Btrfs: deal with errors in write_dev_supers
[linux-2.6-block.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
4b4e25f2 35#include "compat.h"
c8b97818
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "ordered-data.h"
c8b97818
CM
42#include "compression.h"
43#include "extent_io.h"
44#include "extent_map.h"
45
46struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
49
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
52
53 /* inode that owns this data */
54 struct inode *inode;
55
56 /* starting offset in the inode for our pages */
57 u64 start;
58
59 /* number of bytes in the inode we're working on */
60 unsigned long len;
61
62 /* number of bytes on disk */
63 unsigned long compressed_len;
64
261507a0
LZ
65 /* the compression algorithm for this bio */
66 int compress_type;
67
c8b97818
CM
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
70
71 /* IO errors */
72 int errors;
d20f7043 73 int mirror_num;
c8b97818
CM
74
75 /* for reads, this is the bio we are copying the data into */
76 struct bio *orig_bio;
d20f7043
CM
77
78 /*
79 * the start of a variable length array of checksums only
80 * used by reads
81 */
82 u32 sums;
c8b97818
CM
83};
84
d20f7043
CM
85static inline int compressed_bio_size(struct btrfs_root *root,
86 unsigned long disk_size)
87{
6c41761f
DS
88 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
89
d20f7043
CM
90 return sizeof(struct compressed_bio) +
91 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
92 csum_size;
93}
94
c8b97818
CM
95static struct bio *compressed_bio_alloc(struct block_device *bdev,
96 u64 first_byte, gfp_t gfp_flags)
97{
c8b97818
CM
98 int nr_vecs;
99
100 nr_vecs = bio_get_nr_vecs(bdev);
88f794ed 101 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
c8b97818
CM
102}
103
d20f7043
CM
104static int check_compressed_csum(struct inode *inode,
105 struct compressed_bio *cb,
106 u64 disk_start)
107{
108 int ret;
d20f7043
CM
109 struct page *page;
110 unsigned long i;
111 char *kaddr;
112 u32 csum;
113 u32 *cb_sum = &cb->sums;
114
6cbff00f 115 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
116 return 0;
117
118 for (i = 0; i < cb->nr_pages; i++) {
119 page = cb->compressed_pages[i];
120 csum = ~(u32)0;
121
7ac687d9 122 kaddr = kmap_atomic(page);
b0496686 123 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
d20f7043 124 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 125 kunmap_atomic(kaddr);
d20f7043
CM
126
127 if (csum != *cb_sum) {
33345d01 128 printk(KERN_INFO "btrfs csum failed ino %llu "
d397712b 129 "extent %llu csum %u "
33345d01
LZ
130 "wanted %u mirror %d\n",
131 (unsigned long long)btrfs_ino(inode),
d20f7043
CM
132 (unsigned long long)disk_start,
133 csum, *cb_sum, cb->mirror_num);
134 ret = -EIO;
135 goto fail;
136 }
137 cb_sum++;
138
139 }
140 ret = 0;
141fail:
142 return ret;
143}
144
c8b97818
CM
145/* when we finish reading compressed pages from the disk, we
146 * decompress them and then run the bio end_io routines on the
147 * decompressed pages (in the inode address space).
148 *
149 * This allows the checksumming and other IO error handling routines
150 * to work normally
151 *
152 * The compressed pages are freed here, and it must be run
153 * in process context
154 */
155static void end_compressed_bio_read(struct bio *bio, int err)
156{
c8b97818
CM
157 struct compressed_bio *cb = bio->bi_private;
158 struct inode *inode;
159 struct page *page;
160 unsigned long index;
161 int ret;
162
163 if (err)
164 cb->errors = 1;
165
166 /* if there are more bios still pending for this compressed
167 * extent, just exit
168 */
169 if (!atomic_dec_and_test(&cb->pending_bios))
170 goto out;
171
d20f7043
CM
172 inode = cb->inode;
173 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
174 if (ret)
175 goto csum_failed;
176
c8b97818
CM
177 /* ok, we're the last bio for this extent, lets start
178 * the decompression.
