btrfs: simplify btrfs_wait_cache_io prototype
[linux-2.6-block.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
c8b97818
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "ordered-data.h"
c8b97818
CM
41#include "compression.h"
42#include "extent_io.h"
43#include "extent_map.h"
44
45struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
261507a0
LZ
64 /* the compression algorithm for this bio */
65 int compress_type;
66
c8b97818
CM
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
d20f7043 72 int mirror_num;
c8b97818
CM
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
d20f7043
CM
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
c8b97818
CM
82};
83
974b1adc
CH
84static int btrfs_decompress_bio(int type, struct page **pages_in,
85 u64 disk_start, struct bio *orig_bio,
86 size_t srclen);
48a3b636 87
d20f7043
CM
88static inline int compressed_bio_size(struct btrfs_root *root,
89 unsigned long disk_size)
90{
0b246afa
JM
91 struct btrfs_fs_info *fs_info = root->fs_info;
92 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
6c41761f 93
d20f7043 94 return sizeof(struct compressed_bio) +
0b246afa 95 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
d20f7043
CM
96}
97
c8b97818
CM
98static struct bio *compressed_bio_alloc(struct block_device *bdev,
99 u64 first_byte, gfp_t gfp_flags)
100{
b54ffb73 101 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
c8b97818
CM
102}
103
d20f7043
CM
104static int check_compressed_csum(struct inode *inode,
105 struct compressed_bio *cb,
106 u64 disk_start)
107{
108 int ret;
d20f7043
CM
109 struct page *page;
110 unsigned long i;
111 char *kaddr;
112 u32 csum;
113 u32 *cb_sum = &cb->sums;
114
6cbff00f 115 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
116 return 0;
117
118 for (i = 0; i < cb->nr_pages; i++) {
119 page = cb->compressed_pages[i];
120 csum = ~(u32)0;
121
7ac687d9 122 kaddr = kmap_atomic(page);
09cbfeaf 123 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
0b5e3daf 124 btrfs_csum_final(csum, (u8 *)&csum);
7ac687d9 125 kunmap_atomic(kaddr);
d20f7043
CM
126
127 if (csum != *cb_sum) {
efe120a0
FH
128 btrfs_info(BTRFS_I(inode)->root->fs_info,
129 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
130 btrfs_ino(inode), disk_start, csum, *cb_sum,
131 cb->mirror_num);
d20f7043
CM
132 ret = -EIO;
133 goto fail;
134 }
135 cb_sum++;
136
137 }
138 ret = 0;
139fail:
140 return ret;
141}
142
c8b97818
CM
143/* when we finish reading compressed pages from the disk, we
144 * decompress them and then run the bio end_io routines on the
145 * decompressed pages (in the inode address space).
146 *
147 * This allows the checksumming and other IO error handling routines
148 * to work normally
149 *
150 * The compressed pages are freed here, and it must be run
151 * in process context
152 */
4246a0b6 153static void end_compressed_bio_read(struct bio *bio)
c8b97818 154{
c8b97818
CM
155 struct compressed_bio *cb = bio->bi_private;
156 struct inode *inode;
157 struct page *page;
158 unsigned long index;
159 int ret;
160
4246a0b6 161 if (bio->bi_error)
c8b97818
CM
162 cb->errors = 1;
163
164 /* if there are more bios still pending for this compressed
165 * extent, just exit
166 */
167 if (!atomic_dec_and_test(&cb->pending_bios))
168 goto out;
169
d20f7043 170 inode = cb->inode;
4f024f37
KO
171 ret = check_compressed_csum(inode, cb,
172 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
173 if (ret)
174 goto csum_failed;
175
c8b97818
CM
176 /* ok, we're the last bio for this extent, lets start
177 * the decompression.
