mm/mmap: move common defines to mman-common.h
[linux-2.6-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
3d2d827f 30#include <linux/mmu_context.h>
e1bdd5f2 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/timer.h>
34#include <linux/aio.h>
35#include <linux/highmem.h>
36#include <linux/workqueue.h>
37#include <linux/security.h>
9c3060be 38#include <linux/eventfd.h>
cfb1e33e 39#include <linux/blkdev.h>
9d85cba7 40#include <linux/compat.h>
36bc08cc
GZ
41#include <linux/migrate.h>
42#include <linux/ramfs.h>
723be6e3 43#include <linux/percpu-refcount.h>
71ad7490 44#include <linux/mount.h>
1da177e4
LT
45
46#include <asm/kmap_types.h>
7c0f6ba6 47#include <linux/uaccess.h>
a538e3ff 48#include <linux/nospec.h>
1da177e4 49
68d70d03
AV
50#include "internal.h"
51
f3a2752a
CH
52#define KIOCB_KEY 0
53
4e179bca
KO
54#define AIO_RING_MAGIC 0xa10a10a1
55#define AIO_RING_COMPAT_FEATURES 1
56#define AIO_RING_INCOMPAT_FEATURES 0
57struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
fa8a53c3
BL
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
4e179bca
KO
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[0];
71}; /* 128 bytes + ring size */
72
a79d40e9
JA
73/*
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
76 */
77#define AIO_PLUG_THRESHOLD 2
78
4e179bca 79#define AIO_RING_PAGES 8
4e179bca 80
db446a08 81struct kioctx_table {
d0264c01
TH
82 struct rcu_head rcu;
83 unsigned nr;
84 struct kioctx __rcu *table[];
db446a08
BL
85};
86
e1bdd5f2
KO
87struct kioctx_cpu {
88 unsigned reqs_available;
89};
90
dc48e56d
JA
91struct ctx_rq_wait {
92 struct completion comp;
93 atomic_t count;
94};
95
4e179bca 96struct kioctx {
723be6e3 97 struct percpu_ref users;
36f55889 98 atomic_t dead;
4e179bca 99
e34ecee2
KO
100 struct percpu_ref reqs;
101
4e179bca 102 unsigned long user_id;
4e179bca 103
e1bdd5f2
KO
104 struct __percpu kioctx_cpu *cpu;
105
106 /*
107 * For percpu reqs_available, number of slots we move to/from global
108 * counter at a time:
109 */
110 unsigned req_batch;
3e845ce0
KO
111 /*
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
114 *
58c85dc2 115 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
116 * aio_setup_ring())
117 */
4e179bca
KO
118 unsigned max_reqs;
119
58c85dc2
KO
120 /* Size of ringbuffer, in units of struct io_event */
121 unsigned nr_events;
4e179bca 122
58c85dc2
KO
123 unsigned long mmap_base;
124 unsigned long mmap_size;
125
126 struct page **ring_pages;
127 long nr_pages;
128
f729863a 129 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 130
e02ba72a
AP
131 /*
132 * signals when all in-flight requests are done
133 */
dc48e56d 134 struct ctx_rq_wait *rq_wait;
e02ba72a 135
4e23bcae 136 struct {
34e83fc6
KO
137 /*
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
142 *
143 * We batch accesses to it with a percpu version.
34e83fc6
KO
144 */
145 atomic_t reqs_available;
4e23bcae
KO
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 spinlock_t ctx_lock;
150 struct list_head active_reqs; /* used for cancellation */
151 } ____cacheline_aligned_in_smp;
152
58c85dc2
KO
153 struct {
154 struct mutex ring_lock;
4e23bcae
KO
155 wait_queue_head_t wait;
156 } ____cacheline_aligned_in_smp;
58c85dc2
KO
157
158 struct {
159 unsigned tail;
d856f32a 160 unsigned completed_events;
58c85dc2 161 spinlock_t completion_lock;
4e23bcae 162 } ____cacheline_aligned_in_smp;
58c85dc2
KO
163
164 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 165 struct file *aio_ring_file;
db446a08
BL
166
167 unsigned id;
4e179bca
KO
168};
169
84c4e1f8
LT
170/*
171 * First field must be the file pointer in all the
172 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173 */
a3c0d439 174struct fsync_iocb {
a3c0d439 175 struct file *file;
84c4e1f8 176 struct work_struct work;
a3c0d439
CH
177 bool datasync;
178};
179
bfe4037e
CH
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
af5c72b1 184 bool done;
bfe4037e
CH
185 bool cancelled;
186 struct wait_queue_entry wait;
187 struct work_struct work;
188};
189
84c4e1f8
LT
190/*
191 * NOTE! Each of the iocb union members has the file pointer
192 * as the first entry in their struct definition. So you can
193 * access the file pointer through any of the sub-structs,
194 * or directly as just 'ki_filp' in this struct.
195 */
04b2fa9f 196struct aio_kiocb {
54843f87 197 union {
84c4e1f8 198 struct file *ki_filp;
54843f87 199 struct kiocb rw;
a3c0d439 200 struct fsync_iocb fsync;
bfe4037e 201 struct poll_iocb poll;
54843f87 202 };
04b2fa9f
CH
203
204 struct kioctx *ki_ctx;
205 kiocb_cancel_fn *ki_cancel;
206
a9339b78 207 struct io_event ki_res;
04b2fa9f
CH
208
209 struct list_head ki_list; /* the aio core uses this
210 * for cancellation */
9018ccc4 211 refcount_t ki_refcnt;
04b2fa9f
CH
212
213 /*
214 * If the aio_resfd field of the userspace iocb is not zero,
215 * this is the underlying eventfd context to deliver events to.
216 */
217 struct eventfd_ctx *ki_eventfd;
218};
219
1da177e4 220/*------ sysctl variables----*/
d55b5fda
ZB
221static DEFINE_SPINLOCK(aio_nr_lock);
222unsigned long aio_nr; /* current system wide number of aio requests */
223unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
224/*----end sysctl variables---*/
225
e18b890b
CL
226static struct kmem_cache *kiocb_cachep;
227static struct kmem_cache *kioctx_cachep;
1da177e4 228
71ad7490
BL
229static struct vfsmount *aio_mnt;
230
231static const struct file_operations aio_ring_fops;
232static const struct address_space_operations aio_ctx_aops;
233
234static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
235{
71ad7490 236 struct file *file;
71ad7490 237 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
238 if (IS_ERR(inode))
239 return ERR_CAST(inode);
71ad7490
BL
240
241 inode->i_mapping->a_ops = &aio_ctx_aops;
242 inode->i_mapping->private_data = ctx;
243 inode->i_size = PAGE_SIZE * nr_pages;
244
d93aa9d8
AV
245 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
246 O_RDWR, &aio_ring_fops);
c9c554f2 247 if (IS_ERR(file))
71ad7490 248 iput(inode);
71ad7490
BL
249 return file;
250}
251
252static struct dentry *aio_mount(struct file_system_type *fs_type,
253 int flags, const char *dev_name, void *data)
254{
d93aa9d8 255 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
22f6b4d3
JH
256 AIO_RING_MAGIC);
257
258 if (!IS_ERR(root))
259 root->d_sb->s_iflags |= SB_I_NOEXEC;
260 return root;
71ad7490
BL
261}
262
1da177e4
LT
263/* aio_setup
264 * Creates the slab caches used by the aio routines, panic on
265 * failure as this is done early during the boot sequence.
266 */
267static int __init aio_setup(void)
268{
71ad7490
BL
269 static struct file_system_type aio_fs = {
270 .name = "aio",
271 .mount = aio_mount,
272 .kill_sb = kill_anon_super,
273 };
274 aio_mnt = kern_mount(&aio_fs);
275 if (IS_ERR(aio_mnt))
276 panic("Failed to create aio fs mount.");
277
04b2fa9f 278 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 279 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
280 return 0;
281}
385773e0 282__initcall(aio_setup);
1da177e4 283
5e9ae2e5
BL
284static void put_aio_ring_file(struct kioctx *ctx)
285{
286 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
287 struct address_space *i_mapping;
288
5e9ae2e5 289 if (aio_ring_file) {
45063097 290 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
291
292 /* Prevent further access to the kioctx from migratepages */
45063097 293 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
294 spin_lock(&i_mapping->private_lock);
295 i_mapping->private_data = NULL;
5e9ae2e5 296 ctx->aio_ring_file = NULL;
de04e769 297 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
298
299 fput(aio_ring_file);
300 }
301}
302
1da177e4
LT
303static void aio_free_ring(struct kioctx *ctx)
304{
36bc08cc 305 int i;
1da177e4 306
fa8a53c3
BL
307 /* Disconnect the kiotx from the ring file. This prevents future
308 * accesses to the kioctx from page migration.