179 */
261507a0
LZ
180 ret = btrfs_decompress_biovec(cb->compress_type,
181 cb->compressed_pages,
182 cb->start,
183 cb->orig_bio->bi_io_vec,
184 cb->orig_bio->bi_vcnt,
185 cb->compressed_len);
d20f7043 186csum_failed:
c8b97818
CM
187 if (ret)
188 cb->errors = 1;
189
190 /* release the compressed pages */
191 index = 0;
192 for (index = 0; index < cb->nr_pages; index++) {
193 page = cb->compressed_pages[index];
194 page->mapping = NULL;
195 page_cache_release(page);
196 }
197
198 /* do io completion on the original bio */
771ed689 199 if (cb->errors) {
c8b97818 200 bio_io_error(cb->orig_bio);
d20f7043
CM
201 } else {
202 int bio_index = 0;
203 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
204
205 /*
206 * we have verified the checksum already, set page
207 * checked so the end_io handlers know about it
208 */
d397712b 209 while (bio_index < cb->orig_bio->bi_vcnt) {
d20f7043
CM
210 SetPageChecked(bvec->bv_page);
211 bvec++;
212 bio_index++;
213 }
c8b97818 214 bio_endio(cb->orig_bio, 0);
d20f7043 215 }
c8b97818
CM
216
217 /* finally free the cb struct */
218 kfree(cb->compressed_pages);
219 kfree(cb);
220out:
221 bio_put(bio);
222}
223
224/*
225 * Clear the writeback bits on all of the file
226 * pages for a compressed write
227 */
143bede5
JM
228static noinline void end_compressed_writeback(struct inode *inode, u64 start,
229 unsigned long ram_size)
c8b97818
CM
230{
231 unsigned long index = start >> PAGE_CACHE_SHIFT;
232 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
233 struct page *pages[16];
234 unsigned long nr_pages = end_index - index + 1;
235 int i;
236 int ret;
237
d397712b 238 while (nr_pages > 0) {
c8b97818 239 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
240 min_t(unsigned long,
241 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
242 if (ret == 0) {
243 nr_pages -= 1;
244 index += 1;
245 continue;
246 }
247 for (i = 0; i < ret; i++) {
248 end_page_writeback(pages[i]);
249 page_cache_release(pages[i]);
250 }
251 nr_pages -= ret;
252 index += ret;
253 }
254 /* the inode may be gone now */
c8b97818
CM
255}
256
257/*
258 * do the cleanup once all the compressed pages hit the disk.
259 * This will clear writeback on the file pages and free the compressed
260 * pages.
261 *
262 * This also calls the writeback end hooks for the file pages so that
263 * metadata and checksums can be updated in the file.
264 */
265static void end_compressed_bio_write(struct bio *bio, int err)
266{
267 struct extent_io_tree *tree;
268 struct compressed_bio *cb = bio->bi_private;
269 struct inode *inode;
270 struct page *page;
271 unsigned long index;
272
273 if (err)
274 cb->errors = 1;
275
276 /* if there are more bios still pending for this compressed
277 * extent, just exit
278 */
279 if (!atomic_dec_and_test(&cb->pending_bios))
280 goto out;
281
282 /* ok, we're the last bio for this extent, step one is to
283 * call back into the FS and do all the end_io operations
284 */
285 inode = cb->inode;
286 tree = &BTRFS_I(inode)->io_tree;
70b99e69 287 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
288 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289 cb->start,
290 cb->start + cb->len - 1,
291 NULL, 1);
70b99e69 292 cb->compressed_pages[0]->mapping = NULL;
c8b97818
CM
293
294 end_compressed_writeback(inode, cb->start, cb->len);
295 /* note, our inode could be gone now */
296
297 /*
298 * release the compressed pages, these came from alloc_page and
299 * are not attached to the inode at all
300 */
301 index = 0;
302 for (index = 0; index < cb->nr_pages; index++) {
303 page = cb->compressed_pages[index];
304 page->mapping = NULL;
305 page_cache_release(page);
306 }
307
308 /* finally free the cb struct */
309 kfree(cb->compressed_pages);
310 kfree(cb);
311out:
312 bio_put(bio);
313}
314
315/*
316 * worker function to build and submit bios for previously compressed pages.
