btrfs: manage heuristic workspace as index 0
[linux-2.6-block.git] / fs / btrfs / compression.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
c8b97818
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
c8b97818
CM
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
c8b97818
CM
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
c8b97818 15#include <linux/backing-dev.h>
c8b97818 16#include <linux/writeback.h>
5a0e3ad6 17#include <linux/slab.h>
fe308533 18#include <linux/sched/mm.h>
19562430 19#include <linux/log2.h>
c8b97818
CM
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
24#include "volumes.h"
25#include "ordered-data.h"
c8b97818
CM
26#include "compression.h"
27#include "extent_io.h"
28#include "extent_map.h"
29
e128f9c3
DS
30static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31
32const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33{
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
40 }
41
42 return NULL;
43}
44
8140dc30 45static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 46
2ff7e61e 47static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
48 unsigned long disk_size)
49{
0b246afa 50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
6c41761f 51
d20f7043 52 return sizeof(struct compressed_bio) +
0b246afa 53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
d20f7043
CM
54}
55
f898ac6a 56static int check_compressed_csum(struct btrfs_inode *inode,
d20f7043
CM
57 struct compressed_bio *cb,
58 u64 disk_start)
59{
60 int ret;
d20f7043
CM
61 struct page *page;
62 unsigned long i;
63 char *kaddr;
64 u32 csum;
65 u32 *cb_sum = &cb->sums;
66
f898ac6a 67 if (inode->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
68 return 0;
69
70 for (i = 0; i < cb->nr_pages; i++) {
71 page = cb->compressed_pages[i];
72 csum = ~(u32)0;
73
7ac687d9 74 kaddr = kmap_atomic(page);
09cbfeaf 75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
0b5e3daf 76 btrfs_csum_final(csum, (u8 *)&csum);
7ac687d9 77 kunmap_atomic(kaddr);
d20f7043
CM
78
79 if (csum != *cb_sum) {
f898ac6a 80 btrfs_print_data_csum_error(inode, disk_start, csum,
0970a22e 81 *cb_sum, cb->mirror_num);
d20f7043
CM
82 ret = -EIO;
83 goto fail;
84 }
85 cb_sum++;
86
87 }
88 ret = 0;
89fail:
90 return ret;
91}
92
c8b97818
CM
93/* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
96 *
97 * This allows the checksumming and other IO error handling routines
98 * to work normally
99 *
100 * The compressed pages are freed here, and it must be run
101 * in process context
102 */
4246a0b6 103static void end_compressed_bio_read(struct bio *bio)
c8b97818 104{
c8b97818
CM
105 struct compressed_bio *cb = bio->bi_private;
106 struct inode *inode;
107 struct page *page;
108 unsigned long index;
cf1167d5 109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
e6311f24 110 int ret = 0;
c8b97818 111
4e4cbee9 112 if (bio->bi_status)
c8b97818
CM
113 cb->errors = 1;
114
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
117 */
a50299ae 118 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
119 goto out;
120
cf1167d5
LB
121 /*
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
124 */
125 ASSERT(btrfs_io_bio(cb->orig_bio));
126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 cb->mirror_num = mirror;
128
e6311f24
LB
129 /*
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
132 */
133 if (cb->errors == 1)
134 goto csum_failed;
135
d20f7043 136 inode = cb->inode;
f898ac6a 137 ret = check_compressed_csum(BTRFS_I(inode), cb,
4f024f37 138 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
139 if (ret)
140 goto csum_failed;
141
c8b97818
CM
142 /* ok, we're the last bio for this extent, lets start
143 * the decompression.
144 */
8140dc30
AJ
145 ret = btrfs_decompress_bio(cb);
146
d20f7043 147csum_failed:
c8b97818
CM
148 if (ret)
149 cb->errors = 1;
150
151 /* release the compressed pages */
152 index = 0;
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
09cbfeaf 156 put_page(page);
c8b97818
CM
157 }
158
159 /* do io completion on the original bio */
771ed689 160 if (cb->errors) {
c8b97818 161 bio_io_error(cb->orig_bio);
d20f7043 162 } else {
2c30c71b
KO
163 int i;
164 struct bio_vec *bvec;
d20f7043
CM
165
166 /*
167 * we have verified the checksum already, set page
168 * checked so the end_io handlers know about it
169 */
c09abff8 170 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 171 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 172 SetPageChecked(bvec->bv_page);
2c30c71b 173
4246a0b6 174 bio_endio(cb->orig_bio);
d20f7043 175 }
c8b97818
CM
176
177 /* finally free the cb struct */
178 kfree(cb->compressed_pages);
179 kfree(cb);
180out:
181 bio_put(bio);
182}
183
184/*
185 * Clear the writeback bits on all of the file
186 * pages for a compressed write
187 */
7bdcefc1
FM
188static noinline void end_compressed_writeback(struct inode *inode,
189 const struct compressed_bio *cb)
c8b97818 190{
09cbfeaf
KS
191 unsigned long index = cb->start >> PAGE_SHIFT;
192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
193 struct page *pages[16];
194 unsigned long nr_pages = end_index - index + 1;
195 int i;
196 int ret;
197
7bdcefc1
FM
198 if (cb->errors)
199 mapping_set_error(inode->i_mapping, -EIO);
200
d397712b 201 while (nr_pages > 0) {
c8b97818 202 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
203 min_t(unsigned long,
204 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
205 if (ret == 0) {
206 nr_pages -= 1;
207 index += 1;
208 continue;
209 }
210 for (i = 0; i < ret; i++) {
7bdcefc1
FM
211 if (cb->errors)
212 SetPageError(pages[i]);
c8b97818 213 end_page_writeback(pages[i]);
09cbfeaf 214 put_page(pages[i]);
c8b97818
CM
215 }
216 nr_pages -= ret;
217 index += ret;
218 }
219 /* the inode may be gone now */
c8b97818
CM
220}
221
222/*
223 * do the cleanup once all the compressed pages hit the disk.
224 * This will clear writeback on the file pages and free the compressed
225 * pages.
226 *
227 * This also calls the writeback end hooks for the file pages so that
228 * metadata and checksums can be updated in the file.