309 */
310 put_aio_ring_file(ctx);
311
36bc08cc 312 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 313 struct page *page;
36bc08cc
GZ
314 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
315 page_count(ctx->ring_pages[i]));
8e321fef
BL
316 page = ctx->ring_pages[i];
317 if (!page)
318 continue;
319 ctx->ring_pages[i] = NULL;
320 put_page(page);
36bc08cc 321 }
1da177e4 322
ddb8c45b 323 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 324 kfree(ctx->ring_pages);
ddb8c45b
SL
325 ctx->ring_pages = NULL;
326 }
36bc08cc
GZ
327}
328
5477e70a 329static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 330{
5477e70a 331 struct file *file = vma->vm_file;
e4a0d3e7
PE
332 struct mm_struct *mm = vma->vm_mm;
333 struct kioctx_table *table;
b2edffdd 334 int i, res = -EINVAL;
e4a0d3e7
PE
335
336 spin_lock(&mm->ioctx_lock);
337 rcu_read_lock();
338 table = rcu_dereference(mm->ioctx_table);
339 for (i = 0; i < table->nr; i++) {
340 struct kioctx *ctx;
341
d0264c01 342 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 343 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
344 if (!atomic_read(&ctx->dead)) {
345 ctx->user_id = ctx->mmap_base = vma->vm_start;
346 res = 0;
347 }
e4a0d3e7
PE
348 break;
349 }
350 }
351
352 rcu_read_unlock();
353 spin_unlock(&mm->ioctx_lock);
b2edffdd 354 return res;
e4a0d3e7
PE
355}
356
5477e70a
ON
357static const struct vm_operations_struct aio_ring_vm_ops = {
358 .mremap = aio_ring_mremap,
359#if IS_ENABLED(CONFIG_MMU)
360 .fault = filemap_fault,
361 .map_pages = filemap_map_pages,
362 .page_mkwrite = filemap_page_mkwrite,
363#endif
364};
365
366static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
367{
368 vma->vm_flags |= VM_DONTEXPAND;
369 vma->vm_ops = &aio_ring_vm_ops;
370 return 0;
371}
372
36bc08cc
GZ
373static const struct file_operations aio_ring_fops = {
374 .mmap = aio_ring_mmap,
375};
376
0c45355f 377#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
378static int aio_migratepage(struct address_space *mapping, struct page *new,
379 struct page *old, enum migrate_mode mode)
380{
5e9ae2e5 381 struct kioctx *ctx;
36bc08cc 382 unsigned long flags;
fa8a53c3 383 pgoff_t idx;
36bc08cc
GZ
384 int rc;
385
2916ecc0
JG
386 /*
387 * We cannot support the _NO_COPY case here, because copy needs to
388 * happen under the ctx->completion_lock. That does not work with the
389 * migration workflow of MIGRATE_SYNC_NO_COPY.
390 */
391 if (mode == MIGRATE_SYNC_NO_COPY)
392 return -EINVAL;
393
8e321fef
BL
394 rc = 0;
395
fa8a53c3 396 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
397 spin_lock(&mapping->private_lock);
398 ctx = mapping->private_data;
fa8a53c3
BL
399 if (!ctx) {
400 rc = -EINVAL;
401 goto out;
402 }
403
404 /* The ring_lock mutex. The prevents aio_read_events() from writing
405 * to the ring's head, and prevents page migration from mucking in
406 * a partially initialized kiotx.
407 */
408 if (!mutex_trylock(&ctx->ring_lock)) {
409 rc = -EAGAIN;
410 goto out;
411 }
412
413 idx = old->index;
414 if (idx < (pgoff_t)ctx->nr_pages) {
415 /* Make sure the old page hasn't already been changed */
416 if (ctx->ring_pages[idx] != old)
417 rc = -EAGAIN;
8e321fef
BL
418 } else
419 rc = -EINVAL;
8e321fef
BL
420
421 if (rc != 0)
fa8a53c3 422 goto out_unlock;
8e321fef 423
36bc08cc
GZ
424 /* Writeback must be complete */
425 BUG_ON(PageWriteback(old));
8e321fef 426 get_page(new);
36bc08cc 427
ab41ee68 428 rc = migrate_page_move_mapping(mapping, new, old, mode, 1);
36bc08cc 429 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 430 put_page(new);
fa8a53c3 431 goto out_unlock;
36bc08cc
GZ
432 }
433
fa8a53c3
BL
434 /* Take completion_lock to prevent other writes to the ring buffer
435 * while the old page is copied to the new. This prevents new
436 * events from being lost.
5e9ae2e5 437 */
fa8a53c3
BL
438 spin_lock_irqsave(&ctx->completion_lock, flags);
439 migrate_page_copy(new, old);
440 BUG_ON(ctx->ring_pages[idx] != old);
441 ctx->ring_pages[idx] = new;
442 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 443
fa8a53c3
BL
444 /* The old page is no longer accessible. */
445 put_page(old);
8e321fef 446
fa8a53c3
BL
447out_unlock:
448 mutex_unlock(&ctx->ring_lock);
449out:
450 spin_unlock(&mapping->private_lock);
36bc08cc 451 return rc;
1da177e4 452}
0c45355f 453#endif
1da177e4 454
36bc08cc 455static const struct address_space_operations aio_ctx_aops = {
835f252c 456 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 457#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 458 .migratepage = aio_migratepage,
0c45355f 459#endif
36bc08cc
GZ
460};
461
2a8a9867 462static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
463{
464 struct aio_ring *ring;
41003a7b 465 struct mm_struct *mm = current->mm;
3dc9acb6 466 unsigned long size, unused;
1da177e4 467 int nr_pages;
36bc08cc
GZ
468 int i;
469 struct file *file;
1da177e4
LT
470
471 /* Compensate for the ring buffer's head/tail overlap entry */
472 nr_events += 2; /* 1 is required, 2 for good luck */
473
474 size = sizeof(struct aio_ring);
475 size += sizeof(struct io_event) * nr_events;
1da177e4 476
36bc08cc 477 nr_pages = PFN_UP(size);
1da177e4
LT
478 if (nr_pages < 0)
479 return -EINVAL;
480
71ad7490 481 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
482 if (IS_ERR(file)) {
483 ctx->aio_ring_file = NULL;
fa8a53c3 484 return -ENOMEM;
36bc08cc
GZ
485 }
486
3dc9acb6
LT
487 ctx->aio_ring_file = file;
488 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
489 / sizeof(struct io_event);
490
491 ctx->ring_pages = ctx->internal_pages;
492 if (nr_pages > AIO_RING_PAGES) {
493 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
494 GFP_KERNEL);
495 if (!ctx->ring_pages) {
496 put_aio_ring_file(ctx);
497 return -ENOMEM;
498 }
499 }
500
36bc08cc
GZ
501 for (i = 0; i < nr_pages; i++) {
502 struct page *page;
45063097 503 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
504 i, GFP_HIGHUSER | __GFP_ZERO);
505 if (!page)
506 break;
507 pr_debug("pid(%d) page[%d]->count=%d\n",
508 current->pid, i, page_count(page));
509 SetPageUptodate(page);
36bc08cc 510 unlock_page(page);
3dc9acb6
LT
511
512 ctx->ring_pages[i] = page;
36bc08cc 513 }
3dc9acb6 514 ctx->nr_pages = i;
1da177e4 515
3dc9acb6
LT
516 if (unlikely(i != nr_pages)) {
517 aio_free_ring(ctx);
fa8a53c3 518 return -ENOMEM;
1da177e4
LT
519 }
520
58c85dc2
KO
521 ctx->mmap_size = nr_pages * PAGE_SIZE;
522 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 523
013373e8
MH
524 if (down_write_killable(&mm->mmap_sem)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -EINTR;
528 }
529
36bc08cc
GZ
530 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
531 PROT_READ | PROT_WRITE,
897ab3e0 532 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 533 up_write(&mm->mmap_sem);
58c85dc2 534 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 535 ctx->mmap_size = 0;
1da177e4 536 aio_free_ring(ctx);
fa8a53c3 537 return -ENOMEM;
1da177e4
LT
538 }
539
58c85dc2 540 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 541
58c85dc2
KO
542 ctx->user_id = ctx->mmap_base;
543 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 544
58c85dc2 545 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 546 ring->nr = nr_events; /* user copy */
db446a08 547 ring->id = ~0U;
1da177e4
LT
548 ring->head = ring->tail = 0;
549 ring->magic = AIO_RING_MAGIC;
550 ring->compat_features = AIO_RING_COMPAT_FEATURES;
551 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
552 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 553 kunmap_atomic(ring);
58c85dc2 554 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
555
556 return 0;
557}
558
1da177e4
LT
559#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
560#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
561#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
562
04b2fa9f 563void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 564{
54843f87 565 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
566 struct kioctx *ctx = req->ki_ctx;
567 unsigned long flags;
568
75321b50
CH
569 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 return;
0460fef2 571
75321b50
CH
572 spin_lock_irqsave(&ctx->ctx_lock, flags);
573 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 574 req->ki_cancel = cancel;
0460fef2
KO
575 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
576}
577EXPORT_SYMBOL(kiocb_set_cancel_fn);
578
a6d7cff4
TH
579/*
580 * free_ioctx() should be RCU delayed to synchronize against the RCU
581 * protected lookup_ioctx() and also needs process context to call
f729863a 582 * aio_free_ring(). Use rcu_work.
a6d7cff4 583 */
e34ecee2 584static void free_ioctx(struct work_struct *work)
36f55889 585{
f729863a
TH
586 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
587 free_rwork);
e34ecee2 588 pr_debug("freeing %p\n", ctx);
e1bdd5f2 589
e34ecee2 590 aio_free_ring(ctx);
e1bdd5f2 591 free_percpu(ctx->cpu);
9a1049da
TH
592 percpu_ref_exit(&ctx->reqs);
593 percpu_ref_exit(&ctx->users);
36f55889
KO
594 kmem_cache_free(kioctx_cachep, ctx);
595}
596
e34ecee2
KO
597static void free_ioctx_reqs(struct percpu_ref *ref)
598{
599 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
600
e02ba72a 601 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
602 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
603 complete(&ctx->rq_wait->comp);
e02ba72a 604
a6d7cff4 605 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
606 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
607 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
608}
609
36f55889
KO
610/*
611 * When this function runs, the kioctx has been removed from the "hash table"
612 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
613 * now it's safe to cancel any that need to be.
