block: Generalized bio pool freeing
[linux-2.6-block.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
852c788f 22#include <linux/iocontext.h>
1da177e4
LT
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/kernel.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mempool.h>
28#include <linux/workqueue.h>
852c788f 29#include <linux/cgroup.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
6feef531 40static mempool_t *bio_split_pool __read_mostly;
1da177e4 41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
1da177e4 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
51d654e1 57struct bio_set *fs_bio_set;
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 bio_slab_max <<= 1;
389d7b26
AK
100 new_bio_slabs = krealloc(bio_slabs,
101 bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
389d7b26 105 bio_slabs = new_bio_slabs;
bb799ca0
JA
106 }
107 if (entry == -1)
108 entry = bio_slab_nr++;
109
110 bslab = &bio_slabs[entry];
111
112 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
113 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
114 if (!slab)
115 goto out_unlock;
116
80cdc6da 117 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
118 bslab->slab = slab;
119 bslab->slab_ref = 1;
120 bslab->slab_size = sz;
121out_unlock:
122 mutex_unlock(&bio_slab_lock);
123 return slab;
124}
125
126static void bio_put_slab(struct bio_set *bs)
127{
128 struct bio_slab *bslab = NULL;
129 unsigned int i;
130
131 mutex_lock(&bio_slab_lock);
132
133 for (i = 0; i < bio_slab_nr; i++) {
134 if (bs->bio_slab == bio_slabs[i].slab) {
135 bslab = &bio_slabs[i];
136 break;
137 }
138 }
139
140 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
141 goto out;
142
143 WARN_ON(!bslab->slab_ref);
144
145 if (--bslab->slab_ref)
146 goto out;
147
148 kmem_cache_destroy(bslab->slab);
149 bslab->slab = NULL;
150
151out:
152 mutex_unlock(&bio_slab_lock);
153}
154
7ba1ba12
MP
155unsigned int bvec_nr_vecs(unsigned short idx)
156{
157 return bvec_slabs[idx].nr_vecs;
158}
159
bb799ca0
JA
160void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
161{
162 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
163
164 if (idx == BIOVEC_MAX_IDX)
165 mempool_free(bv, bs->bvec_pool);
166 else {
167 struct biovec_slab *bvs = bvec_slabs + idx;
168
169 kmem_cache_free(bvs->slab, bv);
170 }
171}
172
7ff9345f
JA
173struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
174 struct bio_set *bs)
1da177e4
LT
175{
176 struct bio_vec *bvl;
1da177e4 177
7ff9345f
JA
178 /*
179 * see comment near bvec_array define!
180 */
181 switch (nr) {
182 case 1:
183 *idx = 0;
184 break;
185 case 2 ... 4:
186 *idx = 1;
187 break;
188 case 5 ... 16:
189 *idx = 2;
190 break;
191 case 17 ... 64:
192 *idx = 3;
193 break;
194 case 65 ... 128:
195 *idx = 4;
196 break;
197 case 129 ... BIO_MAX_PAGES:
198 *idx = 5;
199 break;
200 default:
201 return NULL;
202 }
203
204 /*
205 * idx now points to the pool we want to allocate from. only the
206 * 1-vec entry pool is mempool backed.
207 */
208 if (*idx == BIOVEC_MAX_IDX) {
209fallback:
210 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
211 } else {
212 struct biovec_slab *bvs = bvec_slabs + *idx;
213 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
214
0a0d96b0 215 /*
7ff9345f
JA
216 * Make this allocation restricted and don't dump info on
217 * allocation failures, since we'll fallback to the mempool
218 * in case of failure.
0a0d96b0 219 */
7ff9345f 220 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 221
0a0d96b0 222 /*
7ff9345f
JA
223 * Try a slab allocation. If this fails and __GFP_WAIT
224 * is set, retry with the 1-entry mempool
0a0d96b0 225 */
7ff9345f
JA
226 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
227 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
228 *idx = BIOVEC_MAX_IDX;
229 goto fallback;
230 }
231 }
232
1da177e4
LT
233 return bvl;
234}
235
7ff9345f 236void bio_free(struct bio *bio, struct bio_set *bs)
1da177e4 237{
bb799ca0 238 void *p;
1da177e4 239
392ddc32 240 if (bio_has_allocated_vec(bio))
bb799ca0 241 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
1da177e4 242
7ba1ba12 243 if (bio_integrity(bio))
7878cba9 244 bio_integrity_free(bio, bs);
7ba1ba12 245
bb799ca0
JA
246 /*
247 * If we have front padding, adjust the bio pointer before freeing
248 */
249 p = bio;
250 if (bs->front_pad)
251 p -= bs->front_pad;
252
253 mempool_free(p, bs->bio_pool);
3676347a 254}
a112a71d 255EXPORT_SYMBOL(bio_free);
3676347a 256
858119e1 257void bio_init(struct bio *bio)
1da177e4 258{
2b94de55 259 memset(bio, 0, sizeof(*bio));
1da177e4 260 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 261 atomic_set(&bio->bi_cnt, 1);
1da177e4 262}
a112a71d 263EXPORT_SYMBOL(bio_init);
1da177e4
LT
264
265/**
266 * bio_alloc_bioset - allocate a bio for I/O
267 * @gfp_mask: the GFP_ mask given to the slab allocator
268 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 269 * @bs: the bio_set to allocate from.
1da177e4
LT
270 *
271 * Description:
db18efac 272 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
1da177e4 273 * If %__GFP_WAIT is set then we will block on the internal pool waiting
db18efac 274 * for a &struct bio to become free.