229 */
4246a0b6 230static void end_compressed_bio_write(struct bio *bio)
c8b97818 231{
c8b97818
CM
232 struct compressed_bio *cb = bio->bi_private;
233 struct inode *inode;
234 struct page *page;
235 unsigned long index;
236
4e4cbee9 237 if (bio->bi_status)
c8b97818
CM
238 cb->errors = 1;
239
240 /* if there are more bios still pending for this compressed
241 * extent, just exit
242 */
a50299ae 243 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
244 goto out;
245
246 /* ok, we're the last bio for this extent, step one is to
247 * call back into the FS and do all the end_io operations
248 */
249 inode = cb->inode;
70b99e69 250 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
7087a9d8 251 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
c629732d 252 cb->start, cb->start + cb->len - 1,
7087a9d8 253 bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
70b99e69 254 cb->compressed_pages[0]->mapping = NULL;
c8b97818 255
7bdcefc1 256 end_compressed_writeback(inode, cb);
c8b97818
CM
257 /* note, our inode could be gone now */
258
259 /*
260 * release the compressed pages, these came from alloc_page and
261 * are not attached to the inode at all
262 */
263 index = 0;
264 for (index = 0; index < cb->nr_pages; index++) {
265 page = cb->compressed_pages[index];
266 page->mapping = NULL;
09cbfeaf 267 put_page(page);
c8b97818
CM
268 }
269
270 /* finally free the cb struct */
271 kfree(cb->compressed_pages);
272 kfree(cb);
273out:
274 bio_put(bio);
275}
276
277/*
278 * worker function to build and submit bios for previously compressed pages.
279 * The corresponding pages in the inode should be marked for writeback
280 * and the compressed pages should have a reference on them for dropping
281 * when the IO is complete.
282 *
283 * This also checksums the file bytes and gets things ready for
284 * the end io hooks.
285 */
4e4cbee9 286blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
c8b97818
CM
287 unsigned long len, u64 disk_start,
288 unsigned long compressed_len,
289 struct page **compressed_pages,
f82b7359
LB
290 unsigned long nr_pages,
291 unsigned int write_flags)
c8b97818 292{
0b246afa 293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818 294 struct bio *bio = NULL;
c8b97818
CM
295 struct compressed_bio *cb;
296 unsigned long bytes_left;
306e16ce 297 int pg_index = 0;
c8b97818
CM
298 struct page *page;
299 u64 first_byte = disk_start;
300 struct block_device *bdev;
4e4cbee9 301 blk_status_t ret;
e55179b3 302 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 303
fdb1e121 304 WARN_ON(!PAGE_ALIGNED(start));
2ff7e61e 305 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 306 if (!cb)
4e4cbee9 307 return BLK_STS_RESOURCE;
a50299ae 308 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
309 cb->errors = 0;
310 cb->inode = inode;
311 cb->start = start;
312 cb->len = len;
d20f7043 313 cb->mirror_num = 0;
c8b97818
CM
314 cb->compressed_pages = compressed_pages;
315 cb->compressed_len = compressed_len;
316 cb->orig_bio = NULL;
317 cb->nr_pages = nr_pages;
318
0b246afa 319 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 320
c821e7f3 321 bio = btrfs_bio_alloc(bdev, first_byte);
f82b7359 322 bio->bi_opf = REQ_OP_WRITE | write_flags;
c8b97818
CM
323 bio->bi_private = cb;
324 bio->bi_end_io = end_compressed_bio_write;
a50299ae 325 refcount_set(&cb->pending_bios, 1);
c8b97818
CM
326
327 /* create and submit bios for the compressed pages */
328 bytes_left = compressed_len;
306e16ce 329 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
4e4cbee9
CH
330 int submit = 0;
331
306e16ce 332 page = compressed_pages[pg_index];
c8b97818 333 page->mapping = inode->i_mapping;
4f024f37 334 if (bio->bi_iter.bi_size)
da12fe54
NB
335 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
336 0);
c8b97818 337
70b99e69 338 page->mapping = NULL;
4e4cbee9 339 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
09cbfeaf 340 PAGE_SIZE) {
af09abfe
CM
341 /*
342 * inc the count before we submit the bio so
343 * we know the end IO handler won't happen before
344 * we inc the count. Otherwise, the cb might get
345 * freed before we're done setting it up
346 */
a50299ae 347 refcount_inc(&cb->pending_bios);
0b246afa
JM
348 ret = btrfs_bio_wq_end_io(fs_info, bio,
349 BTRFS_WQ_ENDIO_DATA);
79787eaa 350 BUG_ON(ret); /* -ENOMEM */
c8b97818 351
e55179b3 352 if (!skip_sum) {
2ff7e61e 353 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 354 BUG_ON(ret); /* -ENOMEM */
e55179b3 355 }
d20f7043 356
2ff7e61e 357 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 358 if (ret) {
4e4cbee9 359 bio->bi_status = ret;
f5daf2c7
LB
360 bio_endio(bio);
361 }
c8b97818 362
c821e7f3 363 bio = btrfs_bio_alloc(bdev, first_byte);
f82b7359 364 bio->bi_opf = REQ_OP_WRITE | write_flags;
c8b97818
CM
365 bio->bi_private = cb;
366 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 367 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 368 }
09cbfeaf 369 if (bytes_left < PAGE_SIZE) {
0b246afa 370 btrfs_info(fs_info,
efe120a0 371 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
372 bytes_left, cb->compressed_len, cb->nr_pages);
373 }
09cbfeaf
KS
374 bytes_left -= PAGE_SIZE;
375 first_byte += PAGE_SIZE;
771ed689 376 cond_resched();
c8b97818 377 }
c8b97818 378
0b246afa 379 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 380 BUG_ON(ret); /* -ENOMEM */
c8b97818 381
e55179b3 382 if (!skip_sum) {
2ff7e61e 383 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 384 BUG_ON(ret); /* -ENOMEM */
e55179b3 385 }
d20f7043 386
2ff7e61e 387 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 388 if (ret) {
4e4cbee9 389 bio->bi_status = ret;
f5daf2c7
LB
390 bio_endio(bio);
391 }
c8b97818 392
c8b97818
CM
393 return 0;
394}
395
2a4d0c90
CH
396static u64 bio_end_offset(struct bio *bio)
397{
c45a8f2d 398 struct bio_vec *last = bio_last_bvec_all(bio);
2a4d0c90
CH
399
400 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
401}
402
771ed689
CM
403static noinline int add_ra_bio_pages(struct inode *inode,
404 u64 compressed_end,
405 struct compressed_bio *cb)
406{
407 unsigned long end_index;
306e16ce 408 unsigned long pg_index;
771ed689
CM
409 u64 last_offset;
410 u64 isize = i_size_read(inode);
411 int ret;
412 struct page *page;
413 unsigned long nr_pages = 0;
414 struct extent_map *em;
415 struct address_space *mapping = inode->i_mapping;
771ed689
CM
416 struct extent_map_tree *em_tree;
417 struct extent_io_tree *tree;
418 u64 end;
419 int misses = 0;
420
2a4d0c90 421 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
422 em_tree = &BTRFS_I(inode)->extent_tree;
423 tree = &BTRFS_I(inode)->io_tree;
424
425 if (isize == 0)
426 return 0;
427
09cbfeaf 428 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 429
d397712b 430 while (last_offset < compressed_end) {
09cbfeaf 431 pg_index = last_offset >> PAGE_SHIFT;
771ed689 432
306e16ce 433 if (pg_index > end_index)
771ed689
CM
434 break;
435
0a943c65 436 page = xa_load(&mapping->i_pages, pg_index);
3159f943 437 if (page && !xa_is_value(page)) {
771ed689
CM
438 misses++;
439 if (misses > 4)
440 break;
441 goto next;
442 }
443
c62d2555
MH
444 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
445 ~__GFP_FS));
771ed689
CM
446 if (!page)
447 break;
448
c62d2555 449 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 450 put_page(page);
771ed689
CM
451 goto next;
452 }
453
09cbfeaf 454 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
455 /*
456 * at this point, we have a locked page in the page cache
457 * for these bytes in the file. But, we have to make
458 * sure they map to this compressed extent on disk.