178 */
974b1adc 179 ret = btrfs_decompress_bio(cb->compress_type,
261507a0
LZ
180 cb->compressed_pages,
181 cb->start,
974b1adc 182 cb->orig_bio,
261507a0 183 cb->compressed_len);
d20f7043 184csum_failed:
c8b97818
CM
185 if (ret)
186 cb->errors = 1;
187
188 /* release the compressed pages */
189 index = 0;
190 for (index = 0; index < cb->nr_pages; index++) {
191 page = cb->compressed_pages[index];
192 page->mapping = NULL;
09cbfeaf 193 put_page(page);
c8b97818
CM
194 }
195
196 /* do io completion on the original bio */
771ed689 197 if (cb->errors) {
c8b97818 198 bio_io_error(cb->orig_bio);
d20f7043 199 } else {
2c30c71b
KO
200 int i;
201 struct bio_vec *bvec;
d20f7043
CM
202
203 /*
204 * we have verified the checksum already, set page
205 * checked so the end_io handlers know about it
206 */
2c30c71b 207 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 208 SetPageChecked(bvec->bv_page);
2c30c71b 209
4246a0b6 210 bio_endio(cb->orig_bio);
d20f7043 211 }
c8b97818
CM
212
213 /* finally free the cb struct */
214 kfree(cb->compressed_pages);
215 kfree(cb);
216out:
217 bio_put(bio);
218}
219
220/*
221 * Clear the writeback bits on all of the file
222 * pages for a compressed write
223 */
7bdcefc1
FM
224static noinline void end_compressed_writeback(struct inode *inode,
225 const struct compressed_bio *cb)
c8b97818 226{
09cbfeaf
KS
227 unsigned long index = cb->start >> PAGE_SHIFT;
228 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
229 struct page *pages[16];
230 unsigned long nr_pages = end_index - index + 1;
231 int i;
232 int ret;
233
7bdcefc1
FM
234 if (cb->errors)
235 mapping_set_error(inode->i_mapping, -EIO);
236
d397712b 237 while (nr_pages > 0) {
c8b97818 238 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
239 min_t(unsigned long,
240 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
241 if (ret == 0) {
242 nr_pages -= 1;
243 index += 1;
244 continue;
245 }
246 for (i = 0; i < ret; i++) {
7bdcefc1
FM
247 if (cb->errors)
248 SetPageError(pages[i]);
c8b97818 249 end_page_writeback(pages[i]);
09cbfeaf 250 put_page(pages[i]);
c8b97818
CM
251 }
252 nr_pages -= ret;
253 index += ret;
254 }
255 /* the inode may be gone now */
c8b97818
CM
256}
257
258/*
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
261 * pages.
262 *
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
265 */
4246a0b6 266static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
267{
268 struct extent_io_tree *tree;
269 struct compressed_bio *cb = bio->bi_private;
270 struct inode *inode;
271 struct page *page;
272 unsigned long index;
273
4246a0b6 274 if (bio->bi_error)
c8b97818
CM
275 cb->errors = 1;
276
277 /* if there are more bios still pending for this compressed
278 * extent, just exit
279 */
280 if (!atomic_dec_and_test(&cb->pending_bios))
281 goto out;
282
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
285 */
286 inode = cb->inode;
287 tree = &BTRFS_I(inode)->io_tree;
70b99e69 288 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
289 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 cb->start,
291 cb->start + cb->len - 1,
7bdcefc1 292 NULL,
4246a0b6 293 bio->bi_error ? 0 : 1);
70b99e69 294 cb->compressed_pages[0]->mapping = NULL;
c8b97818 295
7bdcefc1 296 end_compressed_writeback(inode, cb);
c8b97818
CM
297 /* note, our inode could be gone now */
298
299 /*
300 * release the compressed pages, these came from alloc_page and
301 * are not attached to the inode at all
302 */
303 index = 0;
304 for (index = 0; index < cb->nr_pages; index++) {
305 page = cb->compressed_pages[index];
306 page->mapping = NULL;
09cbfeaf 307 put_page(page);
c8b97818
CM
308 }
309
310 /* finally free the cb struct */
311 kfree(cb->compressed_pages);
312 kfree(cb);
313out:
314 bio_put(bio);
315}
316
317/*
318 * worker function to build and submit bios for previously compressed pages.
319 * The corresponding pages in the inode should be marked for writeback
320 * and the compressed pages should have a reference on them for dropping
321 * when the IO is complete.
322 *
323 * This also checksums the file bytes and gets things ready for
324 * the end io hooks.
