
2458 * we return zero and the path is unchanged.
2459 *
2460 * If we can't find the block, we set the path blocking and do some
2461 * reada. -EAGAIN is returned and the search must be repeated.
2462 */
2463static int
2464read_block_for_search(struct btrfs_trans_handle *trans,
2465 struct btrfs_root *root, struct btrfs_path *p,
2466 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2467 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2468{
2469 u64 blocknr;
2470 u64 gen;
c8c42864
CM
2471 struct extent_buffer *b = *eb_ret;
2472 struct extent_buffer *tmp;
76a05b35 2473 int ret;
c8c42864
CM
2474
2475 blocknr = btrfs_node_blockptr(b, slot);
2476 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2477
01d58472 2478 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
cb44921a 2479 if (tmp) {
b9fab919 2480 /* first we do an atomic uptodate check */
bdf7c00e
JB
2481 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2482 *eb_ret = tmp;
2483 return 0;
2484 }
2485
2486 /* the pages were up to date, but we failed
2487 * the generation number check. Do a full
2488 * read for the generation number that is correct.
2489 * We must do this without dropping locks so
2490 * we can trust our generation number
2491 */
2492 btrfs_set_path_blocking(p);
2493
2494 /* now we're allowed to do a blocking uptodate check */
2495 ret = btrfs_read_buffer(tmp, gen);
2496 if (!ret) {
2497 *eb_ret = tmp;
2498 return 0;
cb44921a 2499 }
bdf7c00e
JB
2500 free_extent_buffer(tmp);
2501 btrfs_release_path(p);
2502 return -EIO;
c8c42864
CM
2503 }
2504
2505 /*
2506 * reduce lock contention at high levels
2507 * of the btree by dropping locks before
76a05b35
CM
2508 * we read. Don't release the lock on the current
2509 * level because we need to walk this node to figure
2510 * out which blocks to read.
c8c42864 2511 */
8c594ea8
CM
2512 btrfs_unlock_up_safe(p, level + 1);
2513 btrfs_set_path_blocking(p);
2514
cb44921a 2515 free_extent_buffer(tmp);
e4058b54 2516 if (p->reada != READA_NONE)
c8c42864
CM
2517 reada_for_search(root, p, level, slot, key->objectid);
2518
b3b4aa74 2519 btrfs_release_path(p);
76a05b35
CM
2520
2521 ret = -EAGAIN;
ce86cd59 2522 tmp = read_tree_block(root, blocknr, 0);
64c043de 2523 if (!IS_ERR(tmp)) {
76a05b35
CM
2524 /*
2525 * If the read above didn't mark this buffer up to date,
2526 * it will never end up being up to date. Set ret to EIO now
2527 * and give up so that our caller doesn't loop forever
2528 * on our EAGAINs.
2529 */
b9fab919 2530 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2531 ret = -EIO;
c8c42864 2532 free_extent_buffer(tmp);
c871b0f2
LB
2533 } else {
2534 ret = PTR_ERR(tmp);
76a05b35
CM
2535 }
2536 return ret;
c8c42864
CM
2537}
2538
2539/*
2540 * helper function for btrfs_search_slot. This does all of the checks
2541 * for node-level blocks and does any balancing required based on
2542 * the ins_len.
2543 *
2544 * If no extra work was required, zero is returned. If we had to
2545 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2546 * start over
2547 */
2548static int
2549setup_nodes_for_search(struct btrfs_trans_handle *trans,
2550 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2551 struct extent_buffer *b, int level, int ins_len,
2552 int *write_lock_level)
c8c42864
CM
2553{
2554 int ret;
2555 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2556 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2557 int sret;
2558
bd681513
CM
2559 if (*write_lock_level < level + 1) {
2560 *write_lock_level = level + 1;
2561 btrfs_release_path(p);
2562 goto again;
2563 }
2564
c8c42864 2565 btrfs_set_path_blocking(p);
0b08851f 2566 reada_for_balance(root, p, level);
c8c42864 2567 sret = split_node(trans, root, p, level);
bd681513 2568 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2569
2570 BUG_ON(sret > 0);
2571 if (sret) {
2572 ret = sret;
2573 goto done;
2574 }
2575 b = p->nodes[level];
2576 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2577 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2578 int sret;
2579
bd681513
CM
2580 if (*write_lock_level < level + 1) {
2581 *write_lock_level = level + 1;
2582 btrfs_release_path(p);
2583 goto again;
2584 }
2585
c8c42864 2586 btrfs_set_path_blocking(p);
0b08851f 2587 reada_for_balance(root, p, level);
c8c42864 2588 sret = balance_level(trans, root, p, level);
bd681513 2589 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2590
2591 if (sret) {
2592 ret = sret;
2593 goto done;
2594 }
2595 b = p->nodes[level];
2596 if (!b) {
b3b4aa74 2597 btrfs_release_path(p);
c8c42864
CM
2598 goto again;
2599 }
2600 BUG_ON(btrfs_header_nritems(b) == 1);
2601 }
2602 return 0;
2603
2604again:
2605 ret = -EAGAIN;
2606done:
2607 return ret;
2608}
2609
d7396f07
FDBM
2610static void key_search_validate(struct extent_buffer *b,
2611 struct btrfs_key *key,
2612 int level)
2613{
2614#ifdef CONFIG_BTRFS_ASSERT
2615 struct btrfs_disk_key disk_key;
2616
2617 btrfs_cpu_key_to_disk(&disk_key, key);
2618
2619 if (level == 0)
2620 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2621 offsetof(struct btrfs_leaf, items[0].key),
2622 sizeof(disk_key)));
2623 else
2624 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2625 offsetof(struct btrfs_node, ptrs[0].key),
2626 sizeof(disk_key)));
2627#endif
2628}
2629
2630static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2631 int level, int *prev_cmp, int *slot)
2632{
2633 if (*prev_cmp != 0) {
2634 *prev_cmp = bin_search(b, key, level, slot);
2635 return *prev_cmp;
2636 }
2637
2638 key_search_validate(b, key, level);
2639 *slot = 0;
2640
2641 return 0;
2642}
2643
381cf658 2644int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2645 u64 iobjectid, u64 ioff, u8 key_type,
2646 struct btrfs_key *found_key)
2647{
2648 int ret;
2649 struct btrfs_key key;
2650 struct extent_buffer *eb;
381cf658
DS
2651
2652 ASSERT(path);
1d4c08e0 2653 ASSERT(found_key);
e33d5c3d
KN
2654
2655 key.type = key_type;
2656 key.objectid = iobjectid;
2657 key.offset = ioff;
2658
2659 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2660 if (ret < 0)
e33d5c3d
KN
2661 return ret;
2662
2663 eb = path->nodes[0];
2664 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2665 ret = btrfs_next_leaf(fs_root, path);
2666 if (ret)
2667 return ret;
2668 eb = path->nodes[0];
2669 }
2670
2671 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2672 if (found_key->type != key.type ||
2673 found_key->objectid != key.objectid)
2674 return 1;
2675
2676 return 0;
2677}
2678
74123bd7
CM
2679/*
2680 * look for key in the tree. path is filled in with nodes along the way
2681 * if key is found, we return zero and you can find the item in the leaf
2682 * level of the path (level 0)
2683 *
2684 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2685 * be inserted, and 1 is returned. If there are other errors during the
2686 * search a negative error number is returned.
97571fd0
CM
2687 *
2688 * if ins_len > 0, nodes and leaves will be split as we walk down the
2689 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2690 * possible)
74123bd7 2691 */
e089f05c
CM
2692int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2693 *root, struct btrfs_key *key, struct btrfs_path *p, int
2694 ins_len, int cow)
be0e5c09 2695{
5f39d397 2696 struct extent_buffer *b;
be0e5c09
CM
2697 int slot;
2698 int ret;
33c66f43 2699 int err;
be0e5c09 2700 int level;
925baedd 2701 int lowest_unlock = 1;
bd681513
CM
2702 int root_lock;
2703 /* everything at write_lock_level or lower must be write locked */
2704 int write_lock_level = 0;
9f3a7427 2705 u8 lowest_level = 0;
f7c79f30 2706 int min_write_lock_level;
d7396f07 2707 int prev_cmp;
9f3a7427 2708
6702ed49 2709 lowest_level = p->lowest_level;
323ac95b 2710 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2711 WARN_ON(p->nodes[0] != NULL);
eb653de1 2712 BUG_ON(!cow && ins_len);
25179201 2713
bd681513 2714 if (ins_len < 0) {
925baedd 2715 lowest_unlock = 2;
65b51a00 2716
bd681513
CM
2717 /* when we are removing items, we might have to go up to level
2718 * two as we update tree pointers Make sure we keep write
2719 * for those levels as well
2720 */
2721 write_lock_level = 2;
2722 } else if (ins_len > 0) {
2723 /*
2724 * for inserting items, make sure we have a write lock on
2725 * level 1 so we can update keys
2726 */
2727 write_lock_level = 1;
2728 }
2729
2730 if (!cow)
2731 write_lock_level = -1;
2732
09a2a8f9 2733 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2734 write_lock_level = BTRFS_MAX_LEVEL;
2735
f7c79f30
CM
2736 min_write_lock_level = write_lock_level;
2737
bb803951 2738again:
d7396f07 2739 prev_cmp = -1;
bd681513
CM
2740 /*
2741 * we try very hard to do read locks on the root
2742 */
2743 root_lock = BTRFS_READ_LOCK;
2744 level = 0;
5d4f98a2 2745 if (p->search_commit_root) {
bd681513
CM
2746 /*
2747 * the commit roots are read only
2748 * so we always do read locks
2749 */
3f8a18cc
JB
2750 if (p->need_commit_sem)
2751 down_read(&root->fs_info->commit_root_sem);
5d4f98a2
YZ
2752 b = root->commit_root;
2753 extent_buffer_get(b);
bd681513 2754 level = btrfs_header_level(b);
3f8a18cc
JB
2755 if (p->need_commit_sem)
2756 up_read(&root->fs_info->commit_root_sem);
5d4f98a2 2757 if (!p->skip_locking)
bd681513 2758 btrfs_tree_read_lock(b);
5d4f98a2 2759 } else {
bd681513 2760 if (p->skip_locking) {
5d4f98a2 2761 b = btrfs_root_node(root);
bd681513
CM
2762 level = btrfs_header_level(b);
2763 } else {
2764 /* we don't know the level of the root node
2765 * until we actually have it read locked
2766 */
2767 b = btrfs_read_lock_root_node(root);
2768 level = btrfs_header_level(b);
2769 if (level <= write_lock_level) {
2770 /* whoops, must trade for write lock */
2771 btrfs_tree_read_unlock(b);
2772 free_extent_buffer(b);
2773 b = btrfs_lock_root_node(root);
2774 root_lock = BTRFS_WRITE_LOCK;
2775
2776 /* the level might have changed, check again */
2777 level = btrfs_header_level(b);
2778 }
2779 }
5d4f98a2 2780 }
bd681513
CM
2781 p->nodes[level] = b;
2782 if (!p->skip_locking)
2783 p->locks[level] = root_lock;
925baedd 2784
eb60ceac 2785 while (b) {
5f39d397 2786 level = btrfs_header_level(b);
65b51a00
CM
2787
2788 /*
2789 * setup the path here so we can release it under lock
2790 * contention with the cow code
2791 */
02217ed2 2792 if (cow) {
c8c42864
CM
2793 /*
2794 * if we don't really need to cow this block
2795 * then we don't want to set the path blocking,
2796 * so we test it here
2797 */
64c12921
JM
2798 if (!should_cow_block(trans, root, b)) {
2799 trans->dirty = true;
65b51a00 2800 goto cow_done;
64c12921 2801 }
5d4f98a2 2802
bd681513
CM
2803 /*
2804 * must have write locks on this node and the
2805 * parent
2806 */
5124e00e
JB
2807 if (level > write_lock_level ||
2808 (level + 1 > write_lock_level &&
2809 level + 1 < BTRFS_MAX_LEVEL &&
2810 p->nodes[level + 1])) {
bd681513
CM
2811 write_lock_level = level + 1;
2812 btrfs_release_path(p);
2813 goto again;
2814 }
2815
160f4089 2816 btrfs_set_path_blocking(p);
33c66f43
YZ
2817 err = btrfs_cow_block(trans, root, b,
2818 p->nodes[level + 1],
2819 p->slots[level + 1], &b);
2820 if (err) {
33c66f43 2821 ret = err;
65b51a00 2822 goto done;
54aa1f4d 2823 }
02217ed2 2824 }
65b51a00 2825cow_done:
eb60ceac 2826 p->nodes[level] = b;
bd681513 2827 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2828
2829 /*
2830 * we have a lock on b and as long as we aren't changing
2831 * the tree, there is no way to for the items in b to change.
2832 * It is safe to drop the lock on our parent before we
2833 * go through the expensive btree search on b.
2834 *
eb653de1
FDBM
2835 * If we're inserting or deleting (ins_len != 0), then we might
2836 * be changing slot zero, which may require changing the parent.
2837 * So, we can't drop the lock until after we know which slot
2838 * we're operating on.