459 */
460 set_page_extent_mapped(page);
d0082371 461 lock_extent(tree, last_offset, end);
890871be 462 read_lock(&em_tree->lock);
771ed689 463 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 464 PAGE_SIZE);
890871be 465 read_unlock(&em_tree->lock);
771ed689
CM
466
467 if (!em || last_offset < em->start ||
09cbfeaf 468 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 469 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 470 free_extent_map(em);
d0082371 471 unlock_extent(tree, last_offset, end);
771ed689 472 unlock_page(page);
09cbfeaf 473 put_page(page);
771ed689
CM
474 break;
475 }
476 free_extent_map(em);
477
478 if (page->index == end_index) {
479 char *userpage;
7073017a 480 size_t zero_offset = offset_in_page(isize);
771ed689
CM
481
482 if (zero_offset) {
483 int zeros;
09cbfeaf 484 zeros = PAGE_SIZE - zero_offset;
7ac687d9 485 userpage = kmap_atomic(page);
771ed689
CM
486 memset(userpage + zero_offset, 0, zeros);
487 flush_dcache_page(page);
7ac687d9 488 kunmap_atomic(userpage);
771ed689
CM
489 }
490 }
491
492 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 493 PAGE_SIZE, 0);
771ed689 494
09cbfeaf 495 if (ret == PAGE_SIZE) {
771ed689 496 nr_pages++;
09cbfeaf 497 put_page(page);
771ed689 498 } else {
d0082371 499 unlock_extent(tree, last_offset, end);
771ed689 500 unlock_page(page);
09cbfeaf 501 put_page(page);
771ed689
CM
502 break;
503 }
504next:
09cbfeaf 505 last_offset += PAGE_SIZE;
771ed689 506 }
771ed689
CM
507 return 0;
508}
509
c8b97818
CM
510/*
511 * for a compressed read, the bio we get passed has all the inode pages
512 * in it. We don't actually do IO on those pages but allocate new ones
513 * to hold the compressed pages on disk.
514 *
4f024f37 515 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 516 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
517 *
518 * After the compressed pages are read, we copy the bytes into the
519 * bio we were passed and then call the bio end_io calls
520 */
4e4cbee9 521blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
522 int mirror_num, unsigned long bio_flags)
523{
0b246afa 524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
525 struct extent_map_tree *em_tree;
526 struct compressed_bio *cb;
c8b97818
CM
527 unsigned long compressed_len;
528 unsigned long nr_pages;
306e16ce 529 unsigned long pg_index;
c8b97818
CM
530 struct page *page;
531 struct block_device *bdev;
532 struct bio *comp_bio;
4f024f37 533 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
534 u64 em_len;
535 u64 em_start;
c8b97818 536 struct extent_map *em;
4e4cbee9 537 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 538 int faili = 0;
d20f7043 539 u32 *sums;
c8b97818 540
c8b97818
CM
541 em_tree = &BTRFS_I(inode)->extent_tree;
542
543 /* we need the actual starting offset of this extent in the file */
890871be 544 read_lock(&em_tree->lock);
c8b97818 545 em = lookup_extent_mapping(em_tree,
263663cd 546 page_offset(bio_first_page_all(bio)),
09cbfeaf 547 PAGE_SIZE);
890871be 548 read_unlock(&em_tree->lock);
285190d9 549 if (!em)
4e4cbee9 550 return BLK_STS_IOERR;
c8b97818 551
d20f7043 552 compressed_len = em->block_len;
2ff7e61e 553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 554 if (!cb)
555 goto out;
556
a50299ae 557 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
558 cb->errors = 0;
559 cb->inode = inode;
d20f7043
CM
560 cb->mirror_num = mirror_num;
561 sums = &cb->sums;
c8b97818 562
ff5b7ee3 563 cb->start = em->orig_start;
e04ca626
CM
564 em_len = em->len;
565 em_start = em->start;
d20f7043 566
c8b97818 567 free_extent_map(em);
e04ca626 568 em = NULL;
c8b97818 569
81381053 570 cb->len = bio->bi_iter.bi_size;
c8b97818 571 cb->compressed_len = compressed_len;
261507a0 572 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
573 cb->orig_bio = bio;
574
09cbfeaf 575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 577 GFP_NOFS);
6b82ce8d 578 if (!cb->compressed_pages)
579 goto fail1;
580
0b246afa 581 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 582
306e16ce
DS
583 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 585 __GFP_HIGHMEM);
15e3004a
JB
586 if (!cb->compressed_pages[pg_index]) {
587 faili = pg_index - 1;
0e9350de 588 ret = BLK_STS_RESOURCE;
6b82ce8d 589 goto fail2;
15e3004a 590 }
c8b97818 591 }
15e3004a 592 faili = nr_pages - 1;
c8b97818
CM
593 cb->nr_pages = nr_pages;
594
7f042a83 595 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 596
771ed689 597 /* include any pages we added in add_ra-bio_pages */
81381053 598 cb->len = bio->bi_iter.bi_size;
771ed689 599
c821e7f3 600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
ebcc3263 601 comp_bio->bi_opf = REQ_OP_READ;
c8b97818
CM
602 comp_bio->bi_private = cb;
603 comp_bio->bi_end_io = end_compressed_bio_read;
a50299ae 604 refcount_set(&cb->pending_bios, 1);
c8b97818 605
306e16ce 606 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
4e4cbee9
CH
607 int submit = 0;
608
306e16ce 609 page = cb->compressed_pages[pg_index];
c8b97818 610 page->mapping = inode->i_mapping;
09cbfeaf 611 page->index = em_start >> PAGE_SHIFT;
d20f7043 612
4f024f37 613 if (comp_bio->bi_iter.bi_size)
da12fe54
NB
614 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
615 comp_bio, 0);
c8b97818 616
70b99e69 617 page->mapping = NULL;
4e4cbee9 618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
09cbfeaf 619 PAGE_SIZE) {
0b246afa
JM
620 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
621 BTRFS_WQ_ENDIO_DATA);
79787eaa 622 BUG_ON(ret); /* -ENOMEM */
c8b97818 623
af09abfe
CM
624 /*
625 * inc the count before we submit the bio so
626 * we know the end IO handler won't happen before
627 * we inc the count. Otherwise, the cb might get
628 * freed before we're done setting it up
629 */
a50299ae 630 refcount_inc(&cb->pending_bios);
af09abfe 631
6cbff00f 632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e
JM
633 ret = btrfs_lookup_bio_sums(inode, comp_bio,
634 sums);
79787eaa 635 BUG_ON(ret); /* -ENOMEM */
