phy: ti-pipe3: Fix SATA & USB PHY power up sequence
[linux-2.6-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
3d2d827f 30#include <linux/mmu_context.h>
e1bdd5f2 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/timer.h>
34#include <linux/aio.h>
35#include <linux/highmem.h>
36#include <linux/workqueue.h>
37#include <linux/security.h>
9c3060be 38#include <linux/eventfd.h>
cfb1e33e 39#include <linux/blkdev.h>
9d85cba7 40#include <linux/compat.h>
36bc08cc
GZ
41#include <linux/migrate.h>
42#include <linux/ramfs.h>
723be6e3 43#include <linux/percpu-refcount.h>
71ad7490 44#include <linux/mount.h>
1da177e4
LT
45
46#include <asm/kmap_types.h>
7c0f6ba6 47#include <linux/uaccess.h>
a538e3ff 48#include <linux/nospec.h>
1da177e4 49
68d70d03
AV
50#include "internal.h"
51
f3a2752a
CH
52#define KIOCB_KEY 0
53
4e179bca
KO
54#define AIO_RING_MAGIC 0xa10a10a1
55#define AIO_RING_COMPAT_FEATURES 1
56#define AIO_RING_INCOMPAT_FEATURES 0
57struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
fa8a53c3
BL
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
4e179bca
KO
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[0];
71}; /* 128 bytes + ring size */
72
a79d40e9
JA
73/*
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
76 */
77#define AIO_PLUG_THRESHOLD 2
78
4e179bca 79#define AIO_RING_PAGES 8
4e179bca 80
db446a08 81struct kioctx_table {
d0264c01
TH
82 struct rcu_head rcu;
83 unsigned nr;
84 struct kioctx __rcu *table[];
db446a08
BL
85};
86
e1bdd5f2
KO
87struct kioctx_cpu {
88 unsigned reqs_available;
89};
90
dc48e56d
JA
91struct ctx_rq_wait {
92 struct completion comp;
93 atomic_t count;
94};
95
4e179bca 96struct kioctx {
723be6e3 97 struct percpu_ref users;
36f55889 98 atomic_t dead;
4e179bca 99
e34ecee2
KO
100 struct percpu_ref reqs;
101
4e179bca 102 unsigned long user_id;
4e179bca 103
e1bdd5f2
KO
104 struct __percpu kioctx_cpu *cpu;
105
106 /*
107 * For percpu reqs_available, number of slots we move to/from global
108 * counter at a time:
109 */
110 unsigned req_batch;
3e845ce0
KO
111 /*
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
114 *
58c85dc2 115 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
116 * aio_setup_ring())
117 */
4e179bca
KO
118 unsigned max_reqs;
119
58c85dc2
KO
120 /* Size of ringbuffer, in units of struct io_event */
121 unsigned nr_events;
4e179bca 122
58c85dc2
KO
123 unsigned long mmap_base;
124 unsigned long mmap_size;
125
126 struct page **ring_pages;
127 long nr_pages;
128
f729863a 129 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 130
e02ba72a
AP
131 /*
132 * signals when all in-flight requests are done
133 */
dc48e56d 134 struct ctx_rq_wait *rq_wait;
e02ba72a 135
4e23bcae 136 struct {
34e83fc6
KO
137 /*
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
142 *
143 * We batch accesses to it with a percpu version.
34e83fc6
KO
144 */
145 atomic_t reqs_available;
4e23bcae
KO
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 spinlock_t ctx_lock;
150 struct list_head active_reqs; /* used for cancellation */
151 } ____cacheline_aligned_in_smp;
152
58c85dc2
KO
153 struct {
154 struct mutex ring_lock;
4e23bcae
KO
155 wait_queue_head_t wait;
156 } ____cacheline_aligned_in_smp;
58c85dc2
KO
157
158 struct {
159 unsigned tail;
d856f32a 160 unsigned completed_events;
58c85dc2 161 spinlock_t completion_lock;
4e23bcae 162 } ____cacheline_aligned_in_smp;
58c85dc2
KO
163
164 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 165 struct file *aio_ring_file;
db446a08
BL
166
167 unsigned id;
4e179bca
KO
168};
169
84c4e1f8
LT
170/*
171 * First field must be the file pointer in all the
172 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173 */
a3c0d439 174struct fsync_iocb {
a3c0d439 175 struct file *file;
84c4e1f8 176 struct work_struct work;
a3c0d439
CH
177 bool datasync;
178};
179
bfe4037e
CH
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
184 bool woken;
185 bool cancelled;
186 struct wait_queue_entry wait;
187 struct work_struct work;
188};
189
84c4e1f8
LT
190/*
191 * NOTE! Each of the iocb union members has the file pointer
192 * as the first entry in their struct definition. So you can
193 * access the file pointer through any of the sub-structs,
194 * or directly as just 'ki_filp' in this struct.
195 */
04b2fa9f 196struct aio_kiocb {
54843f87 197 union {
84c4e1f8 198 struct file *ki_filp;
54843f87 199 struct kiocb rw;
a3c0d439 200 struct fsync_iocb fsync;
bfe4037e 201 struct poll_iocb poll;
54843f87 202 };
04b2fa9f
CH
203
204 struct kioctx *ki_ctx;
205 kiocb_cancel_fn *ki_cancel;
206
207 struct iocb __user *ki_user_iocb; /* user's aiocb */
208 __u64 ki_user_data; /* user's data for completion */
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
9018ccc4 212 refcount_t ki_refcnt;
04b2fa9f
CH
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
1da177e4 221/*------ sysctl variables----*/
d55b5fda
ZB
222static DEFINE_SPINLOCK(aio_nr_lock);
223unsigned long aio_nr; /* current system wide number of aio requests */
224unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
225/*----end sysctl variables---*/
226
e18b890b
CL
227static struct kmem_cache *kiocb_cachep;
228static struct kmem_cache *kioctx_cachep;
1da177e4 229
71ad7490
BL
230static struct vfsmount *aio_mnt;
231
232static const struct file_operations aio_ring_fops;
233static const struct address_space_operations aio_ctx_aops;
234
235static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236{
71ad7490 237 struct file *file;
71ad7490 238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
239 if (IS_ERR(inode))
240 return ERR_CAST(inode);
71ad7490
BL
241
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
245
d93aa9d8
AV
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
c9c554f2 248 if (IS_ERR(file))
71ad7490 249 iput(inode);
71ad7490
BL
250 return file;
251}
252
253static struct dentry *aio_mount(struct file_system_type *fs_type,
254 int flags, const char *dev_name, void *data)
255{
d93aa9d8 256 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
22f6b4d3
JH
257 AIO_RING_MAGIC);
258
259 if (!IS_ERR(root))
260 root->d_sb->s_iflags |= SB_I_NOEXEC;
261 return root;
71ad7490
BL
262}
263
1da177e4
LT
264/* aio_setup
265 * Creates the slab caches used by the aio routines, panic on
266 * failure as this is done early during the boot sequence.
267 */
268static int __init aio_setup(void)
269{
71ad7490
BL
270 static struct file_system_type aio_fs = {
271 .name = "aio",
272 .mount = aio_mount,
273 .kill_sb = kill_anon_super,
274 };
275 aio_mnt = kern_mount(&aio_fs);
276 if (IS_ERR(aio_mnt))
277 panic("Failed to create aio fs mount.");
278
04b2fa9f 279 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 280 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
281 return 0;
282}
385773e0 283__initcall(aio_setup);
1da177e4 284
5e9ae2e5
BL
285static void put_aio_ring_file(struct kioctx *ctx)
286{
287 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
288 struct address_space *i_mapping;
289
5e9ae2e5 290 if (aio_ring_file) {
45063097 291 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
292
293 /* Prevent further access to the kioctx from migratepages */
45063097 294 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
295 spin_lock(&i_mapping->private_lock);
296 i_mapping->private_data = NULL;
5e9ae2e5 297 ctx->aio_ring_file = NULL;
de04e769 298 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
299
300 fput(aio_ring_file);
301 }
302}
303
1da177e4
LT
304static void aio_free_ring(struct kioctx *ctx)
305{
36bc08cc 306 int i;
1da177e4 307
fa8a53c3
BL
308 /* Disconnect the kiotx from the ring file. This prevents future
309 * accesses to the kioctx from page migration.