317 * The corresponding pages in the inode should be marked for writeback
318 * and the compressed pages should have a reference on them for dropping
319 * when the IO is complete.
320 *
321 * This also checksums the file bytes and gets things ready for
322 * the end io hooks.
323 */
324int btrfs_submit_compressed_write(struct inode *inode, u64 start,
325 unsigned long len, u64 disk_start,
326 unsigned long compressed_len,
327 struct page **compressed_pages,
328 unsigned long nr_pages)
329{
330 struct bio *bio = NULL;
331 struct btrfs_root *root = BTRFS_I(inode)->root;
332 struct compressed_bio *cb;
333 unsigned long bytes_left;
334 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 335 int pg_index = 0;
c8b97818
CM
336 struct page *page;
337 u64 first_byte = disk_start;
338 struct block_device *bdev;
339 int ret;
e55179b3 340 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818
CM
341
342 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
d20f7043 343 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
dac97e51
YS
344 if (!cb)
345 return -ENOMEM;
c8b97818
CM
346 atomic_set(&cb->pending_bios, 0);
347 cb->errors = 0;
348 cb->inode = inode;
349 cb->start = start;
350 cb->len = len;
d20f7043 351 cb->mirror_num = 0;
c8b97818
CM
352 cb->compressed_pages = compressed_pages;
353 cb->compressed_len = compressed_len;
354 cb->orig_bio = NULL;
355 cb->nr_pages = nr_pages;
356
357 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
358
c8b97818 359 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
dac97e51
YS
360 if(!bio) {
361 kfree(cb);
362 return -ENOMEM;
363 }
c8b97818
CM
364 bio->bi_private = cb;
365 bio->bi_end_io = end_compressed_bio_write;
366 atomic_inc(&cb->pending_bios);
367
368 /* create and submit bios for the compressed pages */
369 bytes_left = compressed_len;
306e16ce
DS
370 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371 page = compressed_pages[pg_index];
c8b97818
CM
372 page->mapping = inode->i_mapping;
373 if (bio->bi_size)
64a16701 374 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
c8b97818
CM
375 PAGE_CACHE_SIZE,
376 bio, 0);
377 else
378 ret = 0;
379
70b99e69 380 page->mapping = NULL;
c8b97818
CM
381 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
382 PAGE_CACHE_SIZE) {
383 bio_get(bio);
384
af09abfe
CM
385 /*
386 * inc the count before we submit the bio so
387 * we know the end IO handler won't happen before
388 * we inc the count. Otherwise, the cb might get
389 * freed before we're done setting it up
390 */
391 atomic_inc(&cb->pending_bios);
c8b97818 392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
79787eaa 393 BUG_ON(ret); /* -ENOMEM */
c8b97818 394
e55179b3
LZ
395 if (!skip_sum) {
396 ret = btrfs_csum_one_bio(root, inode, bio,
397 start, 1);
79787eaa 398 BUG_ON(ret); /* -ENOMEM */
e55179b3 399 }
d20f7043 400
c8b97818 401 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 402 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
403
404 bio_put(bio);
405
406 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
e627ee7b 407 BUG_ON(!bio);
c8b97818
CM
408 bio->bi_private = cb;
409 bio->bi_end_io = end_compressed_bio_write;
410 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
411 }
cfbc246e
CM
412 if (bytes_left < PAGE_CACHE_SIZE) {
413 printk("bytes left %lu compress len %lu nr %lu\n",
414 bytes_left, cb->compressed_len, cb->nr_pages);
415 }
c8b97818
CM
416 bytes_left -= PAGE_CACHE_SIZE;
417 first_byte += PAGE_CACHE_SIZE;
771ed689 418 cond_resched();
c8b97818
CM
419 }
420 bio_get(bio);
421
422 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
79787eaa 423 BUG_ON(ret); /* -ENOMEM */
c8b97818 424
e55179b3
LZ
425 if (!skip_sum) {