1da177e4 275 **/
dd0fc66f 276struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 277{
451a9ebf 278 unsigned long idx = BIO_POOL_NONE;
34053979 279 struct bio_vec *bvl = NULL;
451a9ebf
TH
280 struct bio *bio;
281 void *p;
282
283 p = mempool_alloc(bs->bio_pool, gfp_mask);
284 if (unlikely(!p))
285 return NULL;
286 bio = p + bs->front_pad;
1da177e4 287
34053979 288 bio_init(bio);
395c72a7 289 bio->bi_pool = bs;
34053979
IM
290
291 if (unlikely(!nr_iovecs))
292 goto out_set;
293
294 if (nr_iovecs <= BIO_INLINE_VECS) {
295 bvl = bio->bi_inline_vecs;
296 nr_iovecs = BIO_INLINE_VECS;
297 } else {
298 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
299 if (unlikely(!bvl))
300 goto err_free;
301
302 nr_iovecs = bvec_nr_vecs(idx);
1da177e4 303 }
451a9ebf 304out_set:
34053979
IM
305 bio->bi_flags |= idx << BIO_POOL_OFFSET;
306 bio->bi_max_vecs = nr_iovecs;
34053979 307 bio->bi_io_vec = bvl;
1da177e4 308 return bio;
34053979
IM
309
310err_free:
451a9ebf 311 mempool_free(p, bs->bio_pool);
34053979 312 return NULL;
1da177e4 313}
a112a71d 314EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 315
451a9ebf
TH
316/**
317 * bio_alloc - allocate a new bio, memory pool backed
318 * @gfp_mask: allocation mask to use
319 * @nr_iovecs: number of iovecs
320 *
5f04eeb8
AB
321 * bio_alloc will allocate a bio and associated bio_vec array that can hold
322 * at least @nr_iovecs entries. Allocations will be done from the
323 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
324 *
325 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
326 * a bio. This is due to the mempool guarantees. To make this work, callers
327 * must never allocate more than 1 bio at a time from this pool. Callers
328 * that need to allocate more than 1 bio must always submit the previously
329 * allocated bio for IO before attempting to allocate a new one. Failure to
330 * do so can cause livelocks under memory pressure.
451a9ebf
TH
331 *
332 * RETURNS:
333 * Pointer to new bio on success, NULL on failure.
334 */
121f0994 335struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
451a9ebf 336{
395c72a7 337 return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
451a9ebf 338}
a112a71d 339EXPORT_SYMBOL(bio_alloc);
451a9ebf
TH
340
341static void bio_kmalloc_destructor(struct bio *bio)
342{
343 if (bio_integrity(bio))
7878cba9 344 bio_integrity_free(bio, fs_bio_set);
451a9ebf
TH
345 kfree(bio);
346}
347
86c824b9 348/**
5f04eeb8 349 * bio_kmalloc - allocate a bio for I/O using kmalloc()
86c824b9
JA
350 * @gfp_mask: the GFP_ mask given to the slab allocator
351 * @nr_iovecs: number of iovecs to pre-allocate
352 *
353 * Description:
5f04eeb8
AB
354 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
355 * %__GFP_WAIT, the allocation is guaranteed to succeed.
86c824b9
JA
356 *
357 **/
121f0994 358struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
0a0d96b0 359{
451a9ebf 360 struct bio *bio;
0a0d96b0 361
f3f63c1c
JA
362 if (nr_iovecs > UIO_MAXIOV)
363 return NULL;
364
451a9ebf
TH
365 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
366 gfp_mask);
367 if (unlikely(!bio))
368 return NULL;
369
370 bio_init(bio);
371 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
372 bio->bi_max_vecs = nr_iovecs;
373 bio->bi_io_vec = bio->bi_inline_vecs;
374 bio->bi_destructor = bio_kmalloc_destructor;
0a0d96b0
JA
375
376 return bio;
377}
a112a71d 378EXPORT_SYMBOL(bio_kmalloc);
0a0d96b0 379
1da177e4
LT
380void zero_fill_bio(struct bio *bio)
381{
382 unsigned long flags;
383 struct bio_vec *bv;
384 int i;
385
386 bio_for_each_segment(bv, bio, i) {
387 char *data = bvec_kmap_irq(bv, &flags);
388 memset(data, 0, bv->bv_len);
389 flush_dcache_page(bv->bv_page);
390 bvec_kunmap_irq(data, &flags);
391 }
392}
393EXPORT_SYMBOL(zero_fill_bio);
394
395/**
396 * bio_put - release a reference to a bio
397 * @bio: bio to release reference to
398 *
399 * Description:
400 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 401 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
402 **/
403void bio_put(struct bio *bio)
404{
405 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
406
407 /*
408 * last put frees it
409 */
410 if (atomic_dec_and_test(&bio->bi_cnt)) {
852c788f 411 bio_disassociate_task(bio);
1da177e4 412 bio->bi_next = NULL;
395c72a7
KO
413
414 /*
415 * This if statement is temporary - bi_pool is replacing
416 * bi_destructor, but bi_destructor will be taken out in another
417 * patch.
418 */
419 if (bio->bi_pool)
420 bio_free(bio, bio->bi_pool);
421 else
422 bio->bi_destructor(bio);
1da177e4
LT
423 }
424}
a112a71d 425EXPORT_SYMBOL(bio_put);
1da177e4 426
165125e1 427inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
428{
429 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
430 blk_recount_segments(q, bio);
431
432 return bio->bi_phys_segments;
433}
a112a71d 434EXPORT_SYMBOL(bio_phys_segments);
1da177e4 435
1da177e4
LT
436/**
437 * __bio_clone - clone a bio
438 * @bio: destination bio
439 * @bio_src: bio to clone
440 *
441 * Clone a &bio. Caller will own the returned bio, but not
442 * the actual data it points to. Reference count of returned
443 * bio will be one.
444 */
858119e1 445void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 446{
e525e153
AM
447 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
448 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 449
5d84070e
JA
450 /*
451 * most users will be overriding ->bi_bdev with a new target,
452 * so we don't set nor calculate new physical/hw segment counts here
453 */
1da177e4
LT
454 bio->bi_sector = bio_src->bi_sector;
455 bio->bi_bdev = bio_src->bi_bdev;
456 bio->bi_flags |= 1 << BIO_CLONED;
457 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
458 bio->bi_vcnt = bio_src->bi_vcnt;
459 bio->bi_size = bio_src->bi_size;
a5453be4 460 bio->bi_idx = bio_src->bi_idx;
1da177e4 461}
a112a71d 462EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
463
464/**
465 * bio_clone - clone a bio
466 * @bio: bio to clone
467 * @gfp_mask: allocation priority
468 *
469 * Like __bio_clone, only also allocates the returned bio
470 */
dd0fc66f 471struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4 472{
395c72a7 473 struct bio *b = bio_alloc(gfp_mask, bio->bi_max_vecs);
1da177e4 474
7ba1ba12
MP
475 if (!b)
476 return NULL;
477
7ba1ba12
MP
478 __bio_clone(b, bio);
479
480 if (bio_integrity(bio)) {
481 int ret;
482
7878cba9 483 ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
7ba1ba12 484
059ea331
LZ
485 if (ret < 0) {
486 bio_put(b);
7ba1ba12 487 return NULL;
059ea331 488 }
3676347a 489 }
1da177e4
LT
490
491 return b;
492}
a112a71d 493EXPORT_SYMBOL(bio_clone);
1da177e4
LT
494
495/**
496 * bio_get_nr_vecs - return approx number of vecs
497 * @bdev: I/O target
498 *
499 * Return the approximate number of pages we can send to this target.