614 */
e34ecee2 615static void free_ioctx_users(struct percpu_ref *ref)
36f55889 616{
e34ecee2 617 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 618 struct aio_kiocb *req;
36f55889
KO
619
620 spin_lock_irq(&ctx->ctx_lock);
621
622 while (!list_empty(&ctx->active_reqs)) {
623 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 624 struct aio_kiocb, ki_list);
888933f8 625 req->ki_cancel(&req->rw);
4faa9996 626 list_del_init(&req->ki_list);
36f55889
KO
627 }
628
629 spin_unlock_irq(&ctx->ctx_lock);
630
e34ecee2
KO
631 percpu_ref_kill(&ctx->reqs);
632 percpu_ref_put(&ctx->reqs);
36f55889
KO
633}
634
db446a08
BL
635static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636{
637 unsigned i, new_nr;
638 struct kioctx_table *table, *old;
639 struct aio_ring *ring;
640
641 spin_lock(&mm->ioctx_lock);
855ef0de 642 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
643
644 while (1) {
645 if (table)
646 for (i = 0; i < table->nr; i++)
d0264c01 647 if (!rcu_access_pointer(table->table[i])) {
db446a08 648 ctx->id = i;
d0264c01 649 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
650 spin_unlock(&mm->ioctx_lock);
651
fa8a53c3
BL
652 /* While kioctx setup is in progress,
653 * we are protected from page migration
654 * changes ring_pages by ->ring_lock.
655 */
db446a08
BL
656 ring = kmap_atomic(ctx->ring_pages[0]);
657 ring->id = ctx->id;
658 kunmap_atomic(ring);
659 return 0;
660 }
661
662 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
663 spin_unlock(&mm->ioctx_lock);
664
665 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
666 new_nr, GFP_KERNEL);
667 if (!table)
668 return -ENOMEM;
669
670 table->nr = new_nr;
671
672 spin_lock(&mm->ioctx_lock);
855ef0de 673 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
674
675 if (!old) {
676 rcu_assign_pointer(mm->ioctx_table, table);
677 } else if (table->nr > old->nr) {
678 memcpy(table->table, old->table,
679 old->nr * sizeof(struct kioctx *));
680
681 rcu_assign_pointer(mm->ioctx_table, table);
682 kfree_rcu(old, rcu);
683 } else {
684 kfree(table);
685 table = old;
686 }
687 }
688}
689
e34ecee2
KO
690static void aio_nr_sub(unsigned nr)
691{
692 spin_lock(&aio_nr_lock);
693 if (WARN_ON(aio_nr - nr > aio_nr))
694 aio_nr = 0;
695 else
696 aio_nr -= nr;
697 spin_unlock(&aio_nr_lock);
698}
699
1da177e4
LT
700/* ioctx_alloc
701 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
702 */
703static struct kioctx *ioctx_alloc(unsigned nr_events)
704{
41003a7b 705 struct mm_struct *mm = current->mm;
1da177e4 706 struct kioctx *ctx;
e23754f8 707 int err = -ENOMEM;
1da177e4 708
2a8a9867
MFO
709 /*
710 * Store the original nr_events -- what userspace passed to io_setup(),
711 * for counting against the global limit -- before it changes.
712 */
713 unsigned int max_reqs = nr_events;
714
e1bdd5f2
KO
715 /*
716 * We keep track of the number of available ringbuffer slots, to prevent
717 * overflow (reqs_available), and we also use percpu counters for this.
718 *
719 * So since up to half the slots might be on other cpu's percpu counters
720 * and unavailable, double nr_events so userspace sees what they
721 * expected: additionally, we move req_batch slots to/from percpu
722 * counters at a time, so make sure that isn't 0:
723 */
724 nr_events = max(nr_events, num_possible_cpus() * 4);
725 nr_events *= 2;
726
1da177e4 727 /* Prevent overflows */
08397acd 728 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
729 pr_debug("ENOMEM: nr_events too high\n");
730 return ERR_PTR(-EINVAL);
731 }
732
2a8a9867 733 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
734 return ERR_PTR(-EAGAIN);
735
c3762229 736 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
737 if (!ctx)
738 return ERR_PTR(-ENOMEM);
739
2a8a9867 740 ctx->max_reqs = max_reqs;
1da177e4 741
1da177e4 742 spin_lock_init(&ctx->ctx_lock);
0460fef2 743 spin_lock_init(&ctx->completion_lock);
58c85dc2 744 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
745 /* Protect against page migration throughout kiotx setup by keeping
746 * the ring_lock mutex held until setup is complete. */
747 mutex_lock(&ctx->ring_lock);
1da177e4
LT
748 init_waitqueue_head(&ctx->wait);
749
750 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 751
2aad2a86 752 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
753 goto err;
754
2aad2a86 755 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
756 goto err;
757
e1bdd5f2
KO
758 ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 if (!ctx->cpu)
e34ecee2 760 goto err;
1da177e4 761
2a8a9867 762 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 763 if (err < 0)
e34ecee2 764 goto err;
e1bdd5f2 765
34e83fc6 766 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 767 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
768 if (ctx->req_batch < 1)
769 ctx->req_batch = 1;
34e83fc6 770
1da177e4 771 /* limit the number of system wide aios */
9fa1cb39 772 spin_lock(&aio_nr_lock);
2a8a9867
MFO
773 if (aio_nr + ctx->max_reqs > aio_max_nr ||
774 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 775 spin_unlock(&aio_nr_lock);
e34ecee2 776 err = -EAGAIN;
d1b94327 777 goto err_ctx;
2dd542b7
AV
778 }
779 aio_nr += ctx->max_reqs;
9fa1cb39 780 spin_unlock(&aio_nr_lock);
1da177e4 781
1881686f
BL
782 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
783 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 784
da90382c
BL
785 err = ioctx_add_table(ctx, mm);
786 if (err)
e34ecee2 787 goto err_cleanup;
da90382c 788
fa8a53c3
BL
789 /* Release the ring_lock mutex now that all setup is complete. */
790 mutex_unlock(&ctx->ring_lock);
791
caf4167a 792 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 793 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
794 return ctx;
795
e34ecee2
KO
796err_cleanup:
797 aio_nr_sub(ctx->max_reqs);
d1b94327 798err_ctx:
deeb8525
AV
799 atomic_set(&ctx->dead, 1);
800 if (ctx->mmap_size)
801 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 802 aio_free_ring(ctx);
e34ecee2 803err:
fa8a53c3 804 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 805 free_percpu(ctx->cpu);
9a1049da
TH
806 percpu_ref_exit(&ctx->reqs);
807 percpu_ref_exit(&ctx->users);
1da177e4 808 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 809 pr_debug("error allocating ioctx %d\n", err);
e23754f8 810 return ERR_PTR(err);
1da177e4
LT
811}
812
36f55889
KO
813/* kill_ioctx
814 * Cancels all outstanding aio requests on an aio context. Used
815 * when the processes owning a context have all exited to encourage
816 * the rapid destruction of the kioctx.
817 */
fb2d4483 818static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 819 struct ctx_rq_wait *wait)
36f55889 820{
fa88b6f8 821 struct kioctx_table *table;
db446a08 822
b2edffdd
AV
823 spin_lock(&mm->ioctx_lock);
824 if (atomic_xchg(&ctx->dead, 1)) {
825 spin_unlock(&mm->ioctx_lock);
fa88b6f8 826 return -EINVAL;
b2edffdd 827 }
db446a08 828
855ef0de 829 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
830 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
831 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 832 spin_unlock(&mm->ioctx_lock);
4fcc712f 833
a6d7cff4 834 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 835 wake_up_all(&ctx->wait);
4fcc712f 836
fa88b6f8
BL
837 /*
838 * It'd be more correct to do this in free_ioctx(), after all
839 * the outstanding kiocbs have finished - but by then io_destroy
840 * has already returned, so io_setup() could potentially return
841 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 * could tell).
843 */
844 aio_nr_sub(ctx->max_reqs);
4fcc712f 845
fa88b6f8
BL
846 if (ctx->mmap_size)
847 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 848
dc48e56d 849 ctx->rq_wait = wait;
fa88b6f8
BL
850 percpu_ref_kill(&ctx->users);
851 return 0;
1da177e4
LT
852}
853
36f55889
KO
854/*
855 * exit_aio: called when the last user of mm goes away. At this point, there is
856 * no way for any new requests to be submited or any of the io_* syscalls to be
857 * called on the context.
858 *
859 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860 * them.