310 */
311 put_aio_ring_file(ctx);
312
36bc08cc 313 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 314 struct page *page;
36bc08cc
GZ
315 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
316 page_count(ctx->ring_pages[i]));
8e321fef
BL
317 page = ctx->ring_pages[i];
318 if (!page)
319 continue;
320 ctx->ring_pages[i] = NULL;
321 put_page(page);
36bc08cc 322 }
1da177e4 323
ddb8c45b 324 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 325 kfree(ctx->ring_pages);
ddb8c45b
SL
326 ctx->ring_pages = NULL;
327 }
36bc08cc
GZ
328}
329
5477e70a 330static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 331{
5477e70a 332 struct file *file = vma->vm_file;
e4a0d3e7
PE
333 struct mm_struct *mm = vma->vm_mm;
334 struct kioctx_table *table;
b2edffdd 335 int i, res = -EINVAL;
e4a0d3e7
PE
336
337 spin_lock(&mm->ioctx_lock);
338 rcu_read_lock();
339 table = rcu_dereference(mm->ioctx_table);
340 for (i = 0; i < table->nr; i++) {
341 struct kioctx *ctx;
342
d0264c01 343 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 344 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
345 if (!atomic_read(&ctx->dead)) {
346 ctx->user_id = ctx->mmap_base = vma->vm_start;
347 res = 0;
348 }
e4a0d3e7
PE
349 break;
350 }
351 }
352
353 rcu_read_unlock();
354 spin_unlock(&mm->ioctx_lock);
b2edffdd 355 return res;
e4a0d3e7
PE
356}
357
5477e70a
ON
358static const struct vm_operations_struct aio_ring_vm_ops = {
359 .mremap = aio_ring_mremap,
360#if IS_ENABLED(CONFIG_MMU)
361 .fault = filemap_fault,
362 .map_pages = filemap_map_pages,
363 .page_mkwrite = filemap_page_mkwrite,
364#endif
365};
366
367static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
368{
369 vma->vm_flags |= VM_DONTEXPAND;
370 vma->vm_ops = &aio_ring_vm_ops;
371 return 0;
372}
373
36bc08cc
GZ
374static const struct file_operations aio_ring_fops = {
375 .mmap = aio_ring_mmap,
376};
377
0c45355f 378#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
379static int aio_migratepage(struct address_space *mapping, struct page *new,
380 struct page *old, enum migrate_mode mode)
381{
5e9ae2e5 382 struct kioctx *ctx;
36bc08cc 383 unsigned long flags;
fa8a53c3 384 pgoff_t idx;
36bc08cc
GZ
385 int rc;
386
2916ecc0
JG
387 /*
388 * We cannot support the _NO_COPY case here, because copy needs to
389 * happen under the ctx->completion_lock. That does not work with the
390 * migration workflow of MIGRATE_SYNC_NO_COPY.
391 */
392 if (mode == MIGRATE_SYNC_NO_COPY)
393 return -EINVAL;
394
8e321fef
BL
395 rc = 0;
396
fa8a53c3 397 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
398 spin_lock(&mapping->private_lock);
399 ctx = mapping->private_data;
fa8a53c3
BL
400 if (!ctx) {
401 rc = -EINVAL;
402 goto out;
403 }
404
405 /* The ring_lock mutex. The prevents aio_read_events() from writing
406 * to the ring's head, and prevents page migration from mucking in
407 * a partially initialized kiotx.
408 */
409 if (!mutex_trylock(&ctx->ring_lock)) {
410 rc = -EAGAIN;
411 goto out;
412 }
413
414 idx = old->index;
415 if (idx < (pgoff_t)ctx->nr_pages) {
416 /* Make sure the old page hasn't already been changed */
417 if (ctx->ring_pages[idx] != old)
418 rc = -EAGAIN;
8e321fef
BL
419 } else
420 rc = -EINVAL;
8e321fef
BL
421
422 if (rc != 0)
fa8a53c3 423 goto out_unlock;
8e321fef 424
36bc08cc
GZ
425 /* Writeback must be complete */
426 BUG_ON(PageWriteback(old));
8e321fef 427 get_page(new);
36bc08cc 428
ab41ee68 429 rc = migrate_page_move_mapping(mapping, new, old, mode, 1);
36bc08cc 430 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 431 put_page(new);
fa8a53c3 432 goto out_unlock;
36bc08cc
GZ
433 }
434
fa8a53c3
BL
435 /* Take completion_lock to prevent other writes to the ring buffer
436 * while the old page is copied to the new. This prevents new
437 * events from being lost.
5e9ae2e5 438 */
fa8a53c3
BL
439 spin_lock_irqsave(&ctx->completion_lock, flags);
440 migrate_page_copy(new, old);
441 BUG_ON(ctx->ring_pages[idx] != old);
442 ctx->ring_pages[idx] = new;
443 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 444
fa8a53c3
BL
445 /* The old page is no longer accessible. */
446 put_page(old);
8e321fef 447
fa8a53c3
BL
448out_unlock:
449 mutex_unlock(&ctx->ring_lock);
450out:
451 spin_unlock(&mapping->private_lock);
36bc08cc 452 return rc;
1da177e4 453}
0c45355f 454#endif
1da177e4 455
36bc08cc 456static const struct address_space_operations aio_ctx_aops = {
835f252c 457 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 458#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 459 .migratepage = aio_migratepage,
0c45355f 460#endif
36bc08cc
GZ
461};
462
2a8a9867 463static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
464{
465 struct aio_ring *ring;
41003a7b 466 struct mm_struct *mm = current->mm;
3dc9acb6 467 unsigned long size, unused;
1da177e4 468 int nr_pages;
36bc08cc
GZ
469 int i;
470 struct file *file;
1da177e4
LT
471
472 /* Compensate for the ring buffer's head/tail overlap entry */
473 nr_events += 2; /* 1 is required, 2 for good luck */
474
475 size = sizeof(struct aio_ring);
476 size += sizeof(struct io_event) * nr_events;
1da177e4 477
36bc08cc 478 nr_pages = PFN_UP(size);
1da177e4
LT
479 if (nr_pages < 0)
480 return -EINVAL;
481
71ad7490 482 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
483 if (IS_ERR(file)) {
484 ctx->aio_ring_file = NULL;
fa8a53c3 485 return -ENOMEM;
36bc08cc
GZ
486 }
487
3dc9acb6
LT
488 ctx->aio_ring_file = file;
489 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
490 / sizeof(struct io_event);
491
492 ctx->ring_pages = ctx->internal_pages;
493 if (nr_pages > AIO_RING_PAGES) {
494 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
495 GFP_KERNEL);
496 if (!ctx->ring_pages) {
497 put_aio_ring_file(ctx);
498 return -ENOMEM;
499 }
500 }
501
36bc08cc
GZ
502 for (i = 0; i < nr_pages; i++) {
503 struct page *page;
45063097 504 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
505 i, GFP_HIGHUSER | __GFP_ZERO);
506 if (!page)
507 break;
508 pr_debug("pid(%d) page[%d]->count=%d\n",
509 current->pid, i, page_count(page));
510 SetPageUptodate(page);
36bc08cc 511 unlock_page(page);
3dc9acb6
LT
512
513 ctx->ring_pages[i] = page;
36bc08cc 514 }
3dc9acb6 515 ctx->nr_pages = i;
1da177e4 516
3dc9acb6
LT
517 if (unlikely(i != nr_pages)) {
518 aio_free_ring(ctx);
fa8a53c3 519 return -ENOMEM;
1da177e4
LT
520 }
521
58c85dc2
KO
522 ctx->mmap_size = nr_pages * PAGE_SIZE;
523 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 524
013373e8
MH
525 if (down_write_killable(&mm->mmap_sem)) {
526 ctx->mmap_size = 0;
527 aio_free_ring(ctx);
528 return -EINTR;
529 }
530
36bc08cc
GZ
531 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
532 PROT_READ | PROT_WRITE,
897ab3e0 533 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 534 up_write(&mm->mmap_sem);
58c85dc2 535 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 536 ctx->mmap_size = 0;
1da177e4 537 aio_free_ring(ctx);
fa8a53c3 538 return -ENOMEM;
1da177e4
LT
539 }
540
58c85dc2 541 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 542
58c85dc2
KO
543 ctx->user_id = ctx->mmap_base;
544 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 545
58c85dc2 546 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 547 ring->nr = nr_events; /* user copy */
db446a08 548 ring->id = ~0U;
1da177e4
LT
549 ring->head = ring->tail = 0;
550 ring->magic = AIO_RING_MAGIC;
551 ring->compat_features = AIO_RING_COMPAT_FEATURES;
552 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
553 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 554 kunmap_atomic(ring);
58c85dc2 555 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
556
557 return 0;
558}
559
1da177e4
LT
560#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
561#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
562#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
563
04b2fa9f 564void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 565{
54843f87 566 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
567 struct kioctx *ctx = req->ki_ctx;
568 unsigned long flags;
569
75321b50
CH
570 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
571 return;
0460fef2 572
75321b50
CH
573 spin_lock_irqsave(&ctx->ctx_lock, flags);
574 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 575 req->ki_cancel = cancel;
0460fef2
KO
576 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
577}
578EXPORT_SYMBOL(kiocb_set_cancel_fn);
579
a6d7cff4
TH
580/*
581 * free_ioctx() should be RCU delayed to synchronize against the RCU
582 * protected lookup_ioctx() and also needs process context to call
f729863a 583 * aio_free_ring(). Use rcu_work.
a6d7cff4 584 */
e34ecee2 585static void free_ioctx(struct work_struct *work)
36f55889 586{
f729863a
TH
587 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
588 free_rwork);
e34ecee2 589 pr_debug("freeing %p\n", ctx);
e1bdd5f2 590
e34ecee2 591 aio_free_ring(ctx);
e1bdd5f2 592 free_percpu(ctx->cpu);
9a1049da
TH
593 percpu_ref_exit(&ctx->reqs);
594 percpu_ref_exit(&ctx->users);
36f55889
KO
595 kmem_cache_free(kioctx_cachep, ctx);
596}
597
e34ecee2
KO
598static void free_ioctx_reqs(struct percpu_ref *ref)
599{
600 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
601
e02ba72a 602 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
603 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
604 complete(&ctx->rq_wait->comp);
e02ba72a 605
a6d7cff4 606 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
607 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
608 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
609}
610
36f55889
KO
611/*
612 * When this function runs, the kioctx has been removed from the "hash table"
613 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
614 * now it's safe to cancel any that need to be.