d20f7043 636 }
ed6078f7 637 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
0b246afa 638 fs_info->sectorsize);
d20f7043 639
2ff7e61e 640 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 641 if (ret) {
4e4cbee9 642 comp_bio->bi_status = ret;
4246a0b6
CH
643 bio_endio(comp_bio);
644 }
c8b97818 645
c821e7f3 646 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
ebcc3263 647 comp_bio->bi_opf = REQ_OP_READ;
771ed689
CM
648 comp_bio->bi_private = cb;
649 comp_bio->bi_end_io = end_compressed_bio_read;
650
09cbfeaf 651 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 652 }
09cbfeaf 653 cur_disk_byte += PAGE_SIZE;
c8b97818 654 }
c8b97818 655
0b246afa 656 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 657 BUG_ON(ret); /* -ENOMEM */
c8b97818 658
c2db1073 659 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e 660 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
79787eaa 661 BUG_ON(ret); /* -ENOMEM */
c2db1073 662 }
d20f7043 663
2ff7e61e 664 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 665 if (ret) {
4e4cbee9 666 comp_bio->bi_status = ret;
4246a0b6
CH
667 bio_endio(comp_bio);
668 }
c8b97818 669
c8b97818 670 return 0;
6b82ce8d 671
672fail2:
15e3004a
JB
673 while (faili >= 0) {
674 __free_page(cb->compressed_pages[faili]);
675 faili--;
676 }
6b82ce8d 677
678 kfree(cb->compressed_pages);
679fail1:
680 kfree(cb);
681out:
682 free_extent_map(em);
683 return ret;
c8b97818 684}
261507a0 685
17b5a6c1
TT
686/*
687 * Heuristic uses systematic sampling to collect data from the input data
688 * range, the logic can be tuned by the following constants:
689 *
690 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
691 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
692 */
693#define SAMPLING_READ_SIZE (16)
694#define SAMPLING_INTERVAL (256)
695
696/*
697 * For statistical analysis of the input data we consider bytes that form a
698 * Galois Field of 256 objects. Each object has an attribute count, ie. how
699 * many times the object appeared in the sample.
700 */
701#define BUCKET_SIZE (256)
702
703/*
704 * The size of the sample is based on a statistical sampling rule of thumb.
705 * The common way is to perform sampling tests as long as the number of
706 * elements in each cell is at least 5.
707 *
708 * Instead of 5, we choose 32 to obtain more accurate results.
709 * If the data contain the maximum number of symbols, which is 256, we obtain a
710 * sample size bound by 8192.
711 *
712 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
713 * from up to 512 locations.
714 */
715#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
716 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
717
718struct bucket_item {
719 u32 count;
720};
4e439a0b
TT
721
722struct heuristic_ws {
17b5a6c1
TT
723 /* Partial copy of input data */
724 u8 *sample;
a440d48c 725 u32 sample_size;
17b5a6c1
TT
726 /* Buckets store counters for each byte value */
727 struct bucket_item *bucket;
440c840c
TT
728 /* Sorting buffer */
729 struct bucket_item *bucket_b;
4e439a0b
TT
730 struct list_head list;
731};
732
733static void free_heuristic_ws(struct list_head *ws)
734{
735 struct heuristic_ws *workspace;
736
737 workspace = list_entry(ws, struct heuristic_ws, list);
738
17b5a6c1
TT
739 kvfree(workspace->sample);
740 kfree(workspace->bucket);
440c840c 741 kfree(workspace->bucket_b);
4e439a0b
TT
742 kfree(workspace);
743}
744
745static struct list_head *alloc_heuristic_ws(void)
746{
747 struct heuristic_ws *ws;
748
749 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
750 if (!ws)
751 return ERR_PTR(-ENOMEM);
752
17b5a6c1
TT
753 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
754 if (!ws->sample)
755 goto fail;
756
757 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
758 if (!ws->bucket)
759 goto fail;
4e439a0b 760
440c840c
TT
761 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
762 if (!ws->bucket_b)
763 goto fail;
764
17b5a6c1 765 INIT_LIST_HEAD(&ws->list);
4e439a0b 766 return &ws->list;
17b5a6c1
TT
767fail:
768 free_heuristic_ws(&ws->list);
769 return ERR_PTR(-ENOMEM);
4e439a0b
TT
770}
771
ca4ac360
DZ
772const struct btrfs_compress_op btrfs_heuristic_compress = {
773 .alloc_workspace = alloc_heuristic_ws,
774 .free_workspace = free_heuristic_ws,
775};
776
acce85de 777struct workspace_manager {
d9187649
BL
778 struct list_head idle_ws;
779 spinlock_t ws_lock;
6ac10a6a
DS
780 /* Number of free workspaces */
781 int free_ws;
782 /* Total number of allocated workspaces */
783 atomic_t total_ws;
784 /* Waiters for a free workspace */
d9187649 785 wait_queue_head_t ws_wait;
4e439a0b
TT
786};
787
ca4ac360 788static struct workspace_manager wsm[BTRFS_NR_WORKSPACE_MANAGERS];
261507a0 789
e8c9f186 790static const struct btrfs_compress_op * const btrfs_compress_op[] = {
ca4ac360
DZ
791 /* The heuristic is represented as compression type 0 */
792 &btrfs_heuristic_compress,
261507a0 793 &btrfs_zlib_compress,
a6fa6fae 794 &btrfs_lzo_compress,
5c1aab1d 795 &btrfs_zstd_compress,
261507a0
LZ
796};
797
143bede5 798void __init btrfs_init_compress(void)
261507a0 799{
4e439a0b 800 struct list_head *workspace;
261507a0
LZ
801 int i;
802
ca4ac360 803 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++) {
acce85de
DZ
804 INIT_LIST_HEAD(&wsm[i].idle_ws);
805 spin_lock_init(&wsm[i].ws_lock);
806 atomic_set(&wsm[i].total_ws, 0);
807 init_waitqueue_head(&wsm[i].ws_wait);
f77dd0d6
DS
808
809 /*
810 * Preallocate one workspace for each compression type so
811 * we can guarantee forward progress in the worst case
812 */
813 workspace = btrfs_compress_op[i]->alloc_workspace();
814 if (IS_ERR(workspace)) {
62e85577 815 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
f77dd0d6 816 } else {
acce85de
DZ
817 atomic_set(&wsm[i].total_ws, 1);
818 wsm[i].free_ws = 1;
819 list_add(workspace, &wsm[i].idle_ws);
f77dd0d6 820 }
261507a0 821 }
261507a0
LZ
822}
823
824/*
e721e49d
DS
825 * This finds an available workspace or allocates a new one.