325 */
326int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327 unsigned long len, u64 disk_start,
328 unsigned long compressed_len,
329 struct page **compressed_pages,
330 unsigned long nr_pages)
331{
0b246afa 332 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
333 struct bio *bio = NULL;
334 struct btrfs_root *root = BTRFS_I(inode)->root;
335 struct compressed_bio *cb;
336 unsigned long bytes_left;
337 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 338 int pg_index = 0;
c8b97818
CM
339 struct page *page;
340 u64 first_byte = disk_start;
341 struct block_device *bdev;
342 int ret;
e55179b3 343 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 344
09cbfeaf 345 WARN_ON(start & ((u64)PAGE_SIZE - 1));
d20f7043 346 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
dac97e51
YS
347 if (!cb)
348 return -ENOMEM;
c8b97818
CM
349 atomic_set(&cb->pending_bios, 0);
350 cb->errors = 0;
351 cb->inode = inode;
352 cb->start = start;
353 cb->len = len;
d20f7043 354 cb->mirror_num = 0;
c8b97818
CM
355 cb->compressed_pages = compressed_pages;
356 cb->compressed_len = compressed_len;
357 cb->orig_bio = NULL;
358 cb->nr_pages = nr_pages;
359
0b246afa 360 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 361
c8b97818 362 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
67871254 363 if (!bio) {
dac97e51
YS
364 kfree(cb);
365 return -ENOMEM;
366 }
37226b21 367 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
368 bio->bi_private = cb;
369 bio->bi_end_io = end_compressed_bio_write;
370 atomic_inc(&cb->pending_bios);
371
372 /* create and submit bios for the compressed pages */
373 bytes_left = compressed_len;
306e16ce
DS
374 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
375 page = compressed_pages[pg_index];
c8b97818 376 page->mapping = inode->i_mapping;
4f024f37 377 if (bio->bi_iter.bi_size)
81a75f67 378 ret = io_tree->ops->merge_bio_hook(page, 0,
09cbfeaf 379 PAGE_SIZE,
c8b97818
CM
380 bio, 0);
381 else
382 ret = 0;
383
70b99e69 384 page->mapping = NULL;
09cbfeaf
KS
385 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
386 PAGE_SIZE) {
c8b97818
CM
387 bio_get(bio);
388
af09abfe
CM
389 /*
390 * inc the count before we submit the bio so
391 * we know the end IO handler won't happen before
392 * we inc the count. Otherwise, the cb might get
393 * freed before we're done setting it up
394 */
395 atomic_inc(&cb->pending_bios);
0b246afa
JM
396 ret = btrfs_bio_wq_end_io(fs_info, bio,
397 BTRFS_WQ_ENDIO_DATA);
79787eaa 398 BUG_ON(ret); /* -ENOMEM */
c8b97818 399
e55179b3
LZ
400 if (!skip_sum) {
401 ret = btrfs_csum_one_bio(root, inode, bio,
402 start, 1);
79787eaa 403 BUG_ON(ret); /* -ENOMEM */
e55179b3 404 }
d20f7043 405
81a75f67 406 ret = btrfs_map_bio(root, bio, 0, 1);
f5daf2c7
LB
407 if (ret) {
408 bio->bi_error = ret;
409 bio_endio(bio);
410 }
c8b97818
CM
411
412 bio_put(bio);
413
414 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
e627ee7b 415 BUG_ON(!bio);
37226b21 416 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
417 bio->bi_private = cb;
418 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 419 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 420 }
09cbfeaf 421 if (bytes_left < PAGE_SIZE) {
0b246afa 422 btrfs_info(fs_info,
efe120a0 423 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
424 bytes_left, cb->compressed_len, cb->nr_pages);
425 }
09cbfeaf
KS
426 bytes_left -= PAGE_SIZE;
427 first_byte += PAGE_SIZE;
771ed689 428 cond_resched();
c8b97818
CM
429 }
430 bio_get(bio);
431
0b246afa 432 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 433 BUG_ON(ret); /* -ENOMEM */
c8b97818 434
e55179b3
LZ
435 if (!skip_sum) {
436 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
79787eaa 437 BUG_ON(ret); /* -ENOMEM */
e55179b3 438 }
d20f7043 439
