btrfs: add barriers to btrfs_sync_log before log_commit_wait wakeups
[linux-2.6-block.git] / fs / btrfs / compression.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
c8b97818
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
c8b97818
CM
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/buffer_head.h>
9#include <linux/file.h>
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
c8b97818
CM
16#include <linux/backing-dev.h>
17#include <linux/mpage.h>
18#include <linux/swap.h>
19#include <linux/writeback.h>
20#include <linux/bit_spinlock.h>
5a0e3ad6 21#include <linux/slab.h>
fe308533 22#include <linux/sched/mm.h>
19562430 23#include <linux/log2.h>
c8b97818
CM
24#include "ctree.h"
25#include "disk-io.h"
26#include "transaction.h"
27#include "btrfs_inode.h"
28#include "volumes.h"
29#include "ordered-data.h"
c8b97818
CM
30#include "compression.h"
31#include "extent_io.h"
32#include "extent_map.h"
33
e128f9c3
DS
34static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
35
36const char* btrfs_compress_type2str(enum btrfs_compression_type type)
37{
38 switch (type) {
39 case BTRFS_COMPRESS_ZLIB:
40 case BTRFS_COMPRESS_LZO:
41 case BTRFS_COMPRESS_ZSTD:
42 case BTRFS_COMPRESS_NONE:
43 return btrfs_compress_types[type];
44 }
45
46 return NULL;
47}
48
8140dc30 49static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 50
2ff7e61e 51static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
52 unsigned long disk_size)
53{
0b246afa 54 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
6c41761f 55
d20f7043 56 return sizeof(struct compressed_bio) +
0b246afa 57 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
d20f7043
CM
58}
59
f898ac6a 60static int check_compressed_csum(struct btrfs_inode *inode,
d20f7043
CM
61 struct compressed_bio *cb,
62 u64 disk_start)
63{
64 int ret;
d20f7043
CM
65 struct page *page;
66 unsigned long i;
67 char *kaddr;
68 u32 csum;
69 u32 *cb_sum = &cb->sums;
70
f898ac6a 71 if (inode->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
72 return 0;
73
74 for (i = 0; i < cb->nr_pages; i++) {
75 page = cb->compressed_pages[i];
76 csum = ~(u32)0;
77
7ac687d9 78 kaddr = kmap_atomic(page);
09cbfeaf 79 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
0b5e3daf 80 btrfs_csum_final(csum, (u8 *)&csum);
7ac687d9 81 kunmap_atomic(kaddr);
d20f7043
CM
82
83 if (csum != *cb_sum) {
f898ac6a 84 btrfs_print_data_csum_error(inode, disk_start, csum,
0970a22e 85 *cb_sum, cb->mirror_num);
d20f7043
CM
86 ret = -EIO;
87 goto fail;
88 }
89 cb_sum++;
90
91 }
92 ret = 0;
93fail:
94 return ret;
95}
96
c8b97818
CM
97/* when we finish reading compressed pages from the disk, we
98 * decompress them and then run the bio end_io routines on the
99 * decompressed pages (in the inode address space).
100 *
101 * This allows the checksumming and other IO error handling routines
102 * to work normally
103 *
104 * The compressed pages are freed here, and it must be run
105 * in process context
106 */
4246a0b6 107static void end_compressed_bio_read(struct bio *bio)
c8b97818 108{
c8b97818
CM
109 struct compressed_bio *cb = bio->bi_private;
110 struct inode *inode;
111 struct page *page;
112 unsigned long index;
cf1167d5 113 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
e6311f24 114 int ret = 0;
c8b97818 115
4e4cbee9 116 if (bio->bi_status)
c8b97818
CM
117 cb->errors = 1;
118
119 /* if there are more bios still pending for this compressed
120 * extent, just exit
121 */
a50299ae 122 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
123 goto out;
124
cf1167d5
LB
125 /*
126 * Record the correct mirror_num in cb->orig_bio so that
127 * read-repair can work properly.
128 */
129 ASSERT(btrfs_io_bio(cb->orig_bio));
130 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
131 cb->mirror_num = mirror;
132
e6311f24
LB
133 /*
134 * Some IO in this cb have failed, just skip checksum as there
135 * is no way it could be correct.
136 */
137 if (cb->errors == 1)
138 goto csum_failed;
139
d20f7043 140 inode = cb->inode;
f898ac6a 141 ret = check_compressed_csum(BTRFS_I(inode), cb,
4f024f37 142 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
143 if (ret)
144 goto csum_failed;
145
c8b97818
CM
146 /* ok, we're the last bio for this extent, lets start
147 * the decompression.
148 */
8140dc30
AJ
149 ret = btrfs_decompress_bio(cb);
150
d20f7043 151csum_failed:
c8b97818
CM
152 if (ret)
153 cb->errors = 1;
154
155 /* release the compressed pages */
156 index = 0;
157 for (index = 0; index < cb->nr_pages; index++) {
158 page = cb->compressed_pages[index];
159 page->mapping = NULL;
09cbfeaf 160 put_page(page);
c8b97818
CM
161 }
162
163 /* do io completion on the original bio */
771ed689 164 if (cb->errors) {
c8b97818 165 bio_io_error(cb->orig_bio);
d20f7043 166 } else {
2c30c71b
KO
167 int i;
168 struct bio_vec *bvec;
d20f7043
CM
169
170 /*
171 * we have verified the checksum already, set page
172 * checked so the end_io handlers know about it
173 */
c09abff8 174 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 175 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 176 SetPageChecked(bvec->bv_page);
2c30c71b 177
4246a0b6 178 bio_endio(cb->orig_bio);
d20f7043 179 }
c8b97818
CM
180
181 /* finally free the cb struct */
182 kfree(cb->compressed_pages);
183 kfree(cb);
184out:
185 bio_put(bio);
186}
187
188/*
189 * Clear the writeback bits on all of the file
190 * pages for a compressed write
191 */
7bdcefc1
FM
192static noinline void end_compressed_writeback(struct inode *inode,
193 const struct compressed_bio *cb)
c8b97818 194{
09cbfeaf
KS
195 unsigned long index = cb->start >> PAGE_SHIFT;
196 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
197 struct page *pages[16];
198 unsigned long nr_pages = end_index - index + 1;
199 int i;
200 int ret;
201
7bdcefc1
FM
202 if (cb->errors)
203 mapping_set_error(inode->i_mapping, -EIO);
204
d397712b 205 while (nr_pages > 0) {
c8b97818 206 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
207 min_t(unsigned long,
208 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
209 if (ret == 0) {
210 nr_pages -= 1;
211 index += 1;
212 continue;
213 }
214 for (i = 0; i < ret; i++) {
7bdcefc1
FM
215 if (cb->errors)
216 SetPageError(pages[i]);
c8b97818 217 end_page_writeback(pages[i]);
09cbfeaf 218 put_page(pages[i]);
c8b97818
CM
219 }
220 nr_pages -= ret;
221 index += ret;
222 }
223 /* the inode may be gone now */
c8b97818
CM
224}
225
226/*
227 * do the cleanup once all the compressed pages hit the disk.
