coredump: remove VM_ALWAYSDUMP flag
[linux-2.6-block.git] / fs / binfmt_elf.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/fs.h>
1da177e4
LT
15#include <linux/mm.h>
16#include <linux/mman.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/signal.h>
19#include <linux/binfmts.h>
20#include <linux/string.h>
21#include <linux/file.h>
1da177e4 22#include <linux/slab.h>
1da177e4
LT
23#include <linux/personality.h>
24#include <linux/elfcore.h>
25#include <linux/init.h>
26#include <linux/highuid.h>
1da177e4
LT
27#include <linux/compiler.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
30#include <linux/security.h>
1da177e4 31#include <linux/random.h>
f4e5cc2c 32#include <linux/elf.h>
7e80d0d0 33#include <linux/utsname.h>
088e7af7 34#include <linux/coredump.h>
1da177e4
LT
35#include <asm/uaccess.h>
36#include <asm/param.h>
37#include <asm/page.h>
38
f4e5cc2c
JJ
39static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
40static int load_elf_library(struct file *);
bb1ad820
AM
41static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
42 int, int, unsigned long);
1da177e4 43
1da177e4
LT
44/*
45 * If we don't support core dumping, then supply a NULL so we
46 * don't even try.
47 */
698ba7b5 48#ifdef CONFIG_ELF_CORE
f6151dfe 49static int elf_core_dump(struct coredump_params *cprm);
1da177e4
LT
50#else
51#define elf_core_dump NULL
52#endif
53
54#if ELF_EXEC_PAGESIZE > PAGE_SIZE
f4e5cc2c 55#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
1da177e4 56#else
f4e5cc2c 57#define ELF_MIN_ALIGN PAGE_SIZE
1da177e4
LT
58#endif
59
60#ifndef ELF_CORE_EFLAGS
61#define ELF_CORE_EFLAGS 0
62#endif
63
64#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
65#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
66#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
67
68static struct linux_binfmt elf_format = {
f670d0ec
MP
69 .module = THIS_MODULE,
70 .load_binary = load_elf_binary,
71 .load_shlib = load_elf_library,
72 .core_dump = elf_core_dump,
73 .min_coredump = ELF_EXEC_PAGESIZE,
1da177e4
LT
74};
75
d4e3cc38 76#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
1da177e4
LT
77
78static int set_brk(unsigned long start, unsigned long end)
79{
80 start = ELF_PAGEALIGN(start);
81 end = ELF_PAGEALIGN(end);
82 if (end > start) {
83 unsigned long addr;
84 down_write(&current->mm->mmap_sem);
85 addr = do_brk(start, end - start);
86 up_write(&current->mm->mmap_sem);
87 if (BAD_ADDR(addr))
88 return addr;
89 }
90 current->mm->start_brk = current->mm->brk = end;
91 return 0;
92}
93
1da177e4
LT
94/* We need to explicitly zero any fractional pages
95 after the data section (i.e. bss). This would
96 contain the junk from the file that should not
f4e5cc2c
JJ
97 be in memory
98 */
1da177e4
LT
99static int padzero(unsigned long elf_bss)
100{
101 unsigned long nbyte;
102
103 nbyte = ELF_PAGEOFFSET(elf_bss);
104 if (nbyte) {
105 nbyte = ELF_MIN_ALIGN - nbyte;
106 if (clear_user((void __user *) elf_bss, nbyte))
107 return -EFAULT;
108 }
109 return 0;
110}
111
09c6dd3c 112/* Let's use some macros to make this stack manipulation a little clearer */
1da177e4
LT
113#ifdef CONFIG_STACK_GROWSUP
114#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115#define STACK_ROUND(sp, items) \
116 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
f4e5cc2c
JJ
117#define STACK_ALLOC(sp, len) ({ \
118 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
119 old_sp; })
1da177e4
LT
120#else
121#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122#define STACK_ROUND(sp, items) \
123 (((unsigned long) (sp - items)) &~ 15UL)
124#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
125#endif
126
483fad1c
NL
127#ifndef ELF_BASE_PLATFORM
128/*
129 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131 * will be copied to the user stack in the same manner as AT_PLATFORM.
132 */
133#define ELF_BASE_PLATFORM NULL
134#endif
135
1da177e4 136static int
f4e5cc2c 137create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
d20894a2 138 unsigned long load_addr, unsigned long interp_load_addr)
1da177e4
LT
139{
140 unsigned long p = bprm->p;
141 int argc = bprm->argc;
142 int envc = bprm->envc;
143 elf_addr_t __user *argv;
144 elf_addr_t __user *envp;
145 elf_addr_t __user *sp;
146 elf_addr_t __user *u_platform;
483fad1c 147 elf_addr_t __user *u_base_platform;
f06295b4 148 elf_addr_t __user *u_rand_bytes;
1da177e4 149 const char *k_platform = ELF_PLATFORM;
483fad1c 150 const char *k_base_platform = ELF_BASE_PLATFORM;
f06295b4 151 unsigned char k_rand_bytes[16];
1da177e4
LT
152 int items;
153 elf_addr_t *elf_info;
154 int ei_index = 0;
86a264ab 155 const struct cred *cred = current_cred();
b6a2fea3 156 struct vm_area_struct *vma;
1da177e4 157
d68c9d6a
FBH
158 /*
159 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 * evictions by the processes running on the same package. One
161 * thing we can do is to shuffle the initial stack for them.
162 */
163
164 p = arch_align_stack(p);
165
1da177e4
LT
166 /*
167 * If this architecture has a platform capability string, copy it
168 * to userspace. In some cases (Sparc), this info is impossible
169 * for userspace to get any other way, in others (i386) it is
170 * merely difficult.
171 */
1da177e4
LT
172 u_platform = NULL;
173 if (k_platform) {
174 size_t len = strlen(k_platform) + 1;
175
1da177e4
LT
176 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
177 if (__copy_to_user(u_platform, k_platform, len))
178 return -EFAULT;
179 }
180
483fad1c
NL
181 /*
182 * If this architecture has a "base" platform capability
183 * string, copy it to userspace.
184 */
185 u_base_platform = NULL;
186 if (k_base_platform) {
187 size_t len = strlen(k_base_platform) + 1;
188
189 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 if (__copy_to_user(u_base_platform, k_base_platform, len))
191 return -EFAULT;
192 }
193
f06295b4
KC
194 /*
195 * Generate 16 random bytes for userspace PRNG seeding.
196 */
197 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
198 u_rand_bytes = (elf_addr_t __user *)
199 STACK_ALLOC(p, sizeof(k_rand_bytes));
200 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
201 return -EFAULT;
202
1da177e4 203 /* Create the ELF interpreter info */
785d5570 204 elf_info = (elf_addr_t *)current->mm->saved_auxv;
4f9a58d7 205 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
1da177e4 206#define NEW_AUX_ENT(id, val) \
f4e5cc2c 207 do { \
785d5570
JJ
208 elf_info[ei_index++] = id; \
209 elf_info[ei_index++] = val; \
f4e5cc2c 210 } while (0)
1da177e4
LT
211
212#ifdef ARCH_DLINFO
213 /*
214 * ARCH_DLINFO must come first so PPC can do its special alignment of
215 * AUXV.
4f9a58d7
OH
216 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 * ARCH_DLINFO changes
1da177e4
LT
218 */
219 ARCH_DLINFO;
220#endif
221 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
222 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
223 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
224 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
f4e5cc2c 225 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
1da177e4
LT
226 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
227 NEW_AUX_ENT(AT_BASE, interp_load_addr);
228 NEW_AUX_ENT(AT_FLAGS, 0);
229 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
86a264ab
DH
230 NEW_AUX_ENT(AT_UID, cred->uid);
231 NEW_AUX_ENT(AT_EUID, cred->euid);
232 NEW_AUX_ENT(AT_GID, cred->gid);
233 NEW_AUX_ENT(AT_EGID, cred->egid);
785d5570 234 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
f06295b4 235 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
65191087 236 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
1da177e4 237 if (k_platform) {
f4e5cc2c 238 NEW_AUX_ENT(AT_PLATFORM,
785d5570 239 (elf_addr_t)(unsigned long)u_platform);
1da177e4 240 }
483fad1c
NL
241 if (k_base_platform) {
242 NEW_AUX_ENT(AT_BASE_PLATFORM,
243 (elf_addr_t)(unsigned long)u_base_platform);
244 }
1da177e4 245 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
785d5570 246 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
1da177e4
LT
247 }
248#undef NEW_AUX_ENT
249 /* AT_NULL is zero; clear the rest too */
250 memset(&elf_info[ei_index], 0,
251 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252
253 /* And advance past the AT_NULL entry. */
254 ei_index += 2;
255
256 sp = STACK_ADD(p, ei_index);
257
d20894a2 258 items = (argc + 1) + (envc + 1) + 1;
1da177e4
LT
259 bprm->p = STACK_ROUND(sp, items);
260
261 /* Point sp at the lowest address on the stack */
262#ifdef CONFIG_STACK_GROWSUP
263 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
f4e5cc2c 264 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
1da177e4
LT
265#else
266 sp = (elf_addr_t __user *)bprm->p;
267#endif
268
b6a2fea3
OW
269
270 /*
271 * Grow the stack manually; some architectures have a limit on how
272 * far ahead a user-space access may be in order to grow the stack.