426 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
79787eaa 427 BUG_ON(ret); /* -ENOMEM */
e55179b3 428 }
d20f7043 429
c8b97818 430 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 431 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
432
433 bio_put(bio);
434 return 0;
435}
436
771ed689
CM
437static noinline int add_ra_bio_pages(struct inode *inode,
438 u64 compressed_end,
439 struct compressed_bio *cb)
440{
441 unsigned long end_index;
306e16ce 442 unsigned long pg_index;
771ed689
CM
443 u64 last_offset;
444 u64 isize = i_size_read(inode);
445 int ret;
446 struct page *page;
447 unsigned long nr_pages = 0;
448 struct extent_map *em;
449 struct address_space *mapping = inode->i_mapping;
771ed689
CM
450 struct extent_map_tree *em_tree;
451 struct extent_io_tree *tree;
452 u64 end;
453 int misses = 0;
454
455 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
456 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
457 em_tree = &BTRFS_I(inode)->extent_tree;
458 tree = &BTRFS_I(inode)->io_tree;
459
460 if (isize == 0)
461 return 0;
462
463 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
464
d397712b 465 while (last_offset < compressed_end) {
306e16ce 466 pg_index = last_offset >> PAGE_CACHE_SHIFT;
771ed689 467
306e16ce 468 if (pg_index > end_index)
771ed689
CM
469 break;
470
471 rcu_read_lock();
306e16ce 472 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689
CM
473 rcu_read_unlock();
474 if (page) {
475 misses++;
476 if (misses > 4)
477 break;
478 goto next;
479 }
480
28ecb609
NP
481 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
482 ~__GFP_FS);
771ed689
CM
483 if (!page)
484 break;
485
306e16ce 486 if (add_to_page_cache_lru(page, mapping, pg_index,
28ecb609 487 GFP_NOFS)) {
771ed689
CM
488 page_cache_release(page);
489 goto next;
490 }
491
771ed689
CM
492 end = last_offset + PAGE_CACHE_SIZE - 1;
493 /*
494 * at this point, we have a locked page in the page cache
495 * for these bytes in the file. But, we have to make
496 * sure they map to this compressed extent on disk.
497 */
498 set_page_extent_mapped(page);
d0082371 499 lock_extent(tree, last_offset, end);
890871be 500 read_lock(&em_tree->lock);
771ed689
CM
501 em = lookup_extent_mapping(em_tree, last_offset,
502 PAGE_CACHE_SIZE);
890871be 503 read_unlock(&em_tree->lock);
771ed689
CM
504
505 if (!em || last_offset < em->start ||
506 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
507 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
508 free_extent_map(em);
d0082371 509 unlock_extent(tree, last_offset, end);
771ed689
CM
510 unlock_page(page);
511 page_cache_release(page);
512 break;
513 }
514 free_extent_map(em);
515
516 if (page->index == end_index) {
517 char *userpage;
518 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
519
520 if (zero_offset) {
521 int zeros;
522 zeros = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 523 userpage = kmap_atomic(page);
771ed689
CM
524 memset(userpage + zero_offset, 0, zeros);
525 flush_dcache_page(page);
7ac687d9 526 kunmap_atomic(userpage);
771ed689
CM
527 }
528 }
529
530 ret = bio_add_page(cb->orig_bio, page,
531 PAGE_CACHE_SIZE, 0);
532
533 if (ret == PAGE_CACHE_SIZE) {
534 nr_pages++;
535 page_cache_release(page);
536 } else {
d0082371 537 unlock_extent(tree, last_offset, end);
771ed689
CM
538 unlock_page(page);
539 page_cache_release(page);
540 break;
541 }
542next:
543 last_offset += PAGE_CACHE_SIZE;
544 }
771ed689
CM
545 return 0;
546}
547
c8b97818
CM
548/*
549 * for a compressed read, the bio we get passed has all the inode pages
550 * in it. We don't actually do IO on those pages but allocate new ones
551 * to hold the compressed pages on disk.