1da177e4 861 */
fc9b52cd 862void exit_aio(struct mm_struct *mm)
1da177e4 863{
4b70ac5f 864 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
865 struct ctx_rq_wait wait;
866 int i, skipped;
db446a08 867
4b70ac5f
ON
868 if (!table)
869 return;
db446a08 870
dc48e56d
JA
871 atomic_set(&wait.count, table->nr);
872 init_completion(&wait.comp);
873
874 skipped = 0;
4b70ac5f 875 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
876 struct kioctx *ctx =
877 rcu_dereference_protected(table->table[i], true);
abf137dd 878
dc48e56d
JA
879 if (!ctx) {
880 skipped++;
4b70ac5f 881 continue;
dc48e56d
JA
882 }
883
936af157 884 /*
4b70ac5f
ON
885 * We don't need to bother with munmap() here - exit_mmap(mm)
886 * is coming and it'll unmap everything. And we simply can't,
887 * this is not necessarily our ->mm.
888 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 * that it needs to unmap the area, just set it to 0.
936af157 890 */
58c85dc2 891 ctx->mmap_size = 0;
dc48e56d
JA
892 kill_ioctx(mm, ctx, &wait);
893 }
36f55889 894
dc48e56d 895 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 896 /* Wait until all IO for the context are done. */
dc48e56d 897 wait_for_completion(&wait.comp);
1da177e4 898 }
4b70ac5f
ON
899
900 RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 kfree(table);
1da177e4
LT
902}
903
e1bdd5f2
KO
904static void put_reqs_available(struct kioctx *ctx, unsigned nr)
905{
906 struct kioctx_cpu *kcpu;
263782c1 907 unsigned long flags;
e1bdd5f2 908
263782c1 909 local_irq_save(flags);
be6fb451 910 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 911 kcpu->reqs_available += nr;
263782c1 912
e1bdd5f2
KO
913 while (kcpu->reqs_available >= ctx->req_batch * 2) {
914 kcpu->reqs_available -= ctx->req_batch;
915 atomic_add(ctx->req_batch, &ctx->reqs_available);
916 }
917
263782c1 918 local_irq_restore(flags);
e1bdd5f2
KO
919}
920
432c7997 921static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
922{
923 struct kioctx_cpu *kcpu;
924 bool ret = false;
263782c1 925 unsigned long flags;
e1bdd5f2 926
263782c1 927 local_irq_save(flags);
be6fb451 928 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
929 if (!kcpu->reqs_available) {
930 int old, avail = atomic_read(&ctx->reqs_available);
931
932 do {
933 if (avail < ctx->req_batch)
934 goto out;
935
936 old = avail;
937 avail = atomic_cmpxchg(&ctx->reqs_available,
938 avail, avail - ctx->req_batch);
939 } while (avail != old);
940
941 kcpu->reqs_available += ctx->req_batch;
942 }
943
944 ret = true;
945 kcpu->reqs_available--;
946out:
263782c1 947 local_irq_restore(flags);
e1bdd5f2
KO
948 return ret;
949}
950
d856f32a
BL
951/* refill_reqs_available
952 * Updates the reqs_available reference counts used for tracking the
953 * number of free slots in the completion ring. This can be called
954 * from aio_complete() (to optimistically update reqs_available) or
955 * from aio_get_req() (the we're out of events case). It must be
956 * called holding ctx->completion_lock.
957 */
958static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959 unsigned tail)
960{
961 unsigned events_in_ring, completed;
962
963 /* Clamp head since userland can write to it. */
964 head %= ctx->nr_events;
965 if (head <= tail)
966 events_in_ring = tail - head;
967 else
968 events_in_ring = ctx->nr_events - (head - tail);
969
970 completed = ctx->completed_events;
971 if (events_in_ring < completed)
972 completed -= events_in_ring;
973 else
974 completed = 0;
975
976 if (!completed)
977 return;
978
979 ctx->completed_events -= completed;
980 put_reqs_available(ctx, completed);
981}
982
983/* user_refill_reqs_available
984 * Called to refill reqs_available when aio_get_req() encounters an
985 * out of space in the completion ring.
986 */
987static void user_refill_reqs_available(struct kioctx *ctx)
988{
989 spin_lock_irq(&ctx->completion_lock);
990 if (ctx->completed_events) {
991 struct aio_ring *ring;
992 unsigned head;
993
994 /* Access of ring->head may race with aio_read_events_ring()
995 * here, but that's okay since whether we read the old version
996 * or the new version, and either will be valid. The important
997 * part is that head cannot pass tail since we prevent
998 * aio_complete() from updating tail by holding
999 * ctx->completion_lock. Even if head is invalid, the check
1000 * against ctx->completed_events below will make sure we do the
1001 * safe/right thing.
1002 */
1003 ring = kmap_atomic(ctx->ring_pages[0]);
1004 head = ring->head;
1005 kunmap_atomic(ring);
1006
1007 refill_reqs_available(ctx, head, ctx->tail);
1008 }
1009
1010 spin_unlock_irq(&ctx->completion_lock);
1011}
1012
432c7997
CH
1013static bool get_reqs_available(struct kioctx *ctx)
1014{
1015 if (__get_reqs_available(ctx))
1016 return true;
1017 user_refill_reqs_available(ctx);
1018 return __get_reqs_available(ctx);
1019}
1020
1da177e4 1021/* aio_get_req
57282d8f
KO
1022 * Allocate a slot for an aio request.
1023 * Returns NULL if no requests are free.
b53119f1
LT
1024 *
1025 * The refcount is initialized to 2 - one for the async op completion,
1026 * one for the synchronous code that does this.
1da177e4 1027 */
04b2fa9f 1028static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1029{
04b2fa9f 1030 struct aio_kiocb *req;
a1c8eae7 1031
2bc4ca9b 1032 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1033 if (unlikely(!req))
432c7997 1034 return NULL;
1da177e4 1035
fa0ca2ae 1036 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1037 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1038 return NULL;
1039 }
1040
e34ecee2 1041 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1042 req->ki_ctx = ctx;
75321b50 1043 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1044 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1045 req->ki_eventfd = NULL;
080d676d 1046 return req;
1da177e4
LT
1047}
1048
d5470b59 1049static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1050{
db446a08 1051 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1052 struct mm_struct *mm = current->mm;
65c24491 1053 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1054 struct kioctx_table *table;
1055 unsigned id;
1056
1057 if (get_user(id, &ring->id))
1058 return NULL;
1da177e4 1059
abf137dd 1060 rcu_read_lock();
db446a08 1061 table = rcu_dereference(mm->ioctx_table);
abf137dd 1062
db446a08
BL
1063 if (!table || id >= table->nr)
1064 goto out;
1da177e4 1065
a538e3ff 1066 id = array_index_nospec(id, table->nr);
d0264c01 1067 ctx = rcu_dereference(table->table[id]);
f30d704f 1068 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1069 if (percpu_ref_tryget_live(&ctx->users))
1070 ret = ctx;
db446a08
BL
1071 }
1072out:
abf137dd 1073 rcu_read_unlock();
65c24491 1074 return ret;
1da177e4
LT
1075}
1076
b53119f1
LT
1077static inline void iocb_destroy(struct aio_kiocb *iocb)
1078{
74259703
AV
1079 if (iocb->ki_eventfd)
1080 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1081 if (iocb->ki_filp)
1082 fput(iocb->ki_filp);
1083 percpu_ref_put(&iocb->ki_ctx->reqs);
1084 kmem_cache_free(kiocb_cachep, iocb);
1085}
1086
1da177e4
LT
1087/* aio_complete
1088 * Called when the io request on the given iocb is complete.
1da177e4 1089 */
2bb874c0 1090static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1091{
1092 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1093 struct aio_ring *ring;
21b40200 1094 struct io_event *ev_page, *event;
d856f32a 1095 unsigned tail, pos, head;
1da177e4 1096 unsigned long flags;
1da177e4 1097
0460fef2
KO
1098 /*
1099 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1100 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1101 * pointer since we might be called from irq context.
1102 */
1103 spin_lock_irqsave(&ctx->completion_lock, flags);
1104
58c85dc2 1105 tail = ctx->tail;
21b40200
KO
1106 pos = tail + AIO_EVENTS_OFFSET;
1107
58c85dc2 1108 if (++tail >= ctx->nr_events)
4bf69b2a 1109 tail = 0;
1da177e4 1110
58c85dc2 1111 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1112 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1113
a9339b78 1114 *event = iocb->ki_res;
1da177e4 1115
21b40200 1116 kunmap_atomic(ev_page);
58c85dc2 1117 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1118
a9339b78
AV
1119 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1120 (void __user *)(unsigned long)iocb->ki_res.obj,
1121 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1122
1123 /* after flagging the request as done, we
1124 * must never even look at it again
1125 */
1126 smp_wmb(); /* make event visible before updating tail */
1127
58c85dc2 1128 ctx->tail = tail;
1da177e4 1129
58c85dc2 1130 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1131 head = ring->head;
21b40200 1132 ring->tail = tail;
e8e3c3d6 1133 kunmap_atomic(ring);
58c85dc2 1134 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1135
d856f32a
BL
1136 ctx->completed_events++;
1137 if (ctx->completed_events > 1)
1138 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1139 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1140
21b40200 1141 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1142
1143 /*
1144 * Check if the user asked us to deliver the result through an
1145 * eventfd. The eventfd_signal() function is safe to be called
1146 * from IRQ context.