b4ce94de 2839 */
eb653de1
FDBM
2840 if (!ins_len && !p->keep_locks) {
2841 int u = level + 1;
2842
2843 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2844 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2845 p->locks[u] = 0;
2846 }
2847 }
b4ce94de 2848
d7396f07 2849 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2850 if (ret < 0)
2851 goto done;
b4ce94de 2852
5f39d397 2853 if (level != 0) {
33c66f43
YZ
2854 int dec = 0;
2855 if (ret && slot > 0) {
2856 dec = 1;
be0e5c09 2857 slot -= 1;
33c66f43 2858 }
be0e5c09 2859 p->slots[level] = slot;
33c66f43 2860 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2861 ins_len, &write_lock_level);
33c66f43 2862 if (err == -EAGAIN)
c8c42864 2863 goto again;
33c66f43
YZ
2864 if (err) {
2865 ret = err;
c8c42864 2866 goto done;
33c66f43 2867 }
c8c42864
CM
2868 b = p->nodes[level];
2869 slot = p->slots[level];
b4ce94de 2870
bd681513
CM
2871 /*
2872 * slot 0 is special, if we change the key
2873 * we have to update the parent pointer
2874 * which means we must have a write lock
2875 * on the parent
2876 */
eb653de1 2877 if (slot == 0 && ins_len &&
bd681513
CM
2878 write_lock_level < level + 1) {
2879 write_lock_level = level + 1;
2880 btrfs_release_path(p);
2881 goto again;
2882 }
2883
f7c79f30
CM
2884 unlock_up(p, level, lowest_unlock,
2885 min_write_lock_level, &write_lock_level);
f9efa9c7 2886
925baedd 2887 if (level == lowest_level) {
33c66f43
YZ
2888 if (dec)
2889 p->slots[level]++;
5b21f2ed 2890 goto done;
925baedd 2891 }
ca7a79ad 2892
33c66f43 2893 err = read_block_for_search(trans, root, p,
5d9e75c4 2894 &b, level, slot, key, 0);
33c66f43 2895 if (err == -EAGAIN)
c8c42864 2896 goto again;
33c66f43
YZ
2897 if (err) {
2898 ret = err;
76a05b35 2899 goto done;
33c66f43 2900 }
76a05b35 2901
b4ce94de 2902 if (!p->skip_locking) {
bd681513
CM
2903 level = btrfs_header_level(b);
2904 if (level <= write_lock_level) {
2905 err = btrfs_try_tree_write_lock(b);
2906 if (!err) {
2907 btrfs_set_path_blocking(p);
2908 btrfs_tree_lock(b);
2909 btrfs_clear_path_blocking(p, b,
2910 BTRFS_WRITE_LOCK);
2911 }
2912 p->locks[level] = BTRFS_WRITE_LOCK;
2913 } else {
f82c458a 2914 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2915 if (!err) {
2916 btrfs_set_path_blocking(p);
2917 btrfs_tree_read_lock(b);
2918 btrfs_clear_path_blocking(p, b,
2919 BTRFS_READ_LOCK);
2920 }
2921 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2922 }
bd681513 2923 p->nodes[level] = b;
b4ce94de 2924 }
be0e5c09
CM
2925 } else {
2926 p->slots[level] = slot;
87b29b20
YZ
2927 if (ins_len > 0 &&
2928 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2929 if (write_lock_level < 1) {
2930 write_lock_level = 1;
2931 btrfs_release_path(p);
2932 goto again;
2933 }
2934
b4ce94de 2935 btrfs_set_path_blocking(p);
33c66f43
YZ
2936 err = split_leaf(trans, root, key,
2937 p, ins_len, ret == 0);
bd681513 2938 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2939
33c66f43
YZ
2940 BUG_ON(err > 0);
2941 if (err) {
2942 ret = err;
65b51a00
CM
2943 goto done;
2944 }
5c680ed6 2945 }
459931ec 2946 if (!p->search_for_split)
f7c79f30
CM
2947 unlock_up(p, level, lowest_unlock,
2948 min_write_lock_level, &write_lock_level);
65b51a00 2949 goto done;
be0e5c09
CM
2950 }
2951 }
65b51a00
CM
2952 ret = 1;
2953done:
b4ce94de
CM
2954 /*
2955 * we don't really know what they plan on doing with the path
2956 * from here on, so for now just mark it as blocking
2957 */
b9473439
CM
2958 if (!p->leave_spinning)
2959 btrfs_set_path_blocking(p);
5f5bc6b1 2960 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2961 btrfs_release_path(p);
65b51a00 2962 return ret;
be0e5c09
CM
2963}
2964
5d9e75c4
JS
2965/*
2966 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2967 * current state of the tree together with the operations recorded in the tree
2968 * modification log to search for the key in a previous version of this tree, as
2969 * denoted by the time_seq parameter.
2970 *
2971 * Naturally, there is no support for insert, delete or cow operations.
2972 *
2973 * The resulting path and return value will be set up as if we called
2974 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2975 */
2976int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2977 struct btrfs_path *p, u64 time_seq)
2978{
2979 struct extent_buffer *b;
2980 int slot;
2981 int ret;
2982 int err;
2983 int level;
2984 int lowest_unlock = 1;
2985 u8 lowest_level = 0;
d4b4087c 2986 int prev_cmp = -1;
5d9e75c4
JS
2987
2988 lowest_level = p->lowest_level;
2989 WARN_ON(p->nodes[0] != NULL);
2990
2991 if (p->search_commit_root) {
2992 BUG_ON(time_seq);
2993 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2994 }
2995
2996again:
5d9e75c4 2997 b = get_old_root(root, time_seq);
5d9e75c4 2998 level = btrfs_header_level(b);
5d9e75c4
JS
2999 p->locks[level] = BTRFS_READ_LOCK;
3000
3001 while (b) {
3002 level = btrfs_header_level(b);
3003 p->nodes[level] = b;
3004 btrfs_clear_path_blocking(p, NULL, 0);
3005
3006 /*
3007 * we have a lock on b and as long as we aren't changing
3008 * the tree, there is no way to for the items in b to change.
3009 * It is safe to drop the lock on our parent before we
3010 * go through the expensive btree search on b.
3011 */
3012 btrfs_unlock_up_safe(p, level + 1);
3013
d4b4087c 3014 /*
01327610 3015 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
3016 * time.
3017 */
3018 prev_cmp = -1;
d7396f07 3019 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3020
3021 if (level != 0) {
3022 int dec = 0;
3023 if (ret && slot > 0) {
3024 dec = 1;
3025 slot -= 1;
3026 }
3027 p->slots[level] = slot;
3028 unlock_up(p, level, lowest_unlock, 0, NULL);
3029
3030 if (level == lowest_level) {
3031 if (dec)
3032 p->slots[level]++;
3033 goto done;
3034 }
3035
3036 err = read_block_for_search(NULL, root, p, &b, level,
3037 slot, key, time_seq);
3038 if (err == -EAGAIN)
3039 goto again;
3040 if (err) {
3041 ret = err;
3042 goto done;
3043 }
3044
3045 level = btrfs_header_level(b);
f82c458a 3046 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3047 if (!err) {
3048 btrfs_set_path_blocking(p);
3049 btrfs_tree_read_lock(b);
3050 btrfs_clear_path_blocking(p, b,
3051 BTRFS_READ_LOCK);
3052 }
9ec72677 3053 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
db7f3436
JB
3054 if (!b) {
3055 ret = -ENOMEM;
3056 goto done;
3057 }
5d9e75c4
JS
3058 p->locks[level] = BTRFS_READ_LOCK;
3059 p->nodes[level] = b;
5d9e75c4
JS
3060 } else {
3061 p->slots[level] = slot;
3062 unlock_up(p, level, lowest_unlock, 0, NULL);
3063 goto done;
3064 }
3065 }
3066 ret = 1;
3067done:
3068 if (!p->leave_spinning)
3069 btrfs_set_path_blocking(p);
3070 if (ret < 0)
3071 btrfs_release_path(p);
3072
3073 return ret;
3074}
3075
2f38b3e1
AJ
3076/*
3077 * helper to use instead of search slot if no exact match is needed but
3078 * instead the next or previous item should be returned.
3079 * When find_higher is true, the next higher item is returned, the next lower
3080 * otherwise.
3081 * When return_any and find_higher are both true, and no higher item is found,
3082 * return the next lower instead.
3083 * When return_any is true and find_higher is false, and no lower item is found,
3084 * return the next higher instead.
3085 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3086 * < 0 on error
3087 */
3088int btrfs_search_slot_for_read(struct btrfs_root *root,
3089 struct btrfs_key *key, struct btrfs_path *p,
3090 int find_higher, int return_any)
3091{
3092 int ret;
3093 struct extent_buffer *leaf;
3094
3095again:
3096 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3097 if (ret <= 0)
3098 return ret;
3099 /*
3100 * a return value of 1 means the path is at the position where the
3101 * item should be inserted. Normally this is the next bigger item,
3102 * but in case the previous item is the last in a leaf, path points
3103 * to the first free slot in the previous leaf, i.e. at an invalid
3104 * item.
3105 */
3106 leaf = p->nodes[0];
3107
3108 if (find_higher) {
3109 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3110 ret = btrfs_next_leaf(root, p);
3111 if (ret <= 0)
3112 return ret;
3113 if (!return_any)
3114 return 1;
3115 /*
3116 * no higher item found, return the next
3117 * lower instead
3118 */
3119 return_any = 0;
3120 find_higher = 0;
3121 btrfs_release_path(p);
3122 goto again;
3123 }
3124 } else {
e6793769
AJ
3125 if (p->slots[0] == 0) {
3126 ret = btrfs_prev_leaf(root, p);
3127 if (ret < 0)
3128 return ret;
3129 if (!ret) {
23c6bf6a
FDBM
3130 leaf = p->nodes[0];
3131 if (p->slots[0] == btrfs_header_nritems(leaf))
3132 p->slots[0]--;
e6793769 3133 return 0;
2f38b3e1 3134 }
e6793769
AJ
3135 if (!return_any)
3136 return 1;
3137 /*
3138 * no lower item found, return the next
3139 * higher instead
3140 */
3141 return_any = 0;
3142 find_higher = 1;
3143 btrfs_release_path(p);
3144 goto again;
3145 } else {
2f38b3e1
AJ
3146 --p->slots[0];
3147 }
3148 }
3149 return 0;
3150}
3151
74123bd7
CM
3152/*
3153 * adjust the pointers going up the tree, starting at level
3154 * making sure the right key of each node is points to 'key'.
3155 * This is used after shifting pointers to the left, so it stops
3156 * fixing up pointers when a given leaf/node is not in slot 0 of the
3157 * higher levels
aa5d6bed 3158 *
74123bd7 3159 */
b7a0365e
DD
3160static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3161 struct btrfs_path *path,
143bede5 3162 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3163{
3164 int i;
5f39d397
CM
3165 struct extent_buffer *t;
3166
234b63a0 3167 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3168 int tslot = path->slots[i];
eb60ceac 3169 if (!path->nodes[i])
be0e5c09 3170 break;
5f39d397 3171 t = path->nodes[i];
b7a0365e 3172 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
5f39d397 3173 btrfs_set_node_key(t, key, tslot);
d6025579 3174 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3175 if (tslot != 0)
3176 break;
3177 }
3178}
3179
31840ae1
ZY
3180/*
3181 * update item key.
3182 *
3183 * This function isn't completely safe. It's the caller's responsibility
3184 * that the new key won't break the order
3185 */
b7a0365e
DD
3186void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3187 struct btrfs_path *path,
143bede5 3188 struct btrfs_key *new_key)
31840ae1
ZY
3189{
3190 struct btrfs_disk_key disk_key;
3191 struct extent_buffer *eb;
3192 int slot;
3193
3194 eb = path->nodes[0];
3195 slot = path->slots[0];
3196 if (slot > 0) {
3197 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3198 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3199 }
3200 if (slot < btrfs_header_nritems(eb) - 1) {
3201 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3202 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3203 }
3204
3205 btrfs_cpu_key_to_disk(&disk_key, new_key);
3206 btrfs_set_item_key(eb, &disk_key, slot);
3207 btrfs_mark_buffer_dirty(eb);
3208 if (slot == 0)
b7a0365e 3209 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3210}
3211
74123bd7
CM
3212/*
3213 * try to push data from one node into the next node left in the
79f95c82 3214 * tree.
aa5d6bed
CM
3215 *
3216 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3217 * error, and > 0 if there was no room in the left hand block.
74123bd7 3218 */
98ed5174
CM
3219static int push_node_left(struct btrfs_trans_handle *trans,
3220 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 3221 struct extent_buffer *src, int empty)
be0e5c09 3222{
be0e5c09 3223 int push_items = 0;
bb803951
CM
3224 int src_nritems;
3225 int dst_nritems;
aa5d6bed 3226 int ret = 0;
be0e5c09 3227
5f39d397
CM
3228 src_nritems = btrfs_header_nritems(src);
3229 dst_nritems = btrfs_header_nritems(dst);
123abc88 3230 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
3231 WARN_ON(btrfs_header_generation(src) != trans->transid);
3232 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3233
bce4eae9 3234 if (!empty && src_nritems <= 8)
971a1f66
CM
3235 return 1;
3236
d397712b 3237 if (push_items <= 0)
be0e5c09
CM
3238 return 1;
3239
bce4eae9 3240 if (empty) {
971a1f66 3241 push_items = min(src_nritems, push_items);
bce4eae9
CM
3242 if (push_items < src_nritems) {
3243 /* leave at least 8 pointers in the node if
3244 * we aren't going to empty it
3245 */
3246 if (src_nritems - push_items < 8) {
3247 if (push_items <= 8)
3248 return 1;
3249 push_items -= 8;
3250 }
3251 }
3252 } else
3253 push_items = min(src_nritems - 8, push_items);
79f95c82 3254
5de865ee
FDBM
3255 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3256 push_items);
3257 if (ret) {
66642832 3258 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3259 return ret;
3260 }
5f39d397
CM
3261 copy_extent_buffer(dst, src,
3262 btrfs_node_key_ptr_offset(dst_nritems),
3263 btrfs_node_key_ptr_offset(0),
d397712b 3264 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3265
bb803951 3266 if (push_items < src_nritems) {
57911b8b
JS
3267 /*
3268 * don't call tree_mod_log_eb_move here, key removal was already
3269 * fully logged by tree_mod_log_eb_copy above.
3270 */
5f39d397
CM
3271 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3272 btrfs_node_key_ptr_offset(push_items),
3273 (src_nritems - push_items) *
3274 sizeof(struct btrfs_key_ptr));
3275 }
3276 btrfs_set_header_nritems(src, src_nritems - push_items);
3277 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3278 btrfs_mark_buffer_dirty(src);
3279 btrfs_mark_buffer_dirty(dst);
31840ae1 3280
79f95c82
CM
3281 return ret;
3282}
3283
3284/*
3285 * try to push data from one node into the next node right in the
3286 * tree.
3287 *
3288 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3289 * error, and > 0 if there was no room in the right hand block.
3290 *
3291 * this will only push up to 1/2 the contents of the left node over
3292 */
5f39d397
CM
3293static int balance_node_right(struct btrfs_trans_handle *trans,
3294 struct btrfs_root *root,
3295 struct extent_buffer *dst,
3296 struct extent_buffer *src)
79f95c82 3297{
79f95c82
CM
3298 int push_items = 0;
3299 int max_push;
3300 int src_nritems;
3301 int dst_nritems;
3302 int ret = 0;
79f95c82 3303
7bb86316
CM
3304 WARN_ON(btrfs_header_generation(src) != trans->transid);
3305 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3306
5f39d397
CM
3307 src_nritems = btrfs_header_nritems(src);
3308 dst_nritems = btrfs_header_nritems(dst);
123abc88 3309 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3310 if (push_items <= 0)
79f95c82 3311 return 1;
bce4eae9 3312
d397712b 3313 if (src_nritems < 4)
bce4eae9 3314 return 1;
79f95c82
CM
3315
3316 max_push = src_nritems / 2 + 1;
3317 /* don't try to empty the node */
d397712b 3318 if (max_push >= src_nritems)
79f95c82 3319 return 1;
252c38f0 3320
79f95c82
CM
3321 if (max_push < push_items)
3322 push_items = max_push;
3323
f230475e 3324 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3325 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3326 btrfs_node_key_ptr_offset(0),
3327 (dst_nritems) *
3328 sizeof(struct btrfs_key_ptr));
d6025579 3329
5de865ee
FDBM
3330 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3331 src_nritems - push_items, push_items);
3332 if (ret) {
66642832 3333 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3334 return ret;
3335 }
5f39d397
CM
3336 copy_extent_buffer(dst, src,
3337 btrfs_node_key_ptr_offset(0),
3338 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3339 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3340
5f39d397
CM
3341 btrfs_set_header_nritems(src, src_nritems - push_items);
3342 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3343
5f39d397
CM
3344 btrfs_mark_buffer_dirty(src);
3345 btrfs_mark_buffer_dirty(dst);
31840ae1 3346
aa5d6bed 3347 return ret;
be0e5c09
CM
3348}
3349
97571fd0
CM
3350/*
3351 * helper function to insert a new root level in the tree.
3352 * A new node is allocated, and a single item is inserted to
3353 * point to the existing root
aa5d6bed
CM
3354 *
3355 * returns zero on success or < 0 on failure.