552 *
553 * bio->bi_sector points to the compressed extent on disk
554 * bio->bi_io_vec points to all of the inode pages
555 * bio->bi_vcnt is a count of pages
556 *
557 * After the compressed pages are read, we copy the bytes into the
558 * bio we were passed and then call the bio end_io calls
559 */
560int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
561 int mirror_num, unsigned long bio_flags)
562{
563 struct extent_io_tree *tree;
564 struct extent_map_tree *em_tree;
565 struct compressed_bio *cb;
566 struct btrfs_root *root = BTRFS_I(inode)->root;
567 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
568 unsigned long compressed_len;
569 unsigned long nr_pages;
306e16ce 570 unsigned long pg_index;
c8b97818
CM
571 struct page *page;
572 struct block_device *bdev;
573 struct bio *comp_bio;
574 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
e04ca626
CM
575 u64 em_len;
576 u64 em_start;
c8b97818 577 struct extent_map *em;
6b82ce8d 578 int ret = -ENOMEM;
15e3004a 579 int faili = 0;
d20f7043 580 u32 *sums;
c8b97818
CM
581
582 tree = &BTRFS_I(inode)->io_tree;
583 em_tree = &BTRFS_I(inode)->extent_tree;
584
585 /* we need the actual starting offset of this extent in the file */
890871be 586 read_lock(&em_tree->lock);
c8b97818
CM
587 em = lookup_extent_mapping(em_tree,
588 page_offset(bio->bi_io_vec->bv_page),
589 PAGE_CACHE_SIZE);
890871be 590 read_unlock(&em_tree->lock);
285190d9
TI
591 if (!em)
592 return -EIO;
c8b97818 593
d20f7043
CM
594 compressed_len = em->block_len;
595 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
6b82ce8d 596 if (!cb)
597 goto out;
598
c8b97818
CM
599 atomic_set(&cb->pending_bios, 0);
600 cb->errors = 0;
601 cb->inode = inode;
d20f7043
CM
602 cb->mirror_num = mirror_num;
603 sums = &cb->sums;
c8b97818 604
ff5b7ee3 605 cb->start = em->orig_start;
e04ca626
CM
606 em_len = em->len;
607 em_start = em->start;
d20f7043 608
c8b97818 609 free_extent_map(em);
e04ca626 610 em = NULL;
c8b97818
CM
611
612 cb->len = uncompressed_len;
613 cb->compressed_len = compressed_len;
261507a0 614 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
615 cb->orig_bio = bio;
616
617 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
618 PAGE_CACHE_SIZE;
6b82ce8d 619 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
c8b97818 620 GFP_NOFS);
6b82ce8d 621 if (!cb->compressed_pages)
622 goto fail1;
623
c8b97818
CM
624 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
625
306e16ce
DS
626 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
627 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 628 __GFP_HIGHMEM);
15e3004a
JB
629 if (!cb->compressed_pages[pg_index]) {
630 faili = pg_index - 1;
631 ret = -ENOMEM;
6b82ce8d 632 goto fail2;
15e3004a 633 }
c8b97818 634 }
15e3004a 635 faili = nr_pages - 1;
c8b97818
CM
636 cb->nr_pages = nr_pages;
637
e04ca626 638 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 639
771ed689
CM
640 /* include any pages we added in add_ra-bio_pages */
641 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
642 cb->len = uncompressed_len;
643
c8b97818 644 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 645 if (!comp_bio)
646 goto fail2;
c8b97818
CM
647 comp_bio->bi_private = cb;
648 comp_bio->bi_end_io = end_compressed_bio_read;
649 atomic_inc(&cb->pending_bios);
650
306e16ce
DS
651 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