273 */
274 vma = find_extend_vma(current->mm, bprm->p);
275 if (!vma)
276 return -EFAULT;
277
1da177e4
LT
278 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 if (__put_user(argc, sp++))
280 return -EFAULT;
d20894a2
AK
281 argv = sp;
282 envp = argv + argc + 1;
1da177e4
LT
283
284 /* Populate argv and envp */
a84a5059 285 p = current->mm->arg_end = current->mm->arg_start;
1da177e4
LT
286 while (argc-- > 0) {
287 size_t len;
841d5fb7
HC
288 if (__put_user((elf_addr_t)p, argv++))
289 return -EFAULT;
b6a2fea3
OW
290 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
291 if (!len || len > MAX_ARG_STRLEN)
23c4971e 292 return -EINVAL;
1da177e4
LT
293 p += len;
294 }
295 if (__put_user(0, argv))
296 return -EFAULT;
297 current->mm->arg_end = current->mm->env_start = p;
298 while (envc-- > 0) {
299 size_t len;
841d5fb7
HC
300 if (__put_user((elf_addr_t)p, envp++))
301 return -EFAULT;
b6a2fea3
OW
302 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
303 if (!len || len > MAX_ARG_STRLEN)
23c4971e 304 return -EINVAL;
1da177e4
LT
305 p += len;
306 }
307 if (__put_user(0, envp))
308 return -EFAULT;
309 current->mm->env_end = p;
310
311 /* Put the elf_info on the stack in the right place. */
312 sp = (elf_addr_t __user *)envp + 1;
313 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
314 return -EFAULT;
315 return 0;
316}
317
1da177e4 318static unsigned long elf_map(struct file *filep, unsigned long addr,
cc503c1b
JK
319 struct elf_phdr *eppnt, int prot, int type,
320 unsigned long total_size)
1da177e4
LT
321{
322 unsigned long map_addr;
cc503c1b
JK
323 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
324 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
325 addr = ELF_PAGESTART(addr);
326 size = ELF_PAGEALIGN(size);
1da177e4 327
dda6ebde
DG
328 /* mmap() will return -EINVAL if given a zero size, but a
329 * segment with zero filesize is perfectly valid */
cc503c1b
JK
330 if (!size)
331 return addr;
332
333 down_write(&current->mm->mmap_sem);
334 /*
335 * total_size is the size of the ELF (interpreter) image.
336 * The _first_ mmap needs to know the full size, otherwise
337 * randomization might put this image into an overlapping
338 * position with the ELF binary image. (since size < total_size)
339 * So we first map the 'big' image - and unmap the remainder at
340 * the end. (which unmap is needed for ELF images with holes.)
341 */
342 if (total_size) {
343 total_size = ELF_PAGEALIGN(total_size);
344 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
345 if (!BAD_ADDR(map_addr))
346 do_munmap(current->mm, map_addr+size, total_size-size);
347 } else
348 map_addr = do_mmap(filep, addr, size, prot, type, off);
349
1da177e4
LT
350 up_write(&current->mm->mmap_sem);
351 return(map_addr);
352}
353
cc503c1b
JK
354static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
355{
356 int i, first_idx = -1, last_idx = -1;
357
358 for (i = 0; i < nr; i++) {
359 if (cmds[i].p_type == PT_LOAD) {
360 last_idx = i;
361 if (first_idx == -1)
362 first_idx = i;
363 }
364 }
365 if (first_idx == -1)
366 return 0;
367
368 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
369 ELF_PAGESTART(cmds[first_idx].p_vaddr);
370}
371
372
1da177e4
LT
373/* This is much more generalized than the library routine read function,
374 so we keep this separate. Technically the library read function
375 is only provided so that we can read a.out libraries that have
376 an ELF header */
377
f4e5cc2c 378static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
cc503c1b
JK
379 struct file *interpreter, unsigned long *interp_map_addr,
380 unsigned long no_base)
1da177e4
LT
381{
382 struct elf_phdr *elf_phdata;
383 struct elf_phdr *eppnt;
384 unsigned long load_addr = 0;
385 int load_addr_set = 0;
386 unsigned long last_bss = 0, elf_bss = 0;
387 unsigned long error = ~0UL;
cc503c1b 388 unsigned long total_size;
1da177e4
LT
389 int retval, i, size;
390
391 /* First of all, some simple consistency checks */
392 if (interp_elf_ex->e_type != ET_EXEC &&
393 interp_elf_ex->e_type != ET_DYN)
394 goto out;
395 if (!elf_check_arch(interp_elf_ex))
396 goto out;
397 if (!interpreter->f_op || !interpreter->f_op->mmap)
398 goto out;
399
400 /*
401 * If the size of this structure has changed, then punt, since
402 * we will be doing the wrong thing.
403 */
404 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
405 goto out;
406 if (interp_elf_ex->e_phnum < 1 ||
407 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
408 goto out;
409
410 /* Now read in all of the header information */
1da177e4
LT
411 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
412 if (size > ELF_MIN_ALIGN)
413 goto out;
f4e5cc2c 414 elf_phdata = kmalloc(size, GFP_KERNEL);
1da177e4
LT
415 if (!elf_phdata)
416 goto out;
417
f4e5cc2c 418 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
f670d0ec 419 (char *)elf_phdata, size);
1da177e4
LT
420 error = -EIO;
421 if (retval != size) {
422 if (retval < 0)
423 error = retval;
424 goto out_close;
425 }
426
cc503c1b
JK
427 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
428 if (!total_size) {
429 error = -EINVAL;
430 goto out_close;
431 }
432
1da177e4 433 eppnt = elf_phdata;
f4e5cc2c
JJ
434 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
435 if (eppnt->p_type == PT_LOAD) {
436 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
437 int elf_prot = 0;
438 unsigned long vaddr = 0;
439 unsigned long k, map_addr;
440
441 if (eppnt->p_flags & PF_R)
442 elf_prot = PROT_READ;
443 if (eppnt->p_flags & PF_W)
444 elf_prot |= PROT_WRITE;
445 if (eppnt->p_flags & PF_X)
446 elf_prot |= PROT_EXEC;
447 vaddr = eppnt->p_vaddr;
448 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
449 elf_type |= MAP_FIXED;
cc503c1b
JK
450 else if (no_base && interp_elf_ex->e_type == ET_DYN)
451 load_addr = -vaddr;
f4e5cc2c
JJ
452
453 map_addr = elf_map(interpreter, load_addr + vaddr,
bb1ad820 454 eppnt, elf_prot, elf_type, total_size);
cc503c1b
JK
455 total_size = 0;
456 if (!*interp_map_addr)
457 *interp_map_addr = map_addr;
f4e5cc2c
JJ
458 error = map_addr;
459 if (BAD_ADDR(map_addr))
460 goto out_close;
461
462 if (!load_addr_set &&
463 interp_elf_ex->e_type == ET_DYN) {
464 load_addr = map_addr - ELF_PAGESTART(vaddr);
465 load_addr_set = 1;
466 }
467
468 /*
469 * Check to see if the section's size will overflow the
470 * allowed task size. Note that p_filesz must always be
471 * <= p_memsize so it's only necessary to check p_memsz.
472 */
473 k = load_addr + eppnt->p_vaddr;
ce51059b 474 if (BAD_ADDR(k) ||
f4e5cc2c
JJ
475 eppnt->p_filesz > eppnt->p_memsz ||
476 eppnt->p_memsz > TASK_SIZE ||
477 TASK_SIZE - eppnt->p_memsz < k) {
478 error = -ENOMEM;
479 goto out_close;
480 }
481
482 /*
483 * Find the end of the file mapping for this phdr, and
484 * keep track of the largest address we see for this.
485 */
486 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
487 if (k > elf_bss)
488 elf_bss = k;
489
490 /*
491 * Do the same thing for the memory mapping - between
492 * elf_bss and last_bss is the bss section.
493 */
494 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
495 if (k > last_bss)
496 last_bss = k;
497 }
1da177e4
LT
498 }
499
752015d1
RM
500 if (last_bss > elf_bss) {
501 /*
502 * Now fill out the bss section. First pad the last page up
503 * to the page boundary, and then perform a mmap to make sure
504 * that there are zero-mapped pages up to and including the
505 * last bss page.
506 */
507 if (padzero(elf_bss)) {
508 error = -EFAULT;
509 goto out_close;
510 }
1da177e4 511
752015d1
RM
512 /* What we have mapped so far */
513 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
1da177e4 514
752015d1 515 /* Map the last of the bss segment */
1da177e4
LT
516 down_write(&current->mm->mmap_sem);
517 error = do_brk(elf_bss, last_bss - elf_bss);
518 up_write(&current->mm->mmap_sem);
519 if (BAD_ADDR(error))
520 goto out_close;
521 }
522
cc503c1b 523 error = load_addr;
1da177e4
LT
524
525out_close:
526 kfree(elf_phdata);
527out:
528 return error;
529}
530
1da177e4
LT
531/*
532 * These are the functions used to load ELF style executables and shared
533 * libraries. There is no binary dependent code anywhere else.
