Merge tag 'reset-fixes-for-4.18' of git://git.pengutronix.de/git/pza/linux into next...
[linux-2.6-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
caf4167a
KO
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/syscalls.h>
b9d128f1 20#include <linux/backing-dev.h>
027445c3 21#include <linux/uio.h>
1da177e4 22
174cd4b1 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
3d2d827f 28#include <linux/mmu_context.h>
e1bdd5f2 29#include <linux/percpu.h>
1da177e4
LT
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
9c3060be 36#include <linux/eventfd.h>
cfb1e33e 37#include <linux/blkdev.h>
9d85cba7 38#include <linux/compat.h>
36bc08cc
GZ
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
723be6e3 41#include <linux/percpu-refcount.h>
71ad7490 42#include <linux/mount.h>
1da177e4
LT
43
44#include <asm/kmap_types.h>
7c0f6ba6 45#include <linux/uaccess.h>
1da177e4 46
68d70d03
AV
47#include "internal.h"
48
f3a2752a
CH
49#define KIOCB_KEY 0
50
4e179bca
KO
51#define AIO_RING_MAGIC 0xa10a10a1
52#define AIO_RING_COMPAT_FEATURES 1
53#define AIO_RING_INCOMPAT_FEATURES 0
54struct aio_ring {
55 unsigned id; /* kernel internal index number */
56 unsigned nr; /* number of io_events */
fa8a53c3
BL
57 unsigned head; /* Written to by userland or under ring_lock
58 * mutex by aio_read_events_ring(). */
4e179bca
KO
59 unsigned tail;
60
61 unsigned magic;
62 unsigned compat_features;
63 unsigned incompat_features;
64 unsigned header_length; /* size of aio_ring */
65
66
67 struct io_event io_events[0];
68}; /* 128 bytes + ring size */
69
70#define AIO_RING_PAGES 8
4e179bca 71
db446a08 72struct kioctx_table {
d0264c01
TH
73 struct rcu_head rcu;
74 unsigned nr;
75 struct kioctx __rcu *table[];
db446a08
BL
76};
77
e1bdd5f2
KO
78struct kioctx_cpu {
79 unsigned reqs_available;
80};
81
dc48e56d
JA
82struct ctx_rq_wait {
83 struct completion comp;
84 atomic_t count;
85};
86
4e179bca 87struct kioctx {
723be6e3 88 struct percpu_ref users;
36f55889 89 atomic_t dead;
4e179bca 90
e34ecee2
KO
91 struct percpu_ref reqs;
92
4e179bca 93 unsigned long user_id;
4e179bca 94
e1bdd5f2
KO
95 struct __percpu kioctx_cpu *cpu;
96
97 /*
98 * For percpu reqs_available, number of slots we move to/from global
99 * counter at a time:
100 */
101 unsigned req_batch;
3e845ce0
KO
102 /*
103 * This is what userspace passed to io_setup(), it's not used for
104 * anything but counting against the global max_reqs quota.
105 *
58c85dc2 106 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
107 * aio_setup_ring())
108 */
4e179bca
KO
109 unsigned max_reqs;
110
58c85dc2
KO
111 /* Size of ringbuffer, in units of struct io_event */
112 unsigned nr_events;
4e179bca 113
58c85dc2
KO
114 unsigned long mmap_base;
115 unsigned long mmap_size;
116
117 struct page **ring_pages;
118 long nr_pages;
119
f729863a 120 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 121
e02ba72a
AP
122 /*
123 * signals when all in-flight requests are done
124 */
dc48e56d 125 struct ctx_rq_wait *rq_wait;
e02ba72a 126
4e23bcae 127 struct {
34e83fc6
KO
128 /*
129 * This counts the number of available slots in the ringbuffer,
130 * so we avoid overflowing it: it's decremented (if positive)
131 * when allocating a kiocb and incremented when the resulting
132 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
133 *
134 * We batch accesses to it with a percpu version.
34e83fc6
KO
135 */
136 atomic_t reqs_available;
4e23bcae
KO
137 } ____cacheline_aligned_in_smp;
138
139 struct {
140 spinlock_t ctx_lock;
141 struct list_head active_reqs; /* used for cancellation */
142 } ____cacheline_aligned_in_smp;
143
58c85dc2
KO
144 struct {
145 struct mutex ring_lock;
4e23bcae
KO
146 wait_queue_head_t wait;
147 } ____cacheline_aligned_in_smp;
58c85dc2
KO
148
149 struct {
150 unsigned tail;
d856f32a 151 unsigned completed_events;
58c85dc2 152 spinlock_t completion_lock;
4e23bcae 153 } ____cacheline_aligned_in_smp;
58c85dc2
KO
154
155 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 156 struct file *aio_ring_file;
db446a08
BL
157
158 unsigned id;
4e179bca
KO
159};
160
a3c0d439
CH
161struct fsync_iocb {
162 struct work_struct work;
163 struct file *file;
164 bool datasync;
165};
166
04b2fa9f 167struct aio_kiocb {
54843f87
CH
168 union {
169 struct kiocb rw;
a3c0d439 170 struct fsync_iocb fsync;
54843f87 171 };
04b2fa9f
CH
172
173 struct kioctx *ki_ctx;
174 kiocb_cancel_fn *ki_cancel;
175
176 struct iocb __user *ki_user_iocb; /* user's aiocb */
177 __u64 ki_user_data; /* user's data for completion */
178
179 struct list_head ki_list; /* the aio core uses this
180 * for cancellation */
181
182 /*
183 * If the aio_resfd field of the userspace iocb is not zero,
184 * this is the underlying eventfd context to deliver events to.
185 */
186 struct eventfd_ctx *ki_eventfd;
187};
188
1da177e4 189/*------ sysctl variables----*/
d55b5fda
ZB
190static DEFINE_SPINLOCK(aio_nr_lock);
191unsigned long aio_nr; /* current system wide number of aio requests */
192unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
193/*----end sysctl variables---*/
194
e18b890b
CL
195static struct kmem_cache *kiocb_cachep;
196static struct kmem_cache *kioctx_cachep;
1da177e4 197
71ad7490
BL
198static struct vfsmount *aio_mnt;
199
200static const struct file_operations aio_ring_fops;
201static const struct address_space_operations aio_ctx_aops;
202
203static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
204{
205 struct qstr this = QSTR_INIT("[aio]", 5);
206 struct file *file;
207 struct path path;
208 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
209 if (IS_ERR(inode))
210 return ERR_CAST(inode);
71ad7490
BL
211
212 inode->i_mapping->a_ops = &aio_ctx_aops;
213 inode->i_mapping->private_data = ctx;
214 inode->i_size = PAGE_SIZE * nr_pages;
215
216 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
217 if (!path.dentry) {
218 iput(inode);
219 return ERR_PTR(-ENOMEM);
220 }
221 path.mnt = mntget(aio_mnt);
222
223 d_instantiate(path.dentry, inode);
224 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
225 if (IS_ERR(file)) {
226 path_put(&path);
227 return file;
228 }
229
230 file->f_flags = O_RDWR;
71ad7490
BL
231 return file;
232}
233
234static struct dentry *aio_mount(struct file_system_type *fs_type,
235 int flags, const char *dev_name, void *data)
236{
237 static const struct dentry_operations ops = {
238 .d_dname = simple_dname,
239 };
22f6b4d3
JH
240 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
241 AIO_RING_MAGIC);
242
243 if (!IS_ERR(root))
244 root->d_sb->s_iflags |= SB_I_NOEXEC;
245 return root;
71ad7490
BL
246}
247
1da177e4
LT
248/* aio_setup
249 * Creates the slab caches used by the aio routines, panic on
250 * failure as this is done early during the boot sequence.
251 */
252static int __init aio_setup(void)
253{
71ad7490
BL
254 static struct file_system_type aio_fs = {
255 .name = "aio",
256 .mount = aio_mount,
257 .kill_sb = kill_anon_super,
258 };
259 aio_mnt = kern_mount(&aio_fs);
260 if (IS_ERR(aio_mnt))
261 panic("Failed to create aio fs mount.");
262
04b2fa9f 263 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 264 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
265 return 0;
266}
385773e0 267__initcall(aio_setup);
1da177e4 268
5e9ae2e5
BL
269static void put_aio_ring_file(struct kioctx *ctx)
270{
271 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
272 struct address_space *i_mapping;
273
5e9ae2e5 274 if (aio_ring_file) {
45063097 275 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
276
277 /* Prevent further access to the kioctx from migratepages */
45063097 278 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
279 spin_lock(&i_mapping->private_lock);
280 i_mapping->private_data = NULL;
5e9ae2e5 281 ctx->aio_ring_file = NULL;
de04e769 282 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
283
284 fput(aio_ring_file);
285 }
286}
287
1da177e4
LT
288static void aio_free_ring(struct kioctx *ctx)
289{
36bc08cc 290 int i;
1da177e4 291
fa8a53c3
BL
292 /* Disconnect the kiotx from the ring file. This prevents future
293 * accesses to the kioctx from page migration.