97571fd0 3356 */
d397712b 3357static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3358 struct btrfs_root *root,
fdd99c72 3359 struct btrfs_path *path, int level)
5c680ed6 3360{
7bb86316 3361 u64 lower_gen;
5f39d397
CM
3362 struct extent_buffer *lower;
3363 struct extent_buffer *c;
925baedd 3364 struct extent_buffer *old;
5f39d397 3365 struct btrfs_disk_key lower_key;
5c680ed6
CM
3366
3367 BUG_ON(path->nodes[level]);
3368 BUG_ON(path->nodes[level-1] != root->node);
3369
7bb86316
CM
3370 lower = path->nodes[level-1];
3371 if (level == 1)
3372 btrfs_item_key(lower, &lower_key, 0);
3373 else
3374 btrfs_node_key(lower, &lower_key, 0);
3375
4d75f8a9
DS
3376 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3377 &lower_key, level, root->node->start, 0);
5f39d397
CM
3378 if (IS_ERR(c))
3379 return PTR_ERR(c);
925baedd 3380
f0486c68
YZ
3381 root_add_used(root, root->nodesize);
3382
5d4f98a2 3383 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3384 btrfs_set_header_nritems(c, 1);
3385 btrfs_set_header_level(c, level);
db94535d 3386 btrfs_set_header_bytenr(c, c->start);
5f39d397 3387 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3388 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3389 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3390
0a4e5586 3391 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
5f39d397 3392 BTRFS_FSID_SIZE);
e17cade2
CM
3393
3394 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
b308bc2f 3395 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
e17cade2 3396
5f39d397 3397 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3398 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3399 lower_gen = btrfs_header_generation(lower);
31840ae1 3400 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3401
3402 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3403
5f39d397 3404 btrfs_mark_buffer_dirty(c);
d5719762 3405
925baedd 3406 old = root->node;
fdd99c72 3407 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3408 rcu_assign_pointer(root->node, c);
925baedd
CM
3409
3410 /* the super has an extra ref to root->node */
3411 free_extent_buffer(old);
3412
0b86a832 3413 add_root_to_dirty_list(root);
5f39d397
CM
3414 extent_buffer_get(c);
3415 path->nodes[level] = c;
95449a16 3416 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3417 path->slots[level] = 0;
3418 return 0;
3419}
3420
74123bd7
CM
3421/*
3422 * worker function to insert a single pointer in a node.
3423 * the node should have enough room for the pointer already
97571fd0 3424 *
74123bd7
CM
3425 * slot and level indicate where you want the key to go, and
3426 * blocknr is the block the key points to.
3427 */
143bede5
JM
3428static void insert_ptr(struct btrfs_trans_handle *trans,
3429 struct btrfs_root *root, struct btrfs_path *path,
3430 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3431 int slot, int level)
74123bd7 3432{
5f39d397 3433 struct extent_buffer *lower;
74123bd7 3434 int nritems;
f3ea38da 3435 int ret;
5c680ed6
CM
3436
3437 BUG_ON(!path->nodes[level]);
f0486c68 3438 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3439 lower = path->nodes[level];
3440 nritems = btrfs_header_nritems(lower);
c293498b 3441 BUG_ON(slot > nritems);
143bede5 3442 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3443 if (slot != nritems) {
c3e06965 3444 if (level)
f3ea38da
JS
3445 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3446 slot, nritems - slot);
5f39d397
CM
3447 memmove_extent_buffer(lower,
3448 btrfs_node_key_ptr_offset(slot + 1),
3449 btrfs_node_key_ptr_offset(slot),
d6025579 3450 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3451 }
c3e06965 3452 if (level) {
f3ea38da 3453 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
c8cc6341 3454 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3455 BUG_ON(ret < 0);
3456 }
5f39d397 3457 btrfs_set_node_key(lower, key, slot);
db94535d 3458 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3459 WARN_ON(trans->transid == 0);
3460 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3461 btrfs_set_header_nritems(lower, nritems + 1);
3462 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3463}
3464
97571fd0
CM
3465/*
3466 * split the node at the specified level in path in two.
3467 * The path is corrected to point to the appropriate node after the split
3468 *
3469 * Before splitting this tries to make some room in the node by pushing
3470 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3471 *
3472 * returns 0 on success and < 0 on failure
97571fd0 3473 */
e02119d5
CM
3474static noinline int split_node(struct btrfs_trans_handle *trans,
3475 struct btrfs_root *root,
3476 struct btrfs_path *path, int level)
be0e5c09 3477{
5f39d397
CM
3478 struct extent_buffer *c;
3479 struct extent_buffer *split;
3480 struct btrfs_disk_key disk_key;
be0e5c09 3481 int mid;
5c680ed6 3482 int ret;
7518a238 3483 u32 c_nritems;
eb60ceac 3484
5f39d397 3485 c = path->nodes[level];
7bb86316 3486 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3487 if (c == root->node) {
d9abbf1c 3488 /*
90f8d62e
JS
3489 * trying to split the root, lets make a new one
3490 *
fdd99c72 3491 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3492 * insert_new_root, because that root buffer will be kept as a
3493 * normal node. We are going to log removal of half of the
3494 * elements below with tree_mod_log_eb_copy. We're holding a
3495 * tree lock on the buffer, which is why we cannot race with
3496 * other tree_mod_log users.
d9abbf1c 3497 */
fdd99c72 3498 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3499 if (ret)
3500 return ret;
b3612421 3501 } else {
e66f709b 3502 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3503 c = path->nodes[level];
3504 if (!ret && btrfs_header_nritems(c) <
c448acf0 3505 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3506 return 0;
54aa1f4d
CM
3507 if (ret < 0)
3508 return ret;
be0e5c09 3509 }
e66f709b 3510
5f39d397 3511 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3512 mid = (c_nritems + 1) / 2;
3513 btrfs_node_key(c, &disk_key, mid);
7bb86316 3514
4d75f8a9
DS
3515 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3516 &disk_key, level, c->start, 0);
5f39d397
CM
3517 if (IS_ERR(split))
3518 return PTR_ERR(split);
3519
f0486c68
YZ
3520 root_add_used(root, root->nodesize);
3521
5d4f98a2 3522 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3523 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3524 btrfs_set_header_bytenr(split, split->start);
5f39d397 3525 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3526 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3527 btrfs_set_header_owner(split, root->root_key.objectid);
3528 write_extent_buffer(split, root->fs_info->fsid,
0a4e5586 3529 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e17cade2 3530 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
b308bc2f 3531 btrfs_header_chunk_tree_uuid(split),
e17cade2 3532 BTRFS_UUID_SIZE);
54aa1f4d 3533
5de865ee
FDBM
3534 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3535 mid, c_nritems - mid);
3536 if (ret) {
66642832 3537 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3538 return ret;
3539 }
5f39d397
CM
3540 copy_extent_buffer(split, c,
3541 btrfs_node_key_ptr_offset(0),
3542 btrfs_node_key_ptr_offset(mid),
3543 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3544 btrfs_set_header_nritems(split, c_nritems - mid);
3545 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3546 ret = 0;
3547
5f39d397
CM
3548 btrfs_mark_buffer_dirty(c);
3549 btrfs_mark_buffer_dirty(split);
3550
143bede5 3551 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3552 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3553
5de08d7d 3554 if (path->slots[level] >= mid) {
5c680ed6 3555 path->slots[level] -= mid;
925baedd 3556 btrfs_tree_unlock(c);
5f39d397
CM
3557 free_extent_buffer(c);
3558 path->nodes[level] = split;
5c680ed6
CM
3559 path->slots[level + 1] += 1;
3560 } else {
925baedd 3561 btrfs_tree_unlock(split);
5f39d397 3562 free_extent_buffer(split);
be0e5c09 3563 }
aa5d6bed 3564 return ret;
be0e5c09
CM
3565}
3566
74123bd7
CM
3567/*
3568 * how many bytes are required to store the items in a leaf. start
3569 * and nr indicate which items in the leaf to check. This totals up the
3570 * space used both by the item structs and the item data
3571 */
5f39d397 3572static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3573{
41be1f3b
JB
3574 struct btrfs_item *start_item;
3575 struct btrfs_item *end_item;
3576 struct btrfs_map_token token;
be0e5c09 3577 int data_len;
5f39d397 3578 int nritems = btrfs_header_nritems(l);
d4dbff95 3579 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3580
3581 if (!nr)
3582 return 0;
41be1f3b 3583 btrfs_init_map_token(&token);
dd3cc16b
RK
3584 start_item = btrfs_item_nr(start);
3585 end_item = btrfs_item_nr(end);
41be1f3b
JB
3586 data_len = btrfs_token_item_offset(l, start_item, &token) +
3587 btrfs_token_item_size(l, start_item, &token);
3588 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3589 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3590 WARN_ON(data_len < 0);
be0e5c09
CM
3591 return data_len;
3592}
3593
d4dbff95
CM
3594/*
3595 * The space between the end of the leaf items and
3596 * the start of the leaf data. IOW, how much room
3597 * the leaf has left for both items and data
3598 */
d397712b 3599noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3600 struct extent_buffer *leaf)
d4dbff95 3601{
5f39d397
CM
3602 int nritems = btrfs_header_nritems(leaf);
3603 int ret;
3604 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3605 if (ret < 0) {
efe120a0
FH
3606 btrfs_crit(root->fs_info,
3607 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
ae2f5411 3608 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3609 leaf_space_used(leaf, 0, nritems), nritems);
3610 }
3611 return ret;
d4dbff95
CM
3612}
3613
99d8f83c
CM
3614/*
3615 * min slot controls the lowest index we're willing to push to the
3616 * right. We'll push up to and including min_slot, but no lower
3617 */
44871b1b
CM
3618static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3619 struct btrfs_root *root,
3620 struct btrfs_path *path,
3621 int data_size, int empty,
3622 struct extent_buffer *right,
99d8f83c
CM
3623 int free_space, u32 left_nritems,
3624 u32 min_slot)
00ec4c51 3625{
5f39d397 3626 struct extent_buffer *left = path->nodes[0];
44871b1b 3627 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3628 struct btrfs_map_token token;
5f39d397 3629 struct btrfs_disk_key disk_key;
00ec4c51 3630 int slot;
34a38218 3631 u32 i;
00ec4c51
CM
3632 int push_space = 0;
3633 int push_items = 0;
0783fcfc 3634 struct btrfs_item *item;
34a38218 3635 u32 nr;
7518a238 3636 u32 right_nritems;
5f39d397 3637 u32 data_end;
db94535d 3638 u32 this_item_size;
00ec4c51 3639
cfed81a0
CM
3640 btrfs_init_map_token(&token);
3641
34a38218
CM
3642 if (empty)
3643 nr = 0;
3644 else
99d8f83c 3645 nr = max_t(u32, 1, min_slot);
34a38218 3646
31840ae1 3647 if (path->slots[0] >= left_nritems)
87b29b20 3648 push_space += data_size;
31840ae1 3649
44871b1b 3650 slot = path->slots[1];
34a38218
CM
3651 i = left_nritems - 1;
3652 while (i >= nr) {
dd3cc16b 3653 item = btrfs_item_nr(i);
db94535d 3654
31840ae1
ZY
3655 if (!empty && push_items > 0) {
3656 if (path->slots[0] > i)
3657 break;
3658 if (path->slots[0] == i) {
3659 int space = btrfs_leaf_free_space(root, left);
3660 if (space + push_space * 2 > free_space)
3661 break;
3662 }
3663 }
3664
00ec4c51 3665 if (path->slots[0] == i)
87b29b20 3666 push_space += data_size;
db94535d 3667
db94535d
CM
3668 this_item_size = btrfs_item_size(left, item);
3669 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3670 break;
31840ae1 3671
00ec4c51 3672 push_items++;
db94535d 3673 push_space += this_item_size + sizeof(*item);
34a38218
CM
3674 if (i == 0)
3675 break;
3676 i--;
db94535d 3677 }
5f39d397 3678
925baedd
CM
3679 if (push_items == 0)
3680 goto out_unlock;
5f39d397 3681
6c1500f2 3682 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3683
00ec4c51 3684 /* push left to right */
5f39d397 3685 right_nritems = btrfs_header_nritems(right);
34a38218 3686
5f39d397 3687 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3688 push_space -= leaf_data_end(root, left);
5f39d397 3689
00ec4c51 3690 /* make room in the right data area */
5f39d397
CM
3691 data_end = leaf_data_end(root, right);
3692 memmove_extent_buffer(right,
3693 btrfs_leaf_data(right) + data_end - push_space,
3694 btrfs_leaf_data(right) + data_end,
3695 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3696
00ec4c51 3697 /* copy from the left data area */
5f39d397 3698 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3699 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3700 btrfs_leaf_data(left) + leaf_data_end(root, left),
3701 push_space);
5f39d397
CM
3702
3703 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3704 btrfs_item_nr_offset(0),
3705 right_nritems * sizeof(struct btrfs_item));
3706
00ec4c51 3707 /* copy the items from left to right */
5f39d397
CM
3708 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3709 btrfs_item_nr_offset(left_nritems - push_items),
3710 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3711
3712 /* update the item pointers */
7518a238 3713 right_nritems += push_items;
5f39d397 3714 btrfs_set_header_nritems(right, right_nritems);
123abc88 3715 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3716 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3717 item = btrfs_item_nr(i);
cfed81a0
CM
3718 push_space -= btrfs_token_item_size(right, item, &token);
3719 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3720 }
3721
7518a238 3722 left_nritems -= push_items;
5f39d397 3723 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3724
34a38218
CM
3725 if (left_nritems)
3726 btrfs_mark_buffer_dirty(left);
f0486c68 3727 else
01d58472 3728 clean_tree_block(trans, root->fs_info, left);
f0486c68 3729
5f39d397 3730 btrfs_mark_buffer_dirty(right);
a429e513 3731
5f39d397
CM
3732 btrfs_item_key(right, &disk_key, 0);
3733 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3734 btrfs_mark_buffer_dirty(upper);
02217ed2 3735
00ec4c51 3736 /* then fixup the leaf pointer in the path */
7518a238
CM
3737 if (path->slots[0] >= left_nritems) {
3738 path->slots[0] -= left_nritems;
925baedd 3739 if (btrfs_header_nritems(path->nodes[0]) == 0)
01d58472 3740 clean_tree_block(trans, root->fs_info, path->nodes[0]);
925baedd 3741 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3742 free_extent_buffer(path->nodes[0]);
3743 path->nodes[0] = right;
00ec4c51
CM
3744 path->slots[1] += 1;
3745 } else {
925baedd 3746 btrfs_tree_unlock(right);
5f39d397 3747 free_extent_buffer(right);
00ec4c51
CM
3748 }
3749 return 0;
925baedd
CM
3750
3751out_unlock:
3752 btrfs_tree_unlock(right);
3753 free_extent_buffer(right);
3754 return 1;
00ec4c51 3755}
925baedd 3756
44871b1b
CM
3757/*
3758 * push some data in the path leaf to the right, trying to free up at
3759 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3760 *
3761 * returns 1 if the push failed because the other node didn't have enough
3762 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3763 *
3764 * this will push starting from min_slot to the end of the leaf. It won't
3765 * push any slot lower than min_slot
44871b1b
CM
3766 */
3767static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3768 *root, struct btrfs_path *path,
3769 int min_data_size, int data_size,
3770 int empty, u32 min_slot)
44871b1b
CM
3771{
3772 struct extent_buffer *left = path->nodes[0];
3773 struct extent_buffer *right;
3774 struct extent_buffer *upper;
3775 int slot;
3776 int free_space;
3777 u32 left_nritems;
3778 int ret;
3779
3780 if (!path->nodes[1])
3781 return 1;
3782
3783 slot = path->slots[1];
3784 upper = path->nodes[1];
3785 if (slot >= btrfs_header_nritems(upper) - 1)
3786 return 1;
3787
3788 btrfs_assert_tree_locked(path->nodes[1]);
3789
3790 right = read_node_slot(root, upper, slot + 1);
fb770ae4
LB
3791 /*
3792 * slot + 1 is not valid or we fail to read the right node,
3793 * no big deal, just return.