81a75f67 440 ret = btrfs_map_bio(root, bio, 0, 1);
f5daf2c7
LB
441 if (ret) {
442 bio->bi_error = ret;
443 bio_endio(bio);
444 }
c8b97818
CM
445
446 bio_put(bio);
447 return 0;
448}
449
2a4d0c90
CH
450static u64 bio_end_offset(struct bio *bio)
451{
452 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
453
454 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
455}
456
771ed689
CM
457static noinline int add_ra_bio_pages(struct inode *inode,
458 u64 compressed_end,
459 struct compressed_bio *cb)
460{
461 unsigned long end_index;
306e16ce 462 unsigned long pg_index;
771ed689
CM
463 u64 last_offset;
464 u64 isize = i_size_read(inode);
465 int ret;
466 struct page *page;
467 unsigned long nr_pages = 0;
468 struct extent_map *em;
469 struct address_space *mapping = inode->i_mapping;
771ed689
CM
470 struct extent_map_tree *em_tree;
471 struct extent_io_tree *tree;
472 u64 end;
473 int misses = 0;
474
2a4d0c90 475 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
476 em_tree = &BTRFS_I(inode)->extent_tree;
477 tree = &BTRFS_I(inode)->io_tree;
478
479 if (isize == 0)
480 return 0;
481
09cbfeaf 482 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 483
d397712b 484 while (last_offset < compressed_end) {
09cbfeaf 485 pg_index = last_offset >> PAGE_SHIFT;
771ed689 486
306e16ce 487 if (pg_index > end_index)
771ed689
CM
488 break;
489
490 rcu_read_lock();
306e16ce 491 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689 492 rcu_read_unlock();
0cd6144a 493 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
494 misses++;
495 if (misses > 4)
496 break;
497 goto next;
498 }
499
c62d2555
MH
500 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
501 ~__GFP_FS));
771ed689
CM
502 if (!page)
503 break;
504
c62d2555 505 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 506 put_page(page);
771ed689
CM
507 goto next;
508 }
509
09cbfeaf 510 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
511 /*
512 * at this point, we have a locked page in the page cache
513 * for these bytes in the file. But, we have to make
514 * sure they map to this compressed extent on disk.
515 */
516 set_page_extent_mapped(page);
d0082371 517 lock_extent(tree, last_offset, end);
890871be 518 read_lock(&em_tree->lock);
771ed689 519 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 520 PAGE_SIZE);
890871be 521 read_unlock(&em_tree->lock);
771ed689
CM
522
523 if (!em || last_offset < em->start ||
09cbfeaf 524 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 525 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 526 free_extent_map(em);
d0082371 527 unlock_extent(tree, last_offset, end);
771ed689 528 unlock_page(page);
09cbfeaf 529 put_page(page);
771ed689
CM
530 break;
531 }
532 free_extent_map(em);
533
534 if (page->index == end_index) {
535 char *userpage;
09cbfeaf 536 size_t zero_offset = isize & (PAGE_SIZE - 1);
771ed689
CM
537
538 if (zero_offset) {
539 int zeros;
09cbfeaf 540 zeros = PAGE_SIZE - zero_offset;
7ac687d9 541 userpage = kmap_atomic(page);
771ed689
CM
542 memset(userpage + zero_offset, 0, zeros);
543 flush_dcache_page(page);
7ac687d9 544 kunmap_atomic(userpage);
771ed689
CM
545 }
546 }
547
548 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 549 PAGE_SIZE, 0);
771ed689 550
09cbfeaf 551 if (ret == PAGE_SIZE) {
771ed689 552 nr_pages++;
09cbfeaf 553 put_page(page);
771ed689 554 } else {
d0082371 555 unlock_extent(tree, last_offset, end);
771ed689 556 unlock_page(page);
09cbfeaf 557 put_page(page);
771ed689
CM
558 break;
559 }
560next:
09cbfeaf 561 last_offset += PAGE_SIZE;
771ed689 562 }
771ed689
CM
563 return 0;
564}
565
c8b97818
CM
566/*
567 * for a compressed read, the bio we get passed has all the inode pages
568 * in it. We don't actually do IO on those pages but allocate new ones
569 * to hold the compressed pages on disk.