1147 */
74259703 1148 if (iocb->ki_eventfd)
8d1c98b0
DL
1149 eventfd_signal(iocb->ki_eventfd, 1);
1150
6cb2a210
QB
1151 /*
1152 * We have to order our ring_info tail store above and test
1153 * of the wait list below outside the wait lock. This is
1154 * like in wake_up_bit() where clearing a bit has to be
1155 * ordered with the unlocked test.
1156 */
1157 smp_mb();
1158
1da177e4
LT
1159 if (waitqueue_active(&ctx->wait))
1160 wake_up(&ctx->wait);
2bb874c0
AV
1161}
1162
1163static inline void iocb_put(struct aio_kiocb *iocb)
1164{
1165 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1166 aio_complete(iocb);
1167 iocb_destroy(iocb);
1168 }
1da177e4
LT
1169}
1170
2be4e7de 1171/* aio_read_events_ring
a31ad380
KO
1172 * Pull an event off of the ioctx's event ring. Returns the number of
1173 * events fetched
1da177e4 1174 */
a31ad380
KO
1175static long aio_read_events_ring(struct kioctx *ctx,
1176 struct io_event __user *event, long nr)
1da177e4 1177{
1da177e4 1178 struct aio_ring *ring;
5ffac122 1179 unsigned head, tail, pos;
a31ad380
KO
1180 long ret = 0;
1181 int copy_ret;
1182
9c9ce763
DC
1183 /*
1184 * The mutex can block and wake us up and that will cause
1185 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1186 * and repeat. This should be rare enough that it doesn't cause
1187 * peformance issues. See the comment in read_events() for more detail.
1188 */
1189 sched_annotate_sleep();
58c85dc2 1190 mutex_lock(&ctx->ring_lock);
1da177e4 1191
fa8a53c3 1192 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1193 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1194 head = ring->head;
5ffac122 1195 tail = ring->tail;
a31ad380
KO
1196 kunmap_atomic(ring);
1197
2ff396be
JM
1198 /*
1199 * Ensure that once we've read the current tail pointer, that
1200 * we also see the events that were stored up to the tail.
1201 */
1202 smp_rmb();
1203
5ffac122 1204 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1205
5ffac122 1206 if (head == tail)
1da177e4
LT
1207 goto out;
1208
edfbbf38
BL
1209 head %= ctx->nr_events;
1210 tail %= ctx->nr_events;
1211
a31ad380
KO
1212 while (ret < nr) {
1213 long avail;
1214 struct io_event *ev;
1215 struct page *page;
1216
5ffac122
KO
1217 avail = (head <= tail ? tail : ctx->nr_events) - head;
1218 if (head == tail)
a31ad380
KO
1219 break;
1220
a31ad380 1221 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1222 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1223 pos %= AIO_EVENTS_PER_PAGE;
1224
d2988bd4
AV
1225 avail = min(avail, nr - ret);
1226 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1227
a31ad380
KO
1228 ev = kmap(page);
1229 copy_ret = copy_to_user(event + ret, ev + pos,
1230 sizeof(*ev) * avail);
1231 kunmap(page);
1232
1233 if (unlikely(copy_ret)) {
1234 ret = -EFAULT;
1235 goto out;
1236 }
1237
1238 ret += avail;
1239 head += avail;
58c85dc2 1240 head %= ctx->nr_events;
1da177e4 1241 }
1da177e4 1242
58c85dc2 1243 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1244 ring->head = head;
91d80a84 1245 kunmap_atomic(ring);
58c85dc2 1246 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1247
5ffac122 1248 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1249out:
58c85dc2 1250 mutex_unlock(&ctx->ring_lock);
a31ad380 1251
1da177e4
LT
1252 return ret;
1253}
1254
a31ad380
KO
1255static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1256 struct io_event __user *event, long *i)
1da177e4 1257{
a31ad380 1258 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1259
a31ad380
KO
1260 if (ret > 0)
1261 *i += ret;
1da177e4 1262
a31ad380
KO
1263 if (unlikely(atomic_read(&ctx->dead)))
1264 ret = -EINVAL;
1da177e4 1265
a31ad380
KO
1266 if (!*i)
1267 *i = ret;
1da177e4 1268
a31ad380 1269 return ret < 0 || *i >= min_nr;
1da177e4
LT
1270}
1271
a31ad380 1272static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1273 struct io_event __user *event,
fa2e62a5 1274 ktime_t until)
1da177e4 1275{
a31ad380 1276 long ret = 0;
1da177e4 1277
a31ad380
KO
1278 /*
1279 * Note that aio_read_events() is being called as the conditional - i.e.
1280 * we're calling it after prepare_to_wait() has set task state to
1281 * TASK_INTERRUPTIBLE.
1282 *
1283 * But aio_read_events() can block, and if it blocks it's going to flip
1284 * the task state back to TASK_RUNNING.
1285 *
1286 * This should be ok, provided it doesn't flip the state back to
1287 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1288 * will only happen if the mutex_lock() call blocks, and we then find
1289 * the ringbuffer empty. So in practice we should be ok, but it's
1290 * something to be aware of when touching this code.
1291 */
2456e855 1292 if (until == 0)
5f785de5
FZ
1293 aio_read_events(ctx, min_nr, nr, event, &ret);
1294 else
1295 wait_event_interruptible_hrtimeout(ctx->wait,
1296 aio_read_events(ctx, min_nr, nr, event, &ret),
1297 until);
a31ad380 1298 return ret;
1da177e4
LT
1299}
1300
1da177e4
LT
1301/* sys_io_setup:
1302 * Create an aio_context capable of receiving at least nr_events.
1303 * ctxp must not point to an aio_context that already exists, and
1304 * must be initialized to 0 prior to the call. On successful
1305 * creation of the aio_context, *ctxp is filled in with the resulting
1306 * handle. May fail with -EINVAL if *ctxp is not initialized,
1307 * if the specified nr_events exceeds internal limits. May fail
1308 * with -EAGAIN if the specified nr_events exceeds the user's limit
1309 * of available events. May fail with -ENOMEM if insufficient kernel
1310 * resources are available. May fail with -EFAULT if an invalid
1311 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1312 * implemented.
1313 */
002c8976 1314SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1315{
1316 struct kioctx *ioctx = NULL;
1317 unsigned long ctx;
1318 long ret;
1319
1320 ret = get_user(ctx, ctxp);
1321 if (unlikely(ret))
1322 goto out;
1323
1324 ret = -EINVAL;
d55b5fda 1325 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1326 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1327 ctx, nr_events);
1da177e4
LT
1328 goto out;
1329 }
1330
1331 ioctx = ioctx_alloc(nr_events);
1332 ret = PTR_ERR(ioctx);
1333 if (!IS_ERR(ioctx)) {
1334 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1335 if (ret)
e02ba72a 1336 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1337 percpu_ref_put(&ioctx->users);
1da177e4
LT
1338 }
1339
1340out:
1341 return ret;
1342}
1343
c00d2c7e
AV
1344#ifdef CONFIG_COMPAT
1345COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1346{
1347 struct kioctx *ioctx = NULL;
1348 unsigned long ctx;
1349 long ret;
1350
1351 ret = get_user(ctx, ctx32p);
1352 if (unlikely(ret))
1353 goto out;
1354
1355 ret = -EINVAL;
1356 if (unlikely(ctx || nr_events == 0)) {
1357 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1358 ctx, nr_events);
1359 goto out;
1360 }
1361
1362 ioctx = ioctx_alloc(nr_events);
1363 ret = PTR_ERR(ioctx);
1364 if (!IS_ERR(ioctx)) {
1365 /* truncating is ok because it's a user address */
1366 ret = put_user((u32)ioctx->user_id, ctx32p);
1367 if (ret)
1368 kill_ioctx(current->mm, ioctx, NULL);
1369 percpu_ref_put(&ioctx->users);
1370 }
1371
1372out:
1373 return ret;
1374}
1375#endif
1376
1da177e4
LT
1377/* sys_io_destroy:
1378 * Destroy the aio_context specified. May cancel any outstanding
1379 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1380 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1381 * is invalid.
1382 */
002c8976 1383SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1384{
1385 struct kioctx *ioctx = lookup_ioctx(ctx);
1386 if (likely(NULL != ioctx)) {
dc48e56d 1387 struct ctx_rq_wait wait;
fb2d4483 1388 int ret;
e02ba72a 1389
dc48e56d
JA
1390 init_completion(&wait.comp);
1391 atomic_set(&wait.count, 1);
1392
e02ba72a
AP
1393 /* Pass requests_done to kill_ioctx() where it can be set
1394 * in a thread-safe way. If we try to set it here then we have
1395 * a race condition if two io_destroy() called simultaneously.
1396 */
dc48e56d 1397 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1398 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1399
1400 /* Wait until all IO for the context are done. Otherwise kernel
1401 * keep using user-space buffers even if user thinks the context
1402 * is destroyed.