3794 */
3795 if (IS_ERR(right))
91ca338d
TI
3796 return 1;
3797
44871b1b
CM
3798 btrfs_tree_lock(right);
3799 btrfs_set_lock_blocking(right);
3800
3801 free_space = btrfs_leaf_free_space(root, right);
3802 if (free_space < data_size)
3803 goto out_unlock;
3804
3805 /* cow and double check */
3806 ret = btrfs_cow_block(trans, root, right, upper,
3807 slot + 1, &right);
3808 if (ret)
3809 goto out_unlock;
3810
3811 free_space = btrfs_leaf_free_space(root, right);
3812 if (free_space < data_size)
3813 goto out_unlock;
3814
3815 left_nritems = btrfs_header_nritems(left);
3816 if (left_nritems == 0)
3817 goto out_unlock;
3818
2ef1fed2
FDBM
3819 if (path->slots[0] == left_nritems && !empty) {
3820 /* Key greater than all keys in the leaf, right neighbor has
3821 * enough room for it and we're not emptying our leaf to delete
3822 * it, therefore use right neighbor to insert the new item and
3823 * no need to touch/dirty our left leaft. */
3824 btrfs_tree_unlock(left);
3825 free_extent_buffer(left);
3826 path->nodes[0] = right;
3827 path->slots[0] = 0;
3828 path->slots[1]++;
3829 return 0;
3830 }
3831
99d8f83c
CM
3832 return __push_leaf_right(trans, root, path, min_data_size, empty,
3833 right, free_space, left_nritems, min_slot);
44871b1b
CM
3834out_unlock:
3835 btrfs_tree_unlock(right);
3836 free_extent_buffer(right);
3837 return 1;
3838}
3839
74123bd7
CM
3840/*
3841 * push some data in the path leaf to the left, trying to free up at
3842 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3843 *
3844 * max_slot can put a limit on how far into the leaf we'll push items. The
3845 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3846 * items
74123bd7 3847 */
44871b1b
CM
3848static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root,
3850 struct btrfs_path *path, int data_size,
3851 int empty, struct extent_buffer *left,
99d8f83c
CM
3852 int free_space, u32 right_nritems,
3853 u32 max_slot)
be0e5c09 3854{
5f39d397
CM
3855 struct btrfs_disk_key disk_key;
3856 struct extent_buffer *right = path->nodes[0];
be0e5c09 3857 int i;
be0e5c09
CM
3858 int push_space = 0;
3859 int push_items = 0;
0783fcfc 3860 struct btrfs_item *item;
7518a238 3861 u32 old_left_nritems;
34a38218 3862 u32 nr;
aa5d6bed 3863 int ret = 0;
db94535d
CM
3864 u32 this_item_size;
3865 u32 old_left_item_size;
cfed81a0
CM
3866 struct btrfs_map_token token;
3867
3868 btrfs_init_map_token(&token);
be0e5c09 3869
34a38218 3870 if (empty)
99d8f83c 3871 nr = min(right_nritems, max_slot);
34a38218 3872 else
99d8f83c 3873 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3874
3875 for (i = 0; i < nr; i++) {
dd3cc16b 3876 item = btrfs_item_nr(i);
db94535d 3877
31840ae1
ZY
3878 if (!empty && push_items > 0) {
3879 if (path->slots[0] < i)
3880 break;
3881 if (path->slots[0] == i) {
3882 int space = btrfs_leaf_free_space(root, right);
3883 if (space + push_space * 2 > free_space)
3884 break;
3885 }
3886 }
3887
be0e5c09 3888 if (path->slots[0] == i)
87b29b20 3889 push_space += data_size;
db94535d
CM
3890
3891 this_item_size = btrfs_item_size(right, item);
3892 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3893 break;
db94535d 3894
be0e5c09 3895 push_items++;
db94535d
CM
3896 push_space += this_item_size + sizeof(*item);
3897 }
3898
be0e5c09 3899 if (push_items == 0) {
925baedd
CM
3900 ret = 1;
3901 goto out;
be0e5c09 3902 }
fae7f21c 3903 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3904
be0e5c09 3905 /* push data from right to left */
5f39d397
CM
3906 copy_extent_buffer(left, right,
3907 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3908 btrfs_item_nr_offset(0),
3909 push_items * sizeof(struct btrfs_item));
3910
123abc88 3911 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3912 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3913
3914 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3915 leaf_data_end(root, left) - push_space,
3916 btrfs_leaf_data(right) +
5f39d397 3917 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3918 push_space);
5f39d397 3919 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3920 BUG_ON(old_left_nritems <= 0);
eb60ceac 3921
db94535d 3922 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3923 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3924 u32 ioff;
db94535d 3925
dd3cc16b 3926 item = btrfs_item_nr(i);
db94535d 3927
cfed81a0
CM
3928 ioff = btrfs_token_item_offset(left, item, &token);
3929 btrfs_set_token_item_offset(left, item,
3930 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3931 &token);
be0e5c09 3932 }
5f39d397 3933 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3934
3935 /* fixup right node */
31b1a2bd
JL
3936 if (push_items > right_nritems)
3937 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3938 right_nritems);
34a38218
CM
3939
3940 if (push_items < right_nritems) {
3941 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3942 leaf_data_end(root, right);
3943 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3944 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3945 btrfs_leaf_data(right) +
3946 leaf_data_end(root, right), push_space);
3947
3948 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3949 btrfs_item_nr_offset(push_items),
3950 (btrfs_header_nritems(right) - push_items) *
3951 sizeof(struct btrfs_item));
34a38218 3952 }
eef1c494
Y
3953 right_nritems -= push_items;
3954 btrfs_set_header_nritems(right, right_nritems);
123abc88 3955 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397 3956 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3957 item = btrfs_item_nr(i);
db94535d 3958
cfed81a0
CM
3959 push_space = push_space - btrfs_token_item_size(right,
3960 item, &token);
3961 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3962 }
eb60ceac 3963
5f39d397 3964 btrfs_mark_buffer_dirty(left);
34a38218
CM
3965 if (right_nritems)
3966 btrfs_mark_buffer_dirty(right);
f0486c68 3967 else
01d58472 3968 clean_tree_block(trans, root->fs_info, right);
098f59c2 3969
5f39d397 3970 btrfs_item_key(right, &disk_key, 0);
b7a0365e 3971 fixup_low_keys(root->fs_info, path, &disk_key, 1);
be0e5c09
CM
3972
3973 /* then fixup the leaf pointer in the path */
3974 if (path->slots[0] < push_items) {
3975 path->slots[0] += old_left_nritems;
925baedd 3976 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3977 free_extent_buffer(path->nodes[0]);
3978 path->nodes[0] = left;
be0e5c09
CM
3979 path->slots[1] -= 1;
3980 } else {
925baedd 3981 btrfs_tree_unlock(left);
5f39d397 3982 free_extent_buffer(left);
be0e5c09
CM
3983 path->slots[0] -= push_items;
3984 }
eb60ceac 3985 BUG_ON(path->slots[0] < 0);
aa5d6bed 3986 return ret;
925baedd
CM
3987out:
3988 btrfs_tree_unlock(left);
3989 free_extent_buffer(left);
3990 return ret;
be0e5c09
CM
3991}
3992
44871b1b
CM
3993/*
3994 * push some data in the path leaf to the left, trying to free up at
3995 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3996 *
3997 * max_slot can put a limit on how far into the leaf we'll push items. The
3998 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3999 * items
44871b1b
CM
4000 */
4001static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
4002 *root, struct btrfs_path *path, int min_data_size,
4003 int data_size, int empty, u32 max_slot)
44871b1b
CM
4004{
4005 struct extent_buffer *right = path->nodes[0];
4006 struct extent_buffer *left;
4007 int slot;
4008 int free_space;
4009 u32 right_nritems;
4010 int ret = 0;
4011
4012 slot = path->slots[1];
4013 if (slot == 0)
4014 return 1;
4015 if (!path->nodes[1])
4016 return 1;
4017
4018 right_nritems = btrfs_header_nritems(right);
4019 if (right_nritems == 0)
4020 return 1;
4021
4022 btrfs_assert_tree_locked(path->nodes[1]);
4023
4024 left = read_node_slot(root, path->nodes[1], slot - 1);
fb770ae4
LB
4025 /*
4026 * slot - 1 is not valid or we fail to read the left node,
4027 * no big deal, just return.
4028 */
4029 if (IS_ERR(left))
91ca338d
TI
4030 return 1;
4031
44871b1b
CM
4032 btrfs_tree_lock(left);
4033 btrfs_set_lock_blocking(left);
4034
4035 free_space = btrfs_leaf_free_space(root, left);
4036 if (free_space < data_size) {
4037 ret = 1;
4038 goto out;
4039 }
4040
4041 /* cow and double check */
4042 ret = btrfs_cow_block(trans, root, left,
4043 path->nodes[1], slot - 1, &left);
4044 if (ret) {
4045 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4046 if (ret == -ENOSPC)
4047 ret = 1;
44871b1b
CM
4048 goto out;
4049 }
4050
4051 free_space = btrfs_leaf_free_space(root, left);
4052 if (free_space < data_size) {
4053 ret = 1;
4054 goto out;
4055 }
4056
99d8f83c
CM
4057 return __push_leaf_left(trans, root, path, min_data_size,
4058 empty, left, free_space, right_nritems,
4059 max_slot);
44871b1b
CM
4060out:
4061 btrfs_tree_unlock(left);
4062 free_extent_buffer(left);
4063 return ret;
4064}
4065
4066/*
4067 * split the path's leaf in two, making sure there is at least data_size
4068 * available for the resulting leaf level of the path.
44871b1b 4069 */
143bede5
JM
4070static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4071 struct btrfs_root *root,
4072 struct btrfs_path *path,
4073 struct extent_buffer *l,
4074 struct extent_buffer *right,
4075 int slot, int mid, int nritems)
44871b1b
CM
4076{
4077 int data_copy_size;
4078 int rt_data_off;
4079 int i;
44871b1b 4080 struct btrfs_disk_key disk_key;
cfed81a0
CM
4081 struct btrfs_map_token token;
4082
4083 btrfs_init_map_token(&token);
44871b1b
CM
4084
4085 nritems = nritems - mid;
4086 btrfs_set_header_nritems(right, nritems);
4087 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4088
4089 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4090 btrfs_item_nr_offset(mid),
4091 nritems * sizeof(struct btrfs_item));
4092
4093 copy_extent_buffer(right, l,
4094 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4095 data_copy_size, btrfs_leaf_data(l) +
4096 leaf_data_end(root, l), data_copy_size);
4097
4098 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4099 btrfs_item_end_nr(l, mid);
4100
4101 for (i = 0; i < nritems; i++) {
dd3cc16b 4102 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4103 u32 ioff;
4104
cfed81a0
CM
4105 ioff = btrfs_token_item_offset(right, item, &token);
4106 btrfs_set_token_item_offset(right, item,
4107 ioff + rt_data_off, &token);
44871b1b
CM
4108 }
4109
44871b1b 4110 btrfs_set_header_nritems(l, mid);
44871b1b 4111 btrfs_item_key(right, &disk_key, 0);
143bede5 4112 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4113 path->slots[1] + 1, 1);
44871b1b
CM
4114
4115 btrfs_mark_buffer_dirty(right);
4116 btrfs_mark_buffer_dirty(l);
4117 BUG_ON(path->slots[0] != slot);
4118
44871b1b
CM
4119 if (mid <= slot) {
4120 btrfs_tree_unlock(path->nodes[0]);
4121 free_extent_buffer(path->nodes[0]);
4122 path->nodes[0] = right;
4123 path->slots[0] -= mid;
4124 path->slots[1] += 1;
4125 } else {
4126 btrfs_tree_unlock(right);
4127 free_extent_buffer(right);
4128 }
4129
4130 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4131}
4132
99d8f83c
CM
4133/*
4134 * double splits happen when we need to insert a big item in the middle
4135 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4136 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4137 * A B C
4138 *
4139 * We avoid this by trying to push the items on either side of our target
4140 * into the adjacent leaves. If all goes well we can avoid the double split
4141 * completely.
4142 */
4143static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4144 struct btrfs_root *root,
4145 struct btrfs_path *path,
4146 int data_size)
4147{
4148 int ret;
4149 int progress = 0;
4150 int slot;
4151 u32 nritems;
5a4267ca 4152 int space_needed = data_size;
99d8f83c
CM
4153
4154 slot = path->slots[0];
5a4267ca
FDBM
4155 if (slot < btrfs_header_nritems(path->nodes[0]))
4156 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
99d8f83c
CM
4157
4158 /*
4159 * try to push all the items after our slot into the
4160 * right leaf
4161 */
5a4267ca 4162 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4163 if (ret < 0)
4164 return ret;
4165
4166 if (ret == 0)
4167 progress++;
4168
4169 nritems = btrfs_header_nritems(path->nodes[0]);
4170 /*
4171 * our goal is to get our slot at the start or end of a leaf. If
4172 * we've done so we're done
4173 */
4174 if (path->slots[0] == 0 || path->slots[0] == nritems)
4175 return 0;
4176
4177 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4178 return 0;
4179
4180 /* try to push all the items before our slot into the next leaf */
4181 slot = path->slots[0];
5a4267ca 4182 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4183 if (ret < 0)
4184 return ret;
4185
4186 if (ret == 0)
4187 progress++;
4188
4189 if (progress)
4190 return 0;
4191 return 1;
4192}
4193
74123bd7
CM
4194/*
4195 * split the path's leaf in two, making sure there is at least data_size
4196 * available for the resulting leaf level of the path.
aa5d6bed
CM
4197 *
4198 * returns 0 if all went well and < 0 on failure.