570 *
4f024f37 571 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 572 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
573 *
574 * After the compressed pages are read, we copy the bytes into the
575 * bio we were passed and then call the bio end_io calls
576 */
577int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
578 int mirror_num, unsigned long bio_flags)
579{
0b246afa 580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
581 struct extent_io_tree *tree;
582 struct extent_map_tree *em_tree;
583 struct compressed_bio *cb;
584 struct btrfs_root *root = BTRFS_I(inode)->root;
c8b97818
CM
585 unsigned long compressed_len;
586 unsigned long nr_pages;
306e16ce 587 unsigned long pg_index;
c8b97818
CM
588 struct page *page;
589 struct block_device *bdev;
590 struct bio *comp_bio;
4f024f37 591 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
592 u64 em_len;
593 u64 em_start;
c8b97818 594 struct extent_map *em;
6b82ce8d 595 int ret = -ENOMEM;
15e3004a 596 int faili = 0;
d20f7043 597 u32 *sums;
c8b97818
CM
598
599 tree = &BTRFS_I(inode)->io_tree;
600 em_tree = &BTRFS_I(inode)->extent_tree;
601
602 /* we need the actual starting offset of this extent in the file */
890871be 603 read_lock(&em_tree->lock);
c8b97818
CM
604 em = lookup_extent_mapping(em_tree,
605 page_offset(bio->bi_io_vec->bv_page),
09cbfeaf 606 PAGE_SIZE);
890871be 607 read_unlock(&em_tree->lock);
285190d9
TI
608 if (!em)
609 return -EIO;
c8b97818 610
d20f7043
CM
611 compressed_len = em->block_len;
612 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
6b82ce8d 613 if (!cb)
614 goto out;
615
c8b97818
CM
616 atomic_set(&cb->pending_bios, 0);
617 cb->errors = 0;
618 cb->inode = inode;
d20f7043
CM
619 cb->mirror_num = mirror_num;
620 sums = &cb->sums;
c8b97818 621
ff5b7ee3 622 cb->start = em->orig_start;
e04ca626
CM
623 em_len = em->len;
624 em_start = em->start;
d20f7043 625
c8b97818 626 free_extent_map(em);
e04ca626 627 em = NULL;
c8b97818 628
81381053 629 cb->len = bio->bi_iter.bi_size;
c8b97818 630 cb->compressed_len = compressed_len;
261507a0 631 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
632 cb->orig_bio = bio;
633
09cbfeaf 634 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 635 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 636 GFP_NOFS);
6b82ce8d 637 if (!cb->compressed_pages)
638 goto fail1;
639
0b246afa 640 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 641
306e16ce
DS
642 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
643 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 644 __GFP_HIGHMEM);
15e3004a
JB
645 if (!cb->compressed_pages[pg_index]) {
646 faili = pg_index - 1;
647 ret = -ENOMEM;
6b82ce8d 648 goto fail2;
15e3004a 649 }
c8b97818 650 }
15e3004a 651 faili = nr_pages - 1;
c8b97818
CM
652 cb->nr_pages = nr_pages;
653
7f042a83 654 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 655
771ed689 656 /* include any pages we added in add_ra-bio_pages */
81381053 657 cb->len = bio->bi_iter.bi_size;
771ed689 658
c8b97818 659 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 660 if (!comp_bio)
661 goto fail2;
37226b21 662 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
c8b97818
CM
663 comp_bio->bi_private = cb;
664 comp_bio->bi_end_io = end_compressed_bio_read;
665 atomic_inc(&cb->pending_bios);
666
306e16ce
DS
667 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
668 page = cb->compressed_pages[pg_index];
c8b97818 669 page->mapping = inode->i_mapping;
09cbfeaf 670 page->index = em_start >> PAGE_SHIFT;
d20f7043 671
4f024f37 672 if (comp_bio->bi_iter.bi_size)
81a75f67 673 ret = tree->ops->merge_bio_hook(page, 0,
09cbfeaf 674 PAGE_SIZE,
c8b97818
CM
675 comp_bio, 0);
676 else
677 ret = 0;
678
70b99e69 679 page->mapping = NULL;
09cbfeaf
KS
680 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
681 PAGE_SIZE) {
c8b97818
CM
682 bio_get(comp_bio);
683
0b246afa
JM
684 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
685 BTRFS_WQ_ENDIO_DATA);
79787eaa 686 BUG_ON(ret); /* -ENOMEM */
c8b97818 687
af09abfe
CM
688 /*
689 * inc the count before we submit the bio so
690 * we know the end IO handler won't happen before
691 * we inc the count. Otherwise, the cb might get
692 * freed before we're done setting it up
693 */
694 atomic_inc(&cb->pending_bios);
695
6cbff00f 696 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
c2db1073
TI
697 ret = btrfs_lookup_bio_sums(root, inode,
698 comp_bio, sums);
79787eaa 699 BUG_ON(ret); /* -ENOMEM */
d20f7043 700 }
ed6078f7 701 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
0b246afa 702 fs_info->sectorsize);
d20f7043 703
81a75f67 704 ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
4246a0b6 705 if (ret) {