294 */
295 put_aio_ring_file(ctx);
296
36bc08cc 297 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 298 struct page *page;
36bc08cc
GZ
299 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
300 page_count(ctx->ring_pages[i]));
8e321fef
BL
301 page = ctx->ring_pages[i];
302 if (!page)
303 continue;
304 ctx->ring_pages[i] = NULL;
305 put_page(page);
36bc08cc 306 }
1da177e4 307
ddb8c45b 308 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 309 kfree(ctx->ring_pages);
ddb8c45b
SL
310 ctx->ring_pages = NULL;
311 }
36bc08cc
GZ
312}
313
5477e70a 314static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 315{
5477e70a 316 struct file *file = vma->vm_file;
e4a0d3e7
PE
317 struct mm_struct *mm = vma->vm_mm;
318 struct kioctx_table *table;
b2edffdd 319 int i, res = -EINVAL;
e4a0d3e7
PE
320
321 spin_lock(&mm->ioctx_lock);
322 rcu_read_lock();
323 table = rcu_dereference(mm->ioctx_table);
324 for (i = 0; i < table->nr; i++) {
325 struct kioctx *ctx;
326
d0264c01 327 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 328 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
329 if (!atomic_read(&ctx->dead)) {
330 ctx->user_id = ctx->mmap_base = vma->vm_start;
331 res = 0;
332 }
e4a0d3e7
PE
333 break;
334 }
335 }
336
337 rcu_read_unlock();
338 spin_unlock(&mm->ioctx_lock);
b2edffdd 339 return res;
e4a0d3e7
PE
340}
341
5477e70a
ON
342static const struct vm_operations_struct aio_ring_vm_ops = {
343 .mremap = aio_ring_mremap,
344#if IS_ENABLED(CONFIG_MMU)
345 .fault = filemap_fault,
346 .map_pages = filemap_map_pages,
347 .page_mkwrite = filemap_page_mkwrite,
348#endif
349};
350
351static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
352{
353 vma->vm_flags |= VM_DONTEXPAND;
354 vma->vm_ops = &aio_ring_vm_ops;
355 return 0;
356}
357
36bc08cc
GZ
358static const struct file_operations aio_ring_fops = {
359 .mmap = aio_ring_mmap,
360};
361
0c45355f 362#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
363static int aio_migratepage(struct address_space *mapping, struct page *new,
364 struct page *old, enum migrate_mode mode)
365{
5e9ae2e5 366 struct kioctx *ctx;
36bc08cc 367 unsigned long flags;
fa8a53c3 368 pgoff_t idx;
36bc08cc
GZ
369 int rc;
370
2916ecc0
JG
371 /*
372 * We cannot support the _NO_COPY case here, because copy needs to
373 * happen under the ctx->completion_lock. That does not work with the
374 * migration workflow of MIGRATE_SYNC_NO_COPY.
375 */
376 if (mode == MIGRATE_SYNC_NO_COPY)
377 return -EINVAL;
378
8e321fef
BL
379 rc = 0;
380
fa8a53c3 381 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
382 spin_lock(&mapping->private_lock);
383 ctx = mapping->private_data;
fa8a53c3
BL
384 if (!ctx) {
385 rc = -EINVAL;
386 goto out;
387 }
388
389 /* The ring_lock mutex. The prevents aio_read_events() from writing
390 * to the ring's head, and prevents page migration from mucking in
391 * a partially initialized kiotx.
392 */
393 if (!mutex_trylock(&ctx->ring_lock)) {
394 rc = -EAGAIN;
395 goto out;
396 }
397
398 idx = old->index;
399 if (idx < (pgoff_t)ctx->nr_pages) {
400 /* Make sure the old page hasn't already been changed */
401 if (ctx->ring_pages[idx] != old)
402 rc = -EAGAIN;
8e321fef
BL
403 } else
404 rc = -EINVAL;
8e321fef
BL
405
406 if (rc != 0)
fa8a53c3 407 goto out_unlock;
8e321fef 408
36bc08cc
GZ
409 /* Writeback must be complete */
410 BUG_ON(PageWriteback(old));
8e321fef 411 get_page(new);
36bc08cc 412
8e321fef 413 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 414 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 415 put_page(new);
fa8a53c3 416 goto out_unlock;
36bc08cc
GZ
417 }
418
fa8a53c3
BL
419 /* Take completion_lock to prevent other writes to the ring buffer
420 * while the old page is copied to the new. This prevents new
421 * events from being lost.
5e9ae2e5 422 */
fa8a53c3
BL
423 spin_lock_irqsave(&ctx->completion_lock, flags);
424 migrate_page_copy(new, old);
425 BUG_ON(ctx->ring_pages[idx] != old);
426 ctx->ring_pages[idx] = new;
427 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 428
fa8a53c3
BL
429 /* The old page is no longer accessible. */
430 put_page(old);
8e321fef 431
fa8a53c3
BL
432out_unlock:
433 mutex_unlock(&ctx->ring_lock);
434out:
435 spin_unlock(&mapping->private_lock);
36bc08cc 436 return rc;
1da177e4 437}
0c45355f 438#endif
1da177e4 439
36bc08cc 440static const struct address_space_operations aio_ctx_aops = {
835f252c 441 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 442#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 443 .migratepage = aio_migratepage,
0c45355f 444#endif
36bc08cc
GZ
445};
446
2a8a9867 447static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
448{
449 struct aio_ring *ring;
41003a7b 450 struct mm_struct *mm = current->mm;
3dc9acb6 451 unsigned long size, unused;
1da177e4 452 int nr_pages;
36bc08cc
GZ
453 int i;
454 struct file *file;
1da177e4
LT
455
456 /* Compensate for the ring buffer's head/tail overlap entry */
457 nr_events += 2; /* 1 is required, 2 for good luck */
458
459 size = sizeof(struct aio_ring);
460 size += sizeof(struct io_event) * nr_events;
1da177e4 461
36bc08cc 462 nr_pages = PFN_UP(size);
1da177e4
LT
463 if (nr_pages < 0)
464 return -EINVAL;
465
71ad7490 466 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
467 if (IS_ERR(file)) {
468 ctx->aio_ring_file = NULL;
fa8a53c3 469 return -ENOMEM;
36bc08cc
GZ
470 }
471
3dc9acb6
LT
472 ctx->aio_ring_file = file;
473 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
474 / sizeof(struct io_event);
475
476 ctx->ring_pages = ctx->internal_pages;
477 if (nr_pages > AIO_RING_PAGES) {
478 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
479 GFP_KERNEL);
480 if (!ctx->ring_pages) {
481 put_aio_ring_file(ctx);
482 return -ENOMEM;
483 }
484 }
485
36bc08cc
GZ
486 for (i = 0; i < nr_pages; i++) {
487 struct page *page;
45063097 488 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
489 i, GFP_HIGHUSER | __GFP_ZERO);
490 if (!page)
491 break;
492 pr_debug("pid(%d) page[%d]->count=%d\n",
493 current->pid, i, page_count(page));
494 SetPageUptodate(page);
36bc08cc 495 unlock_page(page);
3dc9acb6
LT
496
497 ctx->ring_pages[i] = page;
36bc08cc 498 }
3dc9acb6 499 ctx->nr_pages = i;
1da177e4 500
3dc9acb6
LT
501 if (unlikely(i != nr_pages)) {
502 aio_free_ring(ctx);
fa8a53c3 503 return -ENOMEM;
1da177e4
LT
504 }
505
58c85dc2
KO
506 ctx->mmap_size = nr_pages * PAGE_SIZE;
507 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 508
013373e8
MH
509 if (down_write_killable(&mm->mmap_sem)) {
510 ctx->mmap_size = 0;
511 aio_free_ring(ctx);
512 return -EINTR;
513 }
514
36bc08cc
GZ
515 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
516 PROT_READ | PROT_WRITE,
897ab3e0 517 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 518 up_write(&mm->mmap_sem);
58c85dc2 519 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 520 ctx->mmap_size = 0;
1da177e4 521 aio_free_ring(ctx);
fa8a53c3 522 return -ENOMEM;
1da177e4
LT
523 }
524
58c85dc2 525 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 526
58c85dc2
KO
527 ctx->user_id = ctx->mmap_base;
528 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 529
58c85dc2 530 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 531 ring->nr = nr_events; /* user copy */
db446a08 532 ring->id = ~0U;
1da177e4
LT
533 ring->head = ring->tail = 0;
534 ring->magic = AIO_RING_MAGIC;
535 ring->compat_features = AIO_RING_COMPAT_FEATURES;
536 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
537 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 538 kunmap_atomic(ring);
58c85dc2 539 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
540
541 return 0;
542}
543
1da177e4
LT
544#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
545#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
546#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
547
04b2fa9f 548void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 549{
54843f87 550 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
551 struct kioctx *ctx = req->ki_ctx;
552 unsigned long flags;
553
75321b50
CH
554 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
555 return;
0460fef2 556
75321b50
CH
557 spin_lock_irqsave(&ctx->ctx_lock, flags);
558 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 559 req->ki_cancel = cancel;
0460fef2
KO
560 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
561}
562EXPORT_SYMBOL(kiocb_set_cancel_fn);
563
a6d7cff4
TH
564/*
565 * free_ioctx() should be RCU delayed to synchronize against the RCU
566 * protected lookup_ioctx() and also needs process context to call
f729863a 567 * aio_free_ring(). Use rcu_work.