500 * There's no guarantee that you will be able to fit this number of pages
501 * into a bio, it does not account for dynamic restrictions that vary
502 * on offset.
503 */
504int bio_get_nr_vecs(struct block_device *bdev)
505{
165125e1 506 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
507 int nr_pages;
508
509 nr_pages = min_t(unsigned,
5abebfdd
KO
510 queue_max_segments(q),
511 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
512
513 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
514
1da177e4 515}
a112a71d 516EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 517
165125e1 518static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
519 *page, unsigned int len, unsigned int offset,
520 unsigned short max_sectors)
1da177e4
LT
521{
522 int retried_segments = 0;
523 struct bio_vec *bvec;
524
525 /*
526 * cloned bio must not modify vec list
527 */
528 if (unlikely(bio_flagged(bio, BIO_CLONED)))
529 return 0;
530
80cfd548 531 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
532 return 0;
533
80cfd548
JA
534 /*
535 * For filesystems with a blocksize smaller than the pagesize
536 * we will often be called with the same page as last time and
537 * a consecutive offset. Optimize this special case.
538 */
539 if (bio->bi_vcnt > 0) {
540 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
541
542 if (page == prev->bv_page &&
543 offset == prev->bv_offset + prev->bv_len) {
1d616585 544 unsigned int prev_bv_len = prev->bv_len;
80cfd548 545 prev->bv_len += len;
cc371e66
AK
546
547 if (q->merge_bvec_fn) {
548 struct bvec_merge_data bvm = {
1d616585
DM
549 /* prev_bvec is already charged in
550 bi_size, discharge it in order to
551 simulate merging updated prev_bvec
552 as new bvec. */
cc371e66
AK
553 .bi_bdev = bio->bi_bdev,
554 .bi_sector = bio->bi_sector,
1d616585 555 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
556 .bi_rw = bio->bi_rw,
557 };
558
8bf8c376 559 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
560 prev->bv_len -= len;
561 return 0;
562 }
80cfd548
JA
563 }
564
565 goto done;
566 }
567 }
568
569 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
570 return 0;
571
572 /*
573 * we might lose a segment or two here, but rather that than
574 * make this too complex.
575 */
576
8a78362c 577 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
578
579 if (retried_segments)
580 return 0;
581
582 retried_segments = 1;
583 blk_recount_segments(q, bio);
584 }
585
586 /*
587 * setup the new entry, we might clear it again later if we
588 * cannot add the page
589 */
590 bvec = &bio->bi_io_vec[bio->bi_vcnt];
591 bvec->bv_page = page;
592 bvec->bv_len = len;
593 bvec->bv_offset = offset;
594
595 /*
596 * if queue has other restrictions (eg varying max sector size
597 * depending on offset), it can specify a merge_bvec_fn in the
598 * queue to get further control
599 */
600 if (q->merge_bvec_fn) {
cc371e66
AK
601 struct bvec_merge_data bvm = {
602 .bi_bdev = bio->bi_bdev,
603 .bi_sector = bio->bi_sector,
604 .bi_size = bio->bi_size,
605 .bi_rw = bio->bi_rw,
606 };
607
1da177e4
LT
608 /*
609 * merge_bvec_fn() returns number of bytes it can accept
610 * at this offset
611 */
8bf8c376 612 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
613 bvec->bv_page = NULL;
614 bvec->bv_len = 0;
615 bvec->bv_offset = 0;
616 return 0;
617 }
618 }
619
620 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 621 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
622 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
623
624 bio->bi_vcnt++;
625 bio->bi_phys_segments++;
80cfd548 626 done:
1da177e4
LT
627 bio->bi_size += len;
628 return len;
629}
630
6e68af66
MC
631/**
632 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 633 * @q: the target queue
6e68af66
MC
634 * @bio: destination bio
635 * @page: page to add
636 * @len: vec entry length
637 * @offset: vec entry offset
638 *
639 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
640 * number of reasons, such as the bio being full or target block device
641 * limitations. The target block device must allow bio's up to PAGE_SIZE,
642 * so it is always possible to add a single page to an empty bio.
643 *
644 * This should only be used by REQ_PC bios.
6e68af66 645 */
165125e1 646int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
647 unsigned int len, unsigned int offset)
648{
ae03bf63
MP
649 return __bio_add_page(q, bio, page, len, offset,
650 queue_max_hw_sectors(q));
6e68af66 651}
a112a71d 652EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 653
1da177e4
LT
654/**
655 * bio_add_page - attempt to add page to bio
656 * @bio: destination bio
657 * @page: page to add
658 * @len: vec entry length
659 * @offset: vec entry offset
660 *
661 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
662 * number of reasons, such as the bio being full or target block device
663 * limitations. The target block device must allow bio's up to PAGE_SIZE,
664 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
665 */
666int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
667 unsigned int offset)
668{
defd94b7 669 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 670 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 671}
a112a71d 672EXPORT_SYMBOL(bio_add_page);
1da177e4
LT
673
674struct bio_map_data {
675 struct bio_vec *iovecs;
c5dec1c3 676 struct sg_iovec *sgvecs;
152e283f
FT
677 int nr_sgvecs;
678 int is_our_pages;
1da177e4
LT
679};
680
c5dec1c3 681static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
682 struct sg_iovec *iov, int iov_count,
683 int is_our_pages)
1da177e4
LT
684{
685 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
686 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
687 bmd->nr_sgvecs = iov_count;
152e283f 688 bmd->is_our_pages = is_our_pages;
1da177e4
LT
689 bio->bi_private = bmd;
690}
691
692static void bio_free_map_data(struct bio_map_data *bmd)
693{
694 kfree(bmd->iovecs);
c5dec1c3 695 kfree(bmd->sgvecs);
1da177e4
LT
696 kfree(bmd);
697}
698
121f0994
DC
699static struct bio_map_data *bio_alloc_map_data(int nr_segs,
700 unsigned int iov_count,
76029ff3 701 gfp_t gfp_mask)
1da177e4 702{
f3f63c1c
JA
703 struct bio_map_data *bmd;
704
705 if (iov_count > UIO_MAXIOV)
706 return NULL;
1da177e4 707