74123bd7 4199 */
e02119d5
CM
4200static noinline int split_leaf(struct btrfs_trans_handle *trans,
4201 struct btrfs_root *root,
4202 struct btrfs_key *ins_key,
4203 struct btrfs_path *path, int data_size,
4204 int extend)
be0e5c09 4205{
5d4f98a2 4206 struct btrfs_disk_key disk_key;
5f39d397 4207 struct extent_buffer *l;
7518a238 4208 u32 nritems;
eb60ceac
CM
4209 int mid;
4210 int slot;
5f39d397 4211 struct extent_buffer *right;
b7a0365e 4212 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4213 int ret = 0;
aa5d6bed 4214 int wret;
5d4f98a2 4215 int split;
cc0c5538 4216 int num_doubles = 0;
99d8f83c 4217 int tried_avoid_double = 0;
aa5d6bed 4218
a5719521
YZ
4219 l = path->nodes[0];
4220 slot = path->slots[0];
4221 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4222 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4223 return -EOVERFLOW;
4224
40689478 4225 /* first try to make some room by pushing left and right */
33157e05 4226 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4227 int space_needed = data_size;
4228
4229 if (slot < btrfs_header_nritems(l))
4230 space_needed -= btrfs_leaf_free_space(root, l);
4231
4232 wret = push_leaf_right(trans, root, path, space_needed,
4233 space_needed, 0, 0);
d397712b 4234 if (wret < 0)
eaee50e8 4235 return wret;
3685f791 4236 if (wret) {
5a4267ca
FDBM
4237 wret = push_leaf_left(trans, root, path, space_needed,
4238 space_needed, 0, (u32)-1);
3685f791
CM
4239 if (wret < 0)
4240 return wret;
4241 }
4242 l = path->nodes[0];
aa5d6bed 4243
3685f791 4244 /* did the pushes work? */
87b29b20 4245 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 4246 return 0;
3326d1b0 4247 }
aa5d6bed 4248
5c680ed6 4249 if (!path->nodes[1]) {
fdd99c72 4250 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4251 if (ret)
4252 return ret;
4253 }
cc0c5538 4254again:
5d4f98a2 4255 split = 1;
cc0c5538 4256 l = path->nodes[0];
eb60ceac 4257 slot = path->slots[0];
5f39d397 4258 nritems = btrfs_header_nritems(l);
d397712b 4259 mid = (nritems + 1) / 2;
54aa1f4d 4260
5d4f98a2
YZ
4261 if (mid <= slot) {
4262 if (nritems == 1 ||
4263 leaf_space_used(l, mid, nritems - mid) + data_size >
4264 BTRFS_LEAF_DATA_SIZE(root)) {
4265 if (slot >= nritems) {
4266 split = 0;
4267 } else {
4268 mid = slot;
4269 if (mid != nritems &&
4270 leaf_space_used(l, mid, nritems - mid) +
4271 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4272 if (data_size && !tried_avoid_double)
4273 goto push_for_double;
5d4f98a2
YZ
4274 split = 2;
4275 }
4276 }
4277 }
4278 } else {
4279 if (leaf_space_used(l, 0, mid) + data_size >
4280 BTRFS_LEAF_DATA_SIZE(root)) {
4281 if (!extend && data_size && slot == 0) {
4282 split = 0;
4283 } else if ((extend || !data_size) && slot == 0) {
4284 mid = 1;
4285 } else {
4286 mid = slot;
4287 if (mid != nritems &&
4288 leaf_space_used(l, mid, nritems - mid) +
4289 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4290 if (data_size && !tried_avoid_double)
4291 goto push_for_double;
67871254 4292 split = 2;
5d4f98a2
YZ
4293 }
4294 }
4295 }
4296 }
4297
4298 if (split == 0)
4299 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4300 else
4301 btrfs_item_key(l, &disk_key, mid);
4302
4d75f8a9
DS
4303 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4304 &disk_key, 0, l->start, 0);
f0486c68 4305 if (IS_ERR(right))
5f39d397 4306 return PTR_ERR(right);
f0486c68 4307
707e8a07 4308 root_add_used(root, root->nodesize);
5f39d397
CM
4309
4310 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4311 btrfs_set_header_bytenr(right, right->start);
5f39d397 4312 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4313 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4314 btrfs_set_header_owner(right, root->root_key.objectid);
4315 btrfs_set_header_level(right, 0);
b7a0365e 4316 write_extent_buffer(right, fs_info->fsid,
0a4e5586 4317 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e17cade2 4318
b7a0365e 4319 write_extent_buffer(right, fs_info->chunk_tree_uuid,
b308bc2f 4320 btrfs_header_chunk_tree_uuid(right),
e17cade2 4321 BTRFS_UUID_SIZE);
44871b1b 4322
5d4f98a2
YZ
4323 if (split == 0) {
4324 if (mid <= slot) {
4325 btrfs_set_header_nritems(right, 0);
143bede5 4326 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4327 path->slots[1] + 1, 1);
5d4f98a2
YZ
4328 btrfs_tree_unlock(path->nodes[0]);
4329 free_extent_buffer(path->nodes[0]);
4330 path->nodes[0] = right;
4331 path->slots[0] = 0;
4332 path->slots[1] += 1;
4333 } else {
4334 btrfs_set_header_nritems(right, 0);
143bede5 4335 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4336 path->slots[1], 1);
5d4f98a2
YZ
4337 btrfs_tree_unlock(path->nodes[0]);
4338 free_extent_buffer(path->nodes[0]);
4339 path->nodes[0] = right;
4340 path->slots[0] = 0;
143bede5 4341 if (path->slots[1] == 0)
b7a0365e 4342 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4343 }
5d4f98a2
YZ
4344 btrfs_mark_buffer_dirty(right);
4345 return ret;
d4dbff95 4346 }
74123bd7 4347
143bede5 4348 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4349
5d4f98a2 4350 if (split == 2) {
cc0c5538
CM
4351 BUG_ON(num_doubles != 0);
4352 num_doubles++;
4353 goto again;
a429e513 4354 }
44871b1b 4355
143bede5 4356 return 0;
99d8f83c
CM
4357
4358push_for_double:
4359 push_for_double_split(trans, root, path, data_size);
4360 tried_avoid_double = 1;
4361 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4362 return 0;
4363 goto again;
be0e5c09
CM
4364}
4365
ad48fd75
YZ
4366static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4367 struct btrfs_root *root,
4368 struct btrfs_path *path, int ins_len)
459931ec 4369{
ad48fd75 4370 struct btrfs_key key;
459931ec 4371 struct extent_buffer *leaf;
ad48fd75
YZ
4372 struct btrfs_file_extent_item *fi;
4373 u64 extent_len = 0;
4374 u32 item_size;
4375 int ret;
459931ec
CM
4376
4377 leaf = path->nodes[0];
ad48fd75
YZ
4378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4379
4380 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4381 key.type != BTRFS_EXTENT_CSUM_KEY);
4382
4383 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4384 return 0;
459931ec
CM
4385
4386 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4387 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4388 fi = btrfs_item_ptr(leaf, path->slots[0],
4389 struct btrfs_file_extent_item);
4390 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4391 }
b3b4aa74 4392 btrfs_release_path(path);
459931ec 4393
459931ec 4394 path->keep_locks = 1;
ad48fd75
YZ
4395 path->search_for_split = 1;
4396 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4397 path->search_for_split = 0;
a8df6fe6
FM
4398 if (ret > 0)
4399 ret = -EAGAIN;
ad48fd75
YZ
4400 if (ret < 0)
4401 goto err;
459931ec 4402
ad48fd75
YZ
4403 ret = -EAGAIN;
4404 leaf = path->nodes[0];
a8df6fe6
FM
4405 /* if our item isn't there, return now */
4406 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4407 goto err;
4408
109f6aef
CM
4409 /* the leaf has changed, it now has room. return now */
4410 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4411 goto err;
4412
ad48fd75
YZ
4413 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4414 fi = btrfs_item_ptr(leaf, path->slots[0],
4415 struct btrfs_file_extent_item);
4416 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4417 goto err;
459931ec
CM
4418 }
4419
b9473439 4420 btrfs_set_path_blocking(path);
ad48fd75 4421 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4422 if (ret)
4423 goto err;
459931ec 4424
ad48fd75 4425 path->keep_locks = 0;
b9473439 4426 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4427 return 0;
4428err:
4429 path->keep_locks = 0;
4430 return ret;
4431}
4432
4433static noinline int split_item(struct btrfs_trans_handle *trans,
4434 struct btrfs_root *root,
4435 struct btrfs_path *path,
4436 struct btrfs_key *new_key,
4437 unsigned long split_offset)
4438{
4439 struct extent_buffer *leaf;
4440 struct btrfs_item *item;
4441 struct btrfs_item *new_item;
4442 int slot;
4443 char *buf;
4444 u32 nritems;
4445 u32 item_size;
4446 u32 orig_offset;
4447 struct btrfs_disk_key disk_key;
4448
b9473439
CM
4449 leaf = path->nodes[0];
4450 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4451
b4ce94de
CM
4452 btrfs_set_path_blocking(path);
4453
dd3cc16b 4454 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4455 orig_offset = btrfs_item_offset(leaf, item);
4456 item_size = btrfs_item_size(leaf, item);
4457
459931ec 4458 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4459 if (!buf)
4460 return -ENOMEM;
4461
459931ec
CM
4462 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4463 path->slots[0]), item_size);
459931ec 4464
ad48fd75 4465 slot = path->slots[0] + 1;
459931ec 4466 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4467 if (slot != nritems) {
4468 /* shift the items */
4469 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4470 btrfs_item_nr_offset(slot),
4471 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4472 }
4473
4474 btrfs_cpu_key_to_disk(&disk_key, new_key);
4475 btrfs_set_item_key(leaf, &disk_key, slot);
4476
dd3cc16b 4477 new_item = btrfs_item_nr(slot);
459931ec
CM
4478
4479 btrfs_set_item_offset(leaf, new_item, orig_offset);
4480 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4481
4482 btrfs_set_item_offset(leaf, item,
4483 orig_offset + item_size - split_offset);
4484 btrfs_set_item_size(leaf, item, split_offset);
4485
4486 btrfs_set_header_nritems(leaf, nritems + 1);
4487
4488 /* write the data for the start of the original item */
4489 write_extent_buffer(leaf, buf,
4490 btrfs_item_ptr_offset(leaf, path->slots[0]),
4491 split_offset);
4492
4493 /* write the data for the new item */
4494 write_extent_buffer(leaf, buf + split_offset,
4495 btrfs_item_ptr_offset(leaf, slot),
4496 item_size - split_offset);
4497 btrfs_mark_buffer_dirty(leaf);
4498
ad48fd75 4499 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4500 kfree(buf);
ad48fd75
YZ
4501 return 0;
4502}
4503
4504/*
4505 * This function splits a single item into two items,
4506 * giving 'new_key' to the new item and splitting the
4507 * old one at split_offset (from the start of the item).
4508 *
4509 * The path may be released by this operation. After
4510 * the split, the path is pointing to the old item. The
4511 * new item is going to be in the same node as the old one.
4512 *
4513 * Note, the item being split must be smaller enough to live alone on
4514 * a tree block with room for one extra struct btrfs_item
4515 *
4516 * This allows us to split the item in place, keeping a lock on the
4517 * leaf the entire time.
4518 */
4519int btrfs_split_item(struct btrfs_trans_handle *trans,
4520 struct btrfs_root *root,
4521 struct btrfs_path *path,
4522 struct btrfs_key *new_key,
4523 unsigned long split_offset)
4524{
4525 int ret;
4526 ret = setup_leaf_for_split(trans, root, path,
4527 sizeof(struct btrfs_item));
4528 if (ret)
4529 return ret;
4530
4531 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4532 return ret;
4533}
4534
ad48fd75
YZ
4535/*
4536 * This function duplicate a item, giving 'new_key' to the new item.
4537 * It guarantees both items live in the same tree leaf and the new item
4538 * is contiguous with the original item.
4539 *
4540 * This allows us to split file extent in place, keeping a lock on the
4541 * leaf the entire time.
4542 */
4543int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4544 struct btrfs_root *root,
4545 struct btrfs_path *path,
4546 struct btrfs_key *new_key)
4547{
4548 struct extent_buffer *leaf;
4549 int ret;
4550 u32 item_size;
4551
4552 leaf = path->nodes[0];
4553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4554 ret = setup_leaf_for_split(trans, root, path,
4555 item_size + sizeof(struct btrfs_item));
4556 if (ret)
4557 return ret;
4558
4559 path->slots[0]++;
afe5fea7 4560 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4561 item_size, item_size +
4562 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4563 leaf = path->nodes[0];
4564 memcpy_extent_buffer(leaf,
4565 btrfs_item_ptr_offset(leaf, path->slots[0]),
4566 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4567 item_size);
4568 return 0;
4569}
4570
d352ac68
CM
4571/*
4572 * make the item pointed to by the path smaller. new_size indicates
4573 * how small to make it, and from_end tells us if we just chop bytes
4574 * off the end of the item or if we shift the item to chop bytes off
4575 * the front.