534 */
535
536#define INTERPRETER_NONE 0
1da177e4
LT
537#define INTERPRETER_ELF 2
538
913bd906 539#ifndef STACK_RND_MASK
d1cabd63 540#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
913bd906 541#endif
1da177e4
LT
542
543static unsigned long randomize_stack_top(unsigned long stack_top)
544{
545 unsigned int random_variable = 0;
546
c16b63e0
AK
547 if ((current->flags & PF_RANDOMIZE) &&
548 !(current->personality & ADDR_NO_RANDOMIZE)) {
913bd906
AK
549 random_variable = get_random_int() & STACK_RND_MASK;
550 random_variable <<= PAGE_SHIFT;
551 }
1da177e4 552#ifdef CONFIG_STACK_GROWSUP
913bd906 553 return PAGE_ALIGN(stack_top) + random_variable;
1da177e4 554#else
913bd906 555 return PAGE_ALIGN(stack_top) - random_variable;
1da177e4
LT
556#endif
557}
558
f4e5cc2c 559static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
1da177e4
LT
560{
561 struct file *interpreter = NULL; /* to shut gcc up */
562 unsigned long load_addr = 0, load_bias = 0;
563 int load_addr_set = 0;
564 char * elf_interpreter = NULL;
1da177e4 565 unsigned long error;
f4e5cc2c 566 struct elf_phdr *elf_ppnt, *elf_phdata;
1da177e4 567 unsigned long elf_bss, elf_brk;
1da177e4
LT
568 int retval, i;
569 unsigned int size;
cc503c1b
JK
570 unsigned long elf_entry;
571 unsigned long interp_load_addr = 0;
1da177e4 572 unsigned long start_code, end_code, start_data, end_data;
1a530a6f 573 unsigned long reloc_func_desc __maybe_unused = 0;
8de61e69 574 int executable_stack = EXSTACK_DEFAULT;
1da177e4
LT
575 unsigned long def_flags = 0;
576 struct {
577 struct elfhdr elf_ex;
578 struct elfhdr interp_elf_ex;
1da177e4
LT
579 } *loc;
580
581 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 if (!loc) {
583 retval = -ENOMEM;
584 goto out_ret;
585 }
586
587 /* Get the exec-header */
f4e5cc2c 588 loc->elf_ex = *((struct elfhdr *)bprm->buf);
1da177e4
LT
589
590 retval = -ENOEXEC;
591 /* First of all, some simple consistency checks */
592 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 goto out;
594
595 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 goto out;
597 if (!elf_check_arch(&loc->elf_ex))
598 goto out;
f670d0ec 599 if (!bprm->file->f_op || !bprm->file->f_op->mmap)
1da177e4
LT
600 goto out;
601
602 /* Now read in all of the header information */
1da177e4
LT
603 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 goto out;
605 if (loc->elf_ex.e_phnum < 1 ||
606 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 goto out;
608 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 retval = -ENOMEM;
f4e5cc2c 610 elf_phdata = kmalloc(size, GFP_KERNEL);
1da177e4
LT
611 if (!elf_phdata)
612 goto out;
613
f4e5cc2c
JJ
614 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 (char *)elf_phdata, size);
1da177e4
LT
616 if (retval != size) {
617 if (retval >= 0)
618 retval = -EIO;
619 goto out_free_ph;
620 }
621
1da177e4
LT
622 elf_ppnt = elf_phdata;
623 elf_bss = 0;
624 elf_brk = 0;
625
626 start_code = ~0UL;
627 end_code = 0;
628 start_data = 0;
629 end_data = 0;
630
631 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
632 if (elf_ppnt->p_type == PT_INTERP) {
633 /* This is the program interpreter used for
634 * shared libraries - for now assume that this
635 * is an a.out format binary
636 */
1da177e4
LT
637 retval = -ENOEXEC;
638 if (elf_ppnt->p_filesz > PATH_MAX ||
639 elf_ppnt->p_filesz < 2)
e7b9b550 640 goto out_free_ph;
1da177e4
LT
641
642 retval = -ENOMEM;
792db3af 643 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
f4e5cc2c 644 GFP_KERNEL);
1da177e4 645 if (!elf_interpreter)
e7b9b550 646 goto out_free_ph;
1da177e4
LT
647
648 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
f4e5cc2c
JJ
649 elf_interpreter,
650 elf_ppnt->p_filesz);
1da177e4
LT
651 if (retval != elf_ppnt->p_filesz) {
652 if (retval >= 0)
653 retval = -EIO;
654 goto out_free_interp;
655 }
656 /* make sure path is NULL terminated */
657 retval = -ENOEXEC;
658 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
659 goto out_free_interp;
660
1da177e4
LT
661 interpreter = open_exec(elf_interpreter);
662 retval = PTR_ERR(interpreter);
663 if (IS_ERR(interpreter))
664 goto out_free_interp;
1fb84496
AD
665
666 /*
667 * If the binary is not readable then enforce
668 * mm->dumpable = 0 regardless of the interpreter's
669 * permissions.
670 */
1b5d783c 671 would_dump(bprm, interpreter);
1fb84496 672
f4e5cc2c
JJ
673 retval = kernel_read(interpreter, 0, bprm->buf,
674 BINPRM_BUF_SIZE);
1da177e4
LT
675 if (retval != BINPRM_BUF_SIZE) {
676 if (retval >= 0)
677 retval = -EIO;
678 goto out_free_dentry;
679 }
680
681 /* Get the exec headers */
f4e5cc2c 682 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
1da177e4
LT
683 break;
684 }
685 elf_ppnt++;
686 }
687
688 elf_ppnt = elf_phdata;
689 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
690 if (elf_ppnt->p_type == PT_GNU_STACK) {
691 if (elf_ppnt->p_flags & PF_X)
692 executable_stack = EXSTACK_ENABLE_X;
693 else
694 executable_stack = EXSTACK_DISABLE_X;
695 break;
696 }
1da177e4
LT
697
698 /* Some simple consistency checks for the interpreter */
699 if (elf_interpreter) {
1da177e4 700 retval = -ELIBBAD;
d20894a2
AK
701 /* Not an ELF interpreter */
702 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1da177e4 703 goto out_free_dentry;
1da177e4 704 /* Verify the interpreter has a valid arch */
d20894a2 705 if (!elf_check_arch(&loc->interp_elf_ex))
1da177e4 706 goto out_free_dentry;
1da177e4
LT
707 }
708
1da177e4
LT
709 /* Flush all traces of the currently running executable */
710 retval = flush_old_exec(bprm);
711 if (retval)
712 goto out_free_dentry;
713
1da177e4 714 /* OK, This is the point of no return */
1da177e4
LT
715 current->mm->def_flags = def_flags;
716
717 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
718 may depend on the personality. */
0b592682 719 SET_PERSONALITY(loc->elf_ex);
1da177e4
LT
720 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
721 current->personality |= READ_IMPLIES_EXEC;
722
f4e5cc2c 723 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1da177e4 724 current->flags |= PF_RANDOMIZE;
221af7f8
LT
725
726 setup_new_exec(bprm);
1da177e4
LT
727
728 /* Do this so that we can load the interpreter, if need be. We will
729 change some of these later */
1da177e4 730 current->mm->free_area_cache = current->mm->mmap_base;
1363c3cd 731 current->mm->cached_hole_size = 0;
1da177e4
LT
732 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
733 executable_stack);
734 if (retval < 0) {
735 send_sig(SIGKILL, current, 0);
736 goto out_free_dentry;
737 }
738
1da177e4
LT
739 current->mm->start_stack = bprm->p;
740
af901ca1 741 /* Now we do a little grungy work by mmapping the ELF image into
cc503c1b 742 the correct location in memory. */
f4e5cc2c
JJ
743 for(i = 0, elf_ppnt = elf_phdata;
744 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
1da177e4
LT
745 int elf_prot = 0, elf_flags;
746 unsigned long k, vaddr;
747
748 if (elf_ppnt->p_type != PT_LOAD)
749 continue;
750
751 if (unlikely (elf_brk > elf_bss)) {
752 unsigned long nbyte;
753
754 /* There was a PT_LOAD segment with p_memsz > p_filesz
755 before this one. Map anonymous pages, if needed,
756 and clear the area. */
f670d0ec
MP
757 retval = set_brk(elf_bss + load_bias,
758 elf_brk + load_bias);
1da177e4
LT
759 if (retval) {
760 send_sig(SIGKILL, current, 0);
761 goto out_free_dentry;
762 }
763 nbyte = ELF_PAGEOFFSET(elf_bss);
764 if (nbyte) {
765 nbyte = ELF_MIN_ALIGN - nbyte;
766 if (nbyte > elf_brk - elf_bss)
767 nbyte = elf_brk - elf_bss;
768 if (clear_user((void __user *)elf_bss +
769 load_bias, nbyte)) {
770 /*
771 * This bss-zeroing can fail if the ELF
f4e5cc2c 772 * file specifies odd protections. So
1da177e4
LT
773 * we don't check the return value
774 */
775 }
776 }
777 }
778
f4e5cc2c
JJ
779 if (elf_ppnt->p_flags & PF_R)
780 elf_prot |= PROT_READ;
781 if (elf_ppnt->p_flags & PF_W)
782 elf_prot |= PROT_WRITE;
783 if (elf_ppnt->p_flags & PF_X)
784 elf_prot |= PROT_EXEC;
1da177e4 785
f4e5cc2c 786 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
1da177e4
LT
787
788 vaddr = elf_ppnt->p_vaddr;
789 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
790 elf_flags |= MAP_FIXED;
791 } else if (loc->elf_ex.e_type == ET_DYN) {
f4e5cc2c
JJ
792 /* Try and get dynamic programs out of the way of the
793 * default mmap base, as well as whatever program they
794 * might try to exec. This is because the brk will
795 * follow the loader, and is not movable. */
e39f5602 796#ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
a3defbe5
JK
797 /* Memory randomization might have been switched off
798 * in runtime via sysctl.