14155caf 706 comp_bio->bi_error = ret;
4246a0b6
CH
707 bio_endio(comp_bio);
708 }
c8b97818
CM
709
710 bio_put(comp_bio);
711
712 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
713 GFP_NOFS);
e627ee7b 714 BUG_ON(!comp_bio);
37226b21 715 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
771ed689
CM
716 comp_bio->bi_private = cb;
717 comp_bio->bi_end_io = end_compressed_bio_read;
718
09cbfeaf 719 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 720 }
09cbfeaf 721 cur_disk_byte += PAGE_SIZE;
c8b97818
CM
722 }
723 bio_get(comp_bio);
724
0b246afa 725 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 726 BUG_ON(ret); /* -ENOMEM */
c8b97818 727
c2db1073
TI
728 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
729 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
79787eaa 730 BUG_ON(ret); /* -ENOMEM */
c2db1073 731 }
d20f7043 732
81a75f67 733 ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
4246a0b6 734 if (ret) {
14155caf 735 comp_bio->bi_error = ret;
4246a0b6
CH
736 bio_endio(comp_bio);
737 }
c8b97818
CM
738
739 bio_put(comp_bio);
740 return 0;
6b82ce8d 741
742fail2:
15e3004a
JB
743 while (faili >= 0) {
744 __free_page(cb->compressed_pages[faili]);
745 faili--;
746 }
6b82ce8d 747
748 kfree(cb->compressed_pages);
749fail1:
750 kfree(cb);
751out:
752 free_extent_map(em);
753 return ret;
c8b97818 754}
261507a0 755
d9187649
BL
756static struct {
757 struct list_head idle_ws;
758 spinlock_t ws_lock;
6ac10a6a
DS
759 /* Number of free workspaces */
760 int free_ws;
761 /* Total number of allocated workspaces */
762 atomic_t total_ws;
763 /* Waiters for a free workspace */
d9187649
BL
764 wait_queue_head_t ws_wait;
765} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
261507a0 766
e8c9f186 767static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 768 &btrfs_zlib_compress,
a6fa6fae 769 &btrfs_lzo_compress,
261507a0
LZ
770};
771
143bede5 772void __init btrfs_init_compress(void)
261507a0
LZ
773{
774 int i;
775
776 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
f77dd0d6
DS
777 struct list_head *workspace;
778
d9187649
BL
779 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
780 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
6ac10a6a 781 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
d9187649 782 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
f77dd0d6
DS
783
784 /*
785 * Preallocate one workspace for each compression type so
786 * we can guarantee forward progress in the worst case
787 */
788 workspace = btrfs_compress_op[i]->alloc_workspace();
789 if (IS_ERR(workspace)) {
62e85577 790 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
f77dd0d6
DS
791 } else {
792 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
793 btrfs_comp_ws[i].free_ws = 1;
794 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
795 }
261507a0 796 }
261507a0
LZ
797}
798
799/*
e721e49d
DS
800 * This finds an available workspace or allocates a new one.
801 * If it's not possible to allocate a new one, waits until there's one.
802 * Preallocation makes a forward progress guarantees and we do not return
803 * errors.
261507a0
LZ
804 */
805static struct list_head *find_workspace(int type)
806{
807 struct list_head *workspace;
808 int cpus = num_online_cpus();
809 int idx = type - 1;
810
d9187649
BL
811 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
812 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 813 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 814 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 815 int *free_ws = &btrfs_comp_ws[idx].free_ws;
261507a0 816again:
d9187649
BL
817 spin_lock(ws_lock);
818 if (!list_empty(idle_ws)) {
819 workspace = idle_ws->next;
261507a0 820 list_del(workspace);
6ac10a6a 821 (*free_ws)--;
d9187649 822 spin_unlock(ws_lock);
261507a0
LZ
823 return workspace;
824
825 }
6ac10a6a 826 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
827 DEFINE_WAIT(wait);
828
d9187649
BL
829 spin_unlock(ws_lock);
830 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 831 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 832 schedule();
d9187649 833 finish_wait(ws_wait, &wait);
261507a0
LZ
834 goto again;
835 }
6ac10a6a 836 atomic_inc(total_ws);
d9187649 837 spin_unlock(ws_lock);
261507a0
LZ
838
839 workspace = btrfs_compress_op[idx]->alloc_workspace();
840 if (IS_ERR(workspace)) {
6ac10a6a 841 atomic_dec(total_ws);
d9187649 842 wake_up(ws_wait);
e721e49d
DS
843
844 /*
845 * Do not return the error but go back to waiting. There's a
846 * workspace preallocated for each type and the compression
847 * time is bounded so we get to a workspace eventually. This
848 * makes our caller's life easier.