4576 */
afe5fea7 4577void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4578 u32 new_size, int from_end)
b18c6685 4579{
b18c6685 4580 int slot;
5f39d397
CM
4581 struct extent_buffer *leaf;
4582 struct btrfs_item *item;
b18c6685
CM
4583 u32 nritems;
4584 unsigned int data_end;
4585 unsigned int old_data_start;
4586 unsigned int old_size;
4587 unsigned int size_diff;
4588 int i;
cfed81a0
CM
4589 struct btrfs_map_token token;
4590
4591 btrfs_init_map_token(&token);
b18c6685 4592
5f39d397 4593 leaf = path->nodes[0];
179e29e4
CM
4594 slot = path->slots[0];
4595
4596 old_size = btrfs_item_size_nr(leaf, slot);
4597 if (old_size == new_size)
143bede5 4598 return;
b18c6685 4599
5f39d397 4600 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4601 data_end = leaf_data_end(root, leaf);
4602
5f39d397 4603 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4604
b18c6685
CM
4605 size_diff = old_size - new_size;
4606
4607 BUG_ON(slot < 0);
4608 BUG_ON(slot >= nritems);
4609
4610 /*
4611 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4612 */
4613 /* first correct the data pointers */
4614 for (i = slot; i < nritems; i++) {
5f39d397 4615 u32 ioff;
dd3cc16b 4616 item = btrfs_item_nr(i);
db94535d 4617
cfed81a0
CM
4618 ioff = btrfs_token_item_offset(leaf, item, &token);
4619 btrfs_set_token_item_offset(leaf, item,
4620 ioff + size_diff, &token);
b18c6685 4621 }
db94535d 4622
b18c6685 4623 /* shift the data */
179e29e4
CM
4624 if (from_end) {
4625 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4626 data_end + size_diff, btrfs_leaf_data(leaf) +
4627 data_end, old_data_start + new_size - data_end);
4628 } else {
4629 struct btrfs_disk_key disk_key;
4630 u64 offset;
4631
4632 btrfs_item_key(leaf, &disk_key, slot);
4633
4634 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4635 unsigned long ptr;
4636 struct btrfs_file_extent_item *fi;
4637
4638 fi = btrfs_item_ptr(leaf, slot,
4639 struct btrfs_file_extent_item);
4640 fi = (struct btrfs_file_extent_item *)(
4641 (unsigned long)fi - size_diff);
4642
4643 if (btrfs_file_extent_type(leaf, fi) ==
4644 BTRFS_FILE_EXTENT_INLINE) {
4645 ptr = btrfs_item_ptr_offset(leaf, slot);
4646 memmove_extent_buffer(leaf, ptr,
d397712b 4647 (unsigned long)fi,
7ec20afb 4648 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4649 }
4650 }
4651
4652 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4653 data_end + size_diff, btrfs_leaf_data(leaf) +
4654 data_end, old_data_start - data_end);
4655
4656 offset = btrfs_disk_key_offset(&disk_key);
4657 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4658 btrfs_set_item_key(leaf, &disk_key, slot);
4659 if (slot == 0)
b7a0365e 4660 fixup_low_keys(root->fs_info, path, &disk_key, 1);
179e29e4 4661 }
5f39d397 4662
dd3cc16b 4663 item = btrfs_item_nr(slot);
5f39d397
CM
4664 btrfs_set_item_size(leaf, item, new_size);
4665 btrfs_mark_buffer_dirty(leaf);
b18c6685 4666
5f39d397
CM
4667 if (btrfs_leaf_free_space(root, leaf) < 0) {
4668 btrfs_print_leaf(root, leaf);
b18c6685 4669 BUG();
5f39d397 4670 }
b18c6685
CM
4671}
4672
d352ac68 4673/*
8f69dbd2 4674 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4675 */
4b90c680 4676void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4677 u32 data_size)
6567e837 4678{
6567e837 4679 int slot;
5f39d397
CM
4680 struct extent_buffer *leaf;
4681 struct btrfs_item *item;
6567e837
CM
4682 u32 nritems;
4683 unsigned int data_end;
4684 unsigned int old_data;
4685 unsigned int old_size;
4686 int i;
cfed81a0
CM
4687 struct btrfs_map_token token;
4688
4689 btrfs_init_map_token(&token);
6567e837 4690
5f39d397 4691 leaf = path->nodes[0];
6567e837 4692
5f39d397 4693 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4694 data_end = leaf_data_end(root, leaf);
4695
5f39d397
CM
4696 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4697 btrfs_print_leaf(root, leaf);
6567e837 4698 BUG();
5f39d397 4699 }
6567e837 4700 slot = path->slots[0];
5f39d397 4701 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4702
4703 BUG_ON(slot < 0);
3326d1b0
CM
4704 if (slot >= nritems) {
4705 btrfs_print_leaf(root, leaf);
efe120a0 4706 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
d397712b 4707 slot, nritems);
3326d1b0
CM
4708 BUG_ON(1);
4709 }
6567e837
CM
4710
4711 /*
4712 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4713 */
4714 /* first correct the data pointers */
4715 for (i = slot; i < nritems; i++) {
5f39d397 4716 u32 ioff;
dd3cc16b 4717 item = btrfs_item_nr(i);
db94535d 4718
cfed81a0
CM
4719 ioff = btrfs_token_item_offset(leaf, item, &token);
4720 btrfs_set_token_item_offset(leaf, item,
4721 ioff - data_size, &token);
6567e837 4722 }
5f39d397 4723
6567e837 4724 /* shift the data */
5f39d397 4725 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4726 data_end - data_size, btrfs_leaf_data(leaf) +
4727 data_end, old_data - data_end);
5f39d397 4728
6567e837 4729 data_end = old_data;
5f39d397 4730 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4731 item = btrfs_item_nr(slot);
5f39d397
CM
4732 btrfs_set_item_size(leaf, item, old_size + data_size);
4733 btrfs_mark_buffer_dirty(leaf);
6567e837 4734
5f39d397
CM
4735 if (btrfs_leaf_free_space(root, leaf) < 0) {
4736 btrfs_print_leaf(root, leaf);
6567e837 4737 BUG();
5f39d397 4738 }
6567e837
CM
4739}
4740
74123bd7 4741/*
44871b1b
CM
4742 * this is a helper for btrfs_insert_empty_items, the main goal here is
4743 * to save stack depth by doing the bulk of the work in a function
4744 * that doesn't call btrfs_search_slot
74123bd7 4745 */
afe5fea7 4746void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
143bede5
JM
4747 struct btrfs_key *cpu_key, u32 *data_size,
4748 u32 total_data, u32 total_size, int nr)
be0e5c09 4749{
5f39d397 4750 struct btrfs_item *item;
9c58309d 4751 int i;
7518a238 4752 u32 nritems;
be0e5c09 4753 unsigned int data_end;
e2fa7227 4754 struct btrfs_disk_key disk_key;
44871b1b
CM
4755 struct extent_buffer *leaf;
4756 int slot;
cfed81a0
CM
4757 struct btrfs_map_token token;
4758
24cdc847
FM
4759 if (path->slots[0] == 0) {
4760 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
b7a0365e 4761 fixup_low_keys(root->fs_info, path, &disk_key, 1);
24cdc847
FM
4762 }
4763 btrfs_unlock_up_safe(path, 1);
4764
cfed81a0 4765 btrfs_init_map_token(&token);
e2fa7227 4766
5f39d397 4767 leaf = path->nodes[0];
44871b1b 4768 slot = path->slots[0];
74123bd7 4769
5f39d397 4770 nritems = btrfs_header_nritems(leaf);
123abc88 4771 data_end = leaf_data_end(root, leaf);
eb60ceac 4772
f25956cc 4773 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4774 btrfs_print_leaf(root, leaf);
efe120a0 4775 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
9c58309d 4776 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4777 BUG();
d4dbff95 4778 }
5f39d397 4779
be0e5c09 4780 if (slot != nritems) {
5f39d397 4781 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4782
5f39d397
CM
4783 if (old_data < data_end) {
4784 btrfs_print_leaf(root, leaf);
efe120a0 4785 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
5f39d397
CM
4786 slot, old_data, data_end);
4787 BUG_ON(1);
4788 }
be0e5c09
CM
4789 /*
4790 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4791 */
4792 /* first correct the data pointers */
0783fcfc 4793 for (i = slot; i < nritems; i++) {
5f39d397 4794 u32 ioff;
db94535d 4795
dd3cc16b 4796 item = btrfs_item_nr( i);
cfed81a0
CM
4797 ioff = btrfs_token_item_offset(leaf, item, &token);
4798 btrfs_set_token_item_offset(leaf, item,
4799 ioff - total_data, &token);
0783fcfc 4800 }
be0e5c09 4801 /* shift the items */
9c58309d 4802 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4803 btrfs_item_nr_offset(slot),
d6025579 4804 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4805
4806 /* shift the data */
5f39d397 4807 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4808 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4809 data_end, old_data - data_end);
be0e5c09
CM
4810 data_end = old_data;
4811 }
5f39d397 4812
62e2749e 4813 /* setup the item for the new data */
9c58309d
CM
4814 for (i = 0; i < nr; i++) {
4815 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4816 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4817 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4818 btrfs_set_token_item_offset(leaf, item,
4819 data_end - data_size[i], &token);
9c58309d 4820 data_end -= data_size[i];
cfed81a0 4821 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4822 }
44871b1b 4823
9c58309d 4824 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4825 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4826
5f39d397
CM
4827 if (btrfs_leaf_free_space(root, leaf) < 0) {
4828 btrfs_print_leaf(root, leaf);
be0e5c09 4829 BUG();
5f39d397 4830 }
44871b1b
CM
4831}
4832
4833/*
4834 * Given a key and some data, insert items into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4836 */
4837int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4838 struct btrfs_root *root,
4839 struct btrfs_path *path,
4840 struct btrfs_key *cpu_key, u32 *data_size,
4841 int nr)
4842{
44871b1b
CM
4843 int ret = 0;
4844 int slot;
4845 int i;
4846 u32 total_size = 0;
4847 u32 total_data = 0;
4848
4849 for (i = 0; i < nr; i++)
4850 total_data += data_size[i];
4851
4852 total_size = total_data + (nr * sizeof(struct btrfs_item));
4853 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4854 if (ret == 0)
4855 return -EEXIST;
4856 if (ret < 0)
143bede5 4857 return ret;
44871b1b 4858
44871b1b
CM
4859 slot = path->slots[0];
4860 BUG_ON(slot < 0);
4861
afe5fea7 4862 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4863 total_data, total_size, nr);
143bede5 4864 return 0;
62e2749e
CM
4865}
4866
4867/*
4868 * Given a key and some data, insert an item into the tree.
4869 * This does all the path init required, making room in the tree if needed.
4870 */
e089f05c
CM
4871int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4872 *root, struct btrfs_key *cpu_key, void *data, u32
4873 data_size)
62e2749e
CM
4874{
4875 int ret = 0;
2c90e5d6 4876 struct btrfs_path *path;
5f39d397
CM
4877 struct extent_buffer *leaf;
4878 unsigned long ptr;
62e2749e 4879
2c90e5d6 4880 path = btrfs_alloc_path();
db5b493a
TI
4881 if (!path)
4882 return -ENOMEM;
2c90e5d6 4883 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4884 if (!ret) {
5f39d397
CM
4885 leaf = path->nodes[0];
4886 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4887 write_extent_buffer(leaf, data, ptr, data_size);
4888 btrfs_mark_buffer_dirty(leaf);
62e2749e 4889 }
2c90e5d6 4890 btrfs_free_path(path);
aa5d6bed 4891 return ret;
be0e5c09
CM
4892}
4893
74123bd7 4894/*
5de08d7d 4895 * delete the pointer from a given node.
74123bd7 4896 *
d352ac68
CM
4897 * the tree should have been previously balanced so the deletion does not
4898 * empty a node.
74123bd7 4899 */
afe5fea7
TI
4900static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4901 int level, int slot)
be0e5c09 4902{
5f39d397 4903 struct extent_buffer *parent = path->nodes[level];
7518a238 4904 u32 nritems;
f3ea38da 4905 int ret;
be0e5c09 4906
5f39d397 4907 nritems = btrfs_header_nritems(parent);
d397712b 4908 if (slot != nritems - 1) {
0e411ece 4909 if (level)
f3ea38da
JS
4910 tree_mod_log_eb_move(root->fs_info, parent, slot,
4911 slot + 1, nritems - slot - 1);
5f39d397
CM
4912 memmove_extent_buffer(parent,
4913 btrfs_node_key_ptr_offset(slot),
4914 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4915 sizeof(struct btrfs_key_ptr) *
4916 (nritems - slot - 1));
57ba86c0
CM
4917 } else if (level) {
4918 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
c8cc6341 4919 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4920 BUG_ON(ret < 0);
bb803951 4921 }
f3ea38da 4922
7518a238 4923 nritems--;
5f39d397 4924 btrfs_set_header_nritems(parent, nritems);
7518a238 4925 if (nritems == 0 && parent == root->node) {
5f39d397 4926 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4927 /* just turn the root into a leaf and break */
5f39d397 4928 btrfs_set_header_level(root->node, 0);
bb803951 4929 } else if (slot == 0) {
5f39d397
CM
4930 struct btrfs_disk_key disk_key;
4931
4932 btrfs_node_key(parent, &disk_key, 0);
b7a0365e 4933 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
be0e5c09 4934 }
d6025579 4935 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4936}
4937
323ac95b
CM
4938/*
4939 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4940 * path->nodes[1].
323ac95b
CM
4941 *
4942 * This deletes the pointer in path->nodes[1] and frees the leaf
4943 * block extent. zero is returned if it all worked out, < 0 otherwise.
4944 *
4945 * The path must have already been setup for deleting the leaf, including
4946 * all the proper balancing. path->nodes[1] must be locked.
4947 */
143bede5
JM
4948static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4949 struct btrfs_root *root,
4950 struct btrfs_path *path,
4951 struct extent_buffer *leaf)
323ac95b 4952{
5d4f98a2 4953 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4954 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4955
4d081c41
CM
4956 /*
4957 * btrfs_free_extent is expensive, we want to make sure we
4958 * aren't holding any locks when we call it
4959 */
4960 btrfs_unlock_up_safe(path, 0);
4961
f0486c68
YZ
4962 root_sub_used(root, leaf->len);
4963
3083ee2e 4964 extent_buffer_get(leaf);
5581a51a 4965 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4966 free_extent_buffer_stale(leaf);
323ac95b 4967}
74123bd7
CM
4968/*
4969 * delete the item at the leaf level in path. If that empties
4970 * the leaf, remove it from the tree
4971 */
85e21bac
CM
4972int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4973 struct btrfs_path *path, int slot, int nr)
be0e5c09 4974{
5f39d397
CM
4975 struct extent_buffer *leaf;
4976 struct btrfs_item *item;
ce0eac2a
AM
4977 u32 last_off;
4978 u32 dsize = 0;
aa5d6bed
CM
4979 int ret = 0;
4980 int wret;
85e21bac 4981 int i;
7518a238 4982 u32 nritems;
cfed81a0
CM
4983 struct btrfs_map_token token;
4984
4985 btrfs_init_map_token(&token);
be0e5c09 4986
5f39d397 4987 leaf = path->nodes[0];
85e21bac
CM
4988 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4989
4990 for (i = 0; i < nr; i++)
4991 dsize += btrfs_item_size_nr(leaf, slot + i);
4992
5f39d397 4993 nritems = btrfs_header_nritems(leaf);
be0e5c09 4994
85e21bac 4995 if (slot + nr != nritems) {
123abc88 4996 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4997
4998 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4999 data_end + dsize,
5000 btrfs_leaf_data(leaf) + data_end,
85e21bac 5001 last_off - data_end);
5f39d397 5002
85e21bac 5003 for (i = slot + nr; i < nritems; i++) {
5f39d397 5004 u32 ioff;
db94535d 5005
dd3cc16b 5006 item = btrfs_item_nr(i);
cfed81a0
CM
5007 ioff = btrfs_token_item_offset(leaf, item, &token);
5008 btrfs_set_token_item_offset(leaf, item,
5009 ioff + dsize, &token);
0783fcfc 5010 }
db94535d 5011
5f39d397 5012 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5013 btrfs_item_nr_offset(slot + nr),
d6025579 5014 sizeof(struct btrfs_item) *
85e21bac 5015 (nritems - slot - nr));
be0e5c09 5016 }
85e21bac
CM
5017 btrfs_set_header_nritems(leaf, nritems - nr);
5018 nritems -= nr;
5f39d397 5019
74123bd7 5020 /* delete the leaf if we've emptied it */
7518a238 5021 if (nritems == 0) {
5f39d397
CM
5022 if (leaf == root->node) {
5023 btrfs_set_header_level(leaf, 0);
9a8dd150 5024 } else {
f0486c68 5025 btrfs_set_path_blocking(path);
01d58472 5026 clean_tree_block(trans, root->fs_info, leaf);
143bede5 5027 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5028 }
be0e5c09 5029 } else {
7518a238 5030 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5031 if (slot == 0) {
5f39d397
CM
5032 struct btrfs_disk_key disk_key;
5033
5034 btrfs_item_key(leaf, &disk_key, 0);
b7a0365e 5035 fixup_low_keys(root->fs_info, path, &disk_key, 1);
aa5d6bed 5036 }
aa5d6bed 5037
74123bd7 5038 /* delete the leaf if it is mostly empty */
d717aa1d 5039 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
5040 /* push_leaf_left fixes the path.
5041 * make sure the path still points to our leaf
5042 * for possible call to del_ptr below
5043 */
4920c9ac 5044 slot = path->slots[1];
5f39d397
CM
5045 extent_buffer_get(leaf);
5046
b9473439 5047 btrfs_set_path_blocking(path);
99d8f83c
CM
5048 wret = push_leaf_left(trans, root, path, 1, 1,
5049 1, (u32)-1);
54aa1f4d 5050 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5051 ret = wret;
5f39d397
CM
5052
5053 if (path->nodes[0] == leaf &&
5054 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5055 wret = push_leaf_right(trans, root, path, 1,
5056 1, 1, 0);
54aa1f4d 5057 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5058 ret = wret;
5059 }
5f39d397
CM
5060
5061 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5062 path->slots[1] = slot;
143bede5 5063 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5064 free_extent_buffer(leaf);
143bede5 5065 ret = 0;
5de08d7d 5066 } else {
925baedd
CM
5067 /* if we're still in the path, make sure
5068 * we're dirty. Otherwise, one of the
5069 * push_leaf functions must have already
5070 * dirtied this buffer
5071 */
5072 if (path->nodes[0] == leaf)
5073 btrfs_mark_buffer_dirty(leaf);
5f39d397 5074 free_extent_buffer(leaf);
be0e5c09 5075 }
d5719762 5076 } else {
5f39d397 5077 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5078 }
5079 }
aa5d6bed 5080 return ret;
be0e5c09
CM
5081}
5082
7bb86316 5083/*
925baedd 5084 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5085 * returns 0 if it found something or 1 if there are no lesser leaves.