799 * If that is the case, retain the original non-zero
800 * load_bias value in order to establish proper
801 * non-randomized mappings.
802 */
803 if (current->flags & PF_RANDOMIZE)
804 load_bias = 0;
805 else
806 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
cc503c1b 807#else
90cb28e8 808 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
cc503c1b 809#endif
1da177e4
LT
810 }
811
f4e5cc2c 812 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
bb1ad820 813 elf_prot, elf_flags, 0);
1da177e4
LT
814 if (BAD_ADDR(error)) {
815 send_sig(SIGKILL, current, 0);
b140f251
AK
816 retval = IS_ERR((void *)error) ?
817 PTR_ERR((void*)error) : -EINVAL;
1da177e4
LT
818 goto out_free_dentry;
819 }
820
821 if (!load_addr_set) {
822 load_addr_set = 1;
823 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
824 if (loc->elf_ex.e_type == ET_DYN) {
825 load_bias += error -
826 ELF_PAGESTART(load_bias + vaddr);
827 load_addr += load_bias;
828 reloc_func_desc = load_bias;
829 }
830 }
831 k = elf_ppnt->p_vaddr;
f4e5cc2c
JJ
832 if (k < start_code)
833 start_code = k;
834 if (start_data < k)
835 start_data = k;
1da177e4
LT
836
837 /*
838 * Check to see if the section's size will overflow the
839 * allowed task size. Note that p_filesz must always be
840 * <= p_memsz so it is only necessary to check p_memsz.
841 */
ce51059b 842 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1da177e4
LT
843 elf_ppnt->p_memsz > TASK_SIZE ||
844 TASK_SIZE - elf_ppnt->p_memsz < k) {
f4e5cc2c 845 /* set_brk can never work. Avoid overflows. */
1da177e4 846 send_sig(SIGKILL, current, 0);
b140f251 847 retval = -EINVAL;
1da177e4
LT
848 goto out_free_dentry;
849 }
850
851 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
852
853 if (k > elf_bss)
854 elf_bss = k;
855 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
856 end_code = k;
857 if (end_data < k)
858 end_data = k;
859 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
860 if (k > elf_brk)
861 elf_brk = k;
862 }
863
864 loc->elf_ex.e_entry += load_bias;
865 elf_bss += load_bias;
866 elf_brk += load_bias;
867 start_code += load_bias;
868 end_code += load_bias;
869 start_data += load_bias;
870 end_data += load_bias;
871
872 /* Calling set_brk effectively mmaps the pages that we need
873 * for the bss and break sections. We must do this before
874 * mapping in the interpreter, to make sure it doesn't wind
875 * up getting placed where the bss needs to go.
876 */
877 retval = set_brk(elf_bss, elf_brk);
878 if (retval) {
879 send_sig(SIGKILL, current, 0);
880 goto out_free_dentry;
881 }
6de50517 882 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1da177e4
LT
883 send_sig(SIGSEGV, current, 0);
884 retval = -EFAULT; /* Nobody gets to see this, but.. */
885 goto out_free_dentry;
886 }
887
888 if (elf_interpreter) {
d20894a2
AK
889 unsigned long uninitialized_var(interp_map_addr);
890
891 elf_entry = load_elf_interp(&loc->interp_elf_ex,
892 interpreter,
893 &interp_map_addr,
894 load_bias);
895 if (!IS_ERR((void *)elf_entry)) {
896 /*
897 * load_elf_interp() returns relocation
898 * adjustment
899 */
900 interp_load_addr = elf_entry;
901 elf_entry += loc->interp_elf_ex.e_entry;
cc503c1b 902 }
1da177e4 903 if (BAD_ADDR(elf_entry)) {
1da177e4 904 force_sig(SIGSEGV, current);
ce51059b
CE
905 retval = IS_ERR((void *)elf_entry) ?
906 (int)elf_entry : -EINVAL;
1da177e4
LT
907 goto out_free_dentry;
908 }
909 reloc_func_desc = interp_load_addr;
910
911 allow_write_access(interpreter);
912 fput(interpreter);
913 kfree(elf_interpreter);
914 } else {
915 elf_entry = loc->elf_ex.e_entry;
5342fba5 916 if (BAD_ADDR(elf_entry)) {
ce51059b
CE
917 force_sig(SIGSEGV, current);
918 retval = -EINVAL;
5342fba5
SS
919 goto out_free_dentry;
920 }
1da177e4
LT
921 }
922
923 kfree(elf_phdata);
924
1da177e4
LT
925 set_binfmt(&elf_format);
926
547ee84c 927#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
fc5243d9 928 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
547ee84c
BH
929 if (retval < 0) {
930 send_sig(SIGKILL, current, 0);
18c8baff 931 goto out;
547ee84c
BH
932 }
933#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
934
a6f76f23 935 install_exec_creds(bprm);
b6a2fea3 936 retval = create_elf_tables(bprm, &loc->elf_ex,
f4e5cc2c 937 load_addr, interp_load_addr);
b6a2fea3
OW
938 if (retval < 0) {
939 send_sig(SIGKILL, current, 0);
940 goto out;
941 }
1da177e4 942 /* N.B. passed_fileno might not be initialized? */
1da177e4
LT
943 current->mm->end_code = end_code;
944 current->mm->start_code = start_code;
945 current->mm->start_data = start_data;
946 current->mm->end_data = end_data;
947 current->mm->start_stack = bprm->p;
948
c1d171a0 949#ifdef arch_randomize_brk
4471a675 950 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
c1d171a0
JK
951 current->mm->brk = current->mm->start_brk =
952 arch_randomize_brk(current->mm);
4471a675
JK
953#ifdef CONFIG_COMPAT_BRK
954 current->brk_randomized = 1;
955#endif
956 }
c1d171a0
JK
957#endif
958
1da177e4
LT
959 if (current->personality & MMAP_PAGE_ZERO) {
960 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
961 and some applications "depend" upon this behavior.
962 Since we do not have the power to recompile these, we
f4e5cc2c 963 emulate the SVr4 behavior. Sigh. */
1da177e4
LT
964 down_write(&current->mm->mmap_sem);
965 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
966 MAP_FIXED | MAP_PRIVATE, 0);
967 up_write(&current->mm->mmap_sem);
968 }
969
970#ifdef ELF_PLAT_INIT
971 /*
972 * The ABI may specify that certain registers be set up in special
973 * ways (on i386 %edx is the address of a DT_FINI function, for
974 * example. In addition, it may also specify (eg, PowerPC64 ELF)
975 * that the e_entry field is the address of the function descriptor
976 * for the startup routine, rather than the address of the startup
977 * routine itself. This macro performs whatever initialization to
978 * the regs structure is required as well as any relocations to the
979 * function descriptor entries when executing dynamically links apps.
980 */
981 ELF_PLAT_INIT(regs, reloc_func_desc);
982#endif
983
984 start_thread(regs, elf_entry, bprm->p);
1da177e4
LT
985 retval = 0;
986out:
987 kfree(loc);
988out_ret:
989 return retval;
990
991 /* error cleanup */
992out_free_dentry:
993 allow_write_access(interpreter);
994 if (interpreter)
995 fput(interpreter);
996out_free_interp:
f99d49ad 997 kfree(elf_interpreter);
1da177e4
LT
998out_free_ph:
999 kfree(elf_phdata);
1000 goto out;
1001}
1002
1003/* This is really simpleminded and specialized - we are loading an
1004 a.out library that is given an ELF header. */
1da177e4
LT
1005static int load_elf_library(struct file *file)
1006{
1007 struct elf_phdr *elf_phdata;
1008 struct elf_phdr *eppnt;
1009 unsigned long elf_bss, bss, len;
1010 int retval, error, i, j;
1011 struct elfhdr elf_ex;
1012
1013 error = -ENOEXEC;
f4e5cc2c 1014 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1da177e4
LT
1015 if (retval != sizeof(elf_ex))
1016 goto out;
1017
1018 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1019 goto out;
1020
1021 /* First of all, some simple consistency checks */
1022 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
f4e5cc2c 1023 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1da177e4
LT
1024 goto out;
1025
1026 /* Now read in all of the header information */
1027
1028 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1029 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1030
1031 error = -ENOMEM;
1032 elf_phdata = kmalloc(j, GFP_KERNEL);
1033 if (!elf_phdata)
1034 goto out;
1035
1036 eppnt = elf_phdata;
1037 error = -ENOEXEC;
1038 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1039 if (retval != j)
1040 goto out_free_ph;
1041
1042 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1043 if ((eppnt + i)->p_type == PT_LOAD)
1044 j++;
1045 if (j != 1)
1046 goto out_free_ph;
1047
1048 while (eppnt->p_type != PT_LOAD)
1049 eppnt++;
1050
1051 /* Now use mmap to map the library into memory. */
1052 down_write(&current->mm->mmap_sem);
1053 error = do_mmap(file,
1054 ELF_PAGESTART(eppnt->p_vaddr),
1055 (eppnt->p_filesz +
1056 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1057 PROT_READ | PROT_WRITE | PROT_EXEC,
1058 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1059 (eppnt->p_offset -
1060 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1061 up_write(&current->mm->mmap_sem);
1062 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1063 goto out_free_ph;
1064
1065 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1066 if (padzero(elf_bss)) {
1067 error = -EFAULT;
1068 goto out_free_ph;
1069 }
1070
f4e5cc2c
JJ
1071 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1072 ELF_MIN_ALIGN - 1);
1da177e4
LT
1073 bss = eppnt->p_memsz + eppnt->p_vaddr;
1074 if (bss > len) {
1075 down_write(&current->mm->mmap_sem);
1076 do_brk(len, bss - len);
1077 up_write(&current->mm->mmap_sem);
1078 }
1079 error = 0;
1080
1081out_free_ph:
1082 kfree(elf_phdata);
1083out:
1084 return error;
1085}
1086
698ba7b5 1087#ifdef CONFIG_ELF_CORE
1da177e4
LT
1088/*
1089 * ELF core dumper
1090 *
1091 * Modelled on fs/exec.c:aout_core_dump()
1092 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1093 */
1da177e4 1094
909af768
JB
1095/*
1096 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1097 * that are useful for post-mortem analysis are included in every core dump.