228 * This will clear writeback on the file pages and free the compressed
229 * pages.
230 *
231 * This also calls the writeback end hooks for the file pages so that
232 * metadata and checksums can be updated in the file.
233 */
4246a0b6 234static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
235{
236 struct extent_io_tree *tree;
237 struct compressed_bio *cb = bio->bi_private;
238 struct inode *inode;
239 struct page *page;
240 unsigned long index;
241
4e4cbee9 242 if (bio->bi_status)
c8b97818
CM
243 cb->errors = 1;
244
245 /* if there are more bios still pending for this compressed
246 * extent, just exit
247 */
a50299ae 248 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
249 goto out;
250
251 /* ok, we're the last bio for this extent, step one is to
252 * call back into the FS and do all the end_io operations
253 */
254 inode = cb->inode;
255 tree = &BTRFS_I(inode)->io_tree;
70b99e69 256 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
257 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
258 cb->start,
259 cb->start + cb->len - 1,
7bdcefc1 260 NULL,
2dbe0c77
AJ
261 bio->bi_status ?
262 BLK_STS_OK : BLK_STS_NOTSUPP);
70b99e69 263 cb->compressed_pages[0]->mapping = NULL;
c8b97818 264
7bdcefc1 265 end_compressed_writeback(inode, cb);
c8b97818
CM
266 /* note, our inode could be gone now */
267
268 /*
269 * release the compressed pages, these came from alloc_page and
270 * are not attached to the inode at all
271 */
272 index = 0;
273 for (index = 0; index < cb->nr_pages; index++) {
274 page = cb->compressed_pages[index];
275 page->mapping = NULL;
09cbfeaf 276 put_page(page);
c8b97818
CM
277 }
278
279 /* finally free the cb struct */
280 kfree(cb->compressed_pages);
281 kfree(cb);
282out:
283 bio_put(bio);
284}
285
286/*
287 * worker function to build and submit bios for previously compressed pages.
288 * The corresponding pages in the inode should be marked for writeback
289 * and the compressed pages should have a reference on them for dropping
290 * when the IO is complete.
291 *
292 * This also checksums the file bytes and gets things ready for
293 * the end io hooks.
294 */
4e4cbee9 295blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
c8b97818
CM
296 unsigned long len, u64 disk_start,
297 unsigned long compressed_len,
298 struct page **compressed_pages,
f82b7359
LB
299 unsigned long nr_pages,
300 unsigned int write_flags)
c8b97818 301{
0b246afa 302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818 303 struct bio *bio = NULL;
c8b97818
CM
304 struct compressed_bio *cb;
305 unsigned long bytes_left;
306 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 307 int pg_index = 0;
c8b97818
CM
308 struct page *page;
309 u64 first_byte = disk_start;
310 struct block_device *bdev;
4e4cbee9 311 blk_status_t ret;
e55179b3 312 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 313
09cbfeaf 314 WARN_ON(start & ((u64)PAGE_SIZE - 1));
2ff7e61e 315 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 316 if (!cb)
4e4cbee9 317 return BLK_STS_RESOURCE;
a50299ae 318 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
319 cb->errors = 0;
320 cb->inode = inode;
321 cb->start = start;
322 cb->len = len;
d20f7043 323 cb->mirror_num = 0;
c8b97818
CM
324 cb->compressed_pages = compressed_pages;
325 cb->compressed_len = compressed_len;
326 cb->orig_bio = NULL;
327 cb->nr_pages = nr_pages;
328
0b246afa 329 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 330
c821e7f3 331 bio = btrfs_bio_alloc(bdev, first_byte);
f82b7359 332 bio->bi_opf = REQ_OP_WRITE | write_flags;
c8b97818
CM
333 bio->bi_private = cb;
334 bio->bi_end_io = end_compressed_bio_write;
a50299ae 335 refcount_set(&cb->pending_bios, 1);
c8b97818
CM
336
337 /* create and submit bios for the compressed pages */
338 bytes_left = compressed_len;
306e16ce 339 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
4e4cbee9
CH
340 int submit = 0;
341
306e16ce 342 page = compressed_pages[pg_index];
c8b97818 343 page->mapping = inode->i_mapping;
4f024f37 344 if (bio->bi_iter.bi_size)
4e4cbee9 345 submit = io_tree->ops->merge_bio_hook(page, 0,
09cbfeaf 346 PAGE_SIZE,
c8b97818 347 bio, 0);
c8b97818 348
70b99e69 349 page->mapping = NULL;
4e4cbee9 350 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
09cbfeaf 351 PAGE_SIZE) {
af09abfe
CM
352 /*
353 * inc the count before we submit the bio so
354 * we know the end IO handler won't happen before
355 * we inc the count. Otherwise, the cb might get
356 * freed before we're done setting it up
357 */
a50299ae 358 refcount_inc(&cb->pending_bios);
0b246afa
JM
359 ret = btrfs_bio_wq_end_io(fs_info, bio,
360 BTRFS_WQ_ENDIO_DATA);
79787eaa 361 BUG_ON(ret); /* -ENOMEM */
c8b97818 362
e55179b3 363 if (!skip_sum) {
2ff7e61e 364 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 365 BUG_ON(ret); /* -ENOMEM */
e55179b3 366 }
d20f7043 367
2ff7e61e 368 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 369 if (ret) {
4e4cbee9 370 bio->bi_status = ret;
f5daf2c7
LB
371 bio_endio(bio);
372 }
c8b97818 373
c821e7f3 374 bio = btrfs_bio_alloc(bdev, first_byte);
f82b7359 375 bio->bi_opf = REQ_OP_WRITE | write_flags;
c8b97818
CM
376 bio->bi_private = cb;
377 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 378 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 379 }
09cbfeaf 380 if (bytes_left < PAGE_SIZE) {
0b246afa 381 btrfs_info(fs_info,
efe120a0 382 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
383 bytes_left, cb->compressed_len, cb->nr_pages);
384 }
09cbfeaf
KS
385 bytes_left -= PAGE_SIZE;
386 first_byte += PAGE_SIZE;
771ed689 387 cond_resched();
c8b97818 388 }
c8b97818 389
0b246afa 390 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 391 BUG_ON(ret); /* -ENOMEM */
c8b97818 392
e55179b3 393 if (!skip_sum) {
2ff7e61e 394 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 395 BUG_ON(ret); /* -ENOMEM */
e55179b3 396 }
d20f7043 397
2ff7e61e 398 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 399 if (ret) {
4e4cbee9 400 bio->bi_status = ret;
f5daf2c7
LB
401 bio_endio(bio);
402 }
c8b97818 403
c8b97818
CM
404 return 0;
405}
406
2a4d0c90
CH
407static u64 bio_end_offset(struct bio *bio)
408{
c45a8f2d 409 struct bio_vec *last = bio_last_bvec_all(bio);
2a4d0c90
CH
410
411 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
412}
413
771ed689
CM
414static noinline int add_ra_bio_pages(struct inode *inode,
415 u64 compressed_end,
416 struct compressed_bio *cb)
417{
418 unsigned long end_index;
306e16ce 419 unsigned long pg_index;
771ed689
CM
420 u64 last_offset;
421 u64 isize = i_size_read(inode);
422 int ret;
423 struct page *page;
424 unsigned long nr_pages = 0;
425 struct extent_map *em;
426 struct address_space *mapping = inode->i_mapping;
771ed689
CM
427 struct extent_map_tree *em_tree;
428 struct extent_io_tree *tree;
429 u64 end;
430 int misses = 0;
431
2a4d0c90 432 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
433 em_tree = &BTRFS_I(inode)->extent_tree;
434 tree = &BTRFS_I(inode)->io_tree;
435
436 if (isize == 0)
437 return 0;
438
09cbfeaf 439 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 440
d397712b 441 while (last_offset < compressed_end) {
09cbfeaf 442 pg_index = last_offset >> PAGE_SHIFT;
771ed689 443
306e16ce 444 if (pg_index > end_index)
771ed689
CM
445 break;
446
447 rcu_read_lock();
b93b0163 448 page = radix_tree_lookup(&mapping->i_pages, pg_index);
771ed689 449 rcu_read_unlock();
0cd6144a 450 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
451 misses++;
452 if (misses > 4)
453 break;
454 goto next;
455 }
456
c62d2555
MH
457 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
458 ~__GFP_FS));
771ed689
CM
459 if (!page)
460 break;
461
c62d2555 462 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 463 put_page(page);
771ed689
CM
464 goto next;
465 }
466
09cbfeaf 467 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
468 /*
469 * at this point, we have a locked page in the page cache
470 * for these bytes in the file. But, we have to make
471 * sure they map to this compressed extent on disk.