f3f63c1c 708 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
709 if (!bmd)
710 return NULL;
711
76029ff3 712 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
713 if (!bmd->iovecs) {
714 kfree(bmd);
715 return NULL;
716 }
717
76029ff3 718 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 719 if (bmd->sgvecs)
1da177e4
LT
720 return bmd;
721
c5dec1c3 722 kfree(bmd->iovecs);
1da177e4
LT
723 kfree(bmd);
724 return NULL;
725}
726
aefcc28a 727static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
728 struct sg_iovec *iov, int iov_count,
729 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
730{
731 int ret = 0, i;
732 struct bio_vec *bvec;
733 int iov_idx = 0;
734 unsigned int iov_off = 0;
c5dec1c3
FT
735
736 __bio_for_each_segment(bvec, bio, i, 0) {
737 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 738 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
739
740 while (bv_len && iov_idx < iov_count) {
741 unsigned int bytes;
0e0c6212 742 char __user *iov_addr;
c5dec1c3
FT
743
744 bytes = min_t(unsigned int,
745 iov[iov_idx].iov_len - iov_off, bv_len);
746 iov_addr = iov[iov_idx].iov_base + iov_off;
747
748 if (!ret) {
ecb554a8 749 if (to_user)
c5dec1c3
FT
750 ret = copy_to_user(iov_addr, bv_addr,
751 bytes);
752
ecb554a8
FT
753 if (from_user)
754 ret = copy_from_user(bv_addr, iov_addr,
755 bytes);
756
c5dec1c3
FT
757 if (ret)
758 ret = -EFAULT;
759 }
760
761 bv_len -= bytes;
762 bv_addr += bytes;
763 iov_addr += bytes;
764 iov_off += bytes;
765
766 if (iov[iov_idx].iov_len == iov_off) {
767 iov_idx++;
768 iov_off = 0;
769 }
770 }
771
152e283f 772 if (do_free_page)
c5dec1c3
FT
773 __free_page(bvec->bv_page);
774 }
775
776 return ret;
777}
778
1da177e4
LT
779/**
780 * bio_uncopy_user - finish previously mapped bio
781 * @bio: bio being terminated
782 *
783 * Free pages allocated from bio_copy_user() and write back data
784 * to user space in case of a read.
785 */
786int bio_uncopy_user(struct bio *bio)
787{
788 struct bio_map_data *bmd = bio->bi_private;
81882766 789 int ret = 0;
1da177e4 790
81882766
FT
791 if (!bio_flagged(bio, BIO_NULL_MAPPED))
792 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
793 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
794 0, bmd->is_our_pages);
1da177e4
LT
795 bio_free_map_data(bmd);
796 bio_put(bio);
797 return ret;
798}
a112a71d 799EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
800
801/**
c5dec1c3 802 * bio_copy_user_iov - copy user data to bio
1da177e4 803 * @q: destination block queue
152e283f 804 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
805 * @iov: the iovec.
806 * @iov_count: number of elements in the iovec
1da177e4 807 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 808 * @gfp_mask: memory allocation flags
1da177e4
LT
809 *
810 * Prepares and returns a bio for indirect user io, bouncing data
811 * to/from kernel pages as necessary. Must be paired with
812 * call bio_uncopy_user() on io completion.
813 */
152e283f
FT
814struct bio *bio_copy_user_iov(struct request_queue *q,
815 struct rq_map_data *map_data,
816 struct sg_iovec *iov, int iov_count,
817 int write_to_vm, gfp_t gfp_mask)
1da177e4 818{
1da177e4
LT
819 struct bio_map_data *bmd;
820 struct bio_vec *bvec;
821 struct page *page;
822 struct bio *bio;
823 int i, ret;
c5dec1c3
FT
824 int nr_pages = 0;
825 unsigned int len = 0;
56c451f4 826 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 827
c5dec1c3
FT
828 for (i = 0; i < iov_count; i++) {
829 unsigned long uaddr;
830 unsigned long end;
831 unsigned long start;
832
833 uaddr = (unsigned long)iov[i].iov_base;
834 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
835 start = uaddr >> PAGE_SHIFT;
836
cb4644ca
JA
837 /*
838 * Overflow, abort
839 */
840 if (end < start)
841 return ERR_PTR(-EINVAL);
842
c5dec1c3
FT
843 nr_pages += end - start;
844 len += iov[i].iov_len;
845 }
846
69838727
FT
847 if (offset)
848 nr_pages++;
849
a3bce90e 850 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
851 if (!bmd)
852 return ERR_PTR(-ENOMEM);
853
1da177e4 854 ret = -ENOMEM;
a9e9dc24 855 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
856 if (!bio)
857 goto out_bmd;
858
7b6d91da
CH
859 if (!write_to_vm)
860 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
861
862 ret = 0;
56c451f4
FT
863
864 if (map_data) {
e623ddb4 865 nr_pages = 1 << map_data->page_order;
56c451f4
FT
866 i = map_data->offset / PAGE_SIZE;
867 }
1da177e4 868 while (len) {
e623ddb4 869 unsigned int bytes = PAGE_SIZE;
1da177e4 870
56c451f4
FT
871 bytes -= offset;
872
1da177e4
LT
873 if (bytes > len)
874 bytes = len;
875
152e283f 876 if (map_data) {
e623ddb4 877 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
878 ret = -ENOMEM;
879 break;
880 }
e623ddb4
FT
881
882 page = map_data->pages[i / nr_pages];
883 page += (i % nr_pages);
884
885 i++;
886 } else {
152e283f 887 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
888 if (!page) {
889 ret = -ENOMEM;
890 break;
891 }
1da177e4
LT
892 }
893
56c451f4 894 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 895 break;
1da177e4
LT
896
897 len -= bytes;
56c451f4 898 offset = 0;
1da177e4
LT
899 }
900
901 if (ret)
902 goto cleanup;
903
904 /*
905 * success
906 */
ecb554a8
FT
907 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
908 (map_data && map_data->from_user)) {
909 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
910 if (ret)
911 goto cleanup;
1da177e4
LT
912 }
913
152e283f 914 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
915 return bio;
916cleanup:
152e283f
FT
917 if (!map_data)
918 bio_for_each_segment(bvec, bio, i)
919 __free_page(bvec->bv_page);
1da177e4
LT
920
921 bio_put(bio);
922out_bmd:
923 bio_free_map_data(bmd);
924 return ERR_PTR(ret);
925}
926
c5dec1c3
FT
927/**
928 * bio_copy_user - copy user data to bio
929 * @q: destination block queue
152e283f 930 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
931 * @uaddr: start of user address
932 * @len: length in bytes
933 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 934 * @gfp_mask: memory allocation flags
c5dec1c3
FT
935 *
936 * Prepares and returns a bio for indirect user io, bouncing data
937 * to/from kernel pages as necessary. Must be paired with
938 * call bio_uncopy_user() on io completion.