1098 * In that way we ensure that the core dump is fully interpretable later
1099 * without matching up the same kernel and hardware config to see what PC values
1100 * meant. These special mappings include - vDSO, vsyscall, and other
1101 * architecture specific mappings
1102 */
1103static bool always_dump_vma(struct vm_area_struct *vma)
1104{
1105 /* Any vsyscall mappings? */
1106 if (vma == get_gate_vma(vma->vm_mm))
1107 return true;
1108 /*
1109 * arch_vma_name() returns non-NULL for special architecture mappings,
1110 * such as vDSO sections.
1111 */
1112 if (arch_vma_name(vma))
1113 return true;
1114
1115 return false;
1116}
1117
1da177e4 1118/*
82df3973 1119 * Decide what to dump of a segment, part, all or none.
1da177e4 1120 */
82df3973
RM
1121static unsigned long vma_dump_size(struct vm_area_struct *vma,
1122 unsigned long mm_flags)
1da177e4 1123{
e575f111
KM
1124#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1125
909af768
JB
1126 /* always dump the vdso and vsyscall sections */
1127 if (always_dump_vma(vma))
82df3973 1128 goto whole;
e5b97dde 1129
e575f111
KM
1130 /* Hugetlb memory check */
1131 if (vma->vm_flags & VM_HUGETLB) {
1132 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1133 goto whole;
1134 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1135 goto whole;
1136 }
1137
1da177e4
LT
1138 /* Do not dump I/O mapped devices or special mappings */
1139 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1140 return 0;
1141
a1b59e80
KH
1142 /* By default, dump shared memory if mapped from an anonymous file. */
1143 if (vma->vm_flags & VM_SHARED) {
82df3973
RM
1144 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1145 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1146 goto whole;
1147 return 0;
a1b59e80 1148 }
1da177e4 1149
82df3973
RM
1150 /* Dump segments that have been written to. */
1151 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1152 goto whole;
1153 if (vma->vm_file == NULL)
1154 return 0;
1da177e4 1155
82df3973
RM
1156 if (FILTER(MAPPED_PRIVATE))
1157 goto whole;
1158
1159 /*
1160 * If this looks like the beginning of a DSO or executable mapping,
1161 * check for an ELF header. If we find one, dump the first page to
1162 * aid in determining what was mapped here.
1163 */
92dc07b1
RM
1164 if (FILTER(ELF_HEADERS) &&
1165 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
82df3973
RM
1166 u32 __user *header = (u32 __user *) vma->vm_start;
1167 u32 word;
92dc07b1 1168 mm_segment_t fs = get_fs();
82df3973
RM
1169 /*
1170 * Doing it this way gets the constant folded by GCC.
1171 */
1172 union {
1173 u32 cmp;
1174 char elfmag[SELFMAG];
1175 } magic;
1176 BUILD_BUG_ON(SELFMAG != sizeof word);
1177 magic.elfmag[EI_MAG0] = ELFMAG0;
1178 magic.elfmag[EI_MAG1] = ELFMAG1;
1179 magic.elfmag[EI_MAG2] = ELFMAG2;
1180 magic.elfmag[EI_MAG3] = ELFMAG3;
92dc07b1
RM
1181 /*
1182 * Switch to the user "segment" for get_user(),
1183 * then put back what elf_core_dump() had in place.
1184 */
1185 set_fs(USER_DS);
1186 if (unlikely(get_user(word, header)))
1187 word = 0;
1188 set_fs(fs);
1189 if (word == magic.cmp)
82df3973
RM
1190 return PAGE_SIZE;
1191 }
1192
1193#undef FILTER
1194
1195 return 0;
1196
1197whole:
1198 return vma->vm_end - vma->vm_start;
1da177e4
LT
1199}
1200
1da177e4
LT
1201/* An ELF note in memory */
1202struct memelfnote
1203{
1204 const char *name;
1205 int type;
1206 unsigned int datasz;
1207 void *data;
1208};
1209
1210static int notesize(struct memelfnote *en)
1211{
1212 int sz;
1213
1214 sz = sizeof(struct elf_note);
1215 sz += roundup(strlen(en->name) + 1, 4);
1216 sz += roundup(en->datasz, 4);
1217
1218 return sz;
1219}
1220
d025c9db
AK
1221#define DUMP_WRITE(addr, nr, foffset) \
1222 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1da177e4 1223
d025c9db 1224static int alignfile(struct file *file, loff_t *foffset)
1da177e4 1225{
a7a0d86f 1226 static const char buf[4] = { 0, };
d025c9db
AK
1227 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1228 return 1;
1229}
1da177e4 1230
d025c9db
AK
1231static int writenote(struct memelfnote *men, struct file *file,
1232 loff_t *foffset)
1233{
1234 struct elf_note en;
1da177e4
LT
1235 en.n_namesz = strlen(men->name) + 1;
1236 en.n_descsz = men->datasz;
1237 en.n_type = men->type;
1238
d025c9db
AK
1239 DUMP_WRITE(&en, sizeof(en), foffset);
1240 DUMP_WRITE(men->name, en.n_namesz, foffset);
1241 if (!alignfile(file, foffset))
1242 return 0;
1243 DUMP_WRITE(men->data, men->datasz, foffset);
1244 if (!alignfile(file, foffset))
1245 return 0;
1da177e4
LT
1246
1247 return 1;
1248}
1249#undef DUMP_WRITE
1da177e4 1250
3aba481f
RM
1251static void fill_elf_header(struct elfhdr *elf, int segs,
1252 u16 machine, u32 flags, u8 osabi)
1da177e4 1253{
6970c8ef
CG
1254 memset(elf, 0, sizeof(*elf));
1255
1da177e4
LT
1256 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1257 elf->e_ident[EI_CLASS] = ELF_CLASS;
1258 elf->e_ident[EI_DATA] = ELF_DATA;
1259 elf->e_ident[EI_VERSION] = EV_CURRENT;
1260 elf->e_ident[EI_OSABI] = ELF_OSABI;
1da177e4
LT
1261
1262 elf->e_type = ET_CORE;
3aba481f 1263 elf->e_machine = machine;
1da177e4 1264 elf->e_version = EV_CURRENT;
1da177e4 1265 elf->e_phoff = sizeof(struct elfhdr);
3aba481f 1266 elf->e_flags = flags;
1da177e4
LT
1267 elf->e_ehsize = sizeof(struct elfhdr);
1268 elf->e_phentsize = sizeof(struct elf_phdr);
1269 elf->e_phnum = segs;
6970c8ef 1270
1da177e4
LT
1271 return;
1272}
1273
8d6b5eee 1274static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1da177e4
LT
1275{
1276 phdr->p_type = PT_NOTE;
1277 phdr->p_offset = offset;
1278 phdr->p_vaddr = 0;
1279 phdr->p_paddr = 0;
1280 phdr->p_filesz = sz;
1281 phdr->p_memsz = 0;
1282 phdr->p_flags = 0;
1283 phdr->p_align = 0;
1284 return;
1285}
1286
1287static void fill_note(struct memelfnote *note, const char *name, int type,
1288 unsigned int sz, void *data)
1289{
1290 note->name = name;
1291 note->type = type;
1292 note->datasz = sz;
1293 note->data = data;
1294 return;
1295}
1296
1297/*
f4e5cc2c
JJ
1298 * fill up all the fields in prstatus from the given task struct, except
1299 * registers which need to be filled up separately.