1403 */
fb2d4483 1404 if (!ret)
dc48e56d 1405 wait_for_completion(&wait.comp);
e02ba72a 1406
fb2d4483 1407 return ret;
1da177e4 1408 }
acd88d4e 1409 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1410 return -EINVAL;
1411}
1412
3c96c7f4
AV
1413static void aio_remove_iocb(struct aio_kiocb *iocb)
1414{
1415 struct kioctx *ctx = iocb->ki_ctx;
1416 unsigned long flags;
1417
1418 spin_lock_irqsave(&ctx->ctx_lock, flags);
1419 list_del(&iocb->ki_list);
1420 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1421}
1422
54843f87
CH
1423static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1424{
1425 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1426
3c96c7f4
AV
1427 if (!list_empty_careful(&iocb->ki_list))
1428 aio_remove_iocb(iocb);
1429
54843f87
CH
1430 if (kiocb->ki_flags & IOCB_WRITE) {
1431 struct inode *inode = file_inode(kiocb->ki_filp);
1432
1433 /*
1434 * Tell lockdep we inherited freeze protection from submission
1435 * thread.
1436 */
1437 if (S_ISREG(inode->i_mode))
1438 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1439 file_end_write(kiocb->ki_filp);
1440 }
1441
2bb874c0
AV
1442 iocb->ki_res.res = res;
1443 iocb->ki_res.res2 = res2;
1444 iocb_put(iocb);
54843f87
CH
1445}
1446
88a6f18b 1447static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1448{
1449 int ret;
1450
54843f87 1451 req->ki_complete = aio_complete_rw;
ec51f8ee 1452 req->private = NULL;
54843f87
CH
1453 req->ki_pos = iocb->aio_offset;
1454 req->ki_flags = iocb_flags(req->ki_filp);
1455 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1456 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1457 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1458 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1459 /*
1460 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1461 * aio_reqprio is interpreted as an I/O scheduling
1462 * class and priority.
1463 */
1464 ret = ioprio_check_cap(iocb->aio_reqprio);
1465 if (ret) {
9a6d9a62 1466 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1467 return ret;
d9a08a9e
AM
1468 }
1469
1470 req->ki_ioprio = iocb->aio_reqprio;
1471 } else
76dc8913 1472 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1473
54843f87
CH
1474 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1475 if (unlikely(ret))
84c4e1f8 1476 return ret;
154989e4
CH
1477
1478 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1479 return 0;
54843f87
CH
1480}
1481
87e5e6da
JA
1482static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1483 struct iovec **iovec, bool vectored, bool compat,
1484 struct iov_iter *iter)
eed4e51f 1485{
89319d31
CH
1486 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1487 size_t len = iocb->aio_nbytes;
1488
1489 if (!vectored) {
1490 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1491 *iovec = NULL;
1492 return ret;
1493 }
9d85cba7
JM
1494#ifdef CONFIG_COMPAT
1495 if (compat)
89319d31
CH
1496 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1497 iter);
9d85cba7 1498#endif
89319d31 1499 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1500}
1501
9061d14a 1502static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1503{
1504 switch (ret) {
1505 case -EIOCBQUEUED:
9061d14a 1506 break;
89319d31
CH
1507 case -ERESTARTSYS:
1508 case -ERESTARTNOINTR:
1509 case -ERESTARTNOHAND:
1510 case -ERESTART_RESTARTBLOCK:
1511 /*
1512 * There's no easy way to restart the syscall since other AIO's
1513 * may be already running. Just fail this IO with EINTR.
1514 */
1515 ret = -EINTR;
1516 /*FALLTHRU*/
1517 default:
bc9bff61 1518 req->ki_complete(req, ret, 0);
89319d31
CH
1519 }
1520}
1521
958c13ce 1522static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1523 bool vectored, bool compat)
1da177e4 1524{
00fefb9c 1525 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1526 struct iov_iter iter;
54843f87 1527 struct file *file;
958c13ce 1528 int ret;
1da177e4 1529
54843f87
CH
1530 ret = aio_prep_rw(req, iocb);
1531 if (ret)
1532 return ret;
1533 file = req->ki_filp;
89319d31 1534 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1535 return -EBADF;
54843f87 1536 ret = -EINVAL;
89319d31 1537 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1538 return -EINVAL;
73a7075e 1539
89319d31 1540 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1541 if (ret < 0)
84c4e1f8 1542 return ret;
89319d31
CH
1543 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1544 if (!ret)
9061d14a 1545 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1546 kfree(iovec);
1547 return ret;
1548}
73a7075e 1549
958c13ce 1550static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1551 bool vectored, bool compat)
89319d31 1552{
89319d31
CH
1553 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1554 struct iov_iter iter;
54843f87 1555 struct file *file;
958c13ce 1556 int ret;
41ef4eb8 1557
54843f87
CH
1558 ret = aio_prep_rw(req, iocb);
1559 if (ret)
1560 return ret;
1561 file = req->ki_filp;
1562
89319d31 1563 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1564 return -EBADF;
89319d31 1565 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1566 return -EINVAL;
1da177e4 1567
89319d31 1568 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1569 if (ret < 0)
84c4e1f8 1570 return ret;
89319d31
CH
1571 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1572 if (!ret) {
70fe2f48 1573 /*
92ce4728 1574 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1575 * which will be released by another thread in
1576 * aio_complete_rw(). Fool lockdep by telling it the lock got
1577 * released so that it doesn't complain about the held lock when
1578 * we return to userspace.
70fe2f48 1579 */
92ce4728
CH
1580 if (S_ISREG(file_inode(file)->i_mode)) {
1581 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1582 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1583 }
1584 req->ki_flags |= IOCB_WRITE;
9061d14a 1585 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1586 }
89319d31
CH
1587 kfree(iovec);
1588 return ret;
1da177e4
LT
1589}
1590
a3c0d439
CH
1591static void aio_fsync_work(struct work_struct *work)
1592{
2bb874c0 1593 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
a3c0d439 1594
2bb874c0
AV
1595 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1596 iocb_put(iocb);
a3c0d439
CH
1597}
1598
88a6f18b
JA
1599static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1600 bool datasync)
a3c0d439
CH
1601{
1602 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1603 iocb->aio_rw_flags))
1604 return -EINVAL;
a11e1d43 1605
84c4e1f8 1606 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1607 return -EINVAL;
a3c0d439
CH
1608
1609 req->datasync = datasync;
1610 INIT_WORK(&req->work, aio_fsync_work);
1611 schedule_work(&req->work);
9061d14a 1612 return 0;
a3c0d439
CH
1613}
1614
bfe4037e
CH
1615static void aio_poll_complete_work(struct work_struct *work)
1616{
1617 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1618 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1619 struct poll_table_struct pt = { ._key = req->events };
1620 struct kioctx *ctx = iocb->ki_ctx;
1621 __poll_t mask = 0;
1622
1623 if (!READ_ONCE(req->cancelled))
1624 mask = vfs_poll(req->file, &pt) & req->events;
1625
1626 /*
1627 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1628 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1629 * synchronize with them. In the cancellation case the list_del_init
1630 * itself is not actually needed, but harmless so we keep it in to
1631 * avoid further branches in the fast path.
1632 */
1633 spin_lock_irq(&ctx->ctx_lock);
1634 if (!mask && !READ_ONCE(req->cancelled)) {
1635 add_wait_queue(req->head, &req->wait);
1636 spin_unlock_irq(&ctx->ctx_lock);
1637 return;
1638 }
1639 list_del_init(&iocb->ki_list);
af5c72b1
AV
1640 iocb->ki_res.res = mangle_poll(mask);
1641 req->done = true;
bfe4037e
CH
1642 spin_unlock_irq(&ctx->ctx_lock);
1643
af5c72b1 1644 iocb_put(iocb);
bfe4037e
CH
1645}
1646
1647/* assumes we are called with irqs disabled */
1648static int aio_poll_cancel(struct kiocb *iocb)
1649{
1650 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1651 struct poll_iocb *req = &aiocb->poll;
1652
1653 spin_lock(&req->head->lock);
1654 WRITE_ONCE(req->cancelled, true);
1655 if (!list_empty(&req->wait.entry)) {
1656 list_del_init(&req->wait.entry);
1657 schedule_work(&aiocb->poll.work);
1658 }
1659 spin_unlock(&req->head->lock);
1660
1661 return 0;
1662}
1663
1664static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1665 void *key)
1666{
1667 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1668 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1669 __poll_t mask = key_to_poll(key);
d3d6a18d 1670 unsigned long flags;
bfe4037e 1671
bfe4037e 1672 /* for instances that support it check for an event match first: */
af5c72b1
AV
1673 if (mask && !(mask & req->events))
1674 return 0;
e8693bcf 1675
af5c72b1
AV
1676 list_del_init(&req->wait.entry);
1677
1678 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
d3d6a18d
BVA
1679 /*
1680 * Try to complete the iocb inline if we can. Use
1681 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1682 * call this function with IRQs disabled and because IRQs
1683 * have to be disabled before ctx_lock is obtained.