472 */
473 set_page_extent_mapped(page);
d0082371 474 lock_extent(tree, last_offset, end);
890871be 475 read_lock(&em_tree->lock);
771ed689 476 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 477 PAGE_SIZE);
890871be 478 read_unlock(&em_tree->lock);
771ed689
CM
479
480 if (!em || last_offset < em->start ||
09cbfeaf 481 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 482 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 483 free_extent_map(em);
d0082371 484 unlock_extent(tree, last_offset, end);
771ed689 485 unlock_page(page);
09cbfeaf 486 put_page(page);
771ed689
CM
487 break;
488 }
489 free_extent_map(em);
490
491 if (page->index == end_index) {
492 char *userpage;
09cbfeaf 493 size_t zero_offset = isize & (PAGE_SIZE - 1);
771ed689
CM
494
495 if (zero_offset) {
496 int zeros;
09cbfeaf 497 zeros = PAGE_SIZE - zero_offset;
7ac687d9 498 userpage = kmap_atomic(page);
771ed689
CM
499 memset(userpage + zero_offset, 0, zeros);
500 flush_dcache_page(page);
7ac687d9 501 kunmap_atomic(userpage);
771ed689
CM
502 }
503 }
504
505 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 506 PAGE_SIZE, 0);
771ed689 507
09cbfeaf 508 if (ret == PAGE_SIZE) {
771ed689 509 nr_pages++;
09cbfeaf 510 put_page(page);
771ed689 511 } else {
d0082371 512 unlock_extent(tree, last_offset, end);
771ed689 513 unlock_page(page);
09cbfeaf 514 put_page(page);
771ed689
CM
515 break;
516 }
517next:
09cbfeaf 518 last_offset += PAGE_SIZE;
771ed689 519 }
771ed689
CM
520 return 0;
521}
522
c8b97818
CM
523/*
524 * for a compressed read, the bio we get passed has all the inode pages
525 * in it. We don't actually do IO on those pages but allocate new ones
526 * to hold the compressed pages on disk.
527 *
4f024f37 528 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 529 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
530 *
531 * After the compressed pages are read, we copy the bytes into the
532 * bio we were passed and then call the bio end_io calls
533 */
4e4cbee9 534blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
535 int mirror_num, unsigned long bio_flags)
536{
0b246afa 537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
538 struct extent_io_tree *tree;
539 struct extent_map_tree *em_tree;
540 struct compressed_bio *cb;
c8b97818
CM
541 unsigned long compressed_len;
542 unsigned long nr_pages;
306e16ce 543 unsigned long pg_index;
c8b97818
CM
544 struct page *page;
545 struct block_device *bdev;
546 struct bio *comp_bio;
4f024f37 547 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
548 u64 em_len;
549 u64 em_start;
c8b97818 550 struct extent_map *em;
4e4cbee9 551 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 552 int faili = 0;
d20f7043 553 u32 *sums;
c8b97818
CM
554
555 tree = &BTRFS_I(inode)->io_tree;
556 em_tree = &BTRFS_I(inode)->extent_tree;
557
558 /* we need the actual starting offset of this extent in the file */
890871be 559 read_lock(&em_tree->lock);
c8b97818 560 em = lookup_extent_mapping(em_tree,
263663cd 561 page_offset(bio_first_page_all(bio)),
09cbfeaf 562 PAGE_SIZE);
890871be 563 read_unlock(&em_tree->lock);
285190d9 564 if (!em)
4e4cbee9 565 return BLK_STS_IOERR;
c8b97818 566
d20f7043 567 compressed_len = em->block_len;
2ff7e61e 568 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 569 if (!cb)
570 goto out;
571
a50299ae 572 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
573 cb->errors = 0;
574 cb->inode = inode;
d20f7043
CM
575 cb->mirror_num = mirror_num;
576 sums = &cb->sums;
c8b97818 577
ff5b7ee3 578 cb->start = em->orig_start;
e04ca626
CM
579 em_len = em->len;
580 em_start = em->start;
d20f7043 581
c8b97818 582 free_extent_map(em);
e04ca626 583 em = NULL;
c8b97818 584
81381053 585 cb->len = bio->bi_iter.bi_size;
c8b97818 586 cb->compressed_len = compressed_len;
261507a0 587 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
588 cb->orig_bio = bio;
589
09cbfeaf 590 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 591 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 592 GFP_NOFS);
6b82ce8d 593 if (!cb->compressed_pages)
594 goto fail1;
595
0b246afa 596 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 597
306e16ce
DS
598 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
599 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 600 __GFP_HIGHMEM);
15e3004a
JB
601 if (!cb->compressed_pages[pg_index]) {
602 faili = pg_index - 1;
0e9350de 603 ret = BLK_STS_RESOURCE;
6b82ce8d 604 goto fail2;
15e3004a 605 }
c8b97818 606 }
15e3004a 607 faili = nr_pages - 1;
c8b97818
CM
608 cb->nr_pages = nr_pages;
609
7f042a83 610 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 611
771ed689 612 /* include any pages we added in add_ra-bio_pages */
81381053 613 cb->len = bio->bi_iter.bi_size;
771ed689 614
c821e7f3 615 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
37226b21 616 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
c8b97818
CM
617 comp_bio->bi_private = cb;
618 comp_bio->bi_end_io = end_compressed_bio_read;
a50299ae 619 refcount_set(&cb->pending_bios, 1);
c8b97818 620
306e16ce 621 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
4e4cbee9
CH
622 int submit = 0;
623
306e16ce 624 page = cb->compressed_pages[pg_index];
c8b97818 625 page->mapping = inode->i_mapping;
09cbfeaf 626 page->index = em_start >> PAGE_SHIFT;
d20f7043 627
4f024f37 628 if (comp_bio->bi_iter.bi_size)
4e4cbee9 629 submit = tree->ops->merge_bio_hook(page, 0,
09cbfeaf 630 PAGE_SIZE,
c8b97818 631 comp_bio, 0);
c8b97818 632
70b99e69 633 page->mapping = NULL;
4e4cbee9 634 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
09cbfeaf 635 PAGE_SIZE) {
0b246afa
JM
636 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
637 BTRFS_WQ_ENDIO_DATA);
79787eaa 638 BUG_ON(ret); /* -ENOMEM */
c8b97818 639
af09abfe
CM
640 /*
641 * inc the count before we submit the bio so
642 * we know the end IO handler won't happen before
643 * we inc the count. Otherwise, the cb might get
644 * freed before we're done setting it up
645 */
a50299ae 646 refcount_inc(&cb->pending_bios);
af09abfe 647
6cbff00f 648 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e
JM
649 ret = btrfs_lookup_bio_sums(inode, comp_bio,
650 sums);
79787eaa 651 BUG_ON(ret); /* -ENOMEM */
d20f7043 652 }
ed6078f7 653 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