5086 * returns < 0 on io errors.
d352ac68
CM
5087 *
5088 * This may release the path, and so you may lose any locks held at the
5089 * time you call it.
7bb86316 5090 */
16e7549f 5091int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5092{
925baedd
CM
5093 struct btrfs_key key;
5094 struct btrfs_disk_key found_key;
5095 int ret;
7bb86316 5096
925baedd 5097 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5098
e8b0d724 5099 if (key.offset > 0) {
925baedd 5100 key.offset--;
e8b0d724 5101 } else if (key.type > 0) {
925baedd 5102 key.type--;
e8b0d724
FDBM
5103 key.offset = (u64)-1;
5104 } else if (key.objectid > 0) {
925baedd 5105 key.objectid--;
e8b0d724
FDBM
5106 key.type = (u8)-1;
5107 key.offset = (u64)-1;
5108 } else {
925baedd 5109 return 1;
e8b0d724 5110 }
7bb86316 5111
b3b4aa74 5112 btrfs_release_path(path);
925baedd
CM
5113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5114 if (ret < 0)
5115 return ret;
5116 btrfs_item_key(path->nodes[0], &found_key, 0);
5117 ret = comp_keys(&found_key, &key);
337c6f68
FM
5118 /*
5119 * We might have had an item with the previous key in the tree right
5120 * before we released our path. And after we released our path, that
5121 * item might have been pushed to the first slot (0) of the leaf we
5122 * were holding due to a tree balance. Alternatively, an item with the
5123 * previous key can exist as the only element of a leaf (big fat item).
5124 * Therefore account for these 2 cases, so that our callers (like
5125 * btrfs_previous_item) don't miss an existing item with a key matching
5126 * the previous key we computed above.
5127 */
5128 if (ret <= 0)
925baedd
CM
5129 return 0;
5130 return 1;
7bb86316
CM
5131}
5132
3f157a2f
CM
5133/*
5134 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5135 * for nodes or leaves that are have a minimum transaction id.
5136 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5137 *
5138 * This does not cow, but it does stuff the starting key it finds back
5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140 * key and get a writable path.
5141 *
5142 * This does lock as it descends, and path->keep_locks should be set
5143 * to 1 by the caller.
5144 *
5145 * This honors path->lowest_level to prevent descent past a given level
5146 * of the tree.
5147 *
d352ac68
CM
5148 * min_trans indicates the oldest transaction that you are interested
5149 * in walking through. Any nodes or leaves older than min_trans are
5150 * skipped over (without reading them).
5151 *
3f157a2f
CM
5152 * returns zero if something useful was found, < 0 on error and 1 if there
5153 * was nothing in the tree that matched the search criteria.
5154 */
5155int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5156 struct btrfs_path *path,
3f157a2f
CM
5157 u64 min_trans)
5158{
5159 struct extent_buffer *cur;
5160 struct btrfs_key found_key;
5161 int slot;
9652480b 5162 int sret;
3f157a2f
CM
5163 u32 nritems;
5164 int level;
5165 int ret = 1;
f98de9b9 5166 int keep_locks = path->keep_locks;
3f157a2f 5167
f98de9b9 5168 path->keep_locks = 1;
3f157a2f 5169again:
bd681513 5170 cur = btrfs_read_lock_root_node(root);
3f157a2f 5171 level = btrfs_header_level(cur);
e02119d5 5172 WARN_ON(path->nodes[level]);
3f157a2f 5173 path->nodes[level] = cur;
bd681513 5174 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5175
5176 if (btrfs_header_generation(cur) < min_trans) {
5177 ret = 1;
5178 goto out;
5179 }
d397712b 5180 while (1) {
3f157a2f
CM
5181 nritems = btrfs_header_nritems(cur);
5182 level = btrfs_header_level(cur);
9652480b 5183 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 5184
323ac95b
CM
5185 /* at the lowest level, we're done, setup the path and exit */
5186 if (level == path->lowest_level) {
e02119d5
CM
5187 if (slot >= nritems)
5188 goto find_next_key;
3f157a2f
CM
5189 ret = 0;
5190 path->slots[level] = slot;
5191 btrfs_item_key_to_cpu(cur, &found_key, slot);
5192 goto out;
5193 }
9652480b
Y
5194 if (sret && slot > 0)
5195 slot--;
3f157a2f 5196 /*
de78b51a
ES
5197 * check this node pointer against the min_trans parameters.
5198 * If it is too old, old, skip to the next one.
3f157a2f 5199 */
d397712b 5200 while (slot < nritems) {
3f157a2f 5201 u64 gen;
e02119d5 5202
3f157a2f
CM
5203 gen = btrfs_node_ptr_generation(cur, slot);
5204 if (gen < min_trans) {
5205 slot++;
5206 continue;
5207 }
de78b51a 5208 break;
3f157a2f 5209 }
e02119d5 5210find_next_key:
3f157a2f
CM
5211 /*
5212 * we didn't find a candidate key in this node, walk forward
5213 * and find another one
5214 */
5215 if (slot >= nritems) {
e02119d5 5216 path->slots[level] = slot;
b4ce94de 5217 btrfs_set_path_blocking(path);
e02119d5 5218 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5219 min_trans);
e02119d5 5220 if (sret == 0) {
b3b4aa74 5221 btrfs_release_path(path);
3f157a2f
CM
5222 goto again;
5223 } else {
5224 goto out;
5225 }
5226 }
5227 /* save our key for returning back */
5228 btrfs_node_key_to_cpu(cur, &found_key, slot);
5229 path->slots[level] = slot;
5230 if (level == path->lowest_level) {
5231 ret = 0;
3f157a2f
CM
5232 goto out;
5233 }
b4ce94de 5234 btrfs_set_path_blocking(path);
3f157a2f 5235 cur = read_node_slot(root, cur, slot);
fb770ae4
LB
5236 if (IS_ERR(cur)) {
5237 ret = PTR_ERR(cur);
5238 goto out;
5239 }
3f157a2f 5240
bd681513 5241 btrfs_tree_read_lock(cur);
b4ce94de 5242
bd681513 5243 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5244 path->nodes[level - 1] = cur;
f7c79f30 5245 unlock_up(path, level, 1, 0, NULL);
bd681513 5246 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5247 }
5248out:
f98de9b9
FM
5249 path->keep_locks = keep_locks;
5250 if (ret == 0) {
5251 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5252 btrfs_set_path_blocking(path);
3f157a2f 5253 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5254 }
3f157a2f
CM
5255 return ret;
5256}
5257
fb770ae4 5258static int tree_move_down(struct btrfs_root *root,
7069830a
AB
5259 struct btrfs_path *path,
5260 int *level, int root_level)
5261{
fb770ae4
LB
5262 struct extent_buffer *eb;
5263
74dd17fb 5264 BUG_ON(*level == 0);
fb770ae4
LB
5265 eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5266 if (IS_ERR(eb))
5267 return PTR_ERR(eb);
5268
5269 path->nodes[*level - 1] = eb;
7069830a
AB
5270 path->slots[*level - 1] = 0;
5271 (*level)--;
fb770ae4 5272 return 0;
7069830a
AB
5273}
5274
5275static int tree_move_next_or_upnext(struct btrfs_root *root,
5276 struct btrfs_path *path,
5277 int *level, int root_level)
5278{
5279 int ret = 0;
5280 int nritems;
5281 nritems = btrfs_header_nritems(path->nodes[*level]);
5282
5283 path->slots[*level]++;
5284
74dd17fb 5285 while (path->slots[*level] >= nritems) {
7069830a
AB
5286 if (*level == root_level)
5287 return -1;
5288
5289 /* move upnext */
5290 path->slots[*level] = 0;
5291 free_extent_buffer(path->nodes[*level]);
5292 path->nodes[*level] = NULL;
5293 (*level)++;
5294 path->slots[*level]++;
5295
5296 nritems = btrfs_header_nritems(path->nodes[*level]);
5297 ret = 1;
5298 }
5299 return ret;
5300}
5301
5302/*
5303 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5304 * or down.
5305 */
5306static int tree_advance(struct btrfs_root *root,
5307 struct btrfs_path *path,
5308 int *level, int root_level,
5309 int allow_down,
5310 struct btrfs_key *key)
5311{
5312 int ret;
5313
5314 if (*level == 0 || !allow_down) {
5315 ret = tree_move_next_or_upnext(root, path, level, root_level);
5316 } else {
fb770ae4 5317 ret = tree_move_down(root, path, level, root_level);
7069830a
AB
5318 }
5319 if (ret >= 0) {
5320 if (*level == 0)
5321 btrfs_item_key_to_cpu(path->nodes[*level], key,
5322 path->slots[*level]);
5323 else
5324 btrfs_node_key_to_cpu(path->nodes[*level], key,
5325 path->slots[*level]);
5326 }
5327 return ret;
5328}
5329
5330static int tree_compare_item(struct btrfs_root *left_root,
5331 struct btrfs_path *left_path,
5332 struct btrfs_path *right_path,
5333 char *tmp_buf)
5334{
5335 int cmp;
5336 int len1, len2;
5337 unsigned long off1, off2;
5338
5339 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5340 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5341 if (len1 != len2)
5342 return 1;
5343
5344 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5345 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5346 right_path->slots[0]);
5347
5348 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5349
5350 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5351 if (cmp)
5352 return 1;
5353 return 0;
5354}
5355
5356#define ADVANCE 1
5357#define ADVANCE_ONLY_NEXT -1
5358
5359/*
5360 * This function compares two trees and calls the provided callback for
5361 * every changed/new/deleted item it finds.
5362 * If shared tree blocks are encountered, whole subtrees are skipped, making
5363 * the compare pretty fast on snapshotted subvolumes.
5364 *
5365 * This currently works on commit roots only. As commit roots are read only,
5366 * we don't do any locking. The commit roots are protected with transactions.
5367 * Transactions are ended and rejoined when a commit is tried in between.
5368 *
5369 * This function checks for modifications done to the trees while comparing.
5370 * If it detects a change, it aborts immediately.
5371 */
5372int btrfs_compare_trees(struct btrfs_root *left_root,
5373 struct btrfs_root *right_root,
5374 btrfs_changed_cb_t changed_cb, void *ctx)
5375{
5376 int ret;
5377 int cmp;
7069830a
AB
5378 struct btrfs_path *left_path = NULL;
5379 struct btrfs_path *right_path = NULL;
5380 struct btrfs_key left_key;
5381 struct btrfs_key right_key;
5382 char *tmp_buf = NULL;
5383 int left_root_level;
5384 int right_root_level;
5385 int left_level;
5386 int right_level;
5387 int left_end_reached;
5388 int right_end_reached;
5389 int advance_left;
5390 int advance_right;
5391 u64 left_blockptr;
5392 u64 right_blockptr;
6baa4293
FM
5393 u64 left_gen;
5394 u64 right_gen;
7069830a
AB
5395
5396 left_path = btrfs_alloc_path();
5397 if (!left_path) {
5398 ret = -ENOMEM;
5399 goto out;
5400 }
5401 right_path = btrfs_alloc_path();
5402 if (!right_path) {
5403 ret = -ENOMEM;
5404 goto out;
5405 }
5406
8f282f71 5407 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
7069830a 5408 if (!tmp_buf) {
8f282f71
DS
5409 tmp_buf = vmalloc(left_root->nodesize);
5410 if (!tmp_buf) {
5411 ret = -ENOMEM;
5412 goto out;
5413 }
7069830a
AB
5414 }
5415
5416 left_path->search_commit_root = 1;
5417 left_path->skip_locking = 1;
5418 right_path->search_commit_root = 1;
5419 right_path->skip_locking = 1;
5420
7069830a
AB
5421 /*
5422 * Strategy: Go to the first items of both trees. Then do
5423 *
5424 * If both trees are at level 0
5425 * Compare keys of current items
5426 * If left < right treat left item as new, advance left tree
5427 * and repeat
5428 * If left > right treat right item as deleted, advance right tree
5429 * and repeat
5430 * If left == right do deep compare of items, treat as changed if
5431 * needed, advance both trees and repeat
5432 * If both trees are at the same level but not at level 0
5433 * Compare keys of current nodes/leafs
5434 * If left < right advance left tree and repeat
5435 * If left > right advance right tree and repeat
5436 * If left == right compare blockptrs of the next nodes/leafs
5437 * If they match advance both trees but stay at the same level
5438 * and repeat
5439 * If they don't match advance both trees while allowing to go
5440 * deeper and repeat
5441 * If tree levels are different
5442 * Advance the tree that needs it and repeat
5443 *
5444 * Advancing a tree means:
5445 * If we are at level 0, try to go to the next slot. If that's not
5446 * possible, go one level up and repeat. Stop when we found a level
5447 * where we could go to the next slot. We may at this point be on a
5448 * node or a leaf.
5449 *
5450 * If we are not at level 0 and not on shared tree blocks, go one
5451 * level deeper.
5452 *
5453 * If we are not at level 0 and on shared tree blocks, go one slot to
5454 * the right if possible or go up and right.