652 page = cb->compressed_pages[pg_index];
c8b97818 653 page->mapping = inode->i_mapping;
d20f7043
CM
654 page->index = em_start >> PAGE_CACHE_SHIFT;
655
c8b97818 656 if (comp_bio->bi_size)
64a16701 657 ret = tree->ops->merge_bio_hook(READ, page, 0,
c8b97818
CM
658 PAGE_CACHE_SIZE,
659 comp_bio, 0);
660 else
661 ret = 0;
662
70b99e69 663 page->mapping = NULL;
c8b97818
CM
664 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
665 PAGE_CACHE_SIZE) {
666 bio_get(comp_bio);
667
668 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
79787eaa 669 BUG_ON(ret); /* -ENOMEM */
c8b97818 670
af09abfe
CM
671 /*
672 * inc the count before we submit the bio so
673 * we know the end IO handler won't happen before
674 * we inc the count. Otherwise, the cb might get
675 * freed before we're done setting it up
676 */
677 atomic_inc(&cb->pending_bios);
678
6cbff00f 679 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
c2db1073
TI
680 ret = btrfs_lookup_bio_sums(root, inode,
681 comp_bio, sums);
79787eaa 682 BUG_ON(ret); /* -ENOMEM */
d20f7043
CM
683 }
684 sums += (comp_bio->bi_size + root->sectorsize - 1) /
685 root->sectorsize;
686
687 ret = btrfs_map_bio(root, READ, comp_bio,
688 mirror_num, 0);
61891923
SB
689 if (ret)
690 bio_endio(comp_bio, ret);
c8b97818
CM
691
692 bio_put(comp_bio);
693
694 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
695 GFP_NOFS);
e627ee7b 696 BUG_ON(!comp_bio);
771ed689
CM
697 comp_bio->bi_private = cb;
698 comp_bio->bi_end_io = end_compressed_bio_read;
699
700 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
c8b97818
CM
701 }
702 cur_disk_byte += PAGE_CACHE_SIZE;
703 }
704 bio_get(comp_bio);
705
706 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
79787eaa 707 BUG_ON(ret); /* -ENOMEM */
c8b97818 708
c2db1073
TI
709 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
710 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
79787eaa 711 BUG_ON(ret); /* -ENOMEM */
c2db1073 712 }
d20f7043
CM
713
714 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
61891923
SB
715 if (ret)
716 bio_endio(comp_bio, ret);
c8b97818
CM
717
718 bio_put(comp_bio);
719 return 0;
6b82ce8d 720
721fail2:
15e3004a
JB
722 while (faili >= 0) {
723 __free_page(cb->compressed_pages[faili]);
724 faili--;
725 }
6b82ce8d 726
727 kfree(cb->compressed_pages);
728fail1:
729 kfree(cb);
730out:
731 free_extent_map(em);
732 return ret;
c8b97818 733}
261507a0
LZ
734
735static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
736static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
737static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
738static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
739static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
740
741struct btrfs_compress_op *btrfs_compress_op[] = {
742 &btrfs_zlib_compress,
a6fa6fae 743 &btrfs_lzo_compress,
261507a0
LZ
744};
745
143bede5 746void __init btrfs_init_compress(void)
261507a0
LZ
747{
748 int i;
749
750 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
751 INIT_LIST_HEAD(&comp_idle_workspace[i]);
752 spin_lock_init(&comp_workspace_lock[i]);
753 atomic_set(&comp_alloc_workspace[i], 0);
754 init_waitqueue_head(&comp_workspace_wait[i]);
755 }
261507a0
LZ
756}
757
758/*
759 * this finds an available workspace or allocates a new one
760 * ERR_PTR is returned if things go bad.