0b246afa 654 fs_info->sectorsize);
d20f7043 655
2ff7e61e 656 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 657 if (ret) {
4e4cbee9 658 comp_bio->bi_status = ret;
4246a0b6
CH
659 bio_endio(comp_bio);
660 }
c8b97818 661
c821e7f3 662 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
37226b21 663 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
771ed689
CM
664 comp_bio->bi_private = cb;
665 comp_bio->bi_end_io = end_compressed_bio_read;
666
09cbfeaf 667 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 668 }
09cbfeaf 669 cur_disk_byte += PAGE_SIZE;
c8b97818 670 }
c8b97818 671
0b246afa 672 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 673 BUG_ON(ret); /* -ENOMEM */
c8b97818 674
c2db1073 675 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e 676 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
79787eaa 677 BUG_ON(ret); /* -ENOMEM */
c2db1073 678 }
d20f7043 679
2ff7e61e 680 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 681 if (ret) {
4e4cbee9 682 comp_bio->bi_status = ret;
4246a0b6
CH
683 bio_endio(comp_bio);
684 }
c8b97818 685
c8b97818 686 return 0;
6b82ce8d 687
688fail2:
15e3004a
JB
689 while (faili >= 0) {
690 __free_page(cb->compressed_pages[faili]);
691 faili--;
692 }
6b82ce8d 693
694 kfree(cb->compressed_pages);
695fail1:
696 kfree(cb);
697out:
698 free_extent_map(em);
699 return ret;
c8b97818 700}
261507a0 701
17b5a6c1
TT
702/*
703 * Heuristic uses systematic sampling to collect data from the input data
704 * range, the logic can be tuned by the following constants:
705 *
706 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
707 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
708 */
709#define SAMPLING_READ_SIZE (16)
710#define SAMPLING_INTERVAL (256)
711
712/*
713 * For statistical analysis of the input data we consider bytes that form a
714 * Galois Field of 256 objects. Each object has an attribute count, ie. how
715 * many times the object appeared in the sample.
716 */
717#define BUCKET_SIZE (256)
718
719/*
720 * The size of the sample is based on a statistical sampling rule of thumb.
721 * The common way is to perform sampling tests as long as the number of
722 * elements in each cell is at least 5.
723 *
724 * Instead of 5, we choose 32 to obtain more accurate results.
725 * If the data contain the maximum number of symbols, which is 256, we obtain a
726 * sample size bound by 8192.
727 *
728 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
729 * from up to 512 locations.
730 */
731#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
732 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
733
734struct bucket_item {
735 u32 count;
736};
4e439a0b
TT
737
738struct heuristic_ws {
17b5a6c1
TT
739 /* Partial copy of input data */
740 u8 *sample;
a440d48c 741 u32 sample_size;
17b5a6c1
TT
742 /* Buckets store counters for each byte value */
743 struct bucket_item *bucket;
440c840c
TT
744 /* Sorting buffer */
745 struct bucket_item *bucket_b;
4e439a0b
TT
746 struct list_head list;
747};
748
749static void free_heuristic_ws(struct list_head *ws)
750{
751 struct heuristic_ws *workspace;
752
753 workspace = list_entry(ws, struct heuristic_ws, list);
754
17b5a6c1
TT
755 kvfree(workspace->sample);
756 kfree(workspace->bucket);
440c840c 757 kfree(workspace->bucket_b);
4e439a0b
TT
758 kfree(workspace);
759}
760
761static struct list_head *alloc_heuristic_ws(void)
762{
763 struct heuristic_ws *ws;
764
765 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
766 if (!ws)
767 return ERR_PTR(-ENOMEM);
768
17b5a6c1
TT
769 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
770 if (!ws->sample)
771 goto fail;
772
773 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
774 if (!ws->bucket)
775 goto fail;
4e439a0b 776
440c840c
TT
777 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
778 if (!ws->bucket_b)
779 goto fail;
780
17b5a6c1 781 INIT_LIST_HEAD(&ws->list);
4e439a0b 782 return &ws->list;
17b5a6c1
TT
783fail:
784 free_heuristic_ws(&ws->list);
785 return ERR_PTR(-ENOMEM);
4e439a0b
TT
786}
787
788struct workspaces_list {
d9187649
BL
789 struct list_head idle_ws;
790 spinlock_t ws_lock;
6ac10a6a
DS
791 /* Number of free workspaces */
792 int free_ws;
793 /* Total number of allocated workspaces */
794 atomic_t total_ws;
795 /* Waiters for a free workspace */
d9187649 796 wait_queue_head_t ws_wait;
4e439a0b
TT
797};
798
799static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
800
801static struct workspaces_list btrfs_heuristic_ws;
261507a0 802
e8c9f186 803static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 804 &btrfs_zlib_compress,
a6fa6fae 805 &btrfs_lzo_compress,
5c1aab1d 806 &btrfs_zstd_compress,
261507a0
LZ
807};
808
143bede5 809void __init btrfs_init_compress(void)
261507a0 810{
4e439a0b 811 struct list_head *workspace;
261507a0
LZ
812 int i;
813
4e439a0b
TT
814 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
815 spin_lock_init(&btrfs_heuristic_ws.ws_lock);
816 atomic_set(&btrfs_heuristic_ws.total_ws, 0);
817 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
f77dd0d6 818
4e439a0b
TT
819 workspace = alloc_heuristic_ws();
820 if (IS_ERR(workspace)) {
821 pr_warn(
822 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
823 } else {
824 atomic_set(&btrfs_heuristic_ws.total_ws, 1);
825 btrfs_heuristic_ws.free_ws = 1;
826 list_add(workspace, &btrfs_heuristic_ws.idle_ws);
827 }
828
829 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
830 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
831 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
6ac10a6a 832 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
d9187649 833 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
f77dd0d6
DS
834
835 /*
836 * Preallocate one workspace for each compression type so
837 * we can guarantee forward progress in the worst case
838 */
839 workspace = btrfs_compress_op[i]->alloc_workspace();
840 if (IS_ERR(workspace)) {
62e85577 841 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
f77dd0d6
DS
842 } else {
843 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
844 btrfs_comp_ws[i].free_ws = 1;
845 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
846 }
261507a0 847 }
261507a0
LZ
848}
849
850/*
e721e49d
DS
851 * This finds an available workspace or allocates a new one.