a6d7cff4 568 */
e34ecee2 569static void free_ioctx(struct work_struct *work)
36f55889 570{
f729863a
TH
571 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
572 free_rwork);
e34ecee2 573 pr_debug("freeing %p\n", ctx);
e1bdd5f2 574
e34ecee2 575 aio_free_ring(ctx);
e1bdd5f2 576 free_percpu(ctx->cpu);
9a1049da
TH
577 percpu_ref_exit(&ctx->reqs);
578 percpu_ref_exit(&ctx->users);
36f55889
KO
579 kmem_cache_free(kioctx_cachep, ctx);
580}
581
e34ecee2
KO
582static void free_ioctx_reqs(struct percpu_ref *ref)
583{
584 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
585
e02ba72a 586 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
587 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
588 complete(&ctx->rq_wait->comp);
e02ba72a 589
a6d7cff4 590 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
591 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
592 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
593}
594
36f55889
KO
595/*
596 * When this function runs, the kioctx has been removed from the "hash table"
597 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
598 * now it's safe to cancel any that need to be.
599 */
e34ecee2 600static void free_ioctx_users(struct percpu_ref *ref)
36f55889 601{
e34ecee2 602 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 603 struct aio_kiocb *req;
36f55889
KO
604
605 spin_lock_irq(&ctx->ctx_lock);
606
607 while (!list_empty(&ctx->active_reqs)) {
608 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 609 struct aio_kiocb, ki_list);
888933f8 610 req->ki_cancel(&req->rw);
4faa9996 611 list_del_init(&req->ki_list);
36f55889
KO
612 }
613
614 spin_unlock_irq(&ctx->ctx_lock);
615
e34ecee2
KO
616 percpu_ref_kill(&ctx->reqs);
617 percpu_ref_put(&ctx->reqs);
36f55889
KO
618}
619
db446a08
BL
620static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
621{
622 unsigned i, new_nr;
623 struct kioctx_table *table, *old;
624 struct aio_ring *ring;
625
626 spin_lock(&mm->ioctx_lock);
855ef0de 627 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
628
629 while (1) {
630 if (table)
631 for (i = 0; i < table->nr; i++)
d0264c01 632 if (!rcu_access_pointer(table->table[i])) {
db446a08 633 ctx->id = i;
d0264c01 634 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
635 spin_unlock(&mm->ioctx_lock);
636
fa8a53c3
BL
637 /* While kioctx setup is in progress,
638 * we are protected from page migration
639 * changes ring_pages by ->ring_lock.
640 */
db446a08
BL
641 ring = kmap_atomic(ctx->ring_pages[0]);
642 ring->id = ctx->id;
643 kunmap_atomic(ring);
644 return 0;
645 }
646
647 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
648 spin_unlock(&mm->ioctx_lock);
649
650 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
651 new_nr, GFP_KERNEL);
652 if (!table)
653 return -ENOMEM;
654
655 table->nr = new_nr;
656
657 spin_lock(&mm->ioctx_lock);
855ef0de 658 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
659
660 if (!old) {
661 rcu_assign_pointer(mm->ioctx_table, table);
662 } else if (table->nr > old->nr) {
663 memcpy(table->table, old->table,
664 old->nr * sizeof(struct kioctx *));
665
666 rcu_assign_pointer(mm->ioctx_table, table);
667 kfree_rcu(old, rcu);
668 } else {
669 kfree(table);
670 table = old;
671 }
672 }
673}
674
e34ecee2
KO
675static void aio_nr_sub(unsigned nr)
676{
677 spin_lock(&aio_nr_lock);
678 if (WARN_ON(aio_nr - nr > aio_nr))
679 aio_nr = 0;
680 else
681 aio_nr -= nr;
682 spin_unlock(&aio_nr_lock);
683}
684
1da177e4
LT
685/* ioctx_alloc
686 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
687 */
688static struct kioctx *ioctx_alloc(unsigned nr_events)
689{
41003a7b 690 struct mm_struct *mm = current->mm;
1da177e4 691 struct kioctx *ctx;
e23754f8 692 int err = -ENOMEM;
1da177e4 693
2a8a9867
MFO
694 /*
695 * Store the original nr_events -- what userspace passed to io_setup(),
696 * for counting against the global limit -- before it changes.
697 */
698 unsigned int max_reqs = nr_events;
699
e1bdd5f2
KO
700 /*
701 * We keep track of the number of available ringbuffer slots, to prevent
702 * overflow (reqs_available), and we also use percpu counters for this.
703 *
704 * So since up to half the slots might be on other cpu's percpu counters
705 * and unavailable, double nr_events so userspace sees what they
706 * expected: additionally, we move req_batch slots to/from percpu
707 * counters at a time, so make sure that isn't 0:
708 */
709 nr_events = max(nr_events, num_possible_cpus() * 4);
710 nr_events *= 2;
711
1da177e4 712 /* Prevent overflows */
08397acd 713 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
714 pr_debug("ENOMEM: nr_events too high\n");
715 return ERR_PTR(-EINVAL);
716 }
717
2a8a9867 718 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
719 return ERR_PTR(-EAGAIN);
720
c3762229 721 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
722 if (!ctx)
723 return ERR_PTR(-ENOMEM);
724
2a8a9867 725 ctx->max_reqs = max_reqs;
1da177e4 726
1da177e4 727 spin_lock_init(&ctx->ctx_lock);
0460fef2 728 spin_lock_init(&ctx->completion_lock);
58c85dc2 729 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
730 /* Protect against page migration throughout kiotx setup by keeping
731 * the ring_lock mutex held until setup is complete. */
732 mutex_lock(&ctx->ring_lock);
1da177e4
LT
733 init_waitqueue_head(&ctx->wait);
734
735 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 736
2aad2a86 737 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
738 goto err;
739
2aad2a86 740 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
741 goto err;
742
e1bdd5f2
KO
743 ctx->cpu = alloc_percpu(struct kioctx_cpu);
744 if (!ctx->cpu)
e34ecee2 745 goto err;
1da177e4 746
2a8a9867 747 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 748 if (err < 0)
e34ecee2 749 goto err;
e1bdd5f2 750
34e83fc6 751 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 752 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
753 if (ctx->req_batch < 1)
754 ctx->req_batch = 1;
34e83fc6 755
1da177e4 756 /* limit the number of system wide aios */
9fa1cb39 757 spin_lock(&aio_nr_lock);
2a8a9867
MFO
758 if (aio_nr + ctx->max_reqs > aio_max_nr ||
759 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 760 spin_unlock(&aio_nr_lock);
e34ecee2 761 err = -EAGAIN;
d1b94327 762 goto err_ctx;
2dd542b7
AV
763 }
764 aio_nr += ctx->max_reqs;
9fa1cb39 765 spin_unlock(&aio_nr_lock);
1da177e4 766
1881686f
BL
767 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
768 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 769
da90382c
BL
770 err = ioctx_add_table(ctx, mm);
771 if (err)
e34ecee2 772 goto err_cleanup;
da90382c 773
fa8a53c3
BL
774 /* Release the ring_lock mutex now that all setup is complete. */
775 mutex_unlock(&ctx->ring_lock);
776
caf4167a 777 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 778 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
779 return ctx;
780
e34ecee2
KO
781err_cleanup:
782 aio_nr_sub(ctx->max_reqs);
d1b94327 783err_ctx:
deeb8525
AV
784 atomic_set(&ctx->dead, 1);
785 if (ctx->mmap_size)
786 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 787 aio_free_ring(ctx);
e34ecee2 788err:
fa8a53c3 789 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 790 free_percpu(ctx->cpu);
9a1049da
TH
791 percpu_ref_exit(&ctx->reqs);
792 percpu_ref_exit(&ctx->users);
1da177e4 793 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 794 pr_debug("error allocating ioctx %d\n", err);
e23754f8 795 return ERR_PTR(err);
1da177e4
LT
796}
797
36f55889
KO
798/* kill_ioctx
799 * Cancels all outstanding aio requests on an aio context. Used
800 * when the processes owning a context have all exited to encourage
801 * the rapid destruction of the kioctx.