1da177e4
LT
1300 */
1301static void fill_prstatus(struct elf_prstatus *prstatus,
f4e5cc2c 1302 struct task_struct *p, long signr)
1da177e4
LT
1303{
1304 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1305 prstatus->pr_sigpend = p->pending.signal.sig[0];
1306 prstatus->pr_sighold = p->blocked.sig[0];
3b34fc58
ON
1307 rcu_read_lock();
1308 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1309 rcu_read_unlock();
b488893a 1310 prstatus->pr_pid = task_pid_vnr(p);
b488893a
PE
1311 prstatus->pr_pgrp = task_pgrp_vnr(p);
1312 prstatus->pr_sid = task_session_vnr(p);
1da177e4 1313 if (thread_group_leader(p)) {
f06febc9
FM
1314 struct task_cputime cputime;
1315
1da177e4 1316 /*
f06febc9
FM
1317 * This is the record for the group leader. It shows the
1318 * group-wide total, not its individual thread total.
1da177e4 1319 */
f06febc9
FM
1320 thread_group_cputime(p, &cputime);
1321 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1322 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1da177e4
LT
1323 } else {
1324 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1325 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1326 }
1327 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1328 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1329}
1330
1331static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1332 struct mm_struct *mm)
1333{
c69e8d9c 1334 const struct cred *cred;
a84a5059 1335 unsigned int i, len;
1da177e4
LT
1336
1337 /* first copy the parameters from user space */
1338 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1339
1340 len = mm->arg_end - mm->arg_start;
1341 if (len >= ELF_PRARGSZ)
1342 len = ELF_PRARGSZ-1;
1343 if (copy_from_user(&psinfo->pr_psargs,
1344 (const char __user *)mm->arg_start, len))
1345 return -EFAULT;
1346 for(i = 0; i < len; i++)
1347 if (psinfo->pr_psargs[i] == 0)
1348 psinfo->pr_psargs[i] = ' ';
1349 psinfo->pr_psargs[len] = 0;
1350
3b34fc58
ON
1351 rcu_read_lock();
1352 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1353 rcu_read_unlock();
b488893a 1354 psinfo->pr_pid = task_pid_vnr(p);
b488893a
PE
1355 psinfo->pr_pgrp = task_pgrp_vnr(p);
1356 psinfo->pr_sid = task_session_vnr(p);
1da177e4
LT
1357
1358 i = p->state ? ffz(~p->state) + 1 : 0;
1359 psinfo->pr_state = i;
55148548 1360 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1da177e4
LT
1361 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1362 psinfo->pr_nice = task_nice(p);
1363 psinfo->pr_flag = p->flags;
c69e8d9c
DH
1364 rcu_read_lock();
1365 cred = __task_cred(p);
1366 SET_UID(psinfo->pr_uid, cred->uid);
1367 SET_GID(psinfo->pr_gid, cred->gid);
1368 rcu_read_unlock();
1da177e4
LT
1369 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1370
1371 return 0;
1372}
1373
3aba481f
RM
1374static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1375{
1376 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1377 int i = 0;
1378 do
1379 i += 2;
1380 while (auxv[i - 2] != AT_NULL);
1381 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1382}
1383
4206d3aa
RM
1384#ifdef CORE_DUMP_USE_REGSET
1385#include <linux/regset.h>
1386
1387struct elf_thread_core_info {
1388 struct elf_thread_core_info *next;
1389 struct task_struct *task;
1390 struct elf_prstatus prstatus;
1391 struct memelfnote notes[0];
1392};
1393
1394struct elf_note_info {
1395 struct elf_thread_core_info *thread;
1396 struct memelfnote psinfo;
1397 struct memelfnote auxv;
1398 size_t size;
1399 int thread_notes;
1400};
1401
d31472b6
RM
1402/*
1403 * When a regset has a writeback hook, we call it on each thread before
1404 * dumping user memory. On register window machines, this makes sure the
1405 * user memory backing the register data is up to date before we read it.
1406 */
1407static void do_thread_regset_writeback(struct task_struct *task,
1408 const struct user_regset *regset)
1409{
1410 if (regset->writeback)
1411 regset->writeback(task, regset, 1);
1412}
1413
4206d3aa
RM
1414static int fill_thread_core_info(struct elf_thread_core_info *t,
1415 const struct user_regset_view *view,
1416 long signr, size_t *total)
1417{
1418 unsigned int i;
1419
1420 /*
1421 * NT_PRSTATUS is the one special case, because the regset data
1422 * goes into the pr_reg field inside the note contents, rather
1423 * than being the whole note contents. We fill the reset in here.
1424 * We assume that regset 0 is NT_PRSTATUS.
1425 */
1426 fill_prstatus(&t->prstatus, t->task, signr);
1427 (void) view->regsets[0].get(t->task, &view->regsets[0],
1428 0, sizeof(t->prstatus.pr_reg),
1429 &t->prstatus.pr_reg, NULL);
1430
1431 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1432 sizeof(t->prstatus), &t->prstatus);
1433 *total += notesize(&t->notes[0]);
1434
d31472b6
RM
1435 do_thread_regset_writeback(t->task, &view->regsets[0]);
1436
4206d3aa
RM
1437 /*
1438 * Each other regset might generate a note too. For each regset
1439 * that has no core_note_type or is inactive, we leave t->notes[i]
1440 * all zero and we'll know to skip writing it later.
1441 */
1442 for (i = 1; i < view->n; ++i) {
1443 const struct user_regset *regset = &view->regsets[i];
d31472b6 1444 do_thread_regset_writeback(t->task, regset);
c8e25258 1445 if (regset->core_note_type && regset->get &&
4206d3aa
RM
1446 (!regset->active || regset->active(t->task, regset))) {
1447 int ret;
1448 size_t size = regset->n * regset->size;
1449 void *data = kmalloc(size, GFP_KERNEL);
1450 if (unlikely(!data))
1451 return 0;
1452 ret = regset->get(t->task, regset,
1453 0, size, data, NULL);
1454 if (unlikely(ret))
1455 kfree(data);
1456 else {
1457 if (regset->core_note_type != NT_PRFPREG)
1458 fill_note(&t->notes[i], "LINUX",
1459 regset->core_note_type,
1460 size, data);
1461 else {
1462 t->prstatus.pr_fpvalid = 1;
1463 fill_note(&t->notes[i], "CORE",
1464 NT_PRFPREG, size, data);
1465 }
1466 *total += notesize(&t->notes[i]);
1467 }
1468 }
1469 }
1470
1471 return 1;
1472}
1473
1474static int fill_note_info(struct elfhdr *elf, int phdrs,
1475 struct elf_note_info *info,
1476 long signr, struct pt_regs *regs)
1477{
1478 struct task_struct *dump_task = current;
1479 const struct user_regset_view *view = task_user_regset_view(dump_task);
1480 struct elf_thread_core_info *t;
1481 struct elf_prpsinfo *psinfo;
83914441 1482 struct core_thread *ct;
4206d3aa
RM
1483 unsigned int i;
1484
1485 info->size = 0;
1486 info->thread = NULL;
1487
1488 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
4206d3aa
RM
1489 if (psinfo == NULL)
1490 return 0;
1491
e2dbe125
AW
1492 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1493
4206d3aa
RM
1494 /*
1495 * Figure out how many notes we're going to need for each thread.
1496 */
1497 info->thread_notes = 0;
1498 for (i = 0; i < view->n; ++i)
1499 if (view->regsets[i].core_note_type != 0)
1500 ++info->thread_notes;
1501
1502 /*
1503 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1504 * since it is our one special case.
1505 */
1506 if (unlikely(info->thread_notes == 0) ||
1507 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1508 WARN_ON(1);
1509 return 0;
1510 }
1511
1512 /*
1513 * Initialize the ELF file header.
1514 */
1515 fill_elf_header(elf, phdrs,
1516 view->e_machine, view->e_flags, view->ei_osabi);
1517
1518 /*
1519 * Allocate a structure for each thread.
1520 */
83914441
ON
1521 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1522 t = kzalloc(offsetof(struct elf_thread_core_info,
1523 notes[info->thread_notes]),
1524 GFP_KERNEL);
1525 if (unlikely(!t))
1526 return 0;
1527
1528 t->task = ct->task;
1529 if (ct->task == dump_task || !info->thread) {
1530 t->next = info->thread;
1531 info->thread = t;
1532 } else {
1533 /*
1534 * Make sure to keep the original task at
1535 * the head of the list.
1536 */
1537 t->next = info->thread->next;
1538 info->thread->next = t;
4206d3aa 1539 }
83914441 1540 }
4206d3aa
RM
1541
1542 /*
1543 * Now fill in each thread's information.
1544 */
1545 for (t = info->thread; t != NULL; t = t->next)
1546 if (!fill_thread_core_info(t, view, signr, &info->size))
1547 return 0;
1548
1549 /*
1550 * Fill in the two process-wide notes.
1551 */
1552 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1553 info->size += notesize(&info->psinfo);
1554
1555 fill_auxv_note(&info->auxv, current->mm);
1556 info->size += notesize(&info->auxv);
1557
1558 return 1;
1559}
1560
1561static size_t get_note_info_size(struct elf_note_info *info)
1562{
1563 return info->size;
1564}
1565
1566/*
1567 * Write all the notes for each thread. When writing the first thread, the
1568 * process-wide notes are interleaved after the first thread-specific note.