52356716
DS
849 *
850 * To prevent silent and low-probability deadlocks (when the
851 * initial preallocation fails), check if there are any
852 * workspaces at all.
e721e49d 853 */
52356716
DS
854 if (atomic_read(total_ws) == 0) {
855 static DEFINE_RATELIMIT_STATE(_rs,
856 /* once per minute */ 60 * HZ,
857 /* no burst */ 1);
858
859 if (__ratelimit(&_rs)) {
ab8d0fc4 860 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
861 }
862 }
e721e49d 863 goto again;
261507a0
LZ
864 }
865 return workspace;
866}
867
868/*
869 * put a workspace struct back on the list or free it if we have enough
870 * idle ones sitting around
871 */
872static void free_workspace(int type, struct list_head *workspace)
873{
874 int idx = type - 1;
d9187649
BL
875 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
876 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 877 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 878 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 879 int *free_ws = &btrfs_comp_ws[idx].free_ws;
d9187649
BL
880
881 spin_lock(ws_lock);
6ac10a6a 882 if (*free_ws < num_online_cpus()) {
d9187649 883 list_add(workspace, idle_ws);
6ac10a6a 884 (*free_ws)++;
d9187649 885 spin_unlock(ws_lock);
261507a0
LZ
886 goto wake;
887 }
d9187649 888 spin_unlock(ws_lock);
261507a0
LZ
889
890 btrfs_compress_op[idx]->free_workspace(workspace);
6ac10a6a 891 atomic_dec(total_ws);
261507a0 892wake:
a83342aa
DS
893 /*
894 * Make sure counter is updated before we wake up waiters.
895 */
66657b31 896 smp_mb();
d9187649
BL
897 if (waitqueue_active(ws_wait))
898 wake_up(ws_wait);
261507a0
LZ
899}
900
901/*
902 * cleanup function for module exit
903 */
904static void free_workspaces(void)
905{
906 struct list_head *workspace;
907 int i;
908
909 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
910 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
911 workspace = btrfs_comp_ws[i].idle_ws.next;
261507a0
LZ
912 list_del(workspace);
913 btrfs_compress_op[i]->free_workspace(workspace);
6ac10a6a 914 atomic_dec(&btrfs_comp_ws[i].total_ws);
261507a0
LZ
915 }
916 }
917}
918
919/*
920 * given an address space and start/len, compress the bytes.
921 *
922 * pages are allocated to hold the compressed result and stored
923 * in 'pages'
924 *
925 * out_pages is used to return the number of pages allocated. There
926 * may be pages allocated even if we return an error
927 *
928 * total_in is used to return the number of bytes actually read. It
929 * may be smaller then len if we had to exit early because we
930 * ran out of room in the pages array or because we cross the
931 * max_out threshold.
932 *
933 * total_out is used to return the total number of compressed bytes
934 *
935 * max_out tells us the max number of bytes that we're allowed to
936 * stuff into pages
937 */
938int btrfs_compress_pages(int type, struct address_space *mapping,
939 u64 start, unsigned long len,
940 struct page **pages,
941 unsigned long nr_dest_pages,
942 unsigned long *out_pages,
943 unsigned long *total_in,
944 unsigned long *total_out,
945 unsigned long max_out)
946{
947 struct list_head *workspace;
948 int ret;
949
950 workspace = find_workspace(type);
261507a0
LZ
951
952 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
953 start, len, pages,
954 nr_dest_pages, out_pages,
955 total_in, total_out,
956 max_out);
957 free_workspace(type, workspace);
958 return ret;
959}
960
961/*
962 * pages_in is an array of pages with compressed data.
963 *
964 * disk_start is the starting logical offset of this array in the file
965 *
974b1adc 966 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
967 *
968 * srclen is the number of bytes in pages_in
969 *
970 * The basic idea is that we have a bio that was created by readpages.