802 */
fb2d4483 803static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 804 struct ctx_rq_wait *wait)
36f55889 805{
fa88b6f8 806 struct kioctx_table *table;
db446a08 807
b2edffdd
AV
808 spin_lock(&mm->ioctx_lock);
809 if (atomic_xchg(&ctx->dead, 1)) {
810 spin_unlock(&mm->ioctx_lock);
fa88b6f8 811 return -EINVAL;
b2edffdd 812 }
db446a08 813
855ef0de 814 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
815 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
816 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 817 spin_unlock(&mm->ioctx_lock);
4fcc712f 818
a6d7cff4 819 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 820 wake_up_all(&ctx->wait);
4fcc712f 821
fa88b6f8
BL
822 /*
823 * It'd be more correct to do this in free_ioctx(), after all
824 * the outstanding kiocbs have finished - but by then io_destroy
825 * has already returned, so io_setup() could potentially return
826 * -EAGAIN with no ioctxs actually in use (as far as userspace
827 * could tell).
828 */
829 aio_nr_sub(ctx->max_reqs);
4fcc712f 830
fa88b6f8
BL
831 if (ctx->mmap_size)
832 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 833
dc48e56d 834 ctx->rq_wait = wait;
fa88b6f8
BL
835 percpu_ref_kill(&ctx->users);
836 return 0;
1da177e4
LT
837}
838
36f55889
KO
839/*
840 * exit_aio: called when the last user of mm goes away. At this point, there is
841 * no way for any new requests to be submited or any of the io_* syscalls to be
842 * called on the context.
843 *
844 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
845 * them.
1da177e4 846 */
fc9b52cd 847void exit_aio(struct mm_struct *mm)
1da177e4 848{
4b70ac5f 849 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
850 struct ctx_rq_wait wait;
851 int i, skipped;
db446a08 852
4b70ac5f
ON
853 if (!table)
854 return;
db446a08 855
dc48e56d
JA
856 atomic_set(&wait.count, table->nr);
857 init_completion(&wait.comp);
858
859 skipped = 0;
4b70ac5f 860 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
861 struct kioctx *ctx =
862 rcu_dereference_protected(table->table[i], true);
abf137dd 863
dc48e56d
JA
864 if (!ctx) {
865 skipped++;
4b70ac5f 866 continue;
dc48e56d
JA
867 }
868
936af157 869 /*
4b70ac5f
ON
870 * We don't need to bother with munmap() here - exit_mmap(mm)
871 * is coming and it'll unmap everything. And we simply can't,
872 * this is not necessarily our ->mm.
873 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
874 * that it needs to unmap the area, just set it to 0.
936af157 875 */
58c85dc2 876 ctx->mmap_size = 0;
dc48e56d
JA
877 kill_ioctx(mm, ctx, &wait);
878 }
36f55889 879
dc48e56d 880 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 881 /* Wait until all IO for the context are done. */
dc48e56d 882 wait_for_completion(&wait.comp);
1da177e4 883 }
4b70ac5f
ON
884
885 RCU_INIT_POINTER(mm->ioctx_table, NULL);
886 kfree(table);
1da177e4
LT
887}
888
e1bdd5f2
KO
889static void put_reqs_available(struct kioctx *ctx, unsigned nr)
890{
891 struct kioctx_cpu *kcpu;
263782c1 892 unsigned long flags;
e1bdd5f2 893
263782c1 894 local_irq_save(flags);
be6fb451 895 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 896 kcpu->reqs_available += nr;
263782c1 897
e1bdd5f2
KO
898 while (kcpu->reqs_available >= ctx->req_batch * 2) {
899 kcpu->reqs_available -= ctx->req_batch;
900 atomic_add(ctx->req_batch, &ctx->reqs_available);
901 }
902
263782c1 903 local_irq_restore(flags);
e1bdd5f2
KO
904}
905
906static bool get_reqs_available(struct kioctx *ctx)
907{
908 struct kioctx_cpu *kcpu;
909 bool ret = false;
263782c1 910 unsigned long flags;
e1bdd5f2 911
263782c1 912 local_irq_save(flags);
be6fb451 913 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
914 if (!kcpu->reqs_available) {
915 int old, avail = atomic_read(&ctx->reqs_available);
916
917 do {
918 if (avail < ctx->req_batch)
919 goto out;
920
921 old = avail;
922 avail = atomic_cmpxchg(&ctx->reqs_available,
923 avail, avail - ctx->req_batch);
924 } while (avail != old);
925
926 kcpu->reqs_available += ctx->req_batch;
927 }
928
929 ret = true;
930 kcpu->reqs_available--;
931out:
263782c1 932 local_irq_restore(flags);
e1bdd5f2
KO
933 return ret;
934}
935
d856f32a
BL
936/* refill_reqs_available
937 * Updates the reqs_available reference counts used for tracking the
938 * number of free slots in the completion ring. This can be called
939 * from aio_complete() (to optimistically update reqs_available) or
940 * from aio_get_req() (the we're out of events case). It must be
941 * called holding ctx->completion_lock.
942 */
943static void refill_reqs_available(struct kioctx *ctx, unsigned head,
944 unsigned tail)
945{
946 unsigned events_in_ring, completed;
947
948 /* Clamp head since userland can write to it. */
949 head %= ctx->nr_events;
950 if (head <= tail)
951 events_in_ring = tail - head;
952 else
953 events_in_ring = ctx->nr_events - (head - tail);
954
955 completed = ctx->completed_events;
956 if (events_in_ring < completed)
957 completed -= events_in_ring;
958 else
959 completed = 0;
960
961 if (!completed)
962 return;
963
964 ctx->completed_events -= completed;
965 put_reqs_available(ctx, completed);
966}
967
968/* user_refill_reqs_available
969 * Called to refill reqs_available when aio_get_req() encounters an
970 * out of space in the completion ring.
971 */
972static void user_refill_reqs_available(struct kioctx *ctx)
973{
974 spin_lock_irq(&ctx->completion_lock);
975 if (ctx->completed_events) {
976 struct aio_ring *ring;
977 unsigned head;
978
979 /* Access of ring->head may race with aio_read_events_ring()
980 * here, but that's okay since whether we read the old version
981 * or the new version, and either will be valid. The important
982 * part is that head cannot pass tail since we prevent
983 * aio_complete() from updating tail by holding
984 * ctx->completion_lock. Even if head is invalid, the check
985 * against ctx->completed_events below will make sure we do the
986 * safe/right thing.
987 */
988 ring = kmap_atomic(ctx->ring_pages[0]);
989 head = ring->head;
990 kunmap_atomic(ring);
991
992 refill_reqs_available(ctx, head, ctx->tail);
993 }
994
995 spin_unlock_irq(&ctx->completion_lock);
996}
997
1da177e4 998/* aio_get_req
57282d8f
KO
999 * Allocate a slot for an aio request.
1000 * Returns NULL if no requests are free.