852 * If it's not possible to allocate a new one, waits until there's one.
853 * Preallocation makes a forward progress guarantees and we do not return
854 * errors.
261507a0 855 */
4e439a0b 856static struct list_head *__find_workspace(int type, bool heuristic)
261507a0
LZ
857{
858 struct list_head *workspace;
859 int cpus = num_online_cpus();
860 int idx = type - 1;
fe308533 861 unsigned nofs_flag;
4e439a0b
TT
862 struct list_head *idle_ws;
863 spinlock_t *ws_lock;
864 atomic_t *total_ws;
865 wait_queue_head_t *ws_wait;
866 int *free_ws;
867
868 if (heuristic) {
869 idle_ws = &btrfs_heuristic_ws.idle_ws;
870 ws_lock = &btrfs_heuristic_ws.ws_lock;
871 total_ws = &btrfs_heuristic_ws.total_ws;
872 ws_wait = &btrfs_heuristic_ws.ws_wait;
873 free_ws = &btrfs_heuristic_ws.free_ws;
874 } else {
875 idle_ws = &btrfs_comp_ws[idx].idle_ws;
876 ws_lock = &btrfs_comp_ws[idx].ws_lock;
877 total_ws = &btrfs_comp_ws[idx].total_ws;
878 ws_wait = &btrfs_comp_ws[idx].ws_wait;
879 free_ws = &btrfs_comp_ws[idx].free_ws;
880 }
261507a0 881
261507a0 882again:
d9187649
BL
883 spin_lock(ws_lock);
884 if (!list_empty(idle_ws)) {
885 workspace = idle_ws->next;
261507a0 886 list_del(workspace);
6ac10a6a 887 (*free_ws)--;
d9187649 888 spin_unlock(ws_lock);
261507a0
LZ
889 return workspace;
890
891 }
6ac10a6a 892 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
893 DEFINE_WAIT(wait);
894
d9187649
BL
895 spin_unlock(ws_lock);
896 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 897 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 898 schedule();
d9187649 899 finish_wait(ws_wait, &wait);
261507a0
LZ
900 goto again;
901 }
6ac10a6a 902 atomic_inc(total_ws);
d9187649 903 spin_unlock(ws_lock);
261507a0 904
fe308533
DS
905 /*
906 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
907 * to turn it off here because we might get called from the restricted
908 * context of btrfs_compress_bio/btrfs_compress_pages
909 */
910 nofs_flag = memalloc_nofs_save();
4e439a0b
TT
911 if (heuristic)
912 workspace = alloc_heuristic_ws();
913 else
914 workspace = btrfs_compress_op[idx]->alloc_workspace();
fe308533
DS
915 memalloc_nofs_restore(nofs_flag);
916
261507a0 917 if (IS_ERR(workspace)) {
6ac10a6a 918 atomic_dec(total_ws);
d9187649 919 wake_up(ws_wait);
e721e49d
DS
920
921 /*
922 * Do not return the error but go back to waiting. There's a
923 * workspace preallocated for each type and the compression
924 * time is bounded so we get to a workspace eventually. This
925 * makes our caller's life easier.
52356716
DS
926 *
927 * To prevent silent and low-probability deadlocks (when the
928 * initial preallocation fails), check if there are any
929 * workspaces at all.
e721e49d 930 */
52356716
DS
931 if (atomic_read(total_ws) == 0) {
932 static DEFINE_RATELIMIT_STATE(_rs,
933 /* once per minute */ 60 * HZ,
934 /* no burst */ 1);
935
936 if (__ratelimit(&_rs)) {
ab8d0fc4 937 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
938 }
939 }
e721e49d 940 goto again;
261507a0
LZ
941 }
942 return workspace;
943}
944
4e439a0b
TT
945static struct list_head *find_workspace(int type)
946{
947 return __find_workspace(type, false);
948}
949
261507a0
LZ
950/*
951 * put a workspace struct back on the list or free it if we have enough
952 * idle ones sitting around
953 */
4e439a0b
TT
954static void __free_workspace(int type, struct list_head *workspace,
955 bool heuristic)
261507a0
LZ
956{
957 int idx = type - 1;
4e439a0b
TT
958 struct list_head *idle_ws;
959 spinlock_t *ws_lock;
960 atomic_t *total_ws;
961 wait_queue_head_t *ws_wait;
962 int *free_ws;
963
964 if (heuristic) {
965 idle_ws = &btrfs_heuristic_ws.idle_ws;
966 ws_lock = &btrfs_heuristic_ws.ws_lock;
967 total_ws = &btrfs_heuristic_ws.total_ws;
968 ws_wait = &btrfs_heuristic_ws.ws_wait;
969 free_ws = &btrfs_heuristic_ws.free_ws;
970 } else {
971 idle_ws = &btrfs_comp_ws[idx].idle_ws;
972 ws_lock = &btrfs_comp_ws[idx].ws_lock;
973 total_ws = &btrfs_comp_ws[idx].total_ws;
974 ws_wait = &btrfs_comp_ws[idx].ws_wait;
975 free_ws = &btrfs_comp_ws[idx].free_ws;
976 }
d9187649
BL
977
978 spin_lock(ws_lock);
26b28dce 979 if (*free_ws <= num_online_cpus()) {
d9187649 980 list_add(workspace, idle_ws);
6ac10a6a 981 (*free_ws)++;
d9187649 982 spin_unlock(ws_lock);
261507a0
LZ
983 goto wake;
984 }
d9187649 985 spin_unlock(ws_lock);
261507a0 986
4e439a0b
TT
987 if (heuristic)
988 free_heuristic_ws(workspace);
989 else
990 btrfs_compress_op[idx]->free_workspace(workspace);
6ac10a6a 991 atomic_dec(total_ws);
261507a0 992wake:
a83342aa
DS
993 /*
994 * Make sure counter is updated before we wake up waiters.