615 */
e34ecee2 616static void free_ioctx_users(struct percpu_ref *ref)
36f55889 617{
e34ecee2 618 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 619 struct aio_kiocb *req;
36f55889
KO
620
621 spin_lock_irq(&ctx->ctx_lock);
622
623 while (!list_empty(&ctx->active_reqs)) {
624 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 625 struct aio_kiocb, ki_list);
888933f8 626 req->ki_cancel(&req->rw);
4faa9996 627 list_del_init(&req->ki_list);
36f55889
KO
628 }
629
630 spin_unlock_irq(&ctx->ctx_lock);
631
e34ecee2
KO
632 percpu_ref_kill(&ctx->reqs);
633 percpu_ref_put(&ctx->reqs);
36f55889
KO
634}
635
db446a08
BL
636static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
637{
638 unsigned i, new_nr;
639 struct kioctx_table *table, *old;
640 struct aio_ring *ring;
641
642 spin_lock(&mm->ioctx_lock);
855ef0de 643 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
644
645 while (1) {
646 if (table)
647 for (i = 0; i < table->nr; i++)
d0264c01 648 if (!rcu_access_pointer(table->table[i])) {
db446a08 649 ctx->id = i;
d0264c01 650 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
651 spin_unlock(&mm->ioctx_lock);
652
fa8a53c3
BL
653 /* While kioctx setup is in progress,
654 * we are protected from page migration
655 * changes ring_pages by ->ring_lock.
656 */
db446a08
BL
657 ring = kmap_atomic(ctx->ring_pages[0]);
658 ring->id = ctx->id;
659 kunmap_atomic(ring);
660 return 0;
661 }
662
663 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
664 spin_unlock(&mm->ioctx_lock);
665
666 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
667 new_nr, GFP_KERNEL);
668 if (!table)
669 return -ENOMEM;
670
671 table->nr = new_nr;
672
673 spin_lock(&mm->ioctx_lock);
855ef0de 674 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
675
676 if (!old) {
677 rcu_assign_pointer(mm->ioctx_table, table);
678 } else if (table->nr > old->nr) {
679 memcpy(table->table, old->table,
680 old->nr * sizeof(struct kioctx *));
681
682 rcu_assign_pointer(mm->ioctx_table, table);
683 kfree_rcu(old, rcu);
684 } else {
685 kfree(table);
686 table = old;
687 }
688 }
689}
690
e34ecee2
KO
691static void aio_nr_sub(unsigned nr)
692{
693 spin_lock(&aio_nr_lock);
694 if (WARN_ON(aio_nr - nr > aio_nr))
695 aio_nr = 0;
696 else
697 aio_nr -= nr;
698 spin_unlock(&aio_nr_lock);
699}
700
1da177e4
LT
701/* ioctx_alloc
702 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
703 */
704static struct kioctx *ioctx_alloc(unsigned nr_events)
705{
41003a7b 706 struct mm_struct *mm = current->mm;
1da177e4 707 struct kioctx *ctx;
e23754f8 708 int err = -ENOMEM;
1da177e4 709
2a8a9867
MFO
710 /*
711 * Store the original nr_events -- what userspace passed to io_setup(),
712 * for counting against the global limit -- before it changes.
713 */
714 unsigned int max_reqs = nr_events;
715
e1bdd5f2
KO
716 /*
717 * We keep track of the number of available ringbuffer slots, to prevent
718 * overflow (reqs_available), and we also use percpu counters for this.
719 *
720 * So since up to half the slots might be on other cpu's percpu counters
721 * and unavailable, double nr_events so userspace sees what they
722 * expected: additionally, we move req_batch slots to/from percpu
723 * counters at a time, so make sure that isn't 0:
724 */
725 nr_events = max(nr_events, num_possible_cpus() * 4);
726 nr_events *= 2;
727
1da177e4 728 /* Prevent overflows */
08397acd 729 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
730 pr_debug("ENOMEM: nr_events too high\n");
731 return ERR_PTR(-EINVAL);
732 }
733
2a8a9867 734 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
735 return ERR_PTR(-EAGAIN);
736
c3762229 737 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
738 if (!ctx)
739 return ERR_PTR(-ENOMEM);
740
2a8a9867 741 ctx->max_reqs = max_reqs;
1da177e4 742
1da177e4 743 spin_lock_init(&ctx->ctx_lock);
0460fef2 744 spin_lock_init(&ctx->completion_lock);
58c85dc2 745 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
746 /* Protect against page migration throughout kiotx setup by keeping
747 * the ring_lock mutex held until setup is complete. */
748 mutex_lock(&ctx->ring_lock);
1da177e4
LT
749 init_waitqueue_head(&ctx->wait);
750
751 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 752
2aad2a86 753 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
754 goto err;
755
2aad2a86 756 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
757 goto err;
758
e1bdd5f2
KO
759 ctx->cpu = alloc_percpu(struct kioctx_cpu);
760 if (!ctx->cpu)
e34ecee2 761 goto err;
1da177e4 762
2a8a9867 763 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 764 if (err < 0)
e34ecee2 765 goto err;
e1bdd5f2 766
34e83fc6 767 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 768 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
769 if (ctx->req_batch < 1)
770 ctx->req_batch = 1;
34e83fc6 771
1da177e4 772 /* limit the number of system wide aios */
9fa1cb39 773 spin_lock(&aio_nr_lock);
2a8a9867
MFO
774 if (aio_nr + ctx->max_reqs > aio_max_nr ||
775 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 776 spin_unlock(&aio_nr_lock);
e34ecee2 777 err = -EAGAIN;
d1b94327 778 goto err_ctx;
2dd542b7
AV
779 }
780 aio_nr += ctx->max_reqs;
9fa1cb39 781 spin_unlock(&aio_nr_lock);
1da177e4 782
1881686f
BL
783 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
784 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 785
da90382c
BL
786 err = ioctx_add_table(ctx, mm);
787 if (err)
e34ecee2 788 goto err_cleanup;
da90382c 789
fa8a53c3
BL
790 /* Release the ring_lock mutex now that all setup is complete. */
791 mutex_unlock(&ctx->ring_lock);
792
caf4167a 793 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 794 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
795 return ctx;
796
e34ecee2
KO
797err_cleanup:
798 aio_nr_sub(ctx->max_reqs);
d1b94327 799err_ctx:
deeb8525
AV
800 atomic_set(&ctx->dead, 1);
801 if (ctx->mmap_size)
802 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 803 aio_free_ring(ctx);
e34ecee2 804err:
fa8a53c3 805 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 806 free_percpu(ctx->cpu);
9a1049da
TH
807 percpu_ref_exit(&ctx->reqs);
808 percpu_ref_exit(&ctx->users);
1da177e4 809 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 810 pr_debug("error allocating ioctx %d\n", err);
e23754f8 811 return ERR_PTR(err);
1da177e4
LT
812}
813
36f55889
KO
814/* kill_ioctx
815 * Cancels all outstanding aio requests on an aio context. Used
816 * when the processes owning a context have all exited to encourage
817 * the rapid destruction of the kioctx.
818 */
fb2d4483 819static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 820 struct ctx_rq_wait *wait)
36f55889 821{
fa88b6f8 822 struct kioctx_table *table;
db446a08 823
b2edffdd
AV
824 spin_lock(&mm->ioctx_lock);
825 if (atomic_xchg(&ctx->dead, 1)) {
826 spin_unlock(&mm->ioctx_lock);
fa88b6f8 827 return -EINVAL;
b2edffdd 828 }
db446a08 829
855ef0de 830 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
831 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
832 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 833 spin_unlock(&mm->ioctx_lock);
4fcc712f 834
a6d7cff4 835 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 836 wake_up_all(&ctx->wait);
4fcc712f 837
fa88b6f8
BL
838 /*
839 * It'd be more correct to do this in free_ioctx(), after all
840 * the outstanding kiocbs have finished - but by then io_destroy
841 * has already returned, so io_setup() could potentially return
842 * -EAGAIN with no ioctxs actually in use (as far as userspace
843 * could tell).
844 */
845 aio_nr_sub(ctx->max_reqs);
4fcc712f 846
fa88b6f8
BL
847 if (ctx->mmap_size)
848 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 849
dc48e56d 850 ctx->rq_wait = wait;
fa88b6f8
BL
851 percpu_ref_kill(&ctx->users);
852 return 0;
1da177e4
LT
853}
854
36f55889
KO
855/*
856 * exit_aio: called when the last user of mm goes away. At this point, there is
857 * no way for any new requests to be submited or any of the io_* syscalls to be
858 * called on the context.
859 *
860 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
861 * them.
1da177e4 862 */
fc9b52cd 863void exit_aio(struct mm_struct *mm)
1da177e4 864{
4b70ac5f 865 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
866 struct ctx_rq_wait wait;
867 int i, skipped;
db446a08 868
4b70ac5f
ON
869 if (!table)
870 return;
db446a08 871
dc48e56d
JA
872 atomic_set(&wait.count, table->nr);
873 init_completion(&wait.comp);
874
875 skipped = 0;
4b70ac5f 876 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
877 struct kioctx *ctx =
878 rcu_dereference_protected(table->table[i], true);
abf137dd 879
dc48e56d
JA
880 if (!ctx) {
881 skipped++;
4b70ac5f 882 continue;
dc48e56d
JA
883 }
884
936af157 885 /*
4b70ac5f
ON
886 * We don't need to bother with munmap() here - exit_mmap(mm)
887 * is coming and it'll unmap everything. And we simply can't,
888 * this is not necessarily our ->mm.