1da177e4 1001 */
04b2fa9f 1002static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1003{
04b2fa9f 1004 struct aio_kiocb *req;
a1c8eae7 1005
d856f32a
BL
1006 if (!get_reqs_available(ctx)) {
1007 user_refill_reqs_available(ctx);
1008 if (!get_reqs_available(ctx))
1009 return NULL;
1010 }
a1c8eae7 1011
0460fef2 1012 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 1013 if (unlikely(!req))
a1c8eae7 1014 goto out_put;
1da177e4 1015
e34ecee2 1016 percpu_ref_get(&ctx->reqs);
75321b50 1017 INIT_LIST_HEAD(&req->ki_list);
1da177e4 1018 req->ki_ctx = ctx;
080d676d 1019 return req;
a1c8eae7 1020out_put:
e1bdd5f2 1021 put_reqs_available(ctx, 1);
a1c8eae7 1022 return NULL;
1da177e4
LT
1023}
1024
d5470b59 1025static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1026{
db446a08 1027 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1028 struct mm_struct *mm = current->mm;
65c24491 1029 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1030 struct kioctx_table *table;
1031 unsigned id;
1032
1033 if (get_user(id, &ring->id))
1034 return NULL;
1da177e4 1035
abf137dd 1036 rcu_read_lock();
db446a08 1037 table = rcu_dereference(mm->ioctx_table);
abf137dd 1038
db446a08
BL
1039 if (!table || id >= table->nr)
1040 goto out;
1da177e4 1041
d0264c01 1042 ctx = rcu_dereference(table->table[id]);
f30d704f 1043 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1044 if (percpu_ref_tryget_live(&ctx->users))
1045 ret = ctx;
db446a08
BL
1046 }
1047out:
abf137dd 1048 rcu_read_unlock();
65c24491 1049 return ret;
1da177e4
LT
1050}
1051
1da177e4
LT
1052/* aio_complete
1053 * Called when the io request on the given iocb is complete.
1da177e4 1054 */
54843f87 1055static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1da177e4
LT
1056{
1057 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1058 struct aio_ring *ring;
21b40200 1059 struct io_event *ev_page, *event;
d856f32a 1060 unsigned tail, pos, head;
1da177e4 1061 unsigned long flags;
1da177e4 1062
0460fef2
KO
1063 /*
1064 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1065 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1066 * pointer since we might be called from irq context.
1067 */
1068 spin_lock_irqsave(&ctx->completion_lock, flags);
1069
58c85dc2 1070 tail = ctx->tail;
21b40200
KO
1071 pos = tail + AIO_EVENTS_OFFSET;
1072
58c85dc2 1073 if (++tail >= ctx->nr_events)
4bf69b2a 1074 tail = 0;
1da177e4 1075
58c85dc2 1076 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1077 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1078
04b2fa9f 1079 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1da177e4
LT
1080 event->data = iocb->ki_user_data;
1081 event->res = res;
1082 event->res2 = res2;
1083
21b40200 1084 kunmap_atomic(ev_page);
58c85dc2 1085 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1086
1087 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
04b2fa9f 1088 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
caf4167a 1089 res, res2);
1da177e4
LT
1090
1091 /* after flagging the request as done, we
1092 * must never even look at it again
1093 */
1094 smp_wmb(); /* make event visible before updating tail */
1095
58c85dc2 1096 ctx->tail = tail;
1da177e4 1097
58c85dc2 1098 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1099 head = ring->head;
21b40200 1100 ring->tail = tail;
e8e3c3d6 1101 kunmap_atomic(ring);
58c85dc2 1102 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1103
d856f32a
BL
1104 ctx->completed_events++;
1105 if (ctx->completed_events > 1)
1106 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1107 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1108
21b40200 1109 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1110
1111 /*
1112 * Check if the user asked us to deliver the result through an
1113 * eventfd. The eventfd_signal() function is safe to be called
1114 * from IRQ context.
1115 */
54843f87 1116 if (iocb->ki_eventfd) {
8d1c98b0 1117 eventfd_signal(iocb->ki_eventfd, 1);
54843f87
CH
1118 eventfd_ctx_put(iocb->ki_eventfd);
1119 }
8d1c98b0 1120
54843f87 1121 kmem_cache_free(kiocb_cachep, iocb);
1da177e4 1122
6cb2a210
QB
1123 /*
1124 * We have to order our ring_info tail store above and test
1125 * of the wait list below outside the wait lock. This is
1126 * like in wake_up_bit() where clearing a bit has to be
1127 * ordered with the unlocked test.
1128 */
1129 smp_mb();
1130
1da177e4
LT
1131 if (waitqueue_active(&ctx->wait))
1132 wake_up(&ctx->wait);
1133
e34ecee2 1134 percpu_ref_put(&ctx->reqs);
1da177e4
LT
1135}
1136
2be4e7de 1137/* aio_read_events_ring
a31ad380
KO
1138 * Pull an event off of the ioctx's event ring. Returns the number of
1139 * events fetched
1da177e4 1140 */
a31ad380
KO
1141static long aio_read_events_ring(struct kioctx *ctx,
1142 struct io_event __user *event, long nr)
1da177e4 1143{
1da177e4 1144 struct aio_ring *ring;
5ffac122 1145 unsigned head, tail, pos;
a31ad380
KO
1146 long ret = 0;
1147 int copy_ret;
1148
9c9ce763
DC
1149 /*
1150 * The mutex can block and wake us up and that will cause
1151 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1152 * and repeat. This should be rare enough that it doesn't cause
1153 * peformance issues. See the comment in read_events() for more detail.
1154 */
1155 sched_annotate_sleep();
58c85dc2 1156 mutex_lock(&ctx->ring_lock);
1da177e4 1157
fa8a53c3 1158 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1159 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1160 head = ring->head;
5ffac122 1161 tail = ring->tail;
a31ad380
KO
1162 kunmap_atomic(ring);
1163
2ff396be
JM
1164 /*
1165 * Ensure that once we've read the current tail pointer, that
1166 * we also see the events that were stored up to the tail.
1167 */
1168 smp_rmb();
1169
5ffac122 1170 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1171
5ffac122 1172 if (head == tail)
1da177e4
LT
1173 goto out;
1174
edfbbf38
BL
1175 head %= ctx->nr_events;
1176 tail %= ctx->nr_events;
1177
a31ad380
KO
1178 while (ret < nr) {
1179 long avail;
1180 struct io_event *ev;
1181 struct page *page;
1182
5ffac122
KO
1183 avail = (head <= tail ? tail : ctx->nr_events) - head;
1184 if (head == tail)
a31ad380
KO
1185 break;
1186
a31ad380 1187 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1188 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1189 pos %= AIO_EVENTS_PER_PAGE;
1190
d2988bd4
AV
1191 avail = min(avail, nr - ret);
1192 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1193
a31ad380
KO
1194 ev = kmap(page);
1195 copy_ret = copy_to_user(event + ret, ev + pos,
1196 sizeof(*ev) * avail);
1197 kunmap(page);
1198
1199 if (unlikely(copy_ret)) {
1200 ret = -EFAULT;
1201 goto out;
1202 }
1203
1204 ret += avail;
1205 head += avail;
58c85dc2 1206 head %= ctx->nr_events;
1da177e4 1207 }
1da177e4 1208
58c85dc2 1209 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1210 ring->head = head;
91d80a84 1211 kunmap_atomic(ring);
58c85dc2 1212 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1213
5ffac122 1214 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1215out:
58c85dc2 1216 mutex_unlock(&ctx->ring_lock);
a31ad380 1217
1da177e4
LT
1218 return ret;
1219}
1220
a31ad380
KO
1221static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1222 struct io_event __user *event, long *i)
1da177e4 1223{
a31ad380 1224 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1225
a31ad380
KO
1226 if (ret > 0)
1227 *i += ret;
1da177e4 1228
a31ad380
KO
1229 if (unlikely(atomic_read(&ctx->dead)))
1230 ret = -EINVAL;
1da177e4 1231
a31ad380
KO
1232 if (!*i)
1233 *i = ret;
1da177e4 1234
a31ad380 1235 return ret < 0 || *i >= min_nr;
1da177e4
LT
1236}
1237
a31ad380 1238static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1239 struct io_event __user *event,
fa2e62a5 1240 ktime_t until)
1da177e4 1241{
a31ad380 1242 long ret = 0;
1da177e4 1243
a31ad380
KO
1244 /*
1245 * Note that aio_read_events() is being called as the conditional - i.e.
1246 * we're calling it after prepare_to_wait() has set task state to
1247 * TASK_INTERRUPTIBLE.
1248 *
1249 * But aio_read_events() can block, and if it blocks it's going to flip
1250 * the task state back to TASK_RUNNING.
1251 *
1252 * This should be ok, provided it doesn't flip the state back to
1253 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1254 * will only happen if the mutex_lock() call blocks, and we then find
1255 * the ringbuffer empty. So in practice we should be ok, but it's
1256 * something to be aware of when touching this code.