1569 */
1570static int write_note_info(struct elf_note_info *info,
1571 struct file *file, loff_t *foffset)
1572{
1573 bool first = 1;
1574 struct elf_thread_core_info *t = info->thread;
1575
1576 do {
1577 int i;
1578
1579 if (!writenote(&t->notes[0], file, foffset))
1580 return 0;
1581
1582 if (first && !writenote(&info->psinfo, file, foffset))
1583 return 0;
1584 if (first && !writenote(&info->auxv, file, foffset))
1585 return 0;
1586
1587 for (i = 1; i < info->thread_notes; ++i)
1588 if (t->notes[i].data &&
1589 !writenote(&t->notes[i], file, foffset))
1590 return 0;
1591
1592 first = 0;
1593 t = t->next;
1594 } while (t);
1595
1596 return 1;
1597}
1598
1599static void free_note_info(struct elf_note_info *info)
1600{
1601 struct elf_thread_core_info *threads = info->thread;
1602 while (threads) {
1603 unsigned int i;
1604 struct elf_thread_core_info *t = threads;
1605 threads = t->next;
1606 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1607 for (i = 1; i < info->thread_notes; ++i)
1608 kfree(t->notes[i].data);
1609 kfree(t);
1610 }
1611 kfree(info->psinfo.data);
1612}
1613
1614#else
1615
1da177e4
LT
1616/* Here is the structure in which status of each thread is captured. */
1617struct elf_thread_status
1618{
1619 struct list_head list;
1620 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1621 elf_fpregset_t fpu; /* NT_PRFPREG */
1622 struct task_struct *thread;
1623#ifdef ELF_CORE_COPY_XFPREGS
5b20cd80 1624 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1da177e4
LT
1625#endif
1626 struct memelfnote notes[3];
1627 int num_notes;
1628};
1629
1630/*
1631 * In order to add the specific thread information for the elf file format,
f4e5cc2c
JJ
1632 * we need to keep a linked list of every threads pr_status and then create
1633 * a single section for them in the final core file.
1da177e4
LT
1634 */
1635static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1636{
1637 int sz = 0;
1638 struct task_struct *p = t->thread;
1639 t->num_notes = 0;
1640
1641 fill_prstatus(&t->prstatus, p, signr);
1642 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1643
f4e5cc2c
JJ
1644 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1645 &(t->prstatus));
1da177e4
LT
1646 t->num_notes++;
1647 sz += notesize(&t->notes[0]);
1648
f4e5cc2c
JJ
1649 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1650 &t->fpu))) {
1651 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1652 &(t->fpu));
1da177e4
LT
1653 t->num_notes++;
1654 sz += notesize(&t->notes[1]);
1655 }
1656
1657#ifdef ELF_CORE_COPY_XFPREGS
1658 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
5b20cd80
MN
1659 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1660 sizeof(t->xfpu), &t->xfpu);
1da177e4
LT
1661 t->num_notes++;
1662 sz += notesize(&t->notes[2]);
1663 }
1664#endif
1665 return sz;
1666}
1667
3aba481f
RM
1668struct elf_note_info {
1669 struct memelfnote *notes;
1670 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1671 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1672 struct list_head thread_list;
1673 elf_fpregset_t *fpu;
1674#ifdef ELF_CORE_COPY_XFPREGS
1675 elf_fpxregset_t *xfpu;
1676#endif
1677 int thread_status_size;
1678 int numnote;
1679};
1680
0cf062d0 1681static int elf_note_info_init(struct elf_note_info *info)
3aba481f 1682{
0cf062d0 1683 memset(info, 0, sizeof(*info));
3aba481f
RM
1684 INIT_LIST_HEAD(&info->thread_list);
1685
0cf062d0
AW
1686 /* Allocate space for six ELF notes */
1687 info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
3aba481f
RM
1688 if (!info->notes)
1689 return 0;
1690 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1691 if (!info->psinfo)
0cf062d0 1692 goto notes_free;
3aba481f
RM
1693 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1694 if (!info->prstatus)
0cf062d0 1695 goto psinfo_free;
3aba481f
RM
1696 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1697 if (!info->fpu)
0cf062d0 1698 goto prstatus_free;
3aba481f
RM
1699#ifdef ELF_CORE_COPY_XFPREGS
1700 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1701 if (!info->xfpu)
0cf062d0 1702 goto fpu_free;
3aba481f 1703#endif
0cf062d0
AW
1704 return 1;
1705#ifdef ELF_CORE_COPY_XFPREGS
1706 fpu_free:
1707 kfree(info->fpu);
1708#endif
1709 prstatus_free:
1710 kfree(info->prstatus);
1711 psinfo_free:
1712 kfree(info->psinfo);
1713 notes_free:
1714 kfree(info->notes);
1715 return 0;
1716}
1717
1718static int fill_note_info(struct elfhdr *elf, int phdrs,
1719 struct elf_note_info *info,
1720 long signr, struct pt_regs *regs)
1721{
1722 struct list_head *t;
1723
1724 if (!elf_note_info_init(info))
1725 return 0;
3aba481f 1726
3aba481f 1727 if (signr) {
83914441 1728 struct core_thread *ct;
4220b7fe 1729 struct elf_thread_status *ets;
83914441
ON
1730
1731 for (ct = current->mm->core_state->dumper.next;
1732 ct; ct = ct->next) {
1733 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1734 if (!ets)
1735 return 0;
1736
1737 ets->thread = ct->task;
1738 list_add(&ets->list, &info->thread_list);
1739 }
1740
3aba481f 1741 list_for_each(t, &info->thread_list) {
3aba481f
RM
1742 int sz;
1743
4220b7fe
WC
1744 ets = list_entry(t, struct elf_thread_status, list);
1745 sz = elf_dump_thread_status(signr, ets);
3aba481f
RM
1746 info->thread_status_size += sz;
1747 }
1748 }
1749 /* now collect the dump for the current */
1750 memset(info->prstatus, 0, sizeof(*info->prstatus));
1751 fill_prstatus(info->prstatus, current, signr);
1752 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1753
1754 /* Set up header */
1755 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1756
1757 /*
1758 * Set up the notes in similar form to SVR4 core dumps made
1759 * with info from their /proc.
1760 */
1761
1762 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1763 sizeof(*info->prstatus), info->prstatus);
1764 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1765 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1766 sizeof(*info->psinfo), info->psinfo);
1767
1768 info->numnote = 2;
1769
1770 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1771
1772 /* Try to dump the FPU. */
1773 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1774 info->fpu);
1775 if (info->prstatus->pr_fpvalid)
1776 fill_note(info->notes + info->numnote++,
1777 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1778#ifdef ELF_CORE_COPY_XFPREGS
1779 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1780 fill_note(info->notes + info->numnote++,
1781 "LINUX", ELF_CORE_XFPREG_TYPE,
1782 sizeof(*info->xfpu), info->xfpu);
1783#endif
1784
1785 return 1;
3aba481f
RM
1786}
1787
1788static size_t get_note_info_size(struct elf_note_info *info)
1789{
1790 int sz = 0;
1791 int i;
1792
1793 for (i = 0; i < info->numnote; i++)
1794 sz += notesize(info->notes + i);
1795
1796 sz += info->thread_status_size;
1797
1798 return sz;
1799}
1800
1801static int write_note_info(struct elf_note_info *info,
1802 struct file *file, loff_t *foffset)
1803{
1804 int i;
1805 struct list_head *t;
1806
1807 for (i = 0; i < info->numnote; i++)
1808 if (!writenote(info->notes + i, file, foffset))
1809 return 0;
1810
1811 /* write out the thread status notes section */
1812 list_for_each(t, &info->thread_list) {
1813 struct elf_thread_status *tmp =
1814 list_entry(t, struct elf_thread_status, list);
1815
1816 for (i = 0; i < tmp->num_notes; i++)
1817 if (!writenote(&tmp->notes[i], file, foffset))
1818 return 0;
1819 }
1820
1821 return 1;
1822}
1823
1824static void free_note_info(struct elf_note_info *info)
1825{
1826 while (!list_empty(&info->thread_list)) {
1827 struct list_head *tmp = info->thread_list.next;
1828 list_del(tmp);
1829 kfree(list_entry(tmp, struct elf_thread_status, list));
1830 }
1831
1832 kfree(info->prstatus);
1833 kfree(info->psinfo);
1834 kfree(info->notes);
1835 kfree(info->fpu);
1836#ifdef ELF_CORE_COPY_XFPREGS
1837 kfree(info->xfpu);
1838#endif
1839}
1840
4206d3aa
RM
1841#endif
1842
f47aef55
RM
1843static struct vm_area_struct *first_vma(struct task_struct *tsk,
1844 struct vm_area_struct *gate_vma)
1845{
1846 struct vm_area_struct *ret = tsk->mm->mmap;
1847
1848 if (ret)
1849 return ret;
1850 return gate_vma;
1851}
1852/*
1853 * Helper function for iterating across a vma list. It ensures that the caller
1854 * will visit `gate_vma' prior to terminating the search.