826 * If it's not possible to allocate a new one, waits until there's one.
827 * Preallocation makes a forward progress guarantees and we do not return
828 * errors.
261507a0 829 */
ca4ac360 830static struct list_head *find_workspace(int type)
261507a0
LZ
831{
832 struct list_head *workspace;
833 int cpus = num_online_cpus();
fe308533 834 unsigned nofs_flag;
4e439a0b
TT
835 struct list_head *idle_ws;
836 spinlock_t *ws_lock;
837 atomic_t *total_ws;
838 wait_queue_head_t *ws_wait;
839 int *free_ws;
840
ca4ac360
DZ
841 idle_ws = &wsm[type].idle_ws;
842 ws_lock = &wsm[type].ws_lock;
843 total_ws = &wsm[type].total_ws;
844 ws_wait = &wsm[type].ws_wait;
845 free_ws = &wsm[type].free_ws;
261507a0 846
261507a0 847again:
d9187649
BL
848 spin_lock(ws_lock);
849 if (!list_empty(idle_ws)) {
850 workspace = idle_ws->next;
261507a0 851 list_del(workspace);
6ac10a6a 852 (*free_ws)--;
d9187649 853 spin_unlock(ws_lock);
261507a0
LZ
854 return workspace;
855
856 }
6ac10a6a 857 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
858 DEFINE_WAIT(wait);
859
d9187649
BL
860 spin_unlock(ws_lock);
861 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 862 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 863 schedule();
d9187649 864 finish_wait(ws_wait, &wait);
261507a0
LZ
865 goto again;
866 }
6ac10a6a 867 atomic_inc(total_ws);
d9187649 868 spin_unlock(ws_lock);
261507a0 869
fe308533
DS
870 /*
871 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
872 * to turn it off here because we might get called from the restricted
873 * context of btrfs_compress_bio/btrfs_compress_pages
874 */
875 nofs_flag = memalloc_nofs_save();
ca4ac360 876 workspace = btrfs_compress_op[type]->alloc_workspace();
fe308533
DS
877 memalloc_nofs_restore(nofs_flag);
878
261507a0 879 if (IS_ERR(workspace)) {
6ac10a6a 880 atomic_dec(total_ws);
d9187649 881 wake_up(ws_wait);
e721e49d
DS
882
883 /*
884 * Do not return the error but go back to waiting. There's a
885 * workspace preallocated for each type and the compression
886 * time is bounded so we get to a workspace eventually. This
887 * makes our caller's life easier.
52356716
DS
888 *
889 * To prevent silent and low-probability deadlocks (when the
890 * initial preallocation fails), check if there are any
891 * workspaces at all.
e721e49d 892 */
52356716
DS
893 if (atomic_read(total_ws) == 0) {
894 static DEFINE_RATELIMIT_STATE(_rs,
895 /* once per minute */ 60 * HZ,
896 /* no burst */ 1);
897
898 if (__ratelimit(&_rs)) {
ab8d0fc4 899 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
900 }
901 }
e721e49d 902 goto again;
261507a0
LZ
903 }
904 return workspace;
905}
906
907/*
908 * put a workspace struct back on the list or free it if we have enough
909 * idle ones sitting around
910 */
ca4ac360 911static void free_workspace(int type, struct list_head *workspace)
261507a0 912{
4e439a0b
TT
913 struct list_head *idle_ws;
914 spinlock_t *ws_lock;
915 atomic_t *total_ws;
916 wait_queue_head_t *ws_wait;
917 int *free_ws;
918
ca4ac360
DZ
919 idle_ws = &wsm[type].idle_ws;
920 ws_lock = &wsm[type].ws_lock;
921 total_ws = &wsm[type].total_ws;
922 ws_wait = &wsm[type].ws_wait;
923 free_ws = &wsm[type].free_ws;
d9187649
BL
924
925 spin_lock(ws_lock);
26b28dce 926 if (*free_ws <= num_online_cpus()) {
d9187649 927 list_add(workspace, idle_ws);
6ac10a6a 928 (*free_ws)++;
d9187649 929 spin_unlock(ws_lock);
261507a0
LZ
930 goto wake;
931 }
d9187649 932 spin_unlock(ws_lock);
261507a0 933
ca4ac360 934 btrfs_compress_op[type]->free_workspace(workspace);
6ac10a6a 935 atomic_dec(total_ws);
261507a0 936wake:
093258e6 937 cond_wake_up(ws_wait);
261507a0
LZ
938}
939
940/*
941 * cleanup function for module exit
942 */
943static void free_workspaces(void)
944{
945 struct list_head *workspace;
946 int i;
947
ca4ac360 948 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++) {
acce85de
DZ
949 while (!list_empty(&wsm[i].idle_ws)) {
950 workspace = wsm[i].idle_ws.next;
261507a0
LZ
951 list_del(workspace);
952 btrfs_compress_op[i]->free_workspace(workspace);
acce85de 953 atomic_dec(&wsm[i].total_ws);
261507a0
LZ
954 }
955 }
956}
957
958/*
38c31464
DS
959 * Given an address space and start and length, compress the bytes into @pages
960 * that are allocated on demand.