1257 */
2456e855 1258 if (until == 0)
5f785de5
FZ
1259 aio_read_events(ctx, min_nr, nr, event, &ret);
1260 else
1261 wait_event_interruptible_hrtimeout(ctx->wait,
1262 aio_read_events(ctx, min_nr, nr, event, &ret),
1263 until);
a31ad380 1264 return ret;
1da177e4
LT
1265}
1266
1da177e4
LT
1267/* sys_io_setup:
1268 * Create an aio_context capable of receiving at least nr_events.
1269 * ctxp must not point to an aio_context that already exists, and
1270 * must be initialized to 0 prior to the call. On successful
1271 * creation of the aio_context, *ctxp is filled in with the resulting
1272 * handle. May fail with -EINVAL if *ctxp is not initialized,
1273 * if the specified nr_events exceeds internal limits. May fail
1274 * with -EAGAIN if the specified nr_events exceeds the user's limit
1275 * of available events. May fail with -ENOMEM if insufficient kernel
1276 * resources are available. May fail with -EFAULT if an invalid
1277 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1278 * implemented.
1279 */
002c8976 1280SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1281{
1282 struct kioctx *ioctx = NULL;
1283 unsigned long ctx;
1284 long ret;
1285
1286 ret = get_user(ctx, ctxp);
1287 if (unlikely(ret))
1288 goto out;
1289
1290 ret = -EINVAL;
d55b5fda 1291 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1292 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1293 ctx, nr_events);
1da177e4
LT
1294 goto out;
1295 }
1296
1297 ioctx = ioctx_alloc(nr_events);
1298 ret = PTR_ERR(ioctx);
1299 if (!IS_ERR(ioctx)) {
1300 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1301 if (ret)
e02ba72a 1302 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1303 percpu_ref_put(&ioctx->users);
1da177e4
LT
1304 }
1305
1306out:
1307 return ret;
1308}
1309
c00d2c7e
AV
1310#ifdef CONFIG_COMPAT
1311COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1312{
1313 struct kioctx *ioctx = NULL;
1314 unsigned long ctx;
1315 long ret;
1316
1317 ret = get_user(ctx, ctx32p);
1318 if (unlikely(ret))
1319 goto out;
1320
1321 ret = -EINVAL;
1322 if (unlikely(ctx || nr_events == 0)) {
1323 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1324 ctx, nr_events);
1325 goto out;
1326 }
1327
1328 ioctx = ioctx_alloc(nr_events);
1329 ret = PTR_ERR(ioctx);
1330 if (!IS_ERR(ioctx)) {
1331 /* truncating is ok because it's a user address */
1332 ret = put_user((u32)ioctx->user_id, ctx32p);
1333 if (ret)
1334 kill_ioctx(current->mm, ioctx, NULL);
1335 percpu_ref_put(&ioctx->users);
1336 }
1337
1338out:
1339 return ret;
1340}
1341#endif
1342
1da177e4
LT
1343/* sys_io_destroy:
1344 * Destroy the aio_context specified. May cancel any outstanding
1345 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1346 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1347 * is invalid.
1348 */
002c8976 1349SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1350{
1351 struct kioctx *ioctx = lookup_ioctx(ctx);
1352 if (likely(NULL != ioctx)) {
dc48e56d 1353 struct ctx_rq_wait wait;
fb2d4483 1354 int ret;
e02ba72a 1355
dc48e56d
JA
1356 init_completion(&wait.comp);
1357 atomic_set(&wait.count, 1);
1358
e02ba72a
AP
1359 /* Pass requests_done to kill_ioctx() where it can be set
1360 * in a thread-safe way. If we try to set it here then we have
1361 * a race condition if two io_destroy() called simultaneously.
1362 */
dc48e56d 1363 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1364 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1365
1366 /* Wait until all IO for the context are done. Otherwise kernel
1367 * keep using user-space buffers even if user thinks the context
1368 * is destroyed.
1369 */
fb2d4483 1370 if (!ret)
dc48e56d 1371 wait_for_completion(&wait.comp);
e02ba72a 1372
fb2d4483 1373 return ret;
1da177e4 1374 }
acd88d4e 1375 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1376 return -EINVAL;
1377}
1378
3c96c7f4
AV
1379static void aio_remove_iocb(struct aio_kiocb *iocb)
1380{
1381 struct kioctx *ctx = iocb->ki_ctx;
1382 unsigned long flags;
1383
1384 spin_lock_irqsave(&ctx->ctx_lock, flags);
1385 list_del(&iocb->ki_list);
1386 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1387}
1388
54843f87
CH
1389static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1390{
1391 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1392
3c96c7f4
AV
1393 if (!list_empty_careful(&iocb->ki_list))
1394 aio_remove_iocb(iocb);
1395
54843f87
CH
1396 if (kiocb->ki_flags & IOCB_WRITE) {
1397 struct inode *inode = file_inode(kiocb->ki_filp);
1398
1399 /*
1400 * Tell lockdep we inherited freeze protection from submission
1401 * thread.
1402 */
1403 if (S_ISREG(inode->i_mode))
1404 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1405 file_end_write(kiocb->ki_filp);
1406 }
1407
1408 fput(kiocb->ki_filp);
1409 aio_complete(iocb, res, res2);
1410}
1411
1412static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1413{
1414 int ret;
1415
1416 req->ki_filp = fget(iocb->aio_fildes);
1417 if (unlikely(!req->ki_filp))
1418 return -EBADF;
1419 req->ki_complete = aio_complete_rw;
1420 req->ki_pos = iocb->aio_offset;
1421 req->ki_flags = iocb_flags(req->ki_filp);
1422 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1423 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1424 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1425 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1426 /*
1427 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1428 * aio_reqprio is interpreted as an I/O scheduling
1429 * class and priority.
1430 */
1431 ret = ioprio_check_cap(iocb->aio_reqprio);
1432 if (ret) {
9a6d9a62
AM
1433 pr_debug("aio ioprio check cap error: %d\n", ret);
1434 return ret;
d9a08a9e
AM
1435 }
1436
1437 req->ki_ioprio = iocb->aio_reqprio;
1438 } else
1439 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1440
54843f87
CH
1441 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1442 if (unlikely(ret))
1443 fput(req->ki_filp);
1444 return ret;
1445}
1446
89319d31
CH
1447static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1448 bool vectored, bool compat, struct iov_iter *iter)
eed4e51f 1449{
89319d31
CH
1450 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1451 size_t len = iocb->aio_nbytes;
1452
1453 if (!vectored) {
1454 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1455 *iovec = NULL;
1456 return ret;
1457 }
9d85cba7
JM
1458#ifdef CONFIG_COMPAT
1459 if (compat)
89319d31
CH
1460 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1461 iter);
9d85cba7 1462#endif
89319d31 1463 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1464}
1465
9061d14a 1466static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1467{
1468 switch (ret) {
1469 case -EIOCBQUEUED:
9061d14a 1470 break;
89319d31
CH
1471 case -ERESTARTSYS:
1472 case -ERESTARTNOINTR:
1473 case -ERESTARTNOHAND:
1474 case -ERESTART_RESTARTBLOCK:
1475 /*
1476 * There's no easy way to restart the syscall since other AIO's
1477 * may be already running. Just fail this IO with EINTR.
1478 */
1479 ret = -EINTR;
1480 /*FALLTHRU*/
1481 default:
54843f87 1482 aio_complete_rw(req, ret, 0);
89319d31
CH
1483 }
1484}
1485
1486static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1487 bool compat)
1da177e4 1488{
00fefb9c 1489 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1490 struct iov_iter iter;
54843f87 1491 struct file *file;
89319d31 1492 ssize_t ret;
1da177e4 1493
54843f87
CH
1494 ret = aio_prep_rw(req, iocb);
1495 if (ret)
1496 return ret;
1497 file = req->ki_filp;
1498
1499 ret = -EBADF;
89319d31 1500 if (unlikely(!(file->f_mode & FMODE_READ)))
54843f87
CH
1501 goto out_fput;
1502 ret = -EINVAL;
89319d31 1503 if (unlikely(!file->f_op->read_iter))
54843f87 1504 goto out_fput;
73a7075e 1505
89319d31
CH
1506 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1507 if (ret)
54843f87 1508 goto out_fput;
89319d31
CH
1509 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1510 if (!ret)
9061d14a 1511 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31 1512 kfree(iovec);
54843f87 1513out_fput:
9061d14a 1514 if (unlikely(ret))
54843f87 1515 fput(file);
89319d31
CH
1516 return ret;
1517}
73a7075e 1518
89319d31
CH
1519static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1520 bool compat)
1521{
89319d31
CH
1522 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1523 struct iov_iter iter;
54843f87 1524 struct file *file;
89319d31 1525 ssize_t ret;
41ef4eb8 1526
54843f87
CH
1527 ret = aio_prep_rw(req, iocb);
1528 if (ret)
1529 return ret;
1530 file = req->ki_filp;
1531
1532 ret = -EBADF;
89319d31 1533 if (unlikely(!(file->f_mode & FMODE_WRITE)))
54843f87
CH
1534 goto out_fput;
1535 ret = -EINVAL;
89319d31 1536 if (unlikely(!file->f_op->write_iter))
54843f87 1537 goto out_fput;
1da177e4 1538
89319d31
CH
1539 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1540 if (ret)
54843f87 1541 goto out_fput;
89319d31
CH
1542 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1543 if (!ret) {
70fe2f48 1544 /*
92ce4728 1545 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1546 * which will be released by another thread in
1547 * aio_complete_rw(). Fool lockdep by telling it the lock got
1548 * released so that it doesn't complain about the held lock when
1549 * we return to userspace.