995 */
66657b31 996 smp_mb();
d9187649
BL
997 if (waitqueue_active(ws_wait))
998 wake_up(ws_wait);
261507a0
LZ
999}
1000
4e439a0b
TT
1001static void free_workspace(int type, struct list_head *ws)
1002{
1003 return __free_workspace(type, ws, false);
1004}
1005
261507a0
LZ
1006/*
1007 * cleanup function for module exit
1008 */
1009static void free_workspaces(void)
1010{
1011 struct list_head *workspace;
1012 int i;
1013
4e439a0b
TT
1014 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1015 workspace = btrfs_heuristic_ws.idle_ws.next;
1016 list_del(workspace);
1017 free_heuristic_ws(workspace);
1018 atomic_dec(&btrfs_heuristic_ws.total_ws);
1019 }
1020
261507a0 1021 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
1022 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1023 workspace = btrfs_comp_ws[i].idle_ws.next;
261507a0
LZ
1024 list_del(workspace);
1025 btrfs_compress_op[i]->free_workspace(workspace);
6ac10a6a 1026 atomic_dec(&btrfs_comp_ws[i].total_ws);
261507a0
LZ
1027 }
1028 }
1029}
1030
1031/*
38c31464
DS
1032 * Given an address space and start and length, compress the bytes into @pages
1033 * that are allocated on demand.
261507a0 1034 *
f51d2b59
DS
1035 * @type_level is encoded algorithm and level, where level 0 means whatever
1036 * default the algorithm chooses and is opaque here;
1037 * - compression algo are 0-3
1038 * - the level are bits 4-7
1039 *
4d3a800e
DS
1040 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1041 * and returns number of actually allocated pages
261507a0 1042 *
38c31464
DS
1043 * @total_in is used to return the number of bytes actually read. It
1044 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
1045 * ran out of room in the pages array or because we cross the
1046 * max_out threshold.
1047 *
38c31464
DS
1048 * @total_out is an in/out parameter, must be set to the input length and will
1049 * be also used to return the total number of compressed bytes
261507a0 1050 *
38c31464 1051 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
1052 * stuff into pages
1053 */
f51d2b59 1054int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 1055 u64 start, struct page **pages,
261507a0
LZ
1056 unsigned long *out_pages,
1057 unsigned long *total_in,
e5d74902 1058 unsigned long *total_out)
261507a0
LZ
1059{
1060 struct list_head *workspace;
1061 int ret;
f51d2b59 1062 int type = type_level & 0xF;
261507a0
LZ
1063
1064 workspace = find_workspace(type);
261507a0 1065
f51d2b59 1066 btrfs_compress_op[type - 1]->set_level(workspace, type_level);
261507a0 1067 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
38c31464 1068 start, pages,
4d3a800e 1069 out_pages,
e5d74902 1070 total_in, total_out);
261507a0
LZ
1071 free_workspace(type, workspace);
1072 return ret;
1073}
1074
1075/*
1076 * pages_in is an array of pages with compressed data.
1077 *
1078 * disk_start is the starting logical offset of this array in the file
1079 *
974b1adc 1080 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
1081 *
1082 * srclen is the number of bytes in pages_in
1083 *
1084 * The basic idea is that we have a bio that was created by readpages.
1085 * The pages in the bio are for the uncompressed data, and they may not
1086 * be contiguous. They all correspond to the range of bytes covered by
1087 * the compressed extent.
1088 */
8140dc30 1089static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1090{
1091 struct list_head *workspace;
1092 int ret;
8140dc30 1093 int type = cb->compress_type;
261507a0
LZ
1094
1095 workspace = find_workspace(type);
e1ddce71 1096 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
261507a0 1097 free_workspace(type, workspace);
e1ddce71 1098
261507a0
LZ
1099 return ret;
1100}
1101
1102/*
1103 * a less complex decompression routine. Our compressed data fits in a
1104 * single page, and we want to read a single page out of it.
1105 * start_byte tells us the offset into the compressed data we're interested in
1106 */
1107int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1108 unsigned long start_byte, size_t srclen, size_t destlen)
1109{
1110 struct list_head *workspace;
1111 int ret;
1112
1113 workspace = find_workspace(type);
261507a0
LZ
1114
1115 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1116 dest_page, start_byte,
1117 srclen, destlen);
1118
1119 free_workspace(type, workspace);
1120 return ret;
1121}
1122
e67c718b 1123void __cold btrfs_exit_compress(void)
261507a0
LZ
1124{
1125 free_workspaces();
1126}
3a39c18d
LZ
1127
1128/*
1129 * Copy uncompressed data from working buffer to pages.
1130 *
1131 * buf_start is the byte offset we're of the start of our workspace buffer.
1132 *
1133 * total_out is the last byte of the buffer
1134 */
14a3357b 1135int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 1136 unsigned long total_out, u64 disk_start,
974b1adc 1137 struct bio *bio)
3a39c18d
LZ
1138{
1139 unsigned long buf_offset;
1140 unsigned long current_buf_start;
1141 unsigned long start_byte;
6e78b3f7 1142 unsigned long prev_start_byte;
3a39c18d
LZ
1143 unsigned long working_bytes = total_out - buf_start;
1144 unsigned long bytes;
1145 char *kaddr;
974b1adc 1146 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1147
1148 /*
1149 * start byte is the first byte of the page we're currently
1150 * copying into relative to the start of the compressed data.
1151 */
974b1adc 1152 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1153
1154 /* we haven't yet hit data corresponding to this page */
1155 if (total_out <= start_byte)
1156 return 1;
1157
1158 /*
1159 * the start of the data we care about is offset into
1160 * the middle of our working buffer
1161 */
1162 if (total_out > start_byte && buf_start < start_byte) {
1163 buf_offset = start_byte - buf_start;
1164 working_bytes -= buf_offset;
1165 } else {
1166 buf_offset = 0;
1167 }
1168 current_buf_start = buf_start;
1169
1170 /* copy bytes from the working buffer into the pages */
1171 while (working_bytes > 0) {
974b1adc
CH
1172 bytes = min_t(unsigned long, bvec.bv_len,
1173 PAGE_SIZE - buf_offset);
3a39c18d 1174 bytes = min(bytes, working_bytes);
974b1adc
CH
1175
1176 kaddr = kmap_atomic(bvec.bv_page);
1177 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1178 kunmap_atomic(kaddr);
974b1adc 1179 flush_dcache_page(bvec.bv_page);
3a39c18d 1180
3a39c18d
LZ
1181 buf_offset += bytes;
1182 working_bytes -= bytes;
1183 current_buf_start += bytes;
1184
1185 /* check if we need to pick another page */
974b1adc
CH
1186 bio_advance(bio, bytes);
1187 if (!bio->bi_iter.bi_size)
1188 return 0;
1189 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1190 prev_start_byte = start_byte;
974b1adc 1191 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1192
974b1adc 1193 /*
6e78b3f7
OS
1194 * We need to make sure we're only adjusting
1195 * our offset into compression working buffer when
1196 * we're switching pages. Otherwise we can incorrectly
1197 * keep copying when we were actually done.