261507a0 961 *
f51d2b59
DS
962 * @type_level is encoded algorithm and level, where level 0 means whatever
963 * default the algorithm chooses and is opaque here;
964 * - compression algo are 0-3
965 * - the level are bits 4-7
966 *
4d3a800e
DS
967 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
968 * and returns number of actually allocated pages
261507a0 969 *
38c31464
DS
970 * @total_in is used to return the number of bytes actually read. It
971 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
972 * ran out of room in the pages array or because we cross the
973 * max_out threshold.
974 *
38c31464
DS
975 * @total_out is an in/out parameter, must be set to the input length and will
976 * be also used to return the total number of compressed bytes
261507a0 977 *
38c31464 978 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
979 * stuff into pages
980 */
f51d2b59 981int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 982 u64 start, struct page **pages,
261507a0
LZ
983 unsigned long *out_pages,
984 unsigned long *total_in,
e5d74902 985 unsigned long *total_out)
261507a0 986{
1972708a 987 int type = btrfs_compress_type(type_level);
261507a0
LZ
988 struct list_head *workspace;
989 int ret;
990
991 workspace = find_workspace(type);
261507a0 992
ca4ac360
DZ
993 btrfs_compress_op[type]->set_level(workspace, type_level);
994 ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
38c31464 995 start, pages,
4d3a800e 996 out_pages,
e5d74902 997 total_in, total_out);
261507a0
LZ
998 free_workspace(type, workspace);
999 return ret;
1000}
1001
1002/*
1003 * pages_in is an array of pages with compressed data.
1004 *
1005 * disk_start is the starting logical offset of this array in the file
1006 *
974b1adc 1007 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
1008 *
1009 * srclen is the number of bytes in pages_in
1010 *
1011 * The basic idea is that we have a bio that was created by readpages.
1012 * The pages in the bio are for the uncompressed data, and they may not
1013 * be contiguous. They all correspond to the range of bytes covered by
1014 * the compressed extent.
1015 */
8140dc30 1016static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1017{
1018 struct list_head *workspace;
1019 int ret;
8140dc30 1020 int type = cb->compress_type;
261507a0
LZ
1021
1022 workspace = find_workspace(type);
ca4ac360 1023 ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
261507a0 1024 free_workspace(type, workspace);
e1ddce71 1025
261507a0
LZ
1026 return ret;
1027}
1028
1029/*
1030 * a less complex decompression routine. Our compressed data fits in a
1031 * single page, and we want to read a single page out of it.
1032 * start_byte tells us the offset into the compressed data we're interested in
1033 */
1034int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1035 unsigned long start_byte, size_t srclen, size_t destlen)
1036{
1037 struct list_head *workspace;
1038 int ret;
1039
1040 workspace = find_workspace(type);
261507a0 1041
ca4ac360 1042 ret = btrfs_compress_op[type]->decompress(workspace, data_in,
261507a0
LZ
1043 dest_page, start_byte,
1044 srclen, destlen);
1045
1046 free_workspace(type, workspace);
1047 return ret;
1048}
1049
e67c718b 1050void __cold btrfs_exit_compress(void)
261507a0
LZ
1051{
1052 free_workspaces();
1053}
3a39c18d
LZ
1054
1055/*
1056 * Copy uncompressed data from working buffer to pages.
1057 *
1058 * buf_start is the byte offset we're of the start of our workspace buffer.
1059 *
1060 * total_out is the last byte of the buffer
1061 */
14a3357b 1062int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 1063 unsigned long total_out, u64 disk_start,
974b1adc 1064 struct bio *bio)
3a39c18d
LZ
1065{
1066 unsigned long buf_offset;
1067 unsigned long current_buf_start;
1068 unsigned long start_byte;
6e78b3f7 1069 unsigned long prev_start_byte;
3a39c18d
LZ
1070 unsigned long working_bytes = total_out - buf_start;
1071 unsigned long bytes;
1072 char *kaddr;
974b1adc 1073 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1074
1075 /*
1076 * start byte is the first byte of the page we're currently
1077 * copying into relative to the start of the compressed data.
1078 */
974b1adc 1079 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1080
1081 /* we haven't yet hit data corresponding to this page */
1082 if (total_out <= start_byte)
1083 return 1;
1084
1085 /*
1086 * the start of the data we care about is offset into
1087 * the middle of our working buffer
1088 */
1089 if (total_out > start_byte && buf_start < start_byte) {
1090 buf_offset = start_byte - buf_start;
1091 working_bytes -= buf_offset;
1092 } else {
1093 buf_offset = 0;
1094 }
1095 current_buf_start = buf_start;
1096
1097 /* copy bytes from the working buffer into the pages */
1098 while (working_bytes > 0) {
974b1adc
CH
1099 bytes = min_t(unsigned long, bvec.bv_len,
1100 PAGE_SIZE - buf_offset);
3a39c18d 1101 bytes = min(bytes, working_bytes);
974b1adc
CH
1102
1103 kaddr = kmap_atomic(bvec.bv_page);
1104 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1105 kunmap_atomic(kaddr);
974b1adc 1106 flush_dcache_page(bvec.bv_page);
3a39c18d 1107
3a39c18d
LZ
1108 buf_offset += bytes;
1109 working_bytes -= bytes;
1110 current_buf_start += bytes;
1111
1112 /* check if we need to pick another page */
974b1adc
CH
1113 bio_advance(bio, bytes);
1114 if (!bio->bi_iter.bi_size)
1115 return 0;
1116 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1117 prev_start_byte = start_byte;
974b1adc 1118 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1119
974b1adc 1120 /*
6e78b3f7
OS
1121 * We need to make sure we're only adjusting
1122 * our offset into compression working buffer when
1123 * we're switching pages. Otherwise we can incorrectly
1124 * keep copying when we were actually done.
974b1adc 1125 */
6e78b3f7
OS
1126 if (start_byte != prev_start_byte) {
1127 /*
1128 * make sure our new page is covered by this
1129 * working buffer
1130 */
1131 if (total_out <= start_byte)
1132 return 1;
3a39c18d 1133
6e78b3f7
OS
1134 /*
1135 * the next page in the biovec might not be adjacent
1136 * to the last page, but it might still be found
1137 * inside this working buffer. bump our offset pointer
1138 */
1139 if (total_out > start_byte &&
1140 current_buf_start < start_byte) {
1141 buf_offset = start_byte - buf_start;
1142 working_bytes = total_out - start_byte;
1143 current_buf_start = buf_start + buf_offset;
1144 }
3a39c18d
LZ
1145 }
1146 }
1147
1148 return 1;
1149}
c2fcdcdf 1150
19562430
TT
1151/*
1152 * Shannon Entropy calculation
1153 *
52042d8e 1154 * Pure byte distribution analysis fails to determine compressibility of data.