939 */
152e283f
FT
940struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
941 unsigned long uaddr, unsigned int len,
942 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
943{
944 struct sg_iovec iov;
945
946 iov.iov_base = (void __user *)uaddr;
947 iov.iov_len = len;
948
152e283f 949 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 950}
a112a71d 951EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 952
165125e1 953static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
954 struct block_device *bdev,
955 struct sg_iovec *iov, int iov_count,
a3bce90e 956 int write_to_vm, gfp_t gfp_mask)
1da177e4 957{
f1970baf
JB
958 int i, j;
959 int nr_pages = 0;
1da177e4
LT
960 struct page **pages;
961 struct bio *bio;
f1970baf
JB
962 int cur_page = 0;
963 int ret, offset;
1da177e4 964
f1970baf
JB
965 for (i = 0; i < iov_count; i++) {
966 unsigned long uaddr = (unsigned long)iov[i].iov_base;
967 unsigned long len = iov[i].iov_len;
968 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
969 unsigned long start = uaddr >> PAGE_SHIFT;
970
cb4644ca
JA
971 /*
972 * Overflow, abort
973 */
974 if (end < start)
975 return ERR_PTR(-EINVAL);
976
f1970baf
JB
977 nr_pages += end - start;
978 /*
ad2d7225 979 * buffer must be aligned to at least hardsector size for now
f1970baf 980 */
ad2d7225 981 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
982 return ERR_PTR(-EINVAL);
983 }
984
985 if (!nr_pages)
1da177e4
LT
986 return ERR_PTR(-EINVAL);
987
a9e9dc24 988 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
989 if (!bio)
990 return ERR_PTR(-ENOMEM);
991
992 ret = -ENOMEM;
a3bce90e 993 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
994 if (!pages)
995 goto out;
996
f1970baf
JB
997 for (i = 0; i < iov_count; i++) {
998 unsigned long uaddr = (unsigned long)iov[i].iov_base;
999 unsigned long len = iov[i].iov_len;
1000 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1001 unsigned long start = uaddr >> PAGE_SHIFT;
1002 const int local_nr_pages = end - start;
1003 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1004
f5dd33c4
NP
1005 ret = get_user_pages_fast(uaddr, local_nr_pages,
1006 write_to_vm, &pages[cur_page]);
99172157
JA
1007 if (ret < local_nr_pages) {
1008 ret = -EFAULT;
f1970baf 1009 goto out_unmap;
99172157 1010 }
f1970baf
JB
1011
1012 offset = uaddr & ~PAGE_MASK;
1013 for (j = cur_page; j < page_limit; j++) {
1014 unsigned int bytes = PAGE_SIZE - offset;
1015
1016 if (len <= 0)
1017 break;
1018
1019 if (bytes > len)
1020 bytes = len;
1021
1022 /*
1023 * sorry...
1024 */
defd94b7
MC
1025 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1026 bytes)
f1970baf
JB
1027 break;
1028
1029 len -= bytes;
1030 offset = 0;
1031 }
1da177e4 1032
f1970baf 1033 cur_page = j;
1da177e4 1034 /*
f1970baf 1035 * release the pages we didn't map into the bio, if any
1da177e4 1036 */
f1970baf
JB
1037 while (j < page_limit)
1038 page_cache_release(pages[j++]);
1da177e4
LT
1039 }
1040
1da177e4
LT
1041 kfree(pages);
1042
1043 /*
1044 * set data direction, and check if mapped pages need bouncing
1045 */
1046 if (!write_to_vm)
7b6d91da 1047 bio->bi_rw |= REQ_WRITE;
1da177e4 1048
f1970baf 1049 bio->bi_bdev = bdev;
1da177e4
LT
1050 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1051 return bio;
f1970baf
JB
1052
1053 out_unmap:
1054 for (i = 0; i < nr_pages; i++) {
1055 if(!pages[i])
1056 break;
1057 page_cache_release(pages[i]);
1058 }
1059 out:
1da177e4
LT
1060 kfree(pages);
1061 bio_put(bio);
1062 return ERR_PTR(ret);
1063}
1064
1065/**
1066 * bio_map_user - map user address into bio
165125e1 1067 * @q: the struct request_queue for the bio
1da177e4
LT
1068 * @bdev: destination block device
1069 * @uaddr: start of user address
1070 * @len: length in bytes
1071 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1072 * @gfp_mask: memory allocation flags
1da177e4
LT
1073 *
1074 * Map the user space address into a bio suitable for io to a block
1075 * device. Returns an error pointer in case of error.
1076 */
165125e1 1077struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1078 unsigned long uaddr, unsigned int len, int write_to_vm,
1079 gfp_t gfp_mask)
f1970baf
JB
1080{
1081 struct sg_iovec iov;
1082
3f70353e 1083 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1084 iov.iov_len = len;
1085
a3bce90e 1086 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1087}
a112a71d 1088EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1089
1090/**
1091 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1092 * @q: the struct request_queue for the bio
f1970baf
JB
1093 * @bdev: destination block device
1094 * @iov: the iovec.
1095 * @iov_count: number of elements in the iovec
1096 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1097 * @gfp_mask: memory allocation flags
f1970baf
JB
1098 *
1099 * Map the user space address into a bio suitable for io to a block
1100 * device. Returns an error pointer in case of error.
1101 */
165125e1 1102struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1103 struct sg_iovec *iov, int iov_count,
a3bce90e 1104 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1105{
1106 struct bio *bio;
1107
a3bce90e
FT
1108 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1109 gfp_mask);
1da177e4
LT
1110 if (IS_ERR(bio))
1111 return bio;
1112
1113 /*
1114 * subtle -- if __bio_map_user() ended up bouncing a bio,
1115 * it would normally disappear when its bi_end_io is run.