70fe2f48 1550 */
92ce4728
CH
1551 if (S_ISREG(file_inode(file)->i_mode)) {
1552 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1553 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1554 }
1555 req->ki_flags |= IOCB_WRITE;
9061d14a 1556 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1557 }
89319d31 1558 kfree(iovec);
54843f87 1559out_fput:
9061d14a 1560 if (unlikely(ret))
54843f87 1561 fput(file);
89319d31 1562 return ret;
1da177e4
LT
1563}
1564
a3c0d439
CH
1565static void aio_fsync_work(struct work_struct *work)
1566{
1567 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1568 int ret;
1569
1570 ret = vfs_fsync(req->file, req->datasync);
1571 fput(req->file);
1572 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1573}
1574
1575static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1576{
1577 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1578 iocb->aio_rw_flags))
1579 return -EINVAL;
a11e1d43 1580
a3c0d439
CH
1581 req->file = fget(iocb->aio_fildes);
1582 if (unlikely(!req->file))
1583 return -EBADF;
1584 if (unlikely(!req->file->f_op->fsync)) {
1585 fput(req->file);
1586 return -EINVAL;
1587 }
1588
1589 req->datasync = datasync;
1590 INIT_WORK(&req->work, aio_fsync_work);
1591 schedule_work(&req->work);
9061d14a 1592 return 0;
a3c0d439
CH
1593}
1594
d5470b59 1595static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
95af8496 1596 bool compat)
1da177e4 1597{
04b2fa9f 1598 struct aio_kiocb *req;
95af8496 1599 struct iocb iocb;
1da177e4
LT
1600 ssize_t ret;
1601
95af8496
AV
1602 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1603 return -EFAULT;
1604
1da177e4 1605 /* enforce forwards compatibility on users */
95af8496 1606 if (unlikely(iocb.aio_reserved2)) {
caf4167a 1607 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1608 return -EINVAL;
1609 }
1610
1611 /* prevent overflows */
1612 if (unlikely(
95af8496
AV
1613 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1614 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1615 ((ssize_t)iocb.aio_nbytes < 0)
1da177e4 1616 )) {
acd88d4e 1617 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1618 return -EINVAL;
1619 }
1620
41ef4eb8 1621 req = aio_get_req(ctx);
1d98ebfc 1622 if (unlikely(!req))
1da177e4 1623 return -EAGAIN;
1d98ebfc 1624
95af8496 1625 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
9c3060be
DL
1626 /*
1627 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1628 * instance of the file* now. The file descriptor must be
1629 * an eventfd() fd, and will be signaled for each completed
1630 * event using the eventfd_signal() function.
1631 */
95af8496 1632 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
801678c5 1633 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1634 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1635 req->ki_eventfd = NULL;
9c3060be
DL
1636 goto out_put_req;
1637 }
9830f4be
GR
1638 }
1639
8a660890 1640 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1641 if (unlikely(ret)) {
caf4167a 1642 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1643 goto out_put_req;
1644 }
1645
04b2fa9f 1646 req->ki_user_iocb = user_iocb;
95af8496 1647 req->ki_user_data = iocb.aio_data;
1da177e4 1648
95af8496 1649 switch (iocb.aio_lio_opcode) {
89319d31 1650 case IOCB_CMD_PREAD:
95af8496 1651 ret = aio_read(&req->rw, &iocb, false, compat);
89319d31
CH
1652 break;
1653 case IOCB_CMD_PWRITE:
95af8496 1654 ret = aio_write(&req->rw, &iocb, false, compat);
89319d31
CH
1655 break;
1656 case IOCB_CMD_PREADV:
95af8496 1657 ret = aio_read(&req->rw, &iocb, true, compat);
89319d31
CH
1658 break;
1659 case IOCB_CMD_PWRITEV:
95af8496 1660 ret = aio_write(&req->rw, &iocb, true, compat);
89319d31 1661 break;
a3c0d439 1662 case IOCB_CMD_FSYNC:
95af8496 1663 ret = aio_fsync(&req->fsync, &iocb, false);
a3c0d439
CH
1664 break;
1665 case IOCB_CMD_FDSYNC:
95af8496 1666 ret = aio_fsync(&req->fsync, &iocb, true);
ac060cba 1667 break;
89319d31 1668 default:
95af8496 1669 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
89319d31
CH
1670 ret = -EINVAL;
1671 break;
1672 }
41003a7b 1673
92ce4728 1674 /*
9061d14a
AV
1675 * If ret is 0, we'd either done aio_complete() ourselves or have
1676 * arranged for that to be done asynchronously. Anything non-zero
1677 * means that we need to destroy req ourselves.
92ce4728 1678 */
9061d14a 1679 if (ret)
89319d31 1680 goto out_put_req;
1da177e4 1681 return 0;
1da177e4 1682out_put_req:
e1bdd5f2 1683 put_reqs_available(ctx, 1);
e34ecee2 1684 percpu_ref_put(&ctx->reqs);
54843f87
CH
1685 if (req->ki_eventfd)
1686 eventfd_ctx_put(req->ki_eventfd);
1687 kmem_cache_free(kiocb_cachep, req);
1da177e4
LT
1688 return ret;
1689}
1690
67ba049f
AV
1691/* sys_io_submit:
1692 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1693 * the number of iocbs queued. May return -EINVAL if the aio_context
1694 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1695 * *iocbpp[0] is not properly initialized, if the operation specified
1696 * is invalid for the file descriptor in the iocb. May fail with
1697 * -EFAULT if any of the data structures point to invalid data. May
1698 * fail with -EBADF if the file descriptor specified in the first
1699 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1700 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1701 * fail with -ENOSYS if not implemented.
1702 */
1703SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1704 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1705{
1706 struct kioctx *ctx;
1707 long ret = 0;
080d676d 1708 int i = 0;
9f5b9425 1709 struct blk_plug plug;
1da177e4
LT
1710
1711 if (unlikely(nr < 0))
1712 return -EINVAL;
1713
1da177e4
LT
1714 ctx = lookup_ioctx(ctx_id);
1715 if (unlikely(!ctx)) {
caf4167a 1716 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1717 return -EINVAL;
1718 }
1719
1da92779
AV
1720 if (nr > ctx->nr_events)
1721 nr = ctx->nr_events;
1722
9f5b9425 1723 blk_start_plug(&plug);
67ba049f 1724 for (i = 0; i < nr; i++) {
1da177e4 1725 struct iocb __user *user_iocb;
1da177e4 1726
67ba049f 1727 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1728 ret = -EFAULT;
1729 break;
1730 }
1731
67ba049f 1732 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1733 if (ret)
1734 break;
1735 }
9f5b9425 1736 blk_finish_plug(&plug);
1da177e4 1737
723be6e3 1738 percpu_ref_put(&ctx->users);
1da177e4
LT
1739 return i ? i : ret;
1740}
1741
c00d2c7e 1742#ifdef CONFIG_COMPAT
c00d2c7e 1743COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1744 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1745{
67ba049f
AV
1746 struct kioctx *ctx;
1747 long ret = 0;
1748 int i = 0;
1749 struct blk_plug plug;
c00d2c7e
AV
1750
1751 if (unlikely(nr < 0))
1752 return -EINVAL;
1753
67ba049f
AV
1754 ctx = lookup_ioctx(ctx_id);
1755 if (unlikely(!ctx)) {
1756 pr_debug("EINVAL: invalid context id\n");
1757 return -EINVAL;
1758 }
1759
1da92779
AV
1760 if (nr > ctx->nr_events)
1761 nr = ctx->nr_events;
1762
67ba049f
AV
1763 blk_start_plug(&plug);
1764 for (i = 0; i < nr; i++) {
1765 compat_uptr_t user_iocb;
1766
1767 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1768 ret = -EFAULT;
1769 break;
1770 }
1771
1772 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1773 if (ret)
1774 break;
1775 }
1776 blk_finish_plug(&plug);
1777
1778 percpu_ref_put(&ctx->users);
1779 return i ? i : ret;
c00d2c7e
AV
1780}
1781#endif
1782
1da177e4
LT
1783/* lookup_kiocb
1784 * Finds a given iocb for cancellation.