889 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
890 * that it needs to unmap the area, just set it to 0.
936af157 891 */
58c85dc2 892 ctx->mmap_size = 0;
dc48e56d
JA
893 kill_ioctx(mm, ctx, &wait);
894 }
36f55889 895
dc48e56d 896 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 897 /* Wait until all IO for the context are done. */
dc48e56d 898 wait_for_completion(&wait.comp);
1da177e4 899 }
4b70ac5f
ON
900
901 RCU_INIT_POINTER(mm->ioctx_table, NULL);
902 kfree(table);
1da177e4
LT
903}
904
e1bdd5f2
KO
905static void put_reqs_available(struct kioctx *ctx, unsigned nr)
906{
907 struct kioctx_cpu *kcpu;
263782c1 908 unsigned long flags;
e1bdd5f2 909
263782c1 910 local_irq_save(flags);
be6fb451 911 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 912 kcpu->reqs_available += nr;
263782c1 913
e1bdd5f2
KO
914 while (kcpu->reqs_available >= ctx->req_batch * 2) {
915 kcpu->reqs_available -= ctx->req_batch;
916 atomic_add(ctx->req_batch, &ctx->reqs_available);
917 }
918
263782c1 919 local_irq_restore(flags);
e1bdd5f2
KO
920}
921
432c7997 922static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
923{
924 struct kioctx_cpu *kcpu;
925 bool ret = false;
263782c1 926 unsigned long flags;
e1bdd5f2 927
263782c1 928 local_irq_save(flags);
be6fb451 929 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
930 if (!kcpu->reqs_available) {
931 int old, avail = atomic_read(&ctx->reqs_available);
932
933 do {
934 if (avail < ctx->req_batch)
935 goto out;
936
937 old = avail;
938 avail = atomic_cmpxchg(&ctx->reqs_available,
939 avail, avail - ctx->req_batch);
940 } while (avail != old);
941
942 kcpu->reqs_available += ctx->req_batch;
943 }
944
945 ret = true;
946 kcpu->reqs_available--;
947out:
263782c1 948 local_irq_restore(flags);
e1bdd5f2
KO
949 return ret;
950}
951
d856f32a
BL
952/* refill_reqs_available
953 * Updates the reqs_available reference counts used for tracking the
954 * number of free slots in the completion ring. This can be called
955 * from aio_complete() (to optimistically update reqs_available) or
956 * from aio_get_req() (the we're out of events case). It must be
957 * called holding ctx->completion_lock.
958 */
959static void refill_reqs_available(struct kioctx *ctx, unsigned head,
960 unsigned tail)
961{
962 unsigned events_in_ring, completed;
963
964 /* Clamp head since userland can write to it. */
965 head %= ctx->nr_events;
966 if (head <= tail)
967 events_in_ring = tail - head;
968 else
969 events_in_ring = ctx->nr_events - (head - tail);
970
971 completed = ctx->completed_events;
972 if (events_in_ring < completed)
973 completed -= events_in_ring;
974 else
975 completed = 0;
976
977 if (!completed)
978 return;
979
980 ctx->completed_events -= completed;
981 put_reqs_available(ctx, completed);
982}
983
984/* user_refill_reqs_available
985 * Called to refill reqs_available when aio_get_req() encounters an
986 * out of space in the completion ring.
987 */
988static void user_refill_reqs_available(struct kioctx *ctx)
989{
990 spin_lock_irq(&ctx->completion_lock);
991 if (ctx->completed_events) {
992 struct aio_ring *ring;
993 unsigned head;
994
995 /* Access of ring->head may race with aio_read_events_ring()
996 * here, but that's okay since whether we read the old version
997 * or the new version, and either will be valid. The important
998 * part is that head cannot pass tail since we prevent
999 * aio_complete() from updating tail by holding
1000 * ctx->completion_lock. Even if head is invalid, the check
1001 * against ctx->completed_events below will make sure we do the
1002 * safe/right thing.
1003 */
1004 ring = kmap_atomic(ctx->ring_pages[0]);
1005 head = ring->head;
1006 kunmap_atomic(ring);
1007
1008 refill_reqs_available(ctx, head, ctx->tail);
1009 }
1010
1011 spin_unlock_irq(&ctx->completion_lock);
1012}
1013
432c7997
CH
1014static bool get_reqs_available(struct kioctx *ctx)
1015{
1016 if (__get_reqs_available(ctx))
1017 return true;
1018 user_refill_reqs_available(ctx);
1019 return __get_reqs_available(ctx);
1020}
1021
1da177e4 1022/* aio_get_req
57282d8f
KO
1023 * Allocate a slot for an aio request.
1024 * Returns NULL if no requests are free.
1da177e4 1025 */
04b2fa9f 1026static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1027{
04b2fa9f 1028 struct aio_kiocb *req;
a1c8eae7 1029
2bc4ca9b 1030 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1031 if (unlikely(!req))
432c7997 1032 return NULL;
1da177e4 1033
e34ecee2 1034 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1035 req->ki_ctx = ctx;
75321b50 1036 INIT_LIST_HEAD(&req->ki_list);
9018ccc4 1037 refcount_set(&req->ki_refcnt, 0);
2bc4ca9b 1038 req->ki_eventfd = NULL;
080d676d 1039 return req;
1da177e4
LT
1040}
1041
d5470b59 1042static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1043{
db446a08 1044 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1045 struct mm_struct *mm = current->mm;
65c24491 1046 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1047 struct kioctx_table *table;
1048 unsigned id;
1049
1050 if (get_user(id, &ring->id))
1051 return NULL;
1da177e4 1052
abf137dd 1053 rcu_read_lock();
db446a08 1054 table = rcu_dereference(mm->ioctx_table);
abf137dd 1055
db446a08
BL
1056 if (!table || id >= table->nr)
1057 goto out;
1da177e4 1058
a538e3ff 1059 id = array_index_nospec(id, table->nr);
d0264c01 1060 ctx = rcu_dereference(table->table[id]);
f30d704f 1061 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1062 if (percpu_ref_tryget_live(&ctx->users))
1063 ret = ctx;
db446a08
BL
1064 }
1065out:
abf137dd 1066 rcu_read_unlock();
65c24491 1067 return ret;
1da177e4
LT
1068}
1069
9018ccc4
CH
1070static inline void iocb_put(struct aio_kiocb *iocb)
1071{
1072 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1073 refcount_dec_and_test(&iocb->ki_refcnt)) {
84c4e1f8
LT
1074 if (iocb->ki_filp)
1075 fput(iocb->ki_filp);
9018ccc4
CH
1076 percpu_ref_put(&iocb->ki_ctx->reqs);
1077 kmem_cache_free(kiocb_cachep, iocb);
1078 }
1079}
1080
875736bb
JA
1081static void aio_fill_event(struct io_event *ev, struct aio_kiocb *iocb,
1082 long res, long res2)
1083{
1084 ev->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1085 ev->data = iocb->ki_user_data;
1086 ev->res = res;
1087 ev->res2 = res2;
1088}
1089
1da177e4
LT
1090/* aio_complete
1091 * Called when the io request on the given iocb is complete.
1da177e4 1092 */
54843f87 1093static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1da177e4
LT
1094{
1095 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1096 struct aio_ring *ring;
21b40200 1097 struct io_event *ev_page, *event;
d856f32a 1098 unsigned tail, pos, head;
1da177e4 1099 unsigned long flags;
1da177e4 1100
0460fef2
KO
1101 /*
1102 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1103 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1104 * pointer since we might be called from irq context.
1105 */
1106 spin_lock_irqsave(&ctx->completion_lock, flags);
1107
58c85dc2 1108 tail = ctx->tail;
21b40200
KO
1109 pos = tail + AIO_EVENTS_OFFSET;
1110
58c85dc2 1111 if (++tail >= ctx->nr_events)
4bf69b2a 1112 tail = 0;
1da177e4 1113
58c85dc2 1114 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1115 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1116
875736bb 1117 aio_fill_event(event, iocb, res, res2);
1da177e4 1118
21b40200 1119 kunmap_atomic(ev_page);
58c85dc2 1120 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1121
1122 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
04b2fa9f 1123 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
caf4167a 1124 res, res2);
1da177e4
LT
1125
1126 /* after flagging the request as done, we
1127 * must never even look at it again
1128 */
1129 smp_wmb(); /* make event visible before updating tail */
1130
58c85dc2 1131 ctx->tail = tail;
1da177e4 1132
58c85dc2 1133 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1134 head = ring->head;
21b40200 1135 ring->tail = tail;
e8e3c3d6 1136 kunmap_atomic(ring);
58c85dc2 1137 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1138
d856f32a
BL
1139 ctx->completed_events++;
1140 if (ctx->completed_events > 1)
1141 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1142 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1143
21b40200 1144 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1145
1146 /*
1147 * Check if the user asked us to deliver the result through an
1148 * eventfd. The eventfd_signal() function is safe to be called
1149 * from IRQ context.
1150 */
54843f87 1151 if (iocb->ki_eventfd) {
8d1c98b0 1152 eventfd_signal(iocb->ki_eventfd, 1);
54843f87
CH
1153 eventfd_ctx_put(iocb->ki_eventfd);
1154 }
8d1c98b0 1155
6cb2a210
QB
1156 /*
1157 * We have to order our ring_info tail store above and test
1158 * of the wait list below outside the wait lock. This is
1159 * like in wake_up_bit() where clearing a bit has to be
1160 * ordered with the unlocked test.