1684 */
af5c72b1
AV
1685 list_del(&iocb->ki_list);
1686 iocb->ki_res.res = mangle_poll(mask);
1687 req->done = true;
1688 spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
1689 iocb_put(iocb);
1690 } else {
1691 schedule_work(&req->work);
e8693bcf 1692 }
bfe4037e
CH
1693 return 1;
1694}
1695
1696struct aio_poll_table {
1697 struct poll_table_struct pt;
1698 struct aio_kiocb *iocb;
1699 int error;
1700};
1701
1702static void
1703aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1704 struct poll_table_struct *p)
1705{
1706 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1707
1708 /* multiple wait queues per file are not supported */
1709 if (unlikely(pt->iocb->poll.head)) {
1710 pt->error = -EINVAL;
1711 return;
1712 }
1713
1714 pt->error = 0;
1715 pt->iocb->poll.head = head;
1716 add_wait_queue(head, &pt->iocb->poll.wait);
1717}
1718
958c13ce 1719static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1720{
1721 struct kioctx *ctx = aiocb->ki_ctx;
1722 struct poll_iocb *req = &aiocb->poll;
1723 struct aio_poll_table apt;
af5c72b1 1724 bool cancel = false;
bfe4037e
CH
1725 __poll_t mask;
1726
1727 /* reject any unknown events outside the normal event mask. */
1728 if ((u16)iocb->aio_buf != iocb->aio_buf)
1729 return -EINVAL;
1730 /* reject fields that are not defined for poll */
1731 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1732 return -EINVAL;
1733
1734 INIT_WORK(&req->work, aio_poll_complete_work);
1735 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1736
2bc4ca9b 1737 req->head = NULL;
af5c72b1 1738 req->done = false;
2bc4ca9b
JA
1739 req->cancelled = false;
1740
bfe4037e
CH
1741 apt.pt._qproc = aio_poll_queue_proc;
1742 apt.pt._key = req->events;
1743 apt.iocb = aiocb;
1744 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1745
1746 /* initialized the list so that we can do list_empty checks */
1747 INIT_LIST_HEAD(&req->wait.entry);
1748 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1749
bfe4037e 1750 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1751 spin_lock_irq(&ctx->ctx_lock);
af5c72b1
AV
1752 if (likely(req->head)) {
1753 spin_lock(&req->head->lock);
1754 if (unlikely(list_empty(&req->wait.entry))) {
1755 if (apt.error)
1756 cancel = true;
1757 apt.error = 0;
1758 mask = 0;
1759 }
1760 if (mask || apt.error) {
1761 list_del_init(&req->wait.entry);
1762 } else if (cancel) {
1763 WRITE_ONCE(req->cancelled, true);
1764 } else if (!req->done) { /* actually waiting for an event */
1765 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1766 aiocb->ki_cancel = aio_poll_cancel;
1767 }
1768 spin_unlock(&req->head->lock);
1769 }
1770 if (mask) { /* no async, we'd stolen it */
1771 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1772 apt.error = 0;
bfe4037e 1773 }
bfe4037e 1774 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1775 if (mask)
af5c72b1
AV
1776 iocb_put(aiocb);
1777 return apt.error;
bfe4037e
CH
1778}
1779
88a6f18b 1780static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1781 struct iocb __user *user_iocb, struct aio_kiocb *req,
1782 bool compat)
1da177e4 1783{
84c4e1f8 1784 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1785 if (unlikely(!req->ki_filp))
7316b49c 1786 return -EBADF;
84c4e1f8 1787
88a6f18b 1788 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1789 struct eventfd_ctx *eventfd;
9c3060be
DL
1790 /*
1791 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1792 * instance of the file* now. The file descriptor must be
1793 * an eventfd() fd, and will be signaled for each completed
1794 * event using the eventfd_signal() function.
1795 */
74259703 1796 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1797 if (IS_ERR(eventfd))
18bfb9c6 1798 return PTR_ERR(eventfd);
7316b49c 1799
74259703 1800 req->ki_eventfd = eventfd;
9830f4be
GR
1801 }
1802
7316b49c 1803 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1804 pr_debug("EFAULT: aio_key\n");
7316b49c 1805 return -EFAULT;
1da177e4
LT
1806 }
1807
a9339b78
AV
1808 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1809 req->ki_res.data = iocb->aio_data;
1810 req->ki_res.res = 0;
1811 req->ki_res.res2 = 0;
1da177e4 1812
88a6f18b 1813 switch (iocb->aio_lio_opcode) {
89319d31 1814 case IOCB_CMD_PREAD:
7316b49c 1815 return aio_read(&req->rw, iocb, false, compat);
89319d31 1816 case IOCB_CMD_PWRITE:
7316b49c 1817 return aio_write(&req->rw, iocb, false, compat);
89319d31 1818 case IOCB_CMD_PREADV:
7316b49c 1819 return aio_read(&req->rw, iocb, true, compat);
89319d31 1820 case IOCB_CMD_PWRITEV:
7316b49c 1821 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 1822 case IOCB_CMD_FSYNC:
7316b49c 1823 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 1824 case IOCB_CMD_FDSYNC:
7316b49c 1825 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 1826 case IOCB_CMD_POLL:
7316b49c 1827 return aio_poll(req, iocb);
89319d31 1828 default:
88a6f18b 1829 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 1830 return -EINVAL;
89319d31 1831 }
1da177e4
LT
1832}
1833
88a6f18b
JA
1834static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1835 bool compat)
1836{
7316b49c 1837 struct aio_kiocb *req;
88a6f18b 1838 struct iocb iocb;
7316b49c 1839 int err;
88a6f18b
JA
1840
1841 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1842 return -EFAULT;
1843
7316b49c
AV
1844 /* enforce forwards compatibility on users */
1845 if (unlikely(iocb.aio_reserved2)) {
1846 pr_debug("EINVAL: reserve field set\n");
1847 return -EINVAL;
1848 }
1849
1850 /* prevent overflows */
1851 if (unlikely(
1852 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1853 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1854 ((ssize_t)iocb.aio_nbytes < 0)
1855 )) {
1856 pr_debug("EINVAL: overflow check\n");
1857 return -EINVAL;
1858 }
1859
1860 req = aio_get_req(ctx);
1861 if (unlikely(!req))
1862 return -EAGAIN;
1863
1864 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1865
1866 /* Done with the synchronous reference */
1867 iocb_put(req);
1868
1869 /*
1870 * If err is 0, we'd either done aio_complete() ourselves or have
1871 * arranged for that to be done asynchronously. Anything non-zero
1872 * means that we need to destroy req ourselves.
1873 */
1874 if (unlikely(err)) {
1875 iocb_destroy(req);
1876 put_reqs_available(ctx, 1);
1877 }
1878 return err;
88a6f18b
JA
1879}
1880
67ba049f
AV
1881/* sys_io_submit:
1882 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1883 * the number of iocbs queued. May return -EINVAL if the aio_context
1884 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1885 * *iocbpp[0] is not properly initialized, if the operation specified
1886 * is invalid for the file descriptor in the iocb. May fail with
1887 * -EFAULT if any of the data structures point to invalid data. May
1888 * fail with -EBADF if the file descriptor specified in the first
1889 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1890 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1891 * fail with -ENOSYS if not implemented.
1892 */
1893SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1894 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1895{
1896 struct kioctx *ctx;
1897 long ret = 0;
080d676d 1898 int i = 0;
9f5b9425 1899 struct blk_plug plug;
1da177e4
LT
1900
1901 if (unlikely(nr < 0))
1902 return -EINVAL;
1903
1da177e4
LT
1904 ctx = lookup_ioctx(ctx_id);
1905 if (unlikely(!ctx)) {
caf4167a 1906 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1907 return -EINVAL;
1908 }
1909
1da92779
AV
1910 if (nr > ctx->nr_events)
1911 nr = ctx->nr_events;
1912
a79d40e9
JA
1913 if (nr > AIO_PLUG_THRESHOLD)
1914 blk_start_plug(&plug);
67ba049f 1915 for (i = 0; i < nr; i++) {
1da177e4 1916 struct iocb __user *user_iocb;
1da177e4 1917
67ba049f 1918 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1919 ret = -EFAULT;
1920 break;
1921 }
1922
67ba049f 1923 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1924 if (ret)
1925 break;
1926 }
a79d40e9
JA
1927 if (nr > AIO_PLUG_THRESHOLD)
1928 blk_finish_plug(&plug);
1da177e4 1929
723be6e3 1930 percpu_ref_put(&ctx->users);
1da177e4
LT
1931 return i ? i : ret;
1932}
1933
c00d2c7e 1934#ifdef CONFIG_COMPAT
c00d2c7e 1935COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1936 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1937{
67ba049f
AV
1938 struct kioctx *ctx;
1939 long ret = 0;
1940 int i = 0;
1941 struct blk_plug plug;
c00d2c7e
AV
1942
1943 if (unlikely(nr < 0))
1944 return -EINVAL;
1945
67ba049f
AV
1946 ctx = lookup_ioctx(ctx_id);
1947 if (unlikely(!ctx)) {
1948 pr_debug("EINVAL: invalid context id\n");
1949 return -EINVAL;
1950 }
1951
1da92779
AV
1952 if (nr > ctx->nr_events)
1953 nr = ctx->nr_events;
1954
a79d40e9
JA
1955 if (nr > AIO_PLUG_THRESHOLD)
1956 blk_start_plug(&plug);
67ba049f
AV
1957 for (i = 0; i < nr; i++) {
1958 compat_uptr_t user_iocb;
1959
1960 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1961 ret = -EFAULT;
1962 break;
1963 }
1964
1965 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1966 if (ret)
1967 break;
1968 }
a79d40e9
JA
1969 if (nr > AIO_PLUG_THRESHOLD)
1970 blk_finish_plug(&plug);
67ba049f
AV
1971
1972 percpu_ref_put(&ctx->users);
1973 return i ? i : ret;
c00d2c7e
AV
1974}
1975#endif
1976
1da177e4
LT
1977/* sys_io_cancel:
1978 * Attempts to cancel an iocb previously passed to io_submit. If
1979 * the operation is successfully cancelled, the resulting event is
1980 * copied into the memory pointed to by result without being placed
1981 * into the completion queue and 0 is returned. May fail with
1982 * -EFAULT if any of the data structures pointed to are invalid.