971 * The pages in the bio are for the uncompressed data, and they may not
972 * be contiguous. They all correspond to the range of bytes covered by
973 * the compressed extent.
974 */
974b1adc
CH
975static int btrfs_decompress_bio(int type, struct page **pages_in,
976 u64 disk_start, struct bio *orig_bio,
977 size_t srclen)
261507a0
LZ
978{
979 struct list_head *workspace;
980 int ret;
981
982 workspace = find_workspace(type);
261507a0 983
974b1adc
CH
984 ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
985 disk_start, orig_bio,
986 srclen);
261507a0
LZ
987 free_workspace(type, workspace);
988 return ret;
989}
990
991/*
992 * a less complex decompression routine. Our compressed data fits in a
993 * single page, and we want to read a single page out of it.
994 * start_byte tells us the offset into the compressed data we're interested in
995 */
996int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
997 unsigned long start_byte, size_t srclen, size_t destlen)
998{
999 struct list_head *workspace;
1000 int ret;
1001
1002 workspace = find_workspace(type);
261507a0
LZ
1003
1004 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1005 dest_page, start_byte,
1006 srclen, destlen);
1007
1008 free_workspace(type, workspace);
1009 return ret;
1010}
1011
8e4eef7a 1012void btrfs_exit_compress(void)
261507a0
LZ
1013{
1014 free_workspaces();
1015}
3a39c18d
LZ
1016
1017/*
1018 * Copy uncompressed data from working buffer to pages.
1019 *
1020 * buf_start is the byte offset we're of the start of our workspace buffer.
1021 *
1022 * total_out is the last byte of the buffer
1023 */
1024int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1025 unsigned long total_out, u64 disk_start,
974b1adc 1026 struct bio *bio)
3a39c18d
LZ
1027{
1028 unsigned long buf_offset;
1029 unsigned long current_buf_start;
1030 unsigned long start_byte;
1031 unsigned long working_bytes = total_out - buf_start;
1032 unsigned long bytes;
1033 char *kaddr;
974b1adc 1034 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1035
1036 /*
1037 * start byte is the first byte of the page we're currently
1038 * copying into relative to the start of the compressed data.
1039 */
974b1adc 1040 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1041
1042 /* we haven't yet hit data corresponding to this page */
1043 if (total_out <= start_byte)
1044 return 1;
1045
1046 /*
1047 * the start of the data we care about is offset into
1048 * the middle of our working buffer
1049 */
1050 if (total_out > start_byte && buf_start < start_byte) {
1051 buf_offset = start_byte - buf_start;
1052 working_bytes -= buf_offset;
1053 } else {
1054 buf_offset = 0;
1055 }
1056 current_buf_start = buf_start;
1057
1058 /* copy bytes from the working buffer into the pages */
1059 while (working_bytes > 0) {
974b1adc
CH
1060 bytes = min_t(unsigned long, bvec.bv_len,
1061 PAGE_SIZE - buf_offset);
3a39c18d 1062 bytes = min(bytes, working_bytes);
974b1adc
CH
1063
1064 kaddr = kmap_atomic(bvec.bv_page);
1065 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1066 kunmap_atomic(kaddr);
974b1adc 1067 flush_dcache_page(bvec.bv_page);
3a39c18d 1068
3a39c18d
LZ
1069 buf_offset += bytes;
1070 working_bytes -= bytes;
1071 current_buf_start += bytes;
1072
1073 /* check if we need to pick another page */
974b1adc
CH
1074 bio_advance(bio, bytes);
1075 if (!bio->bi_iter.bi_size)
1076 return 0;
1077 bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d 1078
974b1adc 1079 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1080
974b1adc
CH
1081 /*
1082 * make sure our new page is covered by this
1083 * working buffer
1084 */
1085 if (total_out <= start_byte)
1086 return 1;
3a39c18d 1087
974b1adc
CH
1088 /*
1089 * the next page in the biovec might not be adjacent
1090 * to the last page, but it might still be found
1091 * inside this working buffer. bump our offset pointer
1092 */
1093 if (total_out > start_byte &&
1094 current_buf_start < start_byte) {
1095 buf_offset = start_byte - buf_start;
1096 working_bytes = total_out - start_byte;
1097 current_buf_start = buf_start + buf_offset;
3a39c18d
LZ
1098 }
1099 }
1100
1101 return 1;
1102}