1161 */
1162 smp_mb();
1163
1da177e4
LT
1164 if (waitqueue_active(&ctx->wait))
1165 wake_up(&ctx->wait);
9018ccc4 1166 iocb_put(iocb);
1da177e4
LT
1167}
1168
2be4e7de 1169/* aio_read_events_ring
a31ad380
KO
1170 * Pull an event off of the ioctx's event ring. Returns the number of
1171 * events fetched
1da177e4 1172 */
a31ad380
KO
1173static long aio_read_events_ring(struct kioctx *ctx,
1174 struct io_event __user *event, long nr)
1da177e4 1175{
1da177e4 1176 struct aio_ring *ring;
5ffac122 1177 unsigned head, tail, pos;
a31ad380
KO
1178 long ret = 0;
1179 int copy_ret;
1180
9c9ce763
DC
1181 /*
1182 * The mutex can block and wake us up and that will cause
1183 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184 * and repeat. This should be rare enough that it doesn't cause
1185 * peformance issues. See the comment in read_events() for more detail.
1186 */
1187 sched_annotate_sleep();
58c85dc2 1188 mutex_lock(&ctx->ring_lock);
1da177e4 1189
fa8a53c3 1190 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1191 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1192 head = ring->head;
5ffac122 1193 tail = ring->tail;
a31ad380
KO
1194 kunmap_atomic(ring);
1195
2ff396be
JM
1196 /*
1197 * Ensure that once we've read the current tail pointer, that
1198 * we also see the events that were stored up to the tail.
1199 */
1200 smp_rmb();
1201
5ffac122 1202 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1203
5ffac122 1204 if (head == tail)
1da177e4
LT
1205 goto out;
1206
edfbbf38
BL
1207 head %= ctx->nr_events;
1208 tail %= ctx->nr_events;
1209
a31ad380
KO
1210 while (ret < nr) {
1211 long avail;
1212 struct io_event *ev;
1213 struct page *page;
1214
5ffac122
KO
1215 avail = (head <= tail ? tail : ctx->nr_events) - head;
1216 if (head == tail)
a31ad380
KO
1217 break;
1218
a31ad380 1219 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1220 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1221 pos %= AIO_EVENTS_PER_PAGE;
1222
d2988bd4
AV
1223 avail = min(avail, nr - ret);
1224 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1225
a31ad380
KO
1226 ev = kmap(page);
1227 copy_ret = copy_to_user(event + ret, ev + pos,
1228 sizeof(*ev) * avail);
1229 kunmap(page);
1230
1231 if (unlikely(copy_ret)) {
1232 ret = -EFAULT;
1233 goto out;
1234 }
1235
1236 ret += avail;
1237 head += avail;
58c85dc2 1238 head %= ctx->nr_events;
1da177e4 1239 }
1da177e4 1240
58c85dc2 1241 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1242 ring->head = head;
91d80a84 1243 kunmap_atomic(ring);
58c85dc2 1244 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1245
5ffac122 1246 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1247out:
58c85dc2 1248 mutex_unlock(&ctx->ring_lock);
a31ad380 1249
1da177e4
LT
1250 return ret;
1251}
1252
a31ad380
KO
1253static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 struct io_event __user *event, long *i)
1da177e4 1255{
a31ad380 1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1257
a31ad380
KO
1258 if (ret > 0)
1259 *i += ret;
1da177e4 1260
a31ad380
KO
1261 if (unlikely(atomic_read(&ctx->dead)))
1262 ret = -EINVAL;
1da177e4 1263
a31ad380
KO
1264 if (!*i)
1265 *i = ret;
1da177e4 1266
a31ad380 1267 return ret < 0 || *i >= min_nr;
1da177e4
LT
1268}
1269
a31ad380 1270static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1271 struct io_event __user *event,
fa2e62a5 1272 ktime_t until)
1da177e4 1273{
a31ad380 1274 long ret = 0;
1da177e4 1275
a31ad380
KO
1276 /*
1277 * Note that aio_read_events() is being called as the conditional - i.e.
1278 * we're calling it after prepare_to_wait() has set task state to
1279 * TASK_INTERRUPTIBLE.
1280 *
1281 * But aio_read_events() can block, and if it blocks it's going to flip
1282 * the task state back to TASK_RUNNING.
1283 *
1284 * This should be ok, provided it doesn't flip the state back to
1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 * will only happen if the mutex_lock() call blocks, and we then find
1287 * the ringbuffer empty. So in practice we should be ok, but it's
1288 * something to be aware of when touching this code.
1289 */
2456e855 1290 if (until == 0)
5f785de5
FZ
1291 aio_read_events(ctx, min_nr, nr, event, &ret);
1292 else
1293 wait_event_interruptible_hrtimeout(ctx->wait,
1294 aio_read_events(ctx, min_nr, nr, event, &ret),
1295 until);
a31ad380 1296 return ret;
1da177e4
LT
1297}
1298
1da177e4
LT
1299/* sys_io_setup:
1300 * Create an aio_context capable of receiving at least nr_events.
1301 * ctxp must not point to an aio_context that already exists, and
1302 * must be initialized to 0 prior to the call. On successful
1303 * creation of the aio_context, *ctxp is filled in with the resulting
1304 * handle. May fail with -EINVAL if *ctxp is not initialized,
1305 * if the specified nr_events exceeds internal limits. May fail
1306 * with -EAGAIN if the specified nr_events exceeds the user's limit
1307 * of available events. May fail with -ENOMEM if insufficient kernel
1308 * resources are available. May fail with -EFAULT if an invalid
1309 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1310 * implemented.
1311 */
002c8976 1312SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1313{
1314 struct kioctx *ioctx = NULL;
1315 unsigned long ctx;
1316 long ret;
1317
1318 ret = get_user(ctx, ctxp);
1319 if (unlikely(ret))
1320 goto out;
1321
1322 ret = -EINVAL;
d55b5fda 1323 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1324 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1325 ctx, nr_events);
1da177e4
LT
1326 goto out;
1327 }
1328
1329 ioctx = ioctx_alloc(nr_events);
1330 ret = PTR_ERR(ioctx);
1331 if (!IS_ERR(ioctx)) {
1332 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1333 if (ret)
e02ba72a 1334 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1335 percpu_ref_put(&ioctx->users);
1da177e4
LT
1336 }
1337
1338out:
1339 return ret;
1340}
1341
c00d2c7e
AV
1342#ifdef CONFIG_COMPAT
1343COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344{
1345 struct kioctx *ioctx = NULL;
1346 unsigned long ctx;
1347 long ret;
1348
1349 ret = get_user(ctx, ctx32p);
1350 if (unlikely(ret))
1351 goto out;
1352
1353 ret = -EINVAL;
1354 if (unlikely(ctx || nr_events == 0)) {
1355 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356 ctx, nr_events);
1357 goto out;
1358 }
1359
1360 ioctx = ioctx_alloc(nr_events);
1361 ret = PTR_ERR(ioctx);
1362 if (!IS_ERR(ioctx)) {
1363 /* truncating is ok because it's a user address */
1364 ret = put_user((u32)ioctx->user_id, ctx32p);
1365 if (ret)
1366 kill_ioctx(current->mm, ioctx, NULL);
1367 percpu_ref_put(&ioctx->users);
1368 }
1369
1370out:
1371 return ret;
1372}
1373#endif
1374
1da177e4
LT
1375/* sys_io_destroy:
1376 * Destroy the aio_context specified. May cancel any outstanding
1377 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1378 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1379 * is invalid.
1380 */
002c8976 1381SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1382{
1383 struct kioctx *ioctx = lookup_ioctx(ctx);
1384 if (likely(NULL != ioctx)) {
dc48e56d 1385 struct ctx_rq_wait wait;
fb2d4483 1386 int ret;
e02ba72a 1387
dc48e56d
JA
1388 init_completion(&wait.comp);
1389 atomic_set(&wait.count, 1);
1390
e02ba72a
AP
1391 /* Pass requests_done to kill_ioctx() where it can be set
1392 * in a thread-safe way. If we try to set it here then we have
1393 * a race condition if two io_destroy() called simultaneously.
1394 */
dc48e56d 1395 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1396 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1397
1398 /* Wait until all IO for the context are done. Otherwise kernel
1399 * keep using user-space buffers even if user thinks the context
1400 * is destroyed.
1401 */
fb2d4483 1402 if (!ret)
dc48e56d 1403 wait_for_completion(&wait.comp);
e02ba72a 1404
fb2d4483 1405 return ret;
1da177e4 1406 }
acd88d4e 1407 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1408 return -EINVAL;
1409}
1410
3c96c7f4
AV
1411static void aio_remove_iocb(struct aio_kiocb *iocb)
1412{
1413 struct kioctx *ctx = iocb->ki_ctx;
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&ctx->ctx_lock, flags);
1417 list_del(&iocb->ki_list);
1418 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1419}
1420
54843f87
CH
1421static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1422{
1423 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424
3c96c7f4
AV
1425 if (!list_empty_careful(&iocb->ki_list))
1426 aio_remove_iocb(iocb);
1427
54843f87
CH
1428 if (kiocb->ki_flags & IOCB_WRITE) {
1429 struct inode *inode = file_inode(kiocb->ki_filp);
1430
1431 /*
1432 * Tell lockdep we inherited freeze protection from submission
1433 * thread.