19562430
TT
1155 * Try calculating entropy to estimate the average minimum number of bits
1156 * needed to encode the sampled data.
1157 *
1158 * For convenience, return the percentage of needed bits, instead of amount of
1159 * bits directly.
1160 *
1161 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1162 * and can be compressible with high probability
1163 *
1164 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1165 *
1166 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1167 */
1168#define ENTROPY_LVL_ACEPTABLE (65)
1169#define ENTROPY_LVL_HIGH (80)
1170
1171/*
1172 * For increasead precision in shannon_entropy calculation,
1173 * let's do pow(n, M) to save more digits after comma:
1174 *
1175 * - maximum int bit length is 64
1176 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1177 * - 13 * 4 = 52 < 64 -> M = 4
1178 *
1179 * So use pow(n, 4).
1180 */
1181static inline u32 ilog2_w(u64 n)
1182{
1183 return ilog2(n * n * n * n);
1184}
1185
1186static u32 shannon_entropy(struct heuristic_ws *ws)
1187{
1188 const u32 entropy_max = 8 * ilog2_w(2);
1189 u32 entropy_sum = 0;
1190 u32 p, p_base, sz_base;
1191 u32 i;
1192
1193 sz_base = ilog2_w(ws->sample_size);
1194 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1195 p = ws->bucket[i].count;
1196 p_base = ilog2_w(p);
1197 entropy_sum += p * (sz_base - p_base);
1198 }
1199
1200 entropy_sum /= ws->sample_size;
1201 return entropy_sum * 100 / entropy_max;
1202}
1203
440c840c
TT
1204#define RADIX_BASE 4U
1205#define COUNTERS_SIZE (1U << RADIX_BASE)
1206
1207static u8 get4bits(u64 num, int shift) {
1208 u8 low4bits;
1209
1210 num >>= shift;
1211 /* Reverse order */
1212 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1213 return low4bits;
1214}
1215
440c840c
TT
1216/*
1217 * Use 4 bits as radix base
52042d8e 1218 * Use 16 u32 counters for calculating new position in buf array
440c840c
TT
1219 *
1220 * @array - array that will be sorted
1221 * @array_buf - buffer array to store sorting results
1222 * must be equal in size to @array
1223 * @num - array size
440c840c 1224 */
23ae8c63 1225static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
36243c91 1226 int num)
858177d3 1227{
440c840c
TT
1228 u64 max_num;
1229 u64 buf_num;
1230 u32 counters[COUNTERS_SIZE];
1231 u32 new_addr;
1232 u32 addr;
1233 int bitlen;
1234 int shift;
1235 int i;
858177d3 1236
440c840c
TT
1237 /*
1238 * Try avoid useless loop iterations for small numbers stored in big
1239 * counters. Example: 48 33 4 ... in 64bit array
1240 */
23ae8c63 1241 max_num = array[0].count;
440c840c 1242 for (i = 1; i < num; i++) {
23ae8c63 1243 buf_num = array[i].count;
440c840c
TT
1244 if (buf_num > max_num)
1245 max_num = buf_num;
1246 }
1247
1248 buf_num = ilog2(max_num);
1249 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1250
1251 shift = 0;
1252 while (shift < bitlen) {
1253 memset(counters, 0, sizeof(counters));
1254
1255 for (i = 0; i < num; i++) {
23ae8c63 1256 buf_num = array[i].count;
440c840c
TT
1257 addr = get4bits(buf_num, shift);
1258 counters[addr]++;
1259 }
1260
1261 for (i = 1; i < COUNTERS_SIZE; i++)
1262 counters[i] += counters[i - 1];
1263
1264 for (i = num - 1; i >= 0; i--) {
23ae8c63 1265 buf_num = array[i].count;
440c840c
TT
1266 addr = get4bits(buf_num, shift);
1267 counters[addr]--;
1268 new_addr = counters[addr];
7add17be 1269 array_buf[new_addr] = array[i];
440c840c
TT
1270 }
1271
1272 shift += RADIX_BASE;
1273
1274 /*
1275 * Normal radix expects to move data from a temporary array, to
1276 * the main one. But that requires some CPU time. Avoid that
1277 * by doing another sort iteration to original array instead of
1278 * memcpy()
1279 */
1280 memset(counters, 0, sizeof(counters));
1281
1282 for (i = 0; i < num; i ++) {
23ae8c63 1283 buf_num = array_buf[i].count;
440c840c
TT
1284 addr = get4bits(buf_num, shift);
1285 counters[addr]++;
1286 }
1287
1288 for (i = 1; i < COUNTERS_SIZE; i++)
1289 counters[i] += counters[i - 1];
1290
1291 for (i = num - 1; i >= 0; i--) {
23ae8c63 1292 buf_num = array_buf[i].count;
440c840c
TT
1293 addr = get4bits(buf_num, shift);
1294 counters[addr]--;
1295 new_addr = counters[addr];
7add17be 1296 array[new_addr] = array_buf[i];
440c840c
TT
1297 }
1298
1299 shift += RADIX_BASE;
1300 }
858177d3
TT
1301}
1302
1303/*
1304 * Size of the core byte set - how many bytes cover 90% of the sample
1305 *
1306 * There are several types of structured binary data that use nearly all byte
1307 * values. The distribution can be uniform and counts in all buckets will be
1308 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1309 *
1310 * Other possibility is normal (Gaussian) distribution, where the data could
1311 * be potentially compressible, but we have to take a few more steps to decide
1312 * how much.
1313 *
1314 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1315 * compression algo can easy fix that
1316 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1317 * probability is not compressible
1318 */
1319#define BYTE_CORE_SET_LOW (64)
1320#define BYTE_CORE_SET_HIGH (200)
1321
1322static int byte_core_set_size(struct heuristic_ws *ws)
1323{
1324 u32 i;
1325 u32 coreset_sum = 0;
1326 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1327 struct bucket_item *bucket = ws->bucket;
1328
1329 /* Sort in reverse order */
36243c91 1330 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
858177d3
TT
1331
1332 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1333 coreset_sum += bucket[i].count;
1334
1335 if (coreset_sum > core_set_threshold)
1336 return i;
1337
1338 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1339 coreset_sum += bucket[i].count;
1340 if (coreset_sum > core_set_threshold)
1341 break;
1342 }
1343
1344 return i;
1345}
1346
a288e92c
TT
1347/*
1348 * Count byte values in buckets.