974b1adc 1198 */
6e78b3f7
OS
1199 if (start_byte != prev_start_byte) {
1200 /*
1201 * make sure our new page is covered by this
1202 * working buffer
1203 */
1204 if (total_out <= start_byte)
1205 return 1;
3a39c18d 1206
6e78b3f7
OS
1207 /*
1208 * the next page in the biovec might not be adjacent
1209 * to the last page, but it might still be found
1210 * inside this working buffer. bump our offset pointer
1211 */
1212 if (total_out > start_byte &&
1213 current_buf_start < start_byte) {
1214 buf_offset = start_byte - buf_start;
1215 working_bytes = total_out - start_byte;
1216 current_buf_start = buf_start + buf_offset;
1217 }
3a39c18d
LZ
1218 }
1219 }
1220
1221 return 1;
1222}
c2fcdcdf 1223
19562430
TT
1224/*
1225 * Shannon Entropy calculation
1226 *
1227 * Pure byte distribution analysis fails to determine compressiability of data.
1228 * Try calculating entropy to estimate the average minimum number of bits
1229 * needed to encode the sampled data.
1230 *
1231 * For convenience, return the percentage of needed bits, instead of amount of
1232 * bits directly.
1233 *
1234 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1235 * and can be compressible with high probability
1236 *
1237 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1238 *
1239 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1240 */
1241#define ENTROPY_LVL_ACEPTABLE (65)
1242#define ENTROPY_LVL_HIGH (80)
1243
1244/*
1245 * For increasead precision in shannon_entropy calculation,
1246 * let's do pow(n, M) to save more digits after comma:
1247 *
1248 * - maximum int bit length is 64
1249 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1250 * - 13 * 4 = 52 < 64 -> M = 4
1251 *
1252 * So use pow(n, 4).
1253 */
1254static inline u32 ilog2_w(u64 n)
1255{
1256 return ilog2(n * n * n * n);
1257}
1258
1259static u32 shannon_entropy(struct heuristic_ws *ws)
1260{
1261 const u32 entropy_max = 8 * ilog2_w(2);
1262 u32 entropy_sum = 0;
1263 u32 p, p_base, sz_base;
1264 u32 i;
1265
1266 sz_base = ilog2_w(ws->sample_size);
1267 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1268 p = ws->bucket[i].count;
1269 p_base = ilog2_w(p);
1270 entropy_sum += p * (sz_base - p_base);
1271 }
1272
1273 entropy_sum /= ws->sample_size;
1274 return entropy_sum * 100 / entropy_max;
1275}
1276
440c840c
TT
1277#define RADIX_BASE 4U
1278#define COUNTERS_SIZE (1U << RADIX_BASE)
1279
1280static u8 get4bits(u64 num, int shift) {
1281 u8 low4bits;
1282
1283 num >>= shift;
1284 /* Reverse order */
1285 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1286 return low4bits;
1287}
1288
440c840c
TT
1289/*
1290 * Use 4 bits as radix base
1291 * Use 16 u32 counters for calculating new possition in buf array
1292 *
1293 * @array - array that will be sorted
1294 * @array_buf - buffer array to store sorting results
1295 * must be equal in size to @array
1296 * @num - array size
440c840c 1297 */
23ae8c63 1298static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
36243c91 1299 int num)
858177d3 1300{
440c840c
TT
1301 u64 max_num;
1302 u64 buf_num;
1303 u32 counters[COUNTERS_SIZE];
1304 u32 new_addr;
1305 u32 addr;
1306 int bitlen;
1307 int shift;
1308 int i;
858177d3 1309
440c840c
TT
1310 /*
1311 * Try avoid useless loop iterations for small numbers stored in big
1312 * counters. Example: 48 33 4 ... in 64bit array
1313 */
23ae8c63 1314 max_num = array[0].count;
440c840c 1315 for (i = 1; i < num; i++) {
23ae8c63 1316 buf_num = array[i].count;
440c840c
TT
1317 if (buf_num > max_num)
1318 max_num = buf_num;
1319 }
1320
1321 buf_num = ilog2(max_num);
1322 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1323
1324 shift = 0;
1325 while (shift < bitlen) {
1326 memset(counters, 0, sizeof(counters));
1327
1328 for (i = 0; i < num; i++) {
23ae8c63 1329 buf_num = array[i].count;
440c840c
TT
1330 addr = get4bits(buf_num, shift);
1331 counters[addr]++;
1332 }
1333
1334 for (i = 1; i < COUNTERS_SIZE; i++)
1335 counters[i] += counters[i - 1];
1336
1337 for (i = num - 1; i >= 0; i--) {
23ae8c63 1338 buf_num = array[i].count;
440c840c
TT
1339 addr = get4bits(buf_num, shift);
1340 counters[addr]--;
1341 new_addr = counters[addr];
7add17be 1342 array_buf[new_addr] = array[i];
440c840c
TT
1343 }
1344
1345 shift += RADIX_BASE;
1346
1347 /*
1348 * Normal radix expects to move data from a temporary array, to
1349 * the main one. But that requires some CPU time. Avoid that
1350 * by doing another sort iteration to original array instead of
1351 * memcpy()
1352 */
1353 memset(counters, 0, sizeof(counters));
1354
1355 for (i = 0; i < num; i ++) {
23ae8c63 1356 buf_num = array_buf[i].count;
440c840c
TT
1357 addr = get4bits(buf_num, shift);
1358 counters[addr]++;
1359 }
1360
1361 for (i = 1; i < COUNTERS_SIZE; i++)
1362 counters[i] += counters[i - 1];
1363
1364 for (i = num - 1; i >= 0; i--) {
23ae8c63 1365 buf_num = array_buf[i].count;
440c840c
TT
1366 addr = get4bits(buf_num, shift);
1367 counters[addr]--;
1368 new_addr = counters[addr];
7add17be 1369 array[new_addr] = array_buf[i];
440c840c
TT
1370 }
1371
1372 shift += RADIX_BASE;
1373 }
858177d3
TT
1374}
1375
1376/*
1377 * Size of the core byte set - how many bytes cover 90% of the sample
1378 *
1379 * There are several types of structured binary data that use nearly all byte
1380 * values. The distribution can be uniform and counts in all buckets will be
1381 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1382 *
1383 * Other possibility is normal (Gaussian) distribution, where the data could
1384 * be potentially compressible, but we have to take a few more steps to decide
1385 * how much.