1434 */
1435 if (S_ISREG(inode->i_mode))
1436 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437 file_end_write(kiocb->ki_filp);
1438 }
1439
54843f87
CH
1440 aio_complete(iocb, res, res2);
1441}
1442
88a6f18b 1443static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1444{
1445 int ret;
1446
54843f87 1447 req->ki_complete = aio_complete_rw;
ec51f8ee 1448 req->private = NULL;
54843f87
CH
1449 req->ki_pos = iocb->aio_offset;
1450 req->ki_flags = iocb_flags(req->ki_filp);
1451 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1452 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1453 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1454 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1455 /*
1456 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1457 * aio_reqprio is interpreted as an I/O scheduling
1458 * class and priority.
1459 */
1460 ret = ioprio_check_cap(iocb->aio_reqprio);
1461 if (ret) {
9a6d9a62 1462 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1463 return ret;
d9a08a9e
AM
1464 }
1465
1466 req->ki_ioprio = iocb->aio_reqprio;
1467 } else
76dc8913 1468 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1469
54843f87
CH
1470 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1471 if (unlikely(ret))
84c4e1f8 1472 return ret;
154989e4
CH
1473
1474 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1475 return 0;
54843f87
CH
1476}
1477
88a6f18b 1478static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
89319d31 1479 bool vectored, bool compat, struct iov_iter *iter)
eed4e51f 1480{
89319d31
CH
1481 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1482 size_t len = iocb->aio_nbytes;
1483
1484 if (!vectored) {
1485 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1486 *iovec = NULL;
1487 return ret;
1488 }
9d85cba7
JM
1489#ifdef CONFIG_COMPAT
1490 if (compat)
89319d31
CH
1491 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1492 iter);
9d85cba7 1493#endif
89319d31 1494 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1495}
1496
9061d14a 1497static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1498{
1499 switch (ret) {
1500 case -EIOCBQUEUED:
9061d14a 1501 break;
89319d31
CH
1502 case -ERESTARTSYS:
1503 case -ERESTARTNOINTR:
1504 case -ERESTARTNOHAND:
1505 case -ERESTART_RESTARTBLOCK:
1506 /*
1507 * There's no easy way to restart the syscall since other AIO's
1508 * may be already running. Just fail this IO with EINTR.
1509 */
1510 ret = -EINTR;
1511 /*FALLTHRU*/
1512 default:
bc9bff61 1513 req->ki_complete(req, ret, 0);
89319d31
CH
1514 }
1515}
1516
88a6f18b
JA
1517static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb,
1518 bool vectored, bool compat)
1da177e4 1519{
00fefb9c 1520 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1521 struct iov_iter iter;
54843f87 1522 struct file *file;
89319d31 1523 ssize_t ret;
1da177e4 1524
54843f87
CH
1525 ret = aio_prep_rw(req, iocb);
1526 if (ret)
1527 return ret;
1528 file = req->ki_filp;
89319d31 1529 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1530 return -EBADF;
54843f87 1531 ret = -EINVAL;
89319d31 1532 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1533 return -EINVAL;
73a7075e 1534
89319d31
CH
1535 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1536 if (ret)
84c4e1f8 1537 return ret;
89319d31
CH
1538 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1539 if (!ret)
9061d14a 1540 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1541 kfree(iovec);
1542 return ret;
1543}
73a7075e 1544
88a6f18b
JA
1545static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb,
1546 bool vectored, bool compat)
89319d31 1547{
89319d31
CH
1548 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1549 struct iov_iter iter;
54843f87 1550 struct file *file;
89319d31 1551 ssize_t ret;
41ef4eb8 1552
54843f87
CH
1553 ret = aio_prep_rw(req, iocb);
1554 if (ret)
1555 return ret;
1556 file = req->ki_filp;
1557
89319d31 1558 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1559 return -EBADF;
89319d31 1560 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1561 return -EINVAL;
1da177e4 1562
89319d31
CH
1563 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1564 if (ret)
84c4e1f8 1565 return ret;
89319d31
CH
1566 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1567 if (!ret) {
70fe2f48 1568 /*
92ce4728 1569 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1570 * which will be released by another thread in
1571 * aio_complete_rw(). Fool lockdep by telling it the lock got
1572 * released so that it doesn't complain about the held lock when
1573 * we return to userspace.
70fe2f48 1574 */
92ce4728
CH
1575 if (S_ISREG(file_inode(file)->i_mode)) {
1576 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1577 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1578 }
1579 req->ki_flags |= IOCB_WRITE;
9061d14a 1580 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1581 }
89319d31
CH
1582 kfree(iovec);
1583 return ret;
1da177e4
LT
1584}
1585
a3c0d439
CH
1586static void aio_fsync_work(struct work_struct *work)
1587{
1588 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1589 int ret;
1590
1591 ret = vfs_fsync(req->file, req->datasync);
a3c0d439
CH
1592 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1593}
1594
88a6f18b
JA
1595static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1596 bool datasync)
a3c0d439
CH
1597{
1598 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599 iocb->aio_rw_flags))
1600 return -EINVAL;
a11e1d43 1601
84c4e1f8 1602 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1603 return -EINVAL;
a3c0d439
CH
1604
1605 req->datasync = datasync;
1606 INIT_WORK(&req->work, aio_fsync_work);
1607 schedule_work(&req->work);
9061d14a 1608 return 0;
a3c0d439
CH
1609}
1610
bfe4037e
CH
1611static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1612{
bfe4037e 1613 aio_complete(iocb, mangle_poll(mask), 0);
bfe4037e
CH
1614}
1615
1616static void aio_poll_complete_work(struct work_struct *work)
1617{
1618 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1619 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1620 struct poll_table_struct pt = { ._key = req->events };
1621 struct kioctx *ctx = iocb->ki_ctx;
1622 __poll_t mask = 0;
1623
1624 if (!READ_ONCE(req->cancelled))
1625 mask = vfs_poll(req->file, &pt) & req->events;
1626
1627 /*
1628 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1629 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1630 * synchronize with them. In the cancellation case the list_del_init
1631 * itself is not actually needed, but harmless so we keep it in to
1632 * avoid further branches in the fast path.
1633 */
1634 spin_lock_irq(&ctx->ctx_lock);
1635 if (!mask && !READ_ONCE(req->cancelled)) {
1636 add_wait_queue(req->head, &req->wait);
1637 spin_unlock_irq(&ctx->ctx_lock);
1638 return;
1639 }
1640 list_del_init(&iocb->ki_list);
1641 spin_unlock_irq(&ctx->ctx_lock);
1642
1643 aio_poll_complete(iocb, mask);
1644}
1645
1646/* assumes we are called with irqs disabled */
1647static int aio_poll_cancel(struct kiocb *iocb)
1648{
1649 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1650 struct poll_iocb *req = &aiocb->poll;
1651
1652 spin_lock(&req->head->lock);
1653 WRITE_ONCE(req->cancelled, true);
1654 if (!list_empty(&req->wait.entry)) {
1655 list_del_init(&req->wait.entry);
1656 schedule_work(&aiocb->poll.work);
1657 }
1658 spin_unlock(&req->head->lock);
1659
1660 return 0;
1661}
1662
1663static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1664 void *key)
1665{
1666 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1667 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1668 __poll_t mask = key_to_poll(key);
d3d6a18d 1669 unsigned long flags;
bfe4037e
CH
1670
1671 req->woken = true;
1672
1673 /* for instances that support it check for an event match first: */
e8693bcf
CH
1674 if (mask) {
1675 if (!(mask & req->events))
1676 return 0;
1677
d3d6a18d
BVA
1678 /*
1679 * Try to complete the iocb inline if we can. Use
1680 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1681 * call this function with IRQs disabled and because IRQs
1682 * have to be disabled before ctx_lock is obtained.