761 */
762static struct list_head *find_workspace(int type)
763{
764 struct list_head *workspace;
765 int cpus = num_online_cpus();
766 int idx = type - 1;
767
768 struct list_head *idle_workspace = &comp_idle_workspace[idx];
769 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
770 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
771 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
772 int *num_workspace = &comp_num_workspace[idx];
773again:
774 spin_lock(workspace_lock);
775 if (!list_empty(idle_workspace)) {
776 workspace = idle_workspace->next;
777 list_del(workspace);
778 (*num_workspace)--;
779 spin_unlock(workspace_lock);
780 return workspace;
781
782 }
783 if (atomic_read(alloc_workspace) > cpus) {
784 DEFINE_WAIT(wait);
785
786 spin_unlock(workspace_lock);
787 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
788 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
789 schedule();
790 finish_wait(workspace_wait, &wait);
791 goto again;
792 }
793 atomic_inc(alloc_workspace);
794 spin_unlock(workspace_lock);
795
796 workspace = btrfs_compress_op[idx]->alloc_workspace();
797 if (IS_ERR(workspace)) {
798 atomic_dec(alloc_workspace);
799 wake_up(workspace_wait);
800 }
801 return workspace;
802}
803
804/*
805 * put a workspace struct back on the list or free it if we have enough
806 * idle ones sitting around
807 */
808static void free_workspace(int type, struct list_head *workspace)
809{
810 int idx = type - 1;
811 struct list_head *idle_workspace = &comp_idle_workspace[idx];
812 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
813 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
814 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
815 int *num_workspace = &comp_num_workspace[idx];
816
817 spin_lock(workspace_lock);
818 if (*num_workspace < num_online_cpus()) {
819 list_add_tail(workspace, idle_workspace);
820 (*num_workspace)++;
821 spin_unlock(workspace_lock);
822 goto wake;
823 }
824 spin_unlock(workspace_lock);
825
826 btrfs_compress_op[idx]->free_workspace(workspace);
827 atomic_dec(alloc_workspace);
828wake:
66657b31 829 smp_mb();
261507a0
LZ
830 if (waitqueue_active(workspace_wait))
831 wake_up(workspace_wait);
832}
833
834/*
835 * cleanup function for module exit
836 */
837static void free_workspaces(void)
838{
839 struct list_head *workspace;
840 int i;
841
842 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
843 while (!list_empty(&comp_idle_workspace[i])) {
844 workspace = comp_idle_workspace[i].next;
845 list_del(workspace);
846 btrfs_compress_op[i]->free_workspace(workspace);
847 atomic_dec(&comp_alloc_workspace[i]);
848 }
849 }
850}
851
852/*
853 * given an address space and start/len, compress the bytes.
854 *
855 * pages are allocated to hold the compressed result and stored
856 * in 'pages'
857 *
858 * out_pages is used to return the number of pages allocated. There
859 * may be pages allocated even if we return an error
860 *
861 * total_in is used to return the number of bytes actually read. It
862 * may be smaller then len if we had to exit early because we
863 * ran out of room in the pages array or because we cross the
864 * max_out threshold.
865 *
866 * total_out is used to return the total number of compressed bytes
867 *
868 * max_out tells us the max number of bytes that we're allowed to
869 * stuff into pages
870 */
871int btrfs_compress_pages(int type, struct address_space *mapping,
872 u64 start, unsigned long len,
873 struct page **pages,
874 unsigned long nr_dest_pages,
875 unsigned long *out_pages,
876 unsigned long *total_in,
877 unsigned long *total_out,
878 unsigned long max_out)
879{
880 struct list_head *workspace;
881 int ret;
882
883 workspace = find_workspace(type);
884 if (IS_ERR(workspace))
885 return -1;
886
887 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
888 start, len, pages,
889 nr_dest_pages, out_pages,
890 total_in, total_out,
891 max_out);
892 free_workspace(type, workspace);
893 return ret;
894}
895
896/*
897 * pages_in is an array of pages with compressed data.
898 *
899 * disk_start is the starting logical offset of this array in the file
900 *
901 * bvec is a bio_vec of pages from the file that we want to decompress into
902 *
903 * vcnt is the count of pages in the biovec
904 *
905 * srclen is the number of bytes in pages_in
906 *
907 * The basic idea is that we have a bio that was created by readpages.
908 * The pages in the bio are for the uncompressed data, and they may not
909 * be contiguous. They all correspond to the range of bytes covered by
910 * the compressed extent.