1116 * however, we need it for the unmap, so grab an extra
1117 * reference to it
1118 */
1119 bio_get(bio);
1120
0e75f906 1121 return bio;
1da177e4
LT
1122}
1123
1124static void __bio_unmap_user(struct bio *bio)
1125{
1126 struct bio_vec *bvec;
1127 int i;
1128
1129 /*
1130 * make sure we dirty pages we wrote to
1131 */
1132 __bio_for_each_segment(bvec, bio, i, 0) {
1133 if (bio_data_dir(bio) == READ)
1134 set_page_dirty_lock(bvec->bv_page);
1135
1136 page_cache_release(bvec->bv_page);
1137 }
1138
1139 bio_put(bio);
1140}
1141
1142/**
1143 * bio_unmap_user - unmap a bio
1144 * @bio: the bio being unmapped
1145 *
1146 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1147 * a process context.
1148 *
1149 * bio_unmap_user() may sleep.
1150 */
1151void bio_unmap_user(struct bio *bio)
1152{
1153 __bio_unmap_user(bio);
1154 bio_put(bio);
1155}
a112a71d 1156EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1157
6712ecf8 1158static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1159{
b823825e 1160 bio_put(bio);
b823825e
JA
1161}
1162
165125e1 1163static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1164 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1165{
1166 unsigned long kaddr = (unsigned long)data;
1167 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1168 unsigned long start = kaddr >> PAGE_SHIFT;
1169 const int nr_pages = end - start;
1170 int offset, i;
1171 struct bio *bio;
1172
a9e9dc24 1173 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1174 if (!bio)
1175 return ERR_PTR(-ENOMEM);
1176
1177 offset = offset_in_page(kaddr);
1178 for (i = 0; i < nr_pages; i++) {
1179 unsigned int bytes = PAGE_SIZE - offset;
1180
1181 if (len <= 0)
1182 break;
1183
1184 if (bytes > len)
1185 bytes = len;
1186
defd94b7
MC
1187 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1188 offset) < bytes)
df46b9a4
MC
1189 break;
1190
1191 data += bytes;
1192 len -= bytes;
1193 offset = 0;
1194 }
1195
b823825e 1196 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1197 return bio;
1198}
1199
1200/**
1201 * bio_map_kern - map kernel address into bio
165125e1 1202 * @q: the struct request_queue for the bio
df46b9a4
MC
1203 * @data: pointer to buffer to map
1204 * @len: length in bytes
1205 * @gfp_mask: allocation flags for bio allocation
1206 *
1207 * Map the kernel address into a bio suitable for io to a block
1208 * device. Returns an error pointer in case of error.
1209 */
165125e1 1210struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1211 gfp_t gfp_mask)
df46b9a4
MC
1212{
1213 struct bio *bio;
1214
1215 bio = __bio_map_kern(q, data, len, gfp_mask);
1216 if (IS_ERR(bio))
1217 return bio;
1218
1219 if (bio->bi_size == len)
1220 return bio;
1221
1222 /*
1223 * Don't support partial mappings.
1224 */
1225 bio_put(bio);
1226 return ERR_PTR(-EINVAL);
1227}
a112a71d 1228EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1229
68154e90
FT
1230static void bio_copy_kern_endio(struct bio *bio, int err)
1231{
1232 struct bio_vec *bvec;
1233 const int read = bio_data_dir(bio) == READ;
76029ff3 1234 struct bio_map_data *bmd = bio->bi_private;
68154e90 1235 int i;
76029ff3 1236 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1237
1238 __bio_for_each_segment(bvec, bio, i, 0) {
1239 char *addr = page_address(bvec->bv_page);
76029ff3 1240 int len = bmd->iovecs[i].bv_len;
68154e90 1241
4fc981ef 1242 if (read)
76029ff3 1243 memcpy(p, addr, len);
68154e90
FT
1244
1245 __free_page(bvec->bv_page);
76029ff3 1246 p += len;
68154e90
FT
1247 }
1248
76029ff3 1249 bio_free_map_data(bmd);
68154e90
FT
1250 bio_put(bio);
1251}
1252
1253/**
1254 * bio_copy_kern - copy kernel address into bio
1255 * @q: the struct request_queue for the bio
1256 * @data: pointer to buffer to copy
1257 * @len: length in bytes
1258 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1259 * @reading: data direction is READ
68154e90
FT
1260 *
1261 * copy the kernel address into a bio suitable for io to a block
1262 * device. Returns an error pointer in case of error.
1263 */
1264struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1265 gfp_t gfp_mask, int reading)
1266{
68154e90
FT
1267 struct bio *bio;
1268 struct bio_vec *bvec;
4d8ab62e 1269 int i;
68154e90 1270
4d8ab62e
FT
1271 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1272 if (IS_ERR(bio))
1273 return bio;
68154e90
FT
1274
1275 if (!reading) {
1276 void *p = data;
1277
1278 bio_for_each_segment(bvec, bio, i) {
1279 char *addr = page_address(bvec->bv_page);
1280
1281 memcpy(addr, p, bvec->bv_len);
1282 p += bvec->bv_len;
1283 }
1284 }
1285
68154e90 1286 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1287
68154e90 1288 return bio;
68154e90 1289}
a112a71d 1290EXPORT_SYMBOL(bio_copy_kern);
68154e90 1291
1da177e4
LT
1292/*
1293 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1294 * for performing direct-IO in BIOs.
1295 *
1296 * The problem is that we cannot run set_page_dirty() from interrupt context
1297 * because the required locks are not interrupt-safe. So what we can do is to
1298 * mark the pages dirty _before_ performing IO. And in interrupt context,
1299 * check that the pages are still dirty. If so, fine. If not, redirty them
1300 * in process context.
1301 *
1302 * We special-case compound pages here: normally this means reads into hugetlb
1303 * pages. The logic in here doesn't really work right for compound pages
1304 * because the VM does not uniformly chase down the head page in all cases.
1305 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1306 * handle them at all. So we skip compound pages here at an early stage.
1307 *
1308 * Note that this code is very hard to test under normal circumstances because
1309 * direct-io pins the pages with get_user_pages(). This makes
1310 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1311 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1312 * pagecache.
1313 *
1314 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1315 * deferred bio dirtying paths.
1316 */
1317
1318/*
1319 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1320 */
1321void bio_set_pages_dirty(struct bio *bio)
1322{
1323 struct bio_vec *bvec = bio->bi_io_vec;
1324 int i;
1325
1326 for (i = 0; i < bio->bi_vcnt; i++) {
1327 struct page *page = bvec[i].bv_page;
1328
1329 if (page && !PageCompound(page))
1330 set_page_dirty_lock(page);
1331 }
1332}
1333
86b6c7a7 1334static void bio_release_pages(struct bio *bio)
1da177e4
LT
1335{
1336 struct bio_vec *bvec = bio->bi_io_vec;
1337 int i;
1338
1339 for (i = 0; i < bio->bi_vcnt; i++) {
1340 struct page *page = bvec[i].bv_page;
1341
1342 if (page)
1343 put_page(page);
1344 }
1345}
1346
1347/*
1348 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1349 * If they are, then fine. If, however, some pages are clean then they must
1350 * have been written out during the direct-IO read. So we take another ref on
1351 * the BIO and the offending pages and re-dirty the pages in process context.