1da177e4 1785 */
04b2fa9f 1786static struct aio_kiocb *
f3a2752a 1787lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1da177e4 1788{
04b2fa9f 1789 struct aio_kiocb *kiocb;
d00689af
ZB
1790
1791 assert_spin_locked(&ctx->ctx_lock);
1792
1da177e4 1793 /* TODO: use a hash or array, this sucks. */
04b2fa9f
CH
1794 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1795 if (kiocb->ki_user_iocb == iocb)
1da177e4
LT
1796 return kiocb;
1797 }
1798 return NULL;
1799}
1800
1801/* sys_io_cancel:
1802 * Attempts to cancel an iocb previously passed to io_submit. If
1803 * the operation is successfully cancelled, the resulting event is
1804 * copied into the memory pointed to by result without being placed
1805 * into the completion queue and 0 is returned. May fail with
1806 * -EFAULT if any of the data structures pointed to are invalid.
1807 * May fail with -EINVAL if aio_context specified by ctx_id is
1808 * invalid. May fail with -EAGAIN if the iocb specified was not
1809 * cancelled. Will fail with -ENOSYS if not implemented.
1810 */
002c8976
HC
1811SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1812 struct io_event __user *, result)
1da177e4 1813{
1da177e4 1814 struct kioctx *ctx;
04b2fa9f 1815 struct aio_kiocb *kiocb;
888933f8 1816 int ret = -EINVAL;
1da177e4 1817 u32 key;
1da177e4 1818
f3a2752a 1819 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 1820 return -EFAULT;
f3a2752a
CH
1821 if (unlikely(key != KIOCB_KEY))
1822 return -EINVAL;
1da177e4
LT
1823
1824 ctx = lookup_ioctx(ctx_id);
1825 if (unlikely(!ctx))
1826 return -EINVAL;
1827
1828 spin_lock_irq(&ctx->ctx_lock);
f3a2752a 1829 kiocb = lookup_kiocb(ctx, iocb);
888933f8
CH
1830 if (kiocb) {
1831 ret = kiocb->ki_cancel(&kiocb->rw);
1832 list_del_init(&kiocb->ki_list);
1833 }
1da177e4
LT
1834 spin_unlock_irq(&ctx->ctx_lock);
1835
906b973c 1836 if (!ret) {
bec68faa
KO
1837 /*
1838 * The result argument is no longer used - the io_event is
1839 * always delivered via the ring buffer. -EINPROGRESS indicates
1840 * cancellation is progress:
906b973c 1841 */
bec68faa 1842 ret = -EINPROGRESS;
906b973c 1843 }
1da177e4 1844
723be6e3 1845 percpu_ref_put(&ctx->users);
1da177e4
LT
1846
1847 return ret;
1848}
1849
fa2e62a5
DD
1850static long do_io_getevents(aio_context_t ctx_id,
1851 long min_nr,
1852 long nr,
1853 struct io_event __user *events,
1854 struct timespec64 *ts)
1855{
1856 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1857 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1858 long ret = -EINVAL;
1859
1860 if (likely(ioctx)) {
1861 if (likely(min_nr <= nr && min_nr >= 0))
1862 ret = read_events(ioctx, min_nr, nr, events, until);
1863 percpu_ref_put(&ioctx->users);
1864 }
1865
1866 return ret;
1867}
1868
1da177e4
LT
1869/* io_getevents:
1870 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
1871 * the completion queue for the aio_context specified by ctx_id. If
1872 * it succeeds, the number of read events is returned. May fail with
1873 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1874 * out of range, if timeout is out of range. May fail with -EFAULT
1875 * if any of the memory specified is invalid. May return 0 or
1876 * < min_nr if the timeout specified by timeout has elapsed
1877 * before sufficient events are available, where timeout == NULL
1878 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 1879 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 1880 */
002c8976
HC
1881SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1882 long, min_nr,
1883 long, nr,
1884 struct io_event __user *, events,
1885 struct timespec __user *, timeout)
1da177e4 1886{
fa2e62a5 1887 struct timespec64 ts;
7a074e96
CH
1888 int ret;
1889
1890 if (timeout && unlikely(get_timespec64(&ts, timeout)))
1891 return -EFAULT;
1892
1893 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1894 if (!ret && signal_pending(current))
1895 ret = -EINTR;
1896 return ret;
1897}
1da177e4 1898
7a074e96
CH
1899SYSCALL_DEFINE6(io_pgetevents,
1900 aio_context_t, ctx_id,
1901 long, min_nr,
1902 long, nr,
1903 struct io_event __user *, events,
1904 struct timespec __user *, timeout,
1905 const struct __aio_sigset __user *, usig)
1906{
1907 struct __aio_sigset ksig = { NULL, };
1908 sigset_t ksigmask, sigsaved;
1909 struct timespec64 ts;
1910 int ret;
1911
1912 if (timeout && unlikely(get_timespec64(&ts, timeout)))
1913 return -EFAULT;
1914
1915 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
1916 return -EFAULT;
1917
1918 if (ksig.sigmask) {
1919 if (ksig.sigsetsize != sizeof(sigset_t))
1920 return -EINVAL;
1921 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
fa2e62a5 1922 return -EFAULT;
7a074e96
CH
1923 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1924 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1925 }
1926
1927 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1928 if (signal_pending(current)) {
1929 if (ksig.sigmask) {
1930 current->saved_sigmask = sigsaved;
1931 set_restore_sigmask();
1932 }
1933
1934 if (!ret)
1935 ret = -ERESTARTNOHAND;
1936 } else {
1937 if (ksig.sigmask)
1938 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1da177e4 1939 }
fa2e62a5 1940
7a074e96 1941 return ret;
1da177e4 1942}
c00d2c7e
AV
1943
1944#ifdef CONFIG_COMPAT
1945COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1946 compat_long_t, min_nr,
1947 compat_long_t, nr,
1948 struct io_event __user *, events,
1949 struct compat_timespec __user *, timeout)
1950{
fa2e62a5 1951 struct timespec64 t;
7a074e96
CH
1952 int ret;
1953
1954 if (timeout && compat_get_timespec64(&t, timeout))
1955 return -EFAULT;
1956
1957 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1958 if (!ret && signal_pending(current))
1959 ret = -EINTR;
1960 return ret;
1961}
1962
c00d2c7e 1963
7a074e96
CH
1964struct __compat_aio_sigset {
1965 compat_sigset_t __user *sigmask;
1966 compat_size_t sigsetsize;
1967};
1968
1969COMPAT_SYSCALL_DEFINE6(io_pgetevents,
1970 compat_aio_context_t, ctx_id,
1971 compat_long_t, min_nr,
1972 compat_long_t, nr,
1973 struct io_event __user *, events,
1974 struct compat_timespec __user *, timeout,
1975 const struct __compat_aio_sigset __user *, usig)
1976{
1977 struct __compat_aio_sigset ksig = { NULL, };
1978 sigset_t ksigmask, sigsaved;
1979 struct timespec64 t;
1980 int ret;
1981
1982 if (timeout && compat_get_timespec64(&t, timeout))
1983 return -EFAULT;
1984
1985 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
1986 return -EFAULT;
1987
1988 if (ksig.sigmask) {
1989 if (ksig.sigsetsize != sizeof(compat_sigset_t))
1990 return -EINVAL;
1991 if (get_compat_sigset(&ksigmask, ksig.sigmask))
c00d2c7e 1992 return -EFAULT;
7a074e96
CH
1993 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1994 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1995 }
c00d2c7e 1996
7a074e96
CH
1997 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1998 if (signal_pending(current)) {
1999 if (ksig.sigmask) {
2000 current->saved_sigmask = sigsaved;
2001 set_restore_sigmask();
2002 }
2003 if (!ret)
2004 ret = -ERESTARTNOHAND;
2005 } else {
2006 if (ksig.sigmask)
2007 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
c00d2c7e 2008 }
fa2e62a5 2009
7a074e96 2010 return ret;
c00d2c7e
AV
2011}
2012#endif