1683 */
1684 if (spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
e8693bcf 1685 list_del(&iocb->ki_list);
d3d6a18d 1686 spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
e8693bcf
CH
1687
1688 list_del_init(&req->wait.entry);
1689 aio_poll_complete(iocb, mask);
1690 return 1;
1691 }
1692 }
bfe4037e
CH
1693
1694 list_del_init(&req->wait.entry);
1695 schedule_work(&req->work);
1696 return 1;
1697}
1698
1699struct aio_poll_table {
1700 struct poll_table_struct pt;
1701 struct aio_kiocb *iocb;
1702 int error;
1703};
1704
1705static void
1706aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1707 struct poll_table_struct *p)
1708{
1709 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1710
1711 /* multiple wait queues per file are not supported */
1712 if (unlikely(pt->iocb->poll.head)) {
1713 pt->error = -EINVAL;
1714 return;
1715 }
1716
1717 pt->error = 0;
1718 pt->iocb->poll.head = head;
1719 add_wait_queue(head, &pt->iocb->poll.wait);
1720}
1721
88a6f18b 1722static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1723{
1724 struct kioctx *ctx = aiocb->ki_ctx;
1725 struct poll_iocb *req = &aiocb->poll;
1726 struct aio_poll_table apt;
1727 __poll_t mask;
1728
1729 /* reject any unknown events outside the normal event mask. */
1730 if ((u16)iocb->aio_buf != iocb->aio_buf)
1731 return -EINVAL;
1732 /* reject fields that are not defined for poll */
1733 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1734 return -EINVAL;
1735
1736 INIT_WORK(&req->work, aio_poll_complete_work);
1737 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1738
2bc4ca9b
JA
1739 req->head = NULL;
1740 req->woken = false;
1741 req->cancelled = false;
1742
bfe4037e
CH
1743 apt.pt._qproc = aio_poll_queue_proc;
1744 apt.pt._key = req->events;
1745 apt.iocb = aiocb;
1746 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1747
1748 /* initialized the list so that we can do list_empty checks */
1749 INIT_LIST_HEAD(&req->wait.entry);
1750 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1751
1752 /* one for removal from waitqueue, one for this function */
1753 refcount_set(&aiocb->ki_refcnt, 2);
1754
1755 mask = vfs_poll(req->file, &apt.pt) & req->events;
1756 if (unlikely(!req->head)) {
1757 /* we did not manage to set up a waitqueue, done */
1758 goto out;
1759 }
1760
1761 spin_lock_irq(&ctx->ctx_lock);
1762 spin_lock(&req->head->lock);
1763 if (req->woken) {
1764 /* wake_up context handles the rest */
1765 mask = 0;
1766 apt.error = 0;
1767 } else if (mask || apt.error) {
1768 /* if we get an error or a mask we are done */
1769 WARN_ON_ONCE(list_empty(&req->wait.entry));
1770 list_del_init(&req->wait.entry);
1771 } else {
1772 /* actually waiting for an event */
1773 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1774 aiocb->ki_cancel = aio_poll_cancel;
1775 }
1776 spin_unlock(&req->head->lock);
1777 spin_unlock_irq(&ctx->ctx_lock);
1778
1779out:
84c4e1f8 1780 if (unlikely(apt.error))
bfe4037e 1781 return apt.error;
bfe4037e
CH
1782
1783 if (mask)
1784 aio_poll_complete(aiocb, mask);
1785 iocb_put(aiocb);
1786 return 0;
1787}
1788
88a6f18b
JA
1789static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1790 struct iocb __user *user_iocb, bool compat)
1da177e4 1791{
04b2fa9f 1792 struct aio_kiocb *req;
1da177e4
LT
1793 ssize_t ret;
1794
1795 /* enforce forwards compatibility on users */
88a6f18b 1796 if (unlikely(iocb->aio_reserved2)) {
caf4167a 1797 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1798 return -EINVAL;
1799 }
1800
1801 /* prevent overflows */
1802 if (unlikely(
88a6f18b
JA
1803 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1804 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1805 ((ssize_t)iocb->aio_nbytes < 0)
1da177e4 1806 )) {
acd88d4e 1807 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1808 return -EINVAL;
1809 }
1810
432c7997
CH
1811 if (!get_reqs_available(ctx))
1812 return -EAGAIN;
1813
1814 ret = -EAGAIN;
41ef4eb8 1815 req = aio_get_req(ctx);
1d98ebfc 1816 if (unlikely(!req))
432c7997 1817 goto out_put_reqs_available;
1d98ebfc 1818
84c4e1f8
LT
1819 req->ki_filp = fget(iocb->aio_fildes);
1820 ret = -EBADF;
1821 if (unlikely(!req->ki_filp))
1822 goto out_put_req;
1823
88a6f18b 1824 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
9c3060be
DL
1825 /*
1826 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1827 * instance of the file* now. The file descriptor must be
1828 * an eventfd() fd, and will be signaled for each completed
1829 * event using the eventfd_signal() function.
1830 */
88a6f18b 1831 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
801678c5 1832 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1833 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1834 req->ki_eventfd = NULL;
9c3060be
DL
1835 goto out_put_req;
1836 }
9830f4be
GR
1837 }
1838
8a660890 1839 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1840 if (unlikely(ret)) {
caf4167a 1841 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1842 goto out_put_req;
1843 }
1844
04b2fa9f 1845 req->ki_user_iocb = user_iocb;
88a6f18b 1846 req->ki_user_data = iocb->aio_data;
1da177e4 1847
88a6f18b 1848 switch (iocb->aio_lio_opcode) {
89319d31 1849 case IOCB_CMD_PREAD:
88a6f18b 1850 ret = aio_read(&req->rw, iocb, false, compat);
89319d31
CH
1851 break;
1852 case IOCB_CMD_PWRITE:
88a6f18b 1853 ret = aio_write(&req->rw, iocb, false, compat);
89319d31
CH
1854 break;
1855 case IOCB_CMD_PREADV:
88a6f18b 1856 ret = aio_read(&req->rw, iocb, true, compat);
89319d31
CH
1857 break;
1858 case IOCB_CMD_PWRITEV:
88a6f18b 1859 ret = aio_write(&req->rw, iocb, true, compat);
89319d31 1860 break;
a3c0d439 1861 case IOCB_CMD_FSYNC:
88a6f18b 1862 ret = aio_fsync(&req->fsync, iocb, false);
a3c0d439
CH
1863 break;
1864 case IOCB_CMD_FDSYNC:
88a6f18b 1865 ret = aio_fsync(&req->fsync, iocb, true);
ac060cba 1866 break;
bfe4037e 1867 case IOCB_CMD_POLL:
88a6f18b 1868 ret = aio_poll(req, iocb);
bfe4037e 1869 break;
89319d31 1870 default:
88a6f18b 1871 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
89319d31
CH
1872 ret = -EINVAL;
1873 break;
1874 }
41003a7b 1875
92ce4728 1876 /*
9061d14a
AV
1877 * If ret is 0, we'd either done aio_complete() ourselves or have
1878 * arranged for that to be done asynchronously. Anything non-zero
1879 * means that we need to destroy req ourselves.
92ce4728 1880 */
9061d14a 1881 if (ret)
89319d31 1882 goto out_put_req;
1da177e4 1883 return 0;
1da177e4 1884out_put_req:
54843f87
CH
1885 if (req->ki_eventfd)
1886 eventfd_ctx_put(req->ki_eventfd);
71ebc6fe 1887 iocb_put(req);
432c7997
CH
1888out_put_reqs_available:
1889 put_reqs_available(ctx, 1);
1da177e4
LT
1890 return ret;
1891}
1892
88a6f18b
JA
1893static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1894 bool compat)
1895{
1896 struct iocb iocb;
1897
1898 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1899 return -EFAULT;
1900
1901 return __io_submit_one(ctx, &iocb, user_iocb, compat);
1902}
1903
67ba049f
AV
1904/* sys_io_submit:
1905 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1906 * the number of iocbs queued. May return -EINVAL if the aio_context
1907 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1908 * *iocbpp[0] is not properly initialized, if the operation specified
1909 * is invalid for the file descriptor in the iocb. May fail with
1910 * -EFAULT if any of the data structures point to invalid data. May
1911 * fail with -EBADF if the file descriptor specified in the first
1912 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1913 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1914 * fail with -ENOSYS if not implemented.
1915 */
1916SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1917 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1918{
1919 struct kioctx *ctx;
1920 long ret = 0;
080d676d 1921 int i = 0;
9f5b9425 1922 struct blk_plug plug;
1da177e4
LT
1923
1924 if (unlikely(nr < 0))
1925 return -EINVAL;
1926
1da177e4
LT
1927 ctx = lookup_ioctx(ctx_id);
1928 if (unlikely(!ctx)) {
caf4167a 1929 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1930 return -EINVAL;
1931 }
1932
1da92779
AV
1933 if (nr > ctx->nr_events)
1934 nr = ctx->nr_events;
1935
a79d40e9
JA
1936 if (nr > AIO_PLUG_THRESHOLD)
1937 blk_start_plug(&plug);
67ba049f 1938 for (i = 0; i < nr; i++) {
1da177e4 1939 struct iocb __user *user_iocb;
1da177e4 1940
67ba049f 1941 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1942 ret = -EFAULT;
1943 break;
1944 }
1945
67ba049f 1946 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1947 if (ret)
1948 break;
1949 }
a79d40e9
JA
1950 if (nr > AIO_PLUG_THRESHOLD)
1951 blk_finish_plug(&plug);
1da177e4 1952
723be6e3 1953 percpu_ref_put(&ctx->users);
1da177e4
LT
1954 return i ? i : ret;
1955}
1956
c00d2c7e 1957#ifdef CONFIG_COMPAT
c00d2c7e 1958COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1959 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1960{
67ba049f
AV
1961 struct kioctx *ctx;
1962 long ret = 0;
1963 int i = 0;
1964 struct blk_plug plug;
c00d2c7e
AV
1965
1966 if (unlikely(nr < 0))
1967 return -EINVAL;
1968
67ba049f
AV
1969 ctx = lookup_ioctx(ctx_id);
1970 if (unlikely(!ctx)) {
1971 pr_debug("EINVAL: invalid context id\n");
1972 return -EINVAL;
1973 }
1974
1da92779
AV
1975 if (nr > ctx->nr_events)
1976 nr = ctx->nr_events;
1977
a79d40e9
JA
1978 if (nr > AIO_PLUG_THRESHOLD)
1979 blk_start_plug(&plug);
67ba049f
AV
1980 for (i = 0; i < nr; i++) {
1981 compat_uptr_t user_iocb;
1982
1983 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1984 ret = -EFAULT;
1985 break;
1986 }
1987
1988 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1989 if (ret)
1990 break;
1991 }
a79d40e9
JA
1992 if (nr > AIO_PLUG_THRESHOLD)
1993 blk_finish_plug(&plug);
67ba049f
AV
1994
1995 percpu_ref_put(&ctx->users);
1996 return i ? i : ret;
c00d2c7e
AV
1997}
1998#endif
1999
1da177e4
LT
2000/* lookup_kiocb
2001 * Finds a given iocb for cancellation.