1386 *
1387 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1388 * compression algo can easy fix that
1389 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1390 * probability is not compressible
1391 */
1392#define BYTE_CORE_SET_LOW (64)
1393#define BYTE_CORE_SET_HIGH (200)
1394
1395static int byte_core_set_size(struct heuristic_ws *ws)
1396{
1397 u32 i;
1398 u32 coreset_sum = 0;
1399 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1400 struct bucket_item *bucket = ws->bucket;
1401
1402 /* Sort in reverse order */
36243c91 1403 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
858177d3
TT
1404
1405 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1406 coreset_sum += bucket[i].count;
1407
1408 if (coreset_sum > core_set_threshold)
1409 return i;
1410
1411 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1412 coreset_sum += bucket[i].count;
1413 if (coreset_sum > core_set_threshold)
1414 break;
1415 }
1416
1417 return i;
1418}
1419
a288e92c
TT
1420/*
1421 * Count byte values in buckets.
1422 * This heuristic can detect textual data (configs, xml, json, html, etc).
1423 * Because in most text-like data byte set is restricted to limited number of
1424 * possible characters, and that restriction in most cases makes data easy to
1425 * compress.
1426 *
1427 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1428 * less - compressible
1429 * more - need additional analysis
1430 */
1431#define BYTE_SET_THRESHOLD (64)
1432
1433static u32 byte_set_size(const struct heuristic_ws *ws)
1434{
1435 u32 i;
1436 u32 byte_set_size = 0;
1437
1438 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1439 if (ws->bucket[i].count > 0)
1440 byte_set_size++;
1441 }
1442
1443 /*
1444 * Continue collecting count of byte values in buckets. If the byte
1445 * set size is bigger then the threshold, it's pointless to continue,
1446 * the detection technique would fail for this type of data.
1447 */
1448 for (; i < BUCKET_SIZE; i++) {
1449 if (ws->bucket[i].count > 0) {
1450 byte_set_size++;
1451 if (byte_set_size > BYTE_SET_THRESHOLD)
1452 return byte_set_size;
1453 }
1454 }
1455
1456 return byte_set_size;
1457}
1458
1fe4f6fa
TT
1459static bool sample_repeated_patterns(struct heuristic_ws *ws)
1460{
1461 const u32 half_of_sample = ws->sample_size / 2;
1462 const u8 *data = ws->sample;
1463
1464 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1465}
1466
a440d48c
TT
1467static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1468 struct heuristic_ws *ws)
1469{
1470 struct page *page;
1471 u64 index, index_end;
1472 u32 i, curr_sample_pos;
1473 u8 *in_data;
1474
1475 /*
1476 * Compression handles the input data by chunks of 128KiB
1477 * (defined by BTRFS_MAX_UNCOMPRESSED)
1478 *
1479 * We do the same for the heuristic and loop over the whole range.
1480 *
1481 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1482 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1483 */
1484 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1485 end = start + BTRFS_MAX_UNCOMPRESSED;
1486
1487 index = start >> PAGE_SHIFT;
1488 index_end = end >> PAGE_SHIFT;
1489
1490 /* Don't miss unaligned end */
1491 if (!IS_ALIGNED(end, PAGE_SIZE))
1492 index_end++;
1493
1494 curr_sample_pos = 0;
1495 while (index < index_end) {
1496 page = find_get_page(inode->i_mapping, index);
1497 in_data = kmap(page);
1498 /* Handle case where the start is not aligned to PAGE_SIZE */
1499 i = start % PAGE_SIZE;
1500 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1501 /* Don't sample any garbage from the last page */
1502 if (start > end - SAMPLING_READ_SIZE)
1503 break;
1504 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1505 SAMPLING_READ_SIZE);
1506 i += SAMPLING_INTERVAL;
1507 start += SAMPLING_INTERVAL;
1508 curr_sample_pos += SAMPLING_READ_SIZE;
1509 }
1510 kunmap(page);
1511 put_page(page);
1512
1513 index++;
1514 }
1515
1516 ws->sample_size = curr_sample_pos;
1517}
1518
c2fcdcdf
TT
1519/*
1520 * Compression heuristic.
1521 *
1522 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1523 * quickly (compared to direct compression) detect data characteristics
1524 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1525 * data.
1526 *
1527 * The following types of analysis can be performed:
1528 * - detect mostly zero data
1529 * - detect data with low "byte set" size (text, etc)
1530 * - detect data with low/high "core byte" set
1531 *
1532 * Return non-zero if the compression should be done, 0 otherwise.
1533 */
1534int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1535{
4e439a0b
TT
1536 struct list_head *ws_list = __find_workspace(0, true);
1537 struct heuristic_ws *ws;
a440d48c
TT
1538 u32 i;
1539 u8 byte;
19562430 1540 int ret = 0;
c2fcdcdf 1541
4e439a0b
TT
1542 ws = list_entry(ws_list, struct heuristic_ws, list);
1543
a440d48c
TT
1544 heuristic_collect_sample(inode, start, end, ws);
1545
1fe4f6fa
TT
1546 if (sample_repeated_patterns(ws)) {
1547 ret = 1;
1548 goto out;
1549 }
1550
a440d48c
TT
1551 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1552
1553 for (i = 0; i < ws->sample_size; i++) {
1554 byte = ws->sample[i];
1555 ws->bucket[byte].count++;
c2fcdcdf
TT
1556 }
1557
a288e92c
TT
1558 i = byte_set_size(ws);
1559 if (i < BYTE_SET_THRESHOLD) {
1560 ret = 2;
1561 goto out;
1562 }
1563
858177d3
TT
1564 i = byte_core_set_size(ws);
1565 if (i <= BYTE_CORE_SET_LOW) {
1566 ret = 3;
1567 goto out;
1568 }
1569
1570 if (i >= BYTE_CORE_SET_HIGH) {
1571 ret = 0;
1572 goto out;
1573 }
1574
19562430
TT
1575 i = shannon_entropy(ws);
1576 if (i <= ENTROPY_LVL_ACEPTABLE) {
1577 ret = 4;
1578 goto out;
1579 }
1580
1581 /*
1582 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1583 * needed to give green light to compression.
1584 *
1585 * For now just assume that compression at that level is not worth the
1586 * resources because:
1587 *
1588 * 1. it is possible to defrag the data later
1589 *
1590 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1591 * values, every bucket has counter at level ~54. The heuristic would
1592 * be confused. This can happen when data have some internal repeated
1593 * patterns like "abbacbbc...". This can be detected by analyzing
1594 * pairs of bytes, which is too costly.
1595 */
1596 if (i < ENTROPY_LVL_HIGH) {
1597 ret = 5;
1598 goto out;
1599 } else {
1600 ret = 0;
1601 goto out;
1602 }
1603
1fe4f6fa 1604out:
4e439a0b 1605 __free_workspace(0, ws_list, true);
c2fcdcdf
TT
1606 return ret;
1607}
f51d2b59
DS
1608
1609unsigned int btrfs_compress_str2level(const char *str)
1610{
1611 if (strncmp(str, "zlib", 4) != 0)
1612 return 0;
1613
fa4d885a
AB
1614 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1615 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1616 return str[5] - '0';
f51d2b59 1617
eae8d825 1618 return BTRFS_ZLIB_DEFAULT_LEVEL;
f51d2b59 1619}