1349 * This heuristic can detect textual data (configs, xml, json, html, etc).
1350 * Because in most text-like data byte set is restricted to limited number of
1351 * possible characters, and that restriction in most cases makes data easy to
1352 * compress.
1353 *
1354 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1355 * less - compressible
1356 * more - need additional analysis
1357 */
1358#define BYTE_SET_THRESHOLD (64)
1359
1360static u32 byte_set_size(const struct heuristic_ws *ws)
1361{
1362 u32 i;
1363 u32 byte_set_size = 0;
1364
1365 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1366 if (ws->bucket[i].count > 0)
1367 byte_set_size++;
1368 }
1369
1370 /*
1371 * Continue collecting count of byte values in buckets. If the byte
1372 * set size is bigger then the threshold, it's pointless to continue,
1373 * the detection technique would fail for this type of data.
1374 */
1375 for (; i < BUCKET_SIZE; i++) {
1376 if (ws->bucket[i].count > 0) {
1377 byte_set_size++;
1378 if (byte_set_size > BYTE_SET_THRESHOLD)
1379 return byte_set_size;
1380 }
1381 }
1382
1383 return byte_set_size;
1384}
1385
1fe4f6fa
TT
1386static bool sample_repeated_patterns(struct heuristic_ws *ws)
1387{
1388 const u32 half_of_sample = ws->sample_size / 2;
1389 const u8 *data = ws->sample;
1390
1391 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1392}
1393
a440d48c
TT
1394static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1395 struct heuristic_ws *ws)
1396{
1397 struct page *page;
1398 u64 index, index_end;
1399 u32 i, curr_sample_pos;
1400 u8 *in_data;
1401
1402 /*
1403 * Compression handles the input data by chunks of 128KiB
1404 * (defined by BTRFS_MAX_UNCOMPRESSED)
1405 *
1406 * We do the same for the heuristic and loop over the whole range.
1407 *
1408 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1409 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1410 */
1411 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1412 end = start + BTRFS_MAX_UNCOMPRESSED;
1413
1414 index = start >> PAGE_SHIFT;
1415 index_end = end >> PAGE_SHIFT;
1416
1417 /* Don't miss unaligned end */
1418 if (!IS_ALIGNED(end, PAGE_SIZE))
1419 index_end++;
1420
1421 curr_sample_pos = 0;
1422 while (index < index_end) {
1423 page = find_get_page(inode->i_mapping, index);
1424 in_data = kmap(page);
1425 /* Handle case where the start is not aligned to PAGE_SIZE */
1426 i = start % PAGE_SIZE;
1427 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1428 /* Don't sample any garbage from the last page */
1429 if (start > end - SAMPLING_READ_SIZE)
1430 break;
1431 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1432 SAMPLING_READ_SIZE);
1433 i += SAMPLING_INTERVAL;
1434 start += SAMPLING_INTERVAL;
1435 curr_sample_pos += SAMPLING_READ_SIZE;
1436 }
1437 kunmap(page);
1438 put_page(page);
1439
1440 index++;
1441 }
1442
1443 ws->sample_size = curr_sample_pos;
1444}
1445
c2fcdcdf
TT
1446/*
1447 * Compression heuristic.
1448 *
1449 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1450 * quickly (compared to direct compression) detect data characteristics
1451 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1452 * data.
1453 *
1454 * The following types of analysis can be performed:
1455 * - detect mostly zero data
1456 * - detect data with low "byte set" size (text, etc)
1457 * - detect data with low/high "core byte" set
1458 *
1459 * Return non-zero if the compression should be done, 0 otherwise.
1460 */
1461int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1462{
ca4ac360 1463 struct list_head *ws_list = find_workspace(0);
4e439a0b 1464 struct heuristic_ws *ws;
a440d48c
TT
1465 u32 i;
1466 u8 byte;
19562430 1467 int ret = 0;
c2fcdcdf 1468
4e439a0b
TT
1469 ws = list_entry(ws_list, struct heuristic_ws, list);
1470
a440d48c
TT
1471 heuristic_collect_sample(inode, start, end, ws);
1472
1fe4f6fa
TT
1473 if (sample_repeated_patterns(ws)) {
1474 ret = 1;
1475 goto out;
1476 }
1477
a440d48c
TT
1478 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1479
1480 for (i = 0; i < ws->sample_size; i++) {
1481 byte = ws->sample[i];
1482 ws->bucket[byte].count++;
c2fcdcdf
TT
1483 }
1484
a288e92c
TT
1485 i = byte_set_size(ws);
1486 if (i < BYTE_SET_THRESHOLD) {
1487 ret = 2;
1488 goto out;
1489 }
1490
858177d3
TT
1491 i = byte_core_set_size(ws);
1492 if (i <= BYTE_CORE_SET_LOW) {
1493 ret = 3;
1494 goto out;
1495 }
1496
1497 if (i >= BYTE_CORE_SET_HIGH) {
1498 ret = 0;
1499 goto out;
1500 }
1501
19562430
TT
1502 i = shannon_entropy(ws);
1503 if (i <= ENTROPY_LVL_ACEPTABLE) {
1504 ret = 4;
1505 goto out;
1506 }
1507
1508 /*
1509 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1510 * needed to give green light to compression.
1511 *
1512 * For now just assume that compression at that level is not worth the
1513 * resources because:
1514 *
1515 * 1. it is possible to defrag the data later
1516 *
1517 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1518 * values, every bucket has counter at level ~54. The heuristic would
1519 * be confused. This can happen when data have some internal repeated
1520 * patterns like "abbacbbc...". This can be detected by analyzing
1521 * pairs of bytes, which is too costly.
1522 */
1523 if (i < ENTROPY_LVL_HIGH) {
1524 ret = 5;
1525 goto out;
1526 } else {
1527 ret = 0;
1528 goto out;
1529 }
1530
1fe4f6fa 1531out:
ca4ac360 1532 free_workspace(0, ws_list);
c2fcdcdf
TT
1533 return ret;
1534}
f51d2b59
DS
1535
1536unsigned int btrfs_compress_str2level(const char *str)
1537{
1538 if (strncmp(str, "zlib", 4) != 0)
1539 return 0;
1540
fa4d885a
AB
1541 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1542 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1543 return str[5] - '0';
f51d2b59 1544
eae8d825 1545 return BTRFS_ZLIB_DEFAULT_LEVEL;
f51d2b59 1546}