1da177e4 2002 */
04b2fa9f 2003static struct aio_kiocb *
f3a2752a 2004lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1da177e4 2005{
04b2fa9f 2006 struct aio_kiocb *kiocb;
d00689af
ZB
2007
2008 assert_spin_locked(&ctx->ctx_lock);
2009
1da177e4 2010 /* TODO: use a hash or array, this sucks. */
04b2fa9f
CH
2011 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2012 if (kiocb->ki_user_iocb == iocb)
1da177e4
LT
2013 return kiocb;
2014 }
2015 return NULL;
2016}
2017
2018/* sys_io_cancel:
2019 * Attempts to cancel an iocb previously passed to io_submit. If
2020 * the operation is successfully cancelled, the resulting event is
2021 * copied into the memory pointed to by result without being placed
2022 * into the completion queue and 0 is returned. May fail with
2023 * -EFAULT if any of the data structures pointed to are invalid.
2024 * May fail with -EINVAL if aio_context specified by ctx_id is
2025 * invalid. May fail with -EAGAIN if the iocb specified was not
2026 * cancelled. Will fail with -ENOSYS if not implemented.
2027 */
002c8976
HC
2028SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2029 struct io_event __user *, result)
1da177e4 2030{
1da177e4 2031 struct kioctx *ctx;
04b2fa9f 2032 struct aio_kiocb *kiocb;
888933f8 2033 int ret = -EINVAL;
1da177e4 2034 u32 key;
1da177e4 2035
f3a2752a 2036 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2037 return -EFAULT;
f3a2752a
CH
2038 if (unlikely(key != KIOCB_KEY))
2039 return -EINVAL;
1da177e4
LT
2040
2041 ctx = lookup_ioctx(ctx_id);
2042 if (unlikely(!ctx))
2043 return -EINVAL;
2044
2045 spin_lock_irq(&ctx->ctx_lock);
f3a2752a 2046 kiocb = lookup_kiocb(ctx, iocb);
888933f8
CH
2047 if (kiocb) {
2048 ret = kiocb->ki_cancel(&kiocb->rw);
2049 list_del_init(&kiocb->ki_list);
2050 }
1da177e4
LT
2051 spin_unlock_irq(&ctx->ctx_lock);
2052
906b973c 2053 if (!ret) {
bec68faa
KO
2054 /*
2055 * The result argument is no longer used - the io_event is
2056 * always delivered via the ring buffer. -EINPROGRESS indicates
2057 * cancellation is progress:
906b973c 2058 */
bec68faa 2059 ret = -EINPROGRESS;
906b973c 2060 }
1da177e4 2061
723be6e3 2062 percpu_ref_put(&ctx->users);
1da177e4
LT
2063
2064 return ret;
2065}
2066
fa2e62a5
DD
2067static long do_io_getevents(aio_context_t ctx_id,
2068 long min_nr,
2069 long nr,
2070 struct io_event __user *events,
2071 struct timespec64 *ts)
2072{
2073 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2074 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2075 long ret = -EINVAL;
2076
2077 if (likely(ioctx)) {
2078 if (likely(min_nr <= nr && min_nr >= 0))
2079 ret = read_events(ioctx, min_nr, nr, events, until);
2080 percpu_ref_put(&ioctx->users);
2081 }
2082
2083 return ret;
2084}
2085
1da177e4
LT
2086/* io_getevents:
2087 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2088 * the completion queue for the aio_context specified by ctx_id. If
2089 * it succeeds, the number of read events is returned. May fail with
2090 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2091 * out of range, if timeout is out of range. May fail with -EFAULT
2092 * if any of the memory specified is invalid. May return 0 or
2093 * < min_nr if the timeout specified by timeout has elapsed
2094 * before sufficient events are available, where timeout == NULL
2095 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2096 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2097 */
7a35397f
DD
2098#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2099
002c8976
HC
2100SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2101 long, min_nr,
2102 long, nr,
2103 struct io_event __user *, events,
7a35397f 2104 struct __kernel_timespec __user *, timeout)
1da177e4 2105{
fa2e62a5 2106 struct timespec64 ts;
7a074e96
CH
2107 int ret;
2108
2109 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2110 return -EFAULT;
2111
2112 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2113 if (!ret && signal_pending(current))
2114 ret = -EINTR;
2115 return ret;
2116}
1da177e4 2117
7a35397f
DD
2118#endif
2119
9ba546c0
CH
2120struct __aio_sigset {
2121 const sigset_t __user *sigmask;
2122 size_t sigsetsize;
2123};
2124
7a074e96
CH
2125SYSCALL_DEFINE6(io_pgetevents,
2126 aio_context_t, ctx_id,
2127 long, min_nr,
2128 long, nr,
2129 struct io_event __user *, events,
7a35397f 2130 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2131 const struct __aio_sigset __user *, usig)
2132{
2133 struct __aio_sigset ksig = { NULL, };
2134 sigset_t ksigmask, sigsaved;
2135 struct timespec64 ts;
2136 int ret;
2137
2138 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2139 return -EFAULT;
2140
2141 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2142 return -EFAULT;
2143
7a35397f
DD
2144 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2145 if (ret)
2146 return ret;
7a074e96
CH
2147
2148 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
7a35397f
DD
2149 restore_user_sigmask(ksig.sigmask, &sigsaved);
2150 if (signal_pending(current) && !ret)
2151 ret = -ERESTARTNOHAND;
7a074e96 2152
7a35397f
DD
2153 return ret;
2154}
2155
2156#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2157
2158SYSCALL_DEFINE6(io_pgetevents_time32,
2159 aio_context_t, ctx_id,
2160 long, min_nr,
2161 long, nr,
2162 struct io_event __user *, events,
2163 struct old_timespec32 __user *, timeout,
2164 const struct __aio_sigset __user *, usig)
2165{
2166 struct __aio_sigset ksig = { NULL, };
2167 sigset_t ksigmask, sigsaved;
2168 struct timespec64 ts;
2169 int ret;
2170
2171 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2172 return -EFAULT;
2173
2174 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2175 return -EFAULT;
2176
ded653cc
DD
2177
2178 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2179 if (ret)
2180 return ret;
7a074e96
CH
2181
2182 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
854a6ed5
DD
2183 restore_user_sigmask(ksig.sigmask, &sigsaved);
2184 if (signal_pending(current) && !ret)
2185 ret = -ERESTARTNOHAND;
fa2e62a5 2186
7a074e96 2187 return ret;
1da177e4 2188}
c00d2c7e 2189
7a35397f
DD
2190#endif
2191
2192#if defined(CONFIG_COMPAT_32BIT_TIME)
2193
8dabe724
AB
2194SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2195 __s32, min_nr,
2196 __s32, nr,
2197 struct io_event __user *, events,
2198 struct old_timespec32 __user *, timeout)
c00d2c7e 2199{
fa2e62a5 2200 struct timespec64 t;
7a074e96
CH
2201 int ret;
2202
9afc5eee 2203 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2204 return -EFAULT;
2205
2206 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2207 if (!ret && signal_pending(current))
2208 ret = -EINTR;
2209 return ret;
2210}
2211
7a35397f
DD
2212#endif
2213
2214#ifdef CONFIG_COMPAT
c00d2c7e 2215
7a074e96
CH
2216struct __compat_aio_sigset {
2217 compat_sigset_t __user *sigmask;
2218 compat_size_t sigsetsize;
2219};
2220
7a35397f
DD
2221#if defined(CONFIG_COMPAT_32BIT_TIME)
2222
7a074e96
CH
2223COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2224 compat_aio_context_t, ctx_id,
2225 compat_long_t, min_nr,
2226 compat_long_t, nr,
2227 struct io_event __user *, events,
9afc5eee 2228 struct old_timespec32 __user *, timeout,
7a074e96
CH
2229 const struct __compat_aio_sigset __user *, usig)
2230{
2231 struct __compat_aio_sigset ksig = { NULL, };
2232 sigset_t ksigmask, sigsaved;
2233 struct timespec64 t;
2234 int ret;
2235
9afc5eee 2236 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2237 return -EFAULT;
2238
2239 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2240 return -EFAULT;
2241
ded653cc
DD
2242 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2243 if (ret)
2244 return ret;
c00d2c7e 2245
7a074e96 2246 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
854a6ed5
DD
2247 restore_user_sigmask(ksig.sigmask, &sigsaved);
2248 if (signal_pending(current) && !ret)
2249 ret = -ERESTARTNOHAND;
fa2e62a5 2250
7a074e96 2251 return ret;
c00d2c7e 2252}
7a35397f
DD
2253
2254#endif
2255
2256COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2257 compat_aio_context_t, ctx_id,
2258 compat_long_t, min_nr,
2259 compat_long_t, nr,
2260 struct io_event __user *, events,
2261 struct __kernel_timespec __user *, timeout,
2262 const struct __compat_aio_sigset __user *, usig)
2263{
2264 struct __compat_aio_sigset ksig = { NULL, };
2265 sigset_t ksigmask, sigsaved;
2266 struct timespec64 t;
2267 int ret;
2268
2269 if (timeout && get_timespec64(&t, timeout))
2270 return -EFAULT;
2271
2272 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2273 return -EFAULT;
2274
2275 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2276 if (ret)
2277 return ret;
2278
2279 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2280 restore_user_sigmask(ksig.sigmask, &sigsaved);
2281 if (signal_pending(current) && !ret)
2282 ret = -ERESTARTNOHAND;
fa2e62a5 2283
7a074e96 2284 return ret;
c00d2c7e
AV
2285}
2286#endif