1983 * May fail with -EINVAL if aio_context specified by ctx_id is
1984 * invalid. May fail with -EAGAIN if the iocb specified was not
1985 * cancelled. Will fail with -ENOSYS if not implemented.
1986 */
002c8976
HC
1987SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1988 struct io_event __user *, result)
1da177e4 1989{
1da177e4 1990 struct kioctx *ctx;
04b2fa9f 1991 struct aio_kiocb *kiocb;
888933f8 1992 int ret = -EINVAL;
1da177e4 1993 u32 key;
a9339b78 1994 u64 obj = (u64)(unsigned long)iocb;
1da177e4 1995
f3a2752a 1996 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 1997 return -EFAULT;
f3a2752a
CH
1998 if (unlikely(key != KIOCB_KEY))
1999 return -EINVAL;
1da177e4
LT
2000
2001 ctx = lookup_ioctx(ctx_id);
2002 if (unlikely(!ctx))
2003 return -EINVAL;
2004
2005 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2006 /* TODO: use a hash or array, this sucks. */
2007 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2008 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2009 ret = kiocb->ki_cancel(&kiocb->rw);
2010 list_del_init(&kiocb->ki_list);
2011 break;
2012 }
888933f8 2013 }
1da177e4
LT
2014 spin_unlock_irq(&ctx->ctx_lock);
2015
906b973c 2016 if (!ret) {
bec68faa
KO
2017 /*
2018 * The result argument is no longer used - the io_event is
2019 * always delivered via the ring buffer. -EINPROGRESS indicates
2020 * cancellation is progress:
906b973c 2021 */
bec68faa 2022 ret = -EINPROGRESS;
906b973c 2023 }
1da177e4 2024
723be6e3 2025 percpu_ref_put(&ctx->users);
1da177e4
LT
2026
2027 return ret;
2028}
2029
fa2e62a5
DD
2030static long do_io_getevents(aio_context_t ctx_id,
2031 long min_nr,
2032 long nr,
2033 struct io_event __user *events,
2034 struct timespec64 *ts)
2035{
2036 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2037 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2038 long ret = -EINVAL;
2039
2040 if (likely(ioctx)) {
2041 if (likely(min_nr <= nr && min_nr >= 0))
2042 ret = read_events(ioctx, min_nr, nr, events, until);
2043 percpu_ref_put(&ioctx->users);
2044 }
2045
2046 return ret;
2047}
2048
1da177e4
LT
2049/* io_getevents:
2050 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2051 * the completion queue for the aio_context specified by ctx_id. If
2052 * it succeeds, the number of read events is returned. May fail with
2053 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2054 * out of range, if timeout is out of range. May fail with -EFAULT
2055 * if any of the memory specified is invalid. May return 0 or
2056 * < min_nr if the timeout specified by timeout has elapsed
2057 * before sufficient events are available, where timeout == NULL
2058 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2059 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2060 */
7a35397f
DD
2061#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2062
002c8976
HC
2063SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2064 long, min_nr,
2065 long, nr,
2066 struct io_event __user *, events,
7a35397f 2067 struct __kernel_timespec __user *, timeout)
1da177e4 2068{
fa2e62a5 2069 struct timespec64 ts;
7a074e96
CH
2070 int ret;
2071
2072 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2073 return -EFAULT;
2074
2075 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2076 if (!ret && signal_pending(current))
2077 ret = -EINTR;
2078 return ret;
2079}
1da177e4 2080
7a35397f
DD
2081#endif
2082
9ba546c0
CH
2083struct __aio_sigset {
2084 const sigset_t __user *sigmask;
2085 size_t sigsetsize;
2086};
2087
7a074e96
CH
2088SYSCALL_DEFINE6(io_pgetevents,
2089 aio_context_t, ctx_id,
2090 long, min_nr,
2091 long, nr,
2092 struct io_event __user *, events,
7a35397f 2093 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2094 const struct __aio_sigset __user *, usig)
2095{
2096 struct __aio_sigset ksig = { NULL, };
7a074e96 2097 struct timespec64 ts;
97abc889 2098 bool interrupted;
7a074e96
CH
2099 int ret;
2100
2101 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2102 return -EFAULT;
2103
2104 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2105 return -EFAULT;
2106
b772434b 2107 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2108 if (ret)
2109 return ret;
7a074e96
CH
2110
2111 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2112
2113 interrupted = signal_pending(current);
b772434b 2114 restore_saved_sigmask_unless(interrupted);
97abc889 2115 if (interrupted && !ret)
7a35397f 2116 ret = -ERESTARTNOHAND;
7a074e96 2117
7a35397f
DD
2118 return ret;
2119}
2120
2121#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2122
2123SYSCALL_DEFINE6(io_pgetevents_time32,
2124 aio_context_t, ctx_id,
2125 long, min_nr,
2126 long, nr,
2127 struct io_event __user *, events,
2128 struct old_timespec32 __user *, timeout,
2129 const struct __aio_sigset __user *, usig)
2130{
2131 struct __aio_sigset ksig = { NULL, };
7a35397f 2132 struct timespec64 ts;
97abc889 2133 bool interrupted;
7a35397f
DD
2134 int ret;
2135
2136 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2137 return -EFAULT;
2138
2139 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2140 return -EFAULT;
2141
ded653cc 2142
b772434b 2143 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2144 if (ret)
2145 return ret;
7a074e96
CH
2146
2147 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2148
2149 interrupted = signal_pending(current);
b772434b 2150 restore_saved_sigmask_unless(interrupted);
97abc889 2151 if (interrupted && !ret)
854a6ed5 2152 ret = -ERESTARTNOHAND;
fa2e62a5 2153
7a074e96 2154 return ret;
1da177e4 2155}
c00d2c7e 2156
7a35397f
DD
2157#endif
2158
2159#if defined(CONFIG_COMPAT_32BIT_TIME)
2160
8dabe724
AB
2161SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2162 __s32, min_nr,
2163 __s32, nr,
2164 struct io_event __user *, events,
2165 struct old_timespec32 __user *, timeout)
c00d2c7e 2166{
fa2e62a5 2167 struct timespec64 t;
7a074e96
CH
2168 int ret;
2169
9afc5eee 2170 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2171 return -EFAULT;
2172
2173 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2174 if (!ret && signal_pending(current))
2175 ret = -EINTR;
2176 return ret;
2177}
2178
7a35397f
DD
2179#endif
2180
2181#ifdef CONFIG_COMPAT
c00d2c7e 2182
7a074e96
CH
2183struct __compat_aio_sigset {
2184 compat_sigset_t __user *sigmask;
2185 compat_size_t sigsetsize;
2186};
2187
7a35397f
DD
2188#if defined(CONFIG_COMPAT_32BIT_TIME)
2189
7a074e96
CH
2190COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2191 compat_aio_context_t, ctx_id,
2192 compat_long_t, min_nr,
2193 compat_long_t, nr,
2194 struct io_event __user *, events,
9afc5eee 2195 struct old_timespec32 __user *, timeout,
7a074e96
CH
2196 const struct __compat_aio_sigset __user *, usig)
2197{
2198 struct __compat_aio_sigset ksig = { NULL, };
7a074e96 2199 struct timespec64 t;
97abc889 2200 bool interrupted;
7a074e96
CH
2201 int ret;
2202
9afc5eee 2203 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2204 return -EFAULT;
2205
2206 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2207 return -EFAULT;
2208
b772434b 2209 ret = set_compat_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2210 if (ret)
2211 return ret;
c00d2c7e 2212
7a074e96 2213 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2214
2215 interrupted = signal_pending(current);
b772434b 2216 restore_saved_sigmask_unless(interrupted);
97abc889 2217 if (interrupted && !ret)
854a6ed5 2218 ret = -ERESTARTNOHAND;
fa2e62a5 2219
7a074e96 2220 return ret;
c00d2c7e 2221}
7a35397f
DD
2222
2223#endif
2224
2225COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2226 compat_aio_context_t, ctx_id,
2227 compat_long_t, min_nr,
2228 compat_long_t, nr,
2229 struct io_event __user *, events,
2230 struct __kernel_timespec __user *, timeout,
2231 const struct __compat_aio_sigset __user *, usig)
2232{
2233 struct __compat_aio_sigset ksig = { NULL, };
7a35397f 2234 struct timespec64 t;
97abc889 2235 bool interrupted;
7a35397f
DD
2236 int ret;
2237
2238 if (timeout && get_timespec64(&t, timeout))
2239 return -EFAULT;
2240
2241 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2242 return -EFAULT;
2243
b772434b 2244 ret = set_compat_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2245 if (ret)
2246 return ret;
2247
2248 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2249
2250 interrupted = signal_pending(current);
b772434b 2251 restore_saved_sigmask_unless(interrupted);
97abc889 2252 if (interrupted && !ret)
7a35397f 2253 ret = -ERESTARTNOHAND;
fa2e62a5 2254
7a074e96 2255 return ret;
c00d2c7e
AV
2256}
2257#endif