1352 *
1353 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1354 * here on. It will run one page_cache_release() against each page and will
1355 * run one bio_put() against the BIO.
1356 */
1357
65f27f38 1358static void bio_dirty_fn(struct work_struct *work);
1da177e4 1359
65f27f38 1360static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1361static DEFINE_SPINLOCK(bio_dirty_lock);
1362static struct bio *bio_dirty_list;
1363
1364/*
1365 * This runs in process context
1366 */
65f27f38 1367static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1368{
1369 unsigned long flags;
1370 struct bio *bio;
1371
1372 spin_lock_irqsave(&bio_dirty_lock, flags);
1373 bio = bio_dirty_list;
1374 bio_dirty_list = NULL;
1375 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1376
1377 while (bio) {
1378 struct bio *next = bio->bi_private;
1379
1380 bio_set_pages_dirty(bio);
1381 bio_release_pages(bio);
1382 bio_put(bio);
1383 bio = next;
1384 }
1385}
1386
1387void bio_check_pages_dirty(struct bio *bio)
1388{
1389 struct bio_vec *bvec = bio->bi_io_vec;
1390 int nr_clean_pages = 0;
1391 int i;
1392
1393 for (i = 0; i < bio->bi_vcnt; i++) {
1394 struct page *page = bvec[i].bv_page;
1395
1396 if (PageDirty(page) || PageCompound(page)) {
1397 page_cache_release(page);
1398 bvec[i].bv_page = NULL;
1399 } else {
1400 nr_clean_pages++;
1401 }
1402 }
1403
1404 if (nr_clean_pages) {
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(&bio_dirty_lock, flags);
1408 bio->bi_private = bio_dirty_list;
1409 bio_dirty_list = bio;
1410 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1411 schedule_work(&bio_dirty_work);
1412 } else {
1413 bio_put(bio);
1414 }
1415}
1416
2d4dc890
IL
1417#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1418void bio_flush_dcache_pages(struct bio *bi)
1419{
1420 int i;
1421 struct bio_vec *bvec;
1422
1423 bio_for_each_segment(bvec, bi, i)
1424 flush_dcache_page(bvec->bv_page);
1425}
1426EXPORT_SYMBOL(bio_flush_dcache_pages);
1427#endif
1428
1da177e4
LT
1429/**
1430 * bio_endio - end I/O on a bio
1431 * @bio: bio
1da177e4
LT
1432 * @error: error, if any
1433 *
1434 * Description:
6712ecf8 1435 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1436 * preferred way to end I/O on a bio, it takes care of clearing
1437 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1438 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1439 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1440 * bio unless they own it and thus know that it has an end_io
1441 * function.
1da177e4 1442 **/
6712ecf8 1443void bio_endio(struct bio *bio, int error)
1da177e4
LT
1444{
1445 if (error)
1446 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1447 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1448 error = -EIO;
1da177e4 1449
5bb23a68 1450 if (bio->bi_end_io)
6712ecf8 1451 bio->bi_end_io(bio, error);
1da177e4 1452}
a112a71d 1453EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1454
1455void bio_pair_release(struct bio_pair *bp)
1456{
1457 if (atomic_dec_and_test(&bp->cnt)) {
1458 struct bio *master = bp->bio1.bi_private;
1459
6712ecf8 1460 bio_endio(master, bp->error);
1da177e4
LT
1461 mempool_free(bp, bp->bio2.bi_private);
1462 }
1463}
a112a71d 1464EXPORT_SYMBOL(bio_pair_release);
1da177e4 1465
6712ecf8 1466static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1467{
1468 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1469
1470 if (err)
1471 bp->error = err;
1472
1da177e4 1473 bio_pair_release(bp);
1da177e4
LT
1474}
1475
6712ecf8 1476static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1477{
1478 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1479
1480 if (err)
1481 bp->error = err;
1482
1da177e4 1483 bio_pair_release(bp);
1da177e4
LT
1484}
1485
1486/*
c7eee1b8 1487 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1488 */
6feef531 1489struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1490{
6feef531 1491 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1492
1493 if (!bp)
1494 return bp;
1495
5f3ea37c 1496 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1497 bi->bi_sector + first_sectors);
1498
1da177e4
LT
1499 BUG_ON(bi->bi_vcnt != 1);
1500 BUG_ON(bi->bi_idx != 0);
1501 atomic_set(&bp->cnt, 3);
1502 bp->error = 0;
1503 bp->bio1 = *bi;
1504 bp->bio2 = *bi;
1505 bp->bio2.bi_sector += first_sectors;
1506 bp->bio2.bi_size -= first_sectors << 9;
1507 bp->bio1.bi_size = first_sectors << 9;
1508
1509 bp->bv1 = bi->bi_io_vec[0];
1510 bp->bv2 = bi->bi_io_vec[0];
1511 bp->bv2.bv_offset += first_sectors << 9;
1512 bp->bv2.bv_len -= first_sectors << 9;
1513 bp->bv1.bv_len = first_sectors << 9;
1514
1515 bp->bio1.bi_io_vec = &bp->bv1;
1516 bp->bio2.bi_io_vec = &bp->bv2;
1517
a2eb0c10
N
1518 bp->bio1.bi_max_vecs = 1;
1519 bp->bio2.bi_max_vecs = 1;
1520
1da177e4
LT
1521 bp->bio1.bi_end_io = bio_pair_end_1;
1522 bp->bio2.bi_end_io = bio_pair_end_2;
1523
1524 bp->bio1.bi_private = bi;
6feef531 1525 bp->bio2.bi_private = bio_split_pool;
1da177e4 1526
7ba1ba12
MP
1527 if (bio_integrity(bi))
1528 bio_integrity_split(bi, bp, first_sectors);
1529
1da177e4
LT
1530 return bp;
1531}
a112a71d 1532EXPORT_SYMBOL(bio_split);
1da177e4 1533
ad3316bf
MP
1534/**
1535 * bio_sector_offset - Find hardware sector offset in bio
1536 * @bio: bio to inspect
1537 * @index: bio_vec index
1538 * @offset: offset in bv_page
1539 *
1540 * Return the number of hardware sectors between beginning of bio
1541 * and an end point indicated by a bio_vec index and an offset
1542 * within that vector's page.