1855 */
1856static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1857 struct vm_area_struct *gate_vma)
1858{
1859 struct vm_area_struct *ret;
1860
1861 ret = this_vma->vm_next;
1862 if (ret)
1863 return ret;
1864 if (this_vma == gate_vma)
1865 return NULL;
1866 return gate_vma;
1867}
1868
8d9032bb
DH
1869static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1870 elf_addr_t e_shoff, int segs)
1871{
1872 elf->e_shoff = e_shoff;
1873 elf->e_shentsize = sizeof(*shdr4extnum);
1874 elf->e_shnum = 1;
1875 elf->e_shstrndx = SHN_UNDEF;
1876
1877 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1878
1879 shdr4extnum->sh_type = SHT_NULL;
1880 shdr4extnum->sh_size = elf->e_shnum;
1881 shdr4extnum->sh_link = elf->e_shstrndx;
1882 shdr4extnum->sh_info = segs;
1883}
1884
1885static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1886 unsigned long mm_flags)
1887{
1888 struct vm_area_struct *vma;
1889 size_t size = 0;
1890
1891 for (vma = first_vma(current, gate_vma); vma != NULL;
1892 vma = next_vma(vma, gate_vma))
1893 size += vma_dump_size(vma, mm_flags);
1894 return size;
1895}
1896
1da177e4
LT
1897/*
1898 * Actual dumper
1899 *
1900 * This is a two-pass process; first we find the offsets of the bits,
1901 * and then they are actually written out. If we run out of core limit
1902 * we just truncate.
1903 */
f6151dfe 1904static int elf_core_dump(struct coredump_params *cprm)
1da177e4 1905{
1da177e4
LT
1906 int has_dumped = 0;
1907 mm_segment_t fs;
1908 int segs;
1909 size_t size = 0;
f47aef55 1910 struct vm_area_struct *vma, *gate_vma;
1da177e4 1911 struct elfhdr *elf = NULL;
d025c9db 1912 loff_t offset = 0, dataoff, foffset;
3aba481f 1913 struct elf_note_info info;
93eb211e 1914 struct elf_phdr *phdr4note = NULL;
8d9032bb
DH
1915 struct elf_shdr *shdr4extnum = NULL;
1916 Elf_Half e_phnum;
1917 elf_addr_t e_shoff;
1da177e4
LT
1918
1919 /*
1920 * We no longer stop all VM operations.
1921 *
f4e5cc2c
JJ
1922 * This is because those proceses that could possibly change map_count
1923 * or the mmap / vma pages are now blocked in do_exit on current
1924 * finishing this core dump.
1da177e4
LT
1925 *
1926 * Only ptrace can touch these memory addresses, but it doesn't change
f4e5cc2c 1927 * the map_count or the pages allocated. So no possibility of crashing
1da177e4
LT
1928 * exists while dumping the mm->vm_next areas to the core file.
1929 */
1930
1931 /* alloc memory for large data structures: too large to be on stack */
1932 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1933 if (!elf)
5f719558 1934 goto out;
341c87bf
KH
1935 /*
1936 * The number of segs are recored into ELF header as 16bit value.
1937 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1938 */
1da177e4 1939 segs = current->mm->map_count;
1fcccbac 1940 segs += elf_core_extra_phdrs();
1da177e4 1941
31db58b3 1942 gate_vma = get_gate_vma(current->mm);
f47aef55
RM
1943 if (gate_vma != NULL)
1944 segs++;
1945
8d9032bb
DH
1946 /* for notes section */
1947 segs++;
1948
1949 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1950 * this, kernel supports extended numbering. Have a look at
1951 * include/linux/elf.h for further information. */
1952 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1953
1da177e4 1954 /*
3aba481f
RM
1955 * Collect all the non-memory information about the process for the
1956 * notes. This also sets up the file header.
1da177e4 1957 */
8d9032bb 1958 if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
3aba481f 1959 goto cleanup;
1da177e4 1960
3aba481f
RM
1961 has_dumped = 1;
1962 current->flags |= PF_DUMPCORE;
1da177e4
LT
1963
1964 fs = get_fs();
1965 set_fs(KERNEL_DS);
1966
1da177e4 1967 offset += sizeof(*elf); /* Elf header */
8d9032bb 1968 offset += segs * sizeof(struct elf_phdr); /* Program headers */
a7a0d86f 1969 foffset = offset;
1da177e4
LT
1970
1971 /* Write notes phdr entry */
1972 {
3aba481f 1973 size_t sz = get_note_info_size(&info);
1da177e4 1974
e5501492 1975 sz += elf_coredump_extra_notes_size();
bf1ab978 1976
93eb211e
DH
1977 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1978 if (!phdr4note)
088e7af7 1979 goto end_coredump;
93eb211e
DH
1980
1981 fill_elf_note_phdr(phdr4note, sz, offset);
1982 offset += sz;
1da177e4
LT
1983 }
1984
1da177e4
LT
1985 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1986
30736a4d 1987 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
8d9032bb
DH
1988 offset += elf_core_extra_data_size();
1989 e_shoff = offset;
1990
1991 if (e_phnum == PN_XNUM) {
1992 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
1993 if (!shdr4extnum)
1994 goto end_coredump;
1995 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
1996 }
1997
1998 offset = dataoff;
1999
93eb211e
DH
2000 size += sizeof(*elf);
2001 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2002 goto end_coredump;
2003
2004 size += sizeof(*phdr4note);
2005 if (size > cprm->limit
2006 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2007 goto end_coredump;
2008
1da177e4 2009 /* Write program headers for segments dump */
f47aef55
RM
2010 for (vma = first_vma(current, gate_vma); vma != NULL;
2011 vma = next_vma(vma, gate_vma)) {
1da177e4 2012 struct elf_phdr phdr;
1da177e4
LT
2013
2014 phdr.p_type = PT_LOAD;
2015 phdr.p_offset = offset;
2016 phdr.p_vaddr = vma->vm_start;
2017 phdr.p_paddr = 0;
30736a4d 2018 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
82df3973 2019 phdr.p_memsz = vma->vm_end - vma->vm_start;
1da177e4
LT
2020 offset += phdr.p_filesz;
2021 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
f4e5cc2c
JJ
2022 if (vma->vm_flags & VM_WRITE)
2023 phdr.p_flags |= PF_W;
2024 if (vma->vm_flags & VM_EXEC)
2025 phdr.p_flags |= PF_X;
1da177e4
LT
2026 phdr.p_align = ELF_EXEC_PAGESIZE;
2027
088e7af7
DH
2028 size += sizeof(phdr);
2029 if (size > cprm->limit
2030 || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2031 goto end_coredump;
1da177e4
LT
2032 }
2033
1fcccbac
DH
2034 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2035 goto end_coredump;
1da177e4
LT
2036
2037 /* write out the notes section */
f6151dfe 2038 if (!write_note_info(&info, cprm->file, &foffset))
3aba481f 2039 goto end_coredump;
1da177e4 2040
f6151dfe 2041 if (elf_coredump_extra_notes_write(cprm->file, &foffset))
e5501492 2042 goto end_coredump;
bf1ab978 2043
d025c9db 2044 /* Align to page */
f6151dfe 2045 if (!dump_seek(cprm->file, dataoff - foffset))
f3e8fccd 2046 goto end_coredump;
1da177e4 2047
f47aef55
RM
2048 for (vma = first_vma(current, gate_vma); vma != NULL;
2049 vma = next_vma(vma, gate_vma)) {
1da177e4 2050 unsigned long addr;
82df3973 2051 unsigned long end;
1da177e4 2052
30736a4d 2053 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
1da177e4 2054
82df3973 2055 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
f4e5cc2c 2056 struct page *page;
f3e8fccd
HD
2057 int stop;
2058
2059 page = get_dump_page(addr);
2060 if (page) {
2061 void *kaddr = kmap(page);
f6151dfe
MH
2062 stop = ((size += PAGE_SIZE) > cprm->limit) ||
2063 !dump_write(cprm->file, kaddr,
2064 PAGE_SIZE);
f3e8fccd 2065 kunmap(page);
1da177e4 2066 page_cache_release(page);
f3e8fccd 2067 } else
f6151dfe 2068 stop = !dump_seek(cprm->file, PAGE_SIZE);
f3e8fccd
HD
2069 if (stop)
2070 goto end_coredump;
1da177e4
LT
2071 }
2072 }
2073
1fcccbac
DH
2074 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2075 goto end_coredump;
1da177e4 2076
8d9032bb
DH
2077 if (e_phnum == PN_XNUM) {
2078 size += sizeof(*shdr4extnum);
2079 if (size > cprm->limit
2080 || !dump_write(cprm->file, shdr4extnum,
2081 sizeof(*shdr4extnum)))
2082 goto end_coredump;
2083 }
2084
1da177e4
LT
2085end_coredump:
2086 set_fs(fs);
2087
2088cleanup:
3aba481f 2089 free_note_info(&info);
8d9032bb 2090 kfree(shdr4extnum);
93eb211e 2091 kfree(phdr4note);
5f719558
WC
2092 kfree(elf);
2093out:
1da177e4 2094 return has_dumped;
1da177e4
LT
2095}
2096
698ba7b5 2097#endif /* CONFIG_ELF_CORE */
1da177e4
LT
2098
2099static int __init init_elf_binfmt(void)
2100{
8fc3dc5a
AV
2101 register_binfmt(&elf_format);
2102 return 0;
1da177e4
LT
2103}
2104
2105static void __exit exit_elf_binfmt(void)
2106{
2107 /* Remove the COFF and ELF loaders. */
2108 unregister_binfmt(&elf_format);
2109}
2110
2111core_initcall(init_elf_binfmt);
2112module_exit(exit_elf_binfmt);
2113MODULE_LICENSE("GPL");