911 */
912int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
913 struct bio_vec *bvec, int vcnt, size_t srclen)
914{
915 struct list_head *workspace;
916 int ret;
917
918 workspace = find_workspace(type);
919 if (IS_ERR(workspace))
920 return -ENOMEM;
921
922 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
923 disk_start,
924 bvec, vcnt, srclen);
925 free_workspace(type, workspace);
926 return ret;
927}
928
929/*
930 * a less complex decompression routine. Our compressed data fits in a
931 * single page, and we want to read a single page out of it.
932 * start_byte tells us the offset into the compressed data we're interested in
933 */
934int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
935 unsigned long start_byte, size_t srclen, size_t destlen)
936{
937 struct list_head *workspace;
938 int ret;
939
940 workspace = find_workspace(type);
941 if (IS_ERR(workspace))
942 return -ENOMEM;
943
944 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
945 dest_page, start_byte,
946 srclen, destlen);
947
948 free_workspace(type, workspace);
949 return ret;
950}
951
8e4eef7a 952void btrfs_exit_compress(void)
261507a0
LZ
953{
954 free_workspaces();
955}
3a39c18d
LZ
956
957/*
958 * Copy uncompressed data from working buffer to pages.
959 *
960 * buf_start is the byte offset we're of the start of our workspace buffer.
961 *
962 * total_out is the last byte of the buffer
963 */
964int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
965 unsigned long total_out, u64 disk_start,
966 struct bio_vec *bvec, int vcnt,
306e16ce 967 unsigned long *pg_index,
3a39c18d
LZ
968 unsigned long *pg_offset)
969{
970 unsigned long buf_offset;
971 unsigned long current_buf_start;
972 unsigned long start_byte;
973 unsigned long working_bytes = total_out - buf_start;
974 unsigned long bytes;
975 char *kaddr;
306e16ce 976 struct page *page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
977
978 /*
979 * start byte is the first byte of the page we're currently
980 * copying into relative to the start of the compressed data.
981 */
982 start_byte = page_offset(page_out) - disk_start;
983
984 /* we haven't yet hit data corresponding to this page */
985 if (total_out <= start_byte)
986 return 1;
987
988 /*
989 * the start of the data we care about is offset into
990 * the middle of our working buffer
991 */
992 if (total_out > start_byte && buf_start < start_byte) {
993 buf_offset = start_byte - buf_start;
994 working_bytes -= buf_offset;
995 } else {
996 buf_offset = 0;
997 }
998 current_buf_start = buf_start;
999
1000 /* copy bytes from the working buffer into the pages */
1001 while (working_bytes > 0) {
1002 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1003 PAGE_CACHE_SIZE - buf_offset);
1004 bytes = min(bytes, working_bytes);
7ac687d9 1005 kaddr = kmap_atomic(page_out);
3a39c18d 1006 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
7ac687d9 1007 kunmap_atomic(kaddr);
3a39c18d
LZ
1008 flush_dcache_page(page_out);
1009
1010 *pg_offset += bytes;
1011 buf_offset += bytes;
1012 working_bytes -= bytes;
1013 current_buf_start += bytes;
1014
1015 /* check if we need to pick another page */
1016 if (*pg_offset == PAGE_CACHE_SIZE) {
306e16ce
DS
1017 (*pg_index)++;
1018 if (*pg_index >= vcnt)
3a39c18d
LZ
1019 return 0;
1020
306e16ce 1021 page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
1022 *pg_offset = 0;
1023 start_byte = page_offset(page_out) - disk_start;
1024
1025 /*
1026 * make sure our new page is covered by this
1027 * working buffer
1028 */
1029 if (total_out <= start_byte)
1030 return 1;
1031
1032 /*
1033 * the next page in the biovec might not be adjacent
1034 * to the last page, but it might still be found
1035 * inside this working buffer. bump our offset pointer
1036 */
1037 if (total_out > start_byte &&
1038 current_buf_start < start_byte) {
1039 buf_offset = start_byte - buf_start;
1040 working_bytes = total_out - start_byte;
1041 current_buf_start = buf_start + buf_offset;
1042 }
1043 }
1044 }
1045
1046 return 1;
1047}