1543 */
1544sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1545 unsigned int offset)
1546{
e1defc4f 1547 unsigned int sector_sz;
ad3316bf
MP
1548 struct bio_vec *bv;
1549 sector_t sectors;
1550 int i;
1551
e1defc4f 1552 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1553 sectors = 0;
1554
1555 if (index >= bio->bi_idx)
1556 index = bio->bi_vcnt - 1;
1557
1558 __bio_for_each_segment(bv, bio, i, 0) {
1559 if (i == index) {
1560 if (offset > bv->bv_offset)
1561 sectors += (offset - bv->bv_offset) / sector_sz;
1562 break;
1563 }
1564
1565 sectors += bv->bv_len / sector_sz;
1566 }
1567
1568 return sectors;
1569}
1570EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1571
1572/*
1573 * create memory pools for biovec's in a bio_set.
1574 * use the global biovec slabs created for general use.
1575 */
5972511b 1576static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1577{
7ff9345f 1578 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1579
7ff9345f
JA
1580 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1581 if (!bs->bvec_pool)
1582 return -ENOMEM;
1da177e4 1583
1da177e4
LT
1584 return 0;
1585}
1586
1587static void biovec_free_pools(struct bio_set *bs)
1588{
7ff9345f 1589 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1590}
1591
1592void bioset_free(struct bio_set *bs)
1593{
1594 if (bs->bio_pool)
1595 mempool_destroy(bs->bio_pool);
1596
7878cba9 1597 bioset_integrity_free(bs);
1da177e4 1598 biovec_free_pools(bs);
bb799ca0 1599 bio_put_slab(bs);
1da177e4
LT
1600
1601 kfree(bs);
1602}
a112a71d 1603EXPORT_SYMBOL(bioset_free);
1da177e4 1604
bb799ca0
JA
1605/**
1606 * bioset_create - Create a bio_set
1607 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1608 * @front_pad: Number of bytes to allocate in front of the returned bio
1609 *
1610 * Description:
1611 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1612 * to ask for a number of bytes to be allocated in front of the bio.
1613 * Front pad allocation is useful for embedding the bio inside
1614 * another structure, to avoid allocating extra data to go with the bio.
1615 * Note that the bio must be embedded at the END of that structure always,
1616 * or things will break badly.
1617 */
1618struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1619{
392ddc32 1620 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1621 struct bio_set *bs;
1da177e4 1622
1b434498 1623 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1624 if (!bs)
1625 return NULL;
1626
bb799ca0 1627 bs->front_pad = front_pad;
1b434498 1628
392ddc32 1629 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1630 if (!bs->bio_slab) {
1631 kfree(bs);
1632 return NULL;
1633 }
1634
1635 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1636 if (!bs->bio_pool)
1637 goto bad;
1638
bb799ca0 1639 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1640 return bs;
1641
1642bad:
1643 bioset_free(bs);
1644 return NULL;
1645}
a112a71d 1646EXPORT_SYMBOL(bioset_create);
1da177e4 1647
852c788f
TH
1648#ifdef CONFIG_BLK_CGROUP
1649/**
1650 * bio_associate_current - associate a bio with %current
1651 * @bio: target bio
1652 *
1653 * Associate @bio with %current if it hasn't been associated yet. Block
1654 * layer will treat @bio as if it were issued by %current no matter which
1655 * task actually issues it.
1656 *
1657 * This function takes an extra reference of @task's io_context and blkcg
1658 * which will be put when @bio is released. The caller must own @bio,
1659 * ensure %current->io_context exists, and is responsible for synchronizing
1660 * calls to this function.
1661 */
1662int bio_associate_current(struct bio *bio)
1663{
1664 struct io_context *ioc;
1665 struct cgroup_subsys_state *css;
1666
1667 if (bio->bi_ioc)
1668 return -EBUSY;
1669
1670 ioc = current->io_context;
1671 if (!ioc)
1672 return -ENOENT;
1673
1674 /* acquire active ref on @ioc and associate */
1675 get_io_context_active(ioc);
1676 bio->bi_ioc = ioc;
1677
1678 /* associate blkcg if exists */
1679 rcu_read_lock();
1680 css = task_subsys_state(current, blkio_subsys_id);
1681 if (css && css_tryget(css))
1682 bio->bi_css = css;
1683 rcu_read_unlock();
1684
1685 return 0;
1686}
1687
1688/**
1689 * bio_disassociate_task - undo bio_associate_current()
1690 * @bio: target bio
1691 */
1692void bio_disassociate_task(struct bio *bio)
1693{
1694 if (bio->bi_ioc) {
1695 put_io_context(bio->bi_ioc);
1696 bio->bi_ioc = NULL;
1697 }
1698 if (bio->bi_css) {
1699 css_put(bio->bi_css);
1700 bio->bi_css = NULL;
1701 }
1702}
1703
1704#endif /* CONFIG_BLK_CGROUP */
1705
1da177e4
LT
1706static void __init biovec_init_slabs(void)
1707{
1708 int i;
1709
1710 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1711 int size;
1712 struct biovec_slab *bvs = bvec_slabs + i;
1713
a7fcd37c
JA
1714 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1715 bvs->slab = NULL;
1716 continue;
1717 }
a7fcd37c 1718
1da177e4
LT
1719 size = bvs->nr_vecs * sizeof(struct bio_vec);
1720 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1721 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1722 }
1723}
1724
1725static int __init init_bio(void)
1726{
bb799ca0
JA
1727 bio_slab_max = 2;
1728 bio_slab_nr = 0;
1729 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1730 if (!bio_slabs)
1731 panic("bio: can't allocate bios\n");
1da177e4 1732
7878cba9 1733 bio_integrity_init();
1da177e4
LT
1734 biovec_init_slabs();
1735
bb799ca0 1736 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1737 if (!fs_bio_set)
1738 panic("bio: can't allocate bios\n");
1739
a91a2785
MP
1740 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1741 panic("bio: can't create integrity pool\n");
1742
0eaae62a
MD
1743 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1744 sizeof(struct bio_pair));
1da177e4
LT
1745 if (!bio_split_pool)
1746 panic("bio: can't create split pool\n");
1747
1748 return 0;
1749}
1da177e4 1750subsys_initcall(init_bio);