5455 */
5456
3f8a18cc 5457 down_read(&left_root->fs_info->commit_root_sem);
7069830a
AB
5458 left_level = btrfs_header_level(left_root->commit_root);
5459 left_root_level = left_level;
5460 left_path->nodes[left_level] = left_root->commit_root;
5461 extent_buffer_get(left_path->nodes[left_level]);
5462
5463 right_level = btrfs_header_level(right_root->commit_root);
5464 right_root_level = right_level;
5465 right_path->nodes[right_level] = right_root->commit_root;
5466 extent_buffer_get(right_path->nodes[right_level]);
3f8a18cc 5467 up_read(&left_root->fs_info->commit_root_sem);
7069830a
AB
5468
5469 if (left_level == 0)
5470 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5471 &left_key, left_path->slots[left_level]);
5472 else
5473 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5474 &left_key, left_path->slots[left_level]);
5475 if (right_level == 0)
5476 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5477 &right_key, right_path->slots[right_level]);
5478 else
5479 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5480 &right_key, right_path->slots[right_level]);
5481
5482 left_end_reached = right_end_reached = 0;
5483 advance_left = advance_right = 0;
5484
5485 while (1) {
7069830a
AB
5486 if (advance_left && !left_end_reached) {
5487 ret = tree_advance(left_root, left_path, &left_level,
5488 left_root_level,
5489 advance_left != ADVANCE_ONLY_NEXT,
5490 &left_key);
fb770ae4 5491 if (ret == -1)
7069830a 5492 left_end_reached = ADVANCE;
fb770ae4
LB
5493 else if (ret < 0)
5494 goto out;
7069830a
AB
5495 advance_left = 0;
5496 }
5497 if (advance_right && !right_end_reached) {
5498 ret = tree_advance(right_root, right_path, &right_level,
5499 right_root_level,
5500 advance_right != ADVANCE_ONLY_NEXT,
5501 &right_key);
fb770ae4 5502 if (ret == -1)
7069830a 5503 right_end_reached = ADVANCE;
fb770ae4
LB
5504 else if (ret < 0)
5505 goto out;
7069830a
AB
5506 advance_right = 0;
5507 }
5508
5509 if (left_end_reached && right_end_reached) {
5510 ret = 0;
5511 goto out;
5512 } else if (left_end_reached) {
5513 if (right_level == 0) {
5514 ret = changed_cb(left_root, right_root,
5515 left_path, right_path,
5516 &right_key,
5517 BTRFS_COMPARE_TREE_DELETED,
5518 ctx);
5519 if (ret < 0)
5520 goto out;
5521 }
5522 advance_right = ADVANCE;
5523 continue;
5524 } else if (right_end_reached) {
5525 if (left_level == 0) {
5526 ret = changed_cb(left_root, right_root,
5527 left_path, right_path,
5528 &left_key,
5529 BTRFS_COMPARE_TREE_NEW,
5530 ctx);
5531 if (ret < 0)
5532 goto out;
5533 }
5534 advance_left = ADVANCE;
5535 continue;
5536 }
5537
5538 if (left_level == 0 && right_level == 0) {
5539 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5540 if (cmp < 0) {
5541 ret = changed_cb(left_root, right_root,
5542 left_path, right_path,
5543 &left_key,
5544 BTRFS_COMPARE_TREE_NEW,
5545 ctx);
5546 if (ret < 0)
5547 goto out;
5548 advance_left = ADVANCE;
5549 } else if (cmp > 0) {
5550 ret = changed_cb(left_root, right_root,
5551 left_path, right_path,
5552 &right_key,
5553 BTRFS_COMPARE_TREE_DELETED,
5554 ctx);
5555 if (ret < 0)
5556 goto out;
5557 advance_right = ADVANCE;
5558 } else {
b99d9a6a 5559 enum btrfs_compare_tree_result result;
ba5e8f2e 5560
74dd17fb 5561 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5562 ret = tree_compare_item(left_root, left_path,
5563 right_path, tmp_buf);
ba5e8f2e 5564 if (ret)
b99d9a6a 5565 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5566 else
b99d9a6a 5567 result = BTRFS_COMPARE_TREE_SAME;
ba5e8f2e
JB
5568 ret = changed_cb(left_root, right_root,
5569 left_path, right_path,
b99d9a6a 5570 &left_key, result, ctx);
ba5e8f2e
JB
5571 if (ret < 0)
5572 goto out;
7069830a
AB
5573 advance_left = ADVANCE;
5574 advance_right = ADVANCE;
5575 }
5576 } else if (left_level == right_level) {
5577 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5578 if (cmp < 0) {
5579 advance_left = ADVANCE;
5580 } else if (cmp > 0) {
5581 advance_right = ADVANCE;
5582 } else {
5583 left_blockptr = btrfs_node_blockptr(
5584 left_path->nodes[left_level],
5585 left_path->slots[left_level]);
5586 right_blockptr = btrfs_node_blockptr(
5587 right_path->nodes[right_level],
5588 right_path->slots[right_level]);
6baa4293
FM
5589 left_gen = btrfs_node_ptr_generation(
5590 left_path->nodes[left_level],
5591 left_path->slots[left_level]);
5592 right_gen = btrfs_node_ptr_generation(
5593 right_path->nodes[right_level],
5594 right_path->slots[right_level]);
5595 if (left_blockptr == right_blockptr &&
5596 left_gen == right_gen) {
7069830a
AB
5597 /*
5598 * As we're on a shared block, don't
5599 * allow to go deeper.
5600 */
5601 advance_left = ADVANCE_ONLY_NEXT;
5602 advance_right = ADVANCE_ONLY_NEXT;
5603 } else {
5604 advance_left = ADVANCE;
5605 advance_right = ADVANCE;
5606 }
5607 }
5608 } else if (left_level < right_level) {
5609 advance_right = ADVANCE;
5610 } else {
5611 advance_left = ADVANCE;
5612 }
5613 }
5614
5615out:
5616 btrfs_free_path(left_path);
5617 btrfs_free_path(right_path);
8f282f71 5618 kvfree(tmp_buf);
7069830a
AB
5619 return ret;
5620}
5621
3f157a2f
CM
5622/*
5623 * this is similar to btrfs_next_leaf, but does not try to preserve
5624 * and fixup the path. It looks for and returns the next key in the
de78b51a 5625 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5626 *
5627 * 0 is returned if another key is found, < 0 if there are any errors
5628 * and 1 is returned if there are no higher keys in the tree
5629 *
5630 * path->keep_locks should be set to 1 on the search made before
5631 * calling this function.
5632 */
e7a84565 5633int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5634 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5635{
e7a84565
CM
5636 int slot;
5637 struct extent_buffer *c;
5638
934d375b 5639 WARN_ON(!path->keep_locks);
d397712b 5640 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5641 if (!path->nodes[level])
5642 return 1;
5643
5644 slot = path->slots[level] + 1;
5645 c = path->nodes[level];
3f157a2f 5646next:
e7a84565 5647 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5648 int ret;
5649 int orig_lowest;
5650 struct btrfs_key cur_key;
5651 if (level + 1 >= BTRFS_MAX_LEVEL ||
5652 !path->nodes[level + 1])
e7a84565 5653 return 1;
33c66f43
YZ
5654
5655 if (path->locks[level + 1]) {
5656 level++;
5657 continue;
5658 }
5659
5660 slot = btrfs_header_nritems(c) - 1;
5661 if (level == 0)
5662 btrfs_item_key_to_cpu(c, &cur_key, slot);
5663 else
5664 btrfs_node_key_to_cpu(c, &cur_key, slot);
5665
5666 orig_lowest = path->lowest_level;
b3b4aa74 5667 btrfs_release_path(path);
33c66f43
YZ
5668 path->lowest_level = level;
5669 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5670 0, 0);
5671 path->lowest_level = orig_lowest;
5672 if (ret < 0)
5673 return ret;
5674
5675 c = path->nodes[level];
5676 slot = path->slots[level];
5677 if (ret == 0)
5678 slot++;
5679 goto next;
e7a84565 5680 }
33c66f43 5681
e7a84565
CM
5682 if (level == 0)
5683 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5684 else {
3f157a2f
CM
5685 u64 gen = btrfs_node_ptr_generation(c, slot);
5686
3f157a2f
CM
5687 if (gen < min_trans) {
5688 slot++;
5689 goto next;
5690 }
e7a84565 5691 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5692 }
e7a84565
CM
5693 return 0;
5694 }
5695 return 1;
5696}
5697
97571fd0 5698/*
925baedd 5699 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5700 * returns 0 if it found something or 1 if there are no greater leaves.
5701 * returns < 0 on io errors.
97571fd0 5702 */
234b63a0 5703int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5704{
5705 return btrfs_next_old_leaf(root, path, 0);
5706}
5707
5708int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5709 u64 time_seq)
d97e63b6
CM
5710{
5711 int slot;
8e73f275 5712 int level;
5f39d397 5713 struct extent_buffer *c;
8e73f275 5714 struct extent_buffer *next;
925baedd
CM
5715 struct btrfs_key key;
5716 u32 nritems;
5717 int ret;
8e73f275 5718 int old_spinning = path->leave_spinning;
bd681513 5719 int next_rw_lock = 0;
925baedd
CM
5720
5721 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5722 if (nritems == 0)
925baedd 5723 return 1;
925baedd 5724
8e73f275
CM
5725 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5726again:
5727 level = 1;
5728 next = NULL;
bd681513 5729 next_rw_lock = 0;
b3b4aa74 5730 btrfs_release_path(path);
8e73f275 5731
a2135011 5732 path->keep_locks = 1;
31533fb2 5733 path->leave_spinning = 1;
8e73f275 5734
3d7806ec
JS
5735 if (time_seq)
5736 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5737 else
5738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5739 path->keep_locks = 0;
5740
5741 if (ret < 0)
5742 return ret;
5743
a2135011 5744 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5745 /*
5746 * by releasing the path above we dropped all our locks. A balance
5747 * could have added more items next to the key that used to be
5748 * at the very end of the block. So, check again here and
5749 * advance the path if there are now more items available.
5750 */
a2135011 5751 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5752 if (ret == 0)
5753 path->slots[0]++;
8e73f275 5754 ret = 0;
925baedd
CM
5755 goto done;
5756 }
0b43e04f
LB
5757 /*
5758 * So the above check misses one case:
5759 * - after releasing the path above, someone has removed the item that
5760 * used to be at the very end of the block, and balance between leafs
5761 * gets another one with bigger key.offset to replace it.
5762 *
5763 * This one should be returned as well, or we can get leaf corruption
5764 * later(esp. in __btrfs_drop_extents()).
5765 *
5766 * And a bit more explanation about this check,
5767 * with ret > 0, the key isn't found, the path points to the slot
5768 * where it should be inserted, so the path->slots[0] item must be the
5769 * bigger one.
5770 */
5771 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5772 ret = 0;
5773 goto done;
5774 }
d97e63b6 5775
d397712b 5776 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5777 if (!path->nodes[level]) {
5778 ret = 1;
5779 goto done;
5780 }
5f39d397 5781
d97e63b6
CM
5782 slot = path->slots[level] + 1;
5783 c = path->nodes[level];
5f39d397 5784 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5785 level++;
8e73f275
CM
5786 if (level == BTRFS_MAX_LEVEL) {
5787 ret = 1;
5788 goto done;
5789 }
d97e63b6
CM
5790 continue;
5791 }
5f39d397 5792
925baedd 5793 if (next) {
bd681513 5794 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5795 free_extent_buffer(next);
925baedd 5796 }
5f39d397 5797
8e73f275 5798 next = c;
bd681513 5799 next_rw_lock = path->locks[level];
8e73f275 5800 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5801 slot, &key, 0);
8e73f275
CM
5802 if (ret == -EAGAIN)
5803 goto again;
5f39d397 5804
76a05b35 5805 if (ret < 0) {
b3b4aa74 5806 btrfs_release_path(path);
76a05b35
CM
5807 goto done;
5808 }
5809
5cd57b2c 5810 if (!path->skip_locking) {
bd681513 5811 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5812 if (!ret && time_seq) {
5813 /*
5814 * If we don't get the lock, we may be racing
5815 * with push_leaf_left, holding that lock while
5816 * itself waiting for the leaf we've currently
5817 * locked. To solve this situation, we give up
5818 * on our lock and cycle.
5819 */
cf538830 5820 free_extent_buffer(next);
d42244a0
JS
5821 btrfs_release_path(path);
5822 cond_resched();
5823 goto again;
5824 }
8e73f275
CM
5825 if (!ret) {
5826 btrfs_set_path_blocking(path);
bd681513 5827 btrfs_tree_read_lock(next);
31533fb2 5828 btrfs_clear_path_blocking(path, next,
bd681513 5829 BTRFS_READ_LOCK);
8e73f275 5830 }
31533fb2 5831 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5832 }
d97e63b6
CM
5833 break;
5834 }
5835 path->slots[level] = slot;
d397712b 5836 while (1) {
d97e63b6
CM
5837 level--;
5838 c = path->nodes[level];
925baedd 5839 if (path->locks[level])
bd681513 5840 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5841
5f39d397 5842 free_extent_buffer(c);
d97e63b6
CM
5843 path->nodes[level] = next;
5844 path->slots[level] = 0;
a74a4b97 5845 if (!path->skip_locking)
bd681513 5846 path->locks[level] = next_rw_lock;
d97e63b6
CM
5847 if (!level)
5848 break;
b4ce94de 5849
8e73f275 5850 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5851 0, &key, 0);
8e73f275
CM
5852 if (ret == -EAGAIN)
5853 goto again;
5854
76a05b35 5855 if (ret < 0) {
b3b4aa74 5856 btrfs_release_path(path);
76a05b35
CM
5857 goto done;
5858 }
5859
5cd57b2c 5860 if (!path->skip_locking) {
bd681513 5861 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5862 if (!ret) {
5863 btrfs_set_path_blocking(path);
bd681513 5864 btrfs_tree_read_lock(next);
31533fb2 5865 btrfs_clear_path_blocking(path, next,
bd681513
CM
5866 BTRFS_READ_LOCK);
5867 }
31533fb2 5868 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5869 }
d97e63b6 5870 }
8e73f275 5871 ret = 0;
925baedd 5872done:
f7c79f30 5873 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5874 path->leave_spinning = old_spinning;
5875 if (!old_spinning)
5876 btrfs_set_path_blocking(path);
5877
5878 return ret;
d97e63b6 5879}
0b86a832 5880
3f157a2f
CM
5881/*
5882 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5883 * searching until it gets past min_objectid or finds an item of 'type'
5884 *
5885 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5886 */
0b86a832
CM
5887int btrfs_previous_item(struct btrfs_root *root,
5888 struct btrfs_path *path, u64 min_objectid,
5889 int type)
5890{
5891 struct btrfs_key found_key;
5892 struct extent_buffer *leaf;
e02119d5 5893 u32 nritems;
0b86a832
CM
5894 int ret;
5895
d397712b 5896 while (1) {
0b86a832 5897 if (path->slots[0] == 0) {
b4ce94de 5898 btrfs_set_path_blocking(path);
0b86a832
CM
5899 ret = btrfs_prev_leaf(root, path);
5900 if (ret != 0)
5901 return ret;
5902 } else {
5903 path->slots[0]--;
5904 }
5905 leaf = path->nodes[0];
e02119d5
CM
5906 nritems = btrfs_header_nritems(leaf);
5907 if (nritems == 0)
5908 return 1;
5909 if (path->slots[0] == nritems)
5910 path->slots[0]--;
5911
0b86a832 5912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5913 if (found_key.objectid < min_objectid)
5914 break;
0a4eefbb
YZ
5915 if (found_key.type == type)
5916 return 0;
e02119d5
CM
5917 if (found_key.objectid == min_objectid &&
5918 found_key.type < type)
5919 break;
0b86a832
CM
5920 }
5921 return 1;
5922}
ade2e0b3
WS
5923
5924/*
5925 * search in extent tree to find a previous Metadata/Data extent item with
5926 * min objecitd.
5927 *
5928 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5929 */
5930int btrfs_previous_extent_item(struct btrfs_root *root,
5931 struct btrfs_path *path, u64 min_objectid)
5932{
5933 struct btrfs_key found_key;
5934 struct extent_buffer *leaf;
5935 u32 nritems;
5936 int ret;
5937
5938 while (1) {
5939 if (path->slots[0] == 0) {
5940 btrfs_set_path_blocking(path);
5941 ret = btrfs_prev_leaf(root, path);
5942 if (ret != 0)
5943 return ret;
5944 } else {
5945 path->slots[0]--;
5946 }
5947 leaf = path->nodes[0];
5948 nritems = btrfs_header_nritems(leaf);
5949 if (nritems == 0)
5950 return 1;
5951 if (path->slots[0] == nritems)
5952 path->slots[0]--;
5953
5954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5955 if (found_key.objectid < min_objectid)
5956 break;
5957 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5958 found_key.type == BTRFS_METADATA_ITEM_KEY)
5959 return 0;
5960 if (found_key.objectid == min_objectid &&
5961 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5962 break;
5963 }
5964